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Sex differences in frontal lobe connectivity in adults with
autism spectrum conditions
EA Zeestraten1, MC Gudbrandsen1, E Daly1, MT de Schotten1, M Catani1, F Dell'Acqua1, M-C Lai2,3,4, ANV Ruigrok2, MV Lombardo2,5,
B Chakrabarti2,6, S Baron-Cohen2,7, C Ecker1, MRC AIMS Consortium11, DGM Murphy1,8,10 and MC Craig1,9,10

Autism spectrum conditions (ASC) are more prevalent in males than females. The biological basis of this difference remains unclear.
It has been postulated that one of the primary causes of ASC is a partial disconnection of the frontal lobe from higher-order
association areas during development (that is, a frontal ‘disconnection syndrome’). Therefore, in the current study we investigated
whether frontal connectivity differs between males and females with ASC. We recruited 98 adults with a confirmed high-
functioning ASC diagnosis (61 males: aged 18–41 years; 37 females: aged 18–37 years) and 115 neurotypical controls (61 males:
aged 18–45 years; 54 females: aged 18–52 years). Current ASC symptoms were evaluated using the Autism Diagnostic Observation
Schedule (ADOS). Diffusion tensor imaging was performed and fractional anisotropy (FA) maps were created. Mean FA values were
determined for five frontal fiber bundles and two non-frontal fiber tracts. Between-group differences in mean tract FA, as well as
sex-by-diagnosis interactions were assessed. Additional analyses including ADOS scores informed us on the influence of current
ASC symptom severity on frontal connectivity. We found that males with ASC had higher scores of current symptom severity than
females, and had significantly lower mean FA values for all but one tract compared to controls. No differences were found between
females with or without ASC. Significant sex-by-diagnosis effects were limited to the frontal tracts. Taking current ASC symptom
severity scores into account did not alter the findings, although the observed power for these analyses varied. We suggest these
findings of frontal connectivity abnormalities in males with ASC, but not in females with ASC, have the potential to inform us on
some of the sex differences reported in the behavioral phenotype of ASC.
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INTRODUCTION
Autism spectrum conditions (ASC) affect ~1% of the UK population,1

with a male:female prevalence ratio estimated at 2–5:1.2 The cause(s)
of this sex difference remains unclear.2 One putative explanation is
that only the most ‘severe’ or evident cases of females with ASC are
diagnosed, as it is thought females may be more able to compensate
for, or mask, their disabilities related to autism.3–7 Others have
argued that ASC in females is not more severe, but represents a
partially different behavioral phenotype,7 which may be under-
detected by current diagnostic criteria.8 Demand avoidance and
extreme determination are, for example, more commonly associated
with the behavioral phenotype in females with ASC.3,4 The limited
neuroimaging studies to date, have further shown that in different
age ranges, neuroanatomical features of ASC in females seem to
involve different structures or growth trajectories than males with
ASC.9–15 However, to date there have been insufficient well-powered
studies into the neurological basis of sex differences in ASC. This has
contributed to the current difficulties in our understanding for the
roots of the skewed male:female prevalence ratio.

Previous structural neuroimaging studies in females with
ASC10,16,17 reported little overlap of atypical brain areas found in
meta-analyses of predominantly male samples.18,19 Further, we
recently reported significant differences in the regional gray and
white matter neuroanatomy of ASC when directly studying
differences between adult males and females with ASC.10

However, advances in neuroimaging technology have enabled
research to focus on the brain as a network of connections. Also, it
has been postulated that one of the primary causes of ASC is
underpinned by a partial disconnection of the frontal lobe from
higher-order association areas during development.20–22 Studies
of connectivity in ASC, using for example diffusion tensor imaging
(DTI) tractography to visualize connectivity fiber tracts are of great
research interest.
The hypothesis that ASC is associated with a frontal disconnec-

tion syndrome has been supported by DTI tractography and tract-
based spatial statistics (TBSS) studies. These studies have reported
differences in the microstructure of tracts such as the inferior
fronto-occipital fasciculus (IFOF) and uncinate fasciculus (UF) in
ASC.22–24 White matter (WM) tracts central to language, the
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arcuate fasciculus (AF),22 and socioemotional processing, such as
the inferior longitudinal fasciculus (ILF), have also been shown to
have reduced FA in male-only or male-dominated studies of
ASC.23,25–27

However, previous studies often focused on males with ASC,
and it remains unclear whether these differences also exist in
females with ASC. In the light of our previous findings we
hypothesized there would be minimal overlap in these tracts
when analyzing how males and females with ASC, respectively,
differ from typically developing males and females. If correct, this
would lend support to the hypothesis that sex differences in
behavioral phenotype in ASC are, in part, underpinned by
differences in brain connectivity.

MATERIALS AND METHODS
Participants and assessment
Sixty-one right-handed male adults with a diagnosis of ASC (mean age:
26.0 ± 7.0 years; range: 18–41), 61 neurotypical male controls (mean age:
28.5 ± 6.8 years; range: 18–45), 37 adult ASC females (mean age: 25.4 ± 6.1
years; range: 18–37) and 54 neurotypical female controls (mean age:
27.9 ± 7.3 years; range: 18–52) were included and underwent MRI with DTI
and neurobehavioural assessment at the Institute of Psychiatry, Psychology
and Neuroscience, King’s College London (males with ASC: 35; male
controls: 33; females with ASC: 10; female controls: 21) or the Autism
Research Centre, University of Cambridge (males with ASC: 26; male
controls: 28; females with ASC: 27; female controls: 33) as part of the UK
Medical Research Council Autism Imaging Multicentre Study (MRC AIMS).
Inclusion criteria for the ASC group included a diagnosis of autism

according to the International Statistical Classification of Diseases, 10th
Revision (ICD-10) research criteria. A childhood diagnosis was confirmed
using the Autism Diagnostic Interview-Revised (ADI-R).28 These interviews
on retrospective childhood behaviors with parents or carers confirmed all
individuals with ASC exceeded cutoff scores within the domains of social
interaction, communication, and repetitive and stereotypical behaviors.
However, failure to reach cutoff was permitted by one point in any one of
the domains. Current symptoms within the domains of impaired
communication and reciprocal social interaction were measured using
the Autism Diagnostic Observation Schedule (ADOS), module 4.29 The
ADOS is an observational assessment of standardized activities, which
allows an examiner to observe behaviors of interest in an ASC diagnosis.
The occurrence of behaviors and interactions during the activities is rated,
with higher scores representing behavior more typically associated with
ASC. As all study participants were adults, these observations represent
current ASC severity. The Wechsler Abbreviated Scale of Intelligence30 was
used to assess overall intellectual ability. All individuals reached full-scale
intelligence quotient (IQ) values 470 (details in Table 1). Adults with a
history of head injury, genetic disorder associated with autism (for
example, fragile X syndrome or tuberous sclerosis) or other neurological
conditions that may affect brain function (for example, epilepsy) were
excluded from the study. Further, exclusion criteria included drug abuse
(for example, alcohol) and regular use of mood stabilizers, benzodiazepines
or current antipsychotic medications.
In accordance with ethics approval by the National Research Ethics

Committee, Suffolk, England, written informed consent was obtained from
all participants.

DTI acquisition protocol and analyses
MRI scans were performed using a 3-tesla GE magnet and an 8-channel
receive-only radio frequency head coil (GE Medical Systems HDx, King’s
College London, UK and University of Cambridge, UK). Diffusion weighted
images were acquired with a spin-echo pulse sequence together with
echo-planar readout providing 2.4 mm3 isotropic resolution and whole
head coverage. A double refocusing pulse was used to reduce eddy
current induced artefacts. A set of 60 slices without slice gap was obtained
with a field of view of 30.7 × 30.7cm2 and an acquisition matrix of
128× 128. At each slice location 6 non-diffusion-weighted and 32
diffusion-weighted volumes with different non-collinear diffusion direc-
tions with a b-value of 1300 s mm− 2 were acquired. Using a peripheral
gating device placed on the participants’ forefinger, the acquisition was
cardiac gated with a repetition time (TR) equivalent to 20R-R intervals and

an echo time (TE) of 104.5 ms. More details on the acquisition sequence
are provided by Jones et al.31

Pre-processing and generation of fiber tract data were performed using
ExploreDTI.32 This consisted of correction for head motion and eddy
current induced geometric distortions of raw diffusion-weighted data;33

further details can be found in Catani et al.22 Subsequently, the diffusion
tensor was estimated in each voxel using a nonlinear least square
method34 and fractional anisotropy (FA), a measure giving information on
the degree of directionality of the diffusion tensor, was determined in
each voxel.
As the number of streamlines and the tract volume may vary

substantially between participants, we used a region of interest approach
within a recent DTI atlas35–37 (http://www.natbrainlab.com). We coregis-
tered individual whole-brain FA volumes to the FMRIB58 template using
nonlinear registration as implemented in the FSL software package38

(http://www.fmrib.ox.ac.uk/fsl). Bilaterally, we defined five specific brain
regions in each hemisphere in the FMRIB58 space containing fiber tracts
originating in the frontal lobe: the cingulum (the fiber bundle that runs
around the corpus callosum with the cingulated gyrus), UF (the bundle of
fibers connecting the medial and lateral orbitofrontal cortex with the
anterior temporal lobe), IFOF (the long ventral bundle running from the
orbitofrontal cortex to the ventral occipital lobe) and anterior and long
segments of the AF (anterior: connecting the precentral, inferior frontal
and middle frontal gyri, known as Broca’s territory, to Geschwind’s territory
in the supramarginal gyrus; long: the fiber bundle between Broca’s
territory and Wernicke’s territory in the superior and middle temporal
lobe). We also identified two non-frontal fiber bundles, the inferior
longitudinal fasciculus (ILF; connecting the anterior temporal lobe to the
central occipital lobe) and posterior segments of the AF (linking Gesch-
wind’s and Wernicke’s territories), in order to identify between-group
differences in FA.39 The tracts analyzed were based on recent findings of
frontospecific abnormalities in adult males with ASC, which were absent in
the ILF and posterior segments of the AF.22

Statistical analyses
Statistical testing was undertaken using SPSS 20.0 (IBM, Armonk, NY, USA)
in which statistical significance was defined as Po0.05 (two-tailed) for all
analyses.
Independent sample t-tests were used to calculate demographic

differences between sexes. To compare tract-specific FA values between
groups, multivariate analysis of covariance (MANCOVA) models were used.
In these models tract mean FA values served as dependent variables,
diagnostic group and sex as fixed factors, and scanning centre, age and
FSIQ were added as covariates. We also tested whether there was an
interaction effect over-and-above the main effects of sex and diagnosis
separately (that is, the effect of an ASC diagnosis differs in strength and/or
direction between sexes). Holm–Bonferroni correction was applied to
account for multiple comparisons.
To exclude current symptom severity (that is, determined by the ADOS)

as the driving factor for significant interactions, we compared FA between
ASC individuals who did and did not reach ADOS cutoff for ‘autism
spectrum’ (that is, ADOS Total score of 7) scores using a MANCOVA for
each sex. In addition, we calculated Bayes factors post hoc. These factors
represent a weighted measure of the plausibility of the prior hypothesis
that there was no difference between groups, versus the presence of a
significant difference.40 They are particularly useful in the interpretation of
null results, as they can distinguish between the two underlying causes of
a null result (that is, a real absence of differences, versus insensitivity of the
investigated data to provide a significant result). For computing Bayes
factors, a freely available calculator was used (http://www.lifesci.sussex.ac.
uk/home/Zoltan_Dienes/inference/Bayes.htm) which required the data
summary (that is, mean difference between FA of those who did and
did not reach ADOS cutoff scores, per sex and the standard error of this
difference) and specification of the theory tested against the null
hypothesis. For the latter, a uniform distribution of plausibilities of
population effects was assumed, with a lower limit of 0 and upper limit
defined as the maximum observed difference. Bayes factor thresholds of
0.33 and 3 were applied, where values below 0.33 suggest the data
support the prior hypothesis of no difference between groups, values
above 3 support the alternative hypothesis, and values in between suggest
the data are insensitive to draw conclusions from Dienes et al.40 In
addition, we determined ASC-specific sex differences with further
adjustment for ADOS Total scores (that is, ADOS Total is the sum of the
Social Interaction and Communication scores); together, this informed us
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the effect current ASC severity had on tract-specific mean FA values. To
ensure our study had sufficient power to detect significant sex differences
after ADOS adjustment, post hoc power analyses were performed using the
G*Power software package.41

RESULTS
Participant demographics
ASC groups were matched for age and severity of childhood
autistic symptoms (Table 1). ADOS scores were significantly higher
in ASC males (ADOS Total score males: 9.4 ± 4.3; females: 6.8 ± 6.0,
P= 0.016). Full scale IQ (FSIQ) did not differ between sexes in the
ASC groups, but FSIQ scores of female controls were higher than
those of females with an ASC diagnosis and both male diagnostic
groups. Comparisons between verbal and performance IQ scores
showed similar results. To adjust for the IQ differences, FSIQ was
included as a covariate for all following analyses.

Sex-specific effects and sex-by-diagnosis interaction effects
Comparison of tract mean FA values of male and female controls
revealed comparable microstructural integrity levels in all frontal
tracts. However, of the non-frontal tracts, the right ILF was shown
to have significantly higher mean FA in females, FA = 0.44004,
than males, FA = 0.43191 (F(1,113) = 6.82, P= 0.010).
In males we found significant diagnostic effects of lower tract

mean FA values in the ASC group compared to neurotypical
controls in all frontal tracts except the long segment of the right
AF (F(1,120) =0.60, P= 0.444) and all investigated non-frontal tracts
(Table 2). No significant diagnostic effects were found between
the female ASC and control groups. Significant interaction effects
were found for all frontal tracts (Figure 1) (suggesting that the
diagnostic group effects in males are significantly different from
the diagnostic group effects in females) except for the right long
segment of the AF. The non-frontal tracts revealed no sex-by-
diagnosis interactions (Table 2).

Effects of ASC severity
To explore how current symptom severity influenced our results,
we first completed analyses between those who scored above
and below ADOS ‘autism spectrum’ cutoff (that is, ADOS Total

score of 7)29 within both males and females with a childhood
autism diagnosis, as confirmed by the ADI-R.28 ADOS cutoff
groups only differed on levels of current symptom severity; they
were age and IQ matched. These analyses revealed no significant
differences within either sex. To further explore this null result,
Bayes factors were computed. These supported the findings of no
difference (N.B. Bayes factors for the left UF and right IFOF in
males, and left posterior segment of the AF in females, exceeded
the set threshold of 0.33; Table 3).
We subsequently investigated whether correcting for ADOS scores

altered the sex effect on tract differences within the ASC group.
In this analysis we focussed on tracts with significant interaction
values to minimize multiple comparisons effects. We found that all
differences remained significant after this adjustment (Table 4). Given
our sample size (N=57: total number of males and females for whom
the ADOS total score was available) and number of groups (k=2:
sex), a power analysis on the ADOS adjusted ASC-specific sex
differences suggested that the observed power of sex differences
varied between 0.53 and 0.95 at a specified alpha level of 0.05.

DISCUSSION
We report sex differences in frontal lobe connectivity in ASC. More
specifically, we report frontal abnormalities in adult males with
ASC that are absent in adult females with ASC. These results are
consistent with previous volumetric and diffusion imaging
findings10,11 and provide further support to the a priori hypothesis
that sex differences in the behavioral phenotype of ASC might be
underpinned by differences in brain connectivity.

Alternative explanations for sex differences in brain connectivity
The neuroanatomical differences found suggest intrinsic differ-
ences in WM organization of adult females with ASC compared to
their male counterparts. In addition, a normative sex difference
was found in the right ILF of control subjects, highlighting the
presence of structural differences in brain connectivity indepen-
dent of an ASC diagnosis. However, the sex differences in ASC
were unique to connections originating from the frontal lobe. The
frontal specificity of our finding is of potential importance because
of the involvement of the frontal lobe in higher-order cognitive

Table 2. Diagnosis effects and the sex-by-diagnosis interaction effect on fractional anisotropy values in frontal and non-frontal connectivity tracts

Frontal tracts Diagnostic effect in males Diagnostic effect in
females

Sex-by-diagnosis
interaction

F P-value F P-value F P-value

Anterior segment AF left 12.75 0.001a 0.09 0.764 8.80 0.003a

Anterior segment AF right 8.90 0.003a 1.56 0.215 10.97 0.001a

Long segment AF left 7.21 0.008a 0.18 0.675 5.32 0.022a

Long segment AF right 0.60 0.444 0.32 0.573 1.22 0.272
Cingulum left 13.15 o0.001a 0.01 0.943 7.67 0.006a

Cingulum right 9.87 0.002a 0.01 0.937 5.66 0.018a

Uncinate left 14.13 o0.001a 0.30 0.588 9.86 0.002a

Uncinate right 12.06 0.001a 1.37 0.245 12.33 0.001a

IFOF left 11.80 0.001a 0.09 0.771 5.89 0.016a

IFOF right 10.75 0.001a 0.00 0.988 6.04 0.015a

Non-frontal tracts
Posterior segment AF left 5.06 0.026a 0.00 0.975 2.73 0.100
Posterior segment AF right 4.30 0.040a 0.11 0.737 3.14 0.078
ILF left 8.92 0.003a 0.70 0.408 3.08 0.081
ILF right 6.02 0.016a 0.01 0.946 2.82 0.095

Abbreviations: AF, arcuate fasciculus; IFOF, inferior frontal occipital fasciculus; ILF, inferior longitudinal fasciculus; IQ, intelligence quotient. Scanning centre, age
and full scale IQ, were all included as covariates. aP-values are significant at a level o0.05 after Holm–Bonferroni correction.

Sex differences in frontal connectivity in autism
EA Zeestraten et al

4

Translational Psychiatry (2017), 1 – 8



functioning affected in ASC, and the postulated ‘disconnection
syndrome’ underlying ASC during development.20–22 The neuroa-
natomical sex differences observed in the current study may
partially account for the different behavioral phenotype of ASC
females.7

It could also be argued that our findings are due to a skewed
pattern of ASC symptom severity. It has been proposed, for
example, that in order for women to reach the threshold for a
clinical ASC diagnosis, they require the presence of more severe
brain abnormalities as they are better able to compensate for, or

Figure 1. Visualizations of investigated tracts and mean fractional anisotropy graphs showing significant sex-by-diagnosis interaction effects.
(a). Left anterior segment of the AF; (b) right segment of the AF; (c) left UF; (d) right UF. Bars indicate s.e. AF, arcuate fasciculus; ASC, autism
spectrum condition; UF, uncinate fasciculus.
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mask their autistic disabilities than men.3–6 This hypothesis is
supported by some findings of greater structural brain
abnormalities42,43 and a greater genetic mutation load44 in
females with ASC. To minimize this potential effect, we matched
the male and female groups on the severity of their childhood ASC
symptoms (that is, ADI-R scores28) as opposed to their current
symptom severity (that is, ADOS scores29). A consequence of this
approach was a sex bias with fewer women scoring above ADOS
cutoff than men. To determine whether this difference accounted
for our findings, we first carried out within-sex analyses based on
scoring above or below ADOS cutoff. These analyses revealed the
absence of mean FA differences in any of the tracts based on
ADOS status in either sex. This suggests that current symptom
severity does not modulate the FA values of frontal tracts. Further
post hoc analyses also found that, after correction for the ADOS
scores, the sex-by-diagnosis interactions remained significant.

However, these analyses were underpowered for some tracts (for
example, the left anterior AF segment, right cingulum and left UF)
and larger studies are still needed to verify these findings.
Another issue to consider is the developmental nature of ASC.

Although the observed variance in WM organization in our adult
sample might represent an innate sex difference, it is also
plausible that it is secondary to other experiential factors. For
example, due to culturally defined sex differences, girls with ASC
may receive more social interaction, and subsequently adopt
more intrapersonal skills than boys.45 This may exert a protective
effect on ASC etiology and/or a modulating effect on neurode-
velopment in females.46 Equally, early diagnosis of ASC in males
and under-detection of the condition in females may lead to
differences in the pharmacological management of common co-
morbidities (for example, depression, anxiety and attention deficit/
hyperactivity disorder) during development. Differential exposure
to medications could in turn influence critical periods of brain
development, such as myelination and pruning.47 Finally, sex-
specific physiological features, such as sex hormones (see below),
may also affect sexual differentiation of the brain.48 Longitudinal
studies of ASC are required to elucidate the sex-specific effects of
these factors on lifespan development in individuals with ASC.

Possible biological explanations: biological differences
ASC is a complex condition that involves multiple genetic
variations. The biological basis of sex differences in frontal brain
connectivity in ASC may additionally involve an interaction
between sex hormones and sex chromosomes. It has been
hypothesized, for example, that genes on the paternal X
chromosome protect against social and communication impair-
ments. This protective effect is absent in males due to their
inheriting a single maternal X chromosome.49 It has also been
postulated that differential peaks of testosterone during prenatal
neurodevelopment may predispose to sex differences in vulner-
ability to autism.50 Fetal testosterone concentration has been
reported to be positively associated with a number of autistic
traits in neurotypical males and females.51,52 Fetal testosterone
also influences brain structures associated with language and
communication in boys with ASC.53 Our findings therefore raise

Table 3. Sex-specific differences between fractional anisotropy values in adults with an ASC diagnosis with and without severe current symptoms as
measured using the ADOS total score

Frontal tracts Males (N = 59) 16 ADOS− and 43 ADOS+ Females (N= 36) 22 ADOS− and 14 ADOS+

F P-value Bayes factor F P-value Bayes factor

Anterior segment AF left 0.37 0.546 0.23 1.90 0.178 0.02
Anterior segment AF right 1.13 0.293 0.19 0.92 0.346 0.05
Long segment AF left 0.59 0.444 0.25 0.71 0.407 0.15
Long segment AF right 0.11 0.742 0.08 0.21 0.648 o0.01
Cingulum left 0.27 0.607 0.13 0.48 0.492 0.04
Cingulum right 0.03 0.870 0.01 0.12 0.734 0.02
Uncinate left 0.01 0.939 0.41a 3.48 0.072 0.01
Uncinate right 0.29 0.593 0.09 0.80 0.377 0.02
IFOF left 0.36 0.550 0.12 0.02 0.899 0.15
IFOF right 0.32 0.577 0.45a 0.09 0.761 0.09
Non-frontal tracts
Posterior segment AF left 0.35 0.557 0.13 0.05 0.826 0.54a

Posterior segment AF right 0.06 0.802 0.19 0.43 0.515 0.03
ILF left 0.13 0.718 0.05 0.23 0.634 0.32
ILF right 0.18 0.671 0.21 0.93 0.342 0.05

Abbreviations: ADOS, Autism Diagnostic Observation Schedule; ADOS− , ASC participants not reaching ADOS cutoff score of 7; ADOS+, ASC participants
reaching ADOS Total cutoff score of 7; AF, arcuate fasciculus; ASC, autism spectrum conditions; IFOF, inferior frontal occipital fasciculus; ILF, inferior longitudinal
fasciculus; IQ, intelligence quotient. Scanning centre, age, and full scale IQ, were all included as covariates. aBayes factors (40.33) indicate data sensitivity was
insufficient to draw conclusions from.

Table 4. ASC-specific sex differences in fractional anisotropy values of
frontal tracts corrected for current symptom severity as measured
using the ADOS total score

Frontal tracts Sex difference
ADOS corrected

Observed power

F P-value

Anterior segment AF left 4.02 0.048a 0.53
Anterior segment AF right 8.83 0.004a 0.86
Long segment AF left 8.80 0.004a 0.86
Cingulum left 6.80 0.011a 0.76
Cingulum right 4.64 0.034a 0.60
Uncinate left 4.70 0.033a 0.60
Uncinate right 7.01 0.010a 0.77
IFOF left 8.11 0.005a 0.83
IFOF right 12.29 0.001a 0.95

Abbreviations: ADOS, Autism Diagnostic Observation Schedule; AF, arcuate
fasciculus; ASC, autism spectrum conditions; IFOF, Inferior Frontal Occipital
Fasciculus; IQ, intelligence quotient. Scanning centre, age and full scale IQ,
were all included as covariates. aP-values are significant at a level o0.05.
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the question of whether (fetal) testosterone modulates the
neurodevelopment of frontal connectivity in ASC. Modulation of
frontotemporal functional connectivity by testosterone levels has
already been reported in neurotypical individuals,54 but to date
we are unaware of any studies on the putative effects of fetal
testosterone on WM organization. In brief, the contribution of
sexual differentiation mechanisms to sex-specific risks of devel-
oping ASC should be a key area for future studies.2

Future investigations should also include other regions of
interest and WM connections beyond those analyzed in the
present study. These could, for example, include the
cerebellum9,16 and temporoparietal junction10,17 as both regions
have previously been reported to exhibit sex differences in white
and/or gray matter volume. Such studies may also benefit from
the application of a 2 × 2 factorial design and TBSS. The main
advantage of TBSS is that it is a fully automated, operator-
independent approach that allows a ‘whole brain’ analysis of
global patterns of white matter integrity. It therefore has the
potential to identify WM differences in brain regions not
previously considered to be of importance and is resistant to
operator-bias.

CONCLUSION
We report sex differences in brain connectivity in ASC, with frontal
abnormalities in adult males with ASC that are absent in adult
females with ASC. These differences may explain some of the sex
differences reported in the behavioral phenotype of ASC. Larger
and longitudinal studies are required to replicate these findings
and to explore differences in brain connectivity between other
brain regions that could contribute to the sex differences seen in
behavioral phenotypes.
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