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Abstract

In genome-wide association studies (GWAS) it is now common to search for, and find, multi-

ple causal variants located in close proximity. It has also become standard to ask whether

different traits share the same causal variants, but one of the popular methods to answer

this question, coloc, makes the simplifying assumption that only a single causal variant

exists for any given trait in any genomic region. Here, we examine the potential of the

recently proposed Sum of Single Effects (SuSiE) regression framework, which can be used

for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that allows

evidence for association at multiple causal variants to be evaluated simultaneously, whilst

separating the statistical support for each variant conditional on the causal signal being

considered. We show this results in more accurate coloc inference than other proposals to

adapt coloc for multiple causal variants based on conditioning. We therefore recommend

that coloc be used in combination with SuSiE to optimise accuracy of colocalisation analy-

ses when multiple causal variants exist.

Author summary

Genetic association studies have found evidence that human disease risk or other traits

are under the influence of genetic variants. As results of studies are made publicly avail-

able, more research focuses on whether different traits are under influence of the same

variants, which may help us understand how variants lead to differences in disease risk.

However, one of the popular methods to answer this question, coloc, makes the simplify-

ing assumption that no two members of the set of causal variants for any one trait are

close to each other. Here, we examine the potential of the recently proposed Sum of Single

Effects (SuSiE) regression framework, for use with coloc. SuSiE is a novel approach that

allows evidence for association at multiple causal variants in proximity to be evaluated

simultaneously. We show this results in more accurate coloc inference than other propos-

als to adapt coloc for multiple causal variants based on conditioning. We therefore recom-

mend that coloc be used in combination with SuSiE to optimise accuracy of colocalisation

analyses when multiple causal variants exist.
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This is a PLOS Genetics Methods paper.

Introduction

Colocalisation is a technique used for assessing whether two traits share a causal variant in a

region of the genome, typically limited by linkage disequilibrium (LD). In its original form, it

made the simplifying assumption that the region harboured at most one causal variant per

trait [1], and we begin by explaining how that enables inference to be made quickly, using only

GWAS summary statistics, and without information about LD. The approach begins by enu-

merating all variant-level hypotheses—the possible pairs of causal variants (or none) for the

two traits—and the relative support for each in terms of Bayes factors, calculated from GWAS

effect estimates at each SNP and their standard errors [2]. Thanks to the single causal variant

assumption, each one of these combinations is associated to exactly one global hypothesis

H0: no association with either trait in the region

H1: association with trait 1 only

H2: association with trait 2 only

H3: both traits are associated, but have different single causal variants

H4: both traits are associated and share the same single causal variant

The second step calculates log Bayes factors for each of these global hypotheses by summing

the log Bayes factors for all corresponding variant-level hypotheses. Finally, standard combina-

tion of Bayes factors with prior probabilities of each hypothesis allows us to calculate posterior

probabilities. A full exposition of these steps are found in [3]. Note that the per-SNP Bayes fac-

tors relate closely to fine mapping, because they are proportional to fine mapping posterior

probabilities of causality under a single causal variant assumption [4]. Thus we can calculate

fine mapping posterior probabilities from the single trait Bayes factors, or from the coloc

Bayes factors if we are sufficiently convinced of H4 to produce probabilities that combine

information from both traits.

The single causal variant assumption implies that each pair of variants being causal for the

two traits are mutually exclusive events. However, the assumption is unrealistic, as multiple

causal variants may exist in proximity, which also challenges the definition of colocalisation as

presented above as none of the global hypotheses encompass multiple causal variants. Alterna-

tive methods for colocalisation have been developed which do not make this assumption. eCA-

VIAR [5] uses the CAVIAR [6] approach (which accommodates multiple causal variants) to

fine map each trait, and gives probabilities that any variant is causal for both traits as the prod-

uct of the single trait causal probabilities. However, this treats causality at each trait as inde-

pendent events, when there is abundant evidence that a SNP causal for one trait is more likely

to be causal for another. Alternatively, HEIDI/SMR [7] uses a frequentist framework, treating

the null hypothesis as colocalisation, and rejecting this when there is evidence against. Here,

multiple causal variants are dealt with by requiring colocalisation across all causal variants in a

region, and that the effects of each causal variant on the two traits is proportional. That is, if

one causal variant has a two-fold greater effect on trait 1 compared to trait 2, then all other

causal variants are assumed to also have a two-fold greater effect.

Unlike these, coloc works with a single pair of causal variants at a time, and explicitly allows

incorporating any expectation that causal variant are likely to be shared through prior proba-

bilities. In previous work, [3] we allowed for multiple causal variants in coloc by using condi-

tional regression to distinguish lead variants, with the added requirement of supplying an LD
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matrix for the variants under test. Each pair of lead variants could be examined by a single

coloc run, leading to multiple colocalisation comparisons. Thus, if trait 1 had two causal vari-

ants tagged by SNPs A and B and trait 2 had one, tagged by SNP C, we would conduct two

colocalisation analyses, to ask whether A and C corresponded to a shared causal variant, and

whether B and C corresponded to a shared causal variant. This allows the simple combination

of log Bayes factors through summation, but explicitly assumes that data can be decomposed

into layers corresponding to the causally distinct signals. The stepwise regression approach

upon which conditioning is based is known generally to produce potentially unreliable results

[8], a phenomenon that can be exacerbated by the extensive correlation between genetic vari-

ants caused by LD [9]. Thus, this solution remains unsatisfactory.

A suite of Bayesian fine-mapping methods have been developed recently which calculate

posterior probabilities of sets of causal variants for a given trait [6, 10, 11]. However, the mar-

ginal posterior probabilities calculated from these are no longer mutually exclusive events, so

they could not be easily adapted to the colocalisation framework. An alternative would be to

consider all possible combinations of models between two traits, but this combinatorial prob-

lem is computationally expensive [9]. Recently, the Sum of Single Effects (SuSiE) regression

framework [12] was developed which reformulates the multivariate regression and variable

selection problem as the sum of individual regressions each representing one causal variant of

unknown identity. This allows the distinct signals in a region to be estimated simultaneously,

and enables quantification of the strength of evidence for each variant being responsible for

that signal. Conditional on the regression being considered, the variant-level hypotheses are

again mutually exclusive. Here we describe the adaptation of coloc, allowing for multiple

labelled comparisons in a region, to use the SuSiE framework and demonstrate improved effi-

cacy over the previously proposed approaches. While SuSiE is written in terms of the full geno-

type matrix, it has been extended to require only summary statistics by combination with a

“regression with summary statistics” likelihood formulation [13]. We use the summary statistic

module of SuSiE, susie_rss(), so that the format of data currently expected by coloc,

GWAS summary statistics for each trait and an LD matrix, is unchanged.

Methods

Adaptation of coloc approach

The new coloc.susie() function in the coloc package (https://github.com/chr1swallace/

coloc/tree/susie) takes a pair of summary datasets in the form expected by other coloc functions,

runs SuSiE on each and performs colocalisation as described below. We use the susie_rss()
function in the susieR package to fine-map each summary statistic dataset, run with default

options, although the susie.args argument in coloc.susie() allows arguments to be

supplied to susie_rss(). susie_rss() returns a matrix of variant-level Bayes factors for

each modelled signal and a list of signals for which a 95% credible set could be formed, corre-

sponding to a subset of rows in the matrix of Bayes factors. These rows are then analysed in the

standard coloc approach, for every pair of regressions with a detectable signal across traits.

Explicitly, if L1 and L2 signals are detected (have a credible set returned) for traits 1 and 2 respec-

tively, then the colocalisation algorithm is run L1 × L2 times. Thus, the user is presented with two

lists of signals for each trait, and the L1 × L2 matrix of pairwise posterior probabilities of H4 may

be examined to infer which pair of tags, if any, represent the same signal.

Simulation strategy

We examined the performance of using SuSiE with coloc by simulation. We downloaded hap-

lotypes for EUR samples in the 1000 Genomes phase 3 data [14], phased by IMPUTE2 [15],
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from https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html. We used lddetect [16] to

divide the genome into approximately LD-independent blocks, and extracted haplotypes con-

sisting of 1000 contiguous SNPs with MAF > 0.01. We simulated case-control GWAS sum-

mary statistics for a study with 10,000 cases and 10,000 controls, corresponding to the LD and

MAF calculated from these haplotypes using simGWAS [17], with one or two common causal

variants (MAF > 0.05) chosen at random and log odds ratios sampled from N(0, 0.22). We dis-

carded any datasets which did not have a minimum p< 10−6 to match our expectation that

fine-mapping and colocalisation are only conducted when there is at least a nominal signal of

association. We simulated 100 such datasets for each of 100 randomly selected LD blocks, and

sampled from these sets of summary data for all the simulations detailed below.

We repeatedly simulated GWAS summary data for a single trait with one or two causal var-

iants in small or large genomic regions (1000 or 3000 SNPs, where 3000 SNP regions were con-

structed by concatenating three 1000 SNP datasets). We constructed pairs of simulated data

for two traits, such that each trait had one or two causal variants and each pair of traits shared

zero, one or two causal variants. We simulated 10,000 examples from each collection, with

each example analysed independently. Analysis compared different approaches:

1. single single causal variant coloc analysis of every pair of traits

2. cond_it multiple causal variant coloc analysis using a conditioning approach to allow for

multiple causal variants, iterative mode

3. cond_abo multiple causal variant coloc analysis using a conditioning approach to allow for

multiple causal variants, “all but one” mode

4. susie multiple causal variant coloc analysis using SuSiE to allow for multiple causal variants

Conditioning can be run in two modes. Assume that stepwise regression detects two signals,

tagged by SNPs A and B. In the iterative mode, we first use the raw data in a first step, and then

the data conditioned on A in a second step. This corresponds to how stepwise identification of

independent signals in GWAS is commonly approached. An alternative is to condition on B in

the first step, and A in the second step, attempting to isolate the separate signals. This corre-

sponds more closely to the hope in multiple causal variant coloc that we can decompose the

data into layers corresponding to the separate signals. However, because the identification of

the second signal B is likely to be more uncertain than A (because it is weaker, and was

detected through conditioning on the already uncertain A), it may introduce further error.

In order to assess the accuracy of each coloc analysis, we needed to assess whether the com-

parison corresponded to a case of shared or distinct causal variants. For each signal passed to

coloc, we identified the variant with the highest posterior probability of causality, v1 and v2 for

traits 1 and 2 respectively (it is possible that v1 = v2). We then labelled the variant vi (i = 1, 2)

according to the rules:

A r2(vi, A)> 0.5 ^ r2(vi, A) > r2(vi, B)

B r2(vi, B)> 0.5 ^ r2(vi, B)> r2(vi, A)

- otherwise

If either of the variants was labelled “-” then the comparison was labelled “unknown”. Oth-

erwise it was labelled by the concatenation of the two labels. We compared the average poste-

rior probability profiles between methods, stratified according to this labelling scheme.

Results in this manuscript were generated using R version 4.0.4 with packages susieR ver-

sion 0.11.42 and coloc version 5.1.0.

PLOS GENETICS coloc allowing for multiple causal variants

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009440 September 29, 2021 4 / 11

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
https://doi.org/10.1371/journal.pgen.1009440


Results

Summary results of the coloc simulation study are given in S1 Table, and presented graphically

in Fig 1 and S1 Fig. When when both traits really did contain only a single causal variant, we

found that single coloc generally performed best (top two rows of Fig 1). SuSiE-based analysis

appeared to lose a little power (lower bar heights indicating fewer comparisons performed)

but was equally accurate amongst comparisons performed. The situations when coloc-SuSiE

did not perform any comparisons corresponded to cases where SuSiE did not identify any

Fig 1. Average posterior probability distributions in simulated data. The four classes of simulated datasets are shown in four rows, with the scenario

indicated in the left hand column. For example, the top row shows a scenario where traits 1 and 2 have distinct causal variants A and B. Columns

indicate the different analysis methods, with susie indicating SuSiE, cond_it indicating that coloc-conditioning was run in iterative mode, and

cond_abo indicating it was run in “all but one” mode. For each simulation, the number of tests performed is at most 1 for “single”, or equal to the

product of the number of signals detected for the other methods. For each test, we estimated which pair of variants were being tested according to the

LD between the variant with highest fine-mapping posterior probability of causality for each trait and the true causal variants A and B. If r2 > 0.5

between the fine-mapped variant and true causal variant A, and r2 with A was higher than r2 with B, we labeled the test variant A, and vice versa for B.

Where at least one test variant could not be unambigously assigned, we labelled the pair “?”. The total height of each bar represents the proportion of

comparisons that were run for that variant pair, out of the number of simulations run, and typically does not reach 1 because there is not always power

to perform all possible tests. Note that because we do not limit the number of tests, the height of the bar has the potential to exceed 1, but did not do so

in practice. The shaded proportion of each bar corresponds to the average posterior for the indicated hypothesis, defined as the ratio of the sum of

posterior probabilities for that hypothesis to the number of simulations performed. Recall that H0 indicates no associated variants for either trait, H1

and H2 a single causal variant for traits 1 and 2 respectively, H3 and H4 that both traits are associated with either distinct or shared causal variants,

respectively. Each simulated region contains 1000 SNPs.

https://doi.org/10.1371/journal.pgen.1009440.g001
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credible sets for one or both traits, which were likely to be examples with higher minimum p

values (Fig 2). A hybrid approach, running coloc-SuSiE if possible, and coloc-single if not out-

performed any other strategy. When either one or both traits had two causal variants (bottom

two rows of Fig 1), SuSiE outperformed all other methods in terms of accurately calling “AB”

comparisons distinct (H3) rather than shared (H4) and performed as many or more compari-

sons than the other coloc methods. Hybrid SuSiE-single-coloc was very similar to SuSiE-coloc,

or marginally better. In the two causal variant cases, single coloc tended to equivocate between

H3 and H4 when testing AB-like signals in the presence of a shared causal variant (ie where the

peak signals in each trait related to distinct causal variants) which should be inferred H3. This

relates to a known feature of coloc, which may detect the colocalising signal even when addi-

tional non-colocalising signals are present [1].

This feature also presents problems for the conditioning approach cond_it, as demon-

strated by the high average posterior probability for H4 in the “AB” comparisons, one of which

is examined in detail in Fig 3. In this example, trait 1 has one causal variant, A, whilst trait 2

has two, A and B, with B having slightly greater significance. In the first round of analysis by

the conditioning method, the original sets of summary statistics are passed to coloc. Because A

is the stronger effect for trait 1, the test is labelled “AB”, but gives a high posterior to H4

because there is one shared causal variant (A). Then the stronger effect, B, is conditioned out,

and the analysis rerun with trait 1, and trait 2 conditioned on B. This test again gives a high

posterior for H4. This situation is confusing, because the same signal in trait 1 appears to colo-

calise with different signals in trait 2. SuSiE models both signals simultaneously, so we can

attempt to colocalise trait 1 with each signal independently, finding high H3 for one and high

H4 for the other. If we were confident we could infer both the exact number of independent

signals and their identity correctly by conditioning, we could attempt to emulate this in the

conditioning, using the “all but one” rather than “iterative” mode. This does result in better

average performance than the iterative mode (Fig 1). However it is often outperformed by

SuSiE. S2 Fig shows an example where the stepwise approach cond_abo is less able to correctly

Fig 2. Distribution of maximum -log10 p values for simulated datasets where coloc-SuSiE could find at least one

credible set for each trait, or could not. Each dataset was summarised by its maximum -log10 p value, and the pair of

datasets by the minimum of these. A dashed line shows the conventional GWAS significance threshold of 5 × 10−8.

This shows that when coloc-SuSiE does not produce any results it is generally in cases of lower power.

https://doi.org/10.1371/journal.pgen.1009440.g002
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identify the separate signals. The A signal is not well identified, and therefore not be adequately

conditioned out, which may results in two apparently different comparisons with trait 1 which

both produce a high H4. In this example too, SuSiE more correctly produces two comparisons,

one with high H3 and one with high H4.

Finally, we compared the different approaches in terms of their ability to pinpoint the

causal variant by SNP-level posterior probabilities of causality conditional on colocalisation.

This vector of posterior probabilities is returned as a side-effect of every coloc comparison,

and we would expect the posterior probability at the causal variant to increase when colocalisa-

tion (H4) is called correctly. We took all simulation results which gave P(H4|Data) > 0.9, and

examined the distribution posterior probabilities at the causal variant (Fig 4). We found the

expected pattern for single and SuSiE based coloc, but conditioning did not generally result in

a higher posterior probability, presumably because the difficulty with these approaches such as

that exemplified in Fig 3.

Fig 3. Example where the conditional coloc approach, run in iterative mode, finds misleading results. a and b show the “observed” data (simulated

from 1000 SNPs with MAF> 0.01) as -log10 p values for traits 1 and 2 respectively. Trait 1 has one causal variant, A, and trait 2 has two, A and B.

Conditioning identifies a second independent signal for trait 2, and the results of conditioning on the strongest signal is shown in c. Coloc comparisons

are based on (a, b) and (a, c) and both find the posterior probability (PP) of the shared causal variant hypothesis H4 is> 0.8. SuSiE analysis of the same

data finds one credible set in trait 1, and log10 Bayes factors (BF) for this are shown in d. It finds two credible sets for trait 2, and the log10 BF for these

are shown in e and f. Coloc comparisons are based on (d, e) and (d, f) and find PP of H4 of> 0.9 and< 10−4 respectively. Blue and green points are used

to highlight SNPs in LD with (r2 > 0.8) the true causal variants A and B respectively. The data underlying this figure are available in S1 Data.

https://doi.org/10.1371/journal.pgen.1009440.g003
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Discussion

While coloc has been a popular method for identifying sharing of causal variants between

traits, the common simplifying assumption of a single causal variant has been criticised,

because it does not accord with findings that causal variants for the same trait may cluster in

location (e.g. because they act via the same gene) [18]. Using the new SuSiE framework to par-

tition the problem into multiple coloc comparisons and assuming the single causal variant

assumption holds in each appears to resolve this issue better than the previously proposed con-

ditional approach. It allows multiple signals to be distinguished, and then colocalisation analy-

sis conducted on all possible pairs of signals between the traits. However, when no credible

sets can be detected with confidence by SuSiE, single-coloc may still be able to make some

inference. This can improve power when there really is one causal variant per trait, but doesn’t

appear to cause incorrect inference in the low powered multiple-causal cases. Thus we recom-

mend a hybrid approach be adopted, using coloc-SuSiE where possible, but falling back on

coloc-single when SuSiE cannot identify any credible sets.

Note that in earlier preprints of this manuscript, we suggested an approach based on trim-

ming input data to decrease the computational time required to run susie_rss, but more

recent versions of susieR, including the one used here, are faster and so we no longer consider

that approach to be required.

This manuscript presents one approach to colocalisation in the case of multiple causal vari-

ants, that assumes that distinct signals can be decomposed even if physically proximal, which

SuSiE appears to do admirably well. This framing of the colocalisation problem implicitly

assumes there are a finite number of causal variants for any trait which can be identified, and

that traits may be compared in terms of their causal variants to identify shared variants. How-

ever, the concept of regional colocalisation can be approached in other ways in the multiple

causal variant scenario. One approach reduces the possible hypotheses to two, with the alterna-

tive hypothesis corresponding to the existence of a causal variant in a region shared by two (or

Fig 4. Fine mapping posterior probabilities at causal variants in single trait and coloc analysis, amongst datasets with high probability of

colocalisation (P(H4|Data)> 0.9) according to the method shown. Each point represents one causal variant in a dataset; its x location shows its

maximum fine mapping posterior probability (PP) in either single trait, its y location shows its PP after coloc. Results are divided by rows into those

from datasets with 1 (top) or 2 (bottom) causal variants, and by columns according to method. The text in red shows the percent of datasets which led

to an increase in PP at causal variants after coloc analysis.

https://doi.org/10.1371/journal.pgen.1009440.g004
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more) traits. [19] Another focuses on a variant-level definition of colocalisation, estimating the

probability that each variant in turn is causal for two traits, whilst allowing that other causal

variants (shared or non-shared) may exist in the vicinity [5]. In contrast, the approach pro-

posed here allows the number hypotheses tested to be determined by the data: it is the product

of the number of credible sets identified by SuSiE for each trait. Whilst it relaxes the assump-

tion of a single causal variant, one obvious caveat is that we have not yet reached (nor may we

ever reach) sample sizes which enable all causal variants to be identified. Missed causal variants

will provide incomplete comparisons of traits. It is also established that in lower power situa-

tions, even Bayesian fine-mapping methods that simultaneously model causal variants may

identify a single SNP which tags two or more causal variants [9] and the interpretation of non-

colocalisation at such false signals is likely to be misleading. On the other hand, it does seem

useful to go beyond asking whether at least one causal variant is shared, and the attempt to

both isolate and count the distinct causal variants per trait may be useful in designing follow-

up experiments. As we better understand the architecture of complex traits, and design meth-

ods that accomodate the multiple causal variants that have been discovered, it is important to

bear in mind that results will continue to be limited by sample size, and limited ability to detect

rarer variants or those in regions of particular allelic heterogeneity, which even sophisticated

methods such as SuSiE may find challenging.

Supporting information

S1 Table. Results of colocalisation simulations. The columns shown are: scenario: the simu-

lated causal variants in traits 1 and 2, for example A-AB indicates trait 1 has causal variant A

and trait 2 has causal variants A and B. nsnps_in_region: Number of SNPs in simulated region

(1000, 3000). method: method used for coloc analysis inferred_cv_pair estimated pair of causal

variants under test. H0,H1,H2,H3,H4 average posterior support for each hypothesis. This is

calculated as the sum of posterior probabilities for each hypothesis / number of simulations

run. As some variant pairs are unlikely to be tested (eg the pair AA is unlikely to be tested in

the scenario A-B) this is not the expected posterior support given AA is tested.

(CSV)

S1 Fig. Companion to Fig 1, showing the results for simulated datasets with 3000 SNPs.

Legend otherwise as for Fig 1.

(TIF)

S2 Fig. Example where the conditional coloc approach, run in “all but one” mode finds

misleading results. a and b show the observed data (-log10 p values) for traits 1 and 2 respec-

tively. Conditioning identifies two independent signals for trait 2, and the results of condition-

ing on the signal closest to causal variants A and B are shown in c and d respectively. Coloc

comparisons are based on (a, c) and then (a, d). SuSiE analysis of the same data finds one sig-

nal in trait 1, and log10 Bayes factors (BF) for this signal are shown in e. It finds two signals for

trait 2, and the log10 BF for these are shown in f and g. Coloc comparisons are based on (e, f)
and (e, g). The boxes on the lower plots show the results of running coloc analysis on that data-

set against the data for trait 1 shown in a or e as appropriate. The data underlying this figure

are available in S1 Data.

(TIF)

S1 Data. Datasets plotted in Figs 4 and S2, including summary statistics and the underly-

ing LD and MAF.

(ZIP)

PLOS GENETICS coloc allowing for multiple causal variants

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009440 September 29, 2021 9 / 11

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009440.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009440.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009440.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009440.s004
https://doi.org/10.1371/journal.pgen.1009440


Acknowledgments

We thank Stasia Grinberg and Anna Hutchinson for comments on an earlier version of this

manuscript, and Matthew Stephens for detailed explanation of the computational complexities

in the susie_rss function.

Author Contributions

Conceptualization: Chris Wallace.

Formal analysis: Chris Wallace.

Investigation: Chris Wallace.

Methodology: Chris Wallace.

Project administration: Chris Wallace.

Software: Chris Wallace.

Writing – original draft: Chris Wallace.

Writing – review & editing: Chris Wallace.

References
1. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian Test for

Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLOS Genet-

ics. 2014 May; 10(5):e1004383. Available from: http://journals.plos.org/plosgenetics/article?id=10.

1371/journal.pgen.1004383. PMID: 24830394

2. Wakefield J. Bayes Factors for Genome-Wide Association Studies: Comparison with P -Values. Genet

Epidemiol. 2009 Jan; 33(1):79–86. Available from: http://dx.doi.org/10.1002/gepi.20359. PMID:

18642345

3. Wallace C. Eliciting Priors and Relaxing the Single Causal Variant Assumption in Colocalisation Analy-

ses. PLOS Genetics. 2020 Apr; 16(4):e1008720. Available from: https://journals.plos.org/plosgenetics/

article?id=10.1371/journal.pgen.1008720. PMID: 32310995

4. The Wellcome Trust Case Control Consortium, Maller JB, McVean G, Byrnes J, Vukcevic D, Palin K,

et al. Bayesian Refinement of Association Signals for 14 Loci in 3 Common Diseases. Nat Genet. 2012

Oct; 44(12):1294–1301. Available from: http://dx.doi.org/10.1038/ng.2435. PMID: 23104008

5. Hormozdiari F, van de Bunt M, Segre AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of GWAS and

eQTL Signals Detects Target Genes. Am J Hum Genet. 2016; 99(6):1245–1260. Available from: http://

dx.doi.org/10.1016/j.ajhg.2016.10.003. PMID: 27866706

6. Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E. Identifying Causal Variants at Loci with Multi-

ple Signals of Association. Genetics. 2014 Oct; 198(2):497–508. Available from: http://dx.doi.org/10.

1534/genetics.114.167908. PMID: 25104515

7. Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, Zheng Z, et al. Integrative Analysis of Omics Summary Data

Reveals Putative Mechanisms Underlying Complex Traits. Nat Commun. 2018; 9. Available from:

http://dx.doi.org/10.1038/s41467-018-03371-0. PMID: 29500431

8. Miller AJ. Selection of Subsets of Regression Variables. J R Stat Soc Ser A. 1984; 147(3):389–425.

Available from: http://www.jstor.org/stable/2981576.

9. Asimit JL, Rainbow DB, Fortune MD, Grinberg NF, Wicker LS, Wallace C. Stochastic Search and Joint

Fine-Mapping Increases Accuracy and Identifies Previously Unreported Associations in Immune-Medi-

ated Diseases. Nature Communications. 2019 Jul; 10(1):3216. Available from: https://www.nature.com/

articles/s41467-019-11271-0. PMID: 31324808

10. Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: Efficient Variable

Selection Using Summary Data from Genome-Wide Association Studies. Bioinformatics. 2016 May; 32

(10):1493–1501. Available from: http://dx.doi.org/10.1093/bioinformatics/btw018. PMID: 26773131

11. Newcombe PJ, Conti DV, Richardson S. JAM: A Scalable Bayesian Framework for Joint Analysis of

Marginal SNP Effects. Genet Epidemiol. 2016; 40:188–201. Available from: http://dx.doi.org/10.1002/

gepi.21953. PMID: 27027514

PLOS GENETICS coloc allowing for multiple causal variants

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009440 September 29, 2021 10 / 11

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004383
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004383
http://www.ncbi.nlm.nih.gov/pubmed/24830394
http://dx.doi.org/10.1002/gepi.20359
http://www.ncbi.nlm.nih.gov/pubmed/18642345
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008720
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008720
http://www.ncbi.nlm.nih.gov/pubmed/32310995
http://dx.doi.org/10.1038/ng.2435
http://www.ncbi.nlm.nih.gov/pubmed/23104008
http://dx.doi.org/10.1016/j.ajhg.2016.10.003
http://dx.doi.org/10.1016/j.ajhg.2016.10.003
http://www.ncbi.nlm.nih.gov/pubmed/27866706
http://dx.doi.org/10.1534/genetics.114.167908
http://dx.doi.org/10.1534/genetics.114.167908
http://www.ncbi.nlm.nih.gov/pubmed/25104515
http://dx.doi.org/10.1038/s41467-018-03371-0
http://www.ncbi.nlm.nih.gov/pubmed/29500431
http://www.jstor.org/stable/2981576
https://www.nature.com/articles/s41467-019-11271-0
https://www.nature.com/articles/s41467-019-11271-0
http://www.ncbi.nlm.nih.gov/pubmed/31324808
http://dx.doi.org/10.1093/bioinformatics/btw018
http://www.ncbi.nlm.nih.gov/pubmed/26773131
http://dx.doi.org/10.1002/gepi.21953
http://dx.doi.org/10.1002/gepi.21953
http://www.ncbi.nlm.nih.gov/pubmed/27027514
https://doi.org/10.1371/journal.pgen.1009440


12. Wang G, Sarkar A, Carbonetto P, Stephens M. A Simple New Approach to Variable Selection in

Regression, with Application to Genetic Fine Mapping. Journal of the Royal Statistical Society: Series B

(Statistical Methodology). 2020; 82(5):1273–1300. Available from: https://rss.onlinelibrary.wiley.com/

doi/abs/10.1111/rssb.12388.

13. Zhu X, Stephens M. Bayesian large-scale multiple regression with summary statistics from genome-

wide association studies. The annals of applied statistics. 2017; 11(3):1561. https://doi.org/10.1214/17-

AOAS1046 PMID: 29399241

14. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A

Global Reference for Human Genetic Variation. Nature. 2015 Oct; 526(7571):68–74. Available from:

http://dx.doi.org/10.1038/nature15393. PMID: 26432245

15. Howie BN, Donnelly P, Marchini J. A Flexible and Accurate Genotype Imputation Method for the Next

Generation of Genome-Wide Association Studies. PLOS Genetics. 2009 06; 5(6):1–15. Available from:

https://doi.org/10.1371/journal.pgen.1000529. PMID: 19543373

16. Berisa T, Pickrell JK. Approximately Independent Linkage Disequilibrium Blocks in Human Populations.

Bioinformatics. 2016 Jan; 32(2):283–285. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC4731402/. PMID: 26395773

17. Fortune M, Wallace C. simGWAS: A Fast Method for Simulation of Large Scale Case-Control GWAS

Summary Statistics. Bioinformatics. 2018 Oct;Available from: http://dx.doi.org/10.1093/bioinformatics/

bty898.

18. Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ANthropometric Traits (GIANT)

Consortium, DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, et al. Condi-

tional and Joint Multiple-SNP Analysis of GWAS Summary Statistics Identifies Additional Variants Influ-

encing Complex Traits. Nat Genet. 2012 Apr; 44(4):369–75, S1–3. Available from: http://dx.doi.org/10.

1038/ng.2213. PMID: 22426310

19. Deng Y, Pan W. A powerful and versatile colocalization test. PLoS computational biology. 2020 Apr; 16:

e1007778. https://doi.org/10.1371/journal.pcbi.1007778 PMID: 32275709

PLOS GENETICS coloc allowing for multiple causal variants

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009440 September 29, 2021 11 / 11

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12388
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12388
https://doi.org/10.1214/17-AOAS1046
https://doi.org/10.1214/17-AOAS1046
http://www.ncbi.nlm.nih.gov/pubmed/29399241
http://dx.doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://doi.org/10.1371/journal.pgen.1000529
http://www.ncbi.nlm.nih.gov/pubmed/19543373
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731402/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731402/
http://www.ncbi.nlm.nih.gov/pubmed/26395773
http://dx.doi.org/10.1093/bioinformatics/bty898
http://dx.doi.org/10.1093/bioinformatics/bty898
http://dx.doi.org/10.1038/ng.2213
http://dx.doi.org/10.1038/ng.2213
http://www.ncbi.nlm.nih.gov/pubmed/22426310
https://doi.org/10.1371/journal.pcbi.1007778
http://www.ncbi.nlm.nih.gov/pubmed/32275709
https://doi.org/10.1371/journal.pgen.1009440

