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und Technische Akustik

Technische Universität Berlin
10623, Berlin, Germany

georg.a.mensah@tu-berlin.de

2Engineering Department
University of Cambridge

CB2 1PZ, Cambridge, United Kingdom

3Department of Energy and
Process Engineering

Norwegian University of Science and Technology
7491, Trondheim, Norway

1

This is a preprint.
The paper is published in J. Eng. Gas Turbines Power, Paper No. GTP-18-1358
doi:10.1115/1.4041007



Abstract

Gas-turbine combustion chambers typically consist of nominally identical sectors arranged in a rotationally

symmetric pattern. However, in practice the geometry is not perfectly symmetric. This may be due to design

decisions, such as placing dampers in an azimuthally non-uniform fashion, or to uncertainties in the design

parameters, which break the rotational symmetry of the combustion chamber. The question is whether these

deviations from symmetry have impact to the thermoacoustic-stability calculation.

The paper addresses this question by proposing a fast adjoint-based perturbation method. This method can be

integrated into numerical frameworks that are industrial standard such as lumped-network models, Helmholtz-

and linearized Euler-equations. The thermoacoustic stability of asymmetric combustion chambers is investigated

by perturbing rotationally symmetric combustor models.

The approach proposed in this paper is applied to a realistic three-dimensional combustion chamber model

with an experimentally measured flame transfer function, which is solved with a Helmholtz solver. Results for

modes of zeroth, first, and second azimuthal mode order are presented and compared to exact solutions of the

problem. A focus of the discussion is set on the loss of mode-degeneracy due to symmetry breaking and the

capability of the perturbation theory to accurately predict it. In particular, an “inclination rule” that explains

the behavior of degenerate eigenvalues at first order is proven.



NOMENCLATURE
Roman
B FEM discretization matrix for the BCs
c0 Speed of sound
i Imaginary unit
K FEM discretization matrix for the second derivative
L Linear operator
M FEM discretization matrix for identity
p̂ Fourier transform of acoustic pressure
Q FEM discretization of the heat release operator
q0 Mean heat release rate
Si state-space matrices
s system state
t Time
u0 Mean velocity at which FTF was calculated
X,Y Matrices of the auxiliary eigenvalue problem
Z Impedance
z Eigenvector of the auxiliary eigenvalue problem

Greek
� Ratio of specific heats
" Design parameter
" Vector of design parameters
�"n Perturbation of the nth design parameter with respect to the baseline
µ Scaling perturbation parameter
⇢0 Density
! Complex eigenfrequency

INTRODUCTION
Thermoacoustic instabilities pose a major threat to modern gas turbines. They may cause severe damage to the
machines, limit their lifetime, lead to an increase of pollutant emissions, and trigger strong noise exposure [1, 2].
The availability of mathematical and computational design tools to the developers of new gas turbines is, thus,
essential [3]. Although Large-Eddy Simulations (LES) resolve the relevant physics down to small scales, they are
ine�cient when the e↵ects of a large set of parameters on the thermoacoustic stability need to be investigated. This
is because of the large computational cost of LES. Early-stage gas turbine development, thus, often resorts to linear
frequency-domain based approaches, such as low-order network models [4] and solutions of the thermoacoustic
Helmholtz equation [5].

Frequency-based models of thermoacoustic systems typically result in eigenvalue problems that are nonlinear
with respect to their eigenvalue – the complex eigenfrequency !

L(!, ") p̂ = 0, (1)

where L denotes a linear operator, p̂ the eigenvector, ! the corresponding eigenvalue that may appear under
nonlinear terms, and " a vector of design parameters. The dependency of the solutions on the design parameters
is, however, not explicit. Hence, several solutions of the eigenvalue problem have to be computed to infer explicit
relations for ! = !(") and p̂ = p̂("). This is generally a laborious and non-e�cient task.

Thermoacoustic problems depend on many parameters, but only a handful of modes are of interest. Adjoint
perturbation theory enables the calculation of explicit relations between the solutions of the perturbed eigenvalue
problem and the many design parameters. The calculation by adjoint methods is computationally cheap and
accurate. For these reasons, adjoint methods have been recently applied to thermoacoustic stability analysis [6, 7].

Adjoint methods were subsequently applied to uncertainty quantification of thermoacoustic stability with wave
approaches in annular combustors [8] and with a Helmholtz solver for a swirled turbulent longitudinal combustor
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[9]. To avoid the Monte-Carlo sampling, the probability that a dump combustor becomes unstable was calcu-
lated by high-order adjoint perturbation methods, which enabled for the calculation of the stability boundary with
an algebraic expression [10]. Focusing on annular combustors, [11] computed the thermoacoustic modes with a
Helmholtz solver by applying Bloch-wave theory to only one sector. By using adjoint methods, they calculated
the sensitivity of the degenerate eigenvalue to asymmetries in the flame transfer function due, for example, to vari-
ations in the mean flow. The gradient information was then embedded in an optimization algorithm to maximize
the damping by optimal placement and tuning of acoustic dampers in an annular combustor [12].

The aim of this paper is to apply high-order adjoint perturbation theory to practical annular combustors. Such
combustors have discrete rotational symmetry, which causes many of the eigenmodes to be degenerate. In other
words, two eigenmodes may be associated with the same eigenvalue, but di↵erent eigenvectors. This observa-
tion has significant consequences on the correct application of adjoint perturbation theory to symmetry-breaking
perturbations. Symmetry-breaking with regard to annular combustion chambers has been discussed in recent
experimental and analytical studies, e.g. [13, 14, 15, 16].

The paper is organized as follows. First, the theory of both frequency-domain-based thermoacoustic stability
assessment and adjoint perturbation theory is presented. Second, the theory is applied to the well-studied annular
combustor model, namely the MICCA combustor. Third, a short mathematical proof explaining the phase of the
first-order eigenvalue shifts in the complex plane is given. The paper concludes with remarks on why the findings
are useful for practical gas turbine design.

THEORY
Thermoacoustic Helmholtz Equation
By linearizing the equations of conservation of mass, momentum and entropy for a fluid at rest, the thermoacoustic
Helmholtz equation can be obtained after appropriate combinations of the equations [5]

r ·
�
c

2
0r p̂
�
+ !2

p̂ = �(� � 1)i!q̂. (2)

Here, c0 denotes the speed of sound, � is the ratio of specific heats, and p̂ and q̂ are the the Fourier transforms of
the pressure and heat-release fluctuations, respectively.

The (·)(t) 7! ˆ(·) exp(i!t) convention is used to define the Fourier transform. The fluctuating part of the heat
release rate is related to velocity fluctuations at a reference point by a flame transfer function (FTF)

q̂ =
q0

u0
FTF(!)~ure f · ~nref . (3)

In this relation, q0 denotes the mean heat-release rate, u0 is the mean velocity at the reference position, ~ure f is
the velocity fluctuation at a reference position, and ~nref is a unit vector, which represents a reference direction.
By relating the velocity fluctuation to the pressure gradient via the linearized momentum balance, the following
eigenvalue problem is obtained

r ·
�
c

2
0r p̂
�
+ !2

p̂ �
� � 1
⇢0

FTF(!)rp̂ref · ~nref = 0, (4)

where ⇢0 denotes the mean gas density at the reference position. The boundary conditions are provided by

p̂ �
ic0Z

!
rp̂ · ~n = 0, (5)

where Z denotes the impedance and ~n is the outward pointing unit normal vector.
For the current study the eigenvalue problem is discretized by a finite element method, which utilizes tetra-

hedral linear Lagrange elements. This leads to the following disrcretized form of the thermoacoustic Helmholtz
equation

⇣
K + !B + !2M +Q(!)

⌘
p = 0 (6)

where p is the discretized pressure fluctuation amplitude, K denotes the discretization matrix for r ·c2
0r-operation

(also known as the sti↵ness matrix), M refers to the discretization of the identity operation (also known as the

Mensah 4 GTP-18-1358



mass matrix), B is the discretization matrix arising from the boundary conditions, and Q denotes the discretized
heat release operator. [5] contains more details on finite element discretizations of the thermoacoustic Helmholtz
equation.

High order adjoint perturbation theory is an incremental procedure and, thus, requires accurate solutions of the
baseline solution to mitigate the error propagation through the di↵erent orders. Therefore, the nonlinear eigenvalue
problem is solved using a Newton-type iteration, known as the generalized Rayleigh quotient iteration [17, 18],
which is generally faster than the fixed-point iteration proposed in [5]. For the system solved in this study, the
Newton-type method converges to machine-precise solutions within 3 up to 7 iterations. It is also adjoint-based
and therefore poses the same mathematical requirements to the model as the adjoint perturbation theory. This also
makes it easy to be integrated in a software framework that is already designed to perform adjoint perturbation
theory such as PyHoltz1 – the open-source Helmholtz solver used for this study.

Adjoint perturbation theory
The aim of adjoint perturbation theory is to find asymptotic approximations for the dependence of the eigenvalues
and eigenfunctions on the parameters of the eigenvalue problem. This mathematical tool is successfully deployed
in the field of quantum mechanics to find solutions to the Schrödinger equation. Because the Schrödinger equation
has some mathematical similarities to the Helmholtz equation, quantum mechanics techniques can be useful for
the study of thermoacoustic instabilities (e.g., [6, 11]). The main advantage of adjoint perturbation theory is that
good approximations of the actual solutions are found at very low computational costs. This section summarizes
the main concepts of the theory.

The discussion starts with a single-parameter third-order theory, which can be turned into a multi-parameter
theory by means of a global scaling parameter. Starting from a known solution of the eigenvalue problem of
interest

L(!0; "0) p̂0 = 0, (7)

it is assumed that the change of the eigenmodes due to a change of the parameter "0 by a small perturbation �"
can be described by asymptotic power series

!(") = !0 + !1(�") + !2(�")2 + !3(�")3 + O((�")4) (8a)

p̂(") = p̂0 + p̂1(�") + p̂2(�")2 + p̂3(�")3 + O((�")4). (8b)

Note, that this assumption implies that the solution is analytic in ". To find the coe�cients appearing in these
power series, the ansätze (8) have to be substituted into the eigenvalue problem (1). Thence, the linear operator
itself is to be expanded into bivariate Taylor series in ! and ", and the result must be sorted by powers of �". For
each order k, this procedure yields an equation of the form

L0,0 p̂k = �rk � !kL1,0 p̂0, (9)

where
Lm,n ⌘

1
m!n!

@m+n
L

@!m@"n

�����! = !0
" = "0

(10)

For the first three orders the rk are explicitly given by

r1 ⌘L0,1 p̂0 (11a)

r2 ⌘L0,1 p̂1 +L0,2 p̂0 + !1
�
L1,0 p̂1 +L1,1 p̂0

�
+ !2

1L2,0 p̂0 (11b)
r3 ⌘L0,1 p̂2 +L0,2 p̂1 +L0,3 p̂0 + !1

�
L1,0 p̂2 +L1,1 p̂1 +L1,2 p̂0

�

+ !2
1
�
L2,0 p̂1 +L2,1 p̂0

�
+ !2

�
L1,0 p̂1 +L1,1 p̂0

�
(11c)

+ 2!1!2L2,0 p̂0 + !
3
1L3,0 p̂0.

1http://fd.tu-berlin.de/forschung/projekte/thermoakustik/pyholtz/
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By definition, L0,0 is not invertible because it is evaluated at the eigenvalue !0. Therefore, for the linear
system (9) to have solutions, solvability conditions have to be fulfilled at each order

D
p̂
†

0

����rk � !kL1,0 p̂0
E
= 0, (12)

where p̂
†

0 denotes the adjoint solution of the eigenvalue problem (7) and h·|·i is an inner product. This condition is
also known as the Fredholm alternative.

If the problem is not degenerate, i.e., the eigenvalue !0 has algebraic multiplicity 1, Eq. (12) can be readily
solved for !k. Then, the result can be substituted back into (9) in order to obtain the eigenfunction correction,
p̂k. Instead, if the system is degenerate with multiplicity D > 1 (D is an integer) and the algebraic and geometric
multiplicities coincide, D solvability conditions have to be fulfilled simultaneously. This gives rise to an auxiliary
algebraic eigenvalue problem

Xkz � !kY z = 0, (13)

where Xk and Y are matrices whose entries are given by the following scalar products

[Xk]i, j ⌘

D
p̂
†

0, j

�����rk,i

E
and [Y ]i, j ⌘

D
p̂
†

0, j

����L1,0 p̂0,i
E
. (14)

It can be shown that the bases for the direct and the adjoint eigenspaces – span
�
p̂0,1, . . . , p̂0,D

�
and span

⇣
p̂
†

0,1, . . . , p̂
†

0,D

⌘

respectively – can be chosen such that Y becomes the identity matrix I , see e.g. [18].
If the auxiliary problem is degenerate at kth order, no split of the degenerate eigenspace is detected by the

asymptotic theory and the computation involves an auxiliary eigenvalue problem at the next order. Otherwise, the
degenerate eigenspace unfolds into subspaces corresponding to di↵erent eigenvalues; and the eigendirections of
the subspaces are obtained from the eigenvectors z of the first non-degenerate eigenvalue problem.

Mode degeneracy is a relevant problem for annular and can-annular combustors because it is induced by their
discrete rotational geometry. The multiplicity of the degeneracy induced by this symmetry is usually D = 2.

Up until now the perturbation theory has accounted for one parameter only. However, several parameters are
relevant in practical combustor design. By introducing a scaling parameter, multiple parameters can be tuned at
once. For example, if there are two design parameters "1 and "2 such that the eigenvalue problem reads

L(!, "1, "2) p̂ = 0, (15)

and the change from the parameter tuple ("1,0, "2,0) to the tuple ("1,0 + �"1, "2,0 + �"2) has to be computed, then
the problem can be rephrased as

⇥
L(!, "1,0, "2,0)(1 � µ) +L(!, "1,0 + �"1, "2,0 + �"2)µ

⇤
p̂ = 0. (16)

The parameter µ serves as a scaling parameter. For µ = 0 the base-line problem is obtained, while the equation
amounts to the fully perturbed problem when µ is set to 1. Hence, the parameter µ can be taken as a single
perturbation parameter to spur the asymptotic analysis described above [19]. Alternatively, it would be possible
to derive a fully multi-parameter perturbation theory – see e.g. [12] for a first-order multi-parameter theory with
application to thermoacoustics.

APPLICATION
The MICCA Annular Combustor
The theory described in the previous section is applied to a laboratory-scale annular combustor configuration,
which was designed and built at Laboratoire EM2C, CentraleSupelec (formerly Ecole Centrale Paris) and is re-
ferred to as MICCA [20]. Since its introduction it has been the topic of various experimental and numerical
studies, e.g. [21, 22, 23, 24]. The geometry features 16 burners and is depicted in Fig. 1.

The combustor has been investigated in many recent studies, both experimentally and numerically. The ge-
ometry is discretized using a mesh featuring 14032 points, which form 59840 tetrahedra. Special care was taken
to guarantee that the mesh-structure still features the discrete rotational symmetry. Unlike the real geometry, the
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mesh is not modeling the pressure transducer holes in the plenum. The mesh is shown in Fig. 2 , together with the
speed-of-sound field. The latter was set to be identical to the one presented in [23]. Also, the boundary conditions
were chosen to be the same as the latter study: a 41 mm end correction was added to the the combustion chamber
length, so that a pressure node can be set at the outlet and all other boundaries were specified to feature pressure
anti-nodes. The flame transfer function data are also taken from the measured data given in [23]. However, the
FTF incorporation into the model is di↵erent, due to the special requirements imposed by the adjoint analysis.
This will be discussed in the next chapter.

Flame Transfer Function
For the perturbation theory to work, all coe�cients should be di↵erentiable with respect to the eigenfrequency
!, which generally is complex-valued. However, the FTF data are measured experimentally only for purely
real eigenfrequencies, i.e. with zero growth rate. Hence, an appropriate modeling technique is needed, which
reproduces the discrete data samples to a satisfying degree and is analytic. Analyticity is a property required to
extrapolate the data into the complex plane in a unique and smooth way. For the present study the flame dynamics
in the complex plane is modeled by a state-space model. More precisely, measurement data from [23] (operating
point B) have been used to fit a linear, six-dimensional state space model, shown in Fig. 3.

The state-space model is described by the following system of di↵erential equations:

d
dt
s = S1s + S2u (17)

q = S3s + S4u (18)

Following the terminology of state space models, u and q denote the input and output to the system, i.e., the
reference velocity and corresponding fluctuation of the heat release rate, respectively. Moreover, s is the state
vector of the system, S1 the system matrix, S2 the input matrix, S3 the output matrix, and S4 the feedthrough
matrix.

In the complex frequency space, the explicit dependence of the heat release rate q on the velocity fluctuations
at the reference point, u, is expressed by

q̂ =
⇣
S3 (i!I � S1)�1 S2 + S4

⌘

|                             {z                             }
FTF

û. (19)

The matrices Si have been computed with the identification algorithm described in [25, 26]. Importantly, the
derivatives of (19) with respect to the eigenfrequency, which are needed in the adjoint-based analysis, can be
expressed in closed form and be e�ciently and accurately evaluated when the transfer function is expressed in
state space form. In particular, by introducing the Kronecker delta �i, j we can write

@k

@!k
FTF(!) = (�i)k

k!S3 (i!I � S1)�(k+1) S2 + S4�k,0 (20)

As explained in the introduction, the perturbation methods proposed in this paper can be also used for uncer-
tainty quantification [8, 9, 10] of the MICCA combustor.

Degeneracy of Thermoacoustic Modes
The analysis focuses on three azimuthal modes with frequencies of 176 Hz, 513 Hz, and 725 Hz, which are mode
#0, mode #1 and mode #2, respectively (Fig. 4). Mode #0 is of quarter-wave type in the longitudinal direction.
It is stable, featuring a damping rate of 537.9 s�1. The unusually high value damping rate may be attributed to
the lack of FTF data far from the real axis. Mode #1 is plenum-dominant and unstable, featuring a growth rate of
366.3 s�1. Mode #2 is also plenum-dominant and marginally-stable, with a growth rate of 0.1 s�1.

Because of the degree of rotational symmetry (N = 16), a 2⇡/16 rad rotation of a solution p̂ would also be
a valid solution ep to the eigenvalue problem, with the same eigenfrequency. If the azimuthal mode order of p̂ is
an integer multiple of N/2 = 8, the rotated solution ep and the non-rotated solution ep are linearly dependent. This
is because if the azimuthal order is an odd multiple of 8, the rotation angle comprises an odd multiple of half of
the azimuthal wavelength of the solution. Thus, the rotation establishes the relation ep = �p̂. If the azimuthal
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order is an even multiple of 8, the rotation angle comprises an even multiple of half of the azimuthal wavelength.
Consequently, the relation between the new and the original solution amounts to ep = p̂. If, however, the azimuthal
order of the solution is not an integer multiple of 8, the rotated and the original solution are linearly independent.

Hence, the rotational symmetry implies that all modes that do not feature an azimuthal mode order being a
multiple of 8 are (at least) two-fold degenerate, i.e. there are two linearly independent mode shapes corresponding
to the same eigenfrequency. Because there is no other relevant symmetry or special feature present in the model,
these modes are expected to have a degeneracy featuring a multiplicity of exactly 2. Indeed, mode #0 is not
degenerate while mode #1 and mode #2 are two-fold degenerate.

Perturbation Patterns
As test cases, perturbations of the flame dynamics are considered. These were realized by pre-multiplying the
flame transfer functions of the a↵ected burners by the complex-valued scaling factor (1 + �"n), such that gain and
phase of the nth flame transfer functions change accordingly.

Variations in the magnitude and phase of �" a↵ect the gain and phase of the perturbed transfer functions. In
this study, the gain of the perturbed flame transfer function is doubled with respect to the baseline configuration.
No perturbation of the FTF phase is considered here. This is accomplished by fixing �"n = �" = 1 at all perturbed
burners and �"n = 0 at the unperturbed burners, and using the scaling parameter µ as in Eq. (16). For µ = 0 and
µ = 1 the baseline and fully-perturbed configurations are obtained, respectively.

Three patterns of perturbed burners along the annulus are studied (Fig. 5). These patterns are chosen because,
from theoretical arguments discussed in more details in the next section together with the results, one expects that

– pattern A breaks the degeneracy of both degenerate modes, leaving one of the resulting eigenmodes un-
changed;

– pattern B breaks the degeneracy of mode #2 leaving an eigenmode unchanged, but not that of mode #1;

– pattern C completely breaks the symmetry and the degeneracy is resolved for both modes #1 and #2.

RESULTS
Figure 6 compares the evolution of the eigenfrequencies when predicted with the perturbation approach and com-
puted with a full Helmholtz solver for all considered cases. It can be generally stated that the higher the applied
perturbation order, the more accurate the predictions are.

Except for case #1B, the degenerate eigenvalues (modes #1 and #2) split into two. In particular, if a single
burner is perturbed, the degenerate eigenvalue (cases #1A and #2A) split into two branches, as expected. In partic-
ular, one branch departs from the unperturbed value, but the other does not. This can be explained by considering
that, in the two-dimensional degenerate eigenspace, one can always construct a mode shape for which a nodal
line exactly crosses the reference point of the perturbed flame transfer function. Therefore, the perturbation has no
e↵ect on this mode, and its eigenfrequency does not change. The eigenfrequency associated with the other branch,
however, will vary with the perturbation parameter. Qualitatively, this behavior is already correctly predicted by
the first-order theory. For the considered perturbation strength, the second-order theory yields quantitatively good
results. Only little improvement is obtained by using third-order corrections. Although doubling the gain might
be considered a nominally strong perturbation, it actually is not. This is because for this test case only a single
burner is perturbed, while the other fifteen remain unchanged. Thus, perturbation theory performs well in this test
case.

Also in case #2B one of the degenerate eigenvalues is una↵ected by the perturbation, whereas the other is
a↵ected. Since mode #2 is of second azimuthal order, there is always a solution in the 2-dimensional eigenspace
for which all four perturbed burners of pattern B align with nodal lines. Thus, perturbation pattern B does a↵ect this
mode (blue branch). However, for the linearly independent solution (orange branch), there is no such alignment.
Hence, the corresponding eigenvalue changes with a change in the perturbation parameter.

In case #1B, since the applied perturbation pattern only reduces the degree of rotational symmetry, the degen-
erate eigenspace does not unfold. In particular, one can always choose one of the two modes to be aligned with
two opposite perturbed burners (left-right), and the other mode to be aligned with the remaining two perturbed
burners (top-bottom). Although these two solutions are linearly independent, for symmetry reasons there can be
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no di↵erence between their eigenvalues – a rotation of 90� maps one onto the other. Therefore, the same change
for both branches is expected (and observed) at any order.

Lastly, when the gain of four burners that are arranged in an asymmetric manner is changed – pattern C –
the rotational symmetry is completely broken. Therefore, the degenerate eigenspace unfolds into two distinct
subspaces (for both mode #1 and #2). We note that, in the non-degenerate scenario, the evolution of the eigenfre-
quencies of cases #0B and #0C appear to be identical. This is however not true for other perturbation patterns (not
shown here). Future work will investigate why perturbation patterns B and C have the same e↵ect on mode #0.

An interesting observation is that the phase (but not the magnitude) of the first-order approximation to the
eigenfrequencies only depends on the mode considered, but not on the applied perturbation pattern or the branch
considered – ignoring the cases in which the eigenvalue is una↵ected by the perturbation, because the slope cannot
be uniquely defined for these branches. For example, the first-order slope of the orange branch of case #1A is the
same as that of all branches in #1B and #1C. This can be formally explained by exploiting both the rotational and
the reflection symmetries of the model set-up, and is the topic of the next section.

INCLINATION OF FIRST-ORDER SENSITIVITY
The test cases have shown that, if the same perturbation is applied to an arbitrary number of burners, the first-
order theory predicts the change in eigenfrequencies to have the same slope, regardless of how many burners are
perturbed. More precisely, if one specific mode is considered, the phase angle of the first-order eigenfrequency
correction \!1 is a function of the perturbation of the FTF only. This section shortly outlines a proof, showing
that the reason for this is the reflection symmetry of the unperturbed MICCA model.

Because of the rotational symmetry of the unperturbed MICCA model, the corresponding eigenfunctions can
be represented as Bloch-waves [27], i.e., functions of the following form:

p̂ = exp(ib') b(') (21)

Here, b is the Bloch-wavenumber and  b(') is a function periodic in the angular coordinate with periodicity
 b(') =  b(' + 2⇡

N
), where N denotes the degree of rotational symmetry of the considered, unperturbed system. If

the system features an additional reflection symmetry, as it is the case for the MICCA, then it can be shown that
the two Bloch-waves corresponding to the Bloch-wave numbers +b and �b feature the same eigenfrequency – see
[11] for an introduction into Bloch-wave theory with focus on thermoacoustic systems.

It can be seen that a scalar multiple of a Bloch-wave is also a Bloch-wave with the same Bloch-wave number
b. Furthermore, the angular derivative reads

@' exp(ib') b(') =ib exp(ib') b(') + exp(ib')@' b(') (22)

= exp(ib)
h
ib b(') + @' b('

⌘
]

|                   {z                   }
e b(')

. (23)

Because the function e b(') is also periodic with period 2⇡
N

, the angular derivative is still a Bloch wave with
Bloch-wavenumber b. As the linear operator L0,0 and all its derivatives Lm,0 are linear combinations of scalar-
multiplications and rotationally symmetric spatial derivatives, the product Lm,0 p̂ is a Bloch wave of Bloch-
wavenumber b if p̂ is Bloch wave of Bloch-wavenumber b.

It can be easily shown that Bloch waves featuring di↵erent Bloch-wavenumbers are pairwise orthogonal. Thus,
for a degenerate mode, the appropriate Bloch waves of Bloch-wavenumber +b and �b can be chosen as bases for
the direct and the adjoint eigenspace, { p̂b, p̂�b} and { p̂†

b
, p̂†
�b
} say. They are already bi-orthogonal with respect to

the inner product
D
p̂
†

i

���L1,0 p̂ j

E
. Hence, they can be scaled such that the auxiliary matrix Y in Eq. (13) equals the

identity matrix and the deployed bases are of Bloch-wave type. With this choice of basis-functions, the diagonal
elements of the first-order auxiliary matrix X1 are

D
p̂
†

±b

���L0,1 p̂±b

E
=

N�1X

n=0

D
p̂
†

±b

���L0,1 p̂±b

E
n
, (24)
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where the notation h·|·in denotes the contribution to the scalar product h·|·i from the sector covering an angle from
(n � 1

2 ) 2⇡
N

to (n + 1
2 ) 2⇡

N
– a so-called unit cell. Analogously,

D
p̂
†

⌥b

���L0,1 p̂±b

E
=

N�1X

n=0

D
p̂
†

⌥b

���L0,1 p̂±b

E
n

(25)

is found for the o↵-diagonal elements.
For a single perturbation parameter, i.e., when the same perturbation �" is applied to any number of burners,

the operator derivative in sector n is either L0,1 = �
��1
⇢0

FTF(!)r(·)ref · ~nref (identical in all perturbed burners)
or L0,1 = 0, depending on whether the unit cell contains a perturbed burner or not. Consequently, only sectors
containing a perturbed burner contribute to the scalar products. Moreover, because of the point support of the
flame response, only a single point of each of these sectors is actually relevant. The Bloch waves featuring Bloch-
wavenumber of opposite sign can be converted into each other by reflection across a symmetry line. This symmetry
line can be chosen to cross the reference point in sector 0 so that the values of the direct eigensolutions at this
point are identical. The same is true for the adjoint solutions. Due to Bloch-periodicity the values at the reference
points in the other sectors can then be expressed as p̂(0) exp(�i[±b]n 2⇡

N
) and p̂

†(0) exp(�i[±b]n 2⇡
N

). Plugging this
relation into the definition of the auxiliary matrix X1 – Eq. (13) – yields

X1 =
D
p̂
†(0)
���L0,1 p̂(0)

E
0

X

n2 per.

"
1 exp(i2bn

2⇡
N

)
exp(�i2bn

2⇡
N

) 1

#

|                                        {z                                        }
�

(26)

Because the matrix � is Hermitian, its eigenvalues are real. Thus, regardless the number of the perturbed
burners, the phase of �"

D
p̂
†(0)
���L0,1 p̂(0)

E
0

is the same as that of the eigenvalues of X1, modulo phase shift of ⇡ if
the eigenvalues of � are negative. Note that � depends on the distribution pattern of the perturbed burners only, and
it can argued that the Bloch-wavenumber b is equivalent to the azimuthal mode order. Hence,

P
n2per. exp(i2bn

2⇡
N

)
is the second coe�cient of the Fourier transform of the burner arrangement pattern. Thus, the above first-order
splitting theory has analogies with the so called C2n-criterion presented in [14].

The above rationale can be generalized to predict the first-order eigenvalue drift for di↵erent perturbations of
the burners. An interesting case is obtained when two separate sets of burners are perturbed in di↵erent ways such
that the FTF perturbations have the same phase and average to zero. For these perturbations, it can be proven that
the eigenvalue splits in opposite directions. We demonstrate this numerically without a formal proof in this paper;
a detailed discussion of this generalized theory is beyond the scope of the present contribution and left for future
work. We consider perturbation pattern C applied to mode #1; additionally, to compensate for the change in the
total FTF gain due to its local increase in the burners of pattern C, the gain of the other 12 is reduced at these
burners, so that the average FTF gain variation vanishes. For example, when �"1 = 1 at the 4 burners highlighted
in pattern C, then �"2 = �1/3 at the other 12 burners, so that, on average, �" = 0.

The variation of the eigenvalues for increasing values of the perturbation parameters is shown in Fig. 7. Despite
the variation of the eigenvalues being nonlinear, the first-order theory predicts the two degenerate eigenvalues to
split precisely in opposite directions. It is therefore impossible to make a certain combustor more stable by
applying this type of perturbation: if the growth rate of one of the split eigenvalues is decreased, as a consequence,
that of the other one is increased. This complements the findings of [28], in which it was shown that, in a weakly
coupled, linear limit, the most stable configuration in a combustor in which two types of flames can be arbitrarily
distributed is one that consists of a single type of flames. Whether this remains true at higher orders or in a
non-weak coupling limit could be addressed with an extension of the theory outlined above.

CONCLUSIONS
First, second, and third order adjoint perturbation theory was successfully used to predict the eigenfrequency evo-
lution of thermoacoustic modes in a practical three-dimensional combustor model. In particular, a possible split of
the degenerate modes into two non-degenerate solutions due to the loss of rotational symmetry can be accurately
predicted with this theory. The findings are useful for the fast assessment of the thermoacoustic stability of mul-
tiple combustor variants derived from the same rotationally symmetric baseline configuration. For the presented
model it takes about 24 s to solve the nonlinear eigenvalue problem for one set of parameters with the current
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implementation of PyHoltz. On the contrary, it just takes approximately 5 s to compute the polynomial coe�-
cients for the power series approximation with perturbation theory from one such solution. Even though it was not
done in this study, as the baseline configuration features a discrete rotational symmetry, its solution can be further
accelerated via unit-cell computations facilitated by Bloch-wave theory. Moreover, the theory is not limited to
Helmholtz-based models because it is a general technique for the approximative solution of nonlinear eigenvalue
problems. The adjoint-perturbation approach and the e↵ects of asymmetry, thus, analogously apply to network
models and models based on linearized Euler equations. The adjoint perturbation theory can also improve numer-
ical methods for finding solutions of the nonlinear eigenvalue problem associated with thermoacoustic stability
assessment. For example, in the current study, the iterative solver for the nonlinear eigenvalue problem has been
initialized with the predictions from perturbation theory to find the two branches into which a degenerate solution
splits due to symmetry-breaking, an otherwise complicated task as the two branches lie closely together.

Moreover, it was proven that the eigenfrequency of a mode departs with the same inclination – the phase in
the complex plane – from the expansion point in the complex plane if the perturbed burners are modified in the
same manner, regardless of how many burners are perturbed. The inclination rule can practically guide the design
process of new gas turbines, and the benefits of adjoint perturbation theory significantly improve the speed at
which a family of annular and can-annular combustor designs can be assessed. For both reasons the findings of
this study can contribute to the improvement of the industrial design process of new gas turbines.
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Figure 1: Annular combustor geometry used for the present study. The combustor is referred to as MICCA [20].
The domain of heat release is highlighted in orange and is defined as in [23].

Figure 2: Discretization mesh used in this study (left) and mean speed of sound c0 (right). The color scale ranges
from 348 m/s (purple) to 784 m/s (yellow).
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Figure 3: Comparison between the state space model approximation of the flame transfer function evaluated at
purely real values of ! (orange line) and the data measured from experiments [23] (blue dots).
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Figure 4: Pressure mode shapes of the three thermoacoustic modes considered in this study. They correspond to
an axial mode (#0) and plenum-dominant azimuthal modes (#1 and #2).
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Figure 5: Perturbation patterns under consideration. We set �"n = 1 at the burners highlighted in orange in these
patterns, and �"n = 0 at the others.
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Figure 6: Eigenvalue evolution of various modes (rows) for di↵erent perturbation patterns (columns). The black
curves with markers denote the exact results for perturbation parameters µ of 0.00 (I), 0.25 (#), 0.50 (#), 0.75
(#), and 1.00 (7). The degenerate eigenvalues might split into two branches – orange line with (x)-markers and
blue line with (+)-markers. The darker the shading, the higher the applied order of the perturbation theory. Note,
that for the cases #1A, #2A and #2B, an eigenvalue is una↵ected by the perturbations, and therefore it reduces to
a single (blue) point.
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Figure 7: Eigenvalues evolution for mode #1 when a modified version of pattern C is applied such that the average
change to the FTFs is 0. As expected, the first-order theory predicts a shift of the eigenvalues in opposite directions.
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