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ABSTRACT 

Title: Automated image-based inspection of masonry arch bridges 

Author: Daniel Brackenbury 

 

Masonry arch bridges have proven to be durable and underpin much of the world’s 

transport infrastructure. However, they are an aging asset, and their effective management 

is challenging. Existing management focuses heavily on manual inspection, which has 

been shown as subjective and often leads to incomplete records regarding damage and 

retrofit of the structure. 

Improved data collection and processing technologies now provide the opportunity to 

create a digital record of the entire bridge surface. However, if this digital record is still 

inspected manually, subjectivity will persist. While considerable progress has been made 

in automated image-based defect detection of concrete and asphalt infrastructure, 

relatively little progress has been made for masonry.  

In this context, a new framework, or pipeline, for automated inspection of masonry arch 

bridges is presented: from the data capture phase all the way to the diagnosis of the 

underlying problems with the bridge. After presenting this framework, the focus of this 

work is on the automated detection of defects within realistic, deteriorated masonry 

surfaces that are typical of historic masonry arch bridges. This has involved the creation 

of a pixel-wise annotated dataset of masonry arch bridge surfaces for both different defect 

classes and mortar joints. This dataset is believed to be unparalleled in both scope and 

scale, compared to other works in the literature and therefore serves as an invaluable tool 

for future research in this area. 

Methodologies for mapping the mortar joints on masonry surfaces have been examined, 

including a comparison of a hardcoded deterministic algorithm based on pattern 

detection, with a semantic deep learning model. Both methods performed well; the deep 

learning model was more robust to noisier image conditions. The effect of mortar joints 

on automated defect detection procedures was then investigated, as these joints are one 

of the key distractors and differentiators between masonry and concrete/asphalt surfaces. 

Whilst simple models based on edge detection were unable to differentiate defects from 

the masonry surface without prior segmentation of mortar, a more robust classifier based 

on a Convolutional Neural Network architecture performed well. In addition, prior 
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segmentation of mortar in the image is shown to have no impact on the classifier 

performance. Use of Class Activation Mapping shows that in most cases the classifier has 

learnt to ignore the mortar joint interface. The developed classifier performed equal to or 

better than current manual inspection procedures. 
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1 INTRODUCTION 

1.1 Background and need 

Although construction of new masonry arch bridges is now not common, legacy masonry 

arch bridges underpin much of the world’s transport networks. For example, 60% of the 

bridge stock of the major European rail administrations are masonry arch bridges or 

culverts which represents over 200,000 structures. In the UK alone there are 18,000 

masonry rail bridges representing 47% of the rail bridge stock. Masonry arch bridges have 

proved to be durable, with the majority in Europe being between 100 and 150 years old. 

Furthermore, a significant proportion (approximately 12%) are over 150 years old 

(Orbán, 2004). Life cycle costs for masonry arch bridges are found to be more economical 

than for most other structure types. The vast majority of these 200,000 structures are in a 

good or medium condition, but there are a sizeable proportion (approximately 15%) 

which are in a poor or very poor condition. There is also a tendency for accelerated 

deterioration (Network Rail, 2015). 

Effective management of civil assets is essential due to their age and susceptibility to 

rapid deterioration in adverse weather. Funding constraints result in the deferment of 

much of the planned renewal works on civil assets, making inspection and examination 

even more important. However, signs of imminent failure are often hard or impossible to 

detect by visual inspection, and it has been found that Network Rail, the rail infrastructure 

owner and operator in the UK, have been unable to deliver some examinations in 

accordance with the required standards (Davies and Dennis, 2021). Incidents such as the 

collapse of the Grove Nook Lane masonry arch bridge at Barrow upon Soar in England 

onto open railway lines of the Midland Mainline in August 2016 demonstrate the potential 
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for catastrophic consequences. In this case it was only human intervention, the last line 

of defence, which prevented a serious outcome. This also demonstrates the vulnerability 

of the current risk control and mitigation processes of civil assets, which are shown to be 

heavily dependent on the knowledge, competence and expertise of individual staff, 

increasing the vulnerability of those controls (Office of Rail and Road, 2017).  

Network Rail aims to conduct a detailed condition survey of each bridge every six years. 

Historically, Network Rail have been falling short of this target. In the six-year period 

between 2001 and 2007, just 60% of the bridge population was assessed. This backlog 

was partially attributed to access problems caused by busy lines (Office of Rail and Road, 

2007). 

Therefore, there is a need to improve on the existing status quo. An automated visual 

inspection process can help increase the speed and frequency of inspections, as well as 

reducing the danger and disruption, and the subjectivity associated with current 

inspections. Such automated inspection can also feed towards a more impactful adoption 

of a Structural Health Monitoring (SHM) framework for bridges, where it is identified 

that the current lack of data is one of the key barriers towards implementation (Campbell 

et al., 2020). 

1.2 Automated masonry inspection 

Development of vehicle mounted imaging and laser scanning sensors have made the 

collection of visual and geometric data of bridge structures much easier. However, bridge 

inspection would still be subjective if the interpretation of such a dataset is performed by 

a human inspector (McRobbie, 2015). 

Much progress has been made towards automating the detection of defects in concrete 

and asphalt infrastructure using both artificial intelligence and more hand-crafted 

methods. However, relatively little research has been focused on masonry. These concrete 

and asphalt studies have often shown satisfactory performance in conditions with few 

distractors, but performance was shown to deteriorate where conditions worsen. For 

instance, one study that used a deep learning neural network to distinguish defective from 

non-defective surfaces found that their classifier confused joints in concrete pavements 

for cracking (Gopalakrishnan et al., 2017). 

Masonry suffers from many of the same defects as concrete, for example both feature 

spalling and cracking. Therefore, there is potential to apply similar automated methods, 
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both machine learning and hand-crafted, to masonry surfaces. A few studies have applied 

such approaches successfully, though mostly to clean masonry as seen on housing, where 

defects are much more discernible than in the imperfect masonry surfaces often seen on 

masonry arch bridges. Studies on masonry have also suggested that classifiers confuse 

mortar joints with defects (Chaiyasarn, Sharma, et al., 2018). 

1.3 Research motivation and objectives 

The previous sections detail the shortcomings of the existing manual practices of 

inspection of masonry arch bridges, and the existing progress that has been made towards 

automated inspection. This context provides the basis for the motivation of this work: 

• Machine learning techniques hold promise for automated, image-based 

inspections of masonry arch bridges. However, we need a better understanding of 

the effect of mortar joints and other imperfections on the automated, image-based 

classification of defects in masonry, to improve the detection performance for the 

deteriorated surfaces typical of historic masonry arch bridges. 

• An understanding of the performance of the existing manual inspection process 

for recording defects in masonry arch bridges is needed: for comparison to the 

performance of a state-of-the-art image-based automated classifier. 

Based on these factors, the objective of this dissertation is: 

To evaluate and quantify the ability of different defect classification 

methodologies, to increase the understanding of the factors key to the 

performance of automated defect classification on masonry arch bridges. 

This therefore enables the development of a state-of-the-art automated 

image-based classifier with performance exceeding that of the existing 

manual inspection process. 

To meet this objective, a variety of approaches will be examined as outlined in Chapter 

1.4. These approaches are tailored to the different stages in the bridge inspection pipeline, 

from the creation of image textures through to the identification of the root cause of 

identified defects. 

1.4 Outline of thesis 

The approach taken to achieve the objective in Chapter 1.3 is as follows. This chapter 

introduces the problem and states the objectives of the thesis. Chapter 2 then reviews the 
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previous research in the problem area, understanding the defects present on masonry arch 

bridges, the current inspection methods including their pitfalls, and the existing data 

capture and automated defect detection methodologies. 

Chapter 3 examines deeper the defects present on masonry arch bridges to determine the 

defect classes an automated classifier should focus on. A medical analogy is adopted to 

determine the implication of the detected defects on the health of the bridge. Visible 

defects are associated both with their underlying root cause as well as interventions 

required both to treat the bridge of its underlying deficiency and fix the visible defects. 

This analysis has been built into a connected map, such that future automation is possible. 

Much of the work of this thesis investigates applying machine learning techniques to 

images. There is therefore a need for substantial amounts of annotated image data of 

masonry surfaces for both training and testing. The dataset that has been built for this is 

outlined in Chapter 4. Details of the case-study bridges are presented, along with the 

examination of different methods of creating orthorectified image textures of bridge 

surfaces. Focus is particularly applied to the curved surface of the arch barrel, where 

appropriate unwrapping of the surface is important to avoid masonry scaling in images. 

Chapter 5 compares a hardcoded deterministic method with deep learning probabilistic 

methods, for detecting mortar joints in masonry arch bridge surfaces. Mortar joint 

location can aid in determining the root cause of identified visual defects through 

following the mapping developed in Chapter 3. 

Following the detection of mortar joints, the detection of defects is examined in Chapter 

6. The focus is on the effect of mortar joints on the performance of a defect classifier. 

Several classification strategies are examined, incorporating mortar joint information in 

different ways with the resulting classification performance compared across different 

datasets. 

Chapter 7 applies the findings of Chapter 6 to test the defect detection performance of a 

state-of-the-art classifier against that of the current manual inspection process. This is 

compared across a dataset of three different bridges whereby the defects identified in a 

detailed inspection are compared to the ground truth and those identified by the automated 

classifier. 

Finally, Chapter 8 summarises the work completed and the conclusions of the previous 

chapters. These results provide suggestions for potential future research opportunities for 
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both the improvement of the automated defect classifier, and for further automation of 

the inspection pipeline.
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2 LITERATURE REVIEW 

2.1 Masonry arch bridges 

Figure 2-1 shows the typical terminology used for the main structural elements of 

masonry arch bridges. The arch of the bridge spans the space between the two abutments, 

with the backfill material supporting the bridge road surface being contained by the 

spandrel walls and wing-walls. Briefly the main elements are (Scotland’s Oldest Bridges, 

2021): 

• Abutment: a solid masonry structure built to support the lateral pressure at both 

ends of an arch. 

• Arch Barrel: the whole of the masonry arch ring. The lines where the side edges 

of the barrel meet the face are called the intrados (bottom edge) and extrados (top 

edge). The depth, or thickness, of the arch is the distance between them. The lower 

surface of the barrel is called the soffit and the upper surface the arch back. 

• Back fill: the filling material in the space above the arch barrel between the 

spandrels. It provides a firm, flat surface for the top decking of the bridge. Often 

the back fill consists of compacted material excavated during the building of the 

bridge foundations. Water in the backfill freezing leads to expansion which can 

push out the spandrels. Therefore, weep holes are used for drainage, and the 

surface is often waterproofed. 

• Crown: the centre, or the highest part of the arch barrel. 

• Haunch: the part of the arch barrel above the springing line but below the crown. 

• Parapet: the wall on either side of the bridge deck, joining the spandrel walls at 

the brick deck. 
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• Pier: a masonry structure to support the vertical load of adjacent ends of two arch 

spans on a multi span arch bridge. 

• Rise: the height of the arch barrel, the difference in height between the springing 

line and the crown of the arch. 

• Span: the length of the arch barrel, the horizontal distance between the springers 

each side of the arch. 

• Spandrels: the parts of the bridge directly above the haunches but below the crown 

level. An open spandrel will have gaps rather than walls in this area. The spandrel 

walls stiffen the barrel of the arch, but only at its edges (where the walls are) which 

could lead to the centre of the barrel being more flexible than its edges. 

• Springer: the lowest brick course of the arch barrel sitting on the foundation or 

abutment. The springers run across both sides of the barrel at the lowest level of 

the soffits. The springing line is the line at the lowest edge of the springers. 

• Wing-wall: a retaining wall splaying out from the abutment retaining the fill of 

the approach to the bridge. 

 

Figure 2-1: Typical terminology for masonry arch bridges (Siwowski, 2015) 
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2.1.1 Masonry arch bridge defects 

Typically, the problems faced by arch bridges are a result of deterioration in the condition 

of the foundation, the structure, or the materials of the bridge. This deterioration manifests 

itself in the form of (Pitchford et al., 2003): 

• Distortion of the arch structure: This can lead to transverse cracking. 

• Spandrel wall separation: This is where the spandrel wall (the wall built on the 

curve of the arch filling in the space between the arch and the bridge deck) 

moves away from the arch barrel. 

• Ring separation: This is where the layers of bricks in the arch ring delaminate 

from one another. 

• Backfill failure: This could be a result of the backfill becoming saturated. 

• Water damage: This causes freeze-thaw or leaching damage leading to 

deterioration of bricks and mortar. 

• Chemical damage: This is mainly caused by attack from various sulphates. 

• Physical erosion 

• Vegetation: Growing in the brickwork, displacing, and breaking apart the 

masonry structure. 

Therefore, the main visual indicators of bridge problems are, deterioration of the 

condition of the bricks and the mortar, fractures and cracking in the brickwork, salt 

efflorescence, and vegetation. 

Cracking in masonry is caused by movement that cannot be prevented but can be 

accommodated. In flexure, cracks in masonry bricks first occur at about 80% of failure 

strength. Cracks in mortar could be a result of differential movement between brick and 

mortar, for instance due to different coefficients of thermal expansion. Cracks can also be 

induced between walls above and below grade, for instance between the parapet and 

spandrel walls, as walls above grade are more prone to volume change caused by heat, 

moisture or freezing. Foundation movements can be caused by changes of soil water 

content with the seasons or due to vegetation. Uneven foundation settlement most often 

results in diagonal or vertical cracks in masonry. Relatively small vibrations, such as 

vehicle movements over bridges, can lead to built up stress concentrations in masonry, 

resulting in unexpected cracking. Some cracks in masonry are also present at the time of 
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construction. For instance, mortar shrinkage upon drying can result in cracks, and small 

cracks on brick faces could be caused by inadequate control in brick manufacturing which 

may penetrate only slightly or could extend through to the core of the brick. Cracks in 

masonry are a source of masonry performance failure and water permeance, though tests 

conducted at the Building Research Establishment in England have shown that stepped 

cracks up to 25mm wide only reduce the capacity of brick walls to carry vertical loads by 

less than 30% (Grimm, 1988). 

Laminations are cracks parallel to the face of the brick, so are not visible on the surface. 

All extruded bricks are laminated to some extent. Although there is no evidence that 

laminations affect brick performance, weathering and compressive stresses may cause the 

brick face to spall at these laminations (Grimm, 1988). The initial damage from spalling 

is characterised by a few cracks, leading to severe cracking, flaking, and spalling which 

may gradually extend deeper into the material causing strength loss and ultimately total 

disintegration of the brick (Larbi, 2004).  

Efflorescence is caused by the acid soluble constituents of bricks dissolving and being 

transported to other sites where they recrystallise to form new compounds. Where 

recrystallisation is on the masonry surface, this is termed efflorescence, and appears as a 

white coating. Efflorescence is usually just an aesthetic form of deterioration, though can 

eventually lead to surface deterioration of the masonry itself as a result of material loss 

caused by spalling (Larbi, 2004). The presence of water therefore plays an important role 

in the deterioration process of stones (Saiz-Jimenez and Marszałek, 2004). 

2.1.2 Masonry arch bridge visual condition assessment process in practice 

The specifics of bridge inspection programmes are different in different administrative 

regions, though most follow similar procedures and schedules. Generally, there are four 

main types of bridge inspection that are performed as part of a bridge inspection 

programme. These are, routine surveillance, general (overview) inspections, principal 

(detailed) inspections and non-routine inspections. Staff continuously perform routine 

surveillance during their normal duties when they pass through the bridge site. It involves 

a brief check for obvious defects in the structure. General inspections are performed at 

intervals of between one and three-years. These involve a visual inspection, checking for 

any significant signs of deterioration since the previous inspection. The bridge is observed 

from ground level and the results are documented. Principal inspections are performed at 

intervals of between five and six-years. They involve a detailed close visual examination 
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from within touching distance of the structure. This is supplemented by other 

investigations and measurements as appropriate for the structure (e.g., hammer tapping). 

The principal inspection is used to inform maintenance planning. Non-routine inspections 

are conducted in case of doubt about the actual condition or capacity of a bridge. This 

could be a consequence of something discovered during a routine inspection, or because 

of something happening to the bridge (e.g., a bridge strike). These involve a visual 

inspection as well as other required specialist investigations of the structure (Atkins, 

2009; Helmerich et al., 2007). 

Visual inspections are used as the first level of inspection. The results determine if 

additional more detailed inspection or maintenance is required. As part of the visual 

inspection, it is recommended that photography is used to record the general appearance 

of the structure and any defects or evidence of deterioration. Photographs are thought to 

be effective for communicating the bridge condition information to others for comparison 

of features and showing the deterioration of the bridge over time. They also decrease the 

subjectivity of the inspection process. Inspectors carry photographs and documents of the 

findings from previous inspections with them and use these to identify whether existing 

defects have changed and identify any new defects. For photographs to be effective for 

comparison of a feature, they should be taken with a measure of scale, and the position 

and angle of the view should be consistent between different inspections (McKibbins et 

al., 2006). 

The following outlines information that is recorded during a visual inspection undertaken 

in the UK, which is similar to that recorded elsewhere (McKibbins et al., 2006): 

• All the basic dimensions of the structure 

• The material type and the form of construction 

• Any evidence of an impact 

• A map of the defects found in the structure 

• Any cracks in the structure. The position, orientation in 3D space, length, 

displacement (crack width), and whether the crack has historically been 

repointed are all recorded. The displacement of the crack may not be constant 

across its length, so this is checked. Additionally, cracks may only open when 

the bridge is loaded, so inspectors look for evidence of closed cracks since most 

inspections are conducted when the bridge is not loaded. Cracks in a road 



Chapter 2: Literature review 

Daniel Brackenbury - January 2022   11 

surface for road bridges are also recorded as these can give an indication of 

movements in the backfill. 

• Historical repairs made to the bridge. This is because these may hide ongoing 

defects. For example, cracks could have been hidden by repointing making them 

impossible to detect. An extra thick mortar joint may provide evidence that this 

is the case, particularly if the mortar is obviously different to surrounding 

mortar. 

• Any other evidence of movement of the structure. This can be the distortion of 

regular shape, misalignment, tilting, bulging, hollowness, or excessive 

movement under load. Such movements are measured using simple manual 

techniques, for example a line and a plumb bob. This is important to record as 

often masonry can be subjected to quite large differential movements without 

showing evidence of cracking.  

• The degree of any masonry wetness. This is objectively recorded on a scale from 

dry to running water as this gives an indication of the level of the water table in 

the backfill. Weather conditions, both at the time of inspection and in the prior 

period are logged as these can influence the presence of water on the bridge.  

• Any evidence of the effect of water on the fabric of the bridge. This is especially 

the case for bridges over water which are checked for visible evidence of scour. 

• Mortar loss and the condition of the mortar. This gives an indication of the 

strength of bond between the mortar and the masonry, and the ability of the 

masonry to transfer load. This is assessed by the depth of any open joints, their 

location, and the approximate proportion of the structure with open joints. If 

masonry has been repointed since the last inspection, the depth of the repointing 

is determined as well as the condition of the mortar behind the repointing. 

Additionally, the presence of any voids between the repointing and original 

mortar are noted. 

• The presence and extent of any obvious signs of leaching. This is a whiteish 

mineral deposit on the masonry surface. Any other evidence of a chemical attack 

is also recorded. 

• The condition of the masonry fabric. This includes noting the extent and depth 

of any spalling, erosion, softening or deterioration of the masonry. Additionally, 
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the presence of any vegetation and its extent is recorded. Colonies of micro-

organisms such as lichen can indicate internal deterioration of the masonry.  

Whilst collecting field data from a viaduct carrying the East Coast mainline in 

Peterborough, the chalk markings shown in Figure 2-2 were observed, highlighting cracks 

identified in the masonry. This shows an example of the existing manual process an 

inspector conducts to identify and document the defects in the brick structure as part of a 

principal inspection. 

As part of the investigations of this PhD, a general inspection of Harringworth Viaduct 

in Northamptonshire, UK was observed. This is much less detailed than the principal 

inspection detailed above in Peterborough. Here the inspector walked the length of the 

viaduct, both at ground level and track level, observing with binoculars and photographs 

the progression of defects that have been previously reported. A general inspection is 

therefore unlikely to detect any new defects on the structure. 

 

Figure 2-2: Image taken whilst collecting field data showing marking involved in 

manual visual inspection 
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2.1.3 Inspection Subjectivity 

Visual inspections are ideal for gathering information of the condition of a large bridge 

stock as they are simple, rapid and can be undertaken with minimal disruption. However, 

the main weakness is the reliance on visible features and subjectivity of observations. 

Early signs of structural distress may be easily overlooked or perceived as 

inconsequential, particularly when larger potentially longstanding defects are present. 

Whether such defects are recorded therefore depends on the skill and knowledge of the 

individual inspector, reducing confidence in inspection results (McKibbins et al., 2006). 

In the UK, concern has been expressed over the management of the bridge condition 

monitoring process, particularly highlighting the accuracy of the process (Office of Rail 

and Road, 2007). 

The Federal Highways Administration of the USA initiated a major study to examine the 

accuracy and reliability of documentation generated during routine visual inspection of 

highways bridges (Phares et al., 2004), acknowledging that the inspections heavily rely 

on subjective assessments by bridge inspectors. In this study, 7 routine inspection tasks 

akin to a general inspection as described in Chapter 2.1.2, were performed on 6 bridges 

by 49 Department of Transport bridge inspectors from 25 states. The bridges were of both 

concrete and steel construction. The bridge inspectors assigned condition ratings for each 

bridge, with associated notes and photographs as they would normally do. Additionally, 

a ground truth reference rating was assigned for each bridge based on the defects observed 

by those conducting the study. 

In terms of accuracy, the average condition rating assigned to 13 of the 18 primary 

components (deck, superstructure, substructure) across the 6 bridges were better than the 

reference, with the remaining worse. For 14 of the 18 primary structural components 

examined (78%), the average assigned condition rating was statistically different from 

the reference at a 5% significance level. For individual inspectors, if the reference ratings 

are correct, 58% of their assigned ratings are assigned incorrectly. Condition ratings are 

assigned on a 10-point scale between a failed/condemned and an excellent/as new 

condition. Compared to the reference rating, the average inspector condition rating is 0.55 

points better for the decks, 0.24 points better for the superstructures, and 0.08 points 

worse for the substructures, making the overall average 0.24 points better. This suggests 

a tendency to overestimate the condition of certain parts of the bridge. 

In terms of reliability, it was found that on the 10-point condition rating scale, on average 

between 4 and 5 different ratings, with a maximum of 6 and minimum of 3, were assigned 
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to each structural component. Across the different structural components, 32% of 

condition ratings were found to be more than 1 point different from the average assigned 

rating, and 5% more than 2 points different. While variability was most prominent in 

terms of condition ratings, it was also present in other inspection documentation such as 

photographs and field notes.  

It was identified that 13 photos would be required as the minimum number to fully 

document each bridge. On average inspectors took 7 photos (standard deviation 3.8, max 

19, min 1) which included instances of multiple photos of the same thing. The authors 

identify difficulty of access as a reason some inspectors skipped some of the photos. On 

average across the different inspectors, only 31% of the features expected were 

photographed. It was found that while most inspectors use photographs to document the 

overall condition of a structure, they are used less frequently to document specific 

structural deficiencies. Across the 7 bridges there were 20 defects that should be recorded, 

but on average only 69.4% of these were noted. Therefore, it was suggested that many 

inspectors may not be completely documenting important modes of deterioration in their 

notes. In this study, inspections were conducted under direct observation, and inspectors 

knew that they were under test conditions knowing their inspection results would be 

closely examined. Additionally, the inspectors were highly trained and experienced 

professionals. The inspections are therefore likely to be more detailed than normally 

would be the case, yet there was still significant variability in the structural condition 

documentation reported. 

In conjunction with this study, the accuracy and reliability of in-depth inspections was 

also examined in the context of correctly noting the presence of known defects (Graybeal 

et al., 2001). In-depth inspections, akin to principal inspections described in 2.1.2, are 

close-up, hands-on inspections of the structures, so ladders and man lifts were provided. 

Firstly, steel superstructure bridges were examined and 42 of the previous 49 inspectors 

performed this study. Generally, it was found that most inspectors were reporting the 

recurring defects, such as paint system failure and corrosion, which are noticeable 

throughout the structure, but a much lower proportion of inspectors noted local defects. 

For instance, only half noticed bearing misalignment, 3 a crack indication on a weld, 2 a 

missing rivet head, and 7 impact damage. On one bridge, the overall accuracy rate for 

correctly identifying crack indications was only 3.9%. Inspectors were monitored while 

carrying out their inspections, and the thoroughness with which they examined the welded 

connection details was recorded. It was found that only 45% of the inspectors examined 
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the welded components with enough thoroughness to be considered to have completed a 

thorough in-depth inspection – these inspectors made up 86% of those who correctly 

identified a crack. 36% of the inspectors were considered to have performed an 

incomplete in-depth inspection due to their lack of thoroughness examining welded 

connections – none of these inspectors correctly identified any cracks. It was found that 

those inspectors who belonged to the first group, who thoroughly inspected welds, tended 

to take longer over the inspection and be more mentally focused. During everyday 

inspections, not those undertaken as part of a study, inspectors are unobserved and 

potentially under greater time pressures. They are therefore more likely to take less time, 

being less thorough and as a result more likely to miss potential defects. 

Secondly, delamination assessment was performed on a concrete bridge deck using 

mechanical sounding and other visual inspection techniques by 22 teams of 2 inspectors. 

2 of the teams only provided a numerical estimate of the delaminated deck area, whereas 

the other 20 also provided maps showing locations of delaminated areas. Only 5 team’s 

predictions were within 5% of, and 14 team’s within 10% of the ground truth 

delamination proportion of the bridge deck determined by the study authors. For 3 teams, 

it was obvious that they failed to detect large areas of the delaminated deck. Additionally, 

it was found that the individual delamination locations were inaccurately positioned on 

the delamination maps. 69% of the deck area was indicated as delaminated by at least one 

team, and only 1% indicated as delaminated by at least 15 teams, with no areas found to 

be delaminated by all the teams, showing little agreement between the teams. It was 

therefore suggested that very few teams provided results that portrayed the condition of 

the bridge accurately. The authors therefore concluded that when an in-depth (or 

principal) inspection is prescribed, such as in the previous two examples, it may not give 

any findings beyond those that could be found with a routine (or general) inspection. This 

is despite in-depth inspections often being prescribed primarily to detect those types of 

defects, such as cracks in welds, which this study has shown are rarely detected. 

A further study looking at the visual inspection of highway bridges was performed for the 

Department for Transport in the UK (Wallbank and Department of Transport, 1989). Here 

the categorisation of the condition of 200 bridges based on visual inspection data was 

compared to chloride levels in the bridges, an indication of potential corrosion in steel 

reinforcement. It was found that some of the most worrying defects could cause severe 

damage to the bridge before any visible signs were apparent. In one bridge the visual 

inspection classed the bridge as of good condition, whereas test data suggested it probably 
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to be in poor condition. In this study it was noted that, “when recording and comparing 

the visual condition of a wide variety of bridges it is difficult to be precise and consistent.” 

Most recently, Bennetts et al. (2018) examined the recording and rating of defects 

recorded across 200 highways bridges in the UK. The results from the scheduled routine 

principal inspection for each bridge (carried out between 2014 and 2016) were compared 

to a second independent inspection where the inspector identified and rated defects but 

did not carry out a full inspection. Considerable variation was found in the recordings of 

defects between the two inspectors, in that almost 30% of the defects recorded by the 

second inspection could not be identified with an equivalent in the principal inspection 

report. With those defects that both inspections recorded, there was only a 34% agreement 

in terms of the severity and extent of the defect. This study therefore highlights both the 

variability in the detection of defects, and the classification and grading of defects in the 

visual inspection process. This variation is despite preceding efforts to minimise the 

subjectivity of the visual inspection process through ensuring wherever possible 

observations are quantitative or assigned to an indexed value, and that the inspection 

follows a clearly prescribed comprehensive range of observations (McKibbins et al., 

2006). 

Factors that affected individual bridge inspection results were examined as part of the 

Federal Highways Administration study (Moore et al., 2001). A consistent relationship 

was found between inspection results and the inspectors near visual acuity, their fear of 

passing traffic, and their formal training, as well as the proximity from which the 

inspector examined the structure, and their perception of the bridges maintenance, 

accessibility, and complexity.  

Further examination of factors that may influence inspector accuracy was conducted by 

Megaw (1979) in order to design tasks to improve inspection performance. The focus was 

on inspection tasks in a laboratory environment, which to a degree simulate real bridge 

inspections. Factors have been categorised into subject factors, physical and 

environmental factors, task factors and organisational factors. Subject factors are based 

on characteristics of the inspector and include visual acuity, scanning strategies 

employed, age, personality, sex, and intelligence. Physical and environmental factors 

include, lighting background noise, music while working, workplace design, and 

workplace aids (such as magnification). Task factors include time for inspection, viewing 

area, shape of viewing area, density of items, spatial distribution of items, fault 

probability, fault mix, fault discernibility, and product complexity. Organisational factors 
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include, number of inspectors, instructions, feedback/feedforward, training, standards, 

time-on-task, rest pauses, shift, sleep deprivation, motivation, incentives, job rotation and 

social factors such as isolation of inspectors. It is identified that there is a large interaction 

between the different factors, for instance optimal luminance levels depends on the age 

of the inspector. While some of these factors have already been examined in relation to 

bridge inspection above by Moore et al. (2001), all have the potential to affect the 

outcome of an inspection, and many are hard to control in the field. 

One key factor with potential to influence inspection outcome is the number of potential 

defects. As the number of potential defects increases, the inspection reliability is found 

to decrease. Additionally, features in the inspection sample that are not actually defects 

but do have a different appearance from the general inspection sample, can cause 

inspectors difficulty as they require a decision as to whether to record it. This is more 

challenging for an inspector than encountering a defect where there is no doubt about 

whether to record it (Sheehan and Drury, 1971). With bridge inspections, particularly 

with masonry bridges, there are many such scenarios where non-defect and defect features 

can have a similar appearance. 

McRobbie (2015) conducted a study looking at the ability of people to visually detect 

features in charts from set distances in comparison to within digital images of set 

resolutions, to determine whether bridge inspections could be more effective if performed 

on digitally imaged structures as opposed to in person. 40 participants undertook the 

study, where they viewed charts depicting, varying letter sizes, varying background 

contrast and varying line thicknesses and orientations, from distances of 3m, 6m, and 

12m, and in digital images of 2 pixels per mm and 1 pixel per mm resolution. An obvious 

conclusion was that at both the closer distances and the higher resolution digital images, 

identification performance improved, yet the author identifies that when observing 

bridges in person it is often difficult to get close. For instance, when there are obstructions 

12m may be as close as an inspector can get, when inspecting parts of the structure such 

as the soffit from a footpath 6m is a representative inspection distance, and even when 

access is good a 3m inspection distance will be typical due to the height of the bridge. It 

was also found that participants had little difficulty identifying cells in the charts with no 

lines even at a distance, suggesting that false negative detections are much more likely 

than false positive, meaning inspectors are much more likely to miss a defect than 

incorrectly find a defect. Comparing the digital and in person approaches to inspection, it 

is concluded that more detail can be seen in digital images at 1 pixel per mm than in 
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person at a separation distance of 3m. Additionally, lines as thin as 0.07mm wide were 

correctly identified at both 1 and 2 pixels per mm resolution, whereas at a 12m separation 

distance, only 44% of 0.42mm thick lines were correctly identified. These results 

demonstrate that when performing inspections in person, inspectors are likely to fail to 

identify important features in the bridge, and there is a greater chance of detecting those 

features in images of bridges.  

Laefer et al. (2010) has also compared digital and in person approaches to manual 

inspection. They have compared the accuracy of laser scanning and photographic based 

digital approaches with ground based and elevated in-person inspection for detecting 

cracks in building facades. Ground based inspection is akin to the process of general 

inspections of bridges, and elevated inspection akin to principal inspections. The study 

was undertaken by 2 different inspectors on 4 buildings between 8.2 and 14.3m high, of 

both brick and concrete construction. It was found that manually analysing digital 

photography was most accurate, detecting 46% of the total cracks, but was found to 

underestimate the length of cracks by 50%, i.e., cracks which were detected were not 

detected in full. In comparison, ground based and elevated in-person inspection detected 

13% and 31% of cracks, respectively. The laser scanning digital approach was found not 

to be particularly accurate particularly higher in the building due to the scan points 

spreading as distance from the sensor increases. Digital photography inspection was 

found to be the most consistent methodology across the height of the buildings, whereas 

the accuracy of ground based in-person inspection greatly decreased above 2m.  

From a consultation of bridge inspectors, McRobbie (2015) has identified that no 

inspectors routinely collect a full image set covering all visible parts of the bridge being 

inspected. Therefore, for unimaged areas of bridges with no defects recorded, there is no 

permanent record of the bridge generated. This means if a defect is subsequently detected 

in a future inspection, there is no way of telling if the defect is new, or longstanding and 

was previously overlooked. 

These different studies highlight the main deficiencies with the current bridge inspection 

process from a Structural Health Monitoring (SHM) perspective, namely the discrepancy 

between the reporting’s of individual inspectors as to a bridge’s condition and the lack of 

a permanent record of the structure. Technological advancement has come some way to 

addressing this second deficiencies as will now be discussed. 
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2.2 Data capture methodologies 

There has been great technological advancement in the development of data capture 

methodologies for inspection of existing infrastructure. In this chapter, some of the 

current state-of-the-art equipment and methodologies are examined together with how 

they can be applied to masonry arch bridges. 

While conducting work for this thesis, an example data capture system has been observed 

being utilised by the East-West Rail alliance scheme. This is a major infrastructure project 

in the UK aiming to re-establish a railway connection between the cities of Oxford and 

Cambridge (East West Rail, 2021). To capture the condition of existing assets on the route 

to aid with planning the project, a Leica Pegasus Two scanner was used. This is a vehicle 

mounted scanner which is driven around the study area. The unit includes a laser scanner 

and an option of either six or eight digital cameras to capture the full 360-degree view 

and generate visual 3D models of the assets being scanned. To track the scanner’s 

location, it uses both GPS and inertia sensors (Leica Geosystems, 2014). Figure 2-3 shows 

an example of the visual data captured when the scanner was driven under a masonry arch 

bridge on the route. In this case the scanner was driven at a speed of between 30 and 

40mph. Figure 2-3b shows that it is possible to identify mortar joints from the data 

captured at this speed with this scanner, but the accuracy of defect detection would 

probably be limited by the blurry and low-resolution output. 

An experimental data capture system for tunnels was developed as part of the DIFCAM 

(Digital Imaging for Condition Asset Monitoring) project, a collaboration between 

Omnicom Engineering, Atkins and the UK’s National Physics Laboratory (Parker, 2013). 

This was intended as a demonstrator to show the feasibility of imaging and laser scanning 

based techniques for tunnel examination, to capture a complete visual record as well as a 

3D model of the tunnel. The system relies on a road rail vehicle platform which carries 

an array of 11 24mp DSLR cameras with 4 high powered flash units covering the full 

profile of the tunnel for image data, as well as a laser scanner for geometry data, and GPS, 

inertia, and tachometer sensors for positioning data. This can work at speeds of 1m/s 

(2.2mph), capturing imagery generally better than 1mm per pixel resolution and geometry 

shape resolution of 10mm with accuracy of 1mm. Their intention is that technological 

development will make it possible to collect data at line speed in the future so the system 

can be integrated into the Network Rail New Measurement Train. 
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a) 

 

b) 

 

Figure 2-3: Leica Pegasus 2 visual data output at 30-40mph showing: a) a 360-degree 

image view, b) a full resolution view of the masonry on one of the bridge abutments 
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A different commercial data capture system for capturing visual 3D models of tunnels 

has been developed by Pavemetrics called the Laser Tunnel Scanning System (Laurent et 

al., 2014). This can capture 1mm per pixel resolution images and 3D data at scanning 

speeds up to 20kph (12mph), so it is therefore able to visualise and measure features with 

sub mm accuracy. This uses multiple high speed laser profilers which work using the 

principle of triangulation, where a high intensity laser line is projected onto the structure 

and recorded by a digital camera. The height and reflected intensity of each pixel are then 

recorded to form continuous images of the surface. 

A more recently developed commercial data capture system is called the Dibit high speed 

scanning system, also developed for capturing visual 3D models of the condition of 

tunnels (Mett and Eder, 2019). This produces a true colour high resolution 3D model of 

the tunnel surface using an array of up to 10 high speed industrial cameras, each capturing 

up to 30fps, alongside a high-performance LED lighting array. The use of high-speed 

cameras in combination with the bright LED lighting array mean that it is possible to 

capture shake free photos with 1mm per pixel resolution in dark tunnels at speeds of up 

to 50mph where cracks as small as 0.3mm in thickness are visible. The Dibit system is 

modular, so additional sensors can be added as well as the camera array, for example laser 

scanners or thermal and multispectral cameras. 3D geometry is therefore generated 

through either photogrammetry as standard, or a hybrid system where a laser scanner is 

included in the system. 

Whilst the above vehicle mounted visual and geometrical data capture systems have 

proven to be effective at generating visual 3D models of tunnels, for bridges their utility 

is somewhat limited. For all four of the systems, where surfaces of the bridge are 

perpendicular to the road, such as wing and spandrel walls, the separation between the 

imaging sensor and parts of the surface can be greater. This leads to lower image 

resolutions, and greater camera focusing problems for these parts of the surface than for 

the parallel parts of bridges such as the soffits, which are similar in geometry to the tunnel 

linings the sensors were designed for. Additionally, the quoted acquisition speeds may 

not be practical for imaging bridges due to the need to focus imaging sensors onto the 

bridge. Whereas the camera to tunnel lining distance remains relatively constant, the 

separation distance will be different at a bridge compared to the surrounding environment. 

For instance, the DIFCAM project acknowledges it takes them roughly 30 minutes to 

align the sensors on the vehicle before entering a tunnel, though suggests this could be 

reduced with automation. 
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As a result of these limitations, alternative data capture solutions have been explored for 

bridges. McRobbie (2015), has proposed an image capture system for bridges using a 

DSLR camera with in-body image stabilization and an automated pan-tilt unit for creating 

stitched image panorama photos of bridges. This system is moved around the bridge to 

capture the bridge from different viewpoints, using different length lenses for different 

camera positions to ensure the bridge surface has been captured with sufficient resolution. 

All images taken are re-projected as orthophotos of the bridge (photos taken such that 

there is no perspective distortion), and then neighbouring photos aligned to create stitched 

panorama orthophotos of the bridge components. The system incorporates a distance 

measurement laser unit for measuring the perpendicular distance to the bridge from each 

imaging position to aid in image re-projection, as relying on image features for alignment 

has potential for error due to few or non-unique features in bridges. However, currently 

this system is quite slow to collect data – for a simple bridge with two wing-walls, 12 

imaging positions would be needed, which would take about 1 hour for imaging as well 

as 4 hours of setting up and measuring positions. Admittedly, this time could well be 

reduced in a commercial version of such a system, though it is considerably longer than 

it would take to conduct a general inspection of the bridge in person. Additionally, 

extending the orthophoto stitching panorama approach to masonry arch bridges has 

proven to be problematic, as the arch of the bridge makes the re-projection of the images 

more complex given the image normal will be different for each point along the arch. 

An alternative method of data capture used commercially on bridges is using Unmanned 

Aerial Vehicles (UAVs). These have been used to collect image and geometry data of 

masonry structures and bridges in the literature by Ali et al. (2019), Chaiyasarn, Khan, et 

al. (2018), Chen et al. (2019), Ellenberg et al. (2014), and Hallermann and Morgenthal 

(2016). 

Chen et al. (2019) have used photographic data captured from a UAV to build 

photogrammetric 3D models of bridges. They identified a framework for evaluating the 

accuracy of the generated 3D bridge model based on parameters like occlusions or lack 

of image overlap causing incomplete data, outlier noise caused by texture less 

backgrounds like the sky, non-uniform point density, surface deviation, and geometric 

deformation. 

Ellenberg et al. (2014) investigated the use of UAVs for crack detection in masonry. In 

images captured with a UAV mounted camera flown 90cm from a loaded masonry wall 

in a lab test, they were able to see the formation of cracks. However, they identified that 
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flying close to structures means the GPS readings of UAVs are more likely to be 

inaccurate and the UAVs are more likely to feel the effects of wind, where a gust could 

cause the drone to collide with the structure. They found that with a 16MP camera 

positioned 12m from the surface, only lines greater than 19mm thick could be observed 

suggesting only a low-resolution image is achieved. 

Hallermann and Morgenthal (2016) performed a UAV based survey to manually inspect 

a masonry arch viaduct, recording surface images with a mean resolution of 1.1mm per 

pixel, which is much better than that achieved by Ellenberg et al. (2014). They produced 

a geo-referenced, true scale, coloured photogrammetric 3D model of the bridge. 

Orthophotos of the 3D model were used to create architectural drawings and visually 

identifying damage in the bridge. Damage detected in orthophotos could then be 

identified in the 3D model to measure the extent of the damage. 

The current methodology used both in the literature and commercially to generate 2D 

visualisations of 3D visual models of masonry arch bridges for the identification of 

damage, is to capture orthophotos of views of the model. This is appropriate for reinforced 

concrete bridges as the surfaces are flat, but for masonry arch bridges, the arch barrel is 

not flat, and therefore capturing the arch barrel with an orthophoto will lead to scaling in 

the 2D image, resulting in some parts of the barrel being depicted at a lower resolution 

than others. Figure 2-4 shows image data acquired from Network Rail of a bridge in their 

inventory. This depicts a 2D orthophoto of a bridge soffit taken from a 3D model of the 

bridge acquired using photogrammetry on UAV image data, suggesting this is currently 

the way 3D data of arched bridges is viewed commercially. Scaling can be seen in this 

image in that the brick courses to the left and right sides of the image are much narrower 

than those in the centre. In reality, the brick course thickness would be the same 

throughout the soffit. In the literature, orthophoto visualisation of arch barrels in 3D 

models is shown in the works of Hallermann and Morgenthal (2016) as already discussed 

and Riveiro et al. (2016). No work in the literature examined has identified a methodology 

for visualising the 3D geometry of masonry arches in 2D without resulting in scaling of 

the arch barrel. 

So far in this chapter the focus has been on the collection of geometry and image data of 

masonry arch bridges. Orbán and Gutermann (2009) have investigated the use of 

alternative non-destructive testing data that can be acquired from masonry arch bridges. 

They have found infrared thermography able to provide useful, though only qualitative 

information on moisture and wetness in masonry as well as the degree of masonry surface 
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delamination. However, they acknowledge that this only gives information of up to a few 

centimetres below the surface. For identifying deeper, non-surface defects such as flaws 

in the masonry or ring separation, ground-penetrating radar, or sonic methods are 

required, however unlike all the methods previously examined above, these methods 

require contact with the masonry. 

 

Figure 2-4: Soffit of arch barrel from Network Rail image data showing scaling 

towards the edges 

2.3 Automated defect detection methodologies 

The increased ease of collection of image and geometry data of bridges as examined 

above, coupled with the increase in performance and ease of access to processing power 

has led to much interest in automating the detection of defects from the data collected of 

infrastructure. McRobbie (2015) identifies that regardless of the quality and detail 

contained within image data taken of bridges, the inspection results will still be subjective 

if a human inspector performs the interpretation of the data. 

Historically, much of the work to automatically identify defects in data has focused on 

reinforced concrete and asphalt-based infrastructure. These infrastructures generally have 

a higher degree of homogeneity in their surface textures when compared to masonry as 

they are only made of one material. In masonry, for comparison, the mortar adds an 

additional degree of complexity, where it is distinct both visually and in terms of 

geometry to the brick it surrounds. Some of the key developments in concrete and asphalt 

defect detection are first examined, followed by a comprehensive review of existing 

masonry defect detection research. 
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2.3.1 Defect detection in non-masonry surfaces 

The focus of research to automatically detect defects in non-masonry infrastructure has 

shifted over time from approaches looking at hand-crafted models to exploit the 

contrasting features of defects, to machine learning and most recently to deep learning 

approaches. Much of the research focus has been placed upon the detection of cracks, and 

to a lesser extent, spalling and delamination. 

Koch et al. (2015) examined many of the proposed approaches for assessing the visual 

condition of infrastructure, focusing on those approaches looking at asphalt road 

pavements and concrete in bridges, tunnels, and underground pipes. They identified that 

the approaches can be broken down into pre-processing methods (e.g., shadow removal), 

feature-based methods (e.g., edge detection), model-based methods (e.g., percolation, line 

tracing, neural networks), pattern-based methods (e.g., principal component analysis, 

support vector machines), and 3D reconstruction (e.g., structure from motion). The 

individual methods build upon each other, so a particular approach may employ several 

methods. For example, a feature-based method can be used to extract features of interest 

that can then be learned in a pattern-based method. The authors therefore identify that 

most approaches follow the steps of image acquisition, pre-processing, segmentation, 

feature extraction, object recognition, and finally, structural analysis. They have also 

identified the drawbacks of different approaches to defect detection. Thresholding based 

approaches face subjectivity in where to set a threshold, as basing a threshold value on 

prior knowledge limits the ability of the approach to be generalised. Pattern-based 

approaches rely on training data to set up a robust classifier, but as data is usually 

manually labelled, there is subjectivity in the labelling.  

Early work looking to automate the detection of defects has focused on the feature-based 

methods identified in Koch et al.’s analysis above. That is to highlight features of the data 

that differentiate a defect from the surrounding background, exploiting known properties 

of the defects being sought. 

One such feature of defects in image data is an edge. Abdel-Qader et al. (2003) compared 

the effectiveness of four different crack detection techniques based on highlighting edges 

in the intensity of images of concrete surfaces, those being the Fast Haar Transform, Fast 

Fourier Transform, Sobel, and Canny. By thresholding the intensity of the output, they 

determined whether a particular image contained a crack or not. This approach meant that 

some noise in the output was acceptable to still result in a correct classification. Testing 

on an evenly split sample of 50 images they found that, of the approaches tested, the Fast 
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Haar Transform was significantly the most reliable with 86% accuracy. Both the Haar 

and Fourier transforms are frequency-based approaches, converting the image from the 

spatial domain to the frequency domain, where edge features are higher frequency 

components, but the Fourier Transform performed the worst with 64% accuracy due to it 

picking up texture in the concrete. Canny and Sobel are both convolution filters used to 

highlight edges using the gradients of intensity changes across the image. Although both 

are susceptible to image noise, Canny looks to improve on Sobel through initially 

convolving with a gaussian mask to blur the image, thus reducing noise. Of the false 

detections, it was found that there were far more false positives than false negatives in the 

detection of cracks, suggesting that these techniques were all limited by their 

susceptibility to noise in the image. 

Another approach looking to exploit known features of cracks takes advantage of their 

linear nature. For this Dijkstra’s minimal path selection algorithm is used to search for 

cracks in pavements as a path composed of darker pixels (Amhaz et al., 2016). Potential 

endpoints are proposed for possible crack paths as the local minima of image intensity 

and minimal paths are computed between them without any direction or length 

constraints. The cost function is instead based upon the image intensity in the path. The 

cost function of a path within a crack will be lower than any other minimal path within 

the image background as the crack pixels are darker. At a global level, across the image, 

the locally proposed minimal paths are thresholded based on their cost function such that 

only those likely to lie in a crack remain. Further processing, such as only keeping a 

minimal length path, is performed to reduce noise. The approach achieved an F1 score of 

83% in testing. The F1 score combines the measures of precision (the proportion of the 

retrieved instances that were relevant) and recall (the proportion of the relevant instances 

that were retrieved) to determine the performance of a classifier. Given that the approach 

relies on thresholding the cost of mapped out paths, there is no indication of how it would 

perform on images with no cracks present. Additionally, the approach requires that the 

images have no variance in lighting such as shadows, with an active lighting system being 

used for capturing images. 

The approaches examined so far have shown susceptibility to noise causing false positive 

detections. An approach to overcome this is to initially filter out the noise. Fujita and 

Hamamoto (2010) have attempted this on concrete images, using a two-step process to 

detect defects with the first step being to remove noise. Their first processing step is to 

generate a corrective image by smoothing the original image with a medial filter. This 
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corrective image correlates with the noise in the image and is then subtracted from the 

original image. As shown in Figure 2-5, this effectively removes much of the noise, such 

as shadows, from the image. However, the cracks in the image in Figure 2-5, and all the 

images tested, are all clearly visible and greatly contrasting in intensity from the 

background, so the method might not be so successful in situations where this is not the 

case. Their second processing step used looks to then emphasise the varying width cracks 

in this reduced noise image through using a multi-scale Hessian matrix-based line filter. 

This is then followed by a process of probabilistic relaxation which looks at the 

probability of each pixel being a crack based on pixels neighbouring in straight lines at 

different angles, due to the thin shape expected of a crack. Finally, a locally adaptive 

threshold detects missing crack pixels to extend cracks more finely and close unconnected 

cracks. 

 

Figure 2-5: Median filter noise removal subtraction process: a) original image, b) 

corrective image (image smoothed with median filter), c) subtracted image (Fujita 

and Hamamoto, 2010) 

When detecting defects in road pavements, the lane markings create noise and 

inhomogeneity in the images which could mistakenly be classified as a defect. Similar to 

the noise removal process described above, Nguyen et al. (2009) attempted to remove 

lane markings from images before detecting cracks in the remaining image. Here they use 

a Hough transform (Hough, 1960) to detect straight lines in an intensity-based threshold 

of the image being examined. The detected Hough lines then outline the lane marking 

regions which are then not considered in defect detection. A measure of anisotropy is then 

used to determine whether each pixel in an image is likely to be a crack. This works in 

the same way as the probabilistic relaxation method described above, in that where 

neighbouring pixels in a line along one orientation are very different to those in other 

orientations, it is likely to be a crack pixel due to the narrow nature of cracks. Joints and 
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bridged defects in road pavements are also linear, so they are also detected by the 

anisotropy measure. To differentiate between joints, bridged defects and cracks a machine 

learning approach has been used. A neural network with two hidden layers classifies 

images into the classes: defect free, crack, joint and bridged, based on features of the 

detected defect region and the surrounding image. Testing their method has shown good 

accuracy, though they acknowledge that some bridged defects are too similar to the 

background texture to detect. Additionally, data was collected using a platform that 

actively lights the surface, meaning that environmental lighting conditions have no impact 

on data quality. 

Machine learning approaches are pattern based, looking to detect patterns in the features 

they are presented to make decisions, or classifications. These inputted features are 

manually determined based on what is specific about the data of interest relative to the 

background data, so that the different classes are separated in the feature space. Compared 

to manually choosing thresholds on features as has been described thus far, this has the 

advantage that classification is based on the data presented, so is more generalisable. 

A machine learning classification is used by Oliveira and Correia (2013) to detect and 

classify cracks in road surfaces. First, they have performed pre-processing, involving 

pixel intensity normalisation to deal with non-uniform background illumination, and pixel 

saturation (replacing pixels brighter than mean intensity with the mean) to deal with bright 

spots due to reflective particles in the road surface. An unsupervised classification then 

determines the presence of a crack in non-overlapping segmented blocks of the input 

image, based on the average and standard deviation of the pixel intensity in each block. 

The expectation is that blocks with crack pixels will show higher standard deviation and 

lower mean pixel intensity values. They tested 6 different one class classifiers and 

clustering algorithms, finding that Gaussian Mixture Model clustering algorithm 

performed best with a 93.5% F1 score. It was found that detecting cracks less than 2mm 

thick resulted in many false positives due to the difficulty distinguishing cracking from 

other distresses. Additionally, they tested on images without shadows or wetness to avoid 

image noise, and as such cracks were clear, with obvious contrast in all images.  

Jahanshahi et al. (2013) have used a machine learning based technique to detect cracks in 

concrete. Line shaped structuring elements at different angles are first used to highlight 

crack like patterns in the image. The structuring elements are tuned based on the crack 

thickness of interest and the scale of the image determined using Structure from Motion 

(SFM). Otsu’s method is then used to threshold the crack like patterns from the 
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background. Features of these segmented crack-like patterns, such as the ratio between 

the extracted area and its perimeter, are then calculated which are used by different 

classifiers to categorise the patterns as crack or non-crack. A 3-layer neural network, a 

Support Vector Machine and Nearest Neighbour classifiers are compared to assess their 

performance. The neural network classifier is found to perform best, and to outperform 

simple Canny edge detection. The method was tested on clean concrete images with clear 

well contrasted cracks. There were background objects in images, which the Canny 

method detected, but the proposed method was able to ignore. 

A similar approach has been performed by Prasanna et al. (2016), also to detect cracking 

in concrete. They used a Random Sample Consensus (RANSAC) algorithm to fit line 

segments to pixels in the image likely to represent cracks (those where the intensity is 

below the average intensity by a predetermined amount). Features giving a quantitative 

description of the pixels in each line segment were calculated. A range of features are 

used based on intensity, gradient, and scale-space of the line segment pixels. The authors 

found experimentally that combining these multiple features (each providing weak cues) 

into one appearance vector gave optimal performance, compared to testing features 

individually. The features are used in a classifier to determine whether each line segment 

belongs to a crack or not. Support Vector Machine, Adaboost and Random Forest 

classifiers are used, with all three showing a similar validation performance. For this 

work, data was collected with robot mounted cameras on smooth surfaces of concrete 

bridges. There was therefore limited noise in the data. The classifier was trained and 

validated on a dataset with 2,000 15 x 15 px images from two bridges, balanced between 

crack and non-crack samples. The performance of the Adaboost classifier was similar 

when tested on data from a third bridge to on the validation data, though performance of 

the other two classifiers was significantly worse, suggesting they failed to generalise. 

Shi et al. (2016) use a machine learning based process to learn the inherent structured 

information of cracks. Small image windows each depicting different features of cracks 

are used as a training dataset. Intensity, colour, and gradient based features from these are 

used to train a Random Structured Forest algorithm which is used to classify image 

patches into the type of crack feature they most closely represent. Edge detection followed 

by morphological operations are used for pixel-wise segmentation and joining of crack 

regions in these image patches. Further classification using a Structured Vector Machine 

is then used to separate false positives from crack regions. 
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The machine learning approaches to defect detection examined have the advantage over 

traditional hardcoded approaches, in that they can learn the inherent structural 

information of the defects being sought and are therefore much more capable of 

supressing image noise. However, in all the approaches examined using machine 

learning, the surfaces being classified showed little noise. 

Compared to machine learning, deep learning has the advantage that it does not rely on 

handcrafted features from the data being examined for classification. Instead, the data 

itself is used for the classification, with features for classification learned automatically 

from the data. These features can therefore be far more abstract, meaning more 

information from the data can be used for classification. However, this also means that 

greater care is needed during training, with larger training datasets to ensure that the 

features learned are generalised and not just a nuance of the data used for training. 

Several different studies have compared the performance of machine learning and deep 

learning approaches for detecting defects in concrete and asphalt pavement surfaces. 

These approaches include works by Abdelkader et al. (2020), L. Zhang et al. (2016) and 

A. Zhang et al. (2018). Abdelkader et al. (2020) proposes using singular value 

decomposition to reduce the dimensionality of image data for use in an Elman Recurrent 

Neural Network. They compared the performance for detecting multiple defect types in 

concrete, both to several machine learning and other deep learning approaches of various 

depths. The dataset used for training only consisted of 200 images, and as such the 

proposed method and a convolutional neural network, both relatively shallow networks 

only 2 layers deep performed best. Deeper convolutional neural networks performed 

worse than the machine learning approaches tested. L. Zhang et al. (2016) used a 

relatively shallow convolutional neural network with 4 convolutional layers to detect 

cracks in road pavement images. The model was trained on a dataset of 640,000 sample 

patches from 500 images and tested on a further 200,000 patches. The proposed method 

achieved a 90% F1 score which compares favourably with boosting and SVM machine 

learning methods which achieved 75% and 74% F1 scores respectively. A. Zhang et al. 

(2018) uses 2.5D image data from road pavements, where the depth of the image is 

included as well as the colour values in a Convolutional Neural Network (CNN) to detect 

the presence of cracking. They have smoothed the depth data to remove unevenness in 

the road pavement, so that the network can learn the depth features of cracks at a local 

scale without the effect of larger scale surface unevenness. A custom CNN was trained 

on a dataset of 2500 images and it was found to be more robust at eliminating local noises 
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and detecting finer, hairline cracks, giving better recall and precision when compared to 

a machine learning method with handcrafted features. 

For image classification, Convolutional Neural Networks are generally considered the 

most effective deep learning models. They have the unique feature of convolution layers, 

which consist of learnable filters that are convolved across their input. This means they 

can take advantage of the local connectivity of an image, whereby features from different 

parts of an image can activate the same filter. This vastly reduces the number of 

parameters that need to be trained, when compared to a fully connected network, which 

enables the processing of larger images. In the work of Abdelkader et al. (2020) above, a 

recurrent neural network was used, which is fully connected, and therefore it was 

necessary to reduce the dimensionality of input images through singular value 

decomposition in order to compensate for the increased connectivity and hence number 

of parameters of this model. 

Other examples using CNNs in the literature include works by Dorafshan, Thomas, and 

Maguire (2018), Cha et al. (2017), Li et al. (2018) and A. Zhang et al. (2018). Dorafshan, 

Thomas, and Maguire (2018) and Cha et al. (2017) both compare the accuracy of deep 

learning CNNs for detecting cracks in concrete surfaces with the feature driven edge 

detection methods that were examined initially. They find that the deep learning 

approaches are much less susceptible to noise in images, and as a result give a much more 

accurate classification. Cha et al. (2017) also looks at the effect of the training dataset 

size on the accuracy of classification. They have varied the training dataset size from 

2,000 to 40,000 image window patches taken from 227 images. In this situation it is found 

that when training on more than 10,000 image patches, the validation accuracy does not 

improve significantly. However, the network being trained is only 4 convolutional layers 

deep, so has much fewer parameters to learn than would be the case on a deeper network 

where additional training data would be more beneficial. Li et al. (2018) detect cracks in 

concrete using a two-stage predictor with both stages using CNNs, based on the idea that 

whether a pixel is part of a crack is dependent on its context at both a local and a global 

scale. They found that predictions that additionally use global context information have 

fewer false positives when compared to only considering the local context, though the 

true positive rate is also reduced. 

The CNN based approaches for concrete and road defect detection discussed so far have 

employed custom and generally quite shallow network architectures. It has been found 

that classification accuracy can be improved through deeper, more complex architectures, 
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but this results in increased training difficulty (He et al., 2016; Bianco et al., 2018). As a 

result, to avoid overfitting the data, which can cause a loss of generalisability, deeper 

networks require a larger training dataset. In some fields, large training datasets are 

readily available (Deng et al., 2009), but annotated datasets of infrastructure tend to be 

much smaller, and the creation of such datasets is a costly and manually intensive process. 

Transfer learning is a process through which neural networks can be trained on one 

domain where a lot of data is available and applied to another domain. This is either 

achieved either through using a pre-trained CNN as a feature extractor that feeds a 

classifier that is trained on the target domain, or by fine-tuning all the CNN weights on 

the target domain.  

It has been observed in many deep learning networks that the initial layers learn more 

generic features which are not specific to a particular dataset or task. An example of such 

feature is a colour blob. By the last layer of the network, these features have transitioned 

to being specific to the task trained upon, for example recognising the shape of a nose. 

The transferability of these more specific learned features therefore decreases as the 

distance between the pre-trained task and the target task increases (Yosinski et al., 2014). 

Therefore, using a pretrained CNN as a feature extractor is most suitable where the target 

and initial domain are similar, and less data is available in the target domain compared to 

that needed for fine-tuning all the CNN weights. 

Shin et al. (2016) examines the performance of transfer learning in the medical domain, 

where a large, annotated dataset is not available. They compare random gaussian 

parameter initialisations with parameters pre-trained on ImageNet data for 3 different 

CNNs of increasing complexity and depth. The training dataset consisted of 905 images 

from 120 patients. It was found that GoogLeNet, the deepest and most complex of the 

three CNNs tested, performed best when using transfer learning. However, when it was 

randomly initialised it overfitted the training data. Transfer learning was found to be 

consistently beneficial when compared to random initialisations despite the content of the 

ImageNet dataset that was used for pre-training being quite different from the target 

domain. 

For detecting defects in non-masonry infrastructure assets, several approaches have 

applied transfer learning, either through use as a feature extractor or through fine-tuning 

a pre-trained network. These include works by Schmugge et al. (2016), Gopalakrishnan 

et al. (2017), Dorafshan et al. (2018), Hüthwohl and Brilakis (2018), Perez et al. (2019), 

Dorafshan, Thomas, and Maguire (2018) and Özgenel and Sorguç (2018), where the use 
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of transfer learning has enabled the authors to accurately train deep CNNs with a limited 

amount of data. Schmugge et al. (2016) and Dorafshan et al. (2018) both compared the 

results of using a deeper network with a fine-tuning transfer learning approach, to using 

a less deep network with a random initialisation. They found that transfer learning 

resulted in a significant increase in performance, especially in noisy regions. It was also 

suggested that the transfer learning approach resulted in a classifier that was more able to 

generalise, not being thrown off as readily by edges of concrete, or vegetation not seen in 

the training dataset. Dorafshan, Thomas, and Maguire (2018) compared the performance 

of fine-tuning and feature extractor transfer learning approaches for detecting cracks in 

concrete surfaces using an AlexNet classifier. They found that the fine-tuning approach 

gave the highest accuracy, though both approaches performed better than fully training 

the network from a random initialisation. Özgenel and Sorguç (2018) have looked at the 

effect of the number of training samples required to fine-tune several of the leading deep 

CNNs pre-trained on ImageNet and have found that the best accuracy was achieved when 

more than 14,000 training samples were used. 

It is often observed that there are more instances of negative samples, where the defect 

sought is not present, than of positive samples. This is especially the case with defects in 

infrastructure assets, where there is usually a lot more good condition surface than surface 

with defects visible. It is known that a class imbalance will cause a reduction in the error 

of the majority class, but an increase in the minority class, as the majority class will 

dominate the gradients when updating parameters (Anand et al., 1993). In infrastructure 

assets, this will result in an increase in the error of the defect class as the minority class. 

Shin et al. (2016) observe that when trained with a biased dataset, the classification 

accuracy results of a GoogLeNet classifier are lower than when trained with a balanced 

dataset. Guo et al. (2020) look at different methods for dealing with class imbalance in a 

dataset of defects in building facades, where one defect class was just 1% of the data 

samples. The methods considered are oversampling the classes with fewer samples, a 

weighted loss function to counter the class imbalance, and a meta-learning approach 

where weights were reassigned based on the gradient directions of a balanced validation 

set during training. It was found that all the approaches outperformed training with 

imbalanced classes. The meta-learning approach performed best. 

Using a CNN as a classifier gives a very course, block-based classification, based on the 

size of image windows used. To determine within each block where a defect is located, 

one approach that has been considered is Class Activation Mapping (CAM). This utilises 
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the ability of CNNs to localise the objects causing each class categorisation in the 

convolution layers, despite just being trained on class labels and not class locations. This 

localisation is usually lost in the fully connected layers used for generating the 

classification, but CAM uses the gradients from the final convolutional layer, before the 

fully connected layers of the trained network, to indicate the image regions which cause 

the given class to be assigned (Zhou et al., 2016). CAM has been used successfully by 

Perez et al. (2019) and Guo et al. (2020) to accurately locate defect locations in 

classifications of images of buildings. However, in some cases in these works, the CAM 

location has been found to be incorrect, suggesting that other features of the image have 

given rise to the given class. This highlights CAM’s ability to help to understand the 

features of images the CNN is using to decide on a classification, helping to determine 

how well the CNN has been trained. 

Aside from CAM, other examples of semantically localising the defective pixels are 

shown in the work of Dorafshan, Thomas, and Maguire (2018), Alipour et al. (2019), 

Yang et al. (2018) and Liu et al. (2019). Dorafshan, Thomas, and Maguire (2018) use an 

edge detection algorithm to identify the defective pixels within the image patches of 

concrete surfaces that are classified as cracking by the CNN. Alipour et al. (2019), Yang 

et al. (2018) and Liu et al. (2019) however perform the semantic segmentation for crack 

detection within the neural network. This is done using a fully convolutional network, 

where the fully connected layers traditionally seen at the end of a CNN, responsible for 

losing the localisation ability of the network, are replaced with transposed convolutional 

layers which up-sample the prediction heatmaps to the size of the input images. 

Additionally, skip connections are used to connect the convolutional layers and 

transposed convolutional layers at different depths, such that features of multiple scales 

can be fused in the output. This therefore makes the process less dependent on the image 

scale. Alipour et al. (2019) compare this approach to adaptive thresholding and Canny 

edge detection and shows it to be less susceptible to image noise, though Yang et al. 

(2018) suggest that when using this approach, the accuracy of crack segmentation near 

the image borders declines. 

Koch et al. (2015) reviewed many proposed approaches for automated visual inspection 

of infrastructure and concluded that the computer-vision based methods they have 

examined are able to contribute successfully to the automation of the detection and 

measurements of defects in reinforced concrete. However, they identify that for bridges. 

most concrete crack detection approaches have focused on flat, simple areas, such as the 
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bridge deck, as opposed to joints and other areas where it is harder to distinguish cracks 

from true edges. Additionally, they identify existing methods need improvement as their 

performance degrades with noisy data and non-ideal environmental conditions, especially 

with shadowing. Rose et al. (2014), who have also reviewed proposed automated visual 

inspection approaches support this view, suggesting that none of the approaches they have 

examined could provide an acceptable automatic solution for crack detection and 

assessment. A more recent review, has also suggested that there is still a lack of evidence 

of performance of the examined methodologies in the field, with most work still being 

lab experiments where noise is more controlled (Agnisarman et al., 2019). As most of the 

approaches examined here are machine and deep learning approaches, this suggests their 

performance with the noisier surface and environmental conditions would be questionable 

due to the lack of generalisation with that data. 

As discussed above, hardcoded and machine learning approaches such as the works by 

Fujita and Hamamoto (2010), Nguyen et al. (2009) and Oliveira and Correia (2013) have 

sought to reduce the impact of noise in the data through pre-processing the data to remove 

the noisy regions or reduce the effect of the noise. However, with deep learning, more 

researchers have attempted to teach the classifier to recognise the difference between 

noise and true positive data. This is shown in the work of Schmugge et al. (2016), where 

images of concrete from a nuclear power plant are examined for cracking. These images 

were low contrast and contained features such as welds and scratches with similar 

appearances to cracks. When building the training dataset, crack free patches with more 

noise were deliberately chosen to expose the network to these features so it could learn 

to differentiate. Additionally, the methodology was tested on video data which meant that 

neighbouring video frames could be used to correct false positive and negative 

classifications. The converse is shown in the work of Dorafshan et al. (2018) where 

training was performed on photos of lab made concrete bridge decks. When subjected to 

datasets with more image noise they found the classification performance degraded. 

Özgenel and Sorguç (2018) therefore suggests that the level of variance within a training 

dataset is more important than the number of samples for training an accurate classifier. 

As has been discussed, compared to concrete and asphalt surfaces, masonry surfaces 

present much more noise to a classifier due to the brick-mortar interfaces and the shadows 

caused by mortar joints, which have the potential to appear like defects. Formwork lines 

on concrete surfaces, though not as pronounced as mortar joints in masonry, also have 

potential to cause such confusion, but Hüthwohl and Brilakis (2018) suggest that their 
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model is able to differentiate between formwork lines and cracks, despite the formwork 

lines having greater footprint in profile. On the other hand, Gopalakrishnan et al. (2017) 

suggest based on their misclassified crack images, that their classifier has failed to learn 

to distinguish between cracks and joints in concrete pavements: joints are deeper and 

more akin to mortar joints than formwork marks. 

Alipour and Harris (2020) identify that surface cracks in dissimilar materials have a 

fundamental similarity in that they present a discontinuity of the material. They have 

therefore looked at the suitability of classifiers trained on one material to be applied to 

another for detecting cracks. They found that a network trained on concrete surfaces has 

an accuracy of 97% on concrete, but only a 60% accuracy on asphalt. Conversely, a 

network trained on asphalt has 88% accuracy on asphalt, but 57% accuracy on concrete. 

This drop in performance shows that differences in other surface features between 

concrete and asphalt surfaces are significant. Özgenel and Sorguç (2018) have performed 

a similar study looking at the transferability of learned features from CNNs trained to 

detect cracks in concrete building facades by testing on other textures, including masonry 

as well as pavements and building components. They suggest that the features learned 

during training are transferrable to other materials with high accuracy, though note that 

masonry is the most challenging among their test cases due to the brickwork jointing and 

background textures. Choi and Cha (2020) have developed a semantic crack detection 

CNN for images of concrete with noisy background features. They have shown that when 

training on an unvarying concrete dataset, classification performance on a noisy concrete 

dataset is significantly worse than on the unvarying dataset. However, when training on 

the noisy dataset, there is a much smaller degradation in testing performance between the 

noisy and unvarying dataset. As a result of this, better masonry classification performance 

is achieved with classifiers optimised for masonry, especially where the masonry images 

are noisy. The existing work on defect detection in masonry is discussed below. 

2.3.2 Masonry defect detection 

Work to identify defects in masonry has looked at exploiting both geometric and visual 

cues. In the following paragraphs, geometric methods are discussed first, followed by 

visual methods. 

Quagliarini et al. (2017), Chen et al. (2019), Hallermann and Morgenthal (2016) and 

Galantucci and Fatiguso (2019) all looked to manually exploit geometric cues in point 

clouds depicting masonry, created with laser scanning and photogrammetry. It has been 
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shown that by visualising the deviations in an uncoloured 3D model, areas suffering from 

material loss can be identified. Additionally, planes can be fitted to building elements and 

the deviation of each scan point measured, highlighting areas of material loss, which can 

then be compared with photographic and historical data. These areas of deviation can be 

measured in the point cloud to quantify damage. Cracks can also be extracted by using a 

gradient filter to detect edges in the derived deviation map, though in the case-study of 

Galantucci and Fatiguso (2019), some mortar joints were incorrectly classified as cracks 

and areas of material loss. Ye et al. (2018) used a similar approach for measuring 

distortions in masonry arch bridges. They have fitted primitive cylinders to the point 

clouds of arch barrels to measure their deviations from their design intent, to determine 

the most likely movement scenarios. These can be validated by examining the location of 

visible defects on the bridge. Sánchez-Aparicio et al. (2018) combined the above two 

approaches, detecting both deformations and material loss. For finding areas of material 

loss, rather than relying on deviations from a fitted plane as in previous examples, a 

CANUPO (Caractérisation de Nuages de Points) classifier (Brodu and Lague, 2012) has 

been trained. CANUPO is a machine learning classification algorithm used to 

discriminate between different features in point clouds. 

Machine learning approaches have also been used for classifying the visual cues in 

masonry. These approaches have focused on heritage rubble and ashlar masonry building 

conservation. They have used unsupervised clustering algorithms for segmenting image 

pixels based on intensity into both the materials present and the types of damage present 

(Meroño et al. 2015, Sánchez-Aparicio et al. 2018, Del Pozo et al. 2016, Armesto-

González et al. 2010). Examples of materials segmented are mortar, wood, stone and iron, 

and examples of damages are biological, cracking, moisture, and salts. In these works, 

visual condition data has been acquired either through photographic means or the 

radiometric output of laser scanning, i.e., the intensity of reflections. The effect of the 

wavelengths of light captured on the ability to differentiate between the spectral 

signatures of different surfaces in images has been examined with the use of multi spectral 

cameras, with a suggestion that the inclusion of the near infrared as well as visible 

wavelengths increased the degree of recognition among different damages (Meroño et al. 

2015, Armesto-González et al. 2010). However, Del Pozo et al. (2016) suggest more of a 

difference is made by using active sensors, such as on a laser scanner where the reflected 

response from an active source is measured, as opposed to passive sensors, such as a 
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camera. This is because these sensors are not affected by changing lighting conditions 

and shading. 

It has been suggested that with heritage building conservation, the current standards for 

diagnosis lack quantitative criteria to identify and classify damage and determine severity, 

and there is therefore a need to develop such standards (Galantucci et al., 2018). The 

above works have demonstrated the ability to extract such information from both 

geometric and visual data, though in each case the works are case studies, tested only on 

the structures they were developed with, suggesting they may not be generalisable to other 

structures and datasets. 

Another method used to detect defects in masonry infrastructure is to detect changes in 

the structure from one data capture to the next. This is demonstrated in the work of Mett 

and Eder (2019) and McCormick et al. (2014) for detecting defects in tunnels. Here 

models made with both photographic image data and laser scanner captured geometry 

data are compared with historic data by aligning the models and using Digital Image 

Correlation (DIC). This can highlight changes down to as little as 1mm between 

inspections. However, this can only highlight changes from a previous recording of the 

structure, so pre-existing defects will not be detected. Additionally, the examples showing 

successful detection of changes were for those larger changes, for example the removal 

of a patch of soot from a tunnel wall, or footprints in rail track ballast. DIC coefficient 

maps contained a lot of noise, meaning smaller changes such as cracking may be less 

obvious. On bridges where conditions such as lighting are harder to control when 

compared to tunnels, the level of background noise in DIC maps is likely to be much 

higher. DIC has been used to successfully detect cracking in lab experiments of loaded 

brick samples (Tung et al., 2008), and in the field to capture the full-field deformation of 

a bridge between a loaded and an unloaded state (McCormick and Lord, 2012). In these 

works, it is possible to see the strains of a crack in the coefficient map as a displacement 

change, though for the case of the bridge the crack was known about prior to imaging and 

therefore had been focused on for imaging at high resolution. 

As with concrete and asphalt infrastructure, methods developed for automatically 

detecting defects in masonry images have varied between using hardcoded methods, 

using machine learning with manually handcrafted features, and using deep learning. 

Hardcoded methods have been examined by McRobbie (2008) for detecting defects in 

masonry highway bridges. They have investigated using a Haar transform and image 

entropy to segment defects from the bridge background. Whilst the method worked with 



Chapter 2: Literature review 

Daniel Brackenbury - January 2022   39 

concrete bridges, they found the bricks and mortar in masonry tended to swamp out any 

defects from the detection. Ellenberg et al. (2014) examined a combination of edge 

detection, percolation, colour standard deviation and Hough transform approaches for 

detecting cracks in images of masonry, yet the method performed poorly. Similarly, the 

authors identify that the main challenge for detection is noise, such as that caused by 

surface roughness and the patterns of the masonry. They suggest a potential approach for 

overcoming this is to filter out inherent noisy parts of the structure from the baseline 

pictures, though acknowledge the problem with such an approach is that, particularly with 

masonry, most of the damage initially occurs around the noisy features such as the mortar 

joints. In effect Schmitt et al. (2000) does this by attempting to detect defects in 

individual, isolated bricks as part of the manufacturing process. Their method identifies 

and measures cracks, surface indentations and protrusions, and discolorations. This is 

done through edge detection, thresholding, and skeletonising processes, and can 

accurately detect defects in the isolated bricks themselves when no mortar interface is 

present. 

Valero, Forster, et al. (2019) and Wang et al. (2018) have filtered the noisy mortar joints 

from the structure before attempting to detect defects as suggested above by Ellenberg et 

al. (2014). Each brick has therefore been inspected for defects individually. In the work 

of Valero, Forster, et al. (2019), the coloured 2.5D surface of ashlar masonry blocks is 

acquired by both laser scanning and photography, and features are extracted for each 

stone. Features include the roughness of the face and hue value standard deviation, to 

determine the likelihood of each stone being defective. The fine dressing of ashlar 

masonry facilitates this process. Defective areas within likely defective stones are then 

determined through fitting a plane to the depth map and identifying outlying points as 

well as identifying points whose colour values vary significantly from the average for that 

stone. These defective areas are then classified using a trained machine learning classifier 

based on a logistic regression model using both geometric and colour features. The 

authors identify that more data is required to test their method for generalisability as it 

has been tested on the same building surface it was trained on. Wang et al. (2018) use a 

CNN-based classifier to classify each brick in a masonry wall based on the presence of 

cracking, efflorescence, and spalling damage. Both AlexNet and GoogLeNet classifiers 

are used, and trained on datasets of both 2,000 brick samples, and 20,000 brick samples 

(including data augmentation). AlexNet validation accuracy increases from 93% to 93.3% 

with the larger training dataset, whilst GoogLeNet increases from 93.3% to 94.3%. This 
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suggests the larger and deeper GoogLeNet model is better able to learn the larger dataset, 

although the difference is relatively small. As before, this study does not test the 

generalisation of the models, with validation performed on the same structure as training. 

Other approaches have foregone prior segmentation of mortar and brick regions, instead 

directly detecting defects in the inhomogeneous masonry. These have almost exclusively 

used CNN-based approaches, except for Samy et al. (2016) which has used a machine 

learning approach with a SVM classifier. They have used 13 features incorporating both 

textural and pixel intensity data of 2.5D images taken with a Microsoft Kinect 2 sensor. 

These are used by the classifier to detect damage on bricks, mortar loss and cracking. The 

method was able to correctly identify 100% of the defect classes, though 16.7% of the 

clean images were falsely classified as defective. In this case the training and testing 

datasets were both captured from a lab-built masonry wall, so there is no evidence of 

generalisability. Additionally, the images were therefore taken under well controlled 

conditions, and the defects were well defined with minimal image noise. Hallee et al. 

(2021) compare the ability of CNNs to detect cracking in masonry between lab-controlled 

masonry images and real-world masonry. Training was on image window patches from a 

dataset consisting of 53 lab-built and cracked brick walls. Meanwhile, the method was 

tested on real world masonry images acquired online as well as image patches from the 

lab-built brick walls. CNNs with depths of 10 and 18 layers were compared. The 

shallower CNN performed better on the lab-based data with an F1 score of 91.5% 

compared to 90.5%. However, its generalisation to real world data was much worse, with 

its F1 score decreasing to 62.8% compared to 82.4% for the deeper CNN. This suggests 

that the additional trainable parameters of the deeper model provide an advantage in 

domain adaption, suggesting the extra filters can provide additional information to the 

classifier. Additionally, this shows that reliable performance on homogeneous lab-based 

data does not translate to real world performance. 

Another approach for damage detection in masonry is proposed by Wang et al. (2019), 

who use a region based convolutional neural network (R-CNN) to identify and locate 

spalling and efflorescence in masonry images. This work also showed a lack of 

generalisation of approach, with all image data taken from the same structure. Marin et 

al. (2021) have similarly used an R-CNN to successfully detect and locate cracks on 

images of different types of masonry. They have employed a system of progressive 

detection whereby more detailed images are only processed if defects are detected in a 
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general view. Such a system is applicable in this case, as the cracks being sought are all 

quite large, so discernible from further afield. 

As with concrete and asphalt infrastructure, work has been done to semantically locate 

defects in masonry structures. Dais et al. (2021) used a dataset of masonry from buildings 

which also contain background distractions such as windows and pipes. The dataset also 

varied in terms of age and colour of masonry units, with both clay and concrete blocks 

included. The work first classifies image window patches into crack/non crack with an 

accuracy of 95.3% using a fine-tuned MobileNet CNN pre-trained on ImageNet. Transfer 

learning was found to outperform a random initialisation. Additionally, an improvement 

in precision was found when extra types of background objects were included in the 

training dataset as the network learnt to ignore them. Semantic segmentation was then 

performed, with U-Net and Feature Pyramid Network (FPN) architectures found to 

perform best, with F1 scores of 79.6%. Again, a worse performance has been obtained 

for non-pretrained networks, where the F1 score declines to 75.4%. In this work, the 

cracks being sought in the dataset were all large and clearly defined against their masonry 

background. The transferability of the proposed network trained on masonry surfaces, is 

examined by testing on concrete surfaces where its F1 score declines to 74.7%. This is 

much less of a deterioration when compared to a network trained on concrete and tested 

on masonry as reported above. This is as expected since masonry surfaces are more 

complicated than concrete. 

Chaiyasarn, Sharma, et al., (2018) and Wang et al. (2018) are the only examples found in 

the literature where the masonry condition is of a similar noise level to that seen on 

masonry arch bridges. All other works examined have focused either on lab curated 

masonry, or masonry from the facades of modern or well-preserved heritage buildings, 

which therefore have much more well-defined defects. Chaiyasarn, Sharma, et al. (2018) 

use a CNN to classify the presence of cracking in image windows. They have used a 

dataset of 3601 crack patches for training, giving a validation accuracy of 86% and testing 

accuracy of 74%. In the dataset for this study, only large and more well-defined cracks 

are included. It was found that in images there were many false detection areas, 

particularly around the mortar joints, suggesting that mortar joints were being confused 

with cracks. Wang et al. (2018) also draw a similar conclusion suggesting that defect 

detection in masonry structures is difficult because of the similar appearance between 

mortar joints and defects. They have used a R-CNN approach to search for missing and 

heavily spalled masonry units. 
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2.4 Mortar Joint detection 

2.4.1 Motivation for detection of mortar joints 

As discussed previously, several attempts at detecting defects in masonry surfaces have 

reported that the similar appearance between mortar joints and defects in masonry surface 

has led to false detections of defects around mortar areas. Additionally, several of the 

other discussed attempts to detect defects in masonry surfaces have initially pre-separated 

the brick regions from the masonry. This simplifies the heterogeneous nature of masonry, 

making detecting masonry defects much more comparable to concrete, where a lot more 

of the existing work has focused. If transferring those learned features from concrete to 

masonry surfaces, it is known that the transferability of features in deep learning networks 

decreases as the difference between the base and target task increases (Yosinski et al., 

2014). For separating masonry surfaces into mortar and brick regions, it is important to 

accurately identify the locations of the mortar joints. 

As well as potentially aiding the detection of defects in masonry surfaces, identifying the 

location of mortar joints can also be used alone as an indication of the state of masonry 

bridges. This is because features and distortions in the bonding pattern can be indications 

of distortions in the bridge. For example, distortions in the bedding plane could be 

indications of differential settlement of the bridge, giving a better indication of long term 

movement than measuring cracks which may have been repointed (McKibbins et al., 

2006).  

Mortar joint locations can also be used to quantify the size of damaged areas, and 

therefore the material requirement for a repair. In heritage masonry preservation, there is 

also a need to label the condition of each stone individually (Forster et al., 2020), with 

previous work showing the ability to extract parameters such as the colour and face profile 

for each stone individually for documentation (Valero, Bosché, et al., 2019). Other work 

has demonstrated the utility of segmenting mortar joints when creating Historic Building 

Information Models (HBIM) of masonry structures as it enables a hierarchical 

configuration of information by layering the point cloud, the 3D model, the segmented 

masonry units, and the defective masonry units (Valero, Forster, et al., 2018). Knowing 

the location of mortar joints within 3D models of structures means the recess of the mortar 

can be accurately measured to detect recessed zones and estimate the amount of 

repointing required. The depth of the joint recess also highlights areas of masonry that 
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may be vulnerable to progressive loosening of material if left unattended (Valero, Bosché, 

et al., 2018). 

With an inhomogeneous material such as masonry, knowing the arrangement of the 

different constituents can help to understand how a structure will respond to loading. 

Masonry subjected to loading in laboratory tests has shown much larger strains in mortar 

areas than brick areas, due to the higher stiffness of brick (Tung et al., 2008). Lourenço 

(2002) suggests that for estimating the load carrying capacity of historic masonry 

structures, micro-modelling approaches are best, due to the importance of the masonry 

unit to mortar interface on the structural behaviour. The mortar bond is often the weakest 

link in masonry, giving a non-linear response, which is one of the most relevant features 

of masonry’s behaviour. They have compared micro and macro modelling methods for a 

simple masonry arch, finding that the different approaches lead to different safety factors 

as well as different load displacement diagrams. Micro-modelling approaches for 

masonry look to model a discontinuum at the mortar interface, whereas macro-modelling 

smear the mortar and interface into a homogeneous continuum.  

Napolitano and Glisic (2019) has also shown how through micro-modelling masonry 

structures, it is possible to predict the loading that has caused crack patterns. They have 

experimentally loaded masonry walls to induce cracking. These have been modelled with 

several different loading cases, including the actual loading case. It was found that both 

quantitatively and qualitatively, the simulated crack pattern most closely resembling the 

experimental one was the real loading case. Even for macro-modelling approaches, 

knowing the position and size of mortar joints has shown to be beneficial. In the work of 

Cluni et al. (2015) and Cavalagli et al. (2013), images of masonry are separated into 

mortar and brick pixels to calculate the masonry unit sizes and the mortar thicknesses, 

which are then used to estimate the elastic properties of the masonry continuum. 

Several different studies have compared the effectiveness of micro-modelling masonry 

arch bridge like structures. In the work of Kassotakis et al. (2021), 25 square arch cross 

sections have been built both physically and numerically with the same span, rise, and 

thickness, but different bed joint location detail. It was found that the joint position, 

especially the inclination angle was found to influence the collapse load directly and 

linearly. This suggests that when developing models of arch particular care must be taken 

to accurately obtain the geometry of the bed joints. This conclusion agrees with previous 

work by Y. Zhang et al. (2016), who suggest that for square arches, modelling of the bed 

joints is much more important than the head joints. For this, they have modelled arches 
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as a series of solid elements smeared through the thickness of the arch and found it to 

provide an accurate result compared to fully micro-modelling the arch. With arch bridges, 

ring separation can lead to a big reduction in their strength. Y. Zhang et al. (2018) has 

found that where mortar joints are weak, different masonry bonding patterns can have a 

large effect on the stiffness and ultimate load of the arch, as the bonding pattern can 

influence the onset of ring separation. For skew arch bridges, Forgács et al. (2017) have 

found that both the dimensions of the individual masonry units as well as their bonding 

pattern affect the bridges capacity. This is a result of different bonding patterns giving 

rise to different amounts of friction between the masonry units, where for instance having 

a zigzag at the hinge increases friction as opposed to bricks being straight to the hinge. 

As a result, for understanding masonry arch bridges, the use of detailed micro-scale 

models representing the actual masonry bonding pattern is critical, as reduced models 

may provide an incomplete picture (Y. Zhang et al., 2018). 

It has also been shown to be advantageous to model the exact geometry of the masonry 

in structures, rather than just idealising the size and shape of the individual masonry units 

and mortar joints. Work by Loverdos et al. (2021) has micro-modelled masonry structures 

based on the exact geometry of the individual masonry units and mortar from image data 

and has compared this approach to using an idealised masonry geometry in the model. 

On a model of a masonry arch doorway, it was found that the maximum loading of the 

geometrically accurate model was 9.7% greater than that for the idealised one. 

Additionally, a cracked brick wall has been modelled, assuming zero strength in the crack. 

Here, the geometrically accurate masonry geometry had a 3% higher maximum loading 

than the idealised masonry geometry. Similar work on masonry arch bridges has been 

done by Riveiro et al. (2011) where a 3D micro-model of a bridge has been developed 

from a photogrammetric model, based on the exact geometry of the individual stones. 

They have found that the failure load in the model with the accurate, exact masonry 

geometry is about 12% higher than that for the idealised masonry geometry. Whereas the 

accurate model of the individual stones contours here has been obtained manually, 

Loverdos et al. (2021) has shown this possible to automate. For this, their method takes 

an image of masonry that has been binarised into its mortar and brick constituents as an 

input, which then acts as markers for a watershed transform. This then isolates and 

uniquely identifies individual regions in the image, which are then outlined using a border 

following algorithm, therefore outlining the individual bricks for use in a model. It has 

been suggested that as well as providing more accurate results, automatically micro-
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modelling masonry structures in this way could save considerable effort compared to 

creating a model manually through idealised masonry geometries. 

In summary, the motivation for detecting mortar joints in masonry arch bridges is: 

• Mortar joint location could aid defect detection through simplifying 

heterogeneous masonry surface 

• Mortar joint distortions can be useful for highlighting historic settlement and 

deformations of masonry arch bridges 

• Mortar joint locations help quantify sized of damaged areas for estimating 

material requirements for repair 

• Mortar joint locations can improve the accuracy of modelling bridges for 

calculation of their service capacity.  

2.4.2 Methods of mortar joint detection 

For these reasons, previous studies have looked at ways of detecting mortar joints in 

masonry surfaces. Within the field of heritage masonry preservation, several works have 

looked at the ability to segment mortar regions alongside other damage types within 

intensity images (Del Pozo et al., 2016; Armesto-González et al., 2010). Both works have 

used an unsupervised machine learning clustering classifier to group pixels based on their 

intensity, with two of the classes being mortar and stone. It is found that the ability to 

distinguish between stone and mortar is poor, and worse than distinguishing defect 

classes, due to the small thicknesses of mortar and the similar spectral signatures of stone 

and mortar. In the work of Yuan et al. (2020), building facades are classified into the 

materials present. This classification uses the reflectance intensity and colour and the 

geometry outputs of laser scanning with an Ensemble classifier. This is supervised 

machine learning, using features such as the surface roughness and material reflectance 

to learn and classify materials. Of all the building façade materials learned, mortar 

classification was found to have the lowest performance due to being misclassified as 

stone. The mortar surface class was also found to have the highest dispersion of multiple 

feature values, especially its surface roughness. Use of the reflectance intensity data from 

laser scanning also has the potential for inaccuracy and misclassification, as it is found 

that the presence of moisture can change the reflected intensity from a surface (Hassan et 

al., 2017). 



Automated image-based inspection of masonry arch bridges 

46  Daniel Brackenbury - January 2022 

Other methods for detecting mortar in masonry exploit geometric distortions that are 

expected at the mortar joints, rather than simply trying to classify the mortar texture and 

reflectance as above. Valero, Bosché, et al. (2018) use a Continuous Wavelet Transform 

(CWT) on a 2.5D depth map of rubble masonry surfaces. The CWT is tuned with a mother 

wavelet to the width of a mortar channel on the surface being examined so that it responds 

most strongly to the mortar regions, and not to waviness or curviness in the wall as the 

frequency for these is much lower. This gives an approximate segmentation of individual 

stones and mortar regions, though concave irregularities in stones cause some areas to be 

falsely labelled as mortar. To correct this, a convexity operator is applied to each stone 

segment, followed by iterative dilation. This work has been released as a plugin for 

CloudCompare (Girardeau-Montaut, 2014), which also contains a tool for manually 

labelling and correcting errors of the automatically generated mortar segmentation, 

suggesting some manual intervention is still required to satisfactory segment mortar 

(Enrique Valero et al., 2020). 

While the above work focused on irregular stone masonry, which geometrically has well 

defined and deep mortar joints, the authors have also tried to expand the method to work 

with ashlar masonry, exhibiting much shallower mortar joints (Valero, Forster, et al., 

2019). For this, both geometric and photographic data are used with a similar CWT based 

technique, though the authors give little information on the level of success, or manual 

intervention required to satisfactorily segment the mortar. Additionally, the method has 

only been applied to a single wall, so there is little evidence of generalisability. A similar 

technique looking to detect deformations in both point cloud and colour data to detect 

mortar joint locations has been developed by Sithole (2008). This is based on a technique 

of weighted proximity segmentation, whereby each point in the point cloud has its 

geometric and radiometric information compared with its neighbours to determine the 

strength of connected points, therefore finding connected regions which separately 

represent the mortar and brick regions. However, this method was most successful only 

when the mortar channel is deep enough to cause a surface discontinuity. 

Some works have only exploited the expected difference in colour between the brick and 

mortar regions, not considering geometry. Hui et al. (2014) developed a technique for 

outlining individual bricks to count them and estimate the progress of construction. The 

application involves pristine condition masonry, with no dirt or other discolourations and 

distractors. Therefore, a colour thresholding technique can distinguish between the mortar 

and brick colours, followed by erosion and dilation operations to clean up the 
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segmentation. However, the authors recognise that the method has only been tested on 

masonry with red bricks and yellow mortar, so may not be effective on other masonry. 

Cluni et al. (2015) and Cavalagli et al. (2013) have also used thresholding to segment 

mortar, in this case thresholding the intensity of infrared images. Otsu’s method (Otsu, 

1979) is used to identify an appropriate threshold level for the segmentation. For this the 

image is divided into sub images to increase the uniformity of luminance in the 

segmentation. A similar approach is performed in the work of Oses et al. (2014) to 

segment greyscale masonry images. As before, the image is divided into smaller regions 

each about the size of one block and processed independently. Processing initially 

involves removing noise through removing pixel intensities with low frequency of 

occurrence. The region is then segmented into pixels likely to be mortar and brick 

respectively, through identifying intensities with high frequency of occurrence, using the 

assumption that the mortar will appear darker.  

Other methods have just used the image data to detect mortar joints in masonry, utilising 

the known pattern of masonry blocks. This is exemplified in the work of Wang et al. 

(2018), where a sliding-window method is used to segment individual bricks from 

masonry. In this case the brick course height, header length and stretcher length and 

pattern are all known, so the sliding window progresses at known intervals from an initial 

position aligned on a single brick. The image has been rectified to create an orthophoto, 

and the imaged masonry is very tightly bonded, finely crafted masonry, meaning that all 

dimensions remain constant throughout the image. In most masonry structures, this 

regularity cannot be relied on, so other techniques are more involved. Riveiro et al. (2016) 

detect the position of joints in masonry, through exploiting the regular arrangement of 

masonry together with intensity discontinuities expected at the joints. Intensity 

discontinuities parallel to the bed joints are highlighted using a Sobel operator, and peaks 

in the sum of the outputted pixel intensities from each row of the image used to determine 

the bed joint locations. This process assumes that the image is orientated such that the 

bed joints run perfectly horizontally. The image is then segmented along these bed joints 

into individual brick courses and the same process is used to detect head joint locations. 

The determined locations of the bed and head joints are then used to define the centre of 

each brick, which is used as the initial markers for a Watershed function, to give the 

outline of each brick. 

All the above mortar segmentation methods are hand-crafted to exploit features present 

in masonry. In the work of Ibrahim et al. (2019) a deep learning approach is examined. A 
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U-Net based neural network is trained and tested on a dataset of 117 and 32 annotated 

masonry images, respectively. These images include both rubble and ashlar masonry, 

though all the images the authors presented showed clean masonry with a good contrast 

against the mortar joints. The U-Net output is used to define the centre of each brick as 

an input to a Watershed algorithm, defining each brick’s outline. The method showed a 

very good ability to segment bricks in the domain of the tested dataset, with an F1 score 

of 81.57. Performance was also shown to be superior, and less susceptible to noise than 

with hand-crafted methods. However, the masonry imaged in the dataset for this study 

was all much cleaner and less noisy than is the case for that found on masonry arch 

bridges, where mortar joints can be occluded by graffiti, paint, vegetation, and layers of 

dirt accumulated over their service life. 

2.5 Chapter summary 

From the literature reviewed, the need to monitor the condition of our historic stock of 

masonry arch bridges is apparent due to the role they play in underpinning much of our 

transportation infrastructure. The current methods for monitoring these bridges have been 

examined, especially regarding the visual inspection process, and the types of defects that 

are relevant to an inspection engineer. Additionally, the current deficiencies of visual 

inspections have been discussed. These include the danger, cost and disruption caused by 

inspections, the relative infrequency of inspections, and most importantly the subjectivity 

of inspections.  

One key tool to minimise the consequence of subjective visual inspections is the use of 

photographs to capture parts of the structure. This provides a permanent visual record of 

the structure and means that if defects are subsequently discovered, historic photographs 

can be examined to determine the history of such a defect. This however relies on 

photographs having been taken of that part of the structure in the past, which with current 

visual inspection procedures is unlikely as photographs are focused on pre-acknowledged 

defects. As a result, there has been a significant effort to automatically capture image and 

geometry data of infrastructure using cameras and laser scanners mounted on UAVs, 

vehicles, and fixed pan-tilt units. These can provide detailed 3D models of infrastructure. 

For visualising these models in 2D the widespread practice is to take orthophotos from 

the model which works for planar, flat infrastructure. However, taking orthophotos of 

arch barrels results in compression of the image towards the spring line of the arch. 
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Subjectivity is still present in the manual interpretation of digital data, so numerous 

attempts have been made to automate the detection of defects within geometry and image 

data. This effort has primarily focused on asphalt and concrete infrastructure which 

generally is more homogenous and less noisy than masonry infrastructure. Different 

approaches can be categorised into hardcoded techniques, change detection techniques, 

machine learning techniques and deep learning techniques. Generally, it was found that 

the deep learning techniques were least susceptible to confusion by noisy images. 

Transfer learning was a technique used to improve the accuracy and generalisability of 

deep learning techniques when trained on limited datasets as is the case with annotated 

images of infrastructure. For defect detection in masonry, fewer studies have been 

conducted, the majority of which have considered relatively clean masonry. These studies 

have suggested that there is a level of confusion in detection between mortar joints and 

defects. 

Therefore, detection of mortar joints in masonry could potentially help to improve 

detection of defects. Mortar joint detection also can be useful for highlighting historic 

settlement and deformations of masonry arch bridges, as well as their modelling for 

calculating their service capacity. As with defect detection, mortar joint detection 

approaches can be categorised into hardcoded techniques, machine learning techniques 

and deep learning techniques, and it is also found that the deep learning techniques are 

least susceptible to noise. However, none of the existing mortar joint detection techniques 

have been developed with the same level of masonry noise and distractions as seen on 

masonry arch bridges. 

Therefore, this work has identified the following gaps in the literature which it looks to 

fill: 

• Develop a methodology to visualise a 3D model of an arch barrel in 2D without 

causing compression and scaling of parts of the image 

• Develop a methodology to automatically detect mortar joints in the noisy masonry 

surfaces of masonry arch bridges 

• Determine the effect of mortar joints on the detection of defects in masonry 

surfaces 

• Develop a state-of-the-art automated defect detection methodology which has 

better performance than current manual visual inspections. 
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3 DEFECT CLASS ANALYSIS 

The work of this PhD looks to develop a methodology for automatically determining 

faults with masonry arch bridges from visual data. The outline of the proposed 

methodology is presented in Figure 3-1. This workflow is divided into three sections. 

 

Figure 3-1: Methodology for automated masonry arch bridge assessment 
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The first section, highlighted in orange, looks to build image textured 3D models of 

masonry arch bridges. Here geometry data in the form of point clouds acquired either 

through laser scanning or photogrammetry is meshed to create a 3D model textured with 

high resolution surface imagery acquired through photography. This first section is not 

the primary contribution of this PhD, since, as discussed previously in the literature 

review, there are several different technologies that are capable of automatically 

generating image textured models of bridges. In this work, commercial tools have been 

used to manually generate image textured 3D models following the steps presented in the 

methodology in Chapter 4. 

The second section, highlighted in blue, focuses on automatic detection of defects in 

images of masonry arch bridges. This is the primary focus of this PhD. To know what 

defect like features are worthwhile identifying, understanding of the nature of visible 

defects present in masonry arch bridges and their significance to the performance of the 

bridge is required. 

The third section, highlighted in green, identifies these defects. To achieve this, the 

proposed workflow maps the detected defects onto the image textured model to create a 

BIM model with defect locations layered onto the geometry of the bridge. In this PhD, 

this step has not been attempted, as similar work has already done this with historic 

building damage modelling (Valero, Forster, et al., 2018). Based on the position of visible 

defects on the masonry surface of arch bridges, it is possible to infer the underlying 

damage mechanism. It is envisioned that this defect location information can ultimately 

be extracted from the generated BIM model to automatically suggest the problems 

inflicting a bridge and their possible cures. For this PhD, the logic behind such an 

automation has been investigated, also identifying the visible defects that a classifier will 

need to be trained to recognise. This logic is presented below. 

3.1 Disease symptom analysis for masonry arch bridges 

In this thesis, the impact of different defect locations and types on the function of arch 

bridges, has been investigated in a way analogous to medically investigating a disease. 

This is presented in Figure 3-2, in which the defects that are visible on the bridge structure 

are labelled as symptoms. These are the cues that are used to diagnose the underlying 

problem with the bridge. As in the medical field, a combination of several different visual 

symptoms on the bridge will together point to the potential underlying problem with the 

bridge. Next the cures for the underlying problems are listed. These are the works that 
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can be done to cure the bridge of its underlying problem, which is causing the visible 

symptoms. Finally, there are the alleviations. These are the works that can be done to 

remove the visible symptoms from the bridge, without curing it of its underlying problem. 

In this way the visible defect on the bridge is linked to both its underlying problem and 

its solution. A future automated asset management tool for masonry arch bridges could 

therefore use the mapped information to determine the underlying problem in a bridge, 

and its required remedial treatment based on the detected defects and their location on a 

BIM model. 

Figure 3-2 was mostly created by combining information from the Network Rail 

standards for the examination of structures (Network Rail, 2017), and the Construction 

Industry Research and Information Association (CIRIA) documentation for assessing the 

condition of and remedying masonry arch bridges (McKibbins et al., 2006). In general, 

the Network rail standards have been used to determine the visible symptoms that are 

currently sought during manual bridge visual inspections, and the CIRIA documentation 

used to ascertain the underlying problems and the solutions for each symptom. Additional 

sources that have been used to a lesser extent are Atkins (2009), and Helmerich et al. 

(2007), which also consider European and non-railway masonry arch bridge preservation 

practices. The novelty of this work is therefore in the logical mapping of the visual defects 

to their remedial treatments, rather than the actual content. 

The utility of this mapping is demonstrated in Figure 3-3 where a subsection of the 

ailments and resolutions have been extracted from Figure 3-2. Here, if the visible 

symptoms in a bridge are a dip in the parapet, and lateral cracks in the span of the arch, 

then the likely underlying problem is movement at the abutments and the cure is piling 

through the abutments. If, however, the symptoms also include crushing of the brickwork, 

then the likely underlying problem is a failure of the arch barrel, with the cure being a 

concrete relieving arch or concrete backfill. In this way, through the position and 

combination of the symptoms present on the bridge, it is possible to diagnose the 

underlying problems and cures, in a manner that could in the future be automated. 
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Figure 3-2: Masonry arch bridge ailments and resolutions 
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Figure 3-3: Focused subsection of bridge ailments and resolutions mapping 

3.2 Important defect classes for detection 

A key output to developing the disease mapping in Figure 3-2 is the determination of the 

defect classes that are important for detection in masonry arch bridges. It is apparent that 

the main classes of visible defect giving symptoms of bridge ailments are distortions in 

the shape of the bridge, irregularities in the mortar joints, cracking, spalling and other 

delamination of brickwork, missing or displaced masonry, mortar loss, vegetation, 

wetness, and surface deposits.  

To determine the severity of each of these classes of defect on the condition of the bridge, 

correlation with possible Bridge Condition Marking Index (BCMI) scores from the 

Network Rail standards for the examination of structures (Network Rail, 2017) has been 

examined. BCMI scores are consistently assigned during inspections across the Network 

Rail bridge stock to record the deterioration of bridges from their perfect, as built 

condition, and assess the level of risk associated with each bridge. Scores are derived 

through recording defects on the elements of each bridge. For an element with no defects 

a severity code of A would be given. Elements are given severity ratings based on the 

type of defects present, their position, width, depth, length, and orientation. Non-crack 

defects are associated with scores ranging from B to F, and crack defects scores from G 

to P. Separate extent scores are also given for each defect, with the overall BCMI score 

for the bridge calculated from the severity and extent ratings of the defects present. BCMI 

ranges for each of the defect features identified have been recorded in Table 3-1 alongside 

an assumed severity rating (from 1 = mild to 5 = severe) based on the BCMI severity 

score. It is assumed that distortions in the shape of the bridge (BCMI score range of E - 

F) would be more accurately detected through examining the bridge geometry in its point 

cloud (which is outside the scope of this PhD) than by visually examining the surface, 

and therefore this defect class has not been considered. Although the same is also true for 

missing masonry where its geometry is much more prominent than its appearance, this 
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visually resembles mortar loss or brickwork delamination, depending on the extent of 

missing masonry, and therefore has been considered. 

In Table 3-1 it is apparent that the least significant defect classes are wetness and surface 

deposits and staining, a sign of wetness. This is due to these defect classes being indicators 

of future problems with the bridge, rather than existing problems. Additionally, in the 

literature it has been suggested infrared thermography rather than visual imagery is more 

able to capture masonry wetness (Orbán and Gutermann, 2009). As a result, this PhD 

focuses on the visual detection of cracking, spalling, mortar loss, and vegetation. 

Table 3-1: Severity of visible masonry defect classes 

Feature Criteria & Cause for Concern 
Severity 

[BCMI] 

Irregular mortar 

joints 

Irregularities in the bedding planes: 

Sign of differential settlement of the bridge where 

cracks could be masked by repointing.  

4 

[F] 

Cracking 

 

 

Position, inclination, orientation, length, width, and 

whether it has been repointed in the past. Whether it is 

through bricks or along mortar joint: 

Cracks in certain places indicate bridge is not safe to 

carry load, depending on the extent and position of 

cracks. Longitudinal cracks within the middle third of 

the arch suggest the bridge is breaking up into 

sections. Transverse cracks within the middle third of 

the span suggest a mechanism is forming which is 

potentially very severe. Diagonal cracks suggest the 

bridge is in a dangerous state. Hairline cracks in 

individual bricks may be the result of inherent material 

properties.  

 

 

5 

[F, G-P] 
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Spalling 

Depth of spalled / delaminated and substantially 

weakened material relative to original face of bridge, 

proportion of surface affected: 

Fabric of the bridge is deteriorating, suggesting work 

is required to repair. 

3 

[B-D] 

Loose and 

missing masonry 

Presence of loose or displaced masonry, proportion of 

surface affected: 

Suggests that maintenance has not been done and 

mortar bond has failed and/or bricks forced out of 

position. There is a potential for the hazard of falling 

bricks 

4 

[Ex –F] 

Mortar loss 

Maximum and typical depth lost. Proportion of joints 

showing signs of deterioration: 

Loosens masonry units, reducing ability of masonry to 

transmit and evenly distribute forces. Fabric of the 

bridge is deteriorating, suggesting work is required to 

repair. 

3 

[C] 

Vegetation 

 

 

Number, size and girth of trees and extent of bushes 

growing on the structure. Presence of large, or 

hydrophilic vegetation (moss): 

Tree roots and other undealt with vegetation can cause 

severe damage to the structural fabric of the bridge. 

Significant vegetation could also displace masonry 

and can hide other defects. Smaller organisms that 

may be found in damp areas of the bridge fabric can 

cause deterioration by increasing porosity and 

facilitating leaching and other mechanisms. 

 

 

2 

[B] 
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Wetness 

Evidence of the presence or effect of water (excluding 

exposure to rain) in sufficient quantities, and 

proportion of structure affected: 

Increases the vulnerability of masonry to 

environmental agents causing and accelerating 

deterioration. Movement of moisture can result in 

washout of fines from particulate materials (e.g., fill) 

causing weakening and instability. 

1 

[B] 

Surface deposits 

and staining 

Proportion of surface affected: 

A sign of wetness, and the washout of the vulnerable 

calcium hydroxide and carbonate components of 

mortars. Their loss creates secondary porosity that can 

weaken materials and in turn aggravates the effect of 

other agents like freeze-thaw. 

1 

[B] 

3.3 Chapter summary 

In this chapter a workflow for automatically determining underlying problems with 

masonry arch bridges has been proposed. This workflow uses geometry and image data 

to detect defects visible on the surface of the bridge, and to locate these defects in a visual 

3D BIM model. 

The focus of this chapter has been devising a mapping between the underlying problems 

facing masonry arch bridges and their visible defect symptoms, akin to a medical 

diagnosis, with the potential for future automation. This process has also been used to 

identify the major visible defects that an automated classifier should be trained to detect. 
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4 DATASET GENERATION 

Previous research on the detection of defects in images has highlighted how fundamental 

the training dataset is to successful classification (Shin et al., 2016). It has been suggested 

that factors important to a quality dataset are the size of the dataset, how similar the 

dataset is to real world conditions and the variation of both environmental and surface 

conditions captured in the dataset. Limited research has been focused on creating a dataset 

of realistic masonry images, i.e., images that contain the real variability of masonry 

condition observed on real masonry arch bridges. Therefore, the creation of a thorough 

dataset of masonry arch bridge surfaces is a major part of the work for this PhD. 

4.1 Equipment used 

For each site visited, both image and geometry data have been captured, using a digital 

camera and laser scanner, respectively. Based on equipment availability, different sensors 

were used for different sites, with the following equipment used across the different sites: 

• Cameras: 

o Cannon EOS 7D Mark II: 20MP APS-C sensor 

o Sony Alpha 7R II: 42.2MP full-frame Exmor R CMOS sensor 

o JVC GC-PX10: 12MP 1/2.3” back-side illuminated CMOS sensor 

• Laser Scanners: 

o Faro Focus 3D X330: 0.6-330m range. ±2mm ranging error at 25m range 

o Faro Focus 3D S120: 0.6-120m range. ±2mm ranging error at 25m range 

The camera was used mounted on a tripod to reduce image blur and used at the same time 

as the laser scanner was running. Photos have been taken in a way to ensure sufficient 
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resolution of the masonry surface for detail to be captured, and such that there is sufficient 

overlap between image frames to enable image stitching. Additionally, photos at various 

levels of detail have been taken to aid image stitching and Structure from Motion (SFM) 

photographic model reconstruction. 

Laser scanning positions have been chosen around the captured bridges to prevent 

occlusions, such that the whole surface of the bridge is measured. Point clouds from 

different scan positions have been registered to produce a single point cloud for each 

bridge, using the Faro Scene software (Faro, n.d.). Registration was done by means of 

both reference markers placed while scanning, and cloud-based alignment. Aligned point 

clouds have been produced for all the bridges visited which are listed in Chapter 4.2. An 

example of a 2D view of one of the colourised point clouds produced is shown in Figure 

4-1, depicting Hertford Viaduct. 

 

Figure 4-1: Point cloud for Hertford Viaduct 

4.2 Sites visited 

Data has been collected from several masonry viaducts and bridges, the majority nearby 

to Cambridge. The capture of many different bridges means that the dataset generated 

depicts a wide range of masonry conditions, making it more suited for training a classifier 

to generalise over multiple structures. The bridges captured in the dataset have all been 

constructed from brick masonry. In total, data was collected from 9 viaducts and 4 

bridges. Across the viaducts a total of 40 spans were captured, meaning that an overall 

total of 44 spans have been captured, constituting a significant total surface area of 
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captured masonry of 15,308m2 in total (surface area manually measured from point cloud 

for each bridge captured). Across these spans, the dataset created consists of 137 

individual laser scans and 28,481 photos. A breakdown of the bridges visited is shown in 

Figure 4-2, with additional information on each bridge detailed following. For clarity, the 

engineer’s line and bridge references are listed in brackets for each bridge. The dates on 

which data was collected are given in the dd/mm/yy format. 
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Figure 4-2: Map showing sites visited for data collection  
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• Audley End Viaduct (BGK 1516) 

o Spanning a steep valley just south of Audley End railway station in 

Cambridgeshire, 18m high at its centre. It consists of 7 arches, each with 

a 6m span. Constructed in 1843, it carries the West Anglia Main Line 

running between London Liverpool Street and Cambridge (Audley End 

Viaduct n.d.). 

o Data collected on 10/08/17 using the Cannon camera and S120 scanner 

o 2 Spans captured, with total captured surface area approximately 525m2 

o 1198 images and 6 laser scans taken 

  

o Key features and distractors: Overall good condition masonry with well-

defined and clean mortar joints. Some areas of graffiti and block sections 

of paint as well as vegetation obscuring mortar joints. Photos taken with 

neutral lighting and minimal shadowing. 
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• Chappel Viaduct (SUD 884) 

o Spanning 320m, 23m above the valley of the river Colne, south of Chappel 

& Wakes Colne railway station in Essex. It is grade II listed, and consists 

of 32 arches each with a span of 9.1m. Constructed in 1849, it carries the 

Gainsborough line, a branch line off the Great Eastern Mainline (Historic 

England, 1967). 

o Data collected on 26/11/16 using the Sony camera and X330 scanner 

o 4 Spans captured, with total captured surface area approximately 1788m2 

o 862 images and 15 laser scans taken 

 

 

  

o Key features and distractors: Overall good condition masonry with clean 

and shallow mortar joints, though brick face is rough and has spalled in 

parts. Minimal vegetation, though heavy shadowing in photos. Areas of 

wetness and efflorescence on arch barrels. 
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• Chelmsford Viaduct (LTN1 149) 

o Chelmsford Viaduct carries the Great Eastern Mainline 16.5m above 

Central Park and the River Can, just south of Chelmsford Station in Essex. 

It consists of 18 arches, each spanning 9.5m and was constructed in 1842 

(River Can and Occupation Road Viaduct n.d.). 

o Data collected on 31/10/16 using the Sony camera and X330 scanner. 

o 1 Span captured, with total captured surface area approximately 351m2 

o 424 images and 15 laser scans taken 

 

 

  

o Key features and distractors: Mostly good condition masonry with several 

areas having undergone repointing or replacing of bricks. A few areas have 

graffiti, or block paint to cover graffiti, and vegetation is present in some 

areas. Some photos show shadowing on the brickwork. 
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• Digswell Viaduct (ECM1 69) 

o A grade II* listed viaduct which was opened in 1850 and consists of 40 

arches each with a span of 9m. It carries the East Coast Mainline for 475m, 

30m above the valley of the river Mimram. It is south of Welwyn North 

railway station in Hertfordshire (Historic England, 1980). 

o Data collected on 14/11/16 with Sony camera and X330 scanner for 2 

spans and on 05/11/17 with Canon camera and X330 scanner for 4 spans. 

o 6 Spans captured, with total captured surface area approximately 4074m2 

o 5815 images and 22 laser scans taken 

 

 

  

o Key features and distractors: Excellent condition masonry with well-

defined and clean mortar joints and smooth brick surfaces. Almost no 

vegetation, though a few areas of efflorescence on arch barrels. Photos 

taken with neutral lighting and minimal shadowing. 
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• Harringworth Viaduct (GSM1 42) 

o The Harringworth viaduct is the longest masonry viaduct across a valley 

in the UK, spanning 1.166km, 18m above the valley of the River Welland 

between Harringworth in Northamptonshire and Seaton in Rutland. It 

consists of 82 arches, each with a 12m span. Completed in 1878, and grade 

II listed, it carries the Oakham to Kettering line (Historic England, 1987). 

o Data collected on 17/01/17 using the Canon camera and X330 scanner 

o 4 Spans captured, with total captured surface area approximately 1920m2 

o 1773 images and 13 laser scans taken 

 

 

  

o Key features and distractors: Masonry in mixed condition with areas of 

wetness and surface deposits, though minimal vegetation. Some mortar 

recesses are deep and on the arch barrel mortar joints are less well defined. 

Photos taken with neutral lighting and minimal shadowing. 
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• Hertford Viaduct (HDB 39) 

o Carries the Hertford loop line, a branch and diversionary route of the East 

Coast Main Line for 280m, 13.5m above the river Mimram to the south of 

Hertford North Station in Hertfordshire. It consists of 14 arches, each 

spanning 10m and was constructed in 1915 (Hertford Viaduct n.d.). 

o Data collected on 29/10/16 using Sony camera and X330 scanner for 1 

span and on 06/11/17 using Canon camera and X330 scanner for 5 spans. 

o 6 Spans captured, with total captured surface area approximately 2070m2 

o 6082 images and 26 laser scans taken 

 

 

  

o Key features and distractors: Mostly good condition masonry with smooth 

brick faces and well-defined mortar joints. Some vegetation and surface 

deposits present. Photos mostly taken with neutral lighting, though some 

experience shadowing.  
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• Oakley Viaduct (SPC2 48) 

o 2 parallel viaducts, each carrying 2 tracks of the Midlands Mainline for 

120m, 9m above the River Great Ouse. Each viaduct has 11 arches, each 

spanning 8m. It opened 1857 and is just north of the village of Oakley in 

Bedfordshire (Oakley Viaduct n.d.). 

o Data collected on 16/02/18 using the Canon camera and X330 scanner 

o 12 Spans captured, with total captured surface area approximately 2724m2 

o 3154 images and 17 laser scans taken 

 

 

  

o Key features and distractors: Masonry in average condition with mostly 

smooth brick faces, though in some areas spalling is prevalent. Some 

mortar joints are very deep, whilst staining and wetness distracts from 

others. Some graffiti is present on the structure. Photos mostly taken with 

neutral lighting, though some experience shadowing. 
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• Peterborough Viaduct (ECM1 184DA) 

o 2 parallel viaducts carrying the East Coast Mainline 8m above the ground 

just south of Peterborough railway station. The first viaduct was built in 

1850 and the other in 1924 when the line was quadrupled. The first viaduct 

spans 62m, and has 8 arches, each spanning 6m. The second spans 76m, 

and has 10 arches, each spanning 6.5m (Peterborough Viaduct n.d.). 

o Data collected on 27/11/16 using the Sony camera and X330 scanner 

o 4 Spans captured, with total captured surface area approximately 656m2 

o 1876 images and 9 laser scans taken 

 

 

  

o Key features and distractors: Masonry in average condition, though fully 

painted on piers. Arch barrel masonry shows surface deposits with little 

contrast between mortar and brick. Photos mostly taken with neutral 

lighting, though some experience shadowing. 
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• Sawtry Viaduct (ECM1 161) 

o A viaduct spanning 25m with a height of 9.5m over Red Drove track to 

the east of the village of Sawtry in Cambridgeshire. It has 5 arches, each 

spanning 3.7m. Carrying the East Coast mainline, it was originally built in 

1850, but was widened in 1924 when the line was quadrupled (Ecm1/161 

Viaduct n.d.). 

o Data collected on 21/03/17 using the JVC camera and X330 scanner 

o 1 Span captured, with total captured surface area approximately 193m2 

o 372 images and 2 laser scans taken 

 

 

  

o Key features and distractors: Masonry in average condition, with mostly 

clear well pointed mortar joints and smooth brick faces. Some areas show 

spalling and other areas surface deposits. There is minimal vegetation and 

graffiti. Photos taken with neutral lighting and minimal shadowing. 
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• A162 Barkston Road Bridge (CFM 5) 

o A skew arch bridge opened in 1869 over the A162 south of the village of 

Barkston Ash in North Yorkshire. It has a height of 5.6m and a span of 

10.6m. It carries the direct railway traffic between Leeds and York railway 

stations (A162 Barkston Road Underline Bridge n.d.). 

o Data collected on 05/07/18 using the Canon camera and X330 scanner 

o Total captured surface area approximately 118m2 across bridge span 

o 355 images and 5 laser scans taken 

 

 

  

o Key features and distractors: Only the arch barrel contains brick masonry. 

In general brick masonry in good condition with clean mortar joints, and 

smooth brick faces, though towards the springing line there is the presence 

of leaching and deposits. Photos taken with neutral lighting and minimal 

shadowing. 
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• Spring Road Bridge (SBR 4) 

o An underline bridge on the Cambridge line, connecting Cambridge to the 

East Coast Mainline which opened in 1851. It has a height of 3.5m and a 

span of 3.66m (Sbr/4 Spring Rd Underline Bridge n.d.). 

o Data collected on 06/06/19 using the Canon camera and X330 scanner 

o Total captured surface area approximately 196m2 across bridge span 

o 2085 images and 2 laser scans taken 

 

 

  

o Key features and distractors: Masonry generally in good condition with 

smooth brick surfaces and well-defined mortar joints. However, most of 

the surface is painted, either with graffiti or block painting. Other exposed 

areas suffer from efflorescence and surface deposits. Internal photos taken 

with neutral lighting, but most others show shadowing, especially on the 

mortar interface. 
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• Norton Road Bridge (SBR 8) 

o A skew arch bridge on the Cambridge line which opened in 1851. It has a 

height of 4.92m and a span of 6.11m (Sbr/8 Norton Road Underline Bridge 

n.d.).  

o Data collected on 06/06/19 using the Canon camera and X330 scanner 

o Total captured surface area approximately 331m2 across bridge span 

o 2442 images and 2 laser scans taken 

 

 

  

o Key features and distractors: Masonry generally in poor condition with 

rough brick surfaces and unclear mortar. Most of the masonry surface is 

covered in soot and other deposits. In some areas mortar joints are very 

deep. Photos mostly taken with neutral lighting, though a few experience 

shadowing, especially around mortar joints. 
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• Smythes Farm Bridge (SBR 12) 

o An underline bridge on the Cambridge line which opened in 1851. It has 

a height of 4m and a span of 6.1m (Sbr /12 Underline Bridge n.d.). 

o Data collected on 06/06/19 using the Canon camera and X330 scanner 

o Total captured surface area approximately 362m2 across bridge span 

o 2043 images and 3 laser scans taken 

 

 

  

o Key features and distractors: Masonry generally in good condition with 

smooth brick surfaces, though the abutments have a covering of mud from 

farm traffic. Areas of the arch barrel also show significant efflorescence 

and deposits. Photos were taken with bright sunlight, so shadowing is 

prevalent, especially around mortar joints. 
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4.3 Image resolution specification 

To ensure a sufficient level of detail is captured in photographs taken of bridge surfaces, 

photographs have been captured with the masonry surface imaged at a resolution greater 

than a predetermined minimum. This has been determined based on the size of the 

smallest defect that is necessary to be visible in photographs, namely a 1mm thick crack. 

Thinner cracks are likely to be those isolated to a single brick. These are likely to be a 

result of material properties, and so are less important. The Nyquist Sampling Theorem 

states that to reproduce a signal, it should be sampled at twice the highest frequency 

components. In images the pixel size should therefore be ½ the size of the smallest object 

(Ruzin, 2011). For recording 1mm cracks, an image surface resolution of 2 pixels per mm 

in each dimension is therefore required. McRobbie (2015) has suggested that dark, sub-

pixel features will affect the light detected by each pixel, reducing the pixel value, making 

sub-pixel features visible. This suggests that with surface resolutions of lower than 1 pixel 

per mm, 1mm thick cracks will still be visible. However, images have been captured at a 

resolution of 2 pixels per mm, as this will enable crack width measurements down to 1mm 

to be made. The resolution of the captured surface texture is governed by the equation: 

𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑝𝑥/𝑚𝑚) =
𝑐𝑎𝑚𝑒𝑟a 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑝𝑥)

𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤 (𝑚𝑚)
(4-1) 

The resolution of the captured surface texture is therefore governed by the field of view 

of the image, i.e., the surface area of masonry in the image, and the resolution of the 

camera. For a given camera the resolution is fixed, so the texture resolution can only be 

changed by changing the field of view. Therefore, to ensure a texture of at least 2 pixels 

per mm, different maximum field of views were specified for the three cameras used to 

capture data. 

• The Canon camera has a 20MP sensor, with resolution 5472 x 3648 pixels giving 

a maximum field of view of 2.7 x 1.8m of surface. 

• The Sony camera has a 42.2MP sensor, with resolution 7952 x 5304 pixels, giving 

a maximum field of view of 4.0 x 2.7m. 

• The JVC camera has a 12MP sensor, with resolution 4000 x 3000 pixels giving a 

maximum field of view of 2.0 x 1.5m. 

The field of view is governed by the equation: 

𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤 (𝑚𝑚) =
𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑖𝑧𝑒 (𝑚𝑚) × 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑚)

𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚𝑚)
(4-2) 
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The size of the sensor is a property of the camera and is fixed, so changing the field of 

view is achieved through changing the focal length of the lens, or by changing the 

working distance, i.e., the distance between the camera and the surface. While collecting 

field data, a telephoto lens was used, allowing a range of focal lengths, so both this and 

the imaging position were changed to ensure the correct field of view. 

In addition to the high detail images, images of the surface at lower resolutions, and taken 

from non-orthographic angles have also been taken to aid with image stitching, and 

structure from motion model reconstruction.  

4.4 Image stitching and orthophoto generation 

Stitching of individual images for generation of orthophotos depicting complete bridge 

elements has been investigated by McRobbie (2015) who has evaluated different image 

stitching solutions for highway bridges, concluding that relying on image features for 

image stitching can go wrong when there are either too many or not enough unique image 

features. They have proposed generation of orthophotos of bridges, through stitching 

images using an automated pan-tilt camera mount. 

For this work, stitching using image features has been used, as it was found there were 

sufficient features in a masonry surface for alignment of images. Stitching has been 

attempted using both Microsoft Image Composite Editor (Microsoft, 2017) and Hugin 

Panorama Photo Stitcher (OpenSource, 2020). It was found that Hugin gave much 

superior results due to the greater level of control that was afforded to the process. 

Stitched panoramas have been re-projected orthogonal to the masonry surface to generate 

orthophotos, meaning there is no perspective distortion. Panoramic orthophotos have 

been constructed for a pier of a single span of three of the viaducts in the dataset: 

• Hertford Viaduct: Stitched from 52 individual images, the resulting panorama 

measures 27872 x 21044 (w x h) pixels. The pier was measured to be 9.22m wide 

from its point cloud, meaning that the texture resolution is 3.0 pixels per mm. 

• Peterborough Viaduct: Stitched from 38 individual images, the resulting 

panorama measures 43100 x 7113 (w x h) pixels. The pier was measured to be 

8.34m wide in its point cloud, so the texture resolution is 5.2 pixels per mm. 

• Chelmsford Viaduct: Stitched from 38 individual images, the resulting panorama 

measures 24325 x 20087 (w x h) pixels. The pier was measured to be 7.99m wide 

in its point cloud, meaning that the texture resolution is 3.0 pixels per mm. 
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For reference, the complete stitched orthophoto for a pier of Hertford Viaduct is shown 

in Figure 4-3. For most of the panorama, the interface between the comprising images is 

seamless. However, in a few places, as in Figure 4-4, there is a small degree of 

misalignment. However, this is not significant enough to affect the ability of a classifier 

to detect features on the surface. Additionally, where panoramic photo stitching is 

attempted on the arch barrel, this results in significant misalignment as shown in Figure 

4-5. Here the panorama has been cropped to ensure it is at a resolution that is viewable, 

so only a quarter of the barrel is visible. The left edge of the image is aligned with the 

spandrel wall, and the bottom edge with the springing line. In this figure, the 

misalignment of the individual images is obvious due to the nonlinear bed joints. This 

misalignment is due to attempting to re-project images of a curved surface onto a flat 

plane. 

 

Figure 4-3: Orthographic stitched panorama for Hertford Viaduct 
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Figure 4-4: Misalignment in image stitching process 

 

Figure 4-5: Misalignment in image stitching for Digswell Viaduct arch barrel 
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4.5 Photogrammetry 

As a result of the misalignment shown in Figure 4-5, it can be determined that panoramic 

image stitching is not powerful enough to build seamless models of masonry arch bridges, 

due to the curvature of their arch barrels. As a result, photogrammetry has been used. This 

looks to recover 3D structure from projected 2D images utilising Structure from Motion 

(SFM) and Multi-View Stereo (MVS). This works on the principle that when an observer 

moves, objects around them move by different amounts depending on their distance from 

the observer. By matching unique points in images taken from various positions, 3D 

structure can then be determined, creating a 3D point cloud onto which images can be 

mapped. This also means that when the arch barrel texture is built, it is re-projected onto 

a 3D plane with curvature matching that of the barrel, such that misalignments such as in 

Figure 4-5 will not occur. 

Many software packages exist for performing photogrammetry. For this work, several of 

these have been trialled to determine suitability. These are: 

• Agisoft Metashape (Agisoft, 2019) 

• Autodesk Recap (Autodesk, 2017) 

• Colmap (Schönberger, 2020) 

• AliceVision Meshroom (Griwodz et al., 2021) 

• Multi-View Environment (Fuhrmann et al., 2014) 

• OpenMVS (cdcseacave, 2019) 

• Visual SFM (Wu, 2011) 

Of these, Agisoft Metashape and Autodesk Recap are paid commercial products, whereas 

the others are all open source or freeware software. It was found that both the 

reconstruction performance, and ease of use of Agisoft Metashape was best, and as a 

result was chosen for developing photogrammetric models. Most of the examined 

software have now had new versions released since being tested, so this performance gap 

may not still be the case today. Other, more costly photogrammetry software exists, 

though these were not evaluated due to funding constraints, and the performance of 

Agisoft Metashape being adequate for reconstructing 3D models from the dataset given. 

For 3D model reconstruction in Agisoft Metashape, the workflow is as follows. Initially 

individual photos are aligned using SFM to compute the camera position for each photo 

and generate a sparse point cloud of the 3D model. Next a dense point cloud is calculated 

using MVS, whereby depth maps are computed for overlapping image pairs. At this point, 
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it would have been possible to import the point cloud that was developed through laser 

scanning instead of calculating a dense point cloud through photogrammetry. However, 

the increased accuracy of the laser scan derived point cloud was not required, so for 

simplicity the photogrammetric point cloud was used. A mesh of the surface is built from 

the dense point cloud, through triangulation of the points. This mesh surface is then 

colourised based on the projected image data to form a colourised texture, and a 

colourised 3D model of the bridge. Photogrammetry has been performed on: Spring Road 

Bridge (SBR 4), Norton Road Bridge (SBR 8), and Smythes Farm Bridge (SBR 12). 

These bridges are located by red markers in the map in Figure 4-2. The colourised 3D 

photogrammetric model for Norton Road Bridge (SBR 8) is shown in Figure 4-6 for 

reference. 

 

Figure 4-6: Photogrammetric model for Norton Road Bridge (SBR 8) 

4.5.1 Creating 2D image textures 

The work of this PhD focuses on detecting defects from the visual features of masonry 

arch bridges rather than geometric features. As a result, the methodology followed 

classifies masonry surfaces as defective or not from 2D image textures. It is therefore 

necessary to extract 2D image textures from the developed 3D models. 

4.5.1.1 Orthophotos 

As discussed in Chapter 2.2 in the literature review, the current practice for extracting 2D 

textures from 3D models is through capturing an orthographic projection of the texture 

being studied. For flat surfaces such as bridge piers, this would give a similar output to 

that from an orthographic projection of stitched photos as in Figure 4-3. However, an 
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orthophoto of a curved surface such as an arch barrel would result in non-uniform scaling 

across the image as in the Network Rail data in Figure 2-4 in Chapter 2.2, and the data 

collected for this work presented in Figure 4-9. 

4.5.1.2 UV mapping 

UV maps describe the mapping of 2D image textures onto a colourised 3D model, where 

the 2D textures are positioned in the “U”, “V” coordinate system, which is mapped to the 

“X”, “Y”, “Z” coordinate system of the 3D model. When colourising a mesh in Agisoft 

Metashape, the different possible mapping modes are an orthophoto mapping mode and 

a generic mapping mode. As previously discussed, an orthophoto mapping of a curved 

surface such as an arch barrel would lead to scaling. The generic mapping mode 

automatically divides the 2D texture map arbitrarily to attempt to create as uniform a 

texture as possible. Although this results in a texture with minimal scaling, this is not 

useful as the 2D texture in the UV map is discontinuous. An example of a UV map 

generated with a generic mapping is shown in Figure 4-7. 

 

Figure 4-7: UV Map for the barrel of Norton Road Bridge (SBR 8) with generic 

mapping mode. Left image shows texture colour, and right image shows scaling 

Arch barrels on masonry arch bridges are only single curved surfaces, so through 

unravelling the curved surface, it is possible to create a UV map 2D texture with no 

scaling or cuts, in a way that would not be possible for a double curved surface. To do 

this the UV map has been defined outside of Agisoft Metashape, and then reimported 

back in for colouration. This has been done by UV unwrapping in Blender (Blender 

Online Community, 2018), an open source 3D creation suite. 
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2D textures from unwrapped UV maps have been created separately for each of the 

distinct parts of a bridge (e.g., arch barrel, spandrels, wing-walls, etc.) to simplify the 

geometry of the unwrapping process, such that the UV for each part is undivided with 

minimal scaling. An example 2D texture for the arch barrel and abutments of a bridge is 

shown in Figure 4-8. Notice that unlike in Figure 4-5 there is no scaling or discontinuities 

between the individual photos. 

UV unwrapping the arch barrel as well as orthophoto mapping are compared in Figure 

4-9. From the scaling mapping, it is apparent that there is much more scaling in the 

orthophoto mapping Figure 4-9d-i compared to the unwrapping mapping Figure 4-9c-i. 

The colour scales of the two figures are independent based on the scale range within the 

figure individually. The scale range for the unwrapping mapping Figure 4-9c-i is from a 

minimum of 85.9% to a maximum of 115%. This range is caused by imperfections in the 

shape of the arch such as a light fitting. In contrast the scale range for the orthophoto 

mapping Figure 4-9c-i is from a minimum of 19.3% to a maximum of 116%. There is 

therefore a much larger scale range for orthophoto mapping, as well as much larger areas 

of the texture being scaled as shown in the figure.  

Figure 4-9 in c-ii / c-iii and d-ii / d-iii compares the image textures for unwrapping and 

orthophoto based UV mapping, respectively. A window of the same masonry image 

texture from the crown of the arch and near the springers has been captured for both 

mappings in Figure 4-9 in, ii and iii, respectively. The mappings have been scaled such 

that the texture near the crown is the same scale. As can be seen, the texture near the 

springing for the orthophoto mapping is scaled compared to both its texture near the 

crown and the springing texture for the UV mapping. This is a similar result to what is 

visible in the Network Rail orthophoto mapped data of an arch barrel discussed in the 

literature review and shown in Figure 2-4. 

As a result of this scaling, all 2D image textures used in this work have been generated 

through UV unwrapping, and it is proposed that this is the method that is adopted 

generally for generating 2D image textures of arch bridge barrels.  
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Figure 4-8: 2D texture for unwrapped UV from textured 3D geometric model of the 

arch barrel and abutments of Smythes Farm Bridge (SBR 12) 
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a)  

b)  

c)  d) 

i)   

ii)   

iii)   

Figure 4-9: UV Map scaling effect on arch barrel of Norton Road bridge (SBR 8): 

a) Barrel model, b) Barrel profile, c) UV unwrap mapping, d) Orthothophoto UV 

mapping; i) barrel scaling, ii) texture at barrel crown, iii) texture close to barrel 

springer 
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4.6 Texture annotation 

A key part of the work in creating a dataset of masonry arch bridge surface image data is 

the annotation of that data. Annotated data is needed for both the training and testing of 

classification algorithms. Image textures of masonry surfaces with an orthogonal 

projection to the surface (no perspective distortion) are the expected input of a defect 

detection algorithm. This is because it is envisioned that defect detection will be 

performed on image-textured three-dimensional models of masonry arch bridges as part 

of an automated bridge inspection process. These orthographically projected textures 

have been generated in two separate ways as a part of two separate datasets. 

The first dataset uses image data from those bridges with blue markers on the map in 

Figure 4-2 (predominantly viaduct images). From all the image data of these bridges, 94 

images have been chosen based on their depiction of defects. This is done to try and 

maximise the prevalence of defects in the dataset, as most of the masonry surface area 

does not contain defective features. On this dataset the images have had their perspective 

distortion corrected to form orthogonally projected textures by re-projecting images 

individually using the Hugin Panorama Photo Stitcher software. This was done through 

marking horizontal and vertical alignments (bed and head mortar joints) depicted in the 

photos and forcing their alignments in the re-projected texture. Additionally, the three 

orthographic panoramic images that were presented in Chapter 4.4, which depict 

complete piers of 3 of the viaducts captured, are included in this dataset. 

The second dataset has been generated from photogrammetric models of bridges as 

described in Chapter 4.5.1.2. The bridges in this dataset are shown with red markers on 

the map in Figure 4-2. The whole masonry surface of these bridges has been included in 

this dataset (approximately 890m2), so the prevalence of defects in the dataset is the same 

as that in the bridge itself. 

For both datasets, the image textures have been resized to ensure a constant surface 

resolution in all images, as this would be achievable automatically with 2D image texture 

data generated from geometric 3D models. This resolution has been determined by 

standardising the average number of pixels for a brick course in each image to 155 which 

is approximately equal to a resolution of 2 mm per pixel, the resolution defined in Chapter 

4.3. 

All the generated image textures have been annotated pixel-wise with the different defect 

classes. This has been done by manually annotating the pixels in the images where a 
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defect is present. The defect classes that were annotated are outlined in Chapter 3.2. An 

example of this for one of the annotated images is shown in Figure 4-10. As well as 

annotating defects, the pixels containing mortar joints have also been annotated to 

consider automatically detecting mortar joints and to determine the effect of mortar joints 

on defect detection performance. Annotation has been done using a pen-input touchscreen 

display, with the Fire Alpaca digital painting software (FireAlpaca, 2021). Each defect 

class has been annotated within its own image layer, with the base masonry texture also 

in its own image layer. These image layers have then been exported as separate, 

interrelated images. 

 

Figure 4-10: Image annotations for recording defect locations showing: a) original 

image, b) mortar joints, c) crack locations, d) spalling locations, e) mortar loss 

locations, f) vegetation locations 

4.7 Chapter summary 

This chapter has outlined the generation of the dataset that has been created as part of this 

PhD. This has formed a significant part of this PhD, as a well-defined dataset is viewed 

as essential to creating a successful classifier. The dataset that has been created 

encompasses a large amount of masonry data, the most comprehensive dataset by a 

considerable margin in comparison to other works that have been examined in the 

literature.  
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Additionally in this chapter, a workflow has been established for creating 2D image 

textures of masonry arch bridges. In terms of infrastructure assets, masonry arch bridges 

are unique in having a non-flat surface that results in scaling when viewed with an 

orthophoto projection. The proposed workflow looks to generate UV maps from image-

textured geometric models through using UV unwrapping, to generate non-scaled, non-

segmented, masonry surface image textures. 

Finally, the process of annotating the masonry dataset has been discussed. This annotated 

dataset forms the backbone of the work discussed in the remainder of this thesis.  
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5 MORTAR JOINT DETECTION 

In the literature review it was identified that detection of mortar joints in masonry surfaces 

can be beneficial because: 

• Mortar joint location could aid defect detection through simplifying 

heterogeneous masonry surface, 

• Mortar joint distortions can be useful for highlighting historic settlement and 

deformations of masonry arch bridges, 

• Mortar joint locations help quantify sized of damaged areas for estimating 

material requirements for repair, 

• Mortar joint locations can improve the accuracy of modelling bridges for 

calculation of their service capacity.  

Additionally, it was found that none of the reviewed previous literature on mortar joint 

detection techniques have been developed with the same level of masonry noise and 

distractions as seen on masonry arch bridges. Therefore, ways of detecting mortar joints 

in noisy masonry arch bridge images, where the mortar is often obscured by paint, dirt or 

vegetation have been explored. 

5.1 Deterministic pattern recognition 

A new method to increase the accuracy of mortar joint mapping by exploiting the regular 

arrangement of bricks in masonry walls has been proposed. In this way, false mortar joint 

detections can be discounted and missed ones added, increasing the resilience of mortar 

joint detection to image noise. The method employs a simple edge detection mask to 

identify potential mortar line locations, using this mask to determine the brick spacing 
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pattern, from which mortar line locations can be determined. This methodology has been 

developed and executed in the Matlab language and computing environment 

(MathWorks, 2018). 

An overview of the developed method is outlined in Figure 5-1. The method consists of 

three stages. Firstly, a pre-processing stage is used to determine parameters of the 

brickwork imaged. Next, the bed joint (horizontal mortar line) locations in the image are 

determined. The image is then divided up into brick courses determined by the bed joints 

detected. Finally, for each brick course, head joint (vertical mortar line) locations are 

determined using a similar process as used for determining bed joint locations. The 

method developed assumes orthorectified images, i.e., that the images show masonry with 

no perspective distortion, as per the images developed in the dataset in Chapter 4. Figure 

5-2 shows the main output stages involved in the process. These stages are not in process 

order, as bed and head joints are processed sequentially. These stages are detailed in the 

following sections. 

 

Figure 5-1: Workflow for mortar line detection methodology 

 

Figure 5-2: Stages of mortar line detection: a) input image data, b) edge detection, 

c) horizontal and vertical straight-line detection, d) mortar line plotting, e) pattern 

detection and mortar line detection correction 

5.1.1 Image pre-processing 

Pre-processing involves determining the brick size relative to the image resolution and 

the orientation of the masonry in the image, so that the factors later used for feature 

detection can be adjusted to account for the image conditions. Although it is assumed that 
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the input image data will be derived from a textured 3D geometric model of a bridge, this 

is a necessary step as brick orientation can vary, for example on skew arches, and the 

bricks used might not be of a standard size. An example of the utility of such an approach 

is demonstrated in Figure 5-3, where the image has initially been rotated to simulate 

masonry at an angle. The masonry angle has been automatically detected, such that the 

mortar joint detection process can still work effectively. 

 

Figure 5-3: Mortar joint detection on a rotated input image 

These size and orientation aspects are determined from the orientation and spacing of bed 

joints in a sample region of the image. Bed joints in the sample region are scanned for 

using the same methodology as is later used for bed joint detection across the whole 

image. For this, the masonry is assumed to have an initial arbitrary image scale which is 

iteratively updated. Properties of the detected bed joints in the sample window are 

measured to ensure that concurrent bed joints have been detected and not random noise. 

These properties are the number of straight lines detected in the image, and the number 

of orientations these are at, the number of clearly separated bed joints detected, and the 

consistency of the spacing between the detected bed joints. If these properties suggest the 

detection is poor, then the sample region size is increased and/or the arbitrarily assumed 

masonry image scale is changed. The sample region is then scanned again. Otherwise, the 
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detected bed joint spacing and the rotation of the bed joints relative to the horizontal are 

recorded and set as the properties of the masonry in the image. 

5.1.2 Bed joint detection 

Image intensities rather than colour thresholding were chosen as the feature for extracting 

mortar joints. This was chosen as in some masonries, particularly older masonry such as 

on arch bridges, there is no clear colour differentiation between mortar and bricks due to 

coverings of for example dirt or paint. Therefore, Sobel edge detection is performed to 

detect the changes in image intensity experienced at bed joints. In many masonry arch 

bridge images, bed joints are much more prominent in some regions than others due to 

noise on the bridge surface. Therefore, the image is divided into smaller regions, each 

only a few bricks in size, and edge detection is performed on each image region 

separately. This means that a tailored threshold for edge detection can be set locally for 

each image region, based on the detected intensity of the bed joints. Figure 5-2b shows 

the edge-detected output of a masonry image. 

The Hough transform is used to detect regions of straight lines in the edge detection mask. 

This finds straight lines in an image using a voting procedure to select the most likely 

candidates. To account for the local variation in the prominence of bed joints, the Hough 

transform is performed separately on the same image regions used for the edge detection. 

The straight lines detected are then filtered so that only those forming a part of a bed joint 

are retained. This is done by removing all straight lines which are not orientated 

horizontally relative to the masonry angle determined pre-processing the image. These 

detected straight horizontal lines are shown in green in Figure 5-2c. 

The detected horizontal straight lines are split into groups based on the bed joint they 

represent. This is done by grouping straight lines with similar vertical coordinates relative 

to the masonry angle. Grouping is achieved from the peaks in a kernel distribution fitted 

to the location and weighted by the length and confidence assigned to each of the straight 

lines, as illustrated in Figure 5-4. The bandwidth of the kernel distribution is set based on 

the scale of the brick size relative to the image determined in pre-processing. 

The horizontal spacing between bed joints is assumed to be constant in masonry due to 

the constant height of brick courses. The spacing between each detected bed joint and its 

neighbour is calculated, and a kernel distribution approximation is used to group bed 

joints with similar spacing. This process is comparable to that in Figure 5-4, with the 

weighting for each spacing being assigned by the confidence in the positioning of the bed 
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joints. The bed joints spacing is assumed to be the peak in the kernel distribution 

corresponding to the minimum spacing, except when the prominence of this peak is not 

of sufficient magnitude. This is because if bed joints are missed, then there will also be 

peaks representing larger spacing, and if a bed joint is falsely identified it is likely to 

cause a low prominence peak representing a small spacing. 

 

Figure 5-4: Fitting of kernel distribution to group straight lines into the bed joints 

they form 

If the spacing between one bed joint and both its neighbours is not correct, i.e., not 

approximately a multiple of the determined bed joint spacing, then that bed joint has been 

incorrectly identified and is removed, otherwise the bed joint is correctly positioned. At 

the edge of the image where the bed joint only has one neighbour, if the spacing between 

it and its next correctly positioned neighbour is not correct, it is incorrectly positioned 

and removed. Extra bed joints are added and distributed where the spacing between bed 

joints is greater than the determined bed joint spacing. 

Bed joints are then plotted by fitting a linear polynomial equation to the length-weighted 

positions of straight lines in each group. As bed joints run parallel to one another, the 

gradient of each bed joint is then weighted by those surrounding it using an exponential 

decay process. The exponential decay factor is assigned based on the confidence in the 

positioning of the bed joint, such that the gradient of a bed joint with low confidence will 

be based heavily on those surrounding it and less so on its own initially calculated 

gradient. Conversely for a bed joint with high confidence, the value of its initially 

calculated gradient will carry a large weighting in determining its final gradient. The 

plotted bed joints detected are shown in green in Figure 5-2d. 
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5.1.3 Head joint detection 

The image is divided into brick courses using the determined placement of the bed joints, 

and head joints are detected in each brick course separately. The process for head joint 

detection for each individual row is then comparable to that for bed joint detection. 

Straight lines detected by the Hough transform are filtered to only retain lines which are 

oriented perpendicular to the bed joints surrounding the brick course being processed. 

These vertical straight lines are shown in blue in in Figure 5-2c. The detected lines are 

grouped by approximating a kernel distribution to their location comparable to the process 

in Figure 5-4 for bed joints, though this time based on the horizontal coordinate relative 

to the masonry angle. 

Deviating from how the bed joint orientations were determined, head joints are assigned 

a gradient perpendicular to the surrounding bed joints. To determine the centroid of the 

head joint, attention is focused on the spacing of the grouped straight lines. If the 

horizontal coordinates within a group appear to fall into two subgroups, then this suggests 

that straight lines have been detected on both sides of the head joint, i.e., lines have been 

detected on the interface between brick and mortar on both the left-hand side and the 

right-hand side of the mortar. The two subgroups are detected by approximating a kernel 

distribution to the horizontal coordinates of the straight lines within each head joint group 

again, this time with a much smaller bandwidth. Where there are two peaks in the kernel 

distribution, lines have been detected on both sides of the head joint, and these head joints 

are classified as doubly defined (see Figure 5-5). In this case, the head joint centroid is 

the mean of the two peaks and its thickness can be determined from the distance between 

the peaks. If a single peak is detected in the kernel distribution, lines have only been 

detected on one side and the joint is classified as singly defined (see Figure 5-5). In this 

case, the head joint centroid is the mean of the centroid coordinates of the straight lines 

defining the head joint. If there are more than two peaks in the kernel distribution, then it 

is assumed that there is noise in the image and the head joint is deleted. 

 

Figure 5-5: Correction of singly defined head joints 
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The spacing between head joints is identified for each brick course individually in the 

same way as for bed joints. This spacing is used to identify whether each course is a 

header course (small face of the brick visible so a small spacing between head joints) or 

a stretcher course (large face of the brick visible so a large spacing between head joints). 

For this, courses are grouped based on their type, by approximating a kernel distribution 

to the head joint spacing for the different courses, weighted by their spacing confidence. 

By marking the points where the courses change type, the number of consecutive 

occurrences of each course type is recorded for all incidences across the image. For each 

type of course (header or stretcher), the most common sequential number of occurrences 

of the course type weighted by the confidence in the spacing of the individual courses in 

that incidence is recorded. These numbers of occurrences are used to build up the 

predicted bonding pattern between the different brick courses. If the measured spacing 

between head joints of a brick course with low confidence disagrees with the predicted 

bonding pattern, its spacing is changed to suit the predicted pattern. 

Where head joints are singly defined, their location is corrected so that they represent the 

middle of the joint, not one edge. This is done by shifting the horizontal coordinate of the 

head joint by half the average mortar thickness calculated from the doubly defined head 

joints. The direction to shift the head joint is determined by the space to the next doubly 

defined head joint in each direction. This is decided by whether the space is greater than 

or less than a whole number of multiples of the head joints spacing value. If the doubly 

defined head joints to the left and to the right of the singly defined head joint both agree 

with the direction it should be moved in, then it is moved in that direction. Otherwise, it 

is left in place. This process is illustrated in Figure 5-5. Next, all the head joints are added 

and removed based on the spacing between them, in the same way as for bed joints. 

Position corrected head joints are shown in red in Figure 5-2e.  

5.1.4 Detection confidence 

As part of the methodology, a measure of confidence for each plotted mortar joint is 

calculated from the confidence of each step required for determining its location. As 

discussed above, these confidences are used in determining whether each mortar joint has 

been plotted correctly. 

The different regions in the image are given a confidence weighting based on the number 

of different orientations of straight lines that were detected by the Hough transform. 

Where more orientations are detected, this suggests that not all the straight lines represent 
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mortar lines and confidence is reduced. The straight lines detected are assigned a 

confidence based on the confidence of the region of the image where they are located. 

The confidence of mortar lines is based on the confidence, the number, and the length of 

the straight lines they are plotted from. For bed joints, the confidence is also based on the 

spread of straight lines across the length of the mortar line as a greater spread means that 

the extrapolation of the line is less. For head joints, the confidence is also based on the 

confidence of the two bed joints surrounding the brick course, as misplacement of these 

would result in a much less robust detection of head joints for that brick course. 

Additionally, doubly defined head joints are marked with greater confidence than singly 

defined, as there is more certainty over their positioning. Where a mortar line is added 

based on spacing, its confidence is based on the surrounding mortar lines, but diminished 

as the evidence in the image suggesting its position has not been detected. The confidence 

of the spacing between mortar lines is defined by the confidence of the mortar lines. 

5.1.5 Testing the methodology 

Features of the methodology have been evaluated on the stitched image of a complete 

pier of Hertford Viaduct discussed in Chapter 4.4 and depicted in Figure 4-3. The 

masonry in this pier was 39 stretcher bricks in width and 84 brick courses in height. It is 

relatively clean, though shows some regions of vegetation occlusion as well as low 

contrast caused by staining of the brick work. The accuracy of the methodology was 

evaluated against a manually created mask depicting the locations of all the mortar lines, 

the creation of which is described in Chapter 4.6. 

Firstly, the effect of the resolution of the input image on the detection accuracy was 

determined. This was done by taking the test image and reducing its resolution. The 

methodology was tested on image resolutions of between 0.15 and 3.02 pixels per mm of 

masonry surface. The resulting accuracy is shown in Figure 5-6a. This demonstrates that 

the resolution of the input image has negligible effect on the accuracy of mortar line 

detection as the pre-processing stage detects the scale of the masonry relative to the image 

and parameters are adjusted to suit. Where the image resolution gets below about 0.5 

pixels per mm, the accuracy of detection diminishes. At this resolution, a 10mm mortar 

line would only be represented by 5 pixels making it much harder to distinguish. Prior to 

the detection accuracy diminishing, the average head joint position error is 1.25mm on 

the masonry surface. This is the average distance between where head joints have been 

detected and their actual location depicted on the manually annotated image mask. 



Automated image-based inspection of masonry arch bridges 

96  Daniel Brackenbury - January 2022 

The effect of the number of bricks per image on detection accuracy was also evaluated. 

This is thought to be significant as the methodology works by detecting the mortar line 

patterns, so having more bricks per image would give more opportunity to accurately 

determine the pattern. For this, the panorama image was used at a resolution of 1.5 pixels 

per mm and segmented into smaller images. The aspect ratio and masonry resolution of 

the segmented images were kept constant. The resulting accuracy is shown in Figure 5-6 

in b and c. As discussed in Chapter 4.4 and shown in Figure 4-4, the stitched panorama 

was found to have a slight inconsistency in one part where the stitched images did not 

quite align. This resulted in a slight nonlinearity of the imaged bed joints. Additional tests 

were conducted avoiding this region of the image and are shown in red. 

Figure 5-6b shows that as the number of stretcher bricks per image gets smaller, then the 

accuracy of bed joint detection improves. This improvement suggests that the error in bed 

joint detection is a result of assigning a straight line to mortar joints which are very long, 

and not necessarily perfectly straight across the whole pier length. As the number of 

stretcher bricks per images reduces further still, there is greater variation in the accuracy 

of detection. This suggests that the detection becomes more susceptible to noise. The 

optimal width of masonry imaged was about 15 stretcher bricks wide. Figure 5-6c shows 

that above about 17 stretcher bricks in width, there is insignificant effect of the width of 

masonry imaged on the accuracy of head joint detection. Below this however, the process 

was, in a few cases, susceptible to noise. 

a) b) c)

  

 

Figure 5-6: Mortar line accuracy: a) head joint placement varying image resolution, 

b) bed joint placement varying image width, c) head joint placement varying image 

width 
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The methodology has also been tested on the two other stitched viaduct pier images 

described in Chapter 4.4. Small portions of all three viaducts are shown in Figure 5-7. 

These images show significant variation in the image conditions. Figure 5-7a shows a 

case where pattern recognition is used to successfully identify all mortar joint locations 

despite occlusion by vegetation. Figure 5-7b demonstrates a difficult detection condition 

where the masonry is painted. There is therefore no colour distinction between the bricks 

and the mortar, meaning that the edge detection is utilising only textural information. 

Examining the edge detection output (Figure 5-7b, middle row), there are many places 

where it is not clear where the mortar lines should be positioned. However, the final joint 

detection is successful. This demonstrates the advantage of detecting the masonry pattern 

to enhance detection, while putting limits on extrapolating the pattern given it can change 

across larger structures. 

 

Figure 5-7: Closeup images from testing on different bridges showing input image, 

edge detection and output, for: a) Hertford Viaduct, b) Peterborough Viaduct, c) 

Chelmsford Viaduct 
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The precision and recall of the methodology have been assessed using these images of 

different viaduct piers. The masonry imaged in each case was 19 stretcher bricks in width 

and 17 brick courses in height. Precision, defined in Equation (5-1), measures the 

proportion of the points detected that really are mortar lines, and recall, defined in 

Equation (5-2), measures the proportion of mortar lines that have been identified. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(5-1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(5-2) 

For each image case the performance of the output was assessed for: edge detection, 

plotting of mortar lines without pattern detection and correction, and plotting of mortar 

lines with pattern detection and correction. These outputs are illustrated in Figure 5-2 in 

b, d, and e, respectively. The results in Table 5-1 show that when compared to edge 

detection alone, using the proposed methodology reduces the subjectivity of mortar joint 

detection. Where image conditions are respectable, as in Hertford viaduct, edge detection 

can quite accurately detect the location of mortar joints. However, where image 

conditions deteriorate, as in Peterborough viaduct, the edge detection output is not very 

accurate. By plotting mortar lines between the detected points and detecting their pattern, 

the detection accuracy is greatly improved. In all cases the proposed methodology 

improved the mortar joint detection performance of the edge detection used as its input. 

Table 5-1: Precision and recall of the methodology tested on different viaduct images 

Viaduct 

Edge detection 

Plotting mortar 

lines without 

pattern detection 

and correction 

Plotting mortar 

lines with pattern 

detection and 

correction 

Precision Recall Precision Recall Precision Recall 

Hertford 95.10% 80.43% 97.47% 95.93% 96.81% 96.36% 

Peterborough 68.53% 42.65% 79.74% 62.61% 87.17% 86.23% 

Chelmsford 79.88% 68.11% 98.89% 83.61% 95.01% 92.92% 
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As discussed in Chapter 2.4 in the literature review, Riveiro et al. (2016) have crafted a 

methodology for detecting joints in masonry based on a similar principle of using edge 

detection for initially detecting bed joints, followed by head joints in each brick course 

individually. However, this methodology was designed for detecting dry joints rather than 

mortar joints, which are likely to show a larger surface discontinuity. Additionally, this 

methodology was proposed for identifying individual bricks to suggest markers for a 

watershed segmentation operation rather than to detect the actual joints. It is therefore 

much less developed, particularly lacking any pattern detection features.  

The developed methodology is a hardcoded methodology, and as a result has manually 

set factors and thresholds to tune the methodology to detect and interpret features in 

masonry images for determining mortar joint positions. In Figure 5-7 and Table 5-1, the 

methodology has been tested on different bridges depicting a range of masonry 

conditions, suggesting to a degree that the methodology is capable of generalising. To 

improve the generalisability of the methodology across multiple different masonry 

conditions, these factors and thresholds have been tuned on a series of 12 masonry 

images, with a performance objective of maximising the F1 score of mortar joint 

detection. The F1 score is the harmonic mean of the precision and recall, defined in 

Equation (5-3). Therefore, the objective is to maximise both precision and recall. 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(5-3) 

The 12 masonry images have been selected from the dataset of annotated perspective 

corrected images of viaduct data described in Chapter 4.6, chosen for depicting a wide 

range of masonry conditions. 35 tuneable factors from the methodology have been 

identified, and these factors have been individually tested on each of the 12 masonry 

images, to establish its effect on the performance objective. As these factors have been 

tested individually, this is not a complete optimisation of the process, as the 

interdependence of the individual factors has not been examined. This is because from a 

research perspective, the effect of each factor on the performance has a greater interest 

than a complete optimisation. 

The output of varying these 35 factors individually on the 12 test images has been 

presented in Appendix 1. From these figures, it is apparent that some of the factors have 

an obvious trend across the mortar joint detection performance of all the test images, 

resulting in an optimum value. Secondly, some factors have insignificant effect on the 

mortar joint detection performance in the test images, showing constant scores across the 
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trialled factor values. Thirdly, some factors result in a different optimum for different test 

images, making setting an optimum problematic. An example of this third case is shown 

in Figure 5-8 which shows the performance output for one of the factors studied in 

Appendix 1. These un-tuneable factors limit the generalisability of such a hardcoded 

methodology, showing how tuning a factor to improve the performance on one image, 

could result in a decrease in performance where the masonry presents slightly differently. 

Machine learning, and more so deep learning approaches improve generalisability 

through having the potential for incorporating many more factors for determination, as 

well as optimising on many more image samples. Such approaches will now be explored 

for detecting mortar joints in arch bridge masonry. 

 

Figure 5-8: Effect of the standard deviation of the Gaussian filter used to smooth the 

image prior to edge detection on the F1 score of mortar joint detection in different 

test images 

5.2 Deep learning 

A Deep learning rather than a machine learning classifier has been used, as studies 

discussed in the literature review in Chapter 2.3 have shown them to be much more robust 

to image noise, which is prevalent in images of masonry arch bridges. Specifically, 

Convolutional Neural Network (CNN) based approaches have been applied, as these are 

best suited to image-based data. CNNs work by layering filters which are convolved 

across the image. These filters are each optimised to pick up different features in the 
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image. In the deterministic mortar joint detection method described in Chapter 5.1, just 

an edge detection filter was used meaning edge features were the basis of the 

methodology. However, with deep learning many different features can be used 

simultaneously as a basis for classification. In a CNN, the higher layers of the network 

extract more involved or more specific features from combinations of these lower layer 

features. 

5.2.1 Sliding window methodology 

Initially a sliding image window based deep learning mortar joint classification method 

has been trialled. For this, the masonry image is divided into many smaller samples, based 

on the sliding window principle. An overlap between adjacent window samples has been 

set as half the image window size, such that image windows with a size of 30 pixels will 

have an overlap of 15 pixels. This means that each part of the masonry image will appear 

in 4 separate image windows. An image window is defined as depicting a mortar region 

if at least 1/3 of the pixels in the central region of the image window are mortar pixels. 

The image window central region is defined such that all the pixels in the image will be 

in the central region of exactly one image window. 

Classification is performed using the GoogleNet Inception v3 architecture (Szegedy et 

al., 2016) as it is one of the best performing models against the ImageNet classification 

benchmark. Only much more computationally expensive models have achieved slightly 

better performance (Canziani et al., 2017). This publicly available model has been pre-

trained using the 1000 classes and 1.4 million images of the ImageNet dataset (Deng et 

al., 2009). In this case, the network has been used as a feature extractor, such that the 

lower layers which have been pretrained are retained, and only the top layer, the Softmax 

classifier has been randomly initialised and retrained on the mortar joint data, with the 

weightings of other layers fixed. Therefore, the features that the convolutional layers of 

the network have learned from pre-training on the ImageNet data have been transferred 

to this new domain. Training has been performed with a learning rate of 0.01 across 4000 

image window samples using the Tensorflow machine learning platform (Abadi et al., 

2016). 

This classification has been trained and tested on stitched images of the piers of 

Peterborough, Hertford and Chelmsford viaduct as described in Chapter 4.4, though the 

image data has been scaled such that it has a resolution of approximately 65 pixels per 

brick course. As the same dataset has been used for both training and testing there is no 
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test of generalisation of the classification, though the limited training samples used in 

comparison to the training dataset size means that the classifier will not have seen most 

of the data and is very unlikely to have overfitted to the data it was trained on. The method 

presented here is therefore more to test the concept rather than develop a finalised 

classifier. 

Different image window sizes of between 10 and 35 pixels have been used, to determine 

the effect of the amount of masonry imaged in each window on the ability to classify 

mortar regions. As the image resolution is approximately 65 pixels per brick course, each 

image window therefore depicts less than a whole brick of masonry for all the window 

sizes tested. The performance of the classifier for these different image window sizes and 

on the different viaduct piers tested are shown in Figure 5-9. The performance of 

classification improves as the image window size gets larger. 

 

 

Figure 5-9: Image window mortar joint classification performance for different 

image window sizes and viaduct piers 

However, performance is no better than the edge detection performance shown in Table 

5-1, though if anything it is slightly more consistent between the different bridge surfaces. 

Image window wise segmentation also means there is a lower granularity of classification 

when compared to edge detection which is pixel wise. This is especially prominent for 

the larger image window sizes as shown in Figure 5-10, so although they offer greater 

classification performance, their classification is less useful. The better classification 
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performance on the larger image window sizes is most likely due to there being more 

information in each image window to base a classification on. Even with the larger image 

window sizes, given these are still smaller than a single brick, classification is still based 

solely on the mortar joint texture and interface with no consideration of the mortar pattern. 

This is apparent in Figure 5-10 where some of the brick sections are coloured much lighter 

than others, suggesting confusion with mortar. This is especially prevalent in areas where 

there is yellow graffiti suggesting classification is to an extent being based on pixel 

colouration. 

a) 

b)

  

c) 

 

Figure 5-10: Image window mortar joint classification for image from Chelmsford 

viaduct pier with image window size of: a) 30 pixels and b) 10 pixels. c) depicts the 

tested image 
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5.2.2 Semantic methodology 

The disadvantages with an image window classification discussed above suggest a 

semantic, pixel-wise classification is more appropriate. This enables a higher granularity 

of mortar joint classification location as well as the ability to train and test on larger 

portions of images such that a classification can be based on more than just localised 

surface texture – for example, mortar pattern information can be considered. In a non-

semantic, image-window based CNN classifier, location information within the image is 

preserved throughout the convolution layers, and only lost at the fully connected layers 

at the end where the class classification is conducted. Semantic classifiers therefore have 

similar architectures to whole image CNN classifiers, both being based on convolution 

layers due to their suitability for image data, though with semantic classifiers the final 

fully connected layers are replaced, creating a fully convolutional structure. Typically, 

the first part of the network is the same as in a CNN for whole image classification. This 

uses convolution layers coupled with down-sampling layers to encode the image into a 

low-resolution feature map containing high-level data. With semantic classifiers, further 

convolution layers coupled with up-sampling layers are added, to then decode a high-

resolution semantic output.  

There are several different semantic segmentation algorithms employing different 

structures with similar principles. In this work, a Pyramid Scene Parsing Network 

(PSPNet) has been used. This was chosen as it is one of the most well recognised and 

highly cited image segmentation algorithms having won the ImageNet Scene Parsing 

Challenge 2016 (Zhao et al., 2017). The PSPNet is built around the Pyramid Pooling 

Module, outlined in Figure 5-11. This takes the feature map from the last convolutional 

layer of a CNN encoder and pools it at different sizes, each then being passed through a 

convolutional layer and up-sampled back to its original size. These feature maps are then 

concatenated with the original feature map which then is passed on to further 

convolutional layers for decoding into a semantic output. This means that information 

from the feature map is captured at various levels of coarseness, increasing the size of the 

receptive field of the output. This structure therefore makes a PSPNet ideal for learning 

the global information from images to aid in local level predictions as well as being able 

to capture objects of varied sizes in images. This means it should be able to learn the 

global mortar pattern as well as the local mortar textures. 
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Figure 5-11: Pyramid Pooling Module as used in the PSPNet architecture (Zhao et 

al., 2017) 

The PSPNet used has been implemented with a 50 layer deep ResNet (He et al., 2016) 

CNN as its encoder, and has been pre-trained on the ADE20K dataset (Zhou et al., 2017). 

This is a dataset of 20,000 scene centric images annotated at a pixel level with 150 

categories. These categories include surfaces, such as roads and grass as well as objects 

such as buildings and people. The model has then been fine-tuned on brick and mortar 

data. Unlike with a classification-based CNN, to fine-tune a semantic, fully convolutional 

CNN only one training stage is needed. This is because the fully connected layers that are 

replaced when fine-tuning a classification-based CNN which necessitate the additional 

tuning stage are removed from a semantic CNN. The fine-tuning process used is described 

as follows. 

The data used for training and testing are the first and second datasets, respectively, 

described in Chapter 4.6. In the bridge location map in Figure 4-2, this is data from those 

bridges with blue markers (predominantly viaducts) for training images, and data from 

those with red markers for testing. Therefore, data for training and testing has been 

acquired from separate bridges, to evaluate the generalisability of the method. Just the 

pixel-wise mortar joint location mask and the base image data have been used, with the 

defect location masks discarded. The images in both datasets have been segmented into 

square image patches with a size of 500 pixels. As the images in the datasets have a 

resolution of 155 pixels per brick course, this means that several brick courses are 

included in one patch as shown in Figure 5-12. 
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Figure 5-12: Example of image patch size used for training and testing 

The image patches have been extracted from the dataset images such that there is a 50% 

overlap between each image patch. This means that each pixel in a dataset image will 

appear in 4 separate image patches. This is done because it is noted by Yang et al. (2018) 

that with a semantic segmentation approach, the accuracy of crack segmentation closer to 

the image borders declines, so by overlapping patches it means that no pixel is only tested 

at the edge of an image patch. This has resulted in a training set of 18,480 images, of 

which 1,614 have been used for validation, and a testing set of 27,123 images. Fine-tuning 

training has been performed using the Keras machine learning framework (Chollet and 

Others, 2015). A Root Mean Squared Propagation (RMSProp) optimizer (Hinton, 2012) 

with a learning rate of 0.0001 across 20 epochs of the training data has been used, with 

all weights across the network made trainable. 

5.2.2.1 Results 

As discussed, the developed semantic classifier has been tested on the second dataset 

described in Chapter 4.6, i.e., those bridges with red markers in Figure 4-2. This dataset 

contains complete 2D textures for all the surfaces of 3 different underline bridges, 

developed through photogrammetry and UV mapping. A section of one of these bridges 

is shown in Figure 5-13 where the output of the semantic segmentation is shown in b. It 

is apparent that the semantic segmentation has effectively ignored image noise in the form 

of, shadowing, light patches, block fill painting, thin line painting, steps in the brick 

courses, efflorescence and staining, gouges, and thick dirt deposits. In almost all 

locations, mortar joint locations have been accurately classified except in a patch towards 

the bottom of the image where the surface texture is covered in thick dirt deposits, which 

has resulted in confusion. However, the mortar joints are almost impossible to manually 

discern from the image in this area. This therefore shows the potential benefit in applying 

a pattern recognition procedure to a semantic output. This has been done in Figure 
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5-13(c), where the erroneous mortar joint region from the semantic output has been 

corrected. For this, the same methodology as used before in Chapter 5.1 is applied. Here 

however, the semantic methodology segments the whole width of the mortar joints rather 

than both edges as before with edge detection. Therefore, the semantic output has been 

used directly to detect the position of mortar joints using a kernel distribution as in Figure 

5-4. 

 

   
a)    b)    c) 

Figure 5-13: Semantic segmentation output for one section of Smythes Farm Bridge 

(SBR 12) depicting part of the arch barrel and pier showing: a) input image, b) 

semantic segmentation output, c) deterministic mortar joint detection applied to 

semantic segmentation output 

Above it has been discussed that the image patches into which the surface has been 

divided for testing overlap with each other by half their width, such that each pixel of the 

image surface is depicted in four different image patches. As the semantic classification 

of a pixel is slightly different based on where that pixel is in the tested image, this results 

in different potential outputs when stitching the tested patches back into their original 

texture. These different outputs are depicted in Figure 5-14. Firstly, Figure 5-14a depicts 

the minimum mortar scenario. This is where a pixel is only marked as a mortar pixel if 

all the overlapping patches agree that it should be a mortar pixel. Inversely, Figure 5-14b 

depicts the maximum mortar scenario, where a pixel is marked as a mortar pixel if any of 
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the pixels in the overlapping patches suggest it should be. Comparing these two images, 

the patch of incorrectly identified mortar is much smaller in the minimum mortar scenario 

in Figure 5-14a, though it is still present. Conversely, there are a few mortar joints that 

are missing in the minimum image Figure 5-14a, which are present in the maximum 

image Figure 5-14b. This suggests that although the minimum mortar strategy is better at 

avoiding false positive results, it also results in more false negative results. As discussed 

above, it has been suggested that the accuracy of a semantic classifier performs worse 

towards its edges. This is logical as the feature map is down-sampled and then up-sampled 

from the centre during classification. Therefore, a third patch stitching method is to 

discard the data towards the edges of each image patch, such that there is no overlap 

between the retained data in overlapping image patches. Therefore, the whole surface is 

represented through just the central regions of the individual image patches. This patch 

stitching method is depicted in Figure 5-14c. This results in a smaller false positive mortar 

detection patch than that for the maximum strategy in Figure 5-14b, yet it still correctly 

identifies the few missing mortar joints from the minimum strategy in Figure 5-14a. 

  
a)    b)    c) 

Figure 5-14: Semantic segmentation output method comparison for one section of 

Smythes Farm Bridge (SBR 12) depicting part of the arch barrel and pier showing: 

a) minimum mortar, b) maximum mortar, c) centre mortar 
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The performance of the different patch stitching methods has been compared in Figure 

5-15. This is for the performance across all the surfaces on the three bridges in the testing 

dataset. As expected, from the previous qualitative analysis, the precision value is highest 

for the minimum mortar stitching method, where mortar regions are only marked if all 

overlapping patches determine a region to be mortar. Conversely, recall values are highest 

in the maximum mortar stitching method. The centre region mortar stitching method has 

the best balance between recall and precision scores, and hence the best F1 score. 

Additionally, for the same set of images, the performance of the raw output of simple 

edge detection based on its ability to detect mortar joints has been calculated. This is the 

result of the edge mask only - before the deterministic method is performed. As edge 

detection only highlights the edges, i.e., the transitions between brick and mortar, these 

performance scores have been calculated through assuming 2 edge pixels should be 

present per mortar joint (both edges), whereas the semantic segmentation performance 

calculation assumed mortar pixels across the whole mortar thickness. As can be seen in 

Figure 5-15, the performance of edge detection was significantly worse than that of the 

deep learning semantic segmentation. 

 

Figure 5-15: Performance metrics for different semantic prediction strategies 

This worse performance suggests that the performance of the output of the deterministic 

methodology applied to the deep learning semantic segmentation should be better than 

when applied to an edge detection mask. This performance improvement is outlined in 

Figure 5-16. The performance of the deterministic mortar joint detection methodology 

using the edge detection mask input (i.e., Figure 5-16 d & h), is considerably worse than 

with all the other inputs in Figure 5-16, which are all deep learning semantic 

segmentation. This demonstrates that although the deterministic methodology can 
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improve the performance of mortar joint detection from its edge detection input, it 

benefits from having a more accurate input. 

Also apparent in Figure 5-16, comparing e, f and g to a, b and c, there is a decrease in 

performance when the pattern correction methodology is applied as a part of the 

deterministic methodology compared to when the deterministic methodology is applied 

without correcting the pattern. The pattern correction methodology measures the spacing 

between detected mortar joints and adjusts the spacing of mortar joints which do not 

follow the expected pattern. However, as shown in Figure 5-16 i, j and k, the decrease in 

performance associated with applying the pattern correction methodology is reversed 

when only applying the methodology to vertical mortar joints. 

 

Figure 5-16: Performance metrics for different deterministic detection strategies 

The probable cause of this is therefore irregular bedding planes in the images. For 

applying the deterministic methodology, the generated surface textures have been divided 

into images approximately 15 stretcher bricks wide. This was the ideal input image width 

determined in Chapter 5.1.5, giving the best balance between forcing a linear bedding 

plane mortar joint onto a potentially nonlinear alignment and ensuring there is enough 

data in the image to accurately position the mortar joint. However, this was determined 

from an image of a viaduct pier where the masonry was typically regular. In this case, all 

surfaces of the bridges have been tested, and therefore there are areas with non-regular 
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masonry, such as on the spandrel walls where a course of bricks generally runs along the 

circumference of the arch barrel. Additionally, there are areas where there is some 

distortion in the images from the UV unwrapping process due to an error in the calculated 

geometry. 

Figure 5-17 breaks down the performance metrics into the performance of individual 

images. Here, each individual image is denoted by a grey line, and the mean is denoted 

by a black line. It can be seen, that in general, the performance improves with applying 

the deterministic methodology to the semantic segmentation output, and further improves 

with the vertical pattern recognition. One of the images following this trend is highlighted 

by an orange line, and this image can be seen in Figure 5-13. There are also a few images 

which do not follow such a trend, and two of these are highlighted by green and purple 

lines. These images can be seen in Figure 5-18 and Figure 5-19, respectively. Both images 

are from the wing-walls of Norton Road Bridge (SBR8) where the geometry of the 

structure has two dimensions of curvature, curving from being parallel to the spandrel 

wall to being parallel to the road, and curving from being sloped towards being vertical. 

Therefore, it is mathematically impossible to map the texture onto a 2D plane without 

either stretching or splitting. As curvature in the vertical sense is only a small amount, the 

texture has been fitted onto a plane though that has resulted in slight stretching and 

therefore nonlinear bedding joints, as is apparent from the images in Figure 5-18 and 

Figure 5-19. This has resulted in a misfitting of mortar joints using the deterministic 

method. 

 



Automated image-based inspection of masonry arch bridges 

112  Daniel Brackenbury - January 2022 

 

Figure 5-17: Performance metrics for individual images 
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a)    b)    c) 

Figure 5-18: Output for image denoted by a green marking in Figure 5-17 showing: 

a) input image, b) centre mortar semantic segmentation output, c) deterministic 

mortar joint detection applied to semantic segmentation output 

  

a)    b)    c) 

Figure 5-19: Output for image denoted by a purple marking in Figure 5-17 showing: 

a) input image, b) centre mortar semantic segmentation output, c) deterministic 

mortar joint detection applied to semantic segmentation output 

 



Automated image-based inspection of masonry arch bridges 

114  Daniel Brackenbury - January 2022 

Although the deterministic methodology has been shown to improve the output of the 

semantic deep learning classifier, situations like this show the disadvantage in such a 

deterministic methodology, and how its generalisability will never match a data driven 

approach. The semantic deep learning classifier was shown to greatly outperform the edge 

detection mask for categorising mortar joints, and as such improved mortar joint detection 

performance would be best achieved through improving such a deep learning classifier, 

without using a deterministic methodology. 

This would be achievable through a larger training data set, from different bridges, 

increasing the exposure of the classifier to more masonry surfaces. Additionally, different 

patch sizes could be experimented with, as well as different semantic models to improve 

the training of the classifier such that it learns to better recognise the mortar joint pattern 

as well as the local image textures at mortar joints. 

5.3 Chapter summary 

The focus of this chapter has been detecting mortar joints in images of masonry, as it was 

found that none of the existing mortar joint detection techniques in the literature have 

been developed to cope with images with a level of noise and distractions that typically 

exist on masonry arch bridges. Therefore, approaches to detect mortar in masonry images 

have been explored where the mortar has been covered, for example by paint, dirt, or 

vegetation. The chapter has outlined two different approaches to mortar joint detection, a 

deterministic approach, and a machine learning approach. 

The deterministic methodology for detecting patterns in mortar joints was able to 

accurately determine mortar line locations in images with a resolution varying from 0.15 

to 3.02 pixels per mm. The methodology was tested on images framing varied sizes of 

masonry wall and was found to perform most accurately for an image size of 

approximately 15 stretcher bricks wide. This gave the best balance between over-fitting 

a mortar line across too many bricks and the potential impact of noise in smaller images. 

The methodology was also tested successfully on masonry images from other bridges 

which showed differences in the appearance of the masonry. The deterministic 

methodology uses an edge detector to give an indication of mortar joint locations. Despite 

the edge detector giving a noisy output, the methodology is still able to determine 

locations of mortar joints. 

Deep learning techniques for detecting mortar joints have then been explored. Firstly, an 

image window approach was explored, and this showed that as the sample window size 
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was increased, such that more masonry was imaged, the performance of the classification 

improved. However, this also resulted in an increase in the coarseness of classification, 

meaning such a classification is less useful. It was suggested that in the smaller image 

window sizes, classification was just based on localised texture, whereas a larger window 

size meant classification could be based upon interfaces and mortar pattern information. 

This learning was applied by using a semantic deep learning classifier where image 

patches several brick courses in size were trained and tested, meaning local texture, local 

interfaces and global pattern information of mortar joints could be learnt. The output 

showed excellent performance, showing the classifier was able to accurately map mortar 

joints across almost the entirety of the noisy masonry surfaces tested. This was also shown 

to significantly outperform the edge detection output for detecting mortar joints, and 

therefore a trial was attempted where this semantically segmented mask was used as an 

input to the developed deterministic methodology. This trial was based on the assumption 

that even though this semantic classifier is more sophisticated and robust than edge 

detection, it still can mistake the positioning of mortar lines where the image conditions 

deteriorate. It has been shown that the deterministic pattern recognition methodology is 

able to enhance the output of a sophisticated deep learning based semantic mortar joint 

detector by enhancing detection in noisy regions of images using the pattern determined 

in clearer regions. 

However, there are still situations where the deterministic methodology fails to accurately 

detect mortar where the mortar in the image is irregular. This therefore suggests that, 

although the deep learning based semantic mortar joint detector already works quite well, 

the best way to improve mortar joint detection further is through improving the training 

of a deep learning semantic classifier. A route to achieve this is through framing larger 

areas of masonry in the training data. This could aid the learning of the global mortar 

pattern, so the classifier is relying less on the potentially noisy local texture for 

classification. This way, the classifier would still be able to overlook instances of distorted 

mortar patterns that are the pitfall of the deterministic methodology. 
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6 EFFECT OF MORTAR JOINTS 

ON THE PERFORMANCE OF 

DEFECT CLASSIFICATION 

Masonry surfaces are inherently noisy due to the mortar joints. In the literature review in 

Chapter 2.4 it was reported that previous studies have found that mortar joints are often 

falsely detected as defects, and previous researchers have suggested that segmenting 

mortar joints from masonry surfaces could lead to a more accurate detection. For masonry 

arch bridges, which are often old and remote, other distractors are also often present such 

as dirt, paint, and vegetation. These distractors further compound the problem when 

compared to clean masonry. The effect of mortar joints on the defect classification 

performance is therefore quantified in this chapter.  

Figure 6-2 shows the results of a defect detection technique that has been developed as 

part of this work. This is based on a simple Canny edge detection methodology, which is 

far more rudimentary and less capable of differentiating defects from noise than deep 

learning methods. It is obvious in the edge detection output shown in Figure 6-2a, that it 

would be impossible to detect defects through edge detection directly, as the mortar joints 

are far more prominent than any defects present. Therefore, the developed edge detection 

based defect detection technique initially detects and masks mortar joints in the image, 

using the edge detection based deterministic methodology described in Chapter 5.1. Edge 

detection is then applied to the masked image, such that all mortar joint interfaces have 

been removed from the edge detection output. 

Further refinement of the edge detection output is then performed to reduce the noise that 

is still detected. This refinement has been broken down in Figure 6-1. In Figure 6-1b, a 

Hough transform is used to detect small line segments in the edge detection mask. These 

line segments are grouped iteratively with those adjacent to themselves (as in Figure 6-1c) 

and each group is then grouped with other groups of line segments using a search area 

based on the predominant orientation of the lines in each group (as in Figure 6-1d). This 

grouping is performed because defects are typically either focused in a single localised 
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region, for example spalling, or have a long and thin structure, for example cracking. The 

output of grouping is shown in Figure 6-1e, upon which a threshold is used, such that 

only those groups of lines containing a certain number of points are retained, therefore 

removing the smaller groups that are most likely to be noise. 

 

Figure 6-1: Edge detection based defect detection methodology: a) mortar joints 

masked, b) straight lines detected in a Sobel output, c) detected lines grouped with 

surrounding lines, d) search regions for line groupings based on orientation of lines 

in group, e) straight line groups after iterative grouping 

The resulting defect map for the same image is shown in Figure 6-2b. In three locations, 

highlighted in green, defects were identified successfully. In four other locations, 

anomalies were correctly identified, but were not due to defects (or damage) of the bridge. 

In one of these locations, writing on the brick surface was accurately detected. The other 

three location all involve instances where mortar lines were not fully masked and 

therefore were detected. These masking errors were caused by either a thicker than normal 

mortar joint or an irregular brick spacing pattern. 

In this case filtering out mortar lines from masonry images has meant that the noise in the 

edge detection output has been reduced such that defects are discernible and could be 

automatically separated, which would not otherwise have been possible. However, there 

are more robust classifiers than edge detection, as demonstrated in Chapter 5 for mortar 

joint detection, which are far better able to differentiate between mortar interfaces and 

other edge-like defects. The focus of this chapter is testing one such deep learning based 

classifier, to determine the effect mortar joints have on its performance. 
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a)                             

b)  

Figure 6-2: Edge detection based defect detection using a mortar line mask: a) base 

edge detection output, b) defect detection output having masked mortar regions and 

filtered results 

6.1  Deep learning based defect detection 

6.1.1 Methodology 

This work uses a classification approach based on image windows. Images generated in 

the datasets developed in Chapter 4 have been segmented into smaller image patches, 

each 100 pixels in size, using a sliding window technique with a stride of 25 pixels 

between each image window. The 100-pixel image size, relative to the 155 pixel brick 

height in the images in the dataset, ensures that some image windows contain purely brick 

regions, while others contain a mixture of brick and mortar regions. Each image window 

is assigned a class based on the annotations of the pixels it contains. The central third of 

the image window is used to assign the class – if any pixels are annotated as defective in 

this region, then the image window is classified as such. Example image window patches 

for the different defect classes are shown in Figure 6-3. In this work, all the different 
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defective classes have been grouped into a single defective class, such that a binary 

classification is performed, with the image windows being classified either as clean or 

defective. 

 

Figure 6-3: Example image window patches for different defect classes 

The generated image windows are used to train and test a classifiers ability to learn the 

different defect classes. As before, a CNN based classifier has been used due to the 

suitability of the architecture for image classification tasks. As in Chapter 5.2.1, the 

GoogleNet Inception v3 architecture (Szegedy et al., 2016) is used. This architecture is 

shown in Figure 6-4. With this architecture, several convolution layers (depicted in 

yellow) are performed in parallel as part of each inception block. This enables the network 

to utilise convolutional filters of multiple sizes on the same level, such that both more 

globally, and more locally distributed features can be realised. This therefore means that 

defects of varied sizes and prominence within each image window can be trained to be 

recognised. 
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Figure 6-4: GoogleNet Inception v3 architecture (Szegedy et al., 2016) 

Transfer learning has been used to pre-train the model as this has been shown to increase 

the generalisability of the trained model, as well as potentially reducing the size of the 

training set required to adequately train the model. The model has been pre-trained on the 

ImageNet dataset (Deng et al., 2009) which contains 1.4 million individual images 

divided into 1000 classes. In ImageNet, these classes are generally object-based classes 

such as ‘building’ or ‘ball’ and so are quite distant from the ‘defect’ / ‘clean’ classes being 

retrained to. Therefore, the features learnt during pre-training may not be so useful for 

classifying on this new domain. This is particularly the case at the higher layers closer to 

the output which filter more specific features of images. 

Due to this, transfer learning has been performed using a fine-tuning approach, whereby 

a greater proportion of the network is retrained than in the feature extraction transfer 

learning approach used in Chapter 5.2.1, where only the top classification layer was 

retrained to the new classes. This involves a two-step process. Firstly, the final 

classification layer of the network (the red Softmax layer in Figure 6-4) is removed and 

replaced with a new randomly initialised classification layer for the new classification 

classes. This is then trained with the rest of the weights in the network fixed. This is akin 

to the training performed in Chapter 5.2.1. Secondly, other weights in the deeper layers 

of the network are unfixed and made trainable, and the network is then trained again to 

fine-tune the weights for these layers, using a much smaller learning rate than previously 

employed, such that the weights are fine-tuned from their previous optimisation. Training 

is performed in this two-step process, such that the weights of the deeper layers of the 

network are not destroyed by the randomly initialised top classification layer for the new 

classification classes.  

Training has been performed using the Keras machine learning framework (Chollet and 

Others, 2015), with the Tensorflow backend (Abadi et al., 2016). The Inception v3 model 

uses batch normalisation after convolution layers to stabilise the learning process in deep 
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models. At the time this work was conducted, the default Keras implementation of batch 

normalisation with transfer learning meant that a significant performance degradation was 

noticed between the testing and training phases, especially in cases where the original 

dataset is considerably different to the retrained one. This is due to the batch normalisation 

statistics of layers that were frozen during training being implemented differently during 

testing from training, using statistics of the training batches during training and the 

original dataset during testing. For this work, a custom implementation of Keras, which 

corrects this implementation of batch normalisation of frozen layers in training, has 

therefore been used (Vryniotis, 2018). 

For training the network, a hyperparameter search has been performed, to maximise 

accuracy on validation data. The results of this search have been presented in Appendix 

2. Concluding from this search, the hyperparameters used are as follows. During top layer 

training, a fully connected dense layer size of 1024 neurons and a Softmax layer with 2 

classes are trained using a Root Mean Squared Propagation (RMSProp) optimiser with a 

learning rate of 0.001, trained across 50 epochs of the training data with a batch size of 

50 images. During fine-tuning training, zero layers are frozen, so all are trainable. These 

are trained with a Stochastic Gradient Descent (SGD) optimiser with a learning rate of 

0.0001, 0.9 momentum and no decay, across 50 epochs of the training data with a batch 

size of 50 images. Image augmentation in the form of shearing, rescaling, and flipping is 

used in training. 

6.1.1.1 Defect detection strategies 

To determine the effect of mortar joints on defect detection accuracy, four different 

classification strategies have been tested. These are summarised in Figure 6-5. From left 

to right, the first strategy does not use any mortar joint information at all. In this strategy, 

only the classes of ‘defect’ and ‘clean’ surfaces are trained, with image window patches 

showing either mortar regions or brick regions. The second strategy defines separate 

defect classes for mortar and brick regions, so that there are two defect classes for each 

defect type, one for the defect occurring in mortar and one for the defect occurring in 

brick. The third strategy completely separates the mortar and brick regions and uses a 

separately trained classifier for image patches in each region. The fourth and final strategy 

goes one step further by blacking out the non-mortar, or non-brick regions in each mortar 

or brick image window, respectively. This is done through zero padding the image, 

replacing all the blacked-out pixel values with zeros, such that they do not contribute to 

the classification. 



Automated image-based inspection of masonry arch bridges 

122  Daniel Brackenbury - January 2022 

In both the third and fourth classification strategies, the different sets of classified images 

are merged so that the image windows being classified are the same for all three detection 

methodologies. Additionally, for all the defect classification methodologies, only the 

image window patches that show fully brick regions or are centred on mortar regions are 

examined. Therefore, those image window patches that partly contain both brick and 

mortar regions are removed. As there is an overlap between image window patches, the 

whole of the masonry surface is still included in at least one examined patch. This step 

has been taken to ensure consistency of the data being examined by the four classification 

methodologies. 

 

Figure 6-5: Different classification strategies for investigating the effect of mortar 

joints on the accuracy of defect detection 

As stated above, this work uses annotated images from the datasets created in Chapter 4. 

The training dataset comprises the data of bridges which are primarily viaducts denoted 

by blue markers in the map in Figure 4-2. From this dataset, 94 key areas of the bridges 

where defects are prevalent have been focused on, and these images were manually 

orthogonalized to the brick surface. Nevertheless, undamaged masonry surfaces are much 

more prevalent in the dataset than defective surfaces, so to achieve a balanced dataset 

between the classes for training, image windows are randomly discarded. The resulting 

training dataset for each class consists of 24,000 image windows, including 5000 used for 

validation. 
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The testing dataset comprises the data of the three bridges denoted by red markers in the 

map in Figure 4-2. For this dataset, photogrammetry and UV mapping have been used to 

create orthogonalized image textures for the entire bridge surface, as discussed in Chapter 

4.5. Therefore, the training and testing data has been taken from completely separate sets 

of bridges, testing the ability of the different methodologies to generalise. The resulting 

testing dataset consists of 1,846,601 image windows. The class distribution of these 

image windows is the same as that seen on the bridge surfaces, to test the performance of 

the different classifiers in conditions that would be seen in practice. As a result, there is 

an imbalance between the defective and clean classes, with 323,537 defective and 

1,523,064 clean image windows. 

Due to the orthogonalization process, only flat areas of bridges, such as piers and 

spandrels have been included in the dataset used for training, whereas the testing dataset 

includes all surfaces of the bridge, including the curved arch barrel. This is because UV 

mapping enables the unravelling of an arch barrel without scaling parts of the image, as 

demonstrated in Chapter 4.5.1.2. However, this does mean that the methods are tested on 

parts of bridges that were not included in the training set, where surfaces and defects may 

appear different. Therefore, an additional test has been performed, in which the different 

methodologies were trained on a subset of 85 of the images in the previous training dataset 

and tested on the remaining 9 images of the data. For this test, the training and testing 

data therefore contained images from the same bridges, though separate parts of the 

bridges, still testing generalisability. In this case, 23,500 image windows were used for 

training for each class, of which 4,500 image windows were used for validation. The 

methodologies were then tested on 64,404 image windows, of which 7,460 were defective 

and 56,944 were clean. 

6.1.1.2 Metrics used to compare different classifier performances 

The confusion matrix (Table 6-1) summarises the output of the classification, comparing 

the predicted classification of image windows against their true classifications. The two 

correct classification possibilities are true positive and true negative, shown in green in 

the top left and bottom right corners, respectively. A true positive classification represents 

an image window which both contains a defect and has been predicted to be defective by 

the classifier. Conversely, a true negative classification represents an image window 

which both contains no defects and is predicted to have no defects by the classifier. The 

two incorrect classification possibilities are false negative and false positive, shown in 

red in the top right and bottom left corners, respectively. A false negative classification 



Automated image-based inspection of masonry arch bridges 

124  Daniel Brackenbury - January 2022 

represents an image window which contains a defect but has been predicted to have no 

defects by the classifier, and a false positive classification represents an image window 

which contains no defects but is predicted to contain a defect by the classifier. Therefore, 

a good classifier will have high numbers of correctly classified windows, and few 

incorrectly classified windows. 

The different performance metrics in Table 6-2 summarise the data in the confusion 

matrix - the different metrics prioritise different attributes. The calculated metrics are as 

follows: 

Specificity: The true negative rate, i.e., the proportion of non-defective image windows 

that are classified as non-defective. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(6-1) 

Sensitivity/Recall: The true positive rate, i.e., the proportion of defective image windows 

that are classified as defective. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(6-2) 

Precision: The proportion of the image windows that were classified as defective that in 

fact were defective. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(6-3) 

F1 score: The harmonic mean of precision and recall. 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(6-4) 

Balanced accuracy: The average of specificity and sensitivity. A measure of accuracy 

for imbalanced datasets. 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

2
(6-5) 

The different metrics of balanced accuracy and F1 score both function as measures of the 

accuracy of the classifier. Both have been included, as the F1 score focuses on the positive 

class, i.e., the windows that are classified as defective, and is not affected by the number 

of true negatives, i.e., the number of non-defective image windows that have been 
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correctly classified as such. Focusing on the positive class is important, as the ability to 

accurately discern defects is key to a classifier. However, because the dataset is 

imbalanced, with far more non-defective (negative class) image windows than defective, 

the metric of balanced accuracy is also important to establish a classifiers performance 

since it focuses on the ability to detect both the positive (defective) and negative (non-

defective) classes. 

All the above metrics do not score how confident the classifier is on a particular decision. 

For instance, a classification with a confidence of 0.6 would be judged the same as one 

with a confidence of 0.9. As a result, in Table 6-2 the Brier score has also been calculated, 

and receiver operator characteristic (ROC) curves have been plotted in Figure 6-7 to 

Figure 6-13.  

The Brier score is a proper scoring rule equal to the mean square error between the 

predicted and true probabilities. It is calculated as: 

𝐵𝑟𝑖𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 =
1

N
∑(𝑓𝑡 − 𝑜𝑡)2

𝑁

𝑡=1

(6-6) 

where ft is the predicted probability and ot is the actual probability of image window t 

being defective, and N is the number of image windows in the dataset. The actual 

probability of an image window containing a defect is 1 where an image window contains 

a defect, and 0 when it does not. The Brier score, in this formulation, is between 1 (the 

worst score achievable) and 0 (the best score achievable). 

An ROC curve plots the true positive rate (sensitivity) on the y-axis against the false 

positive rate (1 - specificity) on the x-axis, at different threshold values. The true positive 

rate represents the probability of detecting a defective window, and the false positive rate 

represents the probability of misclassifying a non-defective window as defective. 

Therefore, increasing the classification threshold would cause a decrease in both the true 

positive rate and the false positive rate, as fewer defective windows would be classified, 

and fewer non-defective windows would be misclassified. A truly random classifier 

would therefore give a point along a diagonal line from (0,0) to (1,1). A perfect classifier 

would give the point (0,1), where true positive rate equals 1, and false positive rate equals 

0. Therefore, the better performing a classifier, the closer to the (0,1) point its curve 

approaches, and the larger the area under its curve. 
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6.1.2 Results 

6.1.2.1 Results from testing on dataset of three independent bridges 

Firstly, the results from testing on the dataset of the three complete bridges denoted by 

red markers in the map in Figure 4-2 are examined.  

Figure 6-6 visually shows the output of the classifier on different bridge surfaces within 

this dataset. For simplicity, only the output of the classifier using classification strategy 1 

(no mortar and brick separation) is shown as the different classification strategies visually 

give a similar output as demonstrated in Figure 6-15. The two masonry surfaces depicted 

in Figure 6-6 show vastly differing image conditions. 

The left images show a section of the SBR12 bridge spandrel wall where the masonry is 

in direct sunlight such that some mortar joints exhibit shadowing. This is not too extreme 

as the mortar channel is shallow. There is also a shadow interface at the top of the image 

caused by a step in the masonry at the base of the parapet wall. The classifier was mostly 

able to ignore these shadows to give a good agreement with the ground truth 

classifications. 

The right images show a section of the SBR8 bridge arch barrel. On this bridge the arch 

barrel suffers from thick soot like deposits making interpretation difficult. The image 

depicts a region of the arch barrel where there is a major diagonal fracture as well as 

several smaller defective regions. The classifier has been able to detect the major fracture 

in its entirety, as well as most of the smaller defects. It has also mostly avoided falsely 

classifying non-defective surfaces where the soot markings have the potential to look 

defective. 

Next, the quantitative classification performance across the whole dataset for the different 

classification strategies is examined. This is presented in the confusion matrix in Table 

6-1, with performance metrics summarised in Table 6-2. These tables present the outputs 

for both the four different classification strategies (labelled 1 to 4) summarised in Figure 

6-5 above, as well as seven different data processing strategies (labelled a to g) that will 

be discussed in due course. These classification strategies and data processing strategies 

are also summarised in the footnotes of Table 6-1 and Table 6-2.  
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a)    

b)    

c)    

Figure 6-6: Closeup images showing output of automated defect classifier for 

classification strategy 1, where no mortar and brick separation is performed, on 

bridge surface SBR12 spandrel wall (left) and SBR8 arch barrel (right): a) raw 

image, b) ground truth, c) automated defect classification predicted with 80% 

certainty 
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Table 6-1: Confusion matrix comparing the performance of the different 

classification strategies for defect detection in masonry 

    Classification strategies 

    1 2 3 4 1 2 3 4 

    Predictions 

    Defective Clean 

D
a

ta
 s

tr
a

te
g

ie
s 

a 

A
ct

u
a

l 

D
e

fe
ct

iv
e

 

208,809 197,261 193,671 200,892 114,728 126,276 129,866 122,645 

b 128,058 117,131 113,949 123,941 108,144 119,071 122,253 112,261 

c 42,795 43,822 40,887 45,517 24,542 23,515 26,450 21,820 

d 166,014 153,439 152,784 155,375 90,186 10,2761 103,416 100,825 

e 240,522 227,986 223,106 236,257 83,015 95,551 100,431 87,280 

f 154,382 142,245 136,878 150,560 81,820 93,957 99,324 85,642 

g 120,784 117,562 117,563 121,345 11,302 14,524 14,523 10,741 

a 

C
le

a
n

 

205,693 227,997 179,869 252,832 1,317,371 1,295,067 1,343,195 1,270,232 

b 205,693 227,997 179,869 252,832 1,317,371 1,295,067 1,343,195 1,270,232 

c 37,612 55,542 35,532 49,205 507,154 489,224 509,234 495,561 

d 168,081 172,455 144,337 203,627 81,217 805,843 833,961 774,671 

e 205,693 227,997 179,869 252,832 1,317,371 1,295,067 1,343,195 1,270,232 

f 205,693 227,997 179,869 252,832 1,317,371 1,295,067 1,343,195 1,270,232 

g 205,693 227,997 179,869 252,832 1,317,371 1,295,067 1,343,195 1,270,232 

Classification strategies: (1) no mortar & brick separation, (2) mortar & brick labelled as separate categories, (3) mortar 

& brick regions processed separately, (4) mortar & brick regions processed separately and blacked-out. 

Data strategies: (a) Raw data, (b) excluding vegetation regions, (c) only brick regions, (d) only mortar regions, (e) assume 

defect is identified if more than 50% is identified, (f) excluding vegetation regions and assume defect is identified if more 

than 50% is identified, (g) assume defect is identified if more than 50% is identified and defects less than 1/3 header brick 

in size (7500px) excluded. 
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Table 6-2: Performance metrics comparing the performance of the different 

classification strategies for defect detection in masonry 

Performance 

metric 

Data 

strategies 

Classification strategies 

1 2 3 4 

Specificity 

a 0.865 0.850 0.882 0.834 

b 0.865 0.850 0.882 0.834 

c 0.931 0.898 0.935 0.910 

d 0.828 0.824 0.853 0.792 

e 0.865 0.850 0.882 0.834 

f 0.865 0.850 0.882 0.834 

g 0.865 0.850 0.882 0.834 

Sensitivity/recall 

a 0.645 0.610 0.599 0.621 

b 0.542 0.496 0.482 0.525 

c 0.636 0.651 0.607 0.676 

d 0.648 0.599 0.596 0.607 

e 0.743 0.705 0.690 0.730 

f 0.654 0.602 0.580 0.637 

g 0.914 0.890 0.890 0.919 

Precision 

a 0.504 0.464 0.519 0.443 

b 0.384 0.339 0.388 0.329 

c 0.532 0.441 0.535 0.481 

d 0.497 0.471 0.514 0.433 

e 0.539 0.500 0.554 0.483 

f 0.429 0.384 0.432 0.373 

g 0.370 0.340 0.385 0.324 

F1 score 

a 0.566 0.527 0.556 0.517 

b 0.449 0.403 0.430 0.404 

c 0.579 0.526 0.569 0.562 

d 0.563 0.527 0.552 0.505 

e 0.625 0.585 0.614 0.582 

f 0.518 0.469 0.495 0.471 

g 0.527 0.492 0.547 0.479 

Balanced 

accuracy 

a 0.755 0.730 0.740 0.728 

b 0.704 0.673 0.682 0.679 

c 0.783 0.774 0.771 0.793 

d 0.738 0.711 0.724 0.699 

e 0.804 0.778 0.786 0.782 

f 0.759 0.726 0.731 0.736 

g 0.890 0.870 0.886 0.876 

Brier score 

a 0.131 0.150 0.133 0.158 

b 0.135 0.154 0.136 0.161 

c 0.079 0.102 0.082 0.092 

d 0.157 0.173 0.158 0.190 

e 0.116 0.134 0.117 0.140 

f 0.122 0.140 0.123 0.146 

g 0.099 0.112 0.091 0.122 

Classification strategies: (1) no mortar & brick separation, (2) mortar & brick labelled as separate categories, (3) mortar 

& brick regions processed separately, (4) mortar & brick regions processed separately and blacked-out. 

Data strategies: (a) Raw data, (b) excluding vegetation regions, (c) only brick regions, (d) only mortar regions, (e) assume 

defect is identified if more than 50% is identified, (f) excluding vegetation regions and assume defect is identified if more 

than 50% is identified, (g) assume defect is identified if more than 50% is identified and defects less than 1/3 header brick 

in size (7500px) excluded,  
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The data processing strategies will now be explained. Firstly, in data strategy ‘a’ the raw 

data is examined using the confusion matrix in Table 6-1 and the performance metrics in 

Table 6-2. The greatest number of true positive detections are detected using classification 

strategy 1 (with no mortar & brick separation). As a result, classification strategy 1 also 

gives the best sensitivity/recall performance, as the greatest number of defective image 

windows are classified as such. Conversely, classification strategy 3 (where mortar and 

brick regions are processed separately) gives the greatest number of true negative 

detections, where non-defective regions are correctly classified as such. This results in 

the best specificity and precision performance. When these metrics are combined in the 

F1 score and balanced accuracy, classification strategy 1 and classification strategy 3 both 

show the best performance. This result is mirrored with the Brier score, and the raw data 

ROC curve in Figure 6-7 denoted by the solid lines, where strategies 1 and 3 perform 

best. 

 

Figure 6-7: ROC plot comparing different strategies for defect detection in masonry 

In Figure 6-7, different threshold levels giving rise to the respective true/false positive 

rates have also been plotted. It can be seen that at the 0.5 threshold, that is used in Table 
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6-1 and Table 6-2, classification strategy 3 (mortar and brick regions processed 

separately) has its threshold biased towards a lower true positive and false positive rate. 

That corroborates with the high specificity and precision performance found with this 

classifier described above, demonstrating the utility of the ROC curve compared to 

performance at just a single threshold. 

For the F1 score, balanced accuracy, and Brier score, as well as on the ROC curve in 

Figure 6-7, classification strategy 4 (processing mortar and brick separately and blacking 

out respective contrasting region) has performed worst. This is possibly a result of the 

processing strategy employed. While classes are assigned to an image window based on 

the presence of a defect in the image window, that defect could be in a brick region for 

an image window focused on a mortar region, or vice versa. In the case of classification 

strategy 4, the defect would be blacked out. However, for comparative purposes, all 4 

strategies have used the same ground truth data. To assess the impact of this, classification 

strategy 4 was re-analysed with its ground truth data based only on defects present in the 

regions that were not blacked-out. The results are shown in Figure 6-8. It is apparent that 

this results in an increase in performance for classification strategy 4 such that it performs 

similarly to the other strategies. 

 

Figure 6-8: ROC plot comparing different strategies for defect detection in masonry 

with blacked-out classifications based on visible regions 
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Figure 6-9 and Figure 6-10 show the spread of performance across the different images 

tested. In Figure 6-9, this spread is across the different bridges tested, while in Figure 

6-10 the spread is across the different component parts of those bridges, each being 

depicted by a separate image. From Figure 6-9, the performance of bridge SBR8 is better 

than that of SBR4, with SBR12 performing the worst. Referring to Chapter 4.2, SBR12 

suffers from a layer of mud on the abutments from farm traffic, and SBR4 features a large 

proportion of surfaces that are painted, either through block painting or graffiti, with large 

areas of green painting partially mistaken for vegetation. SBR12 also heavily suffers from 

efflorescence and thick surface deposits on the arch barrel, which are classes of defect 

that have not been trained. All three bridges suffer from some images captured with 

intense sunlight resulting in shadowing, though this shadowing potentially effects a 

greater proportion of surfaces on SBR4 and SBR8 relative to SBR12. One effect of this 

is a shadow on the mortar interface where the mortar joint is recessed, which can easily 

be mistaken for a crack. From Figure 6-10, it is apparent that the spread in performance 

across the individual tested images is greater than the spread in performance across the 

classification strategies tested. This suggests that the conditions captured in the image 

have a bigger impact on classification performance than the classification strategy being 

tested. 

 

Figure 6-9: ROC plot comparing different strategies across individual bridges tested 
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Figure 6-10: ROC plot comparing different strategies across the individual images 

tested 

In vegetation regions, the vegetation mostly covers the mortar joint interface, and 

therefore different detection strategies to minimise adverse effects caused by the interface 

are likely to have insignificant effect. As a result, in Figure 6-11 the vegetation regions 

have been removed from the analysis. Referring to the raw data plot in this figure, denoted 

by solid lines, it is apparent that with vegetation regions removed, similar conclusions 

can be drawn as to the relative performance of the different classification strategies tested, 

though all strategies perform worse. This suggests that vegetation regions are generally 

predicted better than other defect types. This is also true for the confusion matrix in Table 

6-1, and the performance metrics in Table 6-2 where data strategy ‘b’ shows the results 

with vegetation regions removed. Here the relative ranking of the different classification 

strategies remains the same as that without removing vegetation regions, for both the 

number of true positive and true negative classifications in the confusion matrix, and the 

different performance metrics. 
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Figure 6-11: ROC plot with vegetation regions removed for different masonry 

detection strategies 

The results examined so far all suggest that either the classification strategy 1, where all 

images are processed together with no mortar/brick separation performs best, or that there 

is not much difference in the performance of the different classification strategies, with 

features in the input image having far more of an effect on classification performance. 

This would lead to the conclusion that mortar joints do not influence the performance of 

classification significantly for this new classifier. In Figure 6-12 the performance of the 

mortar regions and the brick regions has been examined separately to test this. For all 

classification strategies, the classification performance in the brick only regions is 

superior to that in the mortar only regions. Higher performance in brick regions than 

mortar regions is also seen in Table 6-1 and Table 6-2, when comparing data strategies 

‘c’ and ‘d’. 

Additionally, with classification strategy 4, the blacked-out processing of mortar and 

brick regions separately, the relative performance in brick regions is better than that in 

mortar regions. This is to be expected because of the intrinsic blacking out of defects in 

image windows described above and demonstrated in Figure 6-8. A mortar image window 

is much more likely to contain brick pixels, and therefore a blacked-out defect, than a 
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brick image window is to contain mortar pixels. This is because of the narrow nature of 

mortar relative to brick, meaning mortar image windows face far more blacking-out.  

 

Figure 6-12: ROC plot comparing mortar and brick regions separately for different 

masonry detection strategies 

If a defect has been mostly, but not fully identified, then an inspector processing the 

defects present on a bridge would find the utility of such a tool almost equal to as when a 

defect is fully identified. Additionally, as the defects have been manually annotated in the 

ground truth data, there is potential for incorrect classification of ground truth data. This 

would mean that not all of each ground truth defect is in fact a defect. As a result, a test 

has been conducted to augment the raw data from the output of each classifier such that 

if half of an individual isolated defect has been classified correctly, then the entirety of 

the isolated defect will be marked as classified correctly. This is fundamentally equivalent 

to saying that the defect was correctly detected, even if the precise extent, or size, of the 

defect was not correct. This has been done by calculating the median of the predicted 

probability of being defective for all the windows in each individual defect. Then the 
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prediction of all image windows within the defect with a prediction below the median is 

updated to the median. In this way, the ROC curve, which plots performance at different 

threshold levels, will recognise that the whole defect has been detected once the threshold 

level is above the median predicted value for the defect, i.e., the threshold value at which 

half of the defect would have been classified originally. The effect of this processing 

strategy is shown in Table 6-1 and Table 6-2 for data strategy ‘e’ for all image windows 

and ‘f’ for windows excluding vegetation regions. Here an improvement in the 

recognition of defective image windows is apparent, though as expected no change in the 

recognition of clean image windows. This translates to an increase in all performance 

metrics except specificity which focuses on the clean image window recognition. The 

relative performance of the different classification strategies remains unchanged. This 

behaviour is also examined in ROC plots in Figure 6-7 and Figure 6-11. These show an 

increase in performance across all classification strategies, though the relative 

performance remains unchanged. 

A final data augmentation strategy identifies the effect of the size of defect on 

classification. This analysis has been performed as it is noted that larger defects are more 

likely to affect the structural performance of a bridge. Firstly, the effect of thresholding 

defect size is investigated: only defects greater than one third of the area of a header brick 

(7500px) in size are retained. The effect of this on the ground truth data for one wing-

wall is shown by comparing Figure 6-14b and Figure 6-14c. Most of the smaller defects 

are removed, and only the large, significant ones remain. Performance data for 

classification with this strategy is recorded in Table 6-1 and Table 6-2 as data strategy 

‘g’. As in data strategy ‘e’, all image windows comprising an individual defect are 

assumed identified if over half of them have been. Comparing data strategies ‘e’ and ‘g’ 

shows that removing these smaller defects results in fewer false negative predictions, but 

also fewer true positive predictions. This results in an improvement in sensitivity/recall 

for all classification strategies, though particularly for classification strategy 4 (mortar 

and brick are processed separately with contradicting regions blacked-out), which shows 

the best performance of all the classifiers. This suggests that this strategy is better suited 

to detecting the larger defects, potentially as parts of the smaller defects are blacked-out. 

However, lower precision and specificity for classification strategy 4 means that its 

overall performance scores are not the best of all the classifiers. All classifiers show a 

large fall in precision, and this is because the data is more imbalanced once smaller 

defective regions have been removed, meaning that false positive predictions have a much 
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larger effect on the precision score as there are fewer true positive possibilities. Figure 

6-13a shows the ROC curve when smaller defects are removed: performance improves 

for all classification strategies, with all strategies showing a similar performance.  

Additional analysis has been performed as it is recognised that certain classes of defect 

are naturally smaller than others, and as such have a greater structural significance at a 

smaller size. Therefore, each defect class has been processed independently to remove 

defects with an area smaller than a proportion of the class mean, either ¼ or ¾. This means 

that for defects that tend to be smaller such as cracking, a smaller threshold is used so that 

smaller defects are retained. Where defects smaller than ¼ of the mean are removed, this 

equates to removing defects with area smaller than 11,689px for vegetation, 632px for 

spalling, 455px for mortar loss and 367px for cracking. Where defects smaller than ¾ the 

mean are removed, this equates to removing defects with area smaller than 35,068px for 

vegetation, 1897px for spalling, 1366px for mortar loss and 1102px for cracking. For 

reference, a header brick has an area of approximately 22,500px. 

The effect of this processing strategy on the ground truth data for one wing-wall is shown 

in Figure 6-14d and Figure 6-14e, where more of the smaller, non-vegetation defects are 

retained than before in Figure 6-14c. Performance is shown in the ROC curves in Figure 

6-13b and Figure 6-13c. For all classification strategies, lower performance is shown than 

Figure 6-13a, where more vegetation regions are included, but slightly better performance 

is shown than the dashed lines in Figure 6-7, where the only difference in the data strategy 

is that the smaller defects are not removed. This therefore suggests performance is better 

on larger defects. 

For the section of wing-wall imaged in Figure 6-14a, and its ground truth in Figure 6-14e, 

the output of the different defect classification strategies are compared in Figure 6-15. 

Image windows predicted to be defective with a probability over 80% are highlighted in 

yellow. All the classification strategies show a similar output, which is to be expected 

considering all the performance data has suggested a similar performance. It is apparent 

that the major defects present in the image have been accurately identified, though less 

so for the smaller defects. Additionally, there are several seemingly random false positive 

predictions in all four strategies, though this appears more severe in Figure 6-15a, with 

classification strategy 1, where all image windows are processed together with no 

mortar/brick separation. This noise is particularly apparent in the lower ½ of the image, 

where looking at the raw image the wall has been painted with a patchy/peeling coating 

of black paint. 
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a) b) 

 

c) 

 

Figure 6-13: ROC plot for different masonry detection strategies assuming defect is 

detected if over half of its area is detected, showing: a) defects smaller than ⅓ header 

brick in size removed, b) defects smaller than ¼ the mean defect size for each class 

removed, c) defects smaller than ¾ the mean defect size for each class removed 
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a) 

 

b) c) 

 

d) e) 

 

Figure 6-14: Ground truth data for a wing-wall section of bridge SBR4 showing: a) 

raw image, b) all defects, c) defects smaller than ⅓ header brick in size removed, d) 

defects smaller than ¼ the mean defect size for each class removed, e) defects smaller 

than ¾ the mean defect size for each class removed 



Automated image-based inspection of masonry arch bridges 

140  Daniel Brackenbury - January 2022 

 

a) b) 

 

c) d) 

 

Figure 6-15: Image windows predicted with 80% certainty to contain a defect for a 

wing-wall section of bridge SBR4, with only defects greater than ¾ the mean size for 

each class retained showing the different defect detection strategies: a) all images 

with no separation, b) brick/mortar sub-categories, c) mortar/brick processed 

separately, d) blacked-out mortar/brick processed separately 

6.1.2.2 Results from testing on dataset of viaduct images not used for training 

As described above in Chapter 6.1.1.1, a second test has been performed whereby the 

different classification methodologies were trained on a subset of 85 of the images in the 

training dataset, with the remaining 9 images used for testing, as it was recognised that 

the previous dataset used for testing contains bridge components not seen in the training 

dataset. In this case, the classifiers have therefore been tested on images from the same 

bridges, though the testing images were of separate parts of the bridges than the training 

images. 

Figure 6-16 shows the output of the different classification strategies for one image tested. 

Image windows predicted to be defective with a probability over 80% are highlighted in 
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yellow. All four classification strategies give a similar output, all very comparable to the 

ground truth data in Figure 6-16b. In comparison to the output in Figure 6-15, there are 

fewer background false positive predictions, potentially due to the examined surface 

having less noise and distractors. 

a) b) 

 

c) d) 

 

e) f) 

 

Figure 6-16: Image windows predicted with 80% certainty to contain a defect for an 

image from the viaduct test dataset showing the different defect detection strategies: 

a) raw image, b) ground truth, c) all images with no separation, d) brick/mortar sub-

categories, e) mortar/brick processed separately, f) blacked-out mortar/brick 

processed separately 
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Performance results are presented in Table 6-3 and Table 6-4, in the same format as for 

the previous results, with both a confusion matrix and derived performance metrics. 

Looking at data strategy ‘a’, the raw output of the different classifiers, it is clear from the 

confusion matrix that all the classification strategies except classification strategy 4 

perform very similarly. Recall that for classification strategy 4 the brick areas of image 

windows are blacked-out if the image window is mostly in a mortar region and vice versa. 

The cause of the lower performance for classification strategy 4 has been examined 

above, caused by the prevention of potential defects from being classified due to being 

blacked-out. The performance metrics in Table 6-4, and the ROC curve in Figure 6-17a, 

also show the same conclusions regarding the relative performance of the classification 

strategies. 

Table 6-3: Confusion matrix comparing the performance of the different 

classification strategies for defect detection in masonry with testing dataset from 

viaduct images not used for training 

    Classification strategies 

    1 2 3 4 1 2 3 4 

    Predictions 

    Defective Clean 
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6930 6892 6950 6632 530 568 510 828 

b 774 786 788 766 69 57 55 77 

c 6156 6106 6162 5866 461 511 455 751 

a 

C
le

a
n

 3714 3043 4045 4712 53,230 53,901 52,899 52,232 

b 827 735 969 821 20,039 20,131 19,897 20,045 

c 2887 2308 3076 3891 33,191 33,770 33,002 32,187 
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Table 6-4: Performance metrics comparing the performance of the different 

classification strategies for defect detection in masonry with testing dataset from 

viaduct images not used for training 

Performance 

metric 

Data 

strategies 

Classification strategies 

1 2 3 4 

Specificity 
a 0.935 0.947 0.929 0.917 

b 0.960 0.965 0.954 0.961 

c 0.920 0.936 0.915 0.892 

Sensitivity/recall 
a 0.929 0.924 0.932 0.889 

b 0.918 0.932 0.935 0.909 

c 0.930 0.923 0.931 0.887 

Precision 
a 0.651 0.694 0.632 0.587 

b 0.483 0.517 0.449 0.483 

c 0.681 0.726 0.667 0.601 

F1 score 
a 0.766 0.792 0.753 0.705 

b 0.633 0.665 0.606 0.631 

c 0.786 0.813 0.777 0.717 

Balanced 

accuracy 

a 0.932 0.935 0.930 0.903 

b 0.939 0.949 0.944 0.935 

c 0.925 0.929 0.923 0.889 

Brier score 
a 0.052 0.046 0.056 0.069 

b 0.030 0.029 0.036 0.032 

c 0.063 0.055 0.067 0.088 

Classification strategies: (1) no mortar & brick separation, (2) mortar & brick labelled as separate categories, (3) mortar 

& brick regions processed separately, (4) mortar & brick regions processed separately and blacked-out. 

Data strategies: (a) Raw data, (b) only brick regions, (c) only mortar regions 

Comparing the performance metrics in Table 6-4 with those in Table 6-2, and the 

corresponding ROC curves in Figure 6-17a and Figure 6-7, the performance of the 

classifiers on this dataset is far superior to the performance on the dataset of the 3 

independent bridges tested previously. This could be due to the cleaner masonry present 

in this dataset. The previous dataset included the arch barrels of the bridges, which have 

more noisy surface textures than other parts of a bridge both due to the way they are 

constructed, and due to the increased exposure to elements such as wetness leading to 

more surface deposits. As the previous dataset included complete bridges, it also included 

masonry surfaces where the presence of defects is less clear cut, whereas the viaduct 

images dataset used here includes selected images based on their depiction of defects. 

Additionally, comparing bridges SBR4, SBR8 and SBR12 to the viaduct bridges in 

Chapter 4.2, the distractors present are greater and more frequent. Finally, the higher 

performance could be due to the masonry colours and construction detail being similar to 
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that seen in training, given that the test data and the training data are from the same 

bridges. This would suggest that including even more bridges with an even larger 

variation of masonry texture in the training dataset could further improve generalisation. 

Like before, the output of the classifiers has been filtered such that the performance of 

the brick and mortar regions can be compared individually. These results are shown in 

data strategies ‘b’ and ‘c’ respectively in Table 6-3 and Table 6-4, and the ROC curves 

in Figure 6-17b. The ROC curves show the performance of all classifiers to be better in 

the brick regions than the mortar regions, though by a smaller margin than before. This 

smaller margin is a result of better performance in both regions, suggesting that with 

cleaner masonry conditions, there is less of a marked difference between performance in 

mortar and brick regions. 
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a)  

b)  

Figure 6-17: ROC plot comparing different masonry detection strategies with 

testing dataset from viaduct images not used for training: a) raw data, b) mortar 

and brick regions separately 
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6.1.2.3 Class Activation Mapping 

Class Activation mapping (CAM) is a technique that can be used to localise the regions 

of an image that most strongly cause a given class to be predicted. It therefore gives a 

partially semantic classification output despite the original classifier being trained on non-

semantic, image window labelled data. This means the location of features within the 

image is inferred rather than learned by the classifier. CAM can also be used to help 

understand what information a classifier is using to differentiate between classes, making 

the classifier less of a ‘black box’. It is for this reason that CAM is used in this work, to 

establish whether the classifier is learning features of mortar joints as defects. 

CAM takes the output from the last convolutional layer of the network, the layer before 

the localisation data is lost in the fully connected layers used for classification. A heatmap 

of class activation is then derived from the gradients of the investigated class into this 

layer and the output feature map of the layer. In this way, the importance of each channel 

in the output feature map to the defect class being investigated is determined (Selvaraju 

et al., 2016). 

Figure 6-18 presents different CAM outputs for the defective class on images in the 

viaducts testing dataset analysed in Chapter 6.1.2.2. In this dataset, it was observed that 

the performance of classification in mortar joint regions was worse than those in brick 

regions, though to a smaller extent than in the three independent bridges dataset analysed 

in Chapter 6.1.2.1. Figure 6-18 shows such mortar regions of the tested images. In Figure 

6-18a, where a correct, non-defective prediction was given, there is little activation giving 

weight to a defective classification. However, in the 3rd and 4th images of Figure 6-18a, a 

minor activation is focused on the mortar joint, specifically the dark interface between 

the mortar and the brick. The CAM images depicting image patches which were 

incorrectly predicted as defective in Figure 6-18c all show that the cause of the incorrect 

defective classification is regions on the mortar joint. Specifically, the cause of incorrect 

classification is either dark shadowy regions (1st, 2nd, and 5th images), or much thinner 

more crack-like features on the mortar/brick interface (3rd and 4th images). In Figure 

6-18b, patches that have been correctly classified as defective are shown. In this case, 

some of the defects are purely in the mortar regions while others span across from the 

mortar regions into the brick regions. In all cases, the defect location has been correctly 

identified. This is despite the mortar/brick interface also showing some shadowy regions 

like those causing incorrect false positive classifications in Figure 6-18c. This therefore 
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suggests that the strength of the activation and hence classification for shadowy regions 

on the mortar interface is less than that caused by actual defects on the surface. 

a)      

b)      

c)      

Figure 6-18: CAM output for the defective class on different image patches depicting 

mortar joints where image patches are: a) correctly predicted clean, b) correctly 

predicted defective, c) incorrectly predicted defective  

6.2 Chapter Summary 

This chapter has sought to answer the following key research question of this thesis: how 

do mortar joints on inherently noisy masonry surfaces affect the ability of a state of the 

art deep learning classifier to classify defects. 

Initially, an edge detection based defect detection algorithm was tested. It was shown that 

with edge detection alone, it would be impossible to detect defects in masonry, as the 

mortar interface causes a much greater response to the filter. Therefore, the developed 

algorithm focused on filtering out and masking the mortar regions and then detecting 

defects in only the brick regions. The potential defects detected in the unmasked brick 

regions were then filtered through grouping and then thresholding the smaller detections. 

This gave an output which highlighted all inconsistencies in the masonry, including 

defects, writing, and irregular mortar joints. This algorithm was tested on a relatively 

simple masonry wall with comparatively little noise. 

A deep learning algorithm was therefore investigated to deal with more noisy, less 

uniform masonry surfaces. A GoogleNet Inception v3 classifier was trained and tested 
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for classifying image windows generated from the bridge and viaduct datasets created in 

Chapter 4. Deep learning is much more powerful than edge detection, and therefore it was 

investigated if the same conclusion would hold, i.e., that the mortar joints make defect 

detection more difficult. To test this previous conclusion, four different defect detection 

strategies were used: 1) all image windows classified together with no mortar and brick 

separation, 2) mortar and brick regions labelled as separate categories within one 

classification, 3) mortar and brick regions processed and classified separately, and 4) 

mortar and brick regions processed and classified separately with the contrasting regions 

blacked-out. It was found that all four classification strategies had a similar performance, 

with the performance spread between the different bridges and images tested being far 

greater than that between the different classifiers. 

Different data strategies were then investigated, including assuming a defect is identified 

if half of its area has been identified, removing vegetation regions as they occlude mortar 

joints, and removing smaller defects to investigate the detection of larger and more 

structurally significant defects. It was found that these data strategies altered the 

performance of all classification strategies, though the relative performance between the 

different strategies remained similar.  

These findings therefore suggest that a powerful deep learning classifier can learn the 

features of the mortar and brick interface in masonry so as not to confuse them with 

defects. However, an additional data strategy was also performed, separating the 

classification results of those image windows containing only brick from those containing 

mortar, and it was found that the classification performance of mortar regions was worse 

than brick. This therefore suggests that the mortar regions are the more challenging 

locations for the classifier to detect defects. 

The different classification strategies have also been tested on a second dataset, this one 

more like the training data, with less surface noise on the masonry than the previous 

dataset. It was found that the performance of all classifiers was better on this dataset, 

though they all again showed a similar performance. Testing on the mortar and brick 

regions separately showed a better performance on the brick regions, though by a much 

smaller margin than on the noisier dataset. This suggests that on less noisy masonry 

images, more like the training data, classifying defects in mortar regions compared to 

brick regions is comparatively less of a challenge than with the noisier dataset. 
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Class activation mapping was used to determine the areas of each image window that the 

classifier most strongly associates with the defect class. Image windows which were 

correctly classified as non-defective generally showed little response, though for those 

that did show a more pronounced response, this was around dark regions on the 

mortar/brick interface. In image windows incorrectly classified as defective, the response 

heatmap suggested that classification was often caused by the dark shadows and narrow 

crack like features at the mortar/brick interface. However, in image windows that were 

correctly classified as defective, the heatmap was able to highlight the defect, despite 

shadows appearing on the interface, suggesting the actual defect caused a far greater 

response in the classifier. 

These findings confirm that when capturing masonry surfaces for classification, it is 

important to ensure that the masonry surface is well lit with neutral, direct lighting to 

avoid shadows on the mortar/brick interface where the mortar is recessed, as these 

shadows have the potential to look like defects. 
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7 EXPERIMENTAL EVALUATION 

OF AUTOMATED DEFECT 

DETECTION METHODOLOGY 

IN COMPARISON TO MANUAL 

INSPECTION 

7.1 Manual inspection dataset generation 

A benchmark for the performance of an automated classifier is to examine its performance 

against that of the current defect identification methodology for masonry arch bridges, 

namely manual inspection. The existing manual inspection procedures as well as their 

known subjectivity are discussed in detail in the literature review, in Chapters 2.1.2 and 

2.1.3. It is already assumed that an automated defect classification methodology alongside 

an automated data capture methodology would result in safety and logistical performance 

benefits compared to manual inspection. This is due to avoiding the need for an inspection 

engineer to closely examine structures from height, often alongside and potentially 

causing the temporary closure of major infrastructure corridors. Therefore, this work 

solely focuses on the detectability of defects using manual inspection compared to an 

automated procedure. 

A dataset of the defects identified during manual inspection has been created based on 

the dataset created in Chapter 4 for the following bridges: Spring Road Bridge (SBR 4), 
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Norton Road Bridge (SBR 8), and Smythes Farm Bridge (SBR 12). These are the bridges 

which were used to test the automated classifiers in Chapter 6.1.2.1. The manual 

inspection data for these bridges has been annotated in a similar fashion to the annotation 

of the ground truth data in Chapter 4.6. The data of defects identified during manual 

inspection has been attained from the most recent inspection report for each bridge, 

respectively. These reports are all from detailed inspections, the highest standard of 

inspection that is routinely performed on bridges, performed by three different bridge 

inspectors. The inspections were undertaken in December 2016 for bridge SBR4, January 

2018 for bridge SBR8 and February 2016 for SBR12. As the image data from which the 

ground truth and automated detection data is derived was captured in June 2019, there is 

a gap of up to 3.5 years between the inspection and ground truth datasets. However, this 

is thought not to be problematic since, aside from vegetation, the other defect categories 

being sought tend to be long lived, so are unlikely to have changed in the interim. Indeed, 

additional graffiti has been applied to some of the bridge surfaces between the two data 

capture dates, resulting in harder defect detection conditions in the automated detection 

data than was present during manual inspection. 

While recording the defects identified through manual inspection it was observed that for 

some bridges, despite the presence of a defect being mentioned in the report, its precise 

location on the structure was often omitted, as were images qualifying the defect. This is 

detailed for each bridge in the list below. Additionally, defects often were not individually 

identified. For example, terminology such as ‘numerous vertical fractures open to 6mm’ 

was used for describing a particular element of the bridge. In these cases, the benefit of 

doubt has been given, and all defects in the ground truth data matching the description 

have been marked as detected by manual inspection.  

By bridge, the breakdown of the documentation quality in the inspection reports is: 

• Spring Road Bridge (SBR 4): Only 55% of the defects identified in the report have 

been photographed. Additionally, there is no plan drawing of the bridge, or its 

element detailing, where each of the identified defects are located. 

• Norton Road Bridge (SBR 8): Much more in depth detailing of defects than either 

of the other two bridges. However, only 38% of the defects identified in the report 

have been closely photographed, though a few others are visible, though not 

discernible in overview photographs of the structure. 
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• Smythes Farm Bridge (SBR 12): Well documented report with all the identified 

defects imaged, and defect locations annotated on a plan of the bridge. 

7.2 Detection accuracy evaluation 

It was observed in Chapter 6.1.2, that all the different defect detection strategies tested 

yielded a similar performance. Therefore, no prior separation of mortar joints is 

performed here. The classifier trained for classification strategy 1 detailed in Figure 6-5 

in Chapter 6.1.1.1, with no mortar and brick separation, is used and tested here. 

As detailed in Chapter 6.1 this is a classifier based on the GoogleNet Inception v3 

architecture that has been trained to classify image windows of masonry into defective 

and non-defective categories. This has been trained with transfer learning using data from 

the dataset described in Chapter 4.6 comprising images from mostly viaducts. 

The test dataset is the same as the dataset used in Chapter 6.1.2.1, though in this case all 

image windows are included (before image windows which depicted half mortar, and half 

brick were excluded). The resulting testing dataset now consists of 2,708,015 image 

windows. The class distribution of these image windows is the same as that of the bridge 

surfaces, as this is testing the classification across the whole bridge, as would be done in 

practice. There therefore is a large imbalance between the defective and clean classes, 

with 438,106 defective and 2,269,909 clean image windows. 

7.2.1 Results 

As in Chapter 6.1.2, the performance of the classifiers has been presented in a confusion 

matrix in Table 7-1, with performance metrics in Table 7-2, and using ROC curves in 

Figure 7-1 to Figure 7-4. Explanation of the calculation and meaning of the different 

performance metrics used is given in Chapter 6.1.1.2. Here, it is worth reiterating that all 

the metrics other than the Brier score and the ROC curve do not account for the confidence 

of a particular classification. They rather score a binary classification based on a 

prediction being above or below a threshold of 0.5.  

Firstly, data strategy ‘a’ which represents the raw data is examined. In the confusion 

matrix, the automated classification strategy yields far more true positive window 

classifications when compared to manual classification. This means that many more 

defect instances have been classified, and fewer have been missed. Conversely, many 

more false-positive window classifications have been made by the automated 

classification strategy compared to manual. This is inherent to the methodology, as no 
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false-positive window classifications were made by manual classification, as the manual 

inspection mask was defined relative to the ground truth mask. Regardless, manual 

inspection classification is likely to contain few false positives as an inspection engineer 

is only likely to record defects with high certainty. 

Table 7-1: Confusion matrix comparing the performance of the developed 

automated classifier with that of manual inspection on 3 masonry arch bridges 

    Classification strategies 

    
Automated 

classification 
Manual 

inspection 
Automated 

classification 
Manual 

inspection 

    Predictions 

    Defective Clean 
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 280,904 134,898 157,202 303,208 

b 162,567 27,618 147,228 282,177 

c 323,533 143,020 114,573 295,086 

d 197,001 32,961 112,794 276,834 

a 

C
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278,816 0 1,991,093 2,269,909 

b 278,816 0 1,991,093 2,269,909 

c 278,816 0 1,991,093 2,269,909 

d 278,816 0 1,991,093 2,269,909 

Data strategies: (a) Raw data, (b) excluding vegetation regions, (c) assume defect is identified if more than 50% is 

identified, (d) excluding vegetation regions and assume defect is identified if more than 50% is identified. 

This results in performance metrics showing perfect precision and specificity for manual 

inspection, as would be expected. Precision is much lower for automated classification 

due to many false positive classifications of defects. Specificity is not affected as much 

as precision due to the class imbalance – there are many more negative (non-defective) 

cases, and the majority of these were correctly classified. Sensitivity and recall on the 

other hand show much better performance for the automated classification methodology 

relative to manual inspection, due to the greater proportion of defective instances 

detected. This results in better balanced accuracy and F1 scores for automated 

classification. However, the Brier score, also a measure of overall performance which 

additionally accounts for the relative certainty of predictions, shows similar performance 

between manual and automated methodologies, with the manual performance slightly 
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superior. Given most image windows in the tested dataset show no defects, and the image 

windows in manual inspection are predicted with 100% confidence (either 0% or 100% 

likelihood of being defective), the brier score therefore biased towards the manual 

classification output. 

Table 7-2: Performance metrics comparing the performance of the developed 

automated classifier with that of manual inspection on 3 masonry arch bridges 

Performance metric 
Data 

strategies 

Classification strategies 

Automated 

classification 

Manual 

inspection 

Specificity 

a 0.877 1.000 
b 0.877 1.000 
c 0.877 1.000 
d 0.877 1.000 

Sensitivity/recall 

a 0.641 0.308 
b 0.525 0.089 
c 0.739 0.327 
d 0.636 0.106 

Precision 

a 0.502 1.000 
b 0.368 1.000 
c 0.537 1.000 
d 0.414 1.000 

F1 score 

a 0.563 0.471 
b 0.433 0.164 
c 0.622 0.492 
d 0.502 0.192 

Balanced accuracy 

a 0.759 0.654 
b 0.701 0.545 
c 0.808 0.663 
d 0.757 0.553 

Brier score 

a 0.122 0.112 
b 0.125 0.109 
c 0.108 0.109 
d 0.113 0.107 

Data strategies: (a) Raw data, (b) excluding vegetation regions, (c) assume defect is identified if more than 50% is 

identified, (d) excluding vegetation regions and assume defect is identified if more than 50% is identified. 

Therefore, it can be concluded that both the manual and automated strategies give a 

similar level of performance, with the automated strategy detecting a greater proportion 

of the defects present, but the manual strategy leading to far fewer false positive 

detections. However, in a safety critical application such as detecting defects in masonry 

arch bridges, arguably ensuring all defects are identified is more important than the 
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number of false positive detections. Nevertheless, too many false positives could cause 

extensive manual interpretation of results and could render an automated method too time 

consuming for practical use. 

The ROC curve in Figure 7-1 mirrors these same conclusions, with the automated defect 

classification methodology giving both a higher true positive rate and a higher false 

positive rate.  

 

Figure 7-1: ROC plot comparing automated vs manual defect detection in masonry 

arch bridges 

As the manual inspection classifications have been determined exactly, either with 0% or 

100% probability of a defect being present, the manual inspection curve is only plotted 

from three datapoints. Two of these are end points at (0,0) with a theoretical threshold of 

100% where no image windows are classified as defective and at (1,1) with a theoretical 

threshold of 0% where all image windows are classified as defective. The final datapoint 

is that corresponding to the actual performance of the classifier at all other thresholds. 
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The automated classifier made predictions with a range of different confidences resulting 

in a continuous curve between the two end points. Thresholds against these different 

prediction confidences have also been plotted in Figure 7-1. At a threshold of 0.95 (i.e., 

only classifying those image windows as defective which have been predicted as 

defective with more than 95% confidence), the performance of the automated classifier 

is much more comparable to manual inspection, in terms of both the false positive and 

true positive rates. 

Individual vegetation defective regions usually tend to be comparatively large, so have 

an outsized impact on performance statistics which are based on defective area detected. 

Additionally, these regions are those most likely to have significantly changed in the 

period between the dates of manual inspection and ground truth data capture. Finally, in 

manual inspection reports, vegetation regions were the defect type described with the 

greatest amount of ambiguity, meaning benefit of doubt was most often given here and 

vegetation regions marked as detected. Statistics based on the vegetation data are 

therefore potentially the least dependable. 

Figure 7-2 and data strategy ‘b’ in Table 7-1 and Table 7-2 shows the impact of removing 

vegetation regions from the dataset, therefore detailing the classification performance on 

only the other defect classes. Across the different performance metrics, this results in a 

decrease in performance for both automated classification and manual inspection. This 

should be expected as vegetation regions are potentially easier to detect in comparison to 

other defect classes due to the often-clear contrast with the masonry background. With 

vegetation regions excluded, manual inspection shows better precision and specificity, 

but worse sensitivity and recall than the automated classifier. Overall accuracy measures 

of balanced accuracy and particularly F1 score, show a greater decrease in performance 

with the manual inspection data than is seen with the automated classifier. This results in 

both scores showing significantly better performance with automated classification than 

with manual inspection. The Brier score however still shows a slightly better score for 

the manual classification. As described previously, this is a result of the severe class 

imbalance in the testing dataset resulting in the manual inspection being fully correct with 

predictions for the vast majority of the dataset (all non-defective image windows). 

Comparing the ROC curves in Figure 7-2 and Figure 7-1 also quantifies the relatively 

larger fall in performance for manual inspection when not including the vegetation 

regions. True positive rate predictions (the proportion of defect instances found) 

approximately decrease from 0.3 to 0.09. Therefore, at a threshold of 0.95, the 
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performance of the automated classifier almost matches that of the manual classifier in 

terms of its false positive rate, though far exceeds it for the true positive rate. 

 

Figure 7-2: ROC plot with vegetation regions removed comparing defect detection 

performance 

In both Figure 7-1 and Figure 7-2, and in data strategies ‘c’ and ‘d’ in Table 7-1 and Table 

7-2, performance has been assessed based on the assumption that a unique defect has been 

identified if over half of the image windows depicting it have been classified as defective. 

This assumes that a bridge inspector would find almost equal utility in a tool that 

presented most of the area of a defect compared to one which presented its entire area. 

The methodology for calculating this performance statistic follows the same logic as that 

described in Chapter 6.1.2. As expected, this results in a performance improvement, 

though more significantly so for the automated classifier than for manual inspection data. 

The smaller performance improvement seen here for manual inspection is partially a 

result of the benefit of doubt being given when determining which defective areas have 

been detected through manual inspection. Therefore, the area of defects marked as 
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detected in inspection is likely to closely align with the ground truth data in cases where 

defective areas in inspection reports are loosely defined. Additionally, during an 

inspection, an inspector is likely to follow the path of a defect to its ends to identify it 

fully, meaning that once some of its area is established, it is likely that the whole defect 

will be established. This is not the case for the current implementation of the automated 

defect classification methodology whereby each image window is classed as defective or 

not based purely on its own merits. 

 

Figure 7-3: ROC plot comparing defect detection performance across the individual 

bridges tested 

Current plots and statistics examined all show the average performance of the 

methodologies across all the data from the three bridges tested. This performance data is 

now broken down into the individual bridges in Figure 7-3, and the individual images 

tested, each representing an element of a bridge in Figure 7-4. Figure 7-3 shows that the 

relative performance of both the automated classification and manual inspection was 

better on the same bridges, with SBR8 showing the best performance and SBR12 showing 

the worst performance in both cases. This suggests that similar features on bridges are 

problematic for both automated classification and manual inspection. These potential 
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features were discussed in Chapter 6.1.2.1. Figure 7-4 shows that there is significant 

spread in performance between the individual images tested. This performance spread is 

greater for manual inspection than for automated classification. This suggests that some 

of the cause of the performance spread for manual inspection is due to human factors, 

such as height, discussed in Chapter 2.1.3, rather than purely masonry and image 

conditions on the bridge elements. 

 

Figure 7-4: ROC plot comparing defect detection performance across the individual 

images tested 

In Figure 7-5 to Figure 7-8, outputs for different bridge elements have been presented. 

Firstly, Figure 7-5 shows the performance of detection across the arch barrel and piers of 

bridge SBR12. This was determined to be the worst performing bridge for both manual 

inspection and automated classification in Figure 7-3. In this image, classification for 

both automated classification and manual inspection is poor, with most defects missed. 

Additionally, the automated classifier has mistaken the black border of the graffiti writing 

for a defect. The bridge surface here shows lots of surface deposits. The bridge piers are 
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caked in slurry deposits from passing farm traffic, and the arch barrel deposits are caused 

by efflorescence and other water borne deposits. These deposits somewhat mask defects 

present on the bridge surface, as well as creating a surface texture such that defects are 

less distinguishable from the background. Additionally, for the automated classifier, the 

training dataset did not include arch barrel masonry – only including masonry from the 

flat surfaces of the training bridges. The training dataset therefore did not include 

examples of efflorescence which tend to exclusively appear on bridge arch barrels, nor 

slurry deposits. 

Figure 7-6 shows one of the front spandrel and parapet walls of bridge SBR4. The 

performance of the automated classifier is far better than in Figure 7-5, though manual 

inspection still misses many defects. In the centre of the image, there is bright sunlight, 

with shadowing towards the sides. The classifier is not confusing the shadow interface on 

the left for a defect, but some parts of the shadow interfaces caused by vegetation on the 

right are confused. Far fewer false positive detections are detected in the shadow region 

on the left of the image, on the spandrel wall and pier surface, than on the remainder of 

the masonry surface exposed to bright sunlight. False positive detections due to bright 

sunlight are particularly prevalent on the parapet walls in the sun. The mortar channel is 

deeper here than on the rest of the bridge resulting in shadowing which is mistaken for a 

defect. 

Figure 7-7 shows a wing-wall of bridge SBR8. In this image, the performance of the 

automated classifier agrees very strongly with the ground truth data, and the performance 

of the manual inspection output also surpasses that seen in the previous two examples. 

The image in this example is neutrally lit, showing no shadows, especially at the mortar 

joints. Additionally, many of the defects present here are larger in scale than those in the 

previous examples, making classification easier. 

Finally, Figure 7-8 shows the arch barrel and piers of the skew arch bridge SBR8. The 

manual inspection has picked up some of the major defects present, but a few are omitted. 

The performance of the automated classifier is better on the bridge piers (at the top and 

bottom of the image), then on the arch barrel, showing better agreement with the ground 

truth data. The arch barrel on SBR8 is heavily covered in soot and other deposits, making 

defect detection exceedingly difficult, even for the manual identification of defects to 

create the ground truth dataset. 
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The examples presented all show the automated classifier achieving better or similar 

performance to manual inspection, agreeing with the performance statistics examined 

above. In all the examples, the automated classifier predicted a greater proportion of the 

defects present, though also falsely predicted a greater proportion of the non-defective 

surface as defective – conclusions that were observed in the overall performance statistics 

above. In the presented examples, it was observed that the automated classifier performed 

worse in conditions that it was not given much exposure to in the training dataset, such 

as heavy sunlight, and surface deposits. In Chapter 6.1.2.2, the performance of the 

automated classifier was tested on a dataset more like the one used in training, with 

images coming from the same bridges, though of separate parts to that used in training. It 

was shown that the performance of the classifier was far superior on that dataset when 

compared to performance on the dataset tested in this chapter, suggesting that with 

additional training data, the automated classifier has the potential to far outperform the 

manual inspection for defect classification accuracy. 
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a) b) 

  

c) d) 

  

Figure 7-5: Defect classification on arch barrel and piers of bridge SBR12 showing: 

a) raw image, b) ground truth, c) automated defect classification predicted with 80% 

certainty, d) manual inspection 
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a) b) 

  

c) d) 

  

Figure 7-6: Defect classification on front face of SBR4 showing: a) raw image, b) 

ground truth, c) automated defect classification predicted with 80% certainty, d) 

manual inspection 
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a)  

b)  

c)  

d)  

Figure 7-7: Defect classification on wing-wall section of SBR8 showing: a) raw 

image, b) ground truth, c) automated defect classification predicted with 80% 

certainty, d) manual inspection 
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a) b) 

  

c) d) 

  

Figure 7-8: Defect classification on arch barrel and piers of bridge SBR8 showing: 

a) raw image, b) ground truth, c) automated defect classification predicted with 80% 

certainty, d) manual inspection 
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7.3 Chapter summary 

This chapter has sought to compare the performance of the developed automated classifier 

to that of manual inspection, as the existing methodology for assessing the condition of 

masonry arch bridges. A dataset of three bridges has been developed, whereby all visible 

surfaces have been imaged and annotated with data of defects comprising both the ground 

truth, and those identified during manual inspection. Manual inspection data was 

determined from the most recent detailed inspection report from each bridge. During this 

process it was observed that for two of the three bridges examined, the inspection reports 

showed photographs of only about half of the identified defects. The three bridge 

inspections were conducted by different inspectors suggesting significant variability in 

the inspection process and thoroughness. 

The automated classifier used was from classification strategy 1 in Chapter 6, which was 

trained with no mortar and brick segmentation. This was used to classify image windows 

into defective and clean categories, and the resulting classifications were compared with 

both the ground truth and the manual inspection classifications. It was found that for the 

default threshold of 0.5, the automated classifier identified a far greater proportion of 

defects on the structure than were found during the manual inspection, but equally there 

were far more false positive detections. However, the ROC results showed that using a 

higher threshold of 0.95 lead to a similar performance between manual inspection and the 

automated classifier in terms of false positives, though still a larger proportion of defects 

were found with the automated classifier. Therefore, in general, the results suggest that 

the threshold could be set so that the performance of the automated classifier, as it stands, 

is at least as good as that of manual inspection. If it were desirable for a bridge inspector 

to track more minor defects, this would be possible with a lower threshold of detection. 

Additionally, the performance of the automated classifier also varied less between the 

different elements of bridges then manual inspection, suggesting human factors were 

responsible for some of the missed defects. 

Finally, the outputs of the automated classifier and manual inspection were investigated 

visually for different images in the dataset. It was observed that the performance of the 

automated classifier deteriorated for conditions that were not that prevalent in the training 

dataset, such as with heavy surface deposits. It is therefore suggested that although the 

developed automated classifier already performs well, further improvements in its the 

performance could be achieved through expanding the training dataset to include more 

examples of such conditions. This is demonstrated in the performance of the classifier in 
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Chapter 6.1.2.2, on a dataset more like that trained upon, where its performance is far 

better.
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8 CONCLUSIONS AND FUTURE 

WORK 

8.1 Summary of main findings 

The primary objective of this work as stated in Chapter 1.3. is as follows: 

To evaluate and quantify the ability of different defect classification 

methodologies, to increase the understanding of the factors key to the 

performance of automated defect classification on masonry arch bridges. 

This therefore enables the development of a state-of-the-art automated 

image-based classifier with performance exceeding that of the existing 

manual inspection process. 

Working towards and fulfilling this objective, the findings are summarised as follows: 

• The current standard industry practice for 2D visualising and processing of visual 

3D models of masonry arch bridges is through orthophoto capture - the taking of 

photos of the model with the image plane parallel to the bridge surface. This 

achieves satisfactory results for most types of infrastructure. However, this work 

has demonstrated that for curved surfaces, such as the masonry arch, the resulting 

image suffers from distortion, with masonry towards the springing line of the arch 

having a lower image resolution than that at the crown. This has the potential to 

reduce the performance of the classification of defects as well as making 

measurement and quantification of defective areas difficult. 
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• For the mapping of mortar joints in noisy masonry surfaces, this work has 

compared the performance of a deterministic hardcoded method with two 

different deep learning classifiers, one giving an image-window based 

classification and the other a semantic classification. It has been shown that the 

semantic classifier has significantly outperformed the other approaches 

examined, as it is able to base its classification on both the localised texture of 

mortar and its interface as well as the expected mortar pattern. 

• One of the key differences between masonry surfaces and concrete/asphalt 

surfaces, where most of the existing literature for defect detection focuses, is the 

mortar joint pattern. This pattern is visually more prominent than any defects, and 

a rudimentary classifier such as one based on edge detection would highlight 

mortar joints much more readily than defects. It has been shown that a much more 

capable classifier based on a Convolutional Neural Network is able to fully 

discern mortar joints when classifying defects, as testing with different strategies, 

both pre-segmenting mortar joints and not, showed a similar classification output. 

However, it is found that defect classification in mortar joint regions is less robust 

than in brick regions when the masonry conditions are noisy. 

• It is found that detailed manual inspection identifies a far smaller proportion of 

the defects on the structure than an automated classifier achieves, and those 

defects which are identified are often neither photographed nor accurately 

position mapped on the structure. However, an automated classifier does result 

in many more false-positive classifications than are seen with manual inspection, 

though this can be improved through thresholding the classification confidence. 

8.2 Primary contributions 

To achieve the findings discussed in Chapter 8.1, existing analysis methods were 

improved and often for the first time applied to the context of masonry arch bridges. The 

most important new research contributions are as listed below: 

• A mapping has been produced linking the underlying condition a masonry arch 

bridge is suffering from to the combination of visible defects that would be used 

to diagnose it. Additionally, the interventions needed to cure the bridge of its 

underlying condition and alleviate the symptoms of the visible defects have also 

been mapped. Such a mapping can be used for an end-to-end automation of bridge 
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condition diagnosis and management when combined with an automated defect 

detection tool. 

• When developing a model to solve a classification problem, it is well known that 

a comprehensive dataset for training is one of the most important components for 

reliable performance. This work has developed a dataset of both image and 

geometry data for masonry arch bridges that is believed to be unequalled in both 

scale and breadth. Much of the dataset has also been annotated pixel-wise with 

different defect classes, mortar joints, and defects identified during manual 

inspection. This dataset has the potential to become a useful research tool for the 

future development of improved models for defect classification in all masonry 

surfaces, including masonry arch bridges. 

• A novel methodology has been developed for the creation of ortho-rectified image 

textures of the curved arch barrel. Utilising photogrammetry to create a visual 3D 

model of the bridge, it has been demonstrated that the image texture of the arch 

barrel can be unwrapped from the 3D model using UV mapping. Such a technique 

results in a 2D image texture of the arch barrel surface which has minimal scaling 

of the masonry, especially when compared to the existing industry practice of 

orthophoto capture.  

• A mortar joint detection algorithm has been developed that has been shown to 

accurately segment mortar joint regions from the background masonry. This has 

been tested on noisy images of masonry arch bridges, depicting surface features 

such as vegetation, graffiti, block painting, efflorescence, shadowing, and a 

coating of slurry, where it has been shown to have excellent performance. No 

previous method identified in the literature has been developed to cope with such 

levels of noise, which are commonplace on masonry arch bridges. 

• An automated classifier has been developed for classifying image windows of 

masonry surfaces into those containing defects and those not. This has been tested 

across three different bridges, with a large quantity of noisy distractors, where its 

performance has been shown to be equal or better than the previous manual 

detailed inspection that had been conducted. Additionally, the classifier has also 

been tested on a dataset more like its training dataset in which its performance 

was far better, suggesting that with more training data, there is a possibility of 

significant performance improvement above that currently achieved by manual 

inspection. 
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Together, these contributions can lead to a significant performance improvement to the 

existing manual inspection process for masonry arch bridges. 

8.3 Suggestions for future research 

The presented work involved the development and application of automated defect 

detection tools, contributing towards better assessment of the condition of masonry arch 

bridges. The work also motivates numerous further areas of continued research: 

• When tested on a dataset more like its training dataset, the developed defect 

detection classifier performed far better. The existing training dataset is made up 

of images primarily from the flat surfaces of masonry viaducts. These images 

contain far less noisy features than seen in the testing dataset of the complete 

surface of three individual bridges. This is partly because a good proportion of 

noisy features are experienced on the arch barrels of bridges. These surfaces do 

not get cleaned by rain making them susceptible to significant build-up of surface 

deposits. Additionally, the viaducts visited are generally in better condition than 

the three bridges used in the testing dataset, potentially due to being larger 

structures, further from public roads, and having had more recent maintenance. 

Optimum classification performance is achieved when the conditions in testing 

are better or equal to those in training. Therefore, future work could involve 

augmenting the existing training dataset with images containing worse masonry 

conditions. This could be achieved by splitting the existing testing dataset and 

additionally training on two of the bridges and testing on the third, or by collecting 

data from more bridges.  

• The existing defect detection classifier segmented the masonry surface into 

defective and non-defective classes as a binary classification. Additional work 

would be required to train a multi-class classifier to classify all the separate defect 

classes individually if this were desired. The training and testing datasets have 

been annotated with each defect class separately, to aid such a future step. 

• A potential route to reduce false positive defect classifications is to focus on the 

larger, more structurally significant defects. These defects are mostly easier to 

discern from the background masonry, so are less likely to be confused for image 

noise. This was examined by removing the smaller defects from the testing data, 

where it was shown that these defects were more likely to be predicted correctly. 
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A classifier trained to only classify the larger defects, could also result in reduced 

false positive detections. 

• For mortar joint detection, both an image-window based, and a semantic based 

neural network model were tested, and the semantic based model was found to 

produce superior results, as classification could be based on local mortar and 

interface texture as well as the more global mortar pattern. Class Activation 

Mapping has shown that for defect detection, the image-window based classifier 

has learnt to locate defects semi-semantically within image windows despite being 

trained on window class, rather than semantic data. The currently developed 

defect detection methodology, using image windows means that each image 

window is classified individually based on its own merits. Using a semantic model 

for detecting defects in masonry could therefore result in an improvement in 

detection performance as both localised and more global information can be used 

for prediction. 

• The existing work looks to locate defects within 2D masonry image textures. 

Future work could integrate this output back onto a 3D model of the bridge, so 

that defects could be spatially related. By using the developed mapping between 

underlying bridge conditions and visible defects, this 3D defect model could be 

used to automatically diagnose faults and solutions for bridges. 

All these areas of future research directly relate to the contributions herein. As such, they 

indicate a path which demonstrates how the presented work could be extended and 

practically implemented to facilitate the future automation of the visual inspection of 

masonry arch bridges.
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APPENDIX 1: DETERMINISTIC MORTAR JOINT PATTERN 

RECOGNITION FACTOR ANALYSIS 

1: Standard deviation of gaussian filter used prior to edge detection 

Edges detection performance: 

 

Mortar joint detection performance: 

 

2: Size of regions image broken into for processing 

Edges detection performance:                       Mortar joint detection performance: 
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3: Fill gap used for horizontal Hough line detection, detecting the straight lines of 

horizontal mortar joints 

Straight lines detection performance: 

 

Horizontal mortar joint detection performance: 

 

4: Minimum length for initial straight lines for Hough line detection of horizontal mortar 

joints 

Straight lines detection performance: 
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Horizontal mortar joint detection performance: 

 

5: Search angle range for horizontal straight lines for Hough line detection of horizontal 

mortar joints 

Straight lines detection performance: 

 

Horizontal mortar joint detection performance: 
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6: Fill gap used for vertical Hough line detection, detecting the straight lines of vertical 

mortar joints 

Straight lines detection performance: 

 

Vertical mortar joint detection performance: 

 

7: Minimum length for initial straight lines for Hough line detection of vertical mortar 

joints 

Straight lines detection performance: 
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Vertical mortar joint detection performance: 

 

8: Search angle range for vertical straight lines for Hough line detection of vertical mortar 

joints 

Straight lines detection performance: 

 

Vertical mortar joint detection performance: 
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9: Bandwidth for fitting distribution to rotation angles detected for grouping similar 

angles 

Straight lines detection performance: 

 

Mortar joint detection performance: 

 

10: Region confidence determination: straight line length weighting 

Mortar joint detection performance: 
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11: Region confidence determination: number of straight lines weighting 

Mortar joint detection performance: 

 

12: Region confidence determination: straight line angle consistency weighting 

Mortar joint detection performance: 

 

13: Region confidence determination: incorrect straight line angle weighting 

Mortar joint detection performance: 
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14: Vertical mortar joint confidence determination: relative weighting of effect of row 

confidence and area confidence 

Vertical mortar joint detection performance: 

 

15: Vertical mortar joint effect of line confidence on length weighting 

Vertical mortar joint detection performance: 

 

16: Horizontal mortar joint effect of line confidence on length weighting 

Horizontal mortar joint detection performance: 
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17: Bandwidth for fitting distribution to straight line locations for mortar joint grouping 

Mortar joint detection performance: 

 

18: Bandwidth for fitting distribution to mortar joint spacing values 

Mortar joint detection performance: 

 

19: Horizontal mortar joint confidence determination: weighting of spread of straight 

lines detected across mortar joint (meaning less extrapolation) 

Horizontal mortar joint detection performance: 
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20: Horizontal mortar joint separation distance decay factor for gradient calculation 

Horizontal mortar joint detection performance: 

 

21: Bandwidth of fitted distribution grouping gradient values of horizontal mortar joints 

Horizontal mortar joint detection performance: 

 

22: Bandwidth of fitted distribution detecting spread of vertical mortar joint points to 

determine doubly defined mortar joints 

Vertical mortar joint detection performance: 
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23: Confidence penalty for singly defined vertical mortar joints 

Vertical mortar joint detection performance: 

 

24: Threshold for maximum allowable vertical mortar joint spacing 

Vertical mortar joint detection performance: 

 

25: Threshold for minimum allowable vertical mortar joint spacing 

Vertical mortar joint detection performance: 

 



Automated image-based inspection of masonry arch bridges 

202  Daniel Brackenbury - January 2022 

26: Brick course brick spacing confidence: individual mortar joint spacing confidence 

weighting 

Vertical mortar joint detection performance: 

 

27: Brick course brick spacing confidence: number of mortar joints in row weighting 

Vertical mortar joint detection performance: 

 

28: Brick course brick spacing confidence: consistency of spacing in row weighting 

Vertical mortar joint detection performance: 
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29: Brick course brick spacing confidence: penalisation for inconsistent spacing in row 

Vertical mortar joint detection performance: 

 

30: Vertical mortar joint spacing, confidence threshold for forcing pattern 

Vertical mortar joint detection performance: 

 

31: Vertical mortar joint spacing, proportional deviation from pattern threshold for 

forcing pattern 

Vertical mortar joint detection performance: 
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32: Incorrect mortar joint removal, rate of decay in confidence due to separation between 

tested lines 

Mortar joint detection performance: 

 

33: Incorrect mortar joint removal, threshold for spacing error required for removal 

Mortar joint detection performance: 

 

34: Incorrect mortar joint removal, vertical mortar joints confidence weighting 

Vertical mortar joint detection performance: 
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35: Spacing error threshold for shifting singly defined vertical mortar joints 

Vertical mortar joint detection performance: 
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APPENDIX 2: HYPERPARAMETER SEARCH FOR OPTIMISING 

VALIDATION ACCURACY OF DEFECT DETECTION CLASSIFIER 

Input image size 

batch size=50 | dense layer size=1024 | epochs for top layer training=50 | learning rate 

for top layer training=0.001 | epochs for fine-tuning training=50 | layers frozen during 

fine-tuning training=0 | learning rate for fine-tuning training=0.0001 | optimiser=SGD 

top layer only: fine-tuning: 
 

155 299 

all images 0.793 0.815 

brick only 0.848 0.872 

categories 0.730 0.771 

mortar only 0.781 0.793 
 

 
155 299 

all images 0.867 0.866 

brick only 0.903 0.900 

categories 0.849 0.865 

mortar only 0.850 0.849 
 

Fully connected dense layer size 

width=155 | height=155 | batch size=50 | epochs for top layer training=50 | learning 

rate for top layer training=0.001 | epochs for fine-tuning training=50 | layers frozen 

during fine-tuning training=0 | learning rate for fine-tuning training=0.0001 | 

optimiser=SGD 

top layer only: 
 

2 4 8 16 32 64 128 256 512 1024 

all images 0.796 0.795 0.796 0.790 0.796 0.794 0.797 0.796 0.798 0.793 

brick only 0.834 0.833 0.842 0.844 0.848 0.848 0.847 0.845 0.841 0.848 

categories 0.519 0.710 0.714 0.719 0.731 0.736 0.737 0.733 0.736 0.730 

mortar only 0.772 0.776 0.775 0.789 0.783 0.785 0.783 0.788 0.787 0.781 

 

fine-tuning: 
 

2 4 8 16 32 64 128 256 512 1024 

all images 0.796 0.795 0.796 0.790 0.796 0.794 0.797 0.796 0.798 0.793 

brick only 0.834 0.833 0.842 0.844 0.848 0.848 0.847 0.845 0.841 0.848 

categories 0.519 0.710 0.714 0.719 0.731 0.736 0.737 0.733 0.736 0.730 

mortar only 0.772 0.776 0.775 0.789 0.783 0.785 0.783 0.788 0.787 0.781 
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Top layer learning rate 

width=155 | height=155 | batch size=50 | dense layer size=1024 | epochs for top layer 

training=50 
 

0.1 0.01 0.001 0.001 0.0001 0.0001 

all images 0.500 0.500 0.793 0.791 0.792 0.785 

brick only 0.500 0.500 0.848 0.848 0.853 0.851 

categories 0.250 0.250 0.730 0.731 0.745 0.753 

mortar only 0.500 0.500 0.781 0.776 0.778 0.768 

Fine-tuning learning rate 

width=155 | height=155 | batch size=50 | dense layer size=1024 | epochs for top layer 

training=50 | learning rate for top layer training=0.001 | epochs for fine-tuning 

training=50 | layers frozen during fine-tuning training=0 | optimiser=SGD 

Accuracy on validation data top layer 0.01 0.001 0.0001 0.00001 0.000001 

all images 0.791 0.839 0.845 0.863 0.827 0.742 

brick only 0.848 0.889 0.892 0.905 0.874 0.805 

categories 0.731 0.741 0.707 0.859 0.806 0.705 

mortar only 0.776 0.829 0.820 0.846 0.812 0.715 

Accuracy on train data top layer 0.01 0.001 0.0001 0.00001 0.000001 

all images 0.835 0.929 0.980 0.898 0.827 0.737 

brick only 0.874 0.943 0.959 0.923 0.869 0.800 

categories 0.753 0.728 0.730 0.895 0.794 0.687 

mortar only 0.820 0.945 0.970 0.888 0.807 0.710 
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Layers frozen during fine-tuning 

width=155 | height=155 | batch size=50 | dense layer size=1024 | epochs for top layer 

training=50 | learning rate for top layer training=0.001 | epochs for fine-tuning 

training=50 | learning rate for fine-tuning training=0.0001 | learning rate decay rate for 

fine-tuning training=0 | optimiser=SGD 

Accuracy on validation data: 

Trainable 

blocks: 

0 all 10 9 8 7 6 5 4 3 2 

Layers 

frozen: 

All 0 41 64 87 101 133 165 197 229 249 

all images 0.791 0.863 0.856 0.858 0.854 0.853 0.850 0.835 0.828 0.825 0.823 

brick only 0.848 0.905 0.902 0.898 0.895 0.900 0.893 0.882 0.876 0.876 0.871 

categories 0.731 0.859 0.843 0.828 0.833 0.830 0.833 0.809 0.822 0.812 0.803 

mortar only 0.776 0.846 0.843 0.837 0.835 0.836 0.830 0.823 0.819 0.807 0.805 

Accuracy on training data: 

Trainable 

blocks: 

0 all 10 9 8 7 6 5 4 3 2 

Layers 

frozen: 

All 0 41 64 87 101 133 165 197 229 249 

all images 0.835 0.898 0.909 0.905 0.904 0.896 0.897 0.890 0.878 0.881 0.870 

brick only 0.874 0.923 0.930 0.928 0.929 0.925 0.922 0.913 0.903 0.903 0.895 

categories 0.753 0.895 0.901 0.858 0.884 0.894 0.877 0.877 0.860 0.854 0.837 

mortar only 0.820 0.888 0.895 0.893 0.890 0.890 0.891 0.874 0.864 0.867 0.857 
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Learning rate decay during fine-tune training 

width=155 | height=155 | batch size=50 | dense layer size=1024 | epochs for top layer 

training=50 | learning rate for top layer training=0.001 | epochs for fine-tuning 

training=100 | layers frozen during fine-tuning training=0 | optimiser=SGD 

Learning rate for fine-tuning training=0.0001 

Accuracy on validation data after 100 epochs: 

 top layer 0 1.3E-5 6.6E-5 9.9E-5 1.3E-4 2.6E-4 0.12 0.16 0.2 0.4 0.8 

all images 0.791 0.853 0.856 0.861 0.861 0.859 0.852 0.681 0.680 0.670 0.648 0.646 

brick only 0.848 0.900 0.903 0.903 0.896 0.892 0.882 0.738 0.730 0.714 0.709 0.681 

categories 0.731 0.841 0.818 0.843 0.832 0.837 0.815 0.531 0.484 0.508 0.503 0.470 

mortar only 0.776 0.834 0.846 0.847 0.849 0.844 0.837 0.644 0.640 0.636 0.618 0.612 

Accuracy on training data after 100 epochs: 

 top layer 0 1.3E-5 6.6E-5 9.9E-5 1.3E-4 2.6E-4 0.12 0.16 0.2 0.4 0.8 

all images 0.835 0.956 0.925 0.886 0.876 0.869 0.856 0.676 0.667 0.667 0.650 0.637 

brick only 0.874 0.954 0.939 0.917 0.910 0.902 0.893 0.739 0.718 0.709 0.703 0.672 

categories 0.753 0.922 0.851 0.859 0.842 0.834 0.814 0.500 0.455 0.496 0.491 0.459 

mortar only 0.820 0.942 0.914 0.872 0.864 0.856 0.842 0.641 0.644 0.636 0.622 0.611 

Best accuracy on validation data and epoch number accuracy achieved at: 

 top layer 0 1.3E-5 6.6E-5 9.9E-5 1.3E-4 2.6E-4 0.12 0.16 0.2 0.4 0.8 

all images 0.791 
0.866 

47 

0.862 

70 

0.864 

67 

0.863 

77 

0.860 

92 

0.853 

90 

0.683 

69 

0.683 

87 

0.671 

92 

0.652 

97 

0.649 

90 

brick only 0.848 
0.907 

72 

0.907 

94 

0.904 

99 

0.897 

88 

0.894 

77 

0.884 

93 

0.743 

97 

0.732 

94 

0.717 

96 

0.714 

86 

0.683 

94 

categories 0.731 
0.858 

57 

0.823 

86 

0.844 

93 

0.832 

99 

0.839 

89 

0.819 

97 

0.538 

51 

0.486 

58 

0.515 

82 

0.505 

97 

0.472 

96 

mortar only 0.776 
0.852 

45 

0.851 

49 

0.848 

95 

0.850 

99 

0.845 

94 

0.837 

86 

0.648 

65 

0.645 

60 

0.642 

67 

0.625 

32 

0.618 

47 

Best accuracy on training data and epoch number accuracy achieved at: 

 top layer 0 1.3E-5 6.6E-5 9.9E-5 1.3E-4 2.6E-4 0.12 0.16 0.2 0.4 0.8 

all images 0.835 
0.956 

99 

0.925 

99 

0.887 

96 

0.878 

98 

0.871 

92 

0.858 

98 

0.685 

84 

0.676 

61 

0.670 

95 

0.656 

30 

0.644 

89 

brick only 0.874 
0.954 

99 

0.939 

99 

0.917 

98 

0.910 

95 

0.905 

96 

0.893 

91 

0.740 

88 

0.723 

94 

0.715 

93 

0.706 

86 

0.677 

75 

categories 0.753 
0.934 

95 

0.851 

100 

0.859 

100 

0.843 

93 

0.834 

100 

0.816 

96 

0.504 

90 

0.457 

92 

0.501 

8 

0.492 

84 

0.461 

74 

mortar only 0.820 
0.942 

100 

0.914 

100 

0.873 

96 

0.866 

95 

0.857 

98 

0.843 

87 

0.650 

89 

0.646 

88 

0.640 

83 

0.629 

89 

0.617 

75 
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Learning rate for fine-tuning training=0.001 

Accuracy on validation data after 100 epochs: 

 top layer 0 1.3E-5 6.6E-5 9.9E-5 1.3E-4 2.6E-4 0.12 0.16 0.2 0.4 0.8 

all images 0.791 0.861 0.853 0.853 0.842 0.856 0.848 0.770 0.765 0.757 0.723 0.707 

brick only 0.848 0.884 0.891 0.895 0.879 0.898 0.899 0.817 0.809 0.800 0.786 0.757 

categories 0.731 0.820 0.817 0.775 0.821 0.792 0.791 0.618 0.616 0.582 0.501 0.516 

mortar only 0.776 0.824 0.829 0.835 0.831 0.832 0.844 0.752 0.753 0.736 0.704 0.684 

Accuracy on training data after 100 epochs: 

 top layer 0 1.3E-5 6.6E-5 9.9E-5 1.3E-4 2.6E-4 0.12 0.16 0.2 0.4 0.8 

all images 0.835 0.990 0.991 0.989 0.981 0.978 0.962 0.765 0.755 0.755 0.718 0.700 

brick only 0.874 0.975 0.976 0.974 0.969 0.970 0.956 0.820 0.805 0.801 0.780 0.752 

categories 0.753 0.885 0.891 0.780 0.863 0.803 0.790 0.599 0.608 0.566 0.503 0.498 

mortar only 0.820 0.983 0.985 0.983 0.978 0.977 0.957 0.746 0.747 0.724 0.698 0.672 

Best accuracy on validation data and epoch number accuracy achieved at: 

 top layer 0 1.3E-5 6.6E-5 9.9E-5 1.3E-4 2.6E-4 0.12 0.16 0.2 0.4 0.8 

all images 0.791 
0.863 

17 

0.872 

10 

0.866 

12 

0.869 

13 

0.873 

14 

0.865 

18 

0.772 

92 

0.767 

98 

0.759 

92 

0.725 

94 

0.707 

89 

brick only 0.848 
0.908 

47 

0.908 

31 

0.908 

28 

0.902 

47 

0.909 

36 

0.901 

47 

0.823 

93 

0.812 

95 

0.804 

99 

0.787 

71 

0.761 

98 

categories 0.731 
0.832 

82 

0.821 

95 

0.777 

92 

0.823 

96 

0.797 

94 

0.791 

100 

0.618 

100 

0.620 

99 

0.586 

98 

0.504 

99 

0.516 

99 

mortar only 0.776 
0.858 

12 

0.853 

11 

0.851 

12 

0.852 

13 

0.853 

11 

0.854 

8 

0.753 

98 

0.757 

89 

0.739 

83 

0.705 

94 

0.685 

91 

Best accuracy on training data and epoch number accuracy achieved at: 

 top layer 0 1.3E-5 6.6E-5 9.9E-5 1.3E-4 2.6E-4 0.12 0.16 0.2 0.4 0.8 

all images 0.835 
0.990 

99 

0.991 

100 

0.989 

96 

0.982 

99 

0.978 

100 

0.962 

100 

0.766 

85 

0.758 

86 

0.763 

99 

0.722 

83 

0.705 

96 

brick only 0.874 
0.975 

99 

0.977 

96 

0.974 

100 

0.970 

98 

0.970 

99 

0.956 

100 

0.820 

100 

0.811 

98 

0.803 

96 

0.782 

99 

0.759 

99 

categories 0.753 
0.885 

99 

0.891 

100 

0.780 

100 

0.863 

96 

0.804 

95 

0.791 

97 

0.601 

98 

0.608 

100 

0.570 

92 

0.503 

100 

0.502 

96 

mortar only 0.820 
0.984 

92 

0.985 

99 

0.983 

95 

0.978 

97 

0.977 

100 

0.957 

100 

0.747 

66 

0.749 

97 

0.729 

91 

0.707 

74 

0.675 

89 
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Fine-tuning learning rate using RMSProp optimiser 

width=155 | height=155 | batch size=50 | dense layer size=1024 | epochs for top layer 

training=50 | learning rate for top layer training=0.001 | epochs for fine-tuning 

training=100 | layers frozen during fine-tuning training=0 | learning rate decay rate for 

fine-tuning training=0 | optimiser=RMSProp 

Accuracy on validation data after 100 epochs: 

 top layer 0.00001 0.0001 0.001 0.01 

all images 0.791 0.848 0.854 0.856 0.828 

brick only 0.848 0.885 0.887 0.885 0.879 

categories 0.731 0.837 0.850 0.502 0.308 

mortar only 0.776 0.833 0.814 0.832 0.810 

Accuracy on training data after 100 epochs: 

 top layer 0.00001 0.0001 0.001 0.01 

all images 0.835 0.983 0.986 0.939 0.867 

brick only 0.874 0.969 0.973 0.956 0.918 

categories 0.753 0.968 0.968 0.870 0.844 

mortar only 0.820 0.975 0.980 0.918 0.854 

Best accuracy on validation data and epoch number accuracy achieved at: 

 top layer 0.00001 0.0001 0.001 0.01 

all images 0.791 
0.863 

18 

0.867 

10 

0.860 

40 

0.852 

77 

brick only 0.848 
0.904 

33 

0.908 

9 

0.904 

69 

0.885 

76 

categories 0.731 
0.860 

25 

0.869 

13 

0.842 

39 

0.839 

97 

mortar only 0.776 
0.851 

23 

0.856 

5 

0.849 

55 

0.836 

80 

Best accuracy on training data and epoch number accuracy achieved at: 

 top layer 0.00001 0.0001 0.001 0.01 

all images 0.835 
0.984 

99 

0.987 

99 

0.939 

100 

0.867 

100 

brick only 0.874 
0.970 

99 

0.973 

87 

0.957 

97 

0.918 

100 

categories 0.753 
0.968 

100 

0.968 

92 

0.884 

99 

0.851 

97 

mortar only 0.820 
0.975 

100 

0.980 

97 

0.919 

98 

0.854 

100 
 

 


