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Abstract
Given a finite, connected graph G, the lamplighter chain on G is the lazy random
walk X� on the associated lamplighter graph G� = Z2 � G. The mixing time of the
lamplighter chain on the torus Zd

n is known to have a cutoff at a time asymptotic to the
cover time ofZd

n if d = 2, and to half the cover time if d ≥ 3.We show that the mixing
time of the lamplighter chain on Gn(a) = Z

2
n × Za log n has a cutoff at ψ(a) times

the cover time of Gn(a) as n → ∞, where ψ is an explicit weakly decreasing map
from (0,∞) onto [1/2, 1). In particular, as a > 0 varies, the threshold continuously
interpolates between the known thresholds for Z2

n and Z
3
n . Perhaps surprisingly, we

find a phase transition (non-smoothness of ψ) at the point a∗ = πr3(1+
√
2), where

high dimensional behavior (ψ(a) = 1/2 for all a ≥ a∗) commences. Here r3 is the
effective resistance from 0 to∞ in Z3.
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1 Introduction

1.1 Setup

Suppose thatG is a finite, connected graphwith vertices V (G) and edges E(G), respec-
tively. Each vertex ( f , x)of thewreath product G� = Z2�G consists of a {0, 1}-labeling
f of V (G) and x ∈ V (G). There is an edge between ( f , x) and (g, y) if and only if
{x, y} ∈ E(G) and fz = gz for all z /∈ {x, y}. Recall that the transition kernel of the
lazy random walk X on G is

P(x, y) := Px [X1 = y] =
{

1
2 if x = y,
1

2d(x) if {x, y} ∈ E(G),
(1.1)

where d(x) is the degree of x ∈ V (G) and Px denotes the law under which X0 = x .
The lamplighter chain X� is the lazy random walk on G�. Explicitly, it moves from
( f , x) by

1. picking y adjacent to x in G according to P , then
2. if y 
= x , updating each of the values of fx and fy independently according to the

uniform measure on Z2 (with fz unchanged for all z /∈ {x, y}).
We refer to fx as the state of the lamp at x . If fx = 1 (resp. fx = 0) we say that the
lamp at x is on (resp. off); this is the source of the name “lamplighter.” Note that the
projection of X� to G evolves as a lazy random walk on G. It is easy to see that the
unique stationary distribution of X� is given by the product of the (unique) stationary
distribution of P(·, ·) and the uniform measure over the {0, 1}-labelings of V (G). See
Fig. 1 for an illustration of the lamplighter chain.

The purpose of this work is to determine the asymptotics of the total variation
mixing time of the lamplighter chain on a particular sequence of graphs. In order to
state our main results precisely and put them into context, we will first review some
basic terminology from the theory of Markov chains. Suppose that μ, ν are measures
on a finite probability space. The total variation distance between μ, ν is given by

‖μ− ν‖TV = max
A
|μ(A)− ν(A)| = 1

2

∑
x

|μ(x)− ν(x)|. (1.2)

The δ-total variation mixing time of a transition kernel Q on a graph Hwith stationary
distribution π(·) is given by

tmix(H, δ) = min

{
t ≥ 0 : max

x∈V (H)
‖Qt (x, ·)− π(·)‖TV ≤ δ

}
. (1.3)

Throughout, we let tmix(H) = tmix(H, 1
2e ). Lazy random walk X̂ on a family of graphs

(Hn) is said to exhibit cutoff if

lim
n→∞

tmix(Hn, δ)

tmix(Hn, 1− δ)
= 1 for all δ > 0. (1.4)
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Cut-off for lamplighter chains on tori: dimension… 607

Fig. 1 Shown is a lamplighter
configuration on Z2

5 (without the
wraparound edges). The state of
the lamps is indicated by the
colors. The circle gives the
position of the underlying
random walker (color figure
online)

For each x ∈ V (H) let τx = min{k ≥ 0 : X̂k = x} be the hitting time of x . With Ex

the expectation associated with Px , the maximal hitting time of H is given by

thit = thit(H) = max
x,y∈V (H)

Ey[τx ]

and the cover time of H is

tcov = tcov(H) = max
y∈V (H)

Ey

[
max

x∈V (H)
τx

]
.

1.2 Related work

The mixing time of G� was first studied by Häggström and Jonasson [13] in the case
of the complete graph Kn and the one-dimensional cycle Zn . Their work implies a
total variation cutoff with threshold 1

2 tcov(Kn) in the former case and that there is no
cutoff in the latter. The connection between tmix(G�) and tcov(G) is explored further
in [23] (see also the account given in [19, Chapter 19]), in addition to developing the
relationship between thit(G) and the relaxation time (i.e., inverse spectral gap) of G�,
and the relationship between exponential moments of the size of the uncovered set
U(t) of G at time t and the uniform, i.e., �∞-mixing time of G�. In particular, it is
shown in [23, Theorem 1.3] that if (Gn) is a sequence of graphs with |V (Gn)| → ∞
and thit(Gn) = o(tcov(Gn)) then

1

2
(1+ o(1))tcov(Gn) ≤ tmix(G�n) ≤ (1+ o(1))tcov(Gn) as n→∞. (1.5)

Relatedboundson theorder ofmagnitudeof the uniformmixing timeand the relaxation
with generalized lamps were obtained respectively in [15,16].

By combining the results of [1,10], it is observed in [23] that tmix((Z
2
n)
�) has a

threshold at tcov(Z2
n). Thus, (1.5) gives the best universal bounds, since Kn attains the

lower bound and Z
2
n attains the upper bound. In [21], it is shown that tmix((Z

d
n)
�) ∼

1
2 tcov(Z

d
n) when d ≥ 3 and more generally that tmix(G�n) ∼ 1

2 tcov(Gn) whenever (Gn)

is a sequence of graphs with |V (Gn)| → ∞ satisfying certain uniform local transience
assumptions. This prompted the question [21, Section 7] ofwhether for eachγ ∈ ( 12 , 1)
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608 A. Dembo et al.

there exists a (natural) family of graphs (Gn) such that tmix(G�n) ∼ γ tcov(Gn) as
n→∞. In this work we give an affirmative answer to this question by analyzing the
lamplighter chain on a thin 3D torus.

Cutoff for lazy random walks on G�n is further examined in [7] for a large class of
fractal graphsGn . They show that cutoff never occurs for strongly recurrentGn (namely
of spectral dimension ds < 2), while the sufficient conditions of [21] for cutoff at
1
2 tcov(Gn), apply for transient Gn (i.e. having ds > 2). However, such universality
seem to not hold in the setting of ds = 2, namely for the fractal analog of the 2D and
thin 3D torus considered here.

1.3 Main results

Fix a > 0. We consider the mixing time for the srw X�k , k ∈ N, on the lamplighter
graph (Gn(a))� for the 3D thin tori Gn(a) = (Vn, En) = Z

2
n × Zh of size n × n × h,

where h = [a log n]. From the main result of [9] we know that the cover time of the
2D projection of srw on Gn(a) to Z2

n is given by

t�cov :=
3

2
tcov

(
Z
2
n

)
where tcov

(
Z
2
n

)
:= 4

π
n2(log n)2(1+ o(1))

(where the factor 3
2 is due to the lazy steps of walk in the h-direction, which occur

with probability 1
3 ). Let

φ := πr3a (1.6)

where r3 denotes the resistance 0↔∞ for the srw in Z3. That is,

r3 = 1

6q
where q = P0[T0 = ∞], (1.7)

and T0 denotes the return time to zero by srw in Z3 (see [19, Proposition 9.5] for the
relation (1.7) and an explicit formula for q). In Sect. 2, we use the recent development
which relates cover time with the extremes of Gaussian fields, see [6], to establish the
following theorem.

Theorem 1.1 The cover time tcov(a, n) of Gn(a) by srw is given by

tcov(a, n) = (1+ o(1))C(a, n), as n→∞

where

C(a, n) := (1+ 2φ)t�cov (1.8)

and φ is as in (1.6).
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Remark 1.2 One expects the cutoff threshold transition from 2D to 3D behavior to
occur when tcov(Gn(a))/tcov(Z2

n) = O(1), while depending on the height multiplier
a. By Theorem 1.1 the correct scaling for this is log n (which as shown in Sect. 2, has
to do with the decay rate of DiamReff (Z

2
n), see (2.12)).

Our main result establishes cutoff for srw {X�k } on the lamplighter graph (Gn(a))�
and determines its location as a function of the height parameter a.

Theorem 1.3 Total-variation cut-off occurs for {X�k } on Gn(a) at 
(φ)t�cov, where


(φ) :=
⎧⎨
⎩
(
1+ (1− 1√

2
)φ
)2

, if φ ≤ √2+ 1,
1+2φ
2 , if φ >

√
2+ 1.

(1.9)

In particular, tmix = (
(φ)+ o(1))t�cov.

Comparing Theorems 1.1 and 1.3 we see that the ratio between the mixing time of
{X�k } and the cover time C(a, n) of the base graph by the srw {Xk}, monotonically
interpolates between the fraction of the cover time necessary to mix in two dimensions
(ratio 1) [9,23] and the fraction in three dimensions (ratio 1/2) [21]. This gives an
affirmative answer to the first question posed in [21, Section 7]. See Fig. 2 for a plot
of the quantities from Theorem 1.3 and how they relate to the bounds (1.5).

Wenote in passing that for allφ > 0 the value of tmix/t�cov → 
(φ) is bounded away
from its trivial bound 1. The latter corresponds to the mixing time for the lamplighter
graph on the 2D torus of side length n that corresponds to the base sub-graph (x1, x2, 1)
of Gn(a) (which as shown in [23] coincides with the cover time t�cov(1+ o(1)) for the
corresponding (lazy) 2D projected srw). However, when φ ≥ √2+ 1 asymptotically
tmix matches the elementary bound tmix ≥ (1+o(1))

2 C(a, n) (see (1.8), and [19, Lem-
mas 19.3 and 19.4]), which applies for the lamplighter chain on any base graph having
maximal hitting time which is significantly smaller than the corresponding cover time.

Fig. 2 The function 
 from (1.9) which gives the asymptotic ratio of tmix/t
�
cov. Also shown are the bounds

of 2φ + 1 and φ + 1
2 on tmix/t

�
cov; recall (1.5). The lower bound is attained by 
 starting at φ = 1+√2
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610 A. Dembo et al.

Remark 1.4 It is possible to adapt the proof of Theorem 1.3 so that it will yield a
similar conclusion in the setting of a more general 3-dimensional lattice confined to a
thin slab of size n × n × h.

Remark 1.5 Clearly, X�t is not mixed for as long as the uncovered set U(t) of X
exhibits some non-trivial systematic geometric structure that makes the corresponding
lamp states distinguishable from the uniform marking of V (G) by i.i.d. fair coin flips.
Further, the uniformity of U(t) typically determines the threshold t for mixing time
of X�, and indeed our work contributes to the literature on the geometric structure of
the last visited points by the srw (see [3,4,9,10,21,22]).

Remark 1.6 By the reasoning of Remark 1.5, up to technical issues, we expect that
tmix(G�n) is γ tcov(Gn)(1+ o(1)) for some γ ∈ (1/2, 1), provided that:

• The Green’s functions Gn(x, y) for Gn are bounded above on the diagonal. (This
should prevent clustering in U(γ tcov(Gn)) for γ sufficiently close to 1.)

• The decay of Gn(x, y) in terms of the distance between x and y is non-uniform
in n. (This should lead to clustering in U(γ tcov(Gn)) beyond γ = 1

2 , while [21]
show that a uniform decay rate results in the threshold at 1

2 tcov(Gn).)

One interesting family of graphs Gn of this type is given by the infinite cluster for
super-critical Bernoulli percolation restricted to a thin slab of size n × n × h.

1.4 Outline of the proof of Theorem 1.3

Fixing s ≥ 1, for any ρ, z ∈ [0, 1], the functions

bρ(z) = 1− ρ − s(1− z)2

1− ρ
, αρ(z) = sz2

ρ
2 + φ

, (1.10)

control the structure of U(st�cov). Specifically, for any ρ ∈ [0, 1] we associate with
each x ∈ Vn a type z ∈ [0, 1] according to the number of excursions of the srw, by
time st�cov, across the 2D cylindrical annulus of radii Mhnρ and M2hnρ , centered at
the 2D projection of x . Our parameters are such that for n→∞ followed byM →∞,
whp about n2bρ(z)+o(1) of the n2(1−ρ)+o(1) such annuli are of z-type and points x ∈ Vn
whose 2D projection is not far from the center of such z-type annulus, are unvisited by
the srw with probability n−αρ(z)+o(1). Further, in Sect. 3.1 we confirm the following
representation of 
(φ).

Lemma 1.7 For s ≥ 1 and ρ, z ∈ [0, 1] let bρ(z), αρ(z) be as in (1.10), with the
convention that b1(z) = −∞1{z 
=1}. Then, 
(·) of (1.9) emerges from the following
variational problem:


(φ) = inf{s ≥ 1 : ∀ρ, z ∈ [0, 1], bρ(z) ≥ 0 �⇒ αρ(z) ≥ ρ} (1.11)

= sup{s ≥ 1 : ∃ρ, z ∈ [0, 1], such that bρ(z) ≥ 0 and αρ(z) ≤ ρ}. (1.12)

Calling a z-typeρ-admissible if bρ(z) > 0,we know from (1.12) that for any s < 
(φ)

there exist ρ ∈ (0, 1) and ρ-admissible z′ ∈ (0, 1) with αρ(z′) < ρ. By continuity,
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the same applies for L large enough and ρk = k/L with k := [ρL]. Using this
approximation,we show in Sect. 6 that themaximumdiscrepancy at time st�cov between
“off-lamps” and “on-lamps” over a certain large enough (and spatially well separated)
collection A2D,k of 2D disjoint cylinders of radii hnρk , far exceeds its value under the
invariant (uniform) law for the srw {X�· }. This statistics distinguishes between the
law of the lamplighter chain at time st�cov and its stationary law, thereby yielding the
stated lower bound on tmix = tmix(Gn(a)�).

In contrast, by the dual variational problem (1.11), for s > 
(φ), if bρ(z) ≥ 0 then
the discrepancy of about n−αρ(z) between the fractions of “off-lamps” and “on-lamps”
within each such annulus, is buried under the inherent noise level of n−ρ . Thus, all such
statistics agree with the stated upper bound tmix ≤ 
(φ)t�cov. As explained in Sect. 3,
to actually upper bound tmix, one needs to control exponential moments of the size of
U(st�cov) (more precisely, the size of the intersection of the unvisited sites by two inde-
pendent randomwalks), which is the main technical challenge here. This is carried out
by carefully estimating the number of excursions within consecutive annuli. Specif-
ically, utilizing Hölder’s inequality it suffices to separately consider each z-type and
to do so on a certain sparse sub-lattice A of Vn , where at ρ = 0 the Bernoulli(n−αρ(z))

variables corresponding to z-type unvisited sites in A are approximately independent
even in terms of tail probabilities.

At any ρ > 0 the corresponding Bernoulli(n−αρ(z)) variables are no longer asymp-
totically independent. To circumvent this problem, we group the vertices of A into
nested, growing cylindrical annuli, centered at sub-lattices A2D,k that correspond to
ρk = k/L , k = 0, 1, . . . , L . Then, for each vertex/base point, the excursion counts
across different scale annuli define a type profile z ∈ [0, 1]L+1 (that coincide at k = 0
with its z0-type). We characterize the collection of all possible excursion count pro-
files by a careful extension of the concept of ρ-admissible z-types to that of admissible
z-types. The bulk of this article is thus about controlling the exponential moment of
the number of unvisited sites per fixed admissible z-type. Taking first n → ∞, then
M → ∞ and finally L → ∞, this is done in Sects. 3–5 via estimates on modified
Green functions and utilizing stochastic domination to employ large deviation tail
estimates for sums of i.i.d. variables.

We note in passing that while lower bounding tmix we find that the most likely way
to have z-type at the O(h) size 2D annulus corresponding to ρ = 0, is via the profile
z(ρ) = 1 − (1 − ρ)(1 − z). However, we also show in Sect. 6 that such profiles are
highly unlikely for the set U(st�cov). Thus, for a sharp upper bound on tmix one must
control the large deviations of all admissible z(·)-type profiles.

2 Cover time for the thin torus: proof of Theorem 1.1

The Gaussian Free Field (in short GFF), on finite, connected graph G = (V , E), with
respect to some fixed v0 ∈ V , is the stochastic process {ηu}u∈V with ηv0 = 0, whose
density with respect to Lebesgue measure on V \{v0} is proportional to
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612 A. Dembo et al.

exp

(
−1

4

∑
u∼v

|ηu − ηv|2
)

, (2.1)

where we used u ∼ v to denote {u, v} ∈ E . An important connection between GFF
and the srw on G is the following identity (see for example, [14, Theorem 9.17]):

E
[
(ηu − ηv)

2
]
= Reff(u, v). (2.2)

Here Reff(u, v) is the effective resistance between u, v ∈ V in the electrical network
associatedwithG by placing a unit resistor on each edge {u, v} ∈ E (andwe sometimes
use RG

eff(u, v) to emphasize the underlying graph G, in case of possible ambiguity).
Our proof of Theorem 1.1 relies on the following relation between the cover time

tcov(G) of G by srw and the maximum of the corresponding GFF.

Theorem 2.1 [6, Theorem 1.1] Consider a sequence of graphs Gn = (Vn, En) of
uniformly bounded maximal degrees, such that thit(Gn) = o(tcov(Gn)) as n→∞. For
each n, let {ηv}v∈Vn denote a GFF on Gn with ηvn0

= 0 for certain vn0 ∈ Vn. Then, as
n→∞,

tcov(Gn) = (1+ o(1))|En|
(
E

[{
sup
v∈Vn

ηv

}])2

. (2.3)

In light of the preceding theorem, the key to the proof of Theorem 1.1 is an estimate
on the expected supremum for the associated GFF. To this end, we start with few
estimates of effective resistances assuming familiarity with the connection between
random walks and electric flows (see for example [20, Chapter 2]).

Lemma 2.2 Let {Xn} denote the srw on the graph G = (V , E) started at some o ∈ V ,
independent of a Geometric random variable T . Then, there exists a current flow
θ = {θu,v : {u, v} ∈ E} with unit current source at o, current pv := P[XT = v]
reaching each v ∈ V , and the Dirichlet energy bound

D(θ) :=
∑

(u,v)∈E
θ2u,v ≤ 1

do
E

[
T∑

n=0
1{Xn=o}

]
.

Proof Let t = P[T ≥ 1] ∈ (0, 1). Set L(v) := 1
dv
E[∑T

n=0 1{Xn=v}] and N (u, v) :=∑T−1
n=0 1{Xn=u,Xn+1=v}, for each u, v ∈ V . Then, due to the memory-less property of

Geometric random variables, clearly

pv = 1v=o +
∑
u:u∼v

(E[N (u, v)] − E[N (v, u)]) = 1v=o + t
∑
u:u∼v

(L(u)− L(v)).
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Thus, the current flow θ�
u,v := t(L(u) − L(v)) on (u, v) ∈ E , together with external

unit current into o, results with current pv reaching each v ∈ V . Furthermore,

∑
(u,v)∈E

(
θ�
u,v

)2 = t2
2

∑
(u,v)∈E

(L(u)− L(v))2 ≤ t
∑
u∈V

(L(u)
∑

v:v∼u
(L(u)− L(v)))

≤ tL(o)
∑

v:v∼o
(L(o)− L(v)) ≤ L(o),

since t
∑

v:v∼u(L(u) − L(v)) = −pu ≤ 0 for all u 
= o, and is at most one
at u = o. ��

We will also need the following claim.

Lemma 2.3 For any graph G = (V , E), let R be the diameter for the effective resis-
tance (of the srw, namely with unit edge weights). Consider a collection of numbers
{ρv : v ∈ V } such that

∑
v∈V ρv = 0 and 1

2

∑
v∈V |ρv| = 1, and let � denote the

collection of all flows on G such that at any vertex v the difference between out-going
and in-coming flow is ρv . Then,

min
θ∈�{D(θ)} ≤ R.

Proof Let V+ = {v ∈ V : ρv ≥ 0} and V− = V \V+. We define a function
w : V+ × V− �→ [0,∞) by w(v, u) = |ρvρu |. By assumption on ρ, we see that

∑
u∈V−

w(v, u) = ρv for all v ∈ V+ and
∑
u∈V+

w(u, v) = −ρv for all v ∈ V−.

So in particular we have
∑

v∈V+,u∈V− w(v, u) = 1. For (v, u) ∈ V+ × V−, let θv,u

be an electric current which sends unit amount of flow from v to u (so in particular
D(θv,u) ≤ Reff(v, u)). Denoting θ :=∑v∈V+,u∈V− w(v, u)θv,u , by our construction
of w(·, ·) we see that θ ∈ �. It remains to bound the Dirichlet energy of θ . By
Cauchy-Schwarz inequality, we get that

D(θ)=
∑
e∈E

θ2e =
∑
e∈E

⎛
⎝ ∑

v∈V+,u∈V−
w(v, u)θv,u

e

⎞
⎠

2

≤
∑
e∈E

∑
v∈V+,u∈V−

w(v, u)
(
θv,u
e

)2
≤

∑
v∈V+,u∈V−

w(v, u)D(θv,u) ≤ R,

completing the proof of the lemma. ��
Lemma 2.4 With Reff(·, ·) denoting effective resistances on Gn(a) = (Vn, En), we
have that for all x, x ′ ∈ Vn,

Reff(x, x
′) ≤ 2r3 + 1

aπ
+ o(1). (2.4)
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614 A. Dembo et al.

Furthermore, for x = (y, 0) and x ′ = (y′, 0) where y, y′ ∈ Z
2 and ‖y − y′‖Z2

n
≥

2a log n, we have

Reff(x, x
′) = 2r3 + 1

πa log n

(
log ‖y − y′‖Z2

n

)
+ o(1). (2.5)

Proof Fixing arbitrary x, x ′ ∈ Vn we establish (2.4) upon constructing a flow of
1+ o(1) current from x to x ′ whose Dirichlet energy is at most 2r3 + 1/(aπ)+ o(1).
To this end, for {Xn} a srw on Gn(a) and an independent Geometric random variable
T of mean (log n)4, let pv = Px [XT = v] for v ∈ Vn , and p[i] := ∑

v∈Z2
n×{i} pv

(namely, the probability that the “vertical” coordinate of XT is at i ∈ Zh). We claim
that

1

6
Ex

[
T∑
t=0

1{Xt=x}

]
= r3 + o(1). (2.6)

In order to see the lower bound in (2.6), we note that the random walk is the same as
a random walk in Z3 in the first h = [a log n] steps, during which period the expected
number of visits accumulated at x is already 6(r3+o(1)). Setting N = (log n)5, since
E(T 1T≥N )→ 0, we get the matching upper bound upon showing that

Ex

[
N∑
t=h

1{Xt=x}

]
= o(1). (2.7)

To this end, with A denoting the event that simultaneously for all h ≤ t ≤ N , the
number of vertical steps made by the srw up to time t is in the range (t/10, t/2), we
clearly have that P[Ac] ≤ (log n)−r for any r finite and all n large enough. Therefore

Ex

[
N∑
t=h

1{Xt=x}

]
≤ NP[Ac] + Ex

[
N∑
t=h

1{Xt=x, A}

]
= o(1)+

N∑
t=h

O(1)√
log n

O(1)

t
= o(1),

with the term O(1)√
log n

upper bounding the probability of the srw returning at time t

to its starting height (referring to its vertical coordinate), and O(1/t) bounding the
probability of its 2D projection returning to the starting point, respectively (we obtain
their independence upon conditioning on the number of vertical steps the srw made
up to time t). Combined with (2.7), this completes the verification of (2.6).

Now, by (2.6) and Lemma 2.2, there exists a unit current flow θ(x) out of x , with
current inflow of pv into each v ∈ Vn and

D(θ(x)) =
∑

(u,v)∈En

(
θ(x)
u,v

)2 ≤ r3 + o(1). (2.8)
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Setting p′v := Px ′ [XT = v] and p′[i] :=
∑

v∈Z2
n×{i} p

′
v , we have by the same reasoning

a unit current flow θ(x ′) out of x ′, with current inflow p′v into each v ∈ Vn and

D
(
θ(x ′)

)
≤ r3 + o(1). (2.9)

Furthermore, it is clear that with probability 1−o(h−4/3)we have T ≥ h5/2, and thus
by time T the vertical component of {Xt } is so nearly uniformly distributed that (here
we use the fact that the mixing time for a cycle of size k is O(k2) and we apply this
fact to the random walks started at x and x ′ separately)

max
i

∣∣hp[i] − 1
∣∣ = o(1) = max

i

∣∣hp′[i] − 1
∣∣. (2.10)

Next, fixing i ∈ Zh set ρi , ρ′i ∈ [0, 1] such that

ρi p[i] = ρ′i p′[i] = min
{
p[i], p′[i]

}
so there exist zero-net current flows on the sub-graph Z2

n × {i} of Gn(a), with outflow
ρi pv and inflow ρ′i p′v at each v ∈ Z

2
n×{i}. Let θ i denote the flow of minimal Dirichlet

energy among all such current flows and |θ i | = 1
2

∑
v∈Z2

n×{i} |ρi pv − ρ′i p′v| its total
flow. Then, by Lemma 2.3 we have that

D(θ i ) ≤ |θ i |2DiamReff

(
Z
2
n

)
,

where DiamReff (Z
2
n) is the diameter for the resistance metric in the torusZ2

n . Note that

∑
i

(θ i )2 ≤ max
i
|θ i |

∑
i

|θ i | ≤ max
i
|θ i |,

and that thanks to (2.10),

|θ i | ≤ 1

2

∑
v∈Z2

n×{i}
|ρi |pv + |ρ′i |p′v = min

{
p[i], p′[i]

} ≤ 1+ o(1)

h
. (2.11)

Combining the three preceding inequalities we obtain that

∑
i

D(θ i ) ≤ 1+ o(1)

h
DiamReff

(
Z
2
n

)
.

Combined with the standard estimate

DiamReff

(
Z
2
n

)
≤ 1+ o(1)

π
log n (2.12)
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(see, e.g, [5, Lemma 3.4]), we arrive at

∑
i

D(θ i ) ≤ 1+ o(1)

h
DiamReff

(
Z
2
n

)
≤ 1

aπ
(1+ o(1)). (2.13)

Consider now the current flow θ� from x to x ′ obtained by combining θ(x) with the
union of all flows {θ i , i ∈ Zh} and the current flow −θ(x ′). The net amount of current
reaching sub-graph Z2

n × {i} is then p[i] − p′[i], so by (2.10) the flow from x to x ′ via
θ� is 1+o(1), whereas by (2.8), (2.9) and (2.13), its Dirichlet energy is at most

D
(
θ(x)

)
+
∑
i

D(θ i )+D
(
θ(x ′)

)
≤ 2r3 + 1

aπ
+ o(1),

completing the proof of the upper bound (2.4).
For the lower bound, we let Qx and Qx ′ be cubes of side-length log log n centered

around x and x ′, respectively. Let Ga,n be the graph obtained by identifying ∂Qx (also
∂Qx ′ ) as a single vertex, as well as identifying {(z, i) : 1 ≤ i ≤ h} as a single vertex
for each z ∈ Z

2
n . By Rayleigh monotonicity principle, we see that

Reff(x, x
′) ≥ Reff(x, ∂Qx )+ Reff(x

′, ∂Qx ′)+ R
Ga,n
eff (∂Qx , ∂Qx ′).

It is clear that Reff(x, ∂Qx ) = Reff(x ′, ∂Qx ′) = r3 + o(1). In addition, by the triangle
inequality we see that

R
Ga,n
eff (∂Qx , ∂Qx ′) ≥ R

Ga,n
eff (x, x ′)− R

Ga,n
eff (x, ∂Qx )− R

Ga,n
eff (x ′, ∂Qx ′)

= 1

h

(
R
Z
2
n

eff (y, y
′)− 2R

Z
2
n

eff (o, ∂Q̃o)

)

= 1
πa log n

(
log ‖y − y′‖Z2

n

)
+ o(1),

where Q̃o is a 2D box of side-length log log n centered around o, and the last equality
follows for example from [5, Lemma 3.4]. Altogether, this gives the desired lower
bound on the effective resistance. ��

The following lemma is useful in comparing themaxima of twoGaussian processes
(see for example [12, Corollary 2.1.3]).

Lemma 2.5 (Sudakov–Fernique) Let J be an arbitrary finite index set and let {η j } j∈J
and {ξ j } j∈J be two centered Gaussian processes such that

E(η j − ηk)
2 ≥ E(ξ j − ξk)

2, for all j, k ∈ J. (2.14)

Then E[max j∈J η j ] ≥ E[max j∈J ξ j ].
We are now ready to estimate the maximum of the GFF on the thin torus.
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Lemma 2.6 Let {ηv : v ∈ Vn} be a GFF on Gn(a) with ηv0 = 0. Then,

E
[
max
v∈Vn

ηv

]
= 2

√
r3 + 1

2aπ
+ o(1)

√
log n.

Proof We first prove the upper bound. By (2.2) and Lemma 2.4, we get that

sup
u,v∈Vn

{Var(ηu − ηv)} := 2σ 2
n ≤ 2r3 + 1

aπ
+ o(1).

Thus, for i.i.d. centered Gaussian variables {Xu : u ∈ Vn} of variance σ 2
n we have by

Lemma 2.5 that

E
[
max
u∈Vn

ηu

]
≤ E

[
max
u∈Vn

Xu

]
. (2.15)

Note that

E
[
max
u∈Vn

Xu

]
≤
∫ ∞
0

⎡
⎣
⎛
⎝∑

u∈Vn
P(Xu ≥ r)

⎞
⎠ ∧ 1

⎤
⎦ dr . (2.16)

Further, for a centered Gaussian variable Y of variance σ 2 we have

P(Y ≥ r) ≤ e−
r2

2σ2 , ∀r ≥ 0.

Combined with (2.16) it yields that E[maxu∈Vn Xu] ≤ 2σn
√
log n(1+ o(1)), so from

(2.15) and the bound on σn we deduce the stated upper bound on E[maxu∈Vn ηu].
For the lower bound, we employ a comparison argument. Let A be a 2D box of

side-length n/(8h), and let {ξv : v ∈ A} be a GFF on A with Dirichlet boundary
condition (i.e., ξ |∂A = 0). Now define mapping g : A �→ Gn(a) by g(v) = (2hv, 0).
It is well known that (see, e.g., [18, Theorem 4.4.4 and Proposition 4.6.2])

RA
eff(u, v) = 1

π
log ‖u − v‖2 + O(1).

Combined with Lemma 2.4, it yields that for all u, v ∈ A

RGn(a)
eff (g(u), g(v)) ≥ (2ar3π + 1+ o(1))h−1RA

eff(u, v),

where we have used the fact that RA
eff(u, v) ≤ 1+o(1)

π
log n = (1+o(1))h

aπ
. Applying (2.2)

and Lemma 2.5, we obtain that

E
[
max
v∈Vn

ηv

]
≥ √2ar3π + 1+ o(1)h−1/2E

[
max
u∈A ξu

]
.

Combinedwith [2,Theorem2]which states thatE[maxu∈A ξu] = (
√
2/π+o(1)) log n,

this yields the desired lower bound on E[maxv∈Vn ηv]. ��
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As |En| = 3an2 log n(1 + o(1)), upon combining Theorem 2.1 and Lemma 2.6, we
immediately obtain Theorem 1.1.

3 Upper bound onmixing time: large deviations for admissible types

For the task of upper bounding tmix(Gn(a)�, δ) it suffices to compare the stationary law
with a worst case initial one, for which purpose any non-random initial configuration
will do. Further, since tmix(Gn(a), δ) is only O(n2) (see [19, Theorem 5.5]), we can
and shall instead start for convenience at X�0 having all lamps off and initial position
uniformly chosen in Vn . Fixing s′ > s > 
(φ) and using s in the sequel for setting the
various excursion types, our goal is to show that the total-variation distance between
the law of X�

s′t�cov
and the uniform law goes to zero as n → ∞. To this end, let

Ûs′ := U(s′t�cov)denote the subset of the verticesVn ofGn(a)not visited by X up to time
s′t�cov, with Û ′s′ corresponding to a second, independent copy X ′ of the srw on Gn(a).
Then, with X0 uniformly distributed, the L2-norm of the density of the law of X�

s′t�cov
with respect to the uniform law, is E

[
2|Ûs′∩ Û ′s′ |] (see [21, Proposition 3.2]). Adapting

the argument of [21, Lemma 3.1], it thus suffices to find an event Ĝ measurable on the
path of the srw X on Gn(a) up to time s′t�cov, such that as n→∞

P[Ĝ] → 1, and E
[
2|Ûs′∩ Û ′s′ | 1Ĝ1Ĝ′

]→ 1, (3.1)

where Ĝ′ corresponds to the independent copy X ′ of the srw on Gn(a). Without Ĝ
and Ĝ′, the right side of (3.1) amounts to the L2-convergence to 1 of the relevant
density. Only L1-convergence is needed for the total-variation mixing and using Ĝ
helps eliminate some rare events that may dominate the second moment (see also the
discussion immediately following [21, Proposition 3.2]).

To establish (3.1), fixing a large integer M we set hereafter

r := Mr ′ := M2.

Note that for each i := (i (1), i (2)) ∈ {0, . . . , 2r − 1}3 × {0, 1}3 the points of

A�
3D(i) := (i (1) + (2rN)3

) ∩ ([0, n)2 × [0, h)− 2r i (2)
)

(3.2)

are at least 2r apart inGn(a), whereas the union of the (4r)3 sub-lattices A�
3D(i) covers

Vn . Indeed, A�
3D(i) keeps minimal distance 2r from all faces that meet at the corner

of [0, n)2 × [0, h) indicated by i (2), thereby assuring the stated 2r -separation on the
torus (even when 2r does not divide n or h).

Proceeding to produce in Definition 3.1 the “2D-well-centered” non-random sub-
sets A = A(i, j) of A�

3D(i), fix a large integer L and approximate the continuum
of mesoscopic scales hnρ by R′′k = h[nρk ] for ρk = k/L , k = 0, . . . , L − 1 and
R′′L = [M−5n]. Setting thereafter
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Rk := MR′k := M2R′′k ,

note that for any L, M ≥ 2 and all n large enough,

2r < R′′0 < R′0 < R0 < 2R0 < R′′1 < R′1 < R1 < 2R1 < · · · < RL < n. (3.3)

Assuming hereafter that (3.3) holds, for each j
k
∈ {0, . . . , (2Rk/R′′k )− 1}2 × {0, 1}2

the points of

A�
2D,k( j k) :=

(
R′′k j (1)

k
+ (2RkN)2

)
∩
(
[0, n)2 − 2Rk j (2)

k

)
(3.4)

are 2Rk apart in the 2D torus Z2
n (thanks to the guard bands associated with j (2)

k
),

whereas for each 0 ≤ k ≤ L the union of A�
2D,k( j k) over the (4Rk/R′′k )2 possible

values of j
k
covers Z2

n .

Definition 3.1 For any i and j := ( j
0
, j

1
, . . . , j

L
), let A := A(i, j) denote the subset

of those x = (x1, x2, x3) ∈ A�
3D(i) whose 2D-projection (x1, x2) lies for each k =

0, 1, . . . , L within the R′′k -sized square centered at some yk(x) ∈ A�
2D,k( j k).

Note that Vn is covered by the union of the

κ ′ := (4r)3(4M2)2(L+1) (3.5)

sets A(i, j), with κ ′ = κ ′(M, L) independent of n. We shall consider (3.1) for an

event Ĝ of the form

Ĝ =
⋂
i, j

G̃i, j , (3.6)

where each event G̃i, j on the path of the srw X on Gn(a) up to time s′t�cov is defined
via excursion counts associated with the points of A = A(i, j). Specifically, see (3.11)

in the sequel (and Definition 3.3), for the precise choice of G̃ = G̃i, j . Then, by the
union bound

P
[Ĝc] ≤ κ ′max

i, j
P
[
G̃c
i, j

]
.

So, decomposing the set Ûs′ ∩ Û ′s′ in the rhs of (3.1) according to its intersections
with the various A(i, j), by Hölder’s inequality we get (3.1) upon showing that for
any i , j , as n→∞

κ ′P
[
G̃c
i, j

]
→ 0 and E

[
2κ ′|A(i, j)∩ Ûs′∩ Û ′s′ | 1G̃i, j

1G̃′i, j

]
→ 1. (3.7)

Proceeding to prove (3.7) for some fixed (i, j)we avoid crowded notations by omitting
hereafter the specific (i, j) from all expressions. In particular, given (i, j), to each
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Fig. 3 Illustration of a set A�
2D,k ( jk ) as red dots of spacing 2Rk within a 2D sub-lattice of blue dots at

spacing R′′k . If (x1, x2) is in the green square (of side length R′′k ), then its center red point be yk (x). Here
Rk = 4R′′k (that is, M = 2) (color figure online)

x ∈ A = A(i, j) corresponds a unique vector y = (y0, . . . , yL) of base points
yk = yk(x) ∈ A�

2D,k (with yk(x) the closest point to (x1, x2) in A�
2D,k ; See Fig. 3 for

an illustration of A�
2D,k and x �→ yk(x)). We further let

A2D,k := {y ∈ A�
2D,k : y = yk(x) for some x ∈ A}, (3.8)

denote the collection of all possible k-th level base points, using the short notation
A2D, R, R′, R′′ and y(x) for A2D,0, R0, R′0, R′′0 and y0(x), respectively.

Next, enumerating over x ∈ A yields the disjoint 3D-annuli of outer radius r and
inner radius r ′, between the Euclidean balls B(x, r) and B(x, r ′) in Gn(a). For each
0 ≤ k ≤ L , consider also the disjoint annuli of outer and inner radii Rk and R′k ,
respectively, between the cylinders C(yk, Rk) and C(yk, R′k) of height h in Gn(a),
based on the 2D Euclidean disks centered at yk ∈ A2D,k . As illustrated in Fig. 4,

for any k, each cylindrical annulus decomposes the path of the srw on Gn(a) into
Rk-excursions. Each such excursion starts at the outer cylinder boundary and run until
hitting the inner cylinder boundary (which we call the excursion’s external part), then
goes back till exiting the outer cylinder (called the excursion’s internal part). Note
that for each k, conditional on their starting and ending points, the internal parts of
various Rk-excursions of our collection of cylindrical annuli are mutually independent
of each other. For n large enough so (3.3) holds, by the hierarchical structure of the
sub-lattices A�

2D,k , the vector y associated with x ∈ A is uniquely determined by y(x).
More generally, each Rk−1-sized cylindrical annulus centered at y ∈ A2D,k−1, k ≥ 1,
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Fig. 4 The 2D projection of an
Rk -excursion of the random
walk, from the boundary of a
cylinder of radius Rk back to
itself via the boundary of a
concentric cylinder of radius R′k .
Indicated in dark green (resp.
blue) is the external (resp.
internal) part of the excursion
(color figure online)

C(yk, Rk)

C(yk, R′
k)

Fig. 5 The Rk -excursions across
disjoint cylindrical annuli at
different scales decompose into
a tree structure, with the internal
part of any Rk−1-excursions
(light blue), within the internal
part of some Rk -excursion
(blue). For well-separated
annuli, the entrance and exit
points of an Rk−1-excursion are
approximately independent of
the entrance and exit points of
the parent Rk -excursion (color
figure online)

C(yk, Rk)

C(yk, R′
k)

must be strictly inside C(yk, R′k) for some uniquely specified yk ∈ A2D,k . Hence, as
illustrated in Fig. 5, the Rk−1-excursions of the y-centered annulus decompose the
internal parts of each of the Rk-excursions for the annulus centered at yk . Similarly,
for n large enough and x ∈ A, each B(x, r) is strictly inside C(y(x), R′), decomposing
the internal parts of each of the R-excursions of the cylindrical annulus around y(x),
into what we call r -excursions (i.e., whose external part starts at ∂B(x, r) and run
till hitting B(x, r ′), followed by the internal part up to the exit from B(x, r)). Here
again, conditional on their starting and ending points the internal parts of the various
r -excursions associated with the collection A are independent of each other.

As shown in Sect. 4.1,

NC
�
(s) := 2s

(log n)2

log(R/R′)
and NB

�
(s) := 4sr ′

a
log n, (3.9)
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are the typical counts of Rk-excursions and r -excursions, respectively, by time st�cov.
Utilizing these, we next summarize which large deviations of the counts of cylindrical
and ball excursions around x ∈ A, are of concern in our proof of (3.7). We will
show that whp, at least NC

�
(s) of the RL -excursions around any yL ∈ A2D,L are

completed by time s′t�cov. Hence, our concepts of a z-type point x ∈ A and a z-type

y(x) ∈ A2D, amount to having about z2 NB
�
(s) of the corresponding r -excursions

around x , or respectively, having about z2k NC
�
(s) of the corresponding Rk-excursions

around yk(x), k = 0, . . . , L − 1, during the first RL -excursions around yL(x).

Definition 3.2 Fix s ∈ (
(φ), s′) and small η > 0 such that 1/η is integer.

(a) For z = (z0, . . . , zL) with zk ≤ zL = 1 and zk ∈ ηN, k = 0, . . . , L − 1, we
say that y = (y0, . . . , yL), or equivalently, that y0 ∈ A2D,0, is of z-type if the

first (zk − 2η)2NC
�
(s) of the Rk-excursions for the cylindrical annulus centered

at yk , are completed within the first NC
�
(s) RL -excursions for cylindrical annulus

centered at yL . In case zk < 1 we further require that the first (zk − η)2NC
�
(s) are

not completed during these RL -excursions.
(b) Similarly, x ∈ A is called of z-type (for z ∈ ηN), if the first (z − 3η)2NB

�
(s) of

the r -excursions around x , are completed within the first NC
�
(s) RL -excursions

for cylindrical annulus centered at yL(x), where for z < 1 we also require that
the first (z − 2η)2NB

�
(s) of those r -excursions are not completed during said

RL -excursions.

Next, note that A ∩ Ûs′ is the disjoint union of

Ũs′,z := {x ∈ A ∩ Us′ : y(x) of z-type}, (3.10)

over the at most κo = η−L possible z-types induced on A2D by the srw X on Gn(a).
Likewise, A ∩ Û ′s′ is the disjoint union of the sets Ũ ′s′,z′ defined in terms of the types

z′ induced on A2D by the independent srw X ′ on Gn(a). We set

G̃ :=
⋂
z

Gz, (3.11)

where each event Gz on the path of the srw X on Gn(a) up to time s′t�cov is now
associated with a specific choice of both A = A(i, j) and z (see Definition 3.3 below).
For κ ′ from (3.5) and the constants η, L from Definition 3.2, we set

κ := κ ′κ2
o = (4r)3(4M2)2(L+1)η−2L , (3.12)

which is also independent of n. Similarly to our move from (3.1) to (3.7), get by the
union bound and Hölder’s inequality that (3.7) holds provided that as n→∞, for any
choice of (i, j) and any two types z, z′,
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κP
[
Gc
z

]
→ 0, (3.13)

E
[
2
κ|Ũs′,z∩ Ũ ′s′,z′ | 1Gz1G′z′

]
→ 1 (3.14)

(with G′z′ corresponding to the second, independent copy X ′ of the srw on Gn(a)).
We proceed to define the truncation events Gz for (3.13)–(3.14).

Definition 3.3 For each s < s′, η > 0 and type z, let Gz = Gz(s, η) be the event
consisting of:

(a) By time s′t�cov the srw on Gn(a) completes for each RL -sized cylindrical annulus
centered at yL ∈ A2D,L the corresponding first NC

�
(s) excursions.

(b) For ρk = k/L , k = 0, . . . , L − 1, there are at most n2bρk (zk ) points yk ∈ A2D,k to
which corresponds some y0 ∈ A2D,0 of z-type.

(c) If x ∈ A is such that y0(x) is of z-type (cylindrical annuli), then for some z ≥ z0
the point x is also of z-type (in terms of r -excursions).

From Definition 3.3(b), we see that under the event Gz there is no y(x) of z-type,
unless bρk (zk) ≥ 0 for all 0 ≤ k < L . This is precisely the following requirement
(3.15) that z be admissible (so it suffices to establish (3.14) only for admissible types
z, z′).

Definition 3.4 Fixing s ≥ 1, we say that a z-type is admissible, if and only if

√
s ≤ min

k=0,...,L−1

{
1− ρk

1− zk

}
(3.15)

for ρk = k/L , as in Definition 3.3.

Denoting by Hx,z the event of not hitting x during the first z2NB
�
(s) of the r -excursions

of X around x , requirements (a) and (c) of Definition 3.3 imply that under the event
Gz the set Ũs′,z of (3.10) is a subset of

Us,z := {x ∈ A : y(x) of z-type, Hx,z0−3η occurs} (3.16)

(see also Definition 3.2 of z-type). Similarly, Ũ ′s′,z′ ⊆ U ′s,z′ under the event G′z′ . Hence,
upon proving (3.13) for Gz of Definition 3.3, it suffices to show that for any admissible
z-type and z′-type, as n→∞,

E
[
2
κ|Us,z∩U ′s,z′ | 1Gz1G′z′

]
→ 1. (3.17)

3.1 Variational formulas and admissible annuli profiles

We first establish the variational representations of Lemma 1.7 for 
(φ) of (1.9)
whose relevance to the asymptotic structure of U(st�cov) has already been discussed in
Sect. 1.4.
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Proof of Lemma 1.7 First, set h(ρ) := √ρ(φ + ρ/2), t := √s and

t� = sup
ρ∈[0,1]

{h(ρ)+ 1− ρ}. (3.18)

The conditions bρ(z) ≥ 0 and αρ(z) ≥ ρ are then re-expressed as t z ≥ t−(1−ρ) and
t z ≥ h(ρ), respectively. So, with the optimal choice being z = z� := 1− (1−ρ)/t , it
follows that (1.11) holds if and only if t ≥ t�. That is,
(φ) = t2� . Further, considering
at t = t� the optimal z� = h(ρ)/(h(ρ) + 1 − ρ), yields the identity (1.12). Finally,
in (3.18) the optimal choice is ρ = ρ� = (

√
2 − 1)φ, but in case φ ≥ 1/(

√
2 − 1)

it is out of range and one needs to settle instead for ρ = 1. One easily checks that
h(ρ�) = φ/

√
2, while h(1) = √φ + 1/2, hence with t� monotone increasing in φ it

is easy to confirm from the preceding that t2� = 
(φ) is given by the explicit formula
(1.9), as claimed. ��

Denoting hereafter α0(·) of (1.10) by α(·), we proceed with an analysis lemma that
is key to the success of our scheme for bounding the exponential moments as in (3.17)
for all admissible z-types and s > 
(φ).

Lemma 3.5 Let 
L,η(φ) denote, per given L and η, the minimal value of s ≥ 1, such
that if type z is admissible (see Definition 3.4), then for any m = 0, . . . , L,

γm,η(z) := α(z0 − 4η)− mη − 1

L
−

m∑
k=1

[
1

L
− 2sL(zk − zk−1 − 2η)2+

]
≥ η.

(3.19)

Then, with 
(·) given by the variational problem (1.11), we have that


(φ) = lim sup
L→∞

lim
η→0
{
L,η(φ)}. (3.20)

Proof Recall that zL = 1 and note that the limit


L(φ) := lim
η→0
{
L,η(φ)},

exists and corresponds to the requirement that γm,0(z) ≥ 0 for m = 0, . . . , L and
admissible z. Further, setting �k := t L(zk − zk−1), for k = 1, . . . , L and t := √s we
have from (1.10) that

φ α(z0) = (t z0)
2 =

(
t − 1

L

L∑
k=1

�k

)2

,

yielding that
√


L(φ) ismerely the infimumover all t ≥ 1 such that form = 0, . . . , L ,

(
t − 1

L

L∑
k=1

�k

)2

≥ φ

(
m + 1

L
− 2

L

m∑
k=1

(�k)
2+

)
, (3.21)
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whenever z ∈ [0, 1]L+1 satisfies (3.15). That is, denoting by D the collection of all
� := (�1, . . . ,�L) ∈ R

L such that

δr := 1

L − r

L∑
k=r+1

�k ∈ [0, 1] ∀0 ≤ r < L, (3.22)

we have that

√

L(φ) = L

max
m=0 max

�∈D
{tm(�)},

with tm(�) the smallest t ≥ 1 for which (3.21) holds, per given m and �.
The value of tm(�) depends only on δm and (�1, . . . , �m). Further, given δm and

� := m−1
∑m

k=1 �k , by Cauchy-Schwarz the maximal value of tm(�) is attained
when �k = � for all 1 ≤ k ≤ m. Thus, setting δ = δm , we deduce that

√

L(φ) is

bounded above by the minimal t ≥ 1 such that

(t − (1− ρ)δ − ρ�)2 ≥ φρ
[
1− 2(�)2+

]
+ φ

L
, (3.23)

for any δ ∈ [0, 1], � ∈ R and ρ ∈ [0, 1] for which ρL = m is integer valued. Note
that (3.23) trivially holds whenever � > 1 and ρ > 0 (whereas for ρ = 0 the value
of � is irrelevant). Further, since t ≥ 1 ≥ ρ, δ ≥ 0, if (3.23) holds for � = 0, it also
holds for any� < 0. Consequently, it suffices to consider (3.23) only for�, δ ∈ [0, 1].
Each choice of (�, δ) in the latter range corresponds to � = (�, . . . ,�, δ, . . . , δ)

in D, hence we conclude that the right-side of (3.20) equals the minimal s = t2 ≥ 1
satisfying (3.23) for all δ ∈ [0, 1], ρ ∈ (0, 1] and � ≥ 0. To match this with (1.11)
we equivalently set (1 − ρ)δ = t(1 − w) and ρ� = t(w − z) with 1 ≥ w ≥ z such
that bρ(w) ≥ 0 for s = t2 (corresponding to δ ≤ 1). This transforms (3.23), in terms
of z and w, to the inequality

α(z)+ 2s(w − z)2

ρ
≥ ρ. (3.24)

Now, by elementary calculus we find that

αρ(w) = inf
z≤w

{
α(z)+ 2s(w − z)2

ρ

}
(3.25)

(with infimum attained at z� := (2/ρ)w/(2/ρ + 1/φ)). Comparing the preceding
with (1.11) we thus conclude that (3.20) holds, as claimed. ��
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3.2 Tail behavior for admissible excursion counts

Our approach to proving the upper bound in Theorem 1.3 is to establish (3.13) and
(3.17) for

s′ = s + ε = 
L,η(φ)+ 2ε, (3.26)

when n → ∞ followed by M → ∞. As explained before, this would imply that
tmix ≤ (s′ + o(1))t�cov and consequently, by Lemma 3.5, upon taking η ↓ 0, L →∞
and finally ε ↓ 0 we get that tmix ≤ (
(φ)+ o(1))t�cov.

To this end, we use the following notation.

Definition 3.6 Let NCyk ,k, j,w, for k < j ≤ L and w ∈ [0, 1] be the number of Rk-
excursions for yk ∈ A2D,k , completed during the first w2NC

�
(s) R j -excursions for

the corresponding y j ∈ A2D, j (with NCy := NCy,0,L,1). Let NCyL ,L be the number
of RL -excursions around yL ∈ A2D,L which are completed by time s′t�cov. Next, for
x ′ ∈ B(x, R′′) and z ≥ η, let NBx

′
x,z be the number of r -excursions around x ∈ A

during the first z2NC
�
(s) excursions of the R0-cylindrical annulus centered at x ′.

As detailed in Sect. 3.3, both (3.13) and (3.17) follow from the next two lemmas,
whose proofs are provided in Sects. 4 and 5.

Lemma 3.7 Fix s > 1 ≥ z > η > 0. If M ≥ M0(η, z) and n ≥ n0(M), then

P[Hx,z] ≤ n−α(z−η) ∀x ∈ Vn . (3.27)

Further, uniformly over x ∈ Vn and x ′ ∈ B(x, R′′), as n→∞,

n2(log n)P
[
NBx

′
x,z < (z − η)2NB

�
(s)
]
→ 0 (3.28)

Remark 3.8 The bound (3.27) remains in effect when conditioned on X0 = v and
the start and end points of all r -excursions around x (see Proposition 4.9). Similarly,
from (4.37) the convergence in (3.28) holds uniformly with respect to the position of
x within B(x ′, R′′) and the start/end points of the R-excursions around x ′.

Lemma 3.9 For any fixed s′, s > 1, any positive integer L, w, z ≥ η̃ ≥ 0 and
L ≥ j > k ≥ 0, we have for all M ≥ M1(̃η, z, w, j, k) large enough, as n → ∞,
that uniformly over yL ∈ A2D,L and yk ∈ A2D,k ,

nMP
[
|NCyL ,L − NC

�
(s′)| ≥ η̃NC

�
(s′)
]
→ 0, (3.29)

lim sup
n→∞

∣∣∣∣∣ logP[NCyk ,k, j,w(s) ≤ (z − η̃)2NC
�
(s)]

log n
+ 2s(w − z)2+

ρ j − ρk

∣∣∣∣∣ ≤ η̃. (3.30)

Remark 3.10 See Proposition 4.1 which implies (3.29). In Sect. 5 we further show that
(3.30) holds uniformly in x ∈ A with yk(x) = yk (i.e., over the relative position of
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yk in the R′′j -sized square centered at y j = y j (x)), and uniformly with respect to the
start/end points of the R j -excursions around y j .

3.3 The proof of (3.13) and (3.17)

First, as soon as (1− η̃)s′ > s we deduce from (3.29) upon taking the union over the
at most M6 possible values of yL , that requirement (a) in Definition 3.3 is satisfied
with probability going to one as n → ∞. Next, for k < L let Yk denote the number
of yk ∈ A2D,k to which corresponds some y0 ∈ A2D,0 of z-type.

If zk < 1 it follows by Definition 3.2 that necessarilyNCyk ,k,L,1 ≤ (zk−η)2NC
�
(s)

for any such yk . With |A�
2D,k | ≤ �n/(2Rk)�2 ≤ n2−2ρk upon considering (3.30) for

j = L , η̃ = (η/2)2, w = 1 and z = zk − η + η̃, we see that for n large enough,
E(Yk) ≤ n2bρk (zk )−η̃. Hence, by Markov’s inequality and union over 0 ≤ k < L ,
we deduce that Definition 3.3(b) also holds with probability going to one as n →∞
(the case zk = 1 trivially holds by the preceding bound on |A�

2D,k |). In particular,
as soon as s(1 − 4η)2 > 1, necessarily z0 ≥ 5η, whereupon if y0(x) is of z-type

and x is not of z-type for some z ≥ z0, then NBx
′

x,z0−2η < (z0 − 3η)2NB
�
(s), for

x ′ := (y0(x), x3) ∈ B(x, R′′). Combining (3.28) at z = z0 − 2η with a union bound
over the at most n2 log n points of A, we conclude that Definition 3.3(c) also holds
with probability going to one as n → ∞. With κ independent of n, this establishes
(3.13) for any s′ > s > 1 all η > 0 small enough and every possible type z.

Turning to deal with (3.17), we may and shall fix ε > 0, s, s′ as in (3.26) and two
admissible types z, z′, where as mentioned before z0 ≥ 5η and z′0 ≥ 5η. Next, for
0 ≤ k ≤ L , let Jk := |�z(k)

⋂
�′z′(k)|, where

�z(k) := {yk ∈ A2D,k for some y of z − type}

and �′z′(k) denoting the same sets for an independent srw X ′ on Gn(a). Recall (3.16)

that the image of Us,z ∩ U ′s,z′ via x �→ y0(x) is a subset of the at most J0 points from
A2D,0 having the corresponding types, where to each y ∈ A2D,0 correspond

|{x ∈ A : y0(x) = y}| ≤ h3 := m (3.31)

points from A. Given the position of their starting and ending points, the r -excursions
of srw X around each x ∈ A, are mutually independent and further independent of
the random subset �z(0) ⊆ A2D,0. Likewise, given their starting/ending points, the r -
excursions of the srw X ′ around each x ∈ A aremutually independent and independent
of �′z′(0). Further, for x ∈ A with y(x) ∈ �z(0)

⋂
�′z′(0) to be in Us,z ∩U ′s,z′ we must

have Hx,z0−3η occurring for X and Hx,z′0−3η occurring for X ′ (see (3.16)). By (3.27),
the probability of both events independently occurring at a given x , is at most

p̄ := n−α(z0−4η)−α(z′0−4η). (3.32)

123



628 A. Dembo et al.

By the uniformity of (3.27) per conditioning as in Remark 3.8, we thus deduce from
the preceding discussion that

|Us′,z ∩ U ′s′,z′ | is stochastically dominated by
J0∑

�=1
ξ�, (3.33)

where ξ� are i.i.d. Binomial(m, p̄) variables independent of J0, and m, p̄ are given
by (3.31) and (3.32), respectively. Recall that κ of (3.12) is independent of n (and of
h = [a log n]), while p̄ m → 0 and h4/m →∞ as n→∞. Further, with

(1+ u)m ≤ 1+ e u m whenever u m ∈ [0, 1], (3.34)

we deduce that for all n large enough,

E[2κξ� ] = [1+ (2κ − 1) p̄]m ≤ 1+ e(2κ − 1)m p̄ ≤ 1+ h4 p̄. (3.35)

In view of (3.33) and (3.35),

E
[
2
κ|Us,z∩U ′s,z′ | 1Gz1G′z′

]
≤ E

[
J0∏

�=1
2κξ�

]
≤ E

[(
1+ h4 p̄

)J0]
,

with (3.17) holding as soon as

E
[(
1+ h4 p̄

)J0]→ 1. (3.36)

Turning to establish (3.36), note that for any k = 0, . . . , L − 1, given their starting
and ending points, the inner parts of the Rk+1-excursions for different choices of
yk+1 ∈ A2D,k+1 are independent of each other, and of the random subset �z(k + 1).
Thus, as in the preceding derivation, the contributions {ξ�

� , � = 1, . . . , Jk+1} to Jk that
correspond to the possible yk+1 ∈ �z(k+1)⋂�′z′(k+1), are stochastically dominated
by mutually independent random variables {ξ�}, each having maximal size mk and
mean mk p̄k , which are further independent of Jk+1. Here, mk := n2(ρk+1−ρk ) = n2/L

bounds the maximal number of points yk ∈ A2D,k inside the Rk+1-cylinder centered
at some yk+1 ∈ A2D,k+1. Further, if zk < 1 then NCyk ,k,k+1,w(s) ≤ (zk − η)2NC

�
(s)

for w = zk+1 − 2η (compare Definitions 3.2 and 3.6). Replacing zk < 1 by z′k < 1
and w by w′ = z′k+1 − 2η, the same applies for the corresponding excursion counts
induced by the srw X ′. Considering the upper bound (3.30) for j = k+ 1, η̃ = η and
such values of (w, zk) and (w′, z′k), recall Remark 3.10 that it holds uniformly over
the relative position of yk in the R′′j -sized square centered at y j and with respect to
the start/end points of the R j -excursions around y j . Having here ρ j − ρk = 1/L , we
deduce by the independence of X and X ′ that for all n large enough,

p̄k :=
(
nη−2sL(zk+1−2η−zk )2+ ∧ 1

) (
nη−2sL(z′k+1−2η−z′k )2+ ∧ 1

)
.
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Each ξ� is no longer Binomial (there are dependencies within each Rk+1-cylinder).
Nevertheless, setting uk+1 := euk p̄kmk with u0 := h4 p̄ we get inductively for k =
0, 1, . . . , L − 1, that if ukmk ≤ 1 then

E
[
(1+ uk)

Jk
]
≤ E

⎡
⎣Jk+1∏

�=1
E
[
(1+ uk)

ξ�
]⎤⎦ ≤ E

[
(1+ uk+1)Jk+1

]
(3.37)

(utilizing stochastic domination, the mutual independence of {Jk+1, ξ�} and finally the
inequality (3.34) at uk and ξ� ≤ mk).

With both z and z′ admissible, it follows by the definition of 
L,η(φ) and γk,η(·)
(c.f. (3.19)), that for any s > 
L,η(φ),

ukmk = eku0m0

k−1∏
j=0

p̄ jm j+1 ≤ ekh4n−γk,η(z)−γk,η(z′) ≤ ekh4n−2η → 0

when n→∞. Hence, iterating (3.37) over 0 ≤ k ≤ L − 1 yields that for n→∞,

E
[(
1+ u0

)J0] ≤ E
[(
1+ uL

)JL ]→ 1.

Indeed, the latter convergence holds since JL ≤ |A2D,L | is uniformly bounded (in n),
whereas by the preceding, uL → 0 as n→∞.

4 Proof of Lemma 3.7: 3D-like tail probabilities

4.1 Evaluation of typical values

Setting R = MR′, R′ = MR′′ and R′′ ≥ h integer valued with both M and R′′ large
enough,

we show that the typical excursion counts up to time st�cov are given as in (3.9) by:

NC
�
(s) := 2s

(log n)2

log(R/R′)
and NB

�
(s) := 4sr ′

a
log n.

To this end, we start with some basic results about the 2D excursions. In particular,
(4.2) establishes (3.29) and allows us to replace the random excursion countsNCy,L(s)

by their typical value NC
�
(s), which by (4.1) and (4.3), is also where the variables

NCy,k(s), 0 ≤ k < L , concentrate.

Proposition 4.1 Fix y = (y0, . . . , yL) with yk ∈ A2D,k . For 0 ≤ k ≤ L, let NCy,k(s)

be the number of Rk-excursions for y completed during the first NC
�
(s) of the RL-

excursions for the corresponding yL ∈ A2D,L with NCy,L(s) denoting the number of

latter RL-excursions completed by time st�cov. Let NCy,k(s) denote the expectation of
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NCy,k(s) := NCyk ,k,L,1 in case k < L. Then for each δ > 0, there exists C = C(δ) > 0
and M(δ) such that for all M ≥ M0(δ) there exists n0(δ, M) such that for all n ≥
n0(δ, M) and 0 ≤ k ≤ L, we have that

(1− δ)NC
�
(s) ≤ NCy,k(s) ≤ (1+ δ)NC

�
(s), (4.1)

P
[|NCy,L(s)− NCy,L(s)| ≥ δNCy,L(s)

] ≤ exp(−Cs(log n)2) (4.2)

P
[|NCy,k(s)− NCy,k(s)| ≥ δNCy,k(s)

] ≤ n−Csδ2 (4.3)

Proof Note that NCy,L(s) counts the number of excursions between concentric 2D-

disks of radii R′L and RL by the projected srw on Z2
n during its first

4s
π
n2(log n)2(1+

o(1)) steps [9]. (As we explained earlier, the factor 2/3 is due to the elimination of all
vertical steps of the original srw onGn(a).) Our first assertion, namely (4.1) in the case
k = L , thus follows from [10, Lemma 3.2]. That is, NCy,L(s) is up to leading order

given by NC
�
(s). Since RL/R′L = M is independent of n, the bound (4.2) likewise

follows from [10, Lemma 3.2]. Fixing 0 ≤ k < L and considering [10, Lemma 3.2]
for the Rk-excursions completed during the same number of steps by the projected
srw, it further follows from (4.2) that NCy,k(s) = NCy,L(s)(1 + o(1)). The same
argument also gives (4.3). ��

We proceed to establish the mean value of the relevant 3D excursions. Hereafter,
we let σW denote the first exit time of the srw {Xk} from a givenW ⊆ Vn using σ x

S for
σB(x,S) and the notation B′ = B(x, r ′), B = B(x, r), C′ = C(x ′, R′) and C = C(x ′, R)

for balls of radii r = Mr ′ ≤ h, r ′ = M and cylinders, respectively, of any centers
x, x ′ ∈ Vn with |x − x ′| ≤ R′′.

Proposition 4.2 Suppose that x, x ′ ∈ Vn with |x − x ′| ≤ R′′. Then for each η > 0
there exists M0(η) such that for each M ≥ M0(η) there exists n0(η, M) such that
n ≥ n0(η, M) implies that

(1− η)z2NB
�
(s) ≤ E

[
NBx

′
x,z

]
≤ (1+ η)z2NB

�
(s).

Proof Recall Definition 3.6 thatNBx
′

x,z counts the srw excursions from ∂B′ to ∂B during

its first z2NC
�
(s) excursions from ∂C′ to ∂C. The latter R-excursions are condition-

ally independent given their starting and ending points. Hence, with Z� counting the
excursions that X |[0,σC] makes from ∂B′ to ∂B, it suffices to show that

Ev[Z� | XσC = w] = FB,C(1+ o(1))

(as n → ∞ and M → ∞), uniformly in v ∈ ∂C′ and w ∈ ∂C, where the nominal
conversion factor from R-excursions to ball excursions is

FB,C := NB
�
(s)

NC
�
(s)
= 2r ′

h
log(R/R′). (4.4)
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Indeed, we show in Lemma 4.8 that

Pv[τB′ < σC | XσC = w] = FB,C(1+ o(1)), (4.5)

and from part (a) of Lemma 4.5 we deduce that for v′ ∈ ∂B′

Ev′ [Z� | XσC = w] → 1 as n→∞ then M →∞ (4.6)

uniformly in v′ and w, which together complete the proof. ��
Our next six lemmas culminate in Lemmas 4.5 and 4.8, thereby completing the

proof of Proposition 4.2. The first of these lemmas controls the fluctuations of positive
harmonic functions in Gn(a).

Lemma 4.3 Fixing M ≥ 2 and S = MS′, we have that for all positive harmonic
functions f on the ball B(0, S) in Z3,

max
u,u′∈B(0,S′)

f (u)

f (u′)
= 1+ O(M−1). (4.7)

Likewise, if x ∈ Vn, S < n/2, then for any M ≥ 2 and every positive harmonic
function f on C(x, S) in Gn(a), we have that

max
u,u′∈B(x,S′)

f (u)

f (u′)
= 1+ O(M−1). (4.8)

Proof We first prove (4.7). The Harnack inequality [17, Theorem 1.7.2] implies that
there exists a constant C0 > 0 such that

max
u,u′∈B(0,S/2)

f (u)

f (u′)
≤ C0. (4.9)

It thus follows from [17, Theorem 1.7.1] that there exists a constant C1 > 0 such that
for any u, u′ ∈ B(0, S′) we have

| f (u)− f (u′)| ≤ S′C1

S
max

v∈B(0,S/2)
f (v). (4.10)

Combining (4.9) with (4.10) gives (4.7). Observe that (4.8) follows from (4.7) because
any function which is harmonic on C(x, S) may be lifted to a harmonic function on a
cylinder in Z3 with radius S and periodic boundary conditions. ��

Building on the preceding lemma, we next show that starting inside B(x, S′) any
non-negative variable measurable on X |[0,σB(x,S′)] is almost independent of the srw on
Gn(a) exit location ofW containing B(x, S).
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Lemma 4.4 Let S = MS′, M ≥ 2 and B̃ = B(x, S′) for x ∈ Vn and S′ ≤ h. Suppose
that Z ≥ 0 is a random variable which depends only on X |[0,σ̃B]. Fix W ⊆ Vn which
contains B(x, S). Then we have that

max
w,w′∈∂W

max
u∈̃B

Eu[Z | XσW = w]
Eu[Z | XσW = w′] = 1+ O(M−1).

In particular,

max
w∈∂Wmax

u∈̃B
Eu[Z | XσW = w]

Eu[Z ] = 1+ O(M−1).

Proof Fix u ∈ B̃ and w ∈ ∂W. Then we have that

Eu[Z | XσW = w] =
∑
v∈∂B̃

Eu[Z | XσB̃
= v]Pu[XσB̃

= v | XσW = w]. (4.11)

By Bayes’ rule, we can write

Pu[XσB̃
= v | XσW = w] = Pu[XσW = w | XσB̃

= v]
Pu[XσW = w] Pu[XσB̃

= v]. (4.12)

By the strong Markov property, the ratio on the rhs of (4.12) is contained in [κ−1, κ]
where

κ := max
v,v′∈∂B̃

Pv[XσW = w]
Pv′ [XσW = w] . (4.13)

Since v �→ Pv[XσW = w] is harmonic on B(x, S), by Lemma 4.3 we know that
κ = 1+ O(M−1) uniformly in w. Combining this with (4.11) and using that Z ≥ 0
implies the stated result. ��

Using the preceding lemma, we establish (4.6) and further show that if X0 is far
from x , then X |[0,σC] spends a negligible time in B′. To this end, we use hereafter

Ls,t (W) :=
t−1∑
k=s

1{Xk∈W}, (4.14)

for the srw local time of W between times s ≤ t , with Lt (W) := L0,t (W).

Lemma 4.5 Suppose that x, x ′ ∈ Vn with |x − x ′| ≤ R′′ and w ∈ ∂C.

(a) There exists a universal finite constant c1 such that starting at any v′ ∈ ∂B′ the
law of Z� conditional on {XσC = w} is stochastically dominated by 1+ Y where
Y is a Geometric(c1/M) variable.
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(b) For h′ = h/(2M), uniformly in v ∈ ∂B(x, h′) and w,

Ev[LσC(B
′) | XσC = w] → 0 as n→∞ then M →∞. (4.15)

Proof (a) We first show that for some C1 finite, any u′ ∈ ∂B and all n, M ,

Pu′
[
Xσ x

h/4
/∈ B

(
x, h

4

) \C(x, h′
M ) | XσC = w

]
≤ C1

M
. (4.16)

Indeed, applying Lemma 4.4 for S′ = h/4 ≥ r and W = C ⊃ B(x, MS′), we get
(4.16) upon noting that due to [17, Lemma 1.7.4],

Pu′
[
Xσ x

h/4
/∈ B

(
x, h

4

) \C (x, h′
M

)]
≤ C1

M
.

Similarly, upon applying Lemma 4.4 for Z = 1{τB′<σ x
h/4}, we can deduce from [17,

Theorem 1.5.4] that for some universal C2 finite

Pu′
[
τB′ < σ x

h/4 | XσC = w
]
≤ C2

M
. (4.17)

We next claim that for some C3(M) <∞ and all u ∈ B(x, h
4 )\C(x, h′

M ),

Pu[τB′ < σC | XσC = w] ≤ C3(M)

log log n
. (4.18)

Indeed, by Bayes’ rule we can rewrite the lhs of (4.18) as

Pu[XσC = w | τB′ < σC]
Pu[XσC = w] Pu[τB′ < σC]. (4.19)

By [17, Exercise 1.6.8], the rightmost factor in (4.19) is of order C3(M)/ log log n,
so to complete the proof of (4.18) it suffices to show that the left ratio in (4.19) is
uniformly bounded. Applying the strong Markov property for the first time that X hits
∂B(x, h

4 ) after τB′ , it in turn suffices to show that

max
u ,̃u∈∂B(x, h4 )

Pũ[XσC = w]
Pu[XσC = w]

is bounded. Such boundedness follows from [17, Theorem1.7.2] since u �→ Pu[XσC =
w] is harmonic. Combining (4.16), (4.17), and (4.18) yields the claimed stochastic
domination of the law of Z .

(b) The same argument as in the proof of part (a) shows that here the number of
excursions between B′ and B(x, h′) during the time interval [0, σC] is stochastically
dominated by a Geometric(c(M)/ log h′) for some finite c(M). Further, within each
excursion between B′ and B(x, h′) we are in the setting of srw on Z

3. Hence, by a

123



634 A. Dembo et al.

similar argument, relying once more on Lemma 4.4 and the relevant results from [17,
Chapter 1], the expected contribution to L(B′) during such an excursion, conditional
on its start/end points, is uniformly bounded by c′(M). Due to the independence of
these excursions given their start/end points, we thus deduce (4.15) by an application
of Wald’s identity. ��

Turning to the proof of (4.5), our next lemma gives a precise estimate of the Green’s
function for the srw on Gn(a) killed upon exiting C (conditioned on its exit location).
We note that for large n and M the resulting Green’s function exhibits both 2D (the
term log(R/|v − x |)) and 3D (the factor 1/h) behaviors.

Lemma 4.6 Suppose x, x ′ ∈ Vn with |x − x ′| ≤ R′′. Let Gw(v, x) denote the Green’s
function for X stopped upon hitting ∂C conditioned on exiting C at a given w ∈ ∂C.
Then, for any v ∈ ∂C′ and β < 2

Gw(v, x) = 3+ O(M−1)
πh

(
log R − log |v − x | + o(|v − x |−β)+ O(R−1)

)
.

Proof Let τx be the first time that X hits x , and let τ+x be the time of its first return to
x . By the strong Markov property of X at time τ+x , we have

Px [XσC = w | τ+x ≤ σC] = Px [XσC = w] ,

i.e., the events {XσC = w} and {τ+x ≤ σC} are independent. Thus

Px [τ+x > σC | XσC = w] = Px [τ+x > σC];

taking reciprocals, Gw(x, x) = G(x, x), where G is the (unconditioned) Green’s
function for X stopped upon hitting ∂C.

Applying the strong Markov property of X conditioned on {XσC = w}, at the
stopping time τx , we have that

Gw(v, x) = Pv[τx ≤ σC | XσC = w]Gw(x, x).

By Bayes’ rule,

Pv[τx ≤ σC | XσC = w] = Pv[XσC = w | τx ≤ σC]
Pv[XσC = w] Pv[τx ≤ σC]

= Px [XσC = w]
Pv[XσC = w]Pv[τx ≤ σC].

Since G(v, x) = Pv[τx ≤ σC]G(x, x), combining the above we see that

Gw(v, x) = Px [XσC = w]
Pv[XσC = w]G(v, x). (4.20)

123



Cut-off for lamplighter chains on tori: dimension… 635

Since u �→ Pu[XσC = w] is harmonic within C(x ′, R) and v, x ∈ C′, applying
Lemma 4.3 we arrive at

Gw(v, x) = (1+ O(M−1))G(v, x). (4.21)

It thus remains only to estimate G(v, x). To this end, let GZ2
n
denote the Green’s

function associated with the projected (unconditioned) random walk in Z
2
n stopped

upon exiting the disk of radius R centered at y(x ′). Note that the projected random
walk has a 1/3 holding probability since this is the probability that the (unprojected)
walk moves in the vertical direction. Let Wx denote the collection of h points in Vn
whose 2D projection is equal to y(x). Then

GZ2
n
(v, x) =

∑
u∈Wx

G(v, u). (4.22)

Since u �→ G(v, u) (for v fixed) is harmonic for u 
= v, hence in C(x ′, R′), whereas
Wx ⊂ B(x ′, 2R′′), Lemma 4.3 implies that

G(v, u)

G(v, u′)
= 1+ O(M−1) for all u, u′ ∈ Wx . (4.23)

Moreover, [17, Proposition 1.6.7] gives us that for every β < 2 we have

GZ2
n
(v, x) = 3

π
(log R − log |v − x |)+ o(|v − x |−β)+ O(R−1)

(recall the 1/3 laziness). Combining this with (4.22) and (4.23) tells us that for every
β < 2 we have

G(v, x) = (1+ O(M−1))
h

(
3

π
(log R − log |v − x |)+ o(|v − x |−β)+ O(R−1)

)
.

Combining this with (4.21) gives the result. ��
We are now going to estimate the expected amount of time that srw starting from

∂B′ spends in B′ before exiting C. This estimate allows us to establish (4.5) in the
subsequent lemma.

Lemma 4.7 For x, x ′ ∈ Vn with |x − x ′| ≤ R′′ any v′ ∈ ∂B′ and w ∈ ∂C, let

Lv′,w
(B′;C) = Ev′ [LσC(B

′) | XσC = w]

(for Lt (·) as in (4.14)). Then,

Lv′,w
(B′;C)

2(r ′)2
→ 1 as n→∞ then r ′ = M →∞. (4.24)
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Proof We first reduce (4.24) to a computation which involves only the transient srw
X̃ on Z

3 starting at X̃0 = v′. To this end note that for h′ = h/(2M),

Lv′,w
(B′;C) = Ev′

[
Lσ x

h′ (B
′) | XσC = w

]
+ Ev′

[
Lσ x

h′ ,σC(B
′) | XσC = w

]
,

and from part (b) of Lemma 4.5 the right most term is o(1) as n → ∞ followed by
M →∞. Further, the other term on the rhs involves a variable of the type considered
in Lemma 4.4 for S′ = h′. With C ⊂ B(x, h/2) it is thus within a uniform 1+O(M−1)
factor of Ev′ [Lσ x

h′ (B
′)], which is precisely the local time in B′ of X̃ till its exit time

of B(x, h′). Let Z̃ be the total local time of X̃ in B′, noting that since h′ = �(log n)

while r ′ = M , it follows from [17, Theorem 1.5.4] that as n→∞,

Ev′
[
Lσ x

h′ (B
′)
]
= Ev′ [Z̃ ] + O(1). (4.25)

From [17, Theorem 1.5.4], we have moreover that

1

(r ′)2
Ev′ [Z̃ ] → c3

∫
B(0,1)

du

|u − e3| as r ′ → ∞, (4.26)

where c3 := 3/(2π) is given explicitly in [18, Theorem 4.3.1, top of page 82], e3 =
(0, 0, 1) and B(0, 1) = {v ∈ R

3 : |v| < 1} is the unit ball inR3 with Lebesguemeasure
denoted by du; we note that an additional factor of r ′ appears in the normalization from
spatially re-scaling. This convergence is uniform in v′ = X̃0 and the proof is completed
by finding after the change of coordinates u = (t cosϕ cos θ, t cosϕ sin θ, 1− t sin ϕ)

that the integral on the rhs of (4.26) is precisely 4π/3. ��
Combining Lemmas 4.6 and 4.7 we now establish (4.5).

Lemma 4.8 Uniformly in x, x ′ ∈ Vn with |x − x ′| ≤ R′′,
v ∈ ∂C′ and w ∈ ∂C, in the limit n→∞ followed by M →∞,

Pv[τB′ < σC | XσC = w] = 2r ′

h
log(R/R′)(1+ o(1)). (4.27)

Proof Recall that if Z ≥ 0 and P[Z > 0] > 0 then P[Z > 0] = E[Z ]/E[Z | Z > 0].
Applying this identity for Z = LσC(B

′) conditional to X0 = v and XσC = w, yields

Pv[τB′ < σC | XσC = w] = Lv,w
(B′;C)

L̂v,w(B′;C)
,

where

Lv,w
(B′;C) := Ev[LσC(B

′) | XσC = w]
L̂v,w(B′;C) := Ev[LσC(B

′) | XσC = w, τB′ < σC].

123



Cut-off for lamplighter chains on tori: dimension… 637

We thus arrive at (4.27) by showing that uniformly in x, x ′, v, w as n→∞ followed
by r ′ = M →∞,

Lv,w
(B′;C) ∼ 4(r ′)3

h
log(R/R′) and (4.28)

L̂v,w(B′;C) ∼ 2(r ′)2. (4.29)

Note that by definition

Lv,w
(B′;C) =

∑
u∈B′

Gw(v, u),

for the Green’s function Gw(·, ·) of Lemma 4.6. The estimate for Gw(·, ·) given there
implies that uniformly in u ∈ B′ and v ∈ ∂C′,

Gw(v, u) = 3

πh
log(R/R′)(1+ o(1))

when n → ∞ followed by M → ∞ (so that |v − u| ∼ R′). Since B′ has to leading
order 4π

3 (r ′)3 points, this yields the stated formula (4.28) for Lv,w
(B′;C). Further,

L̂v,w(B′;C) = Ev

[
LXτB′ ,w(B′) | XσC = w, τB′ < τC

]
,

and with XτB′ ∈ ∂B′ we get (4.29) by the uniform in v′ asymptotics of Lemma 4.7. ��

4.2 Tail probabilities for 3D type events

In this section we establish tail probabilities for 3D type events, which imply (3.27)
and (3.28) in the strong sense of Remark 3.8. We start with the proof of (3.27).

Proposition 4.9 Fix x ∈ Vn and let FB′ be the σ -algebra generated by the entrance
and exit points of all the excursions of X from ∂B′ to ∂B. For any s > 1, 1 ≥ z > η > 0
there exists M0 such that for every M ≥ M0 there exists n0 = n0(M) such that n ≥ n0
implies that a.s.

n−α(z+η) ≤ Pv[Hx,z |FB′ ] ≤ n−α(z−η). (4.30)

The upper bound holds for all x, v ∈ Vn, with |v − x | > R′ for the lower bound.

In order to prove Proposition 4.9, we first estimate the probability that a srw starting
from the boundary of a ball hits the center before exiting a larger ball, conditional on
its exit point.

Lemma 4.10 Uniformly over x ∈ Vn, v′ ∈ ∂B′ and w ∈ ∂B,

Pv′ [τx < σB | XσB = w] = (1+ O(M−1))�, (4.31)
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where for c3 := 3/(2π) from [17, Theorem 1.5.4] (see (4.26)), and q of (1.7),

� = c3q

r ′
. (4.32)

Proof By Bayes’ rule,

Pv′ [τx < σB | XσB = w] = Pv′ [XσB = w | τx < σB]
Pv′ [XσB = w] Pv′ [τx < σB].

By the strong Markov property of X at τx the ratio on the rhs is

Px [XσB = w]
Pv′ [XσB = w] = 1+ O(M−1)

(where we used once again Lemma 4.3 for S′ = r ′ and u �→ Pu[XσB = w] harmonic
on B). Let X̃ denote the srw on Z

3 starting at v′ and τ̃x , σ̃B be the corresponding
stopping times. Then,

Pv′ [τx < σB] = 1− Pv′ [̃τx = ∞]
Pv′ [̃τx = ∞| τ̃x ≥ σ̃B] . (4.33)

By [18, Proposition 6.5.1] (having same constant c3 as in [17, Theorem 1.5.4]),

Pv′ [̃τx = ∞] ∼ 1− c3q

r ′
. (4.34)

Applying the strong Markov property at σ̃B, we similarly find that

Pv′ [̃τx = ∞| τ̃x ≥ σ̃B] ∼ 1− c3q

r
. (4.35)

Combining (4.33)–(4.35) yields the stated estimate �(1+ O(M−1) in (4.31). ��
Proof of Proposition 4.9 ] If v ∈ B′, we only reduce the event Hx,z by shifting v to
the induced (random) first exit of X from B′. Proceeding hereafter with v ∈ Vn\B′
the inner parts of the r -excursions of X around x are independent of each other given
FB′ . Thus, the conditional probability considered in (4.30) is the product of z2NB

�
(s)

probabilities. Lemma 4.10 implies the existence of δ = δ(M) ↓ 0 as M → ∞ such
that each of these probabilities is at most (1 − � + δ), uniformly in the initial and
terminal points of the excursion. In view of (3.9) and (4.32),

(1−�)z
2NB

�
(s) ≤ exp

(
−�z2NB

�
(s)
)
= n−α(z).

The stated upper bound follows since α(z − η) < α(z). The complementary lower
bound is similarly proved for v /∈ B′. ��

We now turn to establish (3.28).
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Proposition 4.11 Fix x ′ ∈ Vn and let FC′ be the σ -algebra generated by the entrance
and exit points of all the excursions of X from ∂C′ to ∂C. For any s > 1 ≥ z > η > 0
there exists γ > 0 such that for all n, r ′ ∈ N large enough and every x ∈ B(x ′, R′′),
v ∈ Vn\C′, we have that a.s.

Pv

[
NBx

′
x,z

NB
�
(s)

/∈ [(z − η)2, (z + η)2] |FC′

]
≤ n−γ r ′ . (4.36)

Proof Fixing s > 1 ≥ z > η > 0 we first show that for some γ > 0 all n, r ′ ∈ N

large enough and every |x − x ′| ≤ R′′, v ∈ Vn ,

Pv

[
NBx

′
x,z < (z − η)2NB

�
(s) |FC′

]
≤ n−γ r ′ . (4.37)

Indeed, R′′ + r < R′ hence B ⊆ C′ for all n large enough. When v ∈ C′ we thus
may only reduce NBx

′
x,z upon using the strong Markov property at the first exit of C′.

Consequently, it suffices to establish (4.37) for v /∈ C′. In the latter case, by Lemma 4.8
there exist δ = δ(M) ↓ 0 as M → ∞ and n0 = n0(M) such that for all n ≥ n0
the number Z� of excursions from ∂B′ to ∂B within one excursion from ∂C′ to ∂C is
stochastically bounded below by a Bernoulli(pn) variable J with pn = (1 − δ)FB,C,
uniformly in x, x ′ as stated and in the initial and terminal points of the excursion.
Letting N := z2NB

�
(s) and N ′ := z2NC

�
(s), the probability considered in (4.37) is

thus bounded above by

P� := P

⎛
⎝ N ′∑

i=1
Ji ≤ (1− η/z)2N

⎞
⎠ ,

for i.i.d. {Ji }. From the definition of FB,C we have that N ′ = N (1 − δ)/pn hence by
Markov’s inequality we deduce that for any θ > 0,

1

N
log(P�) ≤ θ(1− η/z)2 + 1− δ

pn
log
(
1− pn(1− e−θ )

)
. (4.38)

The function f (κ, θ) := θ − κ(1 − e−θ ) decreases in κ and is strictly negative for
any κ > 1 and θ > 0 small enough. Since pn → 0 as n → ∞, the rhs of (4.38)
converges to κ−1 f ((1− δ)κ, θ), where κ = (1− η/z)−2 > 1. With δ(M)→ 0, there
exists γ ′ = γ ′(κ) > 0 such that using θ > 0 sufficiently small we get from (4.38)
that for all M ≥ M1 and n ≥ n1

P� ≤ e−γ ′N = n−γ r ′ .

Note that, in view of (3.9), the value of γ = 4s
a γ ′z2 > 0 is independent of r ′. A

similar argument shows that, by possibly decreasing γ = γ (s, z, η) > 0, for v /∈ C′
one has
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Pv

[
NBx

′
x,z > (z + η)2NB

�
(s) |FC′

]
≤ n−γ r ′ .

Indeed, the only difference is that now we need to replace the i.i.d. copies of
Bernoulli(p) by i.i.d. copies of the product of Bernoulli J̃ of mean (1 + δ)FB,C and
1+Y for the Geometric random variable Y of success probability c1/M as established
in part (a) of Lemma 4.5. ��

Further, combining Propositions 4.9 and 4.11 we obtain the following.

Proposition 4.12 For s > 1 ≥ z ≥ η > 0, let Ĥ x ′
x,z be the event of not hitting x during

the first z2NC
�
(s) excursions from ∂C′ to ∂C. Then, there exist finite n0 = n0(M),

M ≥ M0, such that for every n ≥ n0, x ′ ∈ Vn, x ∈ B(x ′, R′′) and v ∈ Vn\C′ we have
a.s.

n−α(z+η) ≤ Pv

[
Ĥ x ′
x,z |FC′

]
≤ n−α(z−η).

5 Proof of Lemma 3.9: 2D excursion counts at various radii

This section is devoted to the proof of (3.30). To this end, recall our notations of
R′′ = h, R = M2h and for any fixed L ∈ N and k ∈ {0, . . . , L−1}, having ρk = k/L
and Rk = R [nρk ], while RL = [n/M5]M2. Fixingw, z and j ∈ {k+1, . . . , L}we let
NCyk ,k, j,w(s) as in Definition 3.6 count the number of Rk-excursions for yk ∈ A2D,k

completed during thew2NC
�
(s) first R j -excursions for the corresponding y j ∈ A2D, j ,

with (3.30) stating that for each η ∈ (0, w∧ z) there exists M0 = M0(η) such that for
all M ≥ M0 and n ≥ n0(η, M)

∣∣∣∣∣ logP[NCyk ,k, j,w(s) ≤ (z − η)2NC
�
(s)]

log n
+ 2s(w − z)2+

ρ j − ρk

∣∣∣∣∣ ≤ η. (5.1)

In Lemma 5.1 we stochastically dominate NCyk ,k, j,w(s) from above and below
by comparable variables of a much simpler form and thereby establish (5.1) upon
studying in Lemma 5.3 the tail behavior of the latter variables. Specifically, fixing
0 ≤ k < j ≤ L , set for each n ∈ N,

pk→ j (n) := log Rk − log R′k
log R j − log R′k

and p j→k(n) := log R j − log R′j
log R j − log R′k

.

As explained in [17, Chapter 1], the hitting probabilities for srw X within large size
cylindrical annulus, have the same asymptotic as such probabilities for the correspond-
ing 2D Brownian motion. In particular, pk→ j (n) (resp. p j→k(n)) approximates the
probability that the srw X starting from a point in ∂C(yk, Rk) (resp. ∂C(y j , R′j )) hits
∂C(y j , R j ) before hitting ∂C(yk, R′k) (resp. hits ∂C(yk, R′k) before hitting ∂C(y j , R j )).
Moreover, it is easy to check that
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lim
M→∞ lim

n→∞
pk→ j (n)NC

�
(s)

log n
= lim

M→∞ lim
n→∞

p j→k(n)NC
�
(s)

log n
= 2s

ρ j − ρk
. (5.2)

We next show that the variables NCyk ,k, j,w(s) are stochastically related to

Zw,s(p, p
′) :=

w2NC
�
(s)∑

i=1
Ji (1+ Yi ), (5.3)

where the i.i.d. Bernoulli(p) variables (Ji ) are independent of the i.i.d. Geometric(p′)
variables (Yi ), provided the parameters p ∈ (0, 1) and p′ ∈ (0, 1) are comparable to
p j→k(n) and pk→ j (n), respectively.

Lemma 5.1 For every c > 1, w > 0 and L ≥ j > k ≥ 0, all M ≥ M0(c, L) and
n ≥ n0(c, L, M), if p > cp j→k(n) and p′ < pk→ j (n)/c, then the law ofNCyk ,k, j,w(s)
is stochastically dominated from above by Zw,s(p, p′). Likewise, if p < p j→k(n)/c
and p′ > cpk→ j (n) then the law of NCyk ,k, j,w(s) is stochastically dominated from
below by Zw,s(p, p′).

Proof For each i , let J̃i denote the indicator of the event that the i th excursion Ei of
the srw X from ∂C(y j , R′j ) to ∂C(y j , R j ) hits ∂C(yk, R′k). We also let Ỹi denote the
number of returns that the srw X makes to C(yk, R′k) from ∂C(yk, Rk) before exiting
C(y j , R j ) during Ei . Then,

NCyk ,k, j,w(s) =
w2NC

�
(s)∑

i=1
J̃i (1+ Ỹi ).

LetF j denote the σ -algebra generated by the entrance and exit points of all excursions
{Ei } and F j,k denote the σ -algebra generated by F j as well as all entrance and exit
points of the excursions of X from ∂C(yk, R′k) to ∂C(yk, Rk). By [10, Lemma 2.3] in
the limit M → ∞ the probability of the occurrence of J̃i given F j does not depend
on the relevant starting and ending points. The same applies for the probability that
Ỹi = � given Ỹi ≥ � and F j,k . Thus, in view of [17, Exercise 1.6.8], we conclude
that,

lim inf
M→∞ lim inf

n→∞ inf
i

{
P[ J̃i = 1 |F j ]

p j→k(n)

}
= lim sup

M→∞
lim sup
n→∞

sup
i

{
P[ J̃i = 1 |F j ]

p j→k(n)

}
= 1,

(5.4)

lim inf
M→∞ lim inf

n→∞ inf
i,�

{
P[Ỹi = � |F j,k, Ỹi ≥ �]

pk→ j (n)

}

= lim sup
M→∞

lim sup
n→∞

sup
i,�

{
P[Ỹi = � |F j,k, Ỹi ≥ �]

pk→ j (n)

}
= 1. (5.5)
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Combining (5.4) and (5.5) yields the desired result because the excursions {Ei } are
conditionally independent given F j . ��

By Lemma 5.1, it suffices to prove the bounds of (5.1) for Zw,s(pn, p′n) in place of
NCyk ,k, j,w(s), provided that both pn/p j→k(n)→ 1 and p′n/pk→ j (n)→ 1. Further,
in view of (5.2), when doing so we may consider w.l.o.g. p′n = κ pn , κ ∈ (0,∞),
taking n→∞ followed by κ → 1. To this end, set

�p,p′(θ) := logE[e−θ J1(1+Y1)] = log

(
1− p + pp′

eθ − 1+ p′

)
for θ ≥ 0,

and for each 0 ≤ z ≤ w ≤ 1, let

Ip,p′(z, w) := 1

p
inf
θ≥0

{
z2θ + w2�p,p′(θ)

}
,

whose asymptotic as p′ = κ p, p→ 0 shall describe the tail behavior of Zw,s(pn, p′n)
which is relevant here.

Lemma 5.2 Fix κ ∈ (0,∞). Then, we have that for w ≥ √κz > 0,

Iκ(z, w) := lim
p→0

Ip,pκ (z, w) = inf
v≥0

(
vz2 − vw2

κ + v

)
= −(w −√κz)2. (5.6)

Let θp ∈ [0,∞) be the unique value so that �′p,κ p(θp) = −(z/w)2. Then,

lim
p→0

θp

p
= √κ

w

z
− κ := v� ≥ 0, (5.7)

lim
p→0

p2�′′p,κ p(θp) = 0. (5.8)

Proof We begin by making the substitution θ := log(1 + pv) for v ≥ 0, and setting
f p(v) := p−1 log(1+ pv) rewrite Ip,κ p(z, w) as

Ip,κ p(z, w) = inf
v≥0

{
z2 f p(v)+ w2 f p

( −v

κ + v

)}
. (5.9)

Since f p(v) ↑ ∞ as v → ∞, the infimum in (5.9) is attained at some finite vp.
Further, with p �→ f p(v) non-increasing, there exists a universal finite constant V
such that vp takes its values in [0, V ] as p→ 0 and κ fixed. This allows us to change
the order of the limit in p and the infimum over v, yielding

Iκ(z, w) = inf
v≥0 lim

p→0

{
z2 f p(v)+ w2 f p

( −v

κ + v

)}
.

Since f p(v)→ v for p→ 0, the first assertion of the lemma follows upon verifying
that the infimum in (5.6) is achieved at v� ≥ 0.
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As for confirming (5.7) and (5.8), let Fp(v) := f p(F0(v)) for F0(v) = −v/(κ+v),
so �p,κ p(θ) = pFp(v), under the substitution θ = log(1+ pv). Differentiating both
sides of this identity twice and rearranging, we find that

p2�′′p,κ p(θ) = p(1+ pv)
(
F ′′p (v)(1+ pv)+ pF ′p(v)

)
. (5.10)

Since the infimum in the definition of Ip,κ p(z, w) is attained at θp, necessarily
θp = p f p(vp). Thus, as p → 0 we have that p−1(eθp − 1) = vp → v�, from
which (5.7) follows. Further, F ′p(vp) → F ′0(v�) and F ′′p (vp) → F ′′0 (v�), yielding
(5.8) in view of (5.10). ��

As explained before, the required bounds (5.1) are established by combining
Lemma 5.1 with our next lemma, then taking κ → 1 [we have the required bounded-
ness of pn log n by (3.9) and (5.2)].

Lemma 5.3 Fix s ≥ 1, κ ∈ (0,∞) and w ≥ √κz > 0. If pn log n are uniformly
bounded above and uniformly bounded away from zero, then

lim
n→∞

1

pnNC
�
(s)

logP
[
Zw,s(pn, κ pn) ≤ z2NC

�
(s)
]
= −(w −√κz)2+. (5.11)

Proof Fix s ≥ 1, κ ∈ (0,∞) and w ≥ √κz > 0. Now, for any p ∈ (0, 1) we get by
applying Chernoff’s bound, then optimizing over θ ≥ 0 that

1

pNC
�
(s)

logP
[
Zw,s(p, κ p) ≤ z2NC

�
(s)
]
≤ Ip,κ p(z, w). (5.12)

Thus, in view of (5.6), considering p = pn → 0 yields the upper bound in (5.11).
For the lower bound we use a change of measure analogous to the proof of the lower

bound in Cramer’s theorem (see [11, Theorem 2.2.3]). Specifically, fixing p ∈ (0, 1)
and δ > 0 small (we eventually send δ → 0), set θ = θp ≥ 0 be the unique value
such that �′p,κ p(θp) = −(z − δ)2/w2 and probability measure Pθ given by

dPθ

dP
= exp

(
− θ Zw,s(p, κ p)− w2NC

�
(s)�p,κ p(θ)

)
.

Considering event Ap,κ p = {(NC�
(s))−1Zw,s(p, κ p) ∈ [(z − 2δ)2, z2]}, we clearly

have then

P[Ap,κ p] ≥ Pθ [Ap,κ p] exp
(
w2NC

�
(s)�p,κ p(θ)+ θ(z − 2δ)2NC

�
(s)
)

. (5.13)

Adding and subtracting θ(z − δ)2NC
�
(s) in the exponent on the RHS of (5.13), then

setting there θ = θp, we see that P[Ap,κ p] is further bounded below by

Pθp [Ap,p′ ] exp
(
pNC

�
(s)Ip,κ p(z − δ,w)− ηNC

�
(s)θp

)
,

123



644 A. Dembo et al.

where η := (z−δ)2−(z−2δ)2.We now complete the proof by taking p = pn (wewill
suppress the subscript n). Indeed, note that under Pθ the variables Ji (1+ Yi ) are i.i.d.
each having mean (z− δ)2/w2 and variance �′′p,κ p(θ). Further, p2nNC

�
(s) is bounded

away from zero, so by (5.8) we see that Varθp
(
NC

�
(s)−1Zw,s(p, κ p)

)→ 0 as n →
∞, while Eθp [NC�

(s)−1Zw,s(p, κ p)] = −w2�′p,κ p(θp) = (z − δ)2. Consequently,

lim
n→∞

1

pNC
�
(s)

logPθp [Ap,κ p] = 0.

Hence, by (5.6) and (5.7) we have that

lim inf
n→∞

1

pNC
�
(s)

logP
[
Zw,s(p, κ p) ≤ z2NC

�
(s)
]
≥ −(w −√κ(z − δ))2+ − 2η.

The stated lower bound follows by considering δ→ 0 (so η→ 0 as well). ��

6 Lower bound onmixing time: effective clustering inU(st�cov)

LetQs′ denote the law of the lamps configuration of X� at time s′t�cov, starting from all
lamps off (and walker at the point 0 ∈ Gn(a)), withQ∞ the uniform law over the set of
2|Vn | possible lamp configurations. We claim that ‖Qs′ −Q∞‖TV → 1 when n→∞,
for fixed s′ = (1 − ε)s, any s < 
(φ) and ε > 0. Obviously, then tmix ≥ s′t�cov for
such s′, which in view of the upper bound on tmix we proved in Sect. 3, establishes
the stated cut-off and thereby proves Theorem 1.3.

To prove this claim, fix ε > 0 and s < 
(φ), noting that in view of (3.25) and the
variational formulation (1.12) of 
(φ), there exist ρ and w > z > (1+w/ρ)δ, all in
(0, 1], such that for small enough δ > 0,

bρ(w − δ) ≥ 2δ and α(z + 3δ)+ λ(ρ − δ) ≤ ρ − 5δ, (6.1)

where further, by (3.24) and the assumed range of z,

λ := 2s
(w − z + δ)2

(ρ − δ)2
< 2 and A := (z − δ)ρ − wδ

w − z + δ
> 0. (6.2)

Using hereafter these parameters, we considerably shorten our proof by taking
advantage of the results of [10] and [8] (which we apply here for the 2D projection
of the srw on Gn(a)). For this purpose, we change our cylinders radii somewhat and
consider throughout this section

Rk = R′k+1 = (k!)3, k = 1, . . . ,m

with m ∈ N such that for some γ̄ ∈ [b + 12, b + 16]

n = Km := m γ̄ Rm
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(and b ≥ 10 a universal constant from [10, Lemma 4.2]). Next, let Zm denote a
maximal set of 4Rρm+4-separated points on the 2D base of Gn(a) excluding those
within distance Rm of the starting position 0 of the 2D projected srw, such that
(0, 2Rm) ∈ Zm (so Zm is precisely the set considered in [10, Equation (10.3)], taking
there β = ρ and Km = n). Further, set

Z ′m := Zm

⋂⋃
vi

C(vi , Rm−2),

for a collection {vi } that forms a maximal 4Rm-separated set on the 2D base of Gn(a).
Next, for any v ∈ Z ′m , let κn(v) count the vertices of C(v, Rρm−2) ⊂ Gn(a), and Dv

denote the difference of number of “off-lamps” minus “on-lamps” among these κn(v)

vertices. Considering the statistics

Un = max
v∈Z ′m

{Dv},

it suffices to show that as n→∞,

Q∞[Un ≥ nρ+δ] → 0 and Qs′ [Un < nρ+δ] → 0. (6.3)

We proceed with the proof of (6.3), establishing in Step I the easy part, namely its
lhs. Introducing nm(2s) := 6sm2 logm and

Û v := ∣∣{x ∈ C(v, Rρm−2) : x unvisited in first nm(2s) excursions by

the SRW from ∂C(v, R′m) to ∂C(v, Rm)
∣∣, (6.4)

we reduce in Step II the rhs of (6.3) to having whp some v ∈ Z ′m with large enough
Û v (see (6.7)). We now need the following additional notations.

Definition 6.1 For amaximal setZδm(v)of 4Rδm-separated points in the 2Dprojection
of C(v, Rρm−2) on the base of Gn(a), let:

(a) W v count points in Zδm(v) for whose Rδm-sized cylindrical annulus the srw
completed at most z2nm(2s) excursions during its firstw2nm(2s) excursions from
∂C(v, R′ρm) to ∂C(v, Rρm).

(b) Ū v ≤ W v count those y from (a), for which in addition x = (y, 0) is not visited
during the first z2nm(2s) excursions from ∂C(x, R′δm) to ∂C(x, Rδm).

Step III shows that whp Û v� ≥ Ū v� for some v� ∈ Z ′m . Indeed, it clearly suffices to
have at most w2nm(2s) of the Rρm-excursions of v� within the first nm(2s) of its Rm-
excursions. This applies to pre-qualified points from [10, Section 10], so we complete
this step by showing that whp the relevant count Wp- q(m) of pre-qualified points (see
(6.10)), is positive. Step IV then converts the conditional statement of bounding below
Ū v� (for the random v�), into such a statement for non-random v, which we verify
under the condition of W v large enough (see rhs of (6.12)). We complete the proof
of the latter (see lhs of (6.12)), by applying in Step V the concept of pre-sluggish
points from [8, Section 6].
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Step I Note that under Q∞ the variables {Dv, v ∈ Z ′m} are mutually independent,
with Dv having the law of the sum of κn(v) i.i.d. symmetric {±1}-valued variables
{I v

j }. Further, supv κn(v) ≤ Chn2ρ and |Z ′m | ≤ Cn2(1−ρ) for some C finite and all n.

Recall that E[eζ I v
j ] ≤ eζ 2/2 for all ζ , hence by the union bound over at most Chn2

values of v ∈ Zm′ and the uniform tail bound

sup
r≤Chn2ρ

P

⎡
⎣ r∑

j=1
I v
j ≥ nρ+δ

⎤
⎦ ≤ e−nδ+Ch/2, (6.5)

we conclude that the lhs of (6.3) holds for any δ > 0.

Step II Turning to the rhs of (6.3), let NCv,m(s′) count the Rm-excursions for cylin-
drical annuli centered at v on the 2D base of Gn(a), made by the srw on Gn(a) up
to time s′t�cov. Note that log n = (3 + o(1))m logm and for R/R′ = Rm/R′m = m3

the value of NC
�
(s) of (3.9) is within 1+ o(1) (as n→∞), of nm(2s) = 6sm2 logm

(from [10]). Hence, analogous to part (a) of Definition 3.3 we have that

lim
n→∞P

(
max

v
{NCv,m(s′)} > nm(2s)

)
= 0, (6.6)

where the maximum is over all n2 vertices v on the 2D base of Gn(a). Indeed, com-
bining the tail bound [10, Equation (3.18)] for the aggregate number of steps during
the first nm(2s) such Rm-excursions for fixed v, with standard exponential tail bounds
on the number of actual steps taken by our 2

3 -lazy projected 2D srw, we thus deduce
that n2P(NCv,m(s′) > nm(2s))→ 0 and the union bound over v results with (6.6).

We now show that the rhs of (6.3) holds as soon as

lim
n→∞P

[
max
v∈Z ′m

{Û v} < 2nρ+δ

]
= 0, (6.7)

for Û v of (6.4). Indeed, Qs′ [Un < nρ+δ] is bounded by the sum of the probabilities
considered in (6.6) and in (6.7), and

∑
v∈Z ′m

Qs′

⎡
⎣∑

j /∈Ûv

I v
j ≤ −nρ+δ

⎤
⎦ . (6.8)

Further, conditional on the whole path of the srw on Gn(a) the variables {I v
j , j /∈ Û v}

retain under Qs′ their symmetric i.i.d. ±1-valued law, so the sum of probabilities
considered in (6.8) is small by the uniform tail bound of (6.5).

Step III Proceeding to prove (6.7), let N v
m,k denote the number of srw excursions from

∂C(v, R′k) to ∂C(v, Rk), during the first nm(2s) excursions it made from ∂C(v, R′m) to
∂C(v, Rm). We rely on [10, Section 10] to prove the existence whp (as m → ∞), of
v ∈ Z ′m such that for w of (6.1)
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N v
m,ρm < w2nm(2s). (6.9)

Indeed,we consider the choice of parametersa = 2s,β = ρ andγ = (w−δ)/ρ, in [10,
Section 10] and call v ∈ Z ′m an (m, β)-pre-qualified point if N v

m,k ∈ [̂nk − k, n̂k + k]
for all βm ≤ k ≤ m − 1 and the value of n̂k given in [10, Equation (10.2)]. Since our
choices ofa,β andγ resultwith n̂βm = (w−δ)2nm(2s)(1+o(1)) m,wededuce that
for some universalm0 and allm ≥ m0, every (m, β)-pre-qualified point satisfies (6.9).
Further, in view of (1.10) and the lhs of (6.1), the value of a� in [10, Section 10] (given
the preceding choices of a, β, and γ ), is such that (1−β)(2−a�) = 2bρ(w−δ) ≥ 4δ.
Thus, letting

Wp- q(m) := |{v ∈ Z ′m : v is (m, β)- pre-qualified}|, (6.10)

it suffices to show that

lim
m→∞P

(
Wp- q(m) ≥ K (1−β)(2−a�)−δ

m

)
= 1,

which we get by adapting the proof of [10, Equation (10.3)], in replacing the (m, β)-
qualified points in Zm dealt with there, by the (m, β)-pre-qualified points in Z ′m
considered here. To this end, recall that [10, Equation (10.3)] is derived by showing
that:

(a) The mean number of such points far exceeds K (1−β)(2−a�)−δ
m .

(b) Its variance is negligible relative to the square of its mean.

We further note that the (m, β)-qualified points of [10, Section 10] are essentially our
(m, β)-pre-qualified points for which also the event Âv

N v
m,βm

as in the proof of [10,

Lemma 10.1], occurs. In [10] one takes 2s < 2 for which the latter event is shown
to occur whp (see [10, Equation (10.8)]). The probability that v is (m, β)-qualified, as
computed in [10, Equation (10.4)], is thus within (1+ o(1)) of the probability that v
is (m, β)-pre-qualified, and it is further easy to check that in the pre-qualified case the
same formula applies also when 2s ≥ 2.

Hence, the same argument as in [10] establishes (a) here as well. The key to (b)
is the bound of [10, Equation (10.7)] which builds on the correlation upper bounds
[10, Equations (10.5),(10.6)]. The latter have already been derived there for (m, β)-
pre-qualified points and all s > 0. Thus, [10, Equation (10.7)] applies here as well,
apart for a minor difficulty due to the fact that we consider only points from the subset
Z ′m of Zm . However, infm{m12|Z ′m |/|Zm |} is positive, and we have already increased
by m12 the value of Km = n, which as seen by following the derivation of [10,
Equation (10.7)], well compensates this effect.

Step IV Ordering the points of Z ′m in some non-random fashion, we let v� denote the
first v ∈ Z ′m satisfying (6.9) (which by Step III exists whp). By definition the points
in Z ′m are 4Rρm+4-separated and the Rm-sized cylindrical annulus around each is of
distance Rm−1 ≥ Rρm from any (other) point of Z ′m . Consequently, v� is measurable
on theσ -algebraF generated by the srw path excluding the interior parts of excursions
between ∂C(v, Rρm−1) and ∂C(v, Rρm), for all v ∈ Z ′m (namely, each such part has
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been replaced by its entrance and exit points). Recalling Definition 6.1 of the counts
Ū v ≤ W v of points in Zδm(v), we thus get (6.7) by showing that

lim
n→∞P(Ū v� ≥ 2nρ+δ|F) = 1. (6.11)

Further, applying [10, Lemma 2.4] for r = Rρm−2, R = Rρm−1, R′ = Rρm and the
event {Ū v ≥ 2nρ+δ} which is measurable on the σ -algebraHv(�) of the interior parts
of first � = w2nm(2s) excursions for Rρm-sized cylindrical annulus around v, we get
the conditional result (6.11), once we show that for θ := (2− λ)(ρ − δ)− δ and any
non-random v ∈ Z ′m , as n→∞,

P(W v ≥ nθ )→ 1 and P
(
Ū v ≥ 2nρ+δ |W v ≥ nθ

)→ 1. (6.12)

Proceeding to establish the rhs, let qn be theminimal value over all possible excursion
end points and the choice of x ∈ Gn(a)\C(0, Rδm), of the conditional probability that
x is not visited during the first z2nm(2s) of the srw excursions from ∂C(x, R′δm) to
∂C(x, Rδm). Since points in Zδm(v) ⊂ C(v, R′ρm − Rδm) are 4Rδm-separated, the
variable W v is measurable on the σ -algebra Fv generated by the srw path excluding
the interior part of the excursions between ∂C(x, R′δm) and ∂C(x, Rδm), for all x =
(y, 0) and y ∈ Zδm(v) (namely, each such part has been replaced by its entrance and
exit points). Thus, conditionally onW v ≥ nθ , the variable Ū v stochastically dominates
the Binomial(nθ , qn) law. From (6.1) and our choice of θ we have that

θ − α(z + 3δ) ≥ ρ + 2δ,

so by the clt for Binomial random variables, we get the RHS of (6.12) upon proving
that as n→∞,

nα(z+3δ)qn →∞. (6.13)

In view of the lbd of Proposition 4.12, we have (6.13) upon showing that for
any M large enough, the probability of having at least (z + 2δ)2NC

�
(s) excursions

from ∂C(x, Mh) to ∂C(x, M2h) during the first z2nm(2s) of the corresponding Rδm-
excursions, is bounded away from one, uniformly in x , m → ∞, and the possible
excursion end points. Further, the stochastic comparisons of Lemma 5.1 extend to our
case where R0 = MR′0 = M2h as before, but we replace R j = n j/L R0 = MR′j with
Rδm = (δm)!3 = (δm)3R′δm and change NC

�
(s) in (5.3) to nm(2s). Since nm(2s) is

within factor 1+o(1) of the value of NC
�
(s) from (3.9) that corresponds to R′ = R′δm

and R = Rδm = (δm)3R′, the desired uniform bound on probabilities follows from
the convergence Zz,s(p, p′)/E[Zz,s(p, p′)] → 1 as m → ∞ followed by M → ∞
(while both p = 3 logm/ log Rδm and p′ = logM/ log Rδm decay to zero).

Step V We set R̂ := Rρm + Rρm−2, ρ̂ := Rρm−1 − Rρm−2 and n̂k(λ) := 3λ(k +
Am)2 logm, k = 1, 2, . . . for λ < 2 and A > 0 of (6.2). Following the proof of
[8, Lemma 6.1] we call y ∈ Zδm(v) (m, ρ)-pre-sluggish if for the universal constant

123



Cut-off for lamplighter chains on tori: dimension… 649

b ≥ 4 found there, and all δm ≤ k ≤ ρm − b the srw completed within ±k of
n̂k(λ) excursions from ∂C(y, R′k) to ∂C(y, Rk) during its first n̂ρm(λ) excursions from
∂C(y, ρ̂) to ∂C(y, R̂). It is easy to check that n̂ρm(λ) = w2nm(2s) and n̂δm(λ) =
(z− δ)2nm(2s) ≤ z2nm(2s)− δm (these analogs of [8, (6.4) and (6.5)] are behind our
choice of A and λ in (6.2)). Further, if y ∈ Zδm(v) then

C(y, ρ̂) ⊆ C
(
v, R′ρm

) ⊂ C(v, Rρm) ⊆ C(y, R̂).

Hence, W v exceeds the number Ŵ v of (m, ρ)-pre-sluggish y ∈ Zδm(v). The latter
points match the definition made in [8, proof of Lemma 6.1], upon taking there the
parameters γ := ρ, β = w and η := δ. Utilizing [8, Lemma 6.2] it is shown in the
course of proving [8, Lemma 6.1] that Ŵ v concentrates whp around its mean value,
which for our choice of parameters turns out to be Rθ+δ−om (1)

m (see [8, Equations (6.6)
and (6.7)]). The values of λ, β and γ we have here are outside the range considered
in [8, Lemmas 6.1 and 6.2], but this restriction in [8] is only relevant for the extra
requirement made in [8, Equation (6.10)] that any (m, γ )-pre-sluggish point should
be whp also (m, γ )-sluggish. We completely abandoned this requirement, so the proof
of [8] easily extends to yield the lhs of (6.12).
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