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Abstract

Given a finite, connected graph G, the lamplighter chain on G is the lazy random
walk X on the associated lamplighter graph G® = Z; : G. The mixing time of the
lamplighter chain on the torus ij is known to have a cutoff at a time asymptotic to the
cover time of Zg if d = 2, and to half the cover time if d > 3. We show that the mixing
time of the lamplighter chain on G, (a) = Zﬁ X Zalogn has a cutoff at v (a) times
the cover time of G,(a) as n — oo, where ¥ is an explicit weakly decreasing map
from (0, co) onto [1/2, 1). In particular, as a > 0 varies, the threshold continuously
interpolates between the known thresholds for Zﬁ and Zfl. Perhaps surprisingly, we
find a phase transition (non-smoothness of ¥) at the point a, = wr3(1 + «/5), where
high dimensional behavior (1 (a) = 1/2 for all a > a,) commences. Here r3 is the
effective resistance from 0 to oo in Z3.
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1 Introduction
1.1 Setup

Suppose that G is a finite, connected graph with vertices V (G) and edges E (G), respec-

tively. Each vertex (f, x) of the wreath product G® = ZxGconsistsof a {0, 1}-labeling

J of V(G) and x € V(G). There is an edge between (f, x) and (g, y) if and only if

{x,y} € E(G) and f, = g, forall z ¢ {x, y}. Recall that the transition kernel of the
lazy random walk X on G is

1 if _

Pa,y) =P X, =y={2, . 7% (1.1)
s i (. y) € E@),

where d(x) is the degree of x € V(G) and P, denotes the law under which X¢ = x.
The lamplighter chain X° is the lazy random walk on G°. Explicitly, it moves from

(f,x) by

1. picking y adjacent to x in G according to P, then
2. if y # x, updating each of the values of f, and f, independently according to the
uniform measure on Z, (with f; unchanged for all z ¢ {x, y}).

We refer to f, as the state of the lamp at x. If f, = 1 (resp. fy = 0) we say that the
lamp at x is on (resp. off); this is the source of the name “lamplighter.” Note that the
projection of X to G evolves as a lazy random walk on G. It is easy to see that the
unique stationary distribution of X is given by the product of the (unique) stationary
distribution of P (-, -) and the uniform measure over the {0, 1}-labelings of V (G). See
Fig. 1 for an illustration of the lamplighter chain.

The purpose of this work is to determine the asymptotics of the total variation
mixing time of the lamplighter chain on a particular sequence of graphs. In order to
state our main results precisely and put them into context, we will first review some
basic terminology from the theory of Markov chains. Suppose that 1, v are measures
on a finite probability space. The toral variation distance between ., v is given by

= A A _1 1.2
lle = viiry = max |u(A) — v(A)] = EZX:W(X)_“(")" (1.2)

The é-total variation mixing time of a transition kernel Q on a graph H with stationary
distribution 7 (-) is given by

Imix(H, §) = min {t >0: max [|0'(x,) =)V < 8} . (1.3)
xeV(H)

Throughout, we let fpix (H) = tmix (H, 2—18). Lazy random walk X ona family of graphs
(Hp) is said to exhibit curoff if

tmix(Hn’ 5)

im ———— =1 forall § > 0. (1.4)
n—>00 tmix(Hp, 1 —6)
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Fig.1 Shown is a lamplighter
configuration on Zg (without the
wraparound edges). The state of
the lamps is indicated by the
colors. The circle gives the
position of the underlying
random walker (color figure
online)

For each x € V(H) let 7, = min{k > 0 : 5(\1( = x} be the hitting time of x. With E,
the expectation associated with Py, the maximal hitting time of H is given by

thit = hic(H) = max E,[7,]
x,yeV(H)

and the cover time of H is

feov = leoy(H) = max E, |: max rx] .
yeV(H) xeV(H)

1.2 Related work

The mixing time of G® was first studied by Higgstrom and Jonasson [13] in the case
of the complete graph K,, and the one-dimensional cycle Z,. Their work implies a
total variation cutoff with threshold %ICOV(K”) in the former case and that there is no
cutoff in the latter. The connection between #iix (G%) and .oy (G) is explored further
in [23] (see also the account given in [19, Chapter 19]), in addition to developing the
relationship between th;(G) and the relaxation time (i.e., inverse spectral gap) of G°,
and the relationship between exponential moments of the size of the uncovered set
U(t) of G at time ¢ and the uniform, i.e., £-mixing time of G°. In particular, it is
shown in [23, Theorem 1.3] that if (G,) is a sequence of graphs with |V (G,)| — oo
and 1t (Gy) = 0(feov(Gy)) then

%(1 +o(1)teov(Gy) < tmix(GZ) < (A +o(1)tecov(Gr) as n — oo. (1.5)

Related bounds on the order of magnitude of the uniform mixing time and the relaxation
with generalized lamps were obtained respectively in [15,16].

By combining the results of [1,10], it is observed in [23] that tmix((Zﬁ)o) has a
threshold at 7.y (Z%). Thus, (1.5) gives the best universal bounds, since K,, attains the
lower bound and Z,% attains the upper bound. In [21], it is shown that tmix((Zz)o) ~
%ICOV(Z;]) when d > 3 and more generally that 7« (GZ) ~ %tCOV(G,,) whenever (G,)
is a sequence of graphs with |V (G,,)| — oo satisfying certain uniform local transience
assumptions. This prompted the question [21, Section 7] of whether foreach y € (%, 1)
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608 A.Dembo et al.

there exists a (natural) family of graphs (G,) such that #pix (GZ) ~ Yteov(Gp) as
n — oo. In this work we give an affirmative answer to this question by analyzing the
lamplighter chain on a thin 3D torus.

Cutoff for lazy random walks on G is further examined in [7] for a large class of
fractal graphs G,,. They show that cutoff never occurs for strongly recurrent G,, (namely
of spectral dimension d; < 2), while the sufficient conditions of [21] for cutoff at
%tcov(Gn), apply for transient G, (i.e. having d; > 2). However, such universality
seem to not hold in the setting of dy = 2, namely for the fractal analog of the 2D and
thin 3D torus considered here.

1.3 Main results
Fix a > 0. We consider the mixing time for the SRW X7, k € N, on the lamplighter
graph (G, (a))® for the 3D thin tori G,(a) = (V, E,) = Z2 x Zj, of sizen x n x h,

where h = [a logn]. From the main result of [9] we know that the cover time of the
2D projection of SRW on G, (a) to Zﬁ is given by

3 4
g = S teon (Zﬁ) where fugy (Zﬁ) = Zn200gn)2(1 + o(1))

" on

(where the factor % is due to the lazy steps of walk in the h-direction, which occur
with probability 1). Let

¢ :=mria (1.6)

where r3 denotes the resistance 0 <> oo for the SRW in Z3. That is,
1
r3 = o where g = Py[Ty = o0], (1.7)
q

and Ty denotes the return time to zero by SRW in Z> (see [19, Proposition 9.5] for the
relation (1.7) and an explicit formula for ¢). In Sect. 2, we use the recent development
which relates cover time with the extremes of Gaussian fields, see [6], to establish the
following theorem.

Theorem 1.1 The cover time t.oy(a, n) of G,(a) by SRW is given by
teov(a,n) = (1 +0(1))C(a,n), asn — oo
where
Cla,n) := (1 +2¢), (1.8)

and ¢ is as in (1.6).
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Remark 1.2 One expects the cutoff threshold transition from 2D to 3D behavior to
occur when fcqy (G (a))/ tcov(Zﬁ) = O(1), while depending on the height multiplier
a. By Theorem 1.1 the correct scaling for this is log n (which as shown in Sect. 2, has
to do with the decay rate of Diampg,, (Zﬁ), see (2.12)).

Our main result establishes cutoff for SRW { X’} on the lamplighter graph (G, (a))®
and determines its location as a function of the height parameter a.

Theorem 1.3 Total-variation cut-off occurs for {XZ} on Gy, (a) at \I'(d))tCDOV, where
(1+(1—L)¢)2 ifo <VZ+1
V(p) = V2 ’ = ’ (1.9)
2 ifo >~24+1.

In particular, tmix = (¥(¢) + o(1)13]

cov*

Comparing Theorems 1.1 and 1.3 we see that the ratio between the mixing time of
{X7} and the cover time C(a, n) of the base graph by the SRW {X}}, monotonically
interpolates between the fraction of the cover time necessary to mix in two dimensions
(ratio 1) [9,23] and the fraction in three dimensions (ratio 1/2) [21]. This gives an
affirmative answer to the first question posed in [21, Section 7]. See Fig. 2 for a plot
of the quantities from Theorem 1.3 and how they relate to the bounds (1.5).

We note in passing that for all ¢ > 0 the value of i« / thov — W (¢)isbounded away
from its trivial bound 1. The latter corresponds to the mixing time for the lamplighter
graph on the 2D torus of side length  that corresponds to the base sub-graph (x1, x2, 1)
of G, (a) (which as shown in [23] coincides with the cover time tc‘%v(l 4+ o(1)) for the
corresponding (lazy) 2D projected SRW). However, when ¢ > V2 + 1 asymptotically
tmix matches the elementary bound #pix > WC (a,n) (see (1.8), and [19, Lem-
mas 19.3 and 19.4]), which applies for the lamplighter chain on any base graph having

maximal hitting time which is significantly smaller than the corresponding cover time.

3 =

1+V2

0 I S S S S I T S [N S S S S S S S S N |
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Fig.2 The function ¥ from (1.9) which gives the asymptotic ratio of #pix / chov- Also shown are the bounds

of 2¢ + 1 and ¢ + % on tmix/tgv; recall (1.5). The lower bound is attained by W starting at ¢ = 1 + V2
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Remark 1.4 Tt is possible to adapt the proof of Theorem 1.3 so that it will yield a
similar conclusion in the setting of a more general 3-dimensional lattice confined to a
thin slab of size n x n x h.

Remark 1.5 Clearly, X; is not mixed for as long as the uncovered set U(r) of X
exhibits some non-trivial systematic geometric structure that makes the corresponding
lamp states distinguishable from the uniform marking of V (G) by i.i.d. fair coin flips.
Further, the uniformity of /() typically determines the threshold ¢ for mixing time
of X°, and indeed our work contributes to the literature on the geometric structure of
the last visited points by the SRW (see [3,4,9,10,21,22]).

Remark 1.6 By the reasoning of Remark 1.5, up to technical issues, we expect that
tmix(GZ) iS Yteov (Gp) (1 + o(1)) for some y € (1/2, 1), provided that:

e The Green’s functions G, (x, y) for G, are bounded above on the diagonal. (This
should prevent clustering in U (v tcov (G, )) for y sufficiently close to 1.)

e The decay of G, (x, y) in terms of the distance between x and y is non-uniform
in n. (This should lead to clustering in U (yt.ov(G,)) beyond y = %, while [21]
show that a uniform decay rate results in the threshold at %tcov Gp).)

One interesting family of graphs G, of this type is given by the infinite cluster for
super-critical Bernoulli percolation restricted to a thin slab of size n x n x h.

1.4 Outline of the proof of Theorem 1.3
Fixing s > 1, for any p, z € [0, 1], the functions

s(1 — z)? o, (2) = 572
l—p =77 5+¢

bp(z)=1—p— (1.10)

control the structure of U (stCDov). Specifically, for any p € [0, 1] we associate with
each x € V, atype z € [0, 1] according to the number of excursions of the SRW, by
time stCDOV, across the 2D cylindrical annulus of radii Mhn” and M 2pnP, centered at
the 2D projection of x. Our parameters are such that forn — oo followed by M — oo,
wip about n22e 0D of the n>(1=P)+0() guch annuli are of z-type and points x € V,
whose 2D projection is not far from the center of such z-type annulus, are unvisited by
the SRW with probability n~% ©+°() Further, in Sect. 3.1 we confirm the following
representation of W (¢).

Lemma 1.7 Fors > 1 and p,z € [0, 1] let b,(2), ap(z) be as in (1.10), with the
convention that b1(z) = —o0l;21). Then, W (-) of (1.9) emerges from the following
variational problem:

V(¢) =inf{s > 1:Vp,z€[0,1], bp(z) 20 = a,(2) > p} (1.11)
=sup{s > 1:3p,z € [0, 1], suchthatb,(z) >0 and a,(z) < p}. (1.12)

Calling a z-type p-admissibleif b,(z) > 0, we know from (1.12) thatforany s < W(¢)
there exist p € (0, 1) and p-admissible z’ € (0, 1) with «,(z') < p. By continuity,
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the same applies for L large enough and pr = k/L with k := [pL]. Using this
approximation, we show in Sect. 6 that the maximum discrepancy at time stc%'v between
“off-lamps” and “on-lamps” over a certain large enough (and spatially well separated)
collection Ayp x of 2D disjoint cylinders of radii An®*, far exceeds its value under the
invariant (uniform) law for the SRw {X?°}. This statistics distinguishes between the
law of the lamplighter chain at time stCDOV and its stationary law, thereby yielding the
stated lower bound on tix = fmix (G, (a)®).

In contrast, by the dual variational problem (1.11), for s > W(¢), if b,(z) > 0 then
the discrepancy of about n~% () between the fractions of “off-lamps” and “on-lamps”
within each such annulus, is buried under the inherent noise level of n~°. Thus, all such
statistics agree with the stated upper bound #,ix < \Il(q&)tcmov. As explained in Sect. 3,
to actually upper bound f,ix, one needs to control exponential moments of the size of
u (stgv) (more precisely, the size of the intersection of the unvisited sites by two inde-
pendent random walks), which is the main technical challenge here. This is carried out
by carefully estimating the number of excursions within consecutive annuli. Specif-
ically, utilizing Holder’s inequality it suffices to separately consider each z-type and
to do so on a certain sparse sub-lattice A of V,,, where at p = 0 the Bernoulli(n ™% @)
variables corresponding to z-type unvisited sites in A are approximately independent
even in terms of tail probabilities.

Atany p > 0 the corresponding Bernoulli(n ~%»(?)) variables are no longer asymp-
totically independent. To circumvent this problem, we group the vertices of A into
nested, growing cylindrical annuli, centered at sub-lattices Ayp x that correspond to
pk = k/L,k =0,1,..., L. Then, for each vertex/base point, the excursion counts
across different scale annuli define a type profile z € [0, 115+ (that coincide atk = 0
with its zo-type). We characterize the collection of all possible excursion count pro-
files by a careful extension of the concept of p-admissible z-types to that of admissible
z-types. The bulk of this article is thus about controlling the exponential moment of
the number of unvisited sites per fixed admissible z-type. Taking first n — oo, then
M — o0 and finally L — oo, this is done in Sects. 3—5 via estimates on modified
Green functions and utilizing stochastic domination to employ large deviation tail
estimates for sums of i.i.d. variables.

We note in passing that while lower bounding ,ix we find that the most likely way
to have z-type at the O (h) size 2D annulus corresponding to p = 0, is via the profile
z(p) =1 — (1 — p)(1 — z). However, we also show in Sect. 6 that such profiles are
highly unlikely for the set U (stCDOV). Thus, for a sharp upper bound on #,ix one must
control the large deviations of all admissible z(-)-type profiles.

2 Cover time for the thin torus: proof of Theorem 1.1
The Gaussian Free Field (in short GFF), on finite, connected graph G = (V, E), with

respect to some fixed vg € V/, is the stochastic process {n,},cv with 1,, = 0, whose
density with respect to Lebesgue measure on V' \{vg} is proportional to
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1
exp <_ZZ|77M_77U|2>, @.1)

u~v

where we used u ~ v to denote {u, v} € E. An important connection between GFF
and the SRW on G is the following identity (see for example, [14, Theorem 9.17]):

E[(n —m)?] = Rear(u, v). 22)

Here Reg (1, v) is the effective resistance between u, v € V in the electrical network
associated with G by placing a unit resistor on each edge {u, v} € E (and we sometimes
use Rerf(u, v) to emphasize the underlying graph G, in case of possible ambiguity).

Our proof of Theorem 1.1 relies on the following relation between the cover time
tcov (G) of G by SRW and the maximum of the corresponding GFF.

Theorem 2.1 [6, Theorem 1.1] Consider a sequence of graphs G, = (V,, E,) of
uniformly bounded maximal degrees, such that thi;(G,) = 0(tcov(Gy)) asn — oo. For
each n, let {ny}vev, denote a GFF on G, with M = 0 for certain vy € V. Then, as

n — oo,
2
feov(Gp) = (1 4+ o(1))| Ey| (E H sup nv”) . (2.3)
vevV,

In light of the preceding theorem, the key to the proof of Theorem 1.1 is an estimate
on the expected supremum for the associated GFF. To this end, we start with few
estimates of effective resistances assuming familiarity with the connection between
random walks and electric flows (see for example [20, Chapter 2]).

Lemma 2.2 Let {X,} denote the SRW on the graph G = (V, E) started at some o € V,
independent of a Geometric random variable T. Then, there exists a current flow
0 = {64 : {u,v} € E} with unit current source at o, current p, = P[X7 = v]
reaching each v € V, and the Dirichlet energy bound

T
DO):= ), 6;, < GE [Zl{xn_o}]
n=0

(u,v)eE

Proof Lett = P[T > 1] € (0, 1). Set Z(v) = %E[ZLO 1ix,=v)]l and N (u, v) :=

ZL—(} 1(x,=u X, 1=v}, for each u, v € V. Then, due to the memory-less property of
Geometric random variables, clearly

pov=Tlomo+ Y (EIN@, )] =EIN@W.0)]) =1ymp+1 Y (L) = L(v)).

UuU~v u:u~v
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Thus, the current flow 6, := t(L(u) — L(v)) on (u,v) € E, together with external
unit current into o, results with current p, reaching each v € V. Furthermore,

Y @) =5 Y Tw-Le) <t Y. Cw Y Cw - L))
(u,v)eE (u,v)eE ueV viv~u

<L) Y (L(0) — L) < L(0),

viv~o

since th:vNu(Z(u) — L)) = —py, < O forall u # o, and is at most one
atu = o. O

We will also need the following claim.

Lemma 2.3 For any graph G = (V, E), let R be the diameter for the effective resis-
tance (of the SRW, namely with unit edge weights). Consider a collection of numbers
{py 1 v € V}suchthat ) ., py = 0 and % Y vev loul = 1, and let © denote the
collection of all flows on G such that at any vertex v the difference between out-going
and in-coming flow is p,. Then,

19128{2)(9)} <R

Proof Let Vt = {v € V : p, > 0} and V- = V\V*. We define a function
w: VT x V™ [0, 00) by w(v, u) = |pypou|. By assumption on p, we see that

Z w(v, u) = p, forallv e V' and Z w(u,v) = —p, forallv e V.

ueV- ueV+

So in particular we have ZveV*,ueV’ w(v, u) = 1. For (v,u) € VT x V7, let 6%
be an electric current which sends unit amount of flow from v to u (so in particular
D(O") < Regr(v, u)). Denoting 6 := Zvev+,uev— w(v, u)0"", by our construction
of w(-,-) we see that & € ©. It remains to bound the Dirichlet energy of 6. By
Cauchy-Schwarz inequality, we get that

2
DO)Y=) ;=) Yo weawe | <> Y w(v, u) (60")*
ecE ecE \veV*t,uev- ecEveV+t ucv-—
< ), w@wDe") <R,
veV+t,uevV-
completing the proof of the lemma. O

Lemma 2.4 With Re (-, -) denoting effective resistances on G,(a) = (Vy, Ey), we
have that for all x, x' € V,,,

Refr(x, x) < 2r3 + -+ o(1). (2.4)
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Furthermore, for x = (y,0) and x' = (y',0) where y,y' € 7* and ||y — y’||Z% >
2alogn, we have

Reir (¥, x') = 2r3 + b (log 1y = ¥z ) +o(1). 2.5)

Proof Fixing arbitrary x, x’ € V, we establish (2.4) upon constructing a flow of
1+ o(1) current from x to x” whose Dirichlet energy is at most 2r3 + 1/(am) + o(1).
To this end, for {X, } a SRW on G, (@) and an independent Geometric random variable
T of mean (10gn)4, let py = Py[X7 = v]forv € V,, and pj;) 1= Zuezgx{i} P
(namely, the probability that the “vertical” coordinate of X7 is ati € Z;). We claim
that

1 T
B [Z 1{X,=x}} =r3+o(l). (2.6)

t=0

In order to see the lower bound in (2.6), we note that the random walk is the same as
arandom walk in Z3 in the first 4 = [a log n] steps, during which period the expected
number of visits accumulated at x is already 6(r3 4+ o0(1)). Setting N = (log n)?, since
E(T17>n) — 0, we get the matching upper bound upon showing that

N
E, [Z 1{X,_x}] =o(1). 2.7)
t=h

To this end, with A denoting the event that simultaneously for all h < ¢t < N, the
number of vertical steps made by the SRW up to time ¢ is in the range (¢/10, t/2), we
clearly have that P[A¢] < (logn)~" for any r finite and all n large enough. Therefore

E 3 1 < NP[A€ E 3 1 =o(1 3 od) o) =o(1
X Z (X;=x} | = [A®] + Ey Z {X;=x, A} =o( )+2}; @f =o(l),
t=

t=h t=h

oW
Jlogn
to its starting height (referring to its vertical coordinate), and O(1/¢t) bounding the

probability of its 2D projection returning to the starting point, respectively (we obtain
their independence upon conditioning on the number of vertical steps the SRW made
up to time 7). Combined with (2.7), this completes the verification of (2.6).

Now, by (2.6) and Lemma 2.2, there exists a unit current flow 0@ out of x, with
current inflow of p, into each v € V,, and

with the term

upper bounding the probability of the SRW returning at time ¢

2
DEW)y = Y (9;‘3) < r3+o(1). (2.8)
(u,v)eE,
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Setting p;, := Pu[X7 = vland p;; := D ,cz2 () Py» We have by the same reasoning

a unit current flow 6@ out of x’, with current inflow p, into each v € V,, and
D (9“) <r3+o(l). 2.9)

Furthermore, it is clear that with probability 1 — o(h —4/3) we have T > h°/2, and thus
by time T the vertical component of {X,} is so nearly uniformly distributed that (here
we use the fact that the mixing time for a cycle of size k is O (k%) and we apply this
fact to the random walks started at x and x’ separately)

mljax|hpm— 1| = o(1) =m?x|hp{l.] —1]. (2.10)
Next, fixing i € Zj, set p;, ,olf € [0, 1] such that
/] . /
Pi Pli] = p;ppj) = min {P[i], I’[i]}
so there exist zero-net current flows on the sub-graph Z,% x {i} of G, (a), with outflow

pi py and inflow p! p; ateach v € 72 x {i}. Let 6' denote the flow of minimal Dirichlet

energy among all such current flows and |07 = % Zvesz{i} |oi pv — P! py| its total
flow. Then, by Lemma 2.3 we have that

‘ o 5
D) < 16 Diamp,q (23)
where Diam g, (Z2) is the diameter for the resistance metric in the torus Z2. Note that
6")? < max |9} 0'| < max |0,
D)7 = max 0] 3 _16"] < max 6]
1 l

and that thanks to (2.10),

- 1+o(1).

. 1 )
01 < 5 > lpilpe + 1pflpy, = min { iy, pyy} < - (2.11)
veZ2 x{i}
Combining the three preceding inequalities we obtain that
; 1 1
Y D)) < +TO()DiamReff (Zﬁ) .
i
Combined with the standard estimate
1 1
Diampg,, (Zﬁ) P O 2.12)
g
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616 A.Dembo et al.

(see, e.g, [5, Lemma 3.4]), we arrive at

1
LR P Diam, (22) = 1+ o(1). 2.13)

Consider now the current flow 6* from x to x’ obtained by combining #) with the
union of all flows {#?,i € Zj;} and the current flow —6™") . The net amount of current
reaching sub-graph Z2 x {i} is then py;j — Pfi7> 80 by (2.10) the flow from x to x” via
6* is 1+o(1), whereas by (2.8), (2.9) and (2.13), its Dirichlet energy is at most

D (em) n Xi:D(ei) 4D (90")) <2+ L +o(D),

completing the proof of the upper bound (2.4).

For the lower bound, we let Q, and Q,+ be cubes of side-length log log n centered
around x and x’, respectively. Let G, , be the graph obtained by identifying 9Q, (also
20Q,/) as a single vertex, as well as identifying {(z, i) : 1 <i < h} as a single vertex
for each z € Zﬁ. By Rayleigh monotonicity principle, we see that

Ga n
Refi(x, x") = Regr (x, 0Qy) + Refr (x”, 0Qy) + Reff' (3Qx, 3Qy).

It is clear that Regr(x, 0Qy) = Rer(x’, Q) = r3 + o(1). In addition, by the triangle
inequality we see that

ef%"(an, Q) > R f‘}"(x x') — ef%"( 0Qy) — eff"( ', 9Q,)
1 ~
= }_l (Ref’é(% y/) - 2Ref?(07 3Q0)>

= mzlogn (10g ly—y ”Zz) +o(D),

where Q, is a 2D box of side-length log log n centered around o, and the last equality
follows for example from [5, Lemma 3.4]. Altogether, this gives the desired lower
bound on the effective resistance. O

The following lemma is useful in comparing the maxima of two Gaussian processes
(see for example [12, Corollary 2.1.3]).

Lemma 2.5 (Sudakov-Fernique) Let J be an arbitrary finite index set and let {n;} )
and {&} jey be two centered Gaussian processes such that

E(nj —n)? = B — &)°, forall j,k € J. (2.14)

Then E[max jcyn;] > E[max;c;&;].

We are now ready to estimate the maximum of the GFF on the thin torus.
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Lemma 2.6 Let {n, : v € V,;} be a GFF on Gy (a) with ny, = 0. Then,

E [ng/x nv] =2/r3 + ﬁ + o(1)4/logn.
veVy

Proof We first prove the upper bound. By (2.2) and Lemma 2.4, we get that

sup {Var(n, —ny)} = 20,% <2r3+ % 4+ o(1).

u,vevV,

Thus, for i.i.d. centered Gaussian variables {X,, : u € V,} of variance o,% we have by
Lemma 2.5 that

E [max nu:| <E |:max Xu] . (2.15)
uev, uevVy,
Note that
o0
E [mavx Xu} 5/ Z PX,>r)| Al dr. (2.16)
ueVy, 0
ueV,

Further, for a centered Gaussian variable Y of variance o2 we have

2

P(Y >r)<e 27, Vr>0,

Combined with (2.16) it yields that E[max,cy, X,] < 20,+/logn(1 + o(1)), so from
(2.15) and the bound on o, we deduce the stated upper bound on E[max,cy, n.].

For the lower bound, we employ a comparison argument. Let A be a 2D box of
side-length n/(8h), and let {£, : v € A} be a GFF on A with Dirichlet boundary
condition (i.e., £[3a = 0). Now define mapping g : A — G, (a) by g(v) = (2hv, 0).
It is well known that (see, e.g., [18, Theorem 4.4.4 and Proposition 4.6.2])

RE¢(u,v) = Llog lu — vl + O (D).
Combined with Lemma 2.4, it yields that for all u, v € A
Gp(a) —1 pA
R ' (g(u), g()) = Qarsm + 1+ o0(1)h™ Ry (u, v),

where we have used the fact that RCAﬁc (u,v) < # logn = w Applying (2.2)
and Lemma 2.5, we obtain that

E |:max nv:| > \/Zar3n +1+ o(l)h_l/zE |:ma/i( Su:| .
ue

veVy,

Combined with [2, Theorem 2] which states that E[max,ca &,] = (/2/7+0(1)) logn,
this yields the desired lower bound on E[max,cv, ny]. O
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As |E,| = 3an? logn(1 4 o(1)), upon combining Theorem 2.1 and Lemma 2.6, we
immediately obtain Theorem 1.1.

3 Upper bound on mixing time: large deviations for admissible types

For the task of upper bounding tnix (G, (@), §) it suffices to compare the stationary law
with a worst case initial one, for which purpose any non-random initial configuration
will do. Further, since #nix (G, (a), 8) is only 0 (n?) (see [19, Theorem 5.5]), we can
and shall instead start for convenience at X having all lamps off and initial position
uniformly chosen in V,,. Fixing s > s > W(¢) and using s in the sequel for setting the
various excursion types, our goal is to show that the total-variation distance between
the law of Xf/,m and the uniform law goes to zero as n — oo. To this end, let

cov

Lzr =U(' EQDOV) denote the subset of the vertices V,, of G,, (@) not visited by X up to time
s't9 | with U;, corresponding to a second, independent copy X’ of the SRW on G, ().

cov?

Then, with X uniformly distributed, the L%-norm of the density of the law of X j, 0

with respect to the uniform law, is E[Zluv’mz’{i’ ‘] (see [21, Proposition 3.2]). Adapting
the argument of [21, Lemma 3.1], it thus suffices to find an event G measurable on the

path of the SRW X on Gy, (a) up to time s'tS such that as n — oo

cov?
o |Z/75/0L7,,\ 1
P[G] — 1, and E[2 s lglg,] — 1, 3.1

where G’ corresponds to the independent copy X’ of the SRW on G, (a). Without G
and G/ , the right side of (3.1) amounts to the L?-convergence to 1 of the relevant
density. Only L'-convergence is needed for the total-variation mixing and using G
helps eliminate some rare events that may dominate the second moment (see also the
discussion immediately following [21, Proposition 3.2]).

To establish (3.1), fixing a large integer M we set hereafter

ri=Mr = M.
Note that for each i := (i(V,i®) € {0, ..., 2r — 1} x {0, 1}? the points of
Asp (@) = iV + @rN)?) N ([0, n)* x [0, k) —2r i) (3.2)

are at least 2r apart in G, (a), whereas the union of the (4r)3 sub-lattices A3 (i) covers
Vyu. Indeed, A5 (i) keeps minimal distance 2r from all faces that meet at the corner
of [0, n)? x [0, k) indicated by i‘?, thereby assuring the stated 2r-separation on the
torus (even when 2r does not divide n or h).

Proceeding to produce in Definition 3.1 the “2D-well-centered” non-random sub-
sets A = A(i, j) of A5p(), fix a large integer L and approximate the continuum
of mesoscopic scales hn” by R = h[n"*] for pp = k/L,k = 0,...,L — 1 and
R} =[M ~Sn]. Setting thereafter
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Ry := MR, := MR/,
note that for any L, M > 2 and all n large enough,
2r<R6’<R6<R0<2R0<Ri’<Ri <Ry <2Ry <---< R <n. (33)

Assuming hereafter that (3.3) holds, for eachi'k e{o0,..., (2Rk/R,’{’) — 1}2 x {0, 1}2
the points of

P () = (R + CROV?) 0 (10,m)? = 2R j2) (3:4)

are 2Ry apart in the 2D torus Zﬁ (thanks to the guard bands associated with i/EZ))’
whereas for each 0 < k < L the union of A3y, (j ,) over the (4Ry/ R/ )? possible
values of j, covers 72

Definition 3.1 For anyiandi = (lo’ 11’ el lL), let A := A(, l) denote the subset
of those x = (x1, x2, x3) € A3, (i) whose 2D-projection (x1, x2) lies for each k =
0,1, ..., L within the R,’(/-sized square centered at some yx(x) € AED,k(ik)'

Note that V), is covered by the union of the

sets A(Z, j), with k' = «'(M, L) independent of n. We shall consider (3.1) for an
event § of the form

G=()Gi- (3.6)

where each event gl, ;j on the path of the SRW X on Gy (a) up to time s tCOV is defined
via excursion counts associated with the points of A = A(i, J)- Specifically, see (3.11)
in the sequel (and Definition 3.3), for the precise choice of 5 = 5; ,j- Then, by the

union bound

[3] <k maxP[QH]

L

So, decomposing the set Z/{ N L{’, in the RHS of (3.1) according to its intersections
with the various A(Z, /), by Holder s inequality we get (3.1) upon showing that for
any i, j,asn — 0o

«'P [@“;j] 0 and E|:2" IAGHNUN U, g g ]—> 1. (3.7)

Proceeding to prove (3.7) for some fixed (i, i ) we avoid crowded notations by omitting
hereafter the specific (i, j) from all expressions. In particular, given (i, j), to each
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Fig. 3 Tllustration of a set A3, ( L() as red dots of spacing 2R; within a 2D sub-lattice of blue dots at
spacing R,/c/  If (x1, xp) is in the green square (of side length R]/C/ ), then its center red point be yy (x). Here
Ry = 4R}/ (that is, M = 2) (color figure online)

x € A = A(, j) corresponds a unique vector y = (yo,...,yr) of base points
i = y(x) € A;D,k (with yg (x) the closest point to (x1, x2) in AED,k; See Fig. 3 for
an illustration of AED, ¢ and x — yr(x)). We further let

Apk i={y € Aip; 1 ¥ = yi(x) for some x € A}, (3.8)

denote the collection of all possible k-th level base points, using the short notation
Aop, R, R’, R” and y(x) for Asp,0, Ro, Rj), R and yo(x), respectively.

Next, enumerating over x € A yields the disjoint 3D-annuli of outer radius r and
inner radius r’, between the Euclidean balls B(x, r) and B(x, ') in G, (a). For each
0 < k < L, consider also the disjoint annuli of outer and inner radii Ry and R},
respectively, between the cylinders C(yx, Ry) and C(yx, R,/C) of height & in G, (a),
based on the 2D Euclidean disks centered at yx € Azp k. As illustrated in Fig. 4,

for any k, each cylindrical annulus decomposes the path of the SRW on G, (a) into
Rj-excursions. Each such excursion starts at the outer cylinder boundary and run until
hitting the inner cylinder boundary (which we call the excursion’s external part), then
goes back till exiting the outer cylinder (called the excursion’s internal part). Note
that for each k, conditional on their starting and ending points, the internal parts of
various Ry-excursions of our collection of cylindrical annuli are mutually independent
of each other. For n large enough so (3.3) holds, by the hierarchical structure of the
sub-lattices A3, , the vector y associated with x € A is uniquely determined by y(x).
More generally, each Ry_;-sized cylindrical annulus centered at y € Aop x—1, k > 1,
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Fig.4 The 2D projection of an
Ry-excursion of the random
walk, from the boundary of a
cylinder of radius Ry back to
itself via the boundary of a
concentric cylinder of radius R;{.
Indicated in dark green (resp.
blue) is the external (resp.
internal) part of the excursion
(color figure online)

Fig.5 The Rj-excursions across
disjoint cylindrical annuli at
different scales decompose into
a tree structure, with the internal
part of any Rj_1-excursions
(light blue), within the internal
part of some Rj-excursion
(blue). For well-separated
annuli, the entrance and exit
points of an R _1-excursion are
approximately independent of
the entrance and exit points of
the parent Ry -excursion (color
figure online)

C(ykv Rk)

must be strictly inside C(yx, R;) for some uniquely specified yi € Axp k. Hence, as
illustrated in Fig. 5, the Rj_j-excursions of the y-centered annulus decompose the
internal parts of each of the Ry-excursions for the annulus centered at yj. Similarly,
for n large enough and x € A, each B(x, r) is strictly inside C(y(x), R’), decomposing
the internal parts of each of the R-excursions of the cylindrical annulus around y(x),
into what we call r-excursions (i.e., whose external part starts at dB(x, ») and run
till hitting B(x, r’), followed by the internal part up to the exit from B(x, r)). Here
again, conditional on their starting and ending points the internal parts of the various
r-excursions associated with the collection A are independent of each other.
As shown in Sect. 4.1,

logn)? —_— dsr’
dogm” — hd NB'(s) = 2 togn, 3.9)

N_C*(s) =25 —
log(R/R’) a
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are the typical counts of Ri-excursions and r-excursions, respectively, by time stclgV
Utilizing these, we next summarize which large deviations of the counts of cylindrical
and ball excursions around x € A, are of concern in our proof of (3.7). We will
show that WHP, at least N_C*(s) of the Ry -excursions around any y; € App,r are
completed by time s tcov Hence, our concepts of a z-type point x € A and a z-type
y(x) € Azp, amount to having about z 2NB” (s) of the corresponding r-excursions
around x, or respectively, having about z,% W(s) of the corresponding Ry -excursions
around yi(x), k =0, ..., L — 1, during the first Ry -excursions around yy (x).

Definition 3.2 Fix s € (¥ (¢), s’) and small > 0 such that 1/ is integer.

(@) Forz = (z0,...,zp) withzx <z =landzx € N, k =0,...,L — 1, we
say that y = (o, ..., yL), or equivalently, that yo € Ajp o, is of z-type if the
first (zx — 2n)2m* (s) of the Ry-excursions for the cylindrical annulus centered
at yy, are completed within the first W(s) Ry -excursions for cylindrical annulus
centered at yy . In case z; < 1 we further require that the first (zx — n)zN_C*(s) are
not completed during these R -excursions.

(b) Similarly, x € A is called of z-type (for z € nN), if the first (z — 3n)2N_B*(s) of
the r-excursions around x, are completed within the first W‘(s) R -excursions
for cylindrical annulus centered at y; (x), where for z < 1 we also require that
the first (z — 277)2@*@) of those r-excursions are not completed during said
Ry -excursions.

Next, note that AN Z:{\S/ is the disjoint union of
Uy ;= (x € AN Uy : y(x) of z-type}, (3.10)

over the at most tko=1" posmble z-types induced on App by the SRW X on G, (a).
Likewise, AN Z/I’ is the disjoint union of the sets Z/{’, . defined in terms of the types

Z’ induced on Asp by the independent SRW X’ on G, (a) We set

G:=(0-. (3.11)

where each event G, on the path of the SRW X on G, (a) up to time s’ U

z oy 1S NOW
associated with a specific choice of both A = A(i, i ) and z (see Definition 3.3 below).

For «’ from (3.5) and the constants i, L from Definition 3.2, we set
K= i'K2 = (4r)>(AM>)HEFD 2L (3.12)

which is also independent of n. Similarly to our move from (3.1) to (3.7), get by the
union bound and Holder’s inequality that (3.7) holds provided that as n — oo, for any
choice of (i, D and any two types z, z/,
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«P [gg] -0, (3.13)

E I:ZKluv/,sz/[s’_z’l lgglg’z/jl — 1 (314)

(with G’/ corresponding to the second, independent copy X" of the SRW on G, (a)).
We proceed to define the truncation events G for (3.13)—(3.14).

Definition 3.3 For each s < s’, n > 0 and type z, let gg = gg(s, n) be the event

consisting of:

cae
centered at y;, € Aop, 1, the corresponding first NC (s) excursions.

(b) Forpr =k/L,k=0,...,L — 1, there are at most RLZAC)) points yx € Axp k to
which corresponds some yg € Azp g of z-type.

(c) If x € Ais such that yg(x) is of z-type (cylindrical annuli), then for some z > zg
the point x is also of z-type (in terms of r-excursions).

(a) By time s’ the SRW on G, (a) completes for each R; -sized cylindrical annulus

From Definition 3.3(b), we see that under the event G, there is no y(x) of z-type,
unless by, (zxk) > 0 forall 0 < k < L. This is precisely the following requirement
(3.15) that z be admissible (so it suffices to establish (3.14) only for admissible types
2, 2).

Definition 3.4 Fixing s > 1, we say that a z-type is admissible, if and only if

J5< min {l_p"} (3.15)

k=0,..L—1 | 1 —zx

for px = k/L, as in Definition 3.3.
Denoting by H ; the event of not hitting x during the first Z2NB”(5) of the r-excursions
of X aroun~d x, requirements (a) and (c) of Definition 3.3 imply that under the event
G, the set Uy, of (3.10) is a subset of

Us . :={x € A:y(x) of z-type, Hy ;,—3y Occurs} (3.16)
(see also Definition 3.2 of z-type). Similarly, Z:{Z G U, . under the event g; ,. Hence,

upon proving (3.13) for G of Definition 3.3, it suffices to show that for any admissible
z-type and z'-type, as n — o0,

. [ZKIMY,ZHUS_Z,I lgzlgu} oL (3.17)

3.1 Variational formulas and admissible annuli profiles
We first establish the variational representations of Lemma 1.7 for W(¢) of (1.9)

whose relevance to the asymptotic structure of I/ (stgv) has already been discussed in
Sect. 1.4.
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Proof of Lemma 1.7 First, set h(p) := /p(¢ + p/2), t := /s and

t. = sup {h(p)+1—p}. (3.18)
pel0,1]

The conditions b, (z) > 0 and «,(z) > p are then re-expressed astz > t — (1 — p) and
tz > h(p), respectively. So, with the optimal choice being z = z, := 1 — (1 — p) /1, it
follows that (1.11) holds if and only if # > ¢,. Thatis, V(¢) = tf. Further, considering
at r = t, the optimal z, = h(p)/(h(p) + 1 — p), yields the identity (1.12). Finally,
in (3.18) the optimal choice is p = p, = (+/2 — 1)¢, but in case ¢ > 1/(v/2 — 1)
it is out of range and one needs to settle instead for p = 1. One easily checks that
h(p.) = ¢/+/2, while h(1) = /¢ + 1/2, hence with 7, monotone increasing in ¢ it
is easy to confirm from the preceding that 1> = W(¢) is given by the explicit formula
(1.9), as claimed. O

Denoting hereafter o (-) of (1.10) by a(+), we proceed with an analysis lemma that
is key to the success of our scheme for bounding the exponential moments as in (3.17)
for all admissible z-types and s > W (¢).

Lemma3.5 Let W ,(¢) denote, per given L and n, the minimal value of s > 1, such
that if type z is admissible (see Definition 3.4), then foranym =0, ..., L,

1 [l 5
Ymn(2) =a(zo —4n) —mn — — — Z 7~ 25L(zk — zk—1 — 2M)5 | = 1.

L k=1
(3.19)
Then, with WV (-) given by the variational problem (1.11), we have that
WV (¢p) = limsup lim (¥, ,(4)}. (3.20)
L—oo 10
Proof Recall that z; = 1 and note that the limit
V() = r}ig}){‘h,n(fﬁ)},
exists and corresponds to the requirement that y,, o(z) > 0 form = 0, ..., L and
admissible z. Further, setting Ay := tL(zx — zk—1),fork =1,..., Landt := Vs we

have from (1.10) that

2
1 L
dalzo) = (tz0)* = (t — Z};Ak> ,

yielding that /W (¢) is merely the infimum overall# > 1 suchthatform =0, ..., L,

2
= m—+1 2 2
<Z—Z;Ak> > ¢ (T‘Z;(Am)’ (3:21)
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whenever z € [0, 1]LJrl satisfies (3.15). That is, denoting by D the collection of all
A= (Aq,...,Ar) € RE such that

(3.22)

we have that
VVL(@) = mag lgla%{tm (A},

with #,, (A) the smallest > 1 for which (3.21) holds, per given m and A.

The value of 7,,(A) depends only on §,, and (Ay, ..., A,,). Further, given §,, and
A =m~! > i—; Ak, by Cauchy-Schwarz the maximal value of #, (A) is attained
when Ay = A forall 1 < k < m. Thus, setting § = §,,, we deduce that /W, (@) is
bounded above by the minimal # > 1 such that

(3.23)

hlﬁ

(1= (=8 = pA)? = gp[1 - 203 |+

forany § € [0, 1], A € R and p € [0, 1] for which pL = m is integer valued. Note
that (3.23) trivially holds whenever A > 1 and p > 0 (whereas for p = 0 the value
of A isirrelevant). Further, since r > 1 > p, § > 0, if (3.23) holds for A = 0, it also
holds forany A < 0. Consequently, it suffices to consider (3.23) only for A, § € [0, 1].
Each choice of (A, §) in the latter range corresponds to A = (A, ..., A,S§,...,9)
in D, hence we conclude that the right-side of (3.20) equals the minimal s = 2>1
satisfying (3.23) for all § € [0, 1], p € (0, 1] and A > 0. To match this with (1.11)
we equivalently set (1 — p)§ = (1 — w) and pA = t(w — z) with 1 > w > z such
that b,(w) > 0 for s = 12 (corresponding to 6 < 1). This transforms (3.23), in terms
of z and w, to the inequality

2
a(z) + M’TZ) > . (3.24)

Now, by elementary calculus we find that

)
ZS(W_Z)} (3.25)
0

ap(w) = inf {a(z) +

(with infimum attained at z, := (2/p)w/(2/p + 1/¢)). Comparing the preceding
with (1.11) we thus conclude that (3.20) holds, as claimed. O
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3.2 Tail behavior for admissible excursion counts

Our approach to proving the upper bound in Theorem 1.3 is to establish (3.13) and
(3.17) for

s'=s+e=Wp (@) + 2, (3.26)

when n — oo followed by M — o00. As explained before, this would imply that

fmix < (s' + o(l))tCE'V and consequently, by Lemma 3.5, upon taking n | 0, L — oo

and finally € | 0 we get that fmix < (W(¢) + o(1))1,.
To this end, we use the following notation.

Definition 3.6 Let NC,, ; ;j w,for k < j < L and w € [0, 1] be the number of Ry-
excursions for yy € Agp k, completed during the first wZW(s) R j-excursions for
the corresponding y; € Aap,; (with NC, := NC, o 1). Let NC,, ; be the number
of Rp-excursions around y; € App ;. which are completed by time s’tCDOV. Next, for

x' € B(x,R"”) and z > n, let NB;iZ be the number of r-excursions around x € A

during the first z2NC (s) excursions of the Ro-cylindrical annulus centered at x’.

As detailed in Sect. 3.3, both (3.13) and (3.17) follow from the next two lemmas,
whose proofs are provided in Sects. 4 and 5.

Lemma3.7 Fixs > 1>z>n>0.If M > My(n, z2) and n > no(M), then
P[H, ] <n " vx eV, (3.27)

Further, uniformly over x € V,, and x' € B(x, R"), as n — oo,

n*(log n)P [NBjﬁz <(z— n)2W(s)] -0 (3.28)
Remark 3.8 The bound (3.27) remains in effect when conditioned on Xo = v and
the start and end points of all 7-excursions around x (see Proposition 4.9). Similarly,
from (4.37) the convergence in (3.28) holds uniformly with respect to the position of
x within B(x", R”) and the start/end points of the R-excursions around x’.

Lemma3.9 For any fixed s',s > 1, any positive integer L, w,z > 11 > 0 and
L>j>k>0, wehave forall M > M\(7, z, w, j, k) large enough, as n — 00,
that uniformly over yr € Aap, 1, and yx € Ap i,

nMp [|NC L —NC(s)| > HW‘(S’)] =0, (3.29)
log P[NC,, & i < (z — HANC" 2s(w — 2)2
Jim sup ogP[NC,, 1. jw(s) < (z—17) (s)] n s(w —2)4 <7 (330)
n—00 logn Pj — Pk

Remark 3.10 See Proposition 4.1 which implies (3.29). In Sect. 5 we further show that
(3.30) holds uniformly in x € A with yi(x) = yi (i.e., over the relative position of
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Vi in the R}’ -sized square centered at y; = y;(x)), and uniformly with respect to the
start/end points of the R j-excursions around y;.

3.3 The proof of (3.13) and (3.17)

First, as soon as (1 — 7)s” > s we deduce from (3.29) upon taking the union over the
at most M° possible values of yr, that requirement (a) in Definition 3.3 is satisfied
with probability going to one as n — oo. Next, for k < L let Y denote the number
of yr € Aop  to which corresponds some yg € Ayp g of z-type.

If z; < 1 it follows by Definition 3.2 that necessarily NCy, & 1.1 < (zx —1)>NC (s)
for any such y. With [A5, | < [n/(2R)1* < n®~ % upon considering (3.30) for
j=L, 7= (n/2)2~, w = 1and z = zx — n + 7, we see that for n large enough,
E(Yy) < n2bor @)= Hence, by Markov’s inequality and union over 0 < k < L,
we deduce that Definition 3.3(b) also holds with probability going to one as n — oo
(the case zx = 1 trivially holds by the preceding bound on |A§D’ «1)- In particular,
as soon as s(1 — 4n)? > 1, necessarily zo > 57, whereupon if yo(x) is of z-type
and x is not of z-type for some z > zg, then NB;:zan < (z0 — 3;7)2W(s), for
x" := (yo(x), x3) € B(x, R”). Combining (3.28) at z = z9 — 25 with a union bound
over the at most n% logn points of A, we conclude that Definition 3.3(c) also holds
with probability going to one as n — oo. With « independent of n, this establishes
(3.13) forany s’ > s > 1 all » > 0 small enough and every possible type z.

Turning to deal with (3.17), we may and shall fix € > 0, s, s” as in (3.26) and two
admissible types z, z’, where as mentioned before zo > 5n and z{; > 5». Next, for

0<k<L,letJy:=I|T(k) ﬂF;/(k)L where
[;(k) := {yx € Azp,k for some y of z — type}

and F;, (k) denoting the same sets for an independent SRW X’ on G, (a). Recall (3.16)
that the image of U ; N Z/ls/ 2 via x — yo(x) is a subset of the at most Jy points from
Aop.o having the corresponding types, where to each y € Ayp o correspond

Hx e Aiyox) =y} <k’ :=m (3.31)

points from A. Given the position of their starting and ending points, the r-excursions
of SRW X around each x € A, are mutually independent and further independent of
the random subset I';(0) € Axp o. Likewise, given their starting/ending points, the r-
excursions of the SRW X’ around each x € A are mutually independent and independent
of F;, (0). Further, for x € A with y(x) € I';(0) " F;, (0) to be in U, HUS”Z, we must

haweiHMO_y7 occurring for X and Hx,z{,—3n occunfng for X’ (see (3.16)). i3y (3.27),
the probability of both events independently occurring at a given x, is at most

p 1= o4 —ap—dn) (3.32)
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By the uniformity of (3.27) per conditioning as in Remark 3.8, we thus deduce from
the preceding discussion that

Jo
Uy . N Z/{S/,,Z,| is stochastically dominated by Z &, (3.33)
- =1

where &, are i.i.d. Binomial(m, p) variables independent of Jy, and m, p are given
by (3.31) and (3.32), respectively. Recall that « of (3.12) is independent of n (and of
h = [alogn]), while pm — 0 and h4/m — 00 as n — o0. Further, with

1+u)™ <1+eum whenever um € [0, 1], (3.34)
we deduce that for all n large enough,
ER2) = [1+ @2~ DpI" < 1+e@‘~Dmp < 1+h*p. (3.3
In view of (3.33) and (3.35),

Jo

- / J
S T B

=1

with (3.17) holding as soon as
4 \Jo
E[(l +h*p) ]—> 1. (3.36)

Turning to establish (3.36), note that for any k = 0, ..., L — 1, given their starting
and ending points, the inner parts of the Rj4-excursions for different choices of
Yk+1 € Aop k+1 are independent of each other, and of the random subset I';(k 4 1).
Thus, as in the preceding derivation, the contributions {§;, £ = 1, ..., Ji11} to Ji that
correspond to the possible yi 41 € T'z(k+1) [ I‘;, (k+1), are stochastically dominated
by mutually independent random variables {£;}, each having maximal size m; and
mean my, py, which are further independent of Ji1. Here, my := n>Pkt1=P0) = p2/L
bounds the maximal number of points y; € Ayp x inside the Ry -cylinder centered
at some yx41 € Agp k+1. Further, if z; < 1 then NCy g xv1,w(s) < (zx — r])zN_C*(s)
for w = zx41 — 21 (compare Definitions 3.2 and 3.6). Replacing zx < 1 by 7, < 1
and w by w’' = z; 41 — 2n, the same applies for the corresponding excursion counts
induced by the SRW X’. Considering the upper bound (3.30) for j = k+ 1,7 = n and
such values of (w, zx) and (w’, z;), recall Remark 3.10 that it holds uniformly over
the relative position of y; in the R;./ -sized square centered at y; and with respect to
the start/end points of the R j-excursions around y;. Having here p; — o = 1/L, we
deduce by the independence of X and X’ that for all n large enough,

i = (,,n—2sL<Zk+1—2n—zk)i A 1) (nn—Zsuz,;H—zn—z,;)i A 1) _
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Each &; is no longer Binomial (there are dependencies within each Ry {-cylinder).
Nevertheless, setting ug = eug prmg with ug := h*p we get inductively for k =
0,1,..., L —1,thatif ugmy < 1then

Jk+1

E[(+u’] <E e]:[lE[(uuk)&] <E[0+uan’™] (337

(utilizing stochastic domination, the mutual independence of {Ji1, &¢} and finally the
inequality (3.34) at u; and &, < my).
With both z and 7 admissible, it follows by the definition of Wy ,(¢) and Vi ()
(c.f. (3.19)), that for any s > W, ,(¢),
k—1
ugmy, = eFugmy H pimjy1 < e RAn @@ < ekptn =21 5 0

j=0

when n — oo. Hence, iterating (3.37) over 0 < k < L — 1 yields that for n — oo,
Jo Jr
E[(1+u0)"] < B[(14+u2)"] - 1.

Indeed, the latter convergence holds since J;, < |Azp, | is uniformly bounded (in n),
whereas by the preceding, u; — 0asn — oo.

4 Proof of Lemma 3.7: 3D-like tail probabilities

4.1 Evaluation of typical values

Setting R = MR’, R = MR"” and R” > h integer valued with both M and R” large

enough,
we show that the typical excursion counts up to time stCDOV are given as in (3.9) by:

logn)? — 4sr’
Qogm)” = 4 NB*(s) = 2"

NC (s) := 2s —2=——
log(R/R’) a

logn.

To this end, we start with some basic results about the 2D excursions. In particular,
(4.2) establishes (3.29) and allows us to replace the random excursion counts NCy 7 (s)

by their typical value W(s), which by (4.1) and (4.3), is also where the variables
NC, x(s),0 < k < L, concentrate.
Proposition 4.1 Fixy = (o, ..., yL) with yx € Aop k. For 0 < k < L, let NC;, ¢ (s)

be the number of Ry-excursions for y completed during the first W(s) of the Ry -
excursions for the corresponding y; € Axp,L with NCy 1 (s) denoting the number of

latter Ry -excursions completed by time stCDOV. Let N_Cy,k(s) denote the expectation of
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NCy 1 (s) := NCy, r,L.1incasek < L. Thenforeachd > 0, there exists C = C(5) > 0
and M (8) such that for all M > My(8) there exists no(8, M) such that for all n >
no(6, M) and 0 < k < L, we have that

(1= §)NC'(s) < NCy k(s) < (1+ §NC (s), (4.1)
P[INC,..(s) — NCy 1(s)| = 8NCy.(5)] < exp(—Cs(logn)?) (4.2)
P[INC, £(s) = NC, k()] = 8NC, 4 ()] = n~ “3)

Proof Note that NC, 7 (s) counts the number of excursions between concentric 2D-
disks of radii R; and Ry, by the projected SRW on Zﬁ during its first %nz(log n)>(1+
o(1)) steps [9]. (As we explained earlier, the factor 2/3 is due to the elimination of all
vertical steps of the original SRW on G, (a).) Our first ass_ertion, namely (4.1) in the case
k = L, thus follows from [10, Lemma 3.2]. That is, NC, 1 (s) is up to leading order

given by W(s). Since Ry /R; = M is independent of n, the bound (4.2) likewise
follows from [10, Lemma 3.2]. Fixing 0 < k < L and considering [10, Lemma 3.2]
for the Ry-excursions completed during the same number of steps by the projected
SRW, it further follows from (4.2) that NCy x(s) = NC, 1(s)(1 + o(1)). The same
argument also gives (4.3). O

We proceed to establish the mean value of the relevant 3D excursions. Hereafter,
we let oy denote the first exit time of the SRW { X} from a given W C V,, using ag‘ for
0B(x.s) and the notation B" = B(x, '), B = B(x, r),C' = C(x’, R’) and C = C(x’, R)
for balls of radii r = Mr’ < h, r’ = M and cylinders, respectively, of any centers
x,x’ € V, with |x — x'| < R".

Proposition 4.2 Suppose that x, x' € V, with |x — x| < R". Then for each n > 0
there exists Mo(n) such that for each M > My (n) there exists no(n, M) such that
n > no(n, M) implies that

(1= 2 NB'(s) < E[NBY. | < (1 + n)2NB'(5).

Proof Recall Definition 3.6 that N Bf . counts the SRW excursions from 8B’ to 8B during

its first z2NC (s) excursions from 9C’ to dC. The latter R-excursions are condition-
ally independent given their starting and ending points. Hence, with Z, counting the
excursions that X |j9,».] makes from 9B’ to 9B, it suffices to show that

E,(Z, | X(rc =w]= FB,C(1 +o(1))

(asn — oo and M — oo), uniformly in v € 9C’ and w € dC, where the nominal
conversion factor from R-excursions to ball excursions is

Igci= ﬁ(s) - log(R/R'). (4.4)
NC'(s) h
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Indeed, we show in Lemma 4.8 that
Pyltg < oc| Xoc = w] = Fgc(1 4+ 0o(1)), 4.5)
and from part (a) of Lemma 4.5 we deduce that for v’ € 9B
Ey[Z.| Xoc =w]—1 as n— oo then M — oo 4.6)

uniformly in v’ and w, which together complete the proof. O

Our next six lemmas culminate in Lemmas 4.5 and 4.8, thereby completing the
proof of Proposition 4.2. The first of these lemmas controls the fluctuations of positive
harmonic functions in G, (a).

Lemma4.3 Fixing M > 2 and S = MS’', we have that for all positive harmonic
functions f on the ball B(0, S) in 73,

J(u)

=1+0M™Y. 4.7
u,u’Igéa(i(),S’) f(bt/) + ( ) ( )

Likewise, if x € V,, S < n/2, then for any M > 2 and every positive harmonic
function f on C(x, S) in G, (a), we have that

S )

max
uu'eB(x,s") f(u")

=1+0M™". (4.8)

Proof We first prove (4.7). The Harnack inequality [17, Theorem 1.7.2] implies that
there exists a constant Cy > 0 such that

fa _

max =
u,u’€B(0,5/2) f(u/)

Co. 4.9)

It thus follows from [17, Theorem 1.7.1] that there exists a constant C; > 0 such that
for any u, u’ € B(0, S") we have

C
|fu) — )| < 8=

max v). 4.10

S veB(0,5/2) F@) ( )
Combining (4.9) with (4.10) gives (4.7). Observe that (4.8) follows from (4.7) because
any function which is harmonic on C(x, S) may be lifted to a harmonic function on a
cylinder in Z3 with radius S and periodic boundary conditions. O

Building on the preceding lemma, we next show that starting inside B(x, S’) any

non-negative variable measurable on X |j0,44, (1 is almost independent of the SRW on
G, (a) exit location of W containing B(x, §).
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Lemmad.4 Let S = MS', M > 2 and B = B(x, S") for x € V,, and S" < h. Suppose
that Z > 0 is a random variable which depends only on X |[0»°E]' Fix W C V,, which
contains B(x, S). Then we have that

E,[Z | XO'W = w]

max max =1+ O(Mfl).
ww'edW yeg EylZ ]| Xoy = w']
In particular,
E.lZ| Xy, =
max max M =1+ O(M_l).
wedW ,cB E,[Z]
Proof Fix u € B and w € dW. Then we have that
EZ | Xoy =wl= Y EulZ|Xoy = vIPy[Xog = V| Xop =w].  (411)

vedB
By Bayes’ rule, we can write

P,[Xo, = w|X(,E = v]P

ul oy v ow w] Pu[Xawzw]

ulXoy =01 (4.12)

By the strong Markov property, the ratio on the RHS of (4.12) is contained in [« !, «]
where

P[ X0, =
¢ = max_wvlXow =wl (4.13)
v,v'€0B Pv/[X(rW =w]

Since v +— Py[X,, = w] is harmonic on B(x, S), by Lemma 4.3 we know that
k=1+0M™Y uniformly in w. Combining this with (4.11) and using that Z > 0
implies the stated result. O

Using the preceding lemma, we establish (4.6) and further show that if X is far
from x, then X|[9 4] spends a negligible time in B". To this end, we use hereafter

t—1

Lot W) =" 1ixew). (4.14)
k=s

for the SRW local time of W between times s < ¢, with £, (W) := Lo (W).
Lemma 4.5 Suppose that x, x' € V, with |x — x| < R" and w € 9C.

(a) There exists a universal finite constant ¢\ such that starting at any v' € 3B the
law of Z, conditional on {X,. = w} is stochastically dominated by 1 + Y where
Y is a Geometric(c1 /M) variable.
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(b) For h' = h/(2M), uniformly in v € dB(x, h’) and w,
EU[EGC(B/) | Xoe =w] =0 as n— oo then M — oo. (4.15)
Proof (a) We first show that for some C finite, any u’ € 9B and all n, M,

, c
P, [XGI.;M ¢ B (x, 1)\CCx, 1) | X = w] < ﬁl (4.16)

Indeed, applying Lemma 4.4 for 8’ = h/4 > r and W = C D B(x, MS’), we get
(4.16) upon noting that due to [17, Lemma 1.7.4],

Py [Xop, #B(x. ])\C(x. )] = %

Similarly, upon applying Lemma 4.4 for Z = I{TB’ <aj,y)> We can deduce from [17,
Theorem 1.5.4] that for some universal C» finite

)
P, [zB/ <0 Xoe = w] <. 4.17)

We next claim that for some C3(M) < oo and all u € B(x, /41)\C(x, hﬁ/),

Cy(M
Pty < oc| Xoe = w] < GUD (4.18)
loglogn
Indeed, by Bayes’ rule we can rewrite the LHS of (4.18) as
P, X, = /
ulXoe =wity <ocly o o). (4.19)

P, [Xac = w]

By [17, Exercise 1.6.8], the rightmost factor in (4.19) is of order C3(M)/loglogn,
so to complete the proof of (4.18) it suffices to show that the left ratio in (4.19) is
uniformly bounded. Applying the strong Markov property for the first time that X hits
dB(x, %) after tg/, it in turn suffices to show that

Pi[Xoe = w]

max e ——
P, [XO‘C = w]

u,ﬁei)B(x,%)

is bounded. Such boundedness follows from [17, Theorem 1.7.2] since u > P, [ X5 =
w] is harmonic. Combining (4.16), (4.17), and (4.18) yields the claimed stochastic
domination of the law of Z.

(b) The same argument as in the proof of part (a) shows that here the number of
excursions between B’ and B(x, ') during the time interval [0, oc] is stochastically
dominated by a Geometric(c(M)/log k') for some finite ¢(M). Further, within each
excursion between B’ and B(x, #’) we are in the setting of SRW on Z>. Hence, by a
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similar argument, relying once more on Lemma 4.4 and the relevant results from [17,
Chapter 1], the expected contribution to £(B) during such an excursion, conditional
on its start/end points, is uniformly bounded by ¢’(M). Due to the independence of
these excursions given their start/end points, we thus deduce (4.15) by an application
of Wald’s identity. O

Turning to the proof of (4.5), our next lemma gives a precise estimate of the Green’s
function for the SRW on Gy, (@) killed upon exiting C (conditioned on its exit location).
We note that for large n and M the resulting Green’s function exhibits both 2D (the
term log(R/|v — x|)) and 3D (the factor 1/h) behaviors.

Lemma 4.6 Suppose x, x' € V, with |x —x'| < R". Let G¥ (v, x) denote the Green’s

function for X stopped upon hitting 9C conditioned on exiting C at a given w € 9C.
Then, for any v € 9C and B < 2

G"(v, x)

3+0M!
— %(mye —loglv — x|+ o(jv—x|?)+ O(R™H).
T

Proof Let 7, be the first time that X hits x, and let rj‘ be the time of its first return to
x. By the strong Markov property of X at time 7,7, we have

Px[Xcrc =w| T <ocl= Px[Xcrc =w],
i.e., the events {X,. = w} and {t” < oc} are independent. Thus

P[] > oc| Xoc = w]l =Py[t] > ocl;
taking reciprocals, G¥(x,x) = G(x, x), where G is the (unconditioned) Green’s
function for X stopped upon hitting 9C.

Applying the strong Markov property of X conditioned on {Xs = w}, at the
stopping time t,, we have that

G"(v,x) =Py[tx < oc| Xoe = w]G"(x, x).
By Bayes’ rule,

Pv[Xoc =w|1 <oc]

Pylty <oc| Xor =w] = Pyt <oc]
vllx Cl oc Pu[XaC _ w] vllx C
Px[Xac =w]
=P < .
PU[XO'C — vl < ocl]

Since G (v, x) = Py[ty < 0c]G(x, x), combining the above we see that

PX[XO'C = w]

G0 =P Ko = 0]

G(v, x). (4.20)
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Since u — P,[X,. = w] is harmonic within C(x’, R) and v,x € C’, applying
Lemma 4.3 we arrive at

G¥ (v, x) = (1 + O(M~")G(v, x). 4.21)

It thus remains only to estimate G (v, x). To this end, let GZ% denote the Green’s

function associated with the projected (unconditioned) random walk in Z,% stopped
upon exiting the disk of radius R centered at y(x’). Note that the projected random
walk has a 1/3 holding probability since this is the probability that the (unprojected)
walk moves in the vertical direction. Let W, denote the collection of £ points in V,,
whose 2D projection is equal to y(x). Then

Gpo.x)= ) G,u). (4.22)

ueW,

Since u — G (v, u) (for v fixed) is harmonic for u # v, hence in C(x’, R’), whereas
W, C B(x’,2R"), Lemma 4.3 implies that

G, u)
G(v,u)

=14+0M™") forall u,u €W,. (4.23)
Moreover, [17, Proposition 1.6.7] gives us that for every 8 < 2 we have
Gr(v.2) = ~ (log R ~log v —x]) +o(lv — x| #) + O(R™)

(recall the 1/3 laziness). Combining this with (4.22) and (4.23) tells us that for every
B < 2 we have

1+oM™Y) /3 _ _
G(v, x) = (h# <; (log R —log|v —x|) + o(lv — x| %) + O(R 1)) )
Combining this with (4.21) gives the result. O

We are now going to estimate the expected amount of time that SRW starting from
0B’ spends in B’ before exiting C. This estimate allows us to establish (4.5) in the
subsequent lemma.

Lemma4.7 Forx,x’ € V, with|x —x'| < R" any v’ € 0B and w € 3G, let
L850 =Byl Loc(B) | Xor = w]
(for L;(+) as in (4.14)). Then,

7" @0

202 —1 as n— oo then r' =M — oo. (4.24)
,
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Proof We first reduce (4.24) to a computation which involves only the transient SRW
X on 73 starting at Xo = v’. To this end note that for A’ = h/(2M),

L8O = Ey [ Lo B) | Xoo = w] + By [Log oc(B) | X = w].

and from part (b) of Lemma 4.5 the right most term is o(1) as n — oo followed by
M — oo. Further, the other term on the rus involves a variable of the type considered
in Lemma 4.4 for ' = h’. With C C B(x, h/2) it is thus within a uniform 1+ O (M 1)
factor of Ev/[ﬁ(,;/ (B")], which is precisely the local time in B" of X till its exit time

of B(x, #'). Let Z be the total local time of X in B, noting that since i’ = ©(logn)
while r’ = M, it follows from [17, Theorem 1.5.4] that as n — oo,

E, [EU;, (B’)] —E,[Z]+ 0(1). (4.25)

From [17, Theorem 1.5.4], we have moreover that

_— ’ — C3
2 B, 1) |u — e3]

as r’ — oo, (4.26)

where ¢3 := 3/(2m) is given explicitly in [18, Theorem 4.3.1, top of page 82], e3 =
(0,0, 1)andB(0, 1) = {v € R? : |v| < 1}is the unit ball in R? with Lebesgue measure
denoted by du; we note that an additional factor of " appears in the normalization from
spatially re-scaling. This convergence is uniformin v’ = X and the proofis completed
by finding after the change of coordinates u = (# cos¢ cos 6, cos@sinf, 1 —¢ sin @)
that the integral on the RHS of (4.20) is precisely 4m/3. O

Combining Lemmas 4.6 and 4.7 we now establish (4.5).

Lemma 4.8 Uniformly in x, x' € V, with |x — x'| < R”,
v € dC and w € 9C, in the limit n — oo followed by M — oo,

/

2
P,lry < oc| Xoo = w] = Tr log(R/R")(1 + o(1)). (4.27)

Proof Recall thatif Z > 0 and P[Z > 0] > O then P[Z > 0] = E[Z]/E[Z | Z > 0].
Applying this identity for Z = L, (B') conditional to X¢ = v and X, = w, yields

L")

Pv["—'B’ < oc| Xo‘c =w]= W,

where

L7 (B 0) 1= Ey[Loc(B) | Xop = w]
L (B Q) 1= Ey[Loc (B) | Xoe = w, Ty < 0C].
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We thus arrive at (4.27) by showing that uniformly in x, x’, v, w as n — oo followed
byr' =M — oo,

4(r')?

L' B0 ~ log(R/R’) and (4.28)

LUV (B C) ~ 2(r)>. (4.29)
Note that by definition
LY@ 0 =) G 0w,
ueB’
for the Green’s function G (-, -) of Lemma 4.6. The estimate for G¥ (-, -) given there
implies that uniformly in u € B’ and v € 3C/,

3
G"(v,u) = s log(R/R")(1 + o(1))

when n — oo followed by M — oo (so that [v — u| ~ R'). Since B’ has to leading
order 4?”(# )3 points, this yields the stated formula (4.28) for Lv’w(B/ ; O). Further,

Xeg

L0 = By |27 (B) | Xoe = w79 < 7c],

and with X, € 0B’ we get (4.29) by the uniform in v" asymptotics of Lemma 4.7. O

4.2 Tail probabilities for 3D type events

In this section we establish tail probabilities for 3D type events, which imply (3.27)
and (3.28) in the strong sense of Remark 3.8. We start with the proof of (3.27).

Proposition 4.9 Fix x € V, and let Fp be the o-algebra generated by the entrance
and exit points of all the excursions of X from 0B  to 0B. Foranys > 1,1 >z >n> 0
there exists My such that for every M > M there exists no = no(M) such thatn > ny
implies that a.s.

= < Py[Hy o | Fgl <n @0 (4.30)

The upper bound holds for all x, v € V,, with |[v — x| > R’ for the lower bound.

In order to prove Proposition 4.9, we first estimate the probability that a SRW starting
from the boundary of a ball hits the center before exiting a larger ball, conditional on
its exit point.

Lemma 4.10 Uniformly over x € V,, v' € 0B' and w € 9B,

Py[ty < 08| X0y = wl = (1+ O(M Y)A, 4.31)
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where for c3 := 3/(2m) from [17, Theorem 1.5.4] (see (4.26)), and q of (1.7),

A=29 (4.32)

r/

Proof By Bayes’ rule,

Pv/[xag =wl1, <og]
Pv’[XO’B = w]

Pyt < oB| XO'B =w] = Pyt < ogl.

By the strong Markov property of X at 7, the ratio on the rus is

P, [XO'B = w]

IR 14+ 0Mh
Pv/[Xch = w]

(where we used once again Lemma 4.3 for S" =r"and u > P,[X,, = w] harmonic
on B). Let X denote the SRW on Z* starting at v’ and T,, 5 be the corresponding
stopping times. Then,

Pv’ [:Ex = o]

Pylty <ogl=1-— (4.33)

Pv’[?x = OO|?;C > 613]
By [18, Proposition 6.5.1] (having same constant c3 as in [17, Theorem 1.5.4]),

P, (7 = oo] ~1— 32, (4.34)

r/
Applying the strong Markov property at o5, we similarly find that

c3q

Py[Ty =00|T, = 0] ~ 1 — (4.35)

Combining (4.33)—(4.35) yields the stated estimate A(1 + O(M~1) in (4.31). O

Proof of Proposition 4.9 1 If v € B, we only reduce the event H, ; by shifting v to
the induced (random) first exit of X from B’. Proceeding hereafter with v € V,\B’
the inner parts of the r-excursions of X around x are independent of each other given
Fg. Thus, the conditional probability considered in (4.30) is the product of Z2W(s)
probabilities. Lemma 4.10 implies the existence of § = §(M) | 0 as M — oo such
that each of these probabilities is at most (1 — A + §), uniformly in the initial and
terminal points of the excursion. In view of (3.9) and (4.32),

(1— A)ZZW(S) <exp (—AZZW(S)) = p2@

The stated upper bound follows since «(z — 1) < «(z). The complementary lower
bound is similarly proved for v ¢ B'. O

We now turn to establish (3.28).
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Proposition 4.11 Fix x' € V,, and let F be the o-algebra generated by the entrance
and exit points of all the excursions of X from 3C to dC. Foranys > 1>z >1n>0
there exists y > O such that for all n, r’ € N large enough and every x € B(x’, R"),
vevV, \C/, we have that a.s.

NBi/z 2 2 —yr’
Py | = ¢[@—n". @+ |Fc|=n"". (4.36)
NB (s)

Proof Fixings > 1 > z > n > 0 we first show that for some y > O all n,r’ € N
large enough and every [x — x'| < R",v € V,,

P, [NB;:Z < (z — )?NB"(s) |]-"C/] <. (4.37)
Indeed, R” +r < R’ hence B € C’ for all n large enough. When v € C’ we thus
may only reduce Nsz . upon using the strong Markov property at the first exit of C'.
Consequently, it suffices to establish (4.37) for v ¢ C'. In the latter case, by Lemma 4.8
there exist § = 6(M) | 0 as M — oo and ng = no(M) such that for all n > ng
the number Z, of excursions from 9B’ to B within one excursion from dC’ to 9C is
stochastically bounded below by a Bernoulli(p,) variable J with p, = (1 — 8)Fg c,
uniformly in x, x” as stated and in the initial and terminal points of the excursion.
Letting N := zzﬁ(s) and N’ := ZZW(S), the probability considered in (4.37) is
thus bounded above by

N/
Po:=P (Y Ji<(—n/0’N |,
i=1

for i.i.d. {J;}. From the definition of Fg ¢ we have that N’ = N(1 — 8)/p, hence by
Markov’s inequality we deduce that for any 6 > 0,

1
N log(P,) <6(1 — n/2)* + log (1 — pa(1 — e_e)). (4.38)

n

The function f(x,0) := 6 — k(1 —e~?) decreases in « and is strictly negative for
any k > 1 and 6 > 0 small enough. Since p, — 0 as n — oo, the RHS of (4.38)
converges to K_lf((l —08)k,0), where k = (1 — r]/z)_2 > 1. With § (M) — 0, there
exists ' = y’/(x) > 0 such that using & > 0 sufficiently small we get from (4.38)
that for all M > M; and n > n;

/

!
P, <e VN —pvr,

Note that, in view of (3.9), the value of y = 4757/’ z? > 0 is independent of r’. A
similar argument shows that, by possibly decreasing y = y (s, z, 1) > 0, forv ¢ C
one has
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P, [NBY, > (2 +n)NB () | Fo | =n 7"

Indeed, the only difference is that now we need to replace the i.i.d. copies of
Bernoulli(p) by i.i.d. copies of the product of Bernoulli J of mean (1 4 §) Fg c and
14 Y for the Geometric random variable Y of success probability c; /M as established

in part (a) of Lemma 4.5. O

Further, combining Propositions 4.9 and 4.11 we obtain the following.

Proposition4.12 Fors > 1>z >1n > 0, let I/{\;‘jz be the event of not hitting x during
the first ZZW(S) excursions from 3C to 9C. Then, there exist finite ng = no(M),
M > My, such that for every n > ng, x’ € V,,, x € B(x’, R") and v € V,\C we have
a.s.

neGtn < p I:ﬁ;,,z |‘7:C’:| < poGn),

5 Proof of Lemma 3.9: 2D excursion counts at various radii

This section is devoted to the proof of (3.30). To this end, recall our notations of
R" = h, R = M?h and forany fixed L € Nandk € {0, ..., L —1}, having px = k/L
and Ry = R [n”*], while R; = [n/M°] M?.Fixingw, zand j € {k+1, ..., L} welet
NCy, k,j,w(s) as in Definition 3.6 count the number of Ry-excursions for y; € Aop k
completed during the w2NC (s) first R j-excursions for the corresponding y; € Aop ;,
with (3.30) stating that for each n € (0, w A z) there exists My = Mo (n) such that for
all M > Mgy and n > no(n, M)

log PINGy, () < @ =m*NC (9] | 2sw =24} _ 5.0
logn pj — ok
In Lemma 5.1 we stochastically dominate NC,, ; ;. (s) from above and below
by comparable variables of a much simpler form and thereby establish (5.1) upon
studying in Lemma 5.3 the tail behavior of the latter variables. Specifically, fixing
0<k<j<L,setforeachn € N,

log R;, —log R; log R; — log R;.

Di—j(n) := and pj(n) =

logR; —log R;, logR; —log R,

As explained in [17, Chapter 1], the hitting probabilities for SRW X within large size
cylindrical annulus, have the same asymptotic as such probabilities for the correspond-
ing 2D Brownian motion. In particular, pi_, j(n) (resp. pj_x(n)) approximates the
probability that the SRW X starting from a point in dC(yx, Ri) (resp. 0C(y;, R})) hits
dC(y;, R;) before hitting dC(yk, Ry ) (resp. hits dC(yx, R;) before hitting dC(y;, R)).
Moreover, it is easy to check that
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lim lim M = lim lim 2 kmNC () = S (5.2)
M—00n—>00 logn M—>00 n—>00 logn Pj — Pk
We next show that the variables NCy, 1 ; . (s) are stochastically related to
wZW(s)
Zus(p.p) =Y Ji(1+7Y), (5.3)

i=1

where the i.i.d. Bernoulli(p) variables (J;) are independent of the i.i.d. Geometric(p’)
variables (Y;), provided the parameters p € (0, 1) and p’ € (0, 1) are comparable to
Pj—k(n) and py_ j(n), respectively.

Lemma5.1 Foreveryc > 1, w > 0and L > j > k > 0, all M > My(c, L) and
n>no(c, L, M), ifp > cpji(n) and p’ < Pr— j(n)/c, thenthe law of NCy, . j w(s)
is stochastically dominated from above by Z,, ;(p, p'). Likewise, if p < pj—i(n)/c
and p' > cpi_ j(n) then the law of NCy, . j w(s) is stochastically dominated from
below by Z, (p, p').

Proof For each i, let .7, denote the indicator of the event that the ith excursion E; of
the SRW X from 9C(y;, R;.) to dC(y;, R;) hits dC(y, R;). We also let Y; denote the
number of returns that the SRW X makes to C(yx, R,’() from dC(yk, Ry) before exiting
C(yj, R;j) during E;. Then,

w2NC” (s)

NCy k. jow(s) = Z Ti(1+ 7).
i=1

Let F; denote the o -algebra generated by the entrance and exit points of all excursions
{E;} and F; ; denote the o-algebra generated by F; as well as all entrance and exit
points of the excursions of X from dC(yy, R;{) to aC(yk, Rr). By [10, Lemma 2.3] in
the limit M — oo the probability of the occurrence of f given F; does not depend
on the relevant starting and ending points. The same applies for the probability that
Y = ¢ given Y > ¢ and Fj . Thus, in view of [17, Exercise 1.6.8], we conclude
that,

PlJ; = 1| F; PlJ; = 1| F;
lim inf lim inf inf P =117 = lim sup lim sup sup P =117 =1,
M—oo n—>00 | Pj—k(n) M—oo n—>o00 pj—k(n)
(5.4)
PIY, =¢|Fjx, Y, > ¢
lim inf lim inf inf | S0 =1 7ik Yi 2 €]
Moo 100 it Pis ()
PlY, =¢|Fix, Yi> ¢
= lim sup lim sup sup [ [ Fjk Y1 2 6] =1. (5.5)
M—>o0 n—oo if Pk—q(”)
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Combining (5.4) and (5.5) yields the desired result because the excursions {E;} are
conditionally independent given F;. O

By Lemma 5.1, it suffices to prove the bounds of (5.1) for Z,, s (p,, p),) in place of
NC,, k,j,w(s), provided that both p,/p;_x(n) — 1 and p,/pi— j(n) — 1. Further,
in view of (5.2), when doing so we may consider w.l.o.g. p, = kp,, k € (0, 00),
taking n — oo followed by ¥ — 1. To this end, set
pr’

- —0J1(14+Y1) _
Ap,p/(e) ._logE[e ! ! ]—log<l—p+m

) for 6 >0,
and foreach0 <z <w <1, let

1 . 2 2
Iy (zow) = ;ég{z 6+ w Ap,,,/(e)},

whose asymptotic as p’ = « p, p — 0 shall describe the tail behavior of Z,, s (pn, p},)
which is relevant here.

Lemma 5.2 Fix k € (0, 00). Then, we have that for w > ﬁz > 0,

2
T . 2 _ rw _ . 2
I (z, w) := ;171210 Iy pic(z, w) = ;gfo <vz s v) =—(w—+k2)*. (5.6)

Let 0, € [0, 00) be the unique value so that A', . (0,) = —(z/w)>. Then,

P.Kp
.0y w
lim - = /k— — k := v, >0, (5.7)
p—>0p <
[%i_r)rprA/[;,Kp(Op) =0. (5.8)

Proof We begin by making the substitution 6 := log(1 + pv) for v > 0, and setting
fr) = p_l log(1 + pv) rewrite I, (2, w) as

Lpip(z,w) = 51;% {zzfp(v) +w’f, (K:r”v>} . (5.9)

Since fp(v) 1 00 as v — oo, the infimum in (5.9) is attained at some finite v),.
Further, with p — f,(v) non-increasing, there exists a universal finite constant V
such that v, takes its values in [0, V] as p — 0 and « fixed. This allows us to change
the order of the limit in p and the infimum over v, yielding

I 2 2 v
I (z, w) —51;{);1210 {z fr() +w”fp (K—i—v)}'

Since f,(v) — v for p — 0, the first assertion of the lemma follows upon verifying
that the infimum in (5.6) is achieved at v, > 0.
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As for confirming (5.7) and (5.8), let F', (v) := f,(Fo(v)) for Fo(v) = —v/(k +v),
S0 Ap p(0) = pF),(v), under the substitution & = log(1 + pv). Differentiating both
sides of this identity twice and rearranging, we find that

PN} (®) = p(+ pv) (Fy @)1+ pv) + pFy(©)) . (5.10)

Since the infimum in the definition of I, ,,(z, w) is attained at 6,, necessarily
0p = pfp(vp). Thus, as p — 0 we have that plEe — 1) = Vp —> Uy, from
which (5.7) follows. Further, Flg(vp) — Fj(v,) and Fl’,/(vp) — F{(v,), yielding
(5.8) in view of (5.10). O

As explained before, the required bounds (5.1) are established by combining
Lemma 5.1 with our next lemma, then taking k — 1 [we have the required bounded-
ness of p, logn by (3.9) and (5.2)].

Lemma5.3 Fixs > 1, « € (0,00) and w > /kz > 0. If p,logn are uniformly
bounded above and uniformly bounded away from zero, then

1 ——x
lim ———logP [zw,s<pn, Kk pn) < 22NC (s)] = —(w—vk2)i. (.11
=20 p,NC (s)

Proof Fixs > 1,k € (0, 00) and w > /kz > 0. Now, for any p € (0, 1) we get by
applying Chernoff’s bound, then optimizing over 8 > 0 that

1 —
———1logP | Zy s (p,kp) < 22NC (5)| < Ipsp(z, w). (5.12)

Thus, in view of (5.6), considering p = p,, — 0 yields the upper bound in (5.11).

For the lower bound we use a change of measure analogous to the proof of the lower
bound in Cramer’s theorem (see [11, Theorem 2.2.3]). Specifically, fixing p € (0, 1)
and § > 0 small (we eventually send § — 0), set & = 6, > 0 be the unique value
such that A;)’ wpp) = —(z— 8)%/w? and probability measure Py given by

dPy

o= e ( —0Zu5(p.kp) — wNC (s)A,,,K,,(e)).

Considering event A, = {(NC () ™' Zy s (p. kp) € [(z — 26)%, 221}, we clearly
have then

P[A, pl = Pg[Ap i plexp (wZW(s)Ap,K,,(G) +0(z— 28)2W(s)) . (5.13)

Adding and subtracting 6 (z — 5)2W(s) in the exponent on the RHS of (5.13), then
setting there 6 = 0, we see that P[A, ;| is further bounded below by

Py, [A . pr1exp (PNC ()]pcp(z = 8, w) = INC (536 )
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where 7 := (z—8)%— (z—28)?. We now complete the proof by taking p = p,, (we will
suppress the subscript n). Indeed, note that under Py the variables J; (1 + Y;) are i.i.d.

each having mean (z — 8)% /w? and variance A;;’K »©). Further, p%ﬁ (s) is bounded

away from zero, so by (5.8) we see that Varg, (W*(s)*1 Zys(p.kp)) = Oasn —

00, while Eg, [NC(5) ™! Zu.s(p. k p)] = —w? A}, . ,(6,) = (z — 8)%. Consequently,

—

1
lim ———1logPy [A,p] =0.
n=o pNC (s) pLoiP.Kp

Hence, by (5.6) and (5.7) we have that

I _—
lim inf ——— logP[Zy,s(p,kp) = 2NC'(5)] = —(w — V(e — )3 — 20,
n=00 pNC' (s)

The stated lower bound follows by considering § — 0 (so n — 0 as well). O

6 Lower bound on mixing time: effective clustering in U{(st-,,)

Let Qy denote the law of the lamps configuration of X at time s’ 15

cov» Starting from all
lamps off (and walker at the point 0 € G, (a)), with Q the uniform law over the set of
21Val possible lamp configurations. We claim that ||Qy — Qs llTv — 1 whenn — oo,
for fixed s’ = (1 — €)s, any s < W(¢) and € > 0. Obviously, then fy;x > s/tgV for
such s’, which in view of the upper bound on 7yix we proved in Sect. 3, establishes
the stated cut-off and thereby proves Theorem 1.3.

To prove this claim, fix € > 0 and s < W(¢), noting that in view of (3.25) and the
variational formulation (1.12) of W(¢), there exist p and w > z > (1 + w/p)§, all in

(0, 1], such that for small enough § > 0,
bp(w—26)>28 and o(z+38) +A(p —38) < p—56, 6.1)
where further, by (3.24) and the assumed range of z,

_ §)2
—2s—(w z+9)

—8)p — wd
A= <2 and A::u>

(p—8)2 w—z+34 0- ©.2)

Using hereafter these parameters, we considerably shorten our proof by taking
advantage of the results of [10] and [8] (which we apply here for the 2D projection
of the SRW on G, (a)). For this purpose, we change our cylinders radii somewhat and
consider throughout this section

Re=Ri =k, k=1,....m
with m € N such that for some y € [b + 12, b + 16]

n=K, = m?Rm
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(and b > 10 a universal constant from [10, Lemma 4.2]). Next, let Z,, denote a
maximal set of 4R, 4-separated points on the 2D base of G, (a) excluding those
within distance R,, of the starting position 0 of the 2D projected SRW, such that
(0,2R;) € 2 (so Z,, is precisely the set considered in [10, Equation (10.3)], taking
there 8 = p and K,, = n). Further, set

2, = Za (U Ci, Ru-2),
Vi

for a collection {v; } that forms a maximal 4 R,,-separated set on the 2D base of G, (a).
Next, for any v € Z,, let k, (v) count the vertices of C(v, Rym—2) C G,(a), and D
denote the difference of number of “off-lamps” minus “on-lamps” among these &, (v)
vertices. Considering the statistics

U, = max {D"},
veZ),

it suffices to show that as n — o0,
QuolUy > 1”1 = 0 and Qu[U, < n”™1 = 0. (6.3)

We proceed with the proof of (6.3), establishing in Step I the easy part, namely its
LHS. Introducing n,, (2s) := 6sm?log m and

U= |{x € C(v, Rpm—2) : x unvisited in first n,, (25) excursions by
the SRW from 9C(v, R,,) to dC(v, Ry,)

,  (6.4)

we reduce in Step II the RHS of (6.3) to having wip some v € Z/, with large enough
U" (see (6.7)). We now need the following additional notations.

Definition 6.1 For a maximal set Z,, (v) of 4 Rs,,-separated points in the 2D projection
of C(v, Rpm—2) on the base of G, (a), let:

(a) WV count points in Zg,,(v) for whose Rjs,-sized cylindrical annulus the SRW
completed at most z2n,, (2s) excursions during its first w?n,, (2s) excursions from
B_C(v, R;,m) to dC(v, Rpm).

(b) U < WV count those y from (a), for which in addition x = (y, 0) is not visited

during the first 2n,, (2s) excursions from aC(x, Rgm) to 0C(x, Rsm).

Step III shows that wrp Uv > U for some v, € Z,’n. Indeed, it clearly suffices to
have at most w2n,, (2s) of the R,m-excursions of v, within the first n,,,(2s) of its Ry, -
excursions. This applies to pre-qualified points from [10, Section 10], so we complete
this step by showing that wap the relevant count W;_,(m) of pre-qualified points (see
(6.10)), is positive. Step IV then converts the conditional statement of bounding below
U (for the random v, ), into such a statement for non-random v, which we verify
under the condition of WV large enough (see RHS of (6.12)). We complete the proof
of the latter (see LHS of (6.12)), by applying in Step V the concept of pre-sluggish
points from [8, Section 6].
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Step I Note that under Qo the variables {D, v € Z] } are mutually independent,
with DV having the law of the sum of «, (v) i.i.d. symmetric {£1}-valued variables
{I]’.’}. Further, sup, «,(v) < Chn?f and |12, < Cn?1=) for some C finite and all n.

Recall that E[eufl') ] < egz/ 2 for all ¢, hence by the union bound over at most Chn?
values of v € Z,,,» and the uniform tail bound

,
s

sup P | Y 1Y = nl | <o, (6.5)

r<Chn?r j=1

we conclude that the LHS of (6.3) holds for any § > O.

Step II Turning to the RHS of (6.3), let NC, ,, (s") count the R,-excursions for cylin-
drical annuli centered at v on the 2D base of G, (a), made by the SRW on G, (a) up
to time s/tCDOV. Note that logn = (3 + o(1))m logm and for R/R' = R,,/R., = m?

the value ofm*(s) of (3.9) is within 1 4+ o(1) (as n — 00), of n,,(2s) = 6sm> logm
(from [10]). Hence, analogous to part (a) of Definition 3.3 we have that

lim P (msix{NCv,m(s/)} > nm(2s)> =0, (6.6)

n—o0

where the maximum is over all n2 vertices v on the 2D base of G, (a). Indeed, com-
bining the tail bound [10, Equation (3.18)] for the aggregate number of steps during
the first n,, (2s) such R,,-excursions for fixed v, with standard exponential tail bounds
on the number of actual steps taken by our %-lazy projected 2D SRW, we thus deduce
that nzP(NCv’m(s’) > n,,(2s)) — 0 and the union bound over v results with (6.6).

We now show that the RHS of (6.3) holds as soon as

lim P [max{fj”} < 2np+5] =0, (6.7)

n—oo | veZ,

for UV of (6.4). Indeed, Qy [U, < n?*%] is bounded by the sum of the probabilities
considered in (6.6) and in (6.7), and

YQu| Y=t 6.8)

veZ;, jeue

Further, conditional on the whole path of the SRW on G, (a) the variables {I}’, Jj ¢ U vy
retain under Qg their symmetric i.i.d. 1-valued law, so the sum of probabilities
considered in (6.8) is small by the uniform tail bound of (6.5).

Step III Proceeding to prove (6.7), let N,z, « denote the number of SRW excursions from
dC(v, R)) to dC(v, Ry), during the first n,,, (25) excursions it made from aC(v, Ry,) to
dC(v, R;). We rely on [10, Section 10] to prove the existence wup (as m — 00), of
v € Z;, such that for w of (6.1)
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Ny o < W2 (25). (6.9)
Indeed, we consider the choice of parametersa = 2s,8 = pandy = (w—348)/p,in[10,
Section 10] and call v € Z], an (m, B)-pre-qualified point if Ny € [x — k, iy + k]
for all Bm < k < m — 1 and the value of 77} given in [10, Equation (10.2)]. Since our
choices of a, B and y result withng,, = (w—=8)2n,, (25)(140(1)) > m, we deduce that
for some universal mq and all m > m, every (m, B)-pre-qualified point satisfies (6.9).
Further, in view of (1.10) and the LHS of (6.1), the value of a* in [10, Section 10] (given
the preceding choices of a, B, and y), is such that (1 — 8)(2—a*) = 2b,(w —38) > 44.
Thus, letting

Wp_o(m) == {v € Z,, : vis (m, B)- pre-qualified}|, (6.10)
it suffices to show that

lim P (WP_Q(m) > Klgllfﬂ)(zfa*ya) —1,
m— 00

which we get by adapting the proof of [10, Equation (10.3)], in replacing the (m, B)-
qualified points in Z,, dealt with there, by the (m, B)-pre-qualified points in Z;,
considered here. To this end, recall that [10, Equation (10.3)] is derived by showing
that:

(a) The mean number of such points far exceeds K, ,511_’3 )2-a")=8

(b) Its variance is negligible relative to the square of its mean.

We further note that the (m, )-qualified points of [10, Section 10] are essentially our
(m, B)-pre-qualified points for which also the event A%,  as in the proof of [10,

m,fm

Lemma 10.1], occurs. In [10] one takes 2s < 2 for which the latter event is shown
to occur wrp (see [10, Equation (10.8)]). The probability that v is (m, B)-qualified, as
computed in [10, Equation (10.4)], is thus within (1 + o(1)) of the probability that v
is (m, B)-pre-qualified, and it is further easy to check that in the pre-qualified case the
same formula applies also when 2s > 2.

Hence, the same argument as in [10] establishes (a) here as well. The key to (b)
is the bound of [10, Equation (10.7)] which builds on the correlation upper bounds
[10, Equations (10.5),(10.6)]. The latter have already been derived there for (m, §)-
pre-qualified points and all s > 0. Thus, [10, Equation (10.7)] applies here as well,
apart for a minor difficulty due to the fact that we consider only points from the subset
Z/ of Z,,. However, inf, {m 12|Z,’n |/1 2} is positive, and we have already increased
by m'? the value of K,, = n, which as seen by following the derivation of [10,
Equation (10.7)], well compensates this effect.

Step IV Ordering the points of Z/, in some non-random fashion, we let v* denote the
first v € Z,, satisfying (6.9) (which by Step III exists wup). By definition the points
in Z, are 4R, +4-separated and the R,,-sized cylindrical annulus around each is of
distance R,,—1 > R, from any (other) point of Z,. Consequently, v* is measurable
on the o -algebra F generated by the SRW path excluding the interior parts of excursions
between dC(v, Ry,—1) and dC(v, R,y), for all v € Z), (namely, each such part has
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been replaced by its entrance and exit points). Recalling Definition 6.1 of the counts
UV < WYV of points in Zj,, (v), we thus get (6.7) by showing that

lim P(U% > 2n”*8|F) = 1. (6.11)

n—oo

Further, applying [10, Lemma 2.4] for r = Rpm—2, R = Rpm—1, R = R,m and the
event {UV > 2n”*%)} which is measurable on the o -algebra 7" (£) of the interior parts
of first £ = w?n,, (2s) excursions for R, -sized cylindrical annulus around v, we get
the conditional result (6.11), once we show that for 0 := (2 — A)(p — §) — § and any
non-random v € Z/ , as n — 00,

P(W’>n) — 1 and P(U">2n""° | W' >n") - 1. (6.12)

Proceeding to establish the RHS, let g, be the minimal value over all possible excursion
end points and the choice of x € G, (a)\C(0, Rs;,), of the conditional probability that
x is not visited during the first 221, (2s) of the SRW excursions from 9C(x, R;,) to
aC(x, Rsp). Since points in Zs, (v) C C(v, R/’om — Rsp) are 4Rsy,-separated, the
variable WV is measurable on the o -algebra FV generated by the SRW path excluding
the interior part of the excursions between dC(x, R(’Sm) and 0C(x, Rs;,), for all x =
(y,0) and y € Z;,(v) (namely, each such part has been replaced by its entrance and
exit points). Thus, conditionally on W > n? the variable UV stochastically dominates

the Binomial(n?, ¢,) law. From (6.1) and our choice of # we have that
0 —a(z+38) > p+ 26,

so by the CLT for Binomial random variables, we get the RHS of (6.12) upon proving
that as n — oo,

n*@E30g s 0. (6.13)

In view of the LBD of Proposition 4.12, we have (6.13) upon showing that for
any M large enough, the probability of having at least (z + 26)2W (s) excursions
from dC(x, Mh) to 3C(x, M2h) during the first 221, (25) of the corresponding Rg;,-
excursions, is bounded away from one, uniformly in x, m — oo, and the possible
excursion end points. Further, the stochastic comparisons of Lemma 5.1 extend to our
case where Ry = MR, = M?h as before, but we replace Rj = ni/LRy = MR; with
Rsm = (8m)!> = (5m)> R}, and change NC (s) in (5.3) to 1, (25). Since n,, (2s) is
within factor 1 + o(1) of the value of W(s) from (3.9) that corresponds to R’ = Rgm
and R = R, = (dm)3R’, the desired uniform bound on probabilities follows from
the convergence Z; s(p, p)/E[Z; s(p, p)] — 1 as m — oo followed by M — o0
(while both p = 3logm/ log Rs,, and p’ = log M/ log Rs,, decay to zero).

Step V We set R = Rom + Rom—2, p := Rpm—1 — Rym—2 and nx (1) := 3r(k +
Am)zlogm, k=12,...for A < 2and A > 0 of (6.2). Following the proof of
[8, Lemma 6.1] we call y € Zs,,(v) (m, p)-pre-sluggish if for the universal constant

@ Springer



Cut-off for lamplighter chains on tori: dimension... 649

b > 4 found there, and all dm < k < pm — b the SRW completed within +k of
1y () excursions from dC(y, R;) to dC(y, Ry) during its first 72, (1) excursions from
9C(y, p) to aC(y, R). Tt is easy to check that 71,, (1) = w?n,, (2s) and s, (L) =
(z2—8)%nm(25) < 2°n,, (25) — 8m (these analogs of [8, (6.4) and (6.5)] are behind our
choice of A and A in (6.2)). Further, if y € Zs,,,(v) then

C(y.7 S C(v.R,,) C Cv, Rpm) S C(y, R).

Hence, WV exceeds the number WV of (m, p)-pre-sluggish y € Zjs,,(v). The latter
points match the definition made in [8, proof of Lemma 6.1], upon taking there the
parameters y := p, f§ = w and n := §. Utilizing [8, Lemma 6.2] it is shown in the
course of proving [8, Lemma 6.1] that W? concentrates wrp around its mean value,
which for our choice of parameters turns out to be Rsf‘s_o’”(l) (see [8, Equations (6.6)
and (6.7)]). The values of A,  and y we have here are outside the range considered
in [8, Lemmas 6.1 and 6.2], but this restriction in [8] is only relevant for the extra
requirement made in [§8, Equation (6.10)] that any (m, y)-pre-sluggish point should
be wup also (m, y)-sluggish. We completely abandoned this requirement, so the proof
of [8] easily extends to yield the LHS of (6.12).
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