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Abstract 

The very first cell divisions in mammalian embryogenesis produce a ball of cells, each with 

the potential to form any cell in the developing embryo or placenta. At some point the 

embryo produces enough cells that some are located on the outside of the embryo, while 

others are completely surrounded by other cells. It is at this point that cells undergo the very 

first lineage commitment event: outer cells form the trophectoderm, and lose the potential to 

form embryonic lineages, while inner cells form the Inner Cell Mass, which retain embryonic 

potential. Cell identity is defined by gene expression patterns, and gene expression is largely 

controlled by how the DNA is packaged into chromatin. A number of protein complexes exist 

which are able to use the energy of ATP to remodel chromatin: that is, to alter the 

nucleosome topology of chromatin. Here we summarise the evidence that chromatin 

remodellers play essential roles in the successful completion of preimplantation development 

in mammals, and describe recent efforts to understand the molecular mechanisms through 

which chromatin remodellers facilitate the successful completion of the first cell fate 

decisions in mammalian embryogenesis. 

 

1. Introduction 

 

Within the first five days of mouse development, a single celled zygote progresses, by an 

ordered series of cleavage divisions and successive differentiation events to the 

specification of three lineages: trophectoderm (TE), epiblast and primitive endoderm (PrE) 

within the developing embryo (Rossant and Tam 2009). The TE is the first lineage to 

become specified and forms the outer epithelial layer which contributes to the placenta and 

is required for implantation into the uterus (Carson et al. 2000). The inner cells go on to 

segregate into epiblast or PrE. The epiblast forms the embryo proper while TE and PrE 

lineages give rise to extra-embryonic structures that support the development of the embryo 

(Rossant and Tam 2009; Chazaud and Yamanaka 2016). This developmental progression is 



highly reproducible and these three lineages are defined by specific gene expression 

programs which must be carefully established and controlled. 

 

Although this descriptive information about embryo development has been long known, 

many questions are still unanswered as to exactly how these lineages are formed. A cell’s 

identity is defined by the genes it expresses and those it represses, so to understand cell 

fate decisions we must understand how gene expression is controlled. Every cell in an 

organism contains the same genome, and yet there are multiple distinct cell types, all of 

which exhibit different dynamic gene expression profiles. Therefore, when we consider cell 

fate choices, we are actually witnessing the re-wiring of these gene regulatory networks 

(GRN) to create new stable cell types. For this to occur, each cell must respond 

appropriately to stimuli and ensure the correct expression of specific genes. Understandably, 

chromatin modifiers and remodellers are key in this context: they facilitate transcription factor 

and RNA Polymerase II access to those genes required in the new cell state, and prevent 

aberrant expression of those that are undesirable. Recent evidence indicates that cell 

signalling creates the environment for appropriate decision-making, while specific changes in 

gene expression cement a cell fate transition. This model prompts questions such as: How 

are the signals decoded by the cells at the chromatin level? How are specific genes brought 

‘into play’ by the signalling machinery? Whether a gene is transcribed or silent is largely 

dependent upon its chromatin environment. In this review, we will focus on the role of 

chromatin remodellers in forming the required chromatin environment for each cell decision 

in mammalian preimplantation development. 



 

Figure 1 - Diagram to illustrate mouse pre-implantation development and the stages specific chromatin 

remodellers are required 

From the 8-cell stage the blastomeres undergo polarisation and compaction to form a morula. By E3.5 the 

embryo has cavitated to form a blastocyst and there is a polarised epithelium of cells on the outside of the 

embryo (trophectoderm) enclosing the ICM. By the mid-blastocyst stage, some cells show up-regulation of 

epiblast or PrE factors, and this decision is completed by E4.5. Here the ICM cells have segregated into epiblast 

and PrE cells, and shortly after this point, implantation occurs. Green boxes indicate the stage at which certain 

chromatin remodellers are required and the family and/or complex to which these proteins belong. 

 

 

2. Events associated with the first lineage decision: TE vs ICM 

Initial rounds of cell division, from fertilisation until approximately the 8-cell stage, result in an 

increase in cell number without any overall increase in size of the embryo (Aiken et al. 

2004). Although the exact time when the first lineage decision begins is a matter of some 

debate (Piotrowska-Nitsche et al. 2005; Dietrich and Hiiragi 2007; Torres-Padilla et al. 2007; 

Ralston and Rossant 2008; Dietrich et al. 2015), it is after the 8-cell stage that the first signs 

of loss of symmetry occur. At the 8 cell stage cell-to-cell adhesion increases and the cells 

undergo a process called compaction (Johnson and Ziomek 1981). The cells flatten and the 

embryonic surface becomes smooth. Concomitant with compaction, the cells acquire apical-



basal polarity (Figure 1). This is characterised by the re-organisation of the cytoplasm 

(Reeve and Kelly 1983; Fleming and Pickering 1985; Maro et al. 1985), the formation of an 

apical domain  (Pauken and Capco 2000; Plusa et al. 2005; Vinot et al. 2005) and the 

presence of microvilli on the apical domain (Ducibella et al. 1977). Other polarity proteins are 

also localised basolaterally (Vinot et al. 2005). From this point on outer cells retain these 

polarised features and go on to form TE, while inner cells (which become ICM) become 

apolar. During the next two rounds of cell division, blastomeres either divide symmetrically or 

asymmetrically, passing down either all or part of the apical cytoplasm to their daughter 

cells.  

 

 

3. The second lineage decision: Epiblast vs PrE 

Once the TE and ICM decisions have been made the embryo has formed a cavitated 

structure known as the blastocyst, with the TE cells forming an outer layer and ICM cells 

forming a tight ball to one side of the inside structure (Kunath et al. 2004; Chazaud and 

Yamanaka 2016). The ICM cells then undergo the second lineage decision: epiblast versus 

PrE. Whereas cell position plays a large part in TE specification, it seems the reverse is true 

for PrE: cell fate commitment both precedes and facilitates cell positioning (Rossant and 

Tam 2009). The PrE cells form an epithelial layer between the epiblast cells and blastocoel 

cavity (Figure 1). Any presumptive PrE cell not positioned in this layer migrates towards it, 

switches fate to epiblast or undergoes apoptosis (Plusa et al. 2008). By E4.5, the 

specification of the PrE is complete, and epiblast and PrE cells show distinct fates (Gardner 

and Rossant 1979). Finally, following PrE specification, the embryo implants, and 

progresses to the early egg cylinder stage (E5.5). At this point, the embryo undergoes 

gastrulation and forms all three primary lineages: definitive endoderm, ectoderm and 

mesoderm. 

 



4. The role of chromatin modifiers in the formation of the early embryonic 

lineages 

ATP-dependent chromatin remodelling complexes can be divided into four distinct classes 

based upon the chromatin remodelling subunit, which fall into the SWI/SNF, ISWI, INO80 

and CHD families (Hargreaves and Crabtree 2011). Their ATPase subunits use the energy 

derived from ATP hydrolysis to move, eject or slide nucleosomes along the DNA (Clapier 

and Cairns 2009).  

 

Studies of these remodelling proteins in vitro have provided clear pictures of how these 

proteins function biochemically. Connecting these biochemical activities to the alterations in 

gene expression and developmental progression seen in vivo using genetic mutants has 

often been difficult. While chromatin remodellers may all appear to possess similar 

biochemical activities, each complex clearly controls distinct aspects of chromatin biology. 

 

 

Figure 2. CHD4, NuRD and BAF Complexes. Protein components of the NuRD and esBAF complexes. 

Whether CHD4 associates with other proteins when it is not part of NuRD is not known. The component of the 

BAF complex shown correspond to the ES-cell specific complex, esBAF (Hargreaves and Crabtree 2011). 

 

5. CHD4: A precise subtle regulator of fate 

CHD4 is a founding member of the NuRD (Nucleosome Remodelling and Deacetylation) 

complex (Figure 2). The NuRD complex regulates transcription and has long been assumed 



to be a transcriptional repressor, in part due to the presence of histone deacetylase (HDAC) 

proteins within the complex. While NuRD certainly is capable of mediating transcriptional 

repression (Ahringer 2000; McDonel et al. 2009), the advent of genome-wide analyses has 

led to the realisation that CHD4 and NuRD are just as likely to be associated with 

transcriptional activation (Gunther et al. 2013; Reynolds et al. 2013; Shimbo et al. 2013; Kim 

et al. 2014) . As well as containing a chromatin remodelling protein (either CHD4 or CHD3) 

and HDAC proteins (HDAC1/2), NuRD contains zinc-finger proteins GATAD2A/B, SANT 

domain proteins MTA1/2/3, histone chaperones RBBP4/7, structural proteins MBD2/3 and 

the small CDK2AP1 protein (Le Guezennec et al. 2006; Allen et al. 2013). Although CHD4 is 

the founding member of the complex (Tong et al. 1998; Wade et al. 1998; Xue et al. 1998; 

Zhang et al. 1998), there is accumulating evidence that CHD4 can also function 

independently of the NuRD complex (O'Shaughnessy and Hendrich 2013). 

 

CHD4 function is critical for the first lineage decision in mouse pre-implantation 

development. Although embryos lacking CHD4 form a morphologically normal blastocyst, 

they are unable to form functional TE (O'Shaughnessy-Kirwan et al. 2015). Single cell gene 

expression analysis was used to show that CHD4 is required for embryos to establish 

exclusive lineage-appropriate gene expression programmes at the 16-cell stage, before the 

formation of the morphological blastocyst. Cells of 16-cell embryos express markers of PrE, 

TE and epiblast in a stochastic manner, in a process that resembles lineage priming (Enver 

et al. 2009). In the absence of CHD4, these cells express lineage markers at increased 

frequency. The consequence of this increased transcriptional ‘noise’ is that cells are unable 

to accurately specify the TE lineage, and, despite forming an embryo that resembles a 

blastocyst, they lack trophectoderm function in that they are unable to maintain the integrity 

of the blastocoel or to implant in vivo or ex vivo (O'Shaughnessy-Kirwan et al. 2015). The 

activity of CHD4 in restricting gene expression probability, rather than gene expression 

levels per se, is thus essential for successful completion of the first lineage decision.  

 



Although CHD4 binds broadly to active chromatin, this study did not find global dysregulation 

of gene expression in Chd4-mutant blastocysts (O'Shaughnessy-Kirwan et al. 2015). 

Instead, the essential function of CHD4 in the developing embryo is focused on lineage 

specific genes. This work highlights two important points; that the essential targets of a 

chromatin remodeller may vary depending on the tissue and/or developmental stage, and 

that while the developing embryo is fairly robust, only small changes in gene expression can 

be enough to culminate in developmental failure. It remains to be seen whether this function 

of CHD4 is specific to the TE lineage, or whether CHD4 function similarly controls the PrE vs 

epiblast lineage decision. 

 

Surprisingly this function of CHD4 was exerted independently of the NuRD complex 

(O'Shaughnessy-Kirwan et al. 2015), indicating that despite the majority of chromatin 

remodelling proteins forming multi-protein complexes, their role isn’t necessarily restricted to 

that within complexes. Impairment of NuRD activity through deletion of the gene encoding 

MBD3, an important NuRD structural component, results in developmental failure of the 

epiblast (Kaji et al. 2007). These observations lead to a model in which CHD4 functions on 

its own to facilitate the first lineage decision, it subsequently functions as part of NuRD to 

enable the development of epiblast cells during implantation (Kaji et al. 2007). This raises 

the interesting question of whether the biochemical activity of CHD4 is somehow altered 

when it is incorporated into NuRD, or alternately whether NuRD acts to target CHD4 activity 

to specific sites in vivo. 

 

6. BRG1/BAF chromatin remodellers 

BAF complexes, which belong to the SWI/SNF family of remodellers, are large polymorphic 

complexes that contain at least 15 different subunits, the precise composition of which is cell 

type-specific (Ho and Crabtree 2010; Kadoch and Crabtree 2015) (Figure 2). Loss of many 

of the BAF complex subunits are incompatible with successful completion of early 

mammalian development, often resulting in pre- or peri-implantation lethality (Hota and 



Bruneau 2016). Loss of either the ATPase subunit (BRG1/SMARCA4), or of two other major 

components (BAF47 and BAF155) in embryos results in similar phenotypes: embryos 

develop to the blastocyst stage but fail to progress further. Neither trophectoderm nor ICM 

outgrowths are viable in these mutants indicating that BAF function is essential for the 

continued proliferation of both lineages ex vivo (Bultman et al. 2000; Klochendler-Yeivin et 

al. 2000; Guidi et al. 2001; Kim et al. 2001; Kidder et al. 2009; Panamarova et al. 2016). 

Loss of the BAF250A subunit results in developmental arrest later in development, shortly 

after implantation (Gao et al. 2008). 

 

Although the ES cell-specific BAF complex has been extensively studied (Ho et al. 2009a; 

Ho et al. 2009b; Ho et al. 2011) and the requirement for various BAF complexes in embryo 

viability are well known, the essential molecular mechanisms though which BAF activity 

sustains viability in the early mouse embryo are less well characterised. While initial work 

showed that zygotic deletion of SMARCA4 resulted in a peri-implantation lethality, it was not 

clear how development failed in these mutants (Bultman et al. 2000). The fact that null 

blastocysts were morphologically normal at embryonic day 3.5 and were able to attach to 

plastic substrate (after removal of the zona pellucida) was an indication that the TE-ICM 

decision may not require zygotic BRG1 activity. Knockdown of SMARCA4 in zygotes, which 

would deplete both maternally-supplied and zygotic mRNA, did not prevent formation of a 

morphological blastocyst, however antibody staining indicated evidence for specification 

defects in trophectoderm. Specifically, TE cells were found to inappropriately express OCT4 

and NANOG, two proteins which should only be expressed in epiblast cells (Wang et al. 

2010; Carey et al. 2015). While BRG1 and CHD4 appear to exert opposing effects on 

chromatin accessibility (Morris et al. 2014; de Dieuleveult et al. 2016), it appears that both 

activities are necessary for complete silencing of epiblast lineage genes during TE 

specification, and/or for maintaining the silent state of these genes. 

 



More recent work has demonstrated that the BAF155 subunit is essential for accurate 

lineage specification in early mouse embryos (Panamarova et al. 2016). This study found 

that loss of BAF155 resulted in ectopic expression of the epiblast marker NANOG in the TE, 

while increased BAF155 expression resulted in upregulated expression of differentiation 

genes CDX2 and SOX17. This study further showed that BAF155 acted to control the levels 

of stable BAF complex formation, and that extra-embryonic lineages showed increased 

complex formation or stability compared to embryonic lineages (Panamarova et al. 2016). This 

study raises the possibility that quantitative changes in the abundance or stability of chromatin 

remodellers could be play an important role in cell fate transitions. 

 

7. INO80 and ISWI chromatin remodellers 

Two more chromatin remodelling ATPase proteins that have been implicated in early 

embryonic development are the INO80 DNA helicase and the SNF2H (SMARCA5) ATPase 

(Lazzaro and Picketts 2001; Bao and Shen 2007; Gerhold and Gasser 2014), although what 

their functions might be in preimplantation development are not yet clear. Knockdown of 

INO80 in zygotes severely impaired blastocyst formation after in vitro culture (Wang et al. 

2014), but zygotic deletion of INO80 had no detrimental effects until gastrulation, with zygotic 

INO80-null blastocysts appear morphologically normal and appropriately express markers of 

epiblast and PrE (Lee et al. 2014; Qiu et al. 2016). These observations indicate either that 

maternally-contributed INO80 plays an essential role in early cleavage stages, or that the 

embryo is able to compensate for a genetic deficiency, but cannot similarly compensate for a 

knockdown (Rossi et al. 2015). Similarly, a large proportion of zygotes injected with siRNA 

against SMARCA5 displayed developmental failure prior to reaching the blastocysts stage 

(Torres-Padilla and Zernicka-Goetz 2006), whereas embryos homozygous null for 

SMARCA5 showed no defects prior to implantation (Stopka and Skoultchi 2003). SMARCA5 

knockdown embryos showed reduced expression of a number of genes, indicating that the 

observed embryonic lethality is indeed due to changes in gene expression (Torres-Padilla 

and Zernicka-Goetz 2006). These studies demonstrate that in contrast to BRG1 and CHD4, 



neither zygotic INO80 nor zygotic SNF2H are necessary for successful completion of the first 

cell fate decisions or for implantation. Rather, protein derived from maternally-supplied 

mRNA from both INO80 and SMARCA5 is essential for viability of early cleavage stage 

embryos. 

 

8. Concluding remarks 

Chromatin remodelling proteins play key roles in ensuring cell fate decisions occur correctly 

throughout mammalian development. While CHD4 and BAF proteins are essential for the 

first cell fate decision, zygotic SNF2H and INO80 are required only after implantation. In 

contrast, while maternally-derived BRG1 is dispensable for the viability of cleavage stage 

embryos, both INO80 and SNF2H made from maternally-deposited mRNA play essential 

roles. This simple relationship illustrates the separation of function that exists between these 

very different chromatin remodelling proteins.  

 

Until recently genetics was the only concrete method of determining whether a specific 

chromatin remodeller was necessary during preimplantation development, but this provided 

little mechanistic information, if any. The recent explosion in the abundance of single cell 

analysis methods allows us to better understand how cell fate decisions are made, and to 

determine why, at the molecular level, specific proteins are necessary for cell fate decisions 

(Nimmo et al. 2015). Such work has demonstrated that both CHD4 and the BAF complex are 

indispensable for ensuring that only the appropriate gene expression programme is active in 

cells undergoing the ICM vs TE cell fate decision, and that complex abundance or stability 

could be an important factor in successful completion of the first cell fate decision. As the 

limits of molecular analyses continue to recede, so the molecular details of exactly how each 

remodeller exerts its functions in early embryos will come into increasingly sharper focus. 
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