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Abstract

The flow and mixing of fluids in complex porous media is important in a large range
of environmental settings, from groundwater flows to the geological storage of carbon
dioxide (CO2). This thesis investigates two distinct and fundamental features of such
flows; the mixing of miscible fluids of differing viscosity and density in both homogeneous
and heterogeneous porous media, and the flow-induced deformation of soft, poroelastic
media. In all cases the approach is to combine detailed numerical or experimental
observations with simplified mathematical models of the key physical phenomena.
Throughout this thesis the results are considered in the context of field-scale CO2

sequestration case studies.
In chapter 2, the dynamics of the miscible viscous-fingering instability are investi-

gated. It is found that the dynamics can be divided into three regimes: at early times,
the flow is well described by linear stability theory; at intermediate times, the flow is
dominated by non-linear finger interactions; and at late times, the flow is composed
of an exponentially slowing single-finger exchange-flow. In the course of this study, a
critical Péclet number for the instability in the first regime is identified, an improved
averaged model for the flow in the second regime is derived and a detailed explanation
of the asymptotic fate of the fingering instability in the third regime is provided.

In chapters 3 and 4, miscible displacements in layered heterogeneous porous media
are studied. Specifically, the combined effects of viscosity and permeability variations
are examined. It is found that when the permeability variations are large compared to
the viscosity variations or when the injected fluid is more-viscous than the ambient,
the interface is hydrodynamically stable and the flow tends to follow the permeability
structure imposed. When the injected fluid is less-viscous than the ambient fluid and
the viscosity variations are much larger than the permeability variations, the interface
is unstable and there is a competition between the evolving wavelength of the viscous
fingering and the imposed wavelength of the permeability structure. At intermediate
times, depending on the relative magnitude of the viscosity and permeability variations,
this competition leads to different dynamics including channelling and fingering. At



x

late times, the dynamics are instead dominated by shear-enhanced (Taylor) dispersion,
which asymptotically becomes independent of the viscosity ratio.

In chapter 5, miscible displacements are considered in which the injected and ambi-
ent fluids have different densities as well as viscosities. A range of different behaviour
is observed depending, on the relative importance of viscosity and density variations,
including fingering, gravitational slumping and shear-enhanced dispersion. The dif-
ferent dynamical regimes are identified along with their dependence on the governing
parameters, and simple reduced-order models for the evolution of the concentration
field are derived.

The final portion of this thesis (chapter 6) examines the fluid-driven compaction of
a deformable porous medium. Experimental studies of water injection into a water-
saturated packing of soft hydrogel spheres are presented. Solutions to a one-dimensional
axisymmetric model are discussed and comparisons to the experimental results are
made. In doing so, particular focus is given to the role of confinement on both the
steady-state and transient dynamics of the system.
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Chapter 1

Introduction

1.1 Carbon capture and storage (CCS)

In 2015, the Paris climate agreement saw the first globally concerted effort to combat
one of the greatest problems facing our generation - global climate change. The purpose
of the agreement was to curb anthropogenic greenhouse-gas emissions in order to limit
the increase in global temperatures to less than 2◦C above pre-industrial levels. In the
UK, there are numerous ongoing efforts to reduce atmospheric carbon dioxide (CO2)
emissions, such as increasing the usage of renewable energy (i.e. biomass and offshore
wind), phasing out coal, improving the energy efficiency of buildings, and decarbonizing
transport (Gummer et al., 2018). However, given current trends in energy consumption,
and the current reliance on fossil fuels, in order to reach targets set out in the Paris
agreement, it is becoming abundantly clear that there needs to be a transition from
net-positive to net-negative CO2 emissions (European Academies Science Advisory
Council, 2018).

One proposed solution to help mitigate the global increase in anthropogenic green-
house gases is carbon capture and storage (CCS), where CO2 is captured and geologically
sequestered. CCS technologies can be used as part of carbon neutral strategies, for
example, by using CO2 in enhanced oil recovery or sequestering CO2 released from
burning fossil fuels; or, as part of a carbon-negative strategies, by sequestering CO2 that
is captured directly from the air (DACCS - direct air capture with CCS) or from the
combustion of biomass (BECCS - bio-energy with CCS). Moreover, CCS technologies
can also be used to de-carbonise key industrial processes that are highly dependent on
fossil fuels as key inputs, such as the production of steel, cement and certain chemicals.
Therefore, given its wide use, CCS technologies will likely play a critical role in the
global reduction of greenhouse gas emissions.



2 Introduction

Briefly, the process of carbon capture and storage involves first capturing CO2

from a large localized source (i.e. a steel or cement factory, or a fossil fuel or biomass
power plant). The CO2 is then compressed and transported to a storage site, such as
a deep saline aquifer or a depleted oil reservoir, where it is injected, at depth, as a
supercritical liquid. Since the CO2 is less dense than the surrounding fluid, it tends to
rise and spread as a buoyant plume. However, as the plume rises, it becomes trapped
in the pore-space via a hierarchy of trapping mechanisms. Initially, in most storage
sites, a relatively impermeable caprock prevents the unbounded upward migration of
the CO2 plume and can trap the CO2 due to anticlines or non-transmissive faults in
the geology. As it spreads the CO2 becomes residually trapped in the pore space due
to surface tension, leaving behind a trail of CO2 (Hesse et al., 2008). CO2 may be
residually trapped in upwards of 10-35% percent of the pore-space, which ultimately
helps limit the extent of the plume. Concurrently, the CO2 is also soluble in saline
brine and can be trapped as a dissolved phase. On its own molecular diffusion is
quite slow, but the rate of dissolution is significantly enhanced through a number of
different mechanisms (Huppert and Neufeld, 2014). One such mechanism that has
been widely studied is convective dissolution, which is a hydrodynamic instability that
occurs because CO2-saturated brine is more dense than brine alone (Ennis-King and
Paterson, 2005). The convective instability results in greatly enhanced dissolution
rates (Hewitt et al., 2013; Neufeld et al., 2010) and ultimately can also limit the extent
of the migrating CO2 plume (MacMinn and Juanes, 2013).

The dissolution of CO2 is inherently limited by the free CO2-brine surface area
over which dissolution occurs. Macroscopic flow structures due to viscous fingering
or flow through heterogeneous reservoirs can greatly increase this surface area but
to date their impact on dissolution remains poorly constrained. Viscous fingering
occurs because CO2 is less viscous than the ambient displaced fluid and leads to
fingering of the free CO2-brine interface (Saffman and Taylor, 1958). Furthermore, the
permeability of geological formations varies on a range of scales from the pore-scale to
the reservoir-scale. These variations introduce flow heterogeneity, which also tends to
deform or distort the free CO2-brine interface. Both viscous fingering and permeability
heterogeneities increase the area over which dissolution occurs and can significantly
increase solubility trapping. However, the extent to which they do enhance dissolution
remains unknown. A primary goal of this thesis is to further elucidate this.

Ultimately as the CO2 is dissolved it can react with ambient minerals and lead to
mineral trapping. This is the most permanent form of trapping, as CO2 is trapped in
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an immobile solid phase. Although this can occur relatively quickly in some geological
formations (Matter et al., 2016), in general this process occurs very slowly.

To date, a few large industrial-scale CCS projects have been completed, or are
currently in operation. In this thesis three different case studies will be considered:
(1). The Sleipner gas field in the North Sea, where, for over 20 years, CO2 has been
separated from natural gas production and has been sequestered in a deep saline aquifer
(Bickle et al., 2007; Boait et al., 2012); (2). The In Salah oil field in Algeria, where from
2004 and 2011, CO2 was separated from gas produced and sequestered in a depleted
gas reservoir (Vasco et al., 2010); (3). Salt Creek, where for over 25 years, CO2 has
been injected as part of an enhanced oil recovery strategy at Salt Creek (Bickle et al.,
2017). These three case studies represent a cross-section of previous CCS experiments,
which will be discussed throughout this thesis.

1.2 Constraints on the safe storage of CO2

Although a promising strategy, outstanding questions remain regarding the safe, long-
term storage of CO2 following injection underground. For a given aquifer, there are two
main constraints when considering the safe storage of CO2: first, the total amount of
CO2 that can be safely trapped within the aquifer, and second, the rate at which CO2

can be safely injected before pressure build-up induces seismicity (Szulczewski et al.,
2012). In this thesis, the aim is to better understand these two constraints by examining
simplified versions of each of these problems using computational, experimental and
theoretical approaches.

First, when supercritical CO2 is injected underground, it is less viscous and less
dense than the ambient brine which leads to a predicted channelization of the flow and
only minimal pore occupancy at the plume scale (Celia et al., 2015). Therefore, the
true storage capacity of a given reservoir is only a fraction of its total volume. However,
once CO2 dissolves it may convect, which makes more of the pore-space accessible to
the CO2. As alluded to earlier, a number of mechanisms can enhance this dissolution,
and this thesis focuses specifically on viscous fingering and permeability-heterogeneity
enhanced mixing. Although CO2 and brine are only partially miscible, the limiting
simplified problem involving two fully miscible fluids is addressed. Note that, the
other limiting problem involving two fully immiscible fluids is typically modelled
using a Buckley-Leverett-type formulation for the evolution of the saturation, which is
analogous to the fully miscible system. In chapters 2-5 displacement-driven mixing of
miscible fluids in porous media is examined using high resolution numerical simulations,
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and in doing so, the aim is to understand the overall life cycle of the displacement
process.

Second, when CO2 is injected in deep saline aquifers, if the injection occurs too
quickly, pressure build-up can create fractures or trigger faults. This occurs since the
fluids are only moderately compressible and any injection requires the displacement
of ambient fluid which requires a transient pressure field. In chapter 6, idealized
experiments of flow through a packing of soft spheres are used to understand how
pressure propagates in a deformable porous medium and to understand the deformation
that can result.

1.3 Instabilities and mixing in porous media

Throughout this thesis, the spreading and mixing of two fully miscible fluids will be
discussed. We will consider the parameters from a series of CO2 sequestration case
studies as illustrative examples of the relevant parameters in geophysically relevant
flows. However, the fluids in these cases are only partially miscible and the mixing
and dissolution rates are therefore overestimated. In other contexts, discussed in more
detail below, the two fluids are much more miscible, and the analysis can be applied
directly.

The mixing of miscible fluids in porous media is notoriously difficult due to the
absence of inertia, and lies at the heart of many real-world problems. Ultimately mixing
occurs as molecular diffusion acts to reduce local concentration gradients. Mixing is,
therefore, most effective when both concentration gradients, and the surface areas across
which they act, are large. While fluids at high Reynolds numbers can be vigorously
stirred by turbulence, other mechanisms are required to stir fluids in porous media.

There are a number of ways that fluid mixing is enhanced in porous media. At the
pore-scale, natural variations in the pore geometry introduce significant heterogeneities
in the flow field, which tend to mix the fluids (Le Borgne et al., 2013; Villermaux,
2012). Throughout this thesis the length scale of the flow is assumed to be much larger
than the pore-scale where the effects of pore-scale mixing can be homogenized. Note
that this pore-scale mixing is often modelled as dispersive, having a velocity-dependent
effective dispersivity, which can be orders of magnitude larger than diffusion alone
(Woods, 2015).

On the much larger continuum scale, fluids can also be effectively mixed through
interfacial instabilities, which increase the area over which dispersion acts. These
instabilities can be driven by a number of different mechanisms including chemical
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reactions (Almarcha et al., 2010) and unstable buoyancy gradients (Lyu and Woods,
2016). This thesis will focus primarily on unstable viscosity gradients, that is, the
displacement of a more-viscous fluid by a less-viscous fluid. This configuration is
hydrodynamically unstable and leads to fingering behaviour known as viscous fingering
or Saffman-Taylor fingering (Homsy, 1987). In addition to interfacial instabilities,
spatial variations in the permeability field can also increase the area over which
dispersion acts and therefore enhances mixing (Dentz et al., 2011). In this thesis, the
effect of viscous fingering, permeability heterogeneities, and buoyancy gradients, on
the overall lifecycle of mixing will be studied. In chapters 2-5 the previous work done
on these topics is discussed in more detail.

In the context of carbon capture and storage, the goal is to maximize dissolution
by maximizing free CO2-brine surface area through flow heterogeneity. In other
circumstances, such as in enhanced oil recovery, the goal may be to minimize instabilities,
as instabilities tend to lead to poor recovery. Thus a fundamental understanding of the
different displacement patterns and their dependance on the various control parameters
is critical in optimizing and controlling the displacement front and the amount of
mixing that occurs.

Although the motivation for studying this problem is the geological storage of
carbon dioxide, there are a number of other contexts where mixing in porous media is
relevant. Some of these areas are described below.
Enhanced oil recovery: Enhanced oil recovery involves the extraction of residually-
trapped oil in a reservoir by injecting miscible gasses (for example CO2), polymers or
steam. In certain cases mixing is desirable, for instance to mobilize the trapped oil by
reducing its viscosity. However, in other cases it is undesirable, such as during polymer
floods where the aim is to prevent instabilities to increase the volume of the reservoir
contacted by the injected fluid (Lake, 1989).
Coastal aquifer dynamics: Fresh-water aquifers along the coast are hydraulically
linked to the surrounding sea. Understanding how the two water masses mix is necessary
to understand the viability of the aquifer as a water resource (Fleury et al., 2007).
Geothermal power generation: Geothermal power generation involves the injection
of a cool liquid into a superheated reservoir. The cool liquid displaces the ambient hot
fluid, which is extracted downstream. This hot fluid is then used to generate power.
The efficiency of the geothermal energy conversion process is therefore intimately linked
to the flow and transport of heat in the subsurface (Murphy et al., 1981; Woods, 1999).
Subsurface contaminant transport: Agricultural or industrial contaminants can
be carried to the subsurface through seepage or rain and pollute groundwater aquifers.
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Also, contaminants intentionally buried in the subsurface, such as nuclear waste, can
also be transported to groundwater aquifers by natural subsurface flows. Understanding
how these contaminants mix and disperse is important for understanding water quality
(Abriola, 1987; Miller et al., 2000).
Chromatography: In chromatography, a mixture is pumped through a porous
medium to separate out its constituents. As the mixture displaces the ambient fluid,
the flow can be unstable and lead to poor separation performance (Catchpoole et al.,
2006; Mayfield et al., 2005).
Magmatic flow: Melt in the upper mantle flows through a deformable porous network,
which is critical to the thermal and compositional transport in the earth (Rees-Jones
and Katz, 2018). Recent work has also suggested the planform morphology of the
Icelandic plume as it spreads laterally is due to a miscible viscous fingering instability
(Schoonman et al., 2017).
Mixing in microfluidic systems: Mixing in microfluidic settings, which is analogous
to mixing in porous media, is crucial in many engineering applications. The ability
to control mixing and reactions is a key design criteria in microfluidics. (Stone et al.,
2004).
PEM Fuel cells: The rate of reaction in proton-exchange membrane fuel cells is, in
part, dictated by the ionic transport and mixing of the fuel gases. Maximizing oxygen
and hydrogen transport and water removal is therefore critical to highly efficient fuel
cells (Litster and McLean, 2004; Mukherjee et al., 2011).

1.4 Flow through deformable porous media

In porous media, fluid flowing through the pore-space can couple to the solid matrix
mechanically. This occurs both when the solid matrix is compressed or stretched or
when fluid is injected into a porous medium. Fluid-solid coupling in porous media arises
in a variety of contexts, including something as simple as fluid wicking into a sponge, and
plays an important role in our understanding of a number of physical processes ranging
from magma dynamics (McKenzie, 1984) to intracellular flow mechanics (Mogilner and
Manhart, 2017).

When fluid flows through a porous medium, if the medium is sufficiently soft,
the fluid pressures and viscous shear stresses can substantially deform the medium.
There are two main prototypical problems used to study this fluid-solid coupling: the
consolidation problem, where only the solid phase of a fluid-saturated porous medium is
compacted resulting in the expulsion of fluid, and the fluid-driven compaction problem,
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where fluid is forced to flow through the porous medium leading to compaction.
Although the former problem has received significant attention, there are relatively
few simple experiments of flow-induced compaction of a deformable porous medium.
Two earlier examples are the works of Parker et al. (1987) and Lanir et al. (1990) who
studied flow through foams. In this thesis, following the works of Hewitt et al. (2016);
Lee et al. (2018); MacMinn et al. (2015), flow-induced deformation of a packing of
deformable spheres is examined experimentally. Specifically, the effect of pre-stressing
the porous matrix on its deformation and flow properties is considered.

In the context of carbon capture and storage, fast CO2 injection can lead to
fracturing of the storage formation, which can be detrimental to the safe storage of
CO2. Below, a few other applications where fluid flow couples to solid deformation in
porous media are highlighted.
Hydraulic fracturing: In hydraulic fracturing, fluid is injected into a reservoir at very
high pressures in order to fracture the rock and stimulate oil production (Detournay,
2016).
Drying colloids: As a suspension dries, the colloids in the suspension compact into a
porous structure. As the solvent continues to evaporate, it is drawn out of a compacting
porous medium and can cause it to crack (Boulogne et al., 2016).
Magmatic systems: Flow of melt in the upper mantle leads to deformation of the
surrounding rock and can lead to channeling, which is important in understanding
melt transport (Katz et al., 2006).
Erosion dynamics: Flow through an erodible porous media, such as soil, can lead to
channelization of flow and erosion of the medium (Kudrolli and Clotet, 2016; Mahadevan
et al., 2012). This type of erosion, known as seepage erosion, plays a key role in shaping
many geological features such as rivers, valleys and canyons (Berhanu et al., 2012).
Membrane filtration: Membrane filtration is used to separate mixtures based on
particle size. However, as particles are separated from the mixture, a cake builds up
which increases the resistivity of the filter, which can be modelled as a deformable
porous medium (Krupp, 2017).
Bone: Fluid flow in the bone is, in part, driven by deformation of the bone itself. This
deformation plays a critical role in the bone’s mechanosensory system. (Cowin, 1999;
Fritton and Weinbaum, 2009)
Pulp and paper: Dewatering of suspensions, done by squeezing fluid out of a fluid-
solid mixtures, plays a key role in the pulp and paper production processes (Hewitt
et al., 2016).
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1.5 Thesis structure

This thesis investigates two distinct and fundamental features of flow in porous media:
the mixing of miscible fluids of different viscosity and density in both homogeneous and
heterogeneous porous media, and the flow-induced compaction of deformable porous
media.

In chapters 2-5, fluid injection into a semi-infinite planar porous medium saturated
with another fully miscible fluid is considered. This problem is studied using two
complementary approaches: direct numerical simulations of the fully nonlinear, two-
dimensional problem, and simplified reduced-order modelling. The detailed description
of the problem formulation as well as the underlying assumptions are given in §2.2 and
the numerical method used to solve the problem is given in appendix A. Throughout
these chapters the results are applied to the field-scale CO2 sequestration case studies
discussed above, though the results are applicable more broadly.

In chapter 2, the case where the injected fluid is less viscous than the ambient
leading to viscous fingering is considered. Viscous fingering results in the generation of
finger-like structures that evolve nonlinearly and coarsen in time. First the different flow
regimes through which the instability evolves and the dominant physical balances and
scalings in each of these regimes are identified. At early times the flow is well-described
by linear stability theory, at intermediate times nonlinear fingers elongate and coarsen
leading to, on average, advective growth of the mixing region, and at late times a single
pair of counter-propagating fingers remain and slow exponentially. It is found that
the instability eventually shuts down and the total amount of convective mixing the
instability can generate is finite, which is parameterized in terms of the Peclet number
and the logarithm of the viscosity ratio. In the course of this study, a critical Peclet
number for the instability is identified, an improved averaged model for the flow in the
intermediate-time regime is derived and a detailed explanation of the asymptotic fate
of the instability is provided.

In chapters 3 and 4, flow in layered heterogeneous porous media is considered, which
is motivated by the fact that many geological reservoirs consist of alternating regions
of high and low permeability. Specifically, the idealized case where the log-permeability
is sinusoidally varying with a single frequency is examined. In chapter 3, the case
where the two fluids have the same viscosity is first reviewed to identify the dominant
physical balances at early, intermediate, and late times. Then the case where the
injected fluids differ in viscosity, but when the viscosity difference is smaller than the
large-scale permeability difference is considered. For each of the regimes identified in
the uniform viscosity case, the effect of changing the viscosity contrast on the evolution
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of the displacement front is considered. Next, the case where the injected fluid is
more viscous than the ambient fluid and the viscosity variations are larger than the
permeability variations is examined. Finally, a non-idealized permeability field derived
from a real reservoir is considered and the results of the reduced-order models are
compared to the direct numerical simulations.

In chapter 4, the work in chapter 3 is extended to consider the case where the injected
fluid is less viscous than the ambient fluid and the viscosity variations are larger than
the permeability variations. As in chapter 2, this configuration is hydrodynamically
unstable and results in a competition between the evolving wavelength of the viscous
fingering instability and the imposed wavelength of the permeability structure. At
intermediate times this competition leads to four different regimes: fingering within
layers, channelling along layers, fingering across layers, and single-finger exchange flow.
At early and late times, the dynamics are the same as what is described in chapter 3.

In chapter 5, unstable displacements in homogeneous porous media again examined,
but now where the injected and ambient fluids have different densities as well as
different viscosities. First the case where the injected and ambient fluids have the
same viscosity but different densities is reviewed and the dominant physical balances
and scalings are determined. Then the overall dynamics, when both the density and
viscosity vary, are considered. At early times, a slumping regime is identified where
vertical flow is important. At intermediate times, vertical flow and diffusion can be
neglected and in this limit there are three different limiting solutions: the fingering
limit, the pressure-driven gravity current limit, and the density-driven gravity current
limit. Finally at late times, transverse diffusion becomes important and there is a
transition from the shutdown regime (analogous to the shutdown regime in chapter
2) to the viscously-enhanced Taylor-slumping regime. In each of the regimes, the
dominant scalings are identified and reduced order models for the evolution of the
concentration field are developed.

The final portion of this thesis (chapter 6) examines the fluid-driven compaction of
a deformable porous medium. Experimental studies of water injection into a water-
saturated packing of soft hydrogel spheres are presented. Solutions to a one-dimensional
axisymmetric model are discussed and comparisons to the experimental results are
made. In doing so, particular focus is given to the role of confinement on both the
steady-state and transient dynamics of the system.

Finally, in chapter 7 the work in the thesis is summarized and potential avenues of
further work are discussed.





Chapter 2

Miscible viscous fingering in
homogeneous porous media

The material in this chapter forms the basis of the publication (Nijjer et al., 2018):
Nijjer, J. S. & Hewitt, D. R. & Neufeld, J. A. (2018). The dynamics of miscible viscous
fingering from onset to shutdown. Journal of Fluid Mechanics 837. 520–545.

2.1 Introduction

Viscous fingering is an interfacial instability that occurs when a less-viscous fluid
displaces a more-viscous one in a porous medium or Hele-Shaw cell. This phenomenon
was first described by Hill (1952) and later by Saffman and Taylor (1958). The
instability results in a series of fine fingers whose length scale can depend on a variety
of factors including surface tension and diffusion. Saffman and Taylor showed that in
the case of immiscible flows (when the fluids do not mix) in a channel of finite width
these fingers tend to coalesce to a single steadily-propagating finger. Since the work of
Saffman and Taylor, there have been a variety of studies on both the initial instability
and the stability of the single-finger state (see McCloud and Maher 1995).

If the interfacial tension is zero, Saffman and Taylor’s theory predicts maximal
growth of infinitesimally small fingers. However, experiments with miscible fluids in
Hele-Shaw cells indicate that either the plate spacing (Lajeunesse et al., 1999; Paterson,
1985) or diffusion (Chui et al., 2015) between the fluids leads to finite wavelength
fingers. Tan and Homsy (1986) used linear stability theory, and a slowly diffusing
background flow, to predict the most unstable mode and its growth. In subsequent
work, they compared their theory to numerical simulations of the full 2D problem (Tan
and Homsy, 1988). Since then much work has been done to understand the onset and
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early-time behaviour while considering the effects of anisotropic and velocity dependent
dispersion (Norouzi and Shoghi, 2014; Zimmerman and Homsy, 1991, 1992b), geometry
(Chen and Meiburg, 1998a,b; Riaz and Meiburg, 2003; Tan and Homsy, 1987), chemical
reactions (De Wit and Homsy, 1999; Sharma et al., 2019), finite blobs of fluid (Mishra
et al., 2008; Pramanik et al., 2015), and double diffusive effects (Mishra et al., 2010).

Some recent attempts have been made to model the impact of viscous fingering
on mixing beyond the onset. Jha et al. (2011a,b) examined the long-time mixing of a
viscously unstable system containing high or low viscosity blobs in a doubly periodic
domain. Informed by numerical experiments, they developed a model for the evolution
of the mixing rate. In this chapter, the evolution of a single viscously unstable planar
interface is investigated from onset to shutdown.

Although previous work has looked at the onset problem and early-time behaviour
of miscible viscous fingering, the late-time behaviour remains poorly understood. In
previous work, Tan and Homsy (1988) determined a critical Peclet number beyond which
tip-splitting occurs, and they hypothesized that this value might have implications for
the asymptotic fate of the fingers. Zimmerman and Homsy (1992b) similarly suggested
that the asymptotic behaviour may include multiple steadily propagating fingers under
the assumption that tip splitting may balance the upwards cascade in the scale of
the fingers, but were unable to extend their numerical simulations to a final state.
In experiments in a radial geometry, Chui et al. (2015) showed a transition in finger
growth from a scaling with t to one with t

1
2 corresponding to the shutdown of the

instability. However, the ultimate fate and final form of the fingers remains unclear.
This chapter has two main aims. The first aim is to identify and provide a

detailed explanation of the asymptotic fate of the fingering instability. Then, given an
understanding of the late-time behaviour, the second aim is to examine the full life
cycle of miscible viscous fingering from “onset” to “shutdown” which draws together
previously disjoint or contradictory observations and claims. It is found that the
dynamics can be divided into three regimes: (i) at early times, the flow is well-
described by linear stability theory; (ii) at intermediate times, the flow is dominated
by non-linear finger interactions; and (iii) at late times, the flow is composed of
exponentially slowing single-finger exchange-flow. Ultimately, once the fingers have
slowed enough, diffusion in the direction of the flow dominates the dynamics. In the
course of this study, a critical Peclet number for the instability in the first regime is
identified and an improved averaged model for the flow in the second regime is derived.

This chapter is laid out as follows. In §2.2 the problem is formulated and the
numerical method used to solve it is briefly discussed. In §2.3 numerical results
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Fig. 2.1 An illustration of the model setup. The porous medium is taken to be an infinite
strip of width a initially filled with a fluid with viscosity µ2. A fluid with viscosity µ1 is
injected at a constant flow rate Q into the medium. We measure the concentration of the
injected fluid, which is one upstream and zero downstream.

across a range of parameter settings are presented and the dominant scalings in each
regime are identified. The early-time linearly unstable and intermediate-time non-linear
coalescence regimes are discussed in more detail in §2.4. Finally, in §2.5, the late-time
behaviour is discussed, for which an analytic solution for the new single-finger state is
derived and compared to the results of the numerical simulations.

2.2 Problem formulation

Note that for brevity the detailed problem formulation is outlined once in this thesis
here as the model setup is similar in chapters 3,4, and 5.

We consider a two-dimensional, isotropic porous strip of infinite streamwise extent
and finite transverse width a (figure 2.1). The medium has uniform porosity φ and
permeability k, and is initially saturated with an ambient fluid which has viscosity µ2.
Another fluid, which is fully miscible with the ambient fluid and has viscosity µ1, is
injected at a flow rate Q. The diffusivity between the fluids is D and in this chapter
gravity is neglected. Note that, in general, the diffusivity and permeability may be
described by second-rank tensors, and can depend on a variety of factors including
the concentration of either fluid, fluid velocity, time, and space. For simplicity, the
diffusion-dispersion tensor is assumed to be isotropic and constant throughout this
thesis. The permeability is assumed to be isotropic and constant in this chapter, and
we explore the effect of spatial variations in the permeability in chapters 3 and 4.
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2.2.1 Governing equations

The two fluids are incompressible and fully miscible. The flow obeys Darcy’s law and
the concentration of the injected fluid is described by an advection-diffusion equation,

∇ · u = 0, (2.1)

u = − k

µ(c)∇p, (2.2)

φ
∂c

∂t
+ u · ∇c = φD∇2c. (2.3)

Here u = (u, v) is the Darcy velocity or fluid flux, p the pressure, and c the concentration,
which varies between 0 (in the ambient fluid) and 1 (in the injected fluid). The viscosity
µ(c) varies with the concentration, and we follow the convention of previous authors
(e.g. Pramanik and Mishra, 2015; Tan and Homsy, 1986; Zimmerman and Homsy,
1991) by assuming an Arrhenius-like exponential dependence,

µ(c) = µ2e
−Rc, (2.4)

where R = −ln(µ1/µ2).
We non-dimensionalize the equations by the height of the domain a, velocity U ,

time φa2/Q, permeability k, viscosity of the ambient fluid µ2, and pressure µ2Q/k,
leading to

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0, (2.5)

− u∗µ∗ = ∂p∗

∂x∗ , −v∗µ∗ = ∂p∗

∂y∗ , (2.6)

∂c

∂t∗ + u∗ ∂c

∂x∗ + v∗ ∂c

∂y∗ = 1
Pe

(
∂2c

∂x∗2 + ∂2c

∂y∗2

)
, (2.7)

µ∗(c) = e−Rc, (2.8)

where (·)∗ denotes a dimensionless quantity. For notational simplicity, we drop the
asterisks from all subsequent quantities. The key dimensionless parameters are the
log-viscosity ratio and the Peclet number, defined as

R = −ln
(

µ1

µ2

)
, Pe = Q

φD
. (2.9)
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When the injected fluid is more viscous than the ambient (R < 0), the interface is
stable and the concentration evolves by diffusion alone (in the moving frame), with a
classical error-function profile. However, when the injected fluid is less viscous than
the ambient (R > 0), the interface can be unstable, leading to complex fingering
patterns. We focus on the latter problem here. The Peclet number provides a ratio
of the characteristic timescales for diffusion and advection: when Pe ≪ 1, diffusion
dominates the dynamics, and when Pe ≫ 1, advection dominates. In the diffusive
limit, the instability can be suppressed (as will be shown later) so we will, therefore,
focus predominantly on the limit Pe ≫ 1.

We note that the Peclet number here is a macroscopic quantity defined with respect
to the width a of the porous medium. It is distinct from the pore Peclet number,
Pep = Qb/aD = (b/a)Pe, which is defined with respect to the intrinsic length-scale b of
the medium, i.e. the pore size, or, in a Hele-Shaw cell, the gap width. The assumption
of Darcy flow relies on the pore Peclet number being small, Pep < O(1) (Yang and
Yortsos, 1997), or, equivalently, a/b > O(Pe). In this limit, diffusion acts quickly to
homogenize flow structures at the pore scale. This limit is assumed throughout this
chapter as well as the subsequent chapters. If, instead, Pep were not small, the flow
structures across the pore or gap width would affect the global dynamics, leading to
qualitatively different macroscopic behaviour (Lajeunesse et al., 1999; Paterson, 1985).

We work in a reference frame moving with the average velocity of the injected fluid,
and introduce transformed variables

ũ = u − 1, x̃ = x − t. (2.10)

In this frame, equations (2.5-2.7) become

∂ũ

∂x̃
+ ∂v

∂y
= 0, (2.11)

− (ũ + 1)µ = ∂p

∂x̃
, −vµ = ∂p

∂y
, (2.12)

∂c

∂t
+ ũ

∂c

∂x̃
+ v

∂c

∂y
= 1

Pe

(
∂2c

∂x̃2 + ∂2c

∂y2

)
. (2.13)

Again, for notational convenience, we drop the tildes from all subsequent quantities.
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2.2.2 Boundary conditions

Similar to previous work (Tan and Homsy, 1988), we impose periodicity at the top and
bottom boundaries. The upstream and downstream concentration are fixed at c = 1
and c = 0 respectively, the horizontal velocity is fixed at u = 0 (in the moving frame)
and there is no mean cross-flow. The boundary conditions are thus

c(x, 0, t) = c(x, 1, t), u(x, 0, t) = u(x, 1, t), v(x, 0, t) = v(x, 1, t), (2.14)

c(−∞, y, t) = 1, c(∞, y, t) = 0, (2.15)

u(−∞, y, t) = u(∞, y, t) = 0,
∫ ∞

−∞
vdx = 0. (2.16)

2.2.3 Diagnostic quantities

As the instability develops and an array of fine fingers form, the local fingering dynamics
become chaotic and are controlled by non-linear interactions between fingers. Instead
of examining the behaviour of each individual finger, we aim to examine how the
fingering dynamics evolve globally. To do so, we compute the average concentration
over the transverse direction,

c(x, t) =
∫ 1

0
c(x, y, t)dy. (2.17)

Using this definition, and defining the deviations c′(x, y) = c(x, y) − c(x), (2.13) can
be written as two coupled equations for the mean and perturbed concentrations,

∂c

∂t
+ ∂uc′

∂x
= 1

Pe
∂2c

∂x2 , (2.18)

∂c′

∂t
+ ∂uc′

∂x
+ ∂uc

∂x
− ∂uc′

∂x
+ ∂vc′

∂y
= 1

Pe

(
∂2c′

∂x2 + ∂2c′

∂y2

)
. (2.19)

We will use this decomposition throughout this thesis.
In this chapter, we also examine three global quantities over time: the mixing

length h, which quantifies the streamwise extent of interpenetration of the two fluids;
the average number of fingers n, which gives an inverse measure of the transverse
length scale; and the Nusselt number, Nu, which quantifies the total convective mixing



2.2 Problem formulation 17

rate. These quantities are defined as,

h = x|c=0.01 − x|c=0.99, (2.20)

n = 1
h

∫ x|c=0.01

x|c=0.99

η(x)dx, (2.21)

Nu =
∫ ∞

−∞

∫ 1

0
u
(

c − 1
2

)
dydx, (2.22)

where the number of fingers η(x) is calculated by counting the number of local maxima
in a vertical slice. Note that, the Nusselt number is often defined as Nu∗ = 1 + Pe Nu,
which is the ratio between total transport and diffusive transport (Zhou, 2013). Here
we instead use the Nusselt number simply to quantify the total convective transport.
Although other quantities can give more direct measurements of the total amount of
mixing (e.g. the scalar dissipation rate; Jha et al., 2011a), we choose to measure these
quantities as they provide clear and physically useful measures of the region over which
the two fluids have spread and are mixing as well as the rate at which they are mixing.

Throughout we will make reference to the interface between the two fluids. Since
the two fluids are fully miscible, there is no precise boundary. Instead, where we refer
to the interface, we loosely mean the region around the c = 1/2 contour over which
the concentration varies significantly.

2.2.4 Numerical Method

We briefly summarize the numerical method here; for more details see appendix A. Given
that the fluids are incompressible, we write the velocity in terms of a streamfunction
(u, v) = (∂Ψ/∂y, −∂Ψ/∂x). Combining (2.12) and (2.8) results in a non-linear elliptic
equation for the streamfunction,

∂2Ψ
∂x2 + ∂2Ψ

∂y2 − R
∂c

∂x

∂Ψ
∂x

− R
∂c

∂y

∂Ψ
∂y

= R
∂c

∂y
, (2.23)

with boundary conditions
Ψ(x, 0, t) = Ψ(x, 1, t), (2.24)

Ψ(−∞, y, t) = Ψ(∞, y, t) = 0, (2.25)

from (2.14) and (2.16).
In order to simulate an infinite strip, we impose boundary conditions (2.15) and

(2.25) at x = ±Γ/2, where Γ grows in time and is chosen to be sufficiently large
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such that the boundaries are always far from the fingered region. Each simulation is
initialized with an almost sharp interface and an added small random perturbation
centred at x = 0,

c0 = 1
2 + 1

2erf
(

− x√
t0

)
+ r(x, y)e−x2/t0 , (2.26)

where the function r(x, y) returns a uniformly distributed random number on the
interval [0, 10−5].

At each time step, we solve (2.23) using an iterative multi-grid solver (Adams, 1999)
with the solution at the previous time step used as an initial guess. We use sixth-order
compact finite differences (Lele, 1992) to discretise the spatial derivatives in (2.23) and
(2.13), and advance (2.13) in time using a third-order Runge-Kutta scheme.

2.3 Fingering pattern and regimes

Figure 2.2 shows a sequence of snapshots from a typical simulation for log-viscosity
ratio R = 2 and Peclet number Pe = 2000. At early times, the initially very sharp
interface begins to smooth out and a series of fine fingers develop (figure 2.2(a)). At
intermediate times, once the fingers reach a certain amplitude, they begin to interact,
which drives coarsening in the vertical direction and growth in the horizontal direction
(figures 2.2(b-d)). Overall, these non-linear interactions lead to coalescence until a
single broad finger remains (figures 2.2(e,f)).

All of our numerical simulations, which have Pe ranging from 100 to 16000 and
R ranging from 1 to 5, show this qualitative behaviour. In general, we find that at
early times the interface diffuses and a set of fingers develop. The number of fingers
that develop increases with both the Peclet number and the log-viscosity ratio. The
fingers then interact non-linearly via a variety of different mechanisms. These include
shielding, when a longer finger widens at the tip and shields the growth of smaller
neighbouring fingers; fading, when a finger stops growing and diffuses into the ambient;
and coalescence, when two or more fingers merge together. When the Peclet number
and log-viscosity ratio are large, the fingers also exhibit more complex behaviour
including tip-splitting, when a finger splits into two at the tip; and branching, when
a finger sheds fingers from its side (Islam and Azaiez, 2005; Tan and Homsy, 1988;
Zimmerman and Homsy, 1991).

Regardless of the Peclet number and log-viscosity ratio, these interactions, on
aggregate, lead to coalescence until a single broad finger remains. This finding is
contrary to previous suggestions that the final state may include multiple fingers (Tan
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Fig. 2.2 Colourmaps of the concentration field (in a frame moving with the interface) over
the course of a simulation. Here, R = 2 and Pe = 2000. Snapshots, from top to bottom, are
taken at (a) t = 0.5, (b) t = 1, (c) t = 3, (d) t = 10, (e,f) t = 31. Note that the numerical
domain is significantly larger than shown in the lower 3 panels. Panel (f) is zoomed out to
include the full finger, and note that the figure is horizontally compressed by a factor of 4.
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and Homsy, 1988; Zimmerman and Homsy, 1992b). The single finger that remains
diffuses while propagating at an exponentially slowing speed, ultimately leaving a linear
background concentration gradient that is gradually smoothed out by diffusion. We
find that the final mixing zone length increases with both R and Pe.

Figure 2.3 shows the mixing length h, number of fingers n, and Nusselt number Nu
as functions of time for different Peclet numbers (left) and log-viscosity ratios (right).
Figures 2.3(a,b) show that the mixing length initially grows, then steepens, before
finally slowing towards a constant. The early-time mixing length is larger for small
Peclet numbers and is independent of the log-viscosity ratio whereas the final mixing
length increases with both the Peclet number and log-viscosity ratio. Figures 2.3(c,d)
show that the average number of fingers is fairly constant at early times, decays to
one at intermediate times, and stays constant at one at late times. Although the
initial number of fingers increases with the Peclet number and log-viscosity ratio, the
flow always tends to a single finger eventually, irrespective of the parameters. Finally,
figures 2.3(e,f) show that the Nusselt number first grows exponentially, then grows
more slowly and finally decays exponentially.

Based on these sets of observations we partition the flow into three distinct regimes:
(i) an early-time, linearly unstable regime: the mixing zone grows diffusively and fingers
grow exponentially; (ii) an intermediate-time non-linear regime: fingers coalesce and
the mixing length and Nusselt number exhibit power-law growth; and, (iii) a late-time,
single-finger, exchange-flow regime: a single pair of counter-propagating fingers slow
exponentially.

Each regime shows different dynamics and exhibits different scalings. We explore
these scalings in the following subsection, before examining each regime in more detail
in sections 2.4 and 2.5.

2.3.1 Scalings

At the start of all simulations, the interface is relatively sharp and the concentration and
velocity perturbations are small. Diffusion across the interface dominates the growth
of the mixing zone, and a diffusive balance c

t
∼ c

Peh2 gives the scaling for the mixing

length h ∼
(

t
Pe

) 1
2 , as can be seen in figure 2.4(a). In this linearly unstable regime,

the aspect ratio of the fingers is O(1); hence, from incompressibility, u
x

∼ v
y

⇒ u ∼ v.
The linearized elliptic equation (2.23) further suggests a balance u

y
∼ v

x
∼ Rc

y
, or

u ∼ v ∼ R. The linear scaling of the velocity with the log-viscosity ratio, together
with an advection-diffusion balance in (2.13), indicates that c

t
∼ uc

x
∼ c

Pex2 , or t ∼ 1
R2Pe
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Fig. 2.3 Plots of (a,b) the mixing length h, (c,d) the number of fingers n, and (e,f) the
Nusselt number Nu as functions of time plotted on logarithmic axes. To reduce the noise
in the data, two different simulations are averaged for each plotted trajectory. (a,c,e) Data
for log-viscosity ratio R = 2 and different Peclet numbers Pe as marked. The black circles
correspond to the snapshots in figure 2.2. (b,d,f) Data for Pe = 1000 and different values of
R as marked.
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Fig. 2.4 Rescaled plots of (a,b) h, (c,d) n, and (e,f) Nu for early times (left) and late times
(right). The dashed lines are for constant R = 2 and different Pe as marked, while the solid
lines are for constant Pe = 1000 and different R as marked. To reduce the noise in the data,
two different simulations are averaged.
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and x ∼ 1
RPe . That is, at early times, the number of fingers scales linearly with both R

and Pe. Figure 2.4(c) shows a rescaled plot of the number of fingers which collapses
well with this scaling. Finally, the Nusselt number is defined as the product of the
exponentially growing velocity u ∼ R eσt and concentration perturbations c′ ∼ eσt

integrated over the size of the perturbations x ∼ 1
RPe (where σ is the growth rate of

the instability). Given the time scale identified above, t ∼ 1
R2Pe , we collapse the data

for the Nusselt number with the scaling Nu ∼ etR2Pe/Pe (figure 2.4(e)).
At intermediate times the fingers interact non-linearly causing them to elongate and

coarsen. The horizontal velocity remains relatively constant and is solely a function
of the log-viscosity ratio, u = U(R). An advective balance in (2.13) gives the scaling
Uc
h

∼ c
t
, or h ∼ U(R)t, and this linear growth of the mixing zone in time can be seen

in figures 2.4(a,b). In fact, we return to the functional form of the velocity U(R) in
§2.4.2, and find that it can be approximated by U ∼ R for R ∼ O(1). The number of
fingers, n, in the intermediate-regime, follows two distinct coalescence regimes. Initially
the coalescence is advectively dominated, and in this limit (2.13) gives the scaling
vc

1/n
∼ c

t
. Assuming that the transverse velocity is O(R) and constant, then n ∼ 1

Rt
.

Subsequently, the flow becomes diffusively dominated and (2.13) gives the scaling
c
t

∼ c
Pe/n2 ⇒ n ∼ (t/Pe)− 1

2 . These two scaling laws can be seen in figures 2.4(c,d). In
the intermediate-time regime, the Nusselt number scales with the width of the mixing
region (h ∼ Rt) and the average convective flux, which scales with the velocity U ∼ R.
Together, this gives the scaling Nu ∼ R2t (see figures 2.4(e,f)). These observations
suggest that the Nusselt number and growth of the mixing zone are independent of
the Peclet number and, after a small amount of time spent advectively coalescing, the
finger coalescence becomes independent of the viscosity ratio.

Finally, at late times, a single pair of long, thin fingers counter-propagate and decay
through a background concentration gradient. As seen in figure 2.4(d), all simulations
tend to this single-pair (single-maxima) state. Assuming that the concentration
deviations from the background are small and applying a long, thin approximation
to equation (2.23), results in the scaling u ∼ R (as discussed in more detail in §2.5).
Balancing longitudinal advection and transverse diffusion over a single finger yields
the scaling Rc

h
∼ 1

Pe ⇒ h ∼ RPe. A diffusive balance, c
t

∼ 1
Pe , suggests that the time

should be scaled by the Peclet number in this late-time regime. Applying the same
argument as before, the Nusselt number decays exponentially like Nu ∼ PeR2e−t/Pe.

The transitions between these different regimes are controlled by the relevent time
scalings in each regime. The transition from the early-time to intermediate-time regime
occurs once the concentration perturbations saturate and the flow becomes nonlinear.
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Early times Intermediate times Late times
h ∼

(
t

Pe

) 1
2 h ∼ Rt h ∼ RPe

n ∼ RPe n ∼ 1
Rt

n ∼
(

t
Pe

)− 1
2 n = 1

Nu ∼ etR2Pe/Pe Nu ∼ R2t Nu ∼ R2Pe e−t/Pe

Table 2.1 Scalings for h, n, and Nu for early, intermediate, and late times. The
transition from the early-time to intermediate-time regime occurs at t ∼ O( 1

R2Pe) and
the transition from the intermediate-time to late-time regime occurs at t ∼ O(Pe).

Since the perturbations grow exponentially, and the time-scale of their growth is
t ∼ 1

R2Pe , the perturbations will reach a certain amplitude at a time, t ∼ O( 1
R2Pe). The

transition to the late-time regime occurs once the flow coarsens to a single-finger. Since
this coarsening process is diffusively dominated, the fingers will coarsen to one finger
once the flow has diffused over the entire transverse length. This means the transition
between the intermediate-time and late-time regime occurs at t ∼ O(Pe).

The scalings are summarized in table 2.1. In the following sections, we discuss
each of these regimes in more detail with an emphasis placed on understanding the
evolution of the transversely averaged concentration.

2.4 Early- and intermediate-time regimes

2.4.1 Early times: linearly unstable regime

The concentration gradient between the two fluids, which are not moving relative to
each other, is initially very high and spreads by diffusion. Neglecting the very small
initial perturbations in (2.26), the resultant concentration profile is one-dimensional
and given by

c(x, t) = 1
2 + 1

2erf
− x√

4t/Pe

 . (2.27)

Therefore, before the instability manifests itself, the concentration front widens like
(t/Pe) 1

2 , which corresponds to the early-time scaling of h (see figure 2.4(a)).
When R > 0, the flow rapidly develops a viscous-fingering instability in which

perturbations grow exponentially. Many authors have explored the onset of viscous
fingering in a variety of contexts using linear stability theory. Tan and Homsy (1987)
found that the instability can be suppressed for all times, in a radial geometry, if the
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Fig. 2.5 (a) Nu(t), attained from direct numerical simulations, plotted on logarithmic axes for
R = 2 and different Pe as marked. The Nusselt number is strictly decreasing for Pe = 20, but
has a period of growth for Pe = 30, suggesting a point of marginal stability between Pe = 20
and 30. (b,c) Marginal stability curves (σ = 0; outlines) and regions of instability (σ > 0;
shaded areas), for R = 3 and (b) Pe = 25, 200, 500 and (c) Pe = 15, 20, 25. Wavenumbers less
than k = 2π cannot be contained within the domain, and so the flow is stable for k < 2π, as
indicated by the grey region in (c). (d) Plot of the critical Peclet number versus log-viscosity
ratio based on the linear stability analysis (black line) and numerical simulations (blue
ranges). The lower and upper estimated values of Pec from our simulations in (d) are given,
respectively, by the largest Pe for which Nu(t) monotonically decreases, and by the smallest
Pe for which Nu(t) increases at any time.
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Peclet number is below some critical value. In a planar geometry, however, Pramanik
and Mishra (2015) found a time-dependent critical Peclet number which decreases in
time, and suggested that there may be no Peclet number for which the flow is always
stable.

In this section, by noting the fact that the domain is transversely finite and that
there is a restriction on the largest permissible mode inside the domain, we show that
there is, in fact, a critical Peclet number below which the flow is always stable. To
motivate the existence of this critical Peclet number, figure 2.5(a) shows Nu(t) for
R = 2 and small Peclet numbers. For the range of Peclet numbers plotted, the Nusselt
number never transitions to power-law growth, suggesting that there are choices of
parameters where the flow never enters the non-linear regime. In fact, we notice that
for Peclet numbers less than or equal to 20, the Nusselt number is strictly decreasing,
implying the configuration is stable for all times, while for Peclet numbers greater than
or equal to 30, the Nusselt number goes through a period of growth. In this section,
we perform a linear stability analysis to show the existence of a critical Peclet number
for the instability.

We start with a diffusive base-state solution of the unperturbed system c0(x, t)
given by equation (2.27). To accommodate the rapidly varying base-state at early
times we use a similarity transformation ξ = x/

√
t, in terms of which (2.27) is steady,

c0(ξ) = 1
2

[
1 + erf

(
−ξ

√
Pe

2

)]
. (2.28)

We then linearize equations (2.13) and (2.23) about this base-state and look for
perturbations of the form u′(ξ, y, t) = φ(ξ)τ(t)eiky and c′(ξ, y, t) = β(ξ)τ(t)eiky, which
satisfy, (

σ(t0) − ξ

2t0

d

dξ
− 1

Pe t0

d2

dξ2 + k2

Pe

)
β = − 1√

t0

dc0

dξ
φ, (2.29)

(
1
t0

d2

dξ2 − R

t0

dc0

dξ

d

dξ
− k2

)
φ = −Rk2β, (2.30)

where σ(t0) ≡ 1
τ

dτ
dt

|t=t0 is the instantaneous growth rate at t = t0, such that τ = e
∫ t

0 σdt0

(see also Pramanik and Mishra, 2015). We note that this formulation does not require
any assumption of a slowly-varying or quasi-steady background. We solve (2.29)
and (2.30) by discretizing the domain using standard second-order finite-difference
approximations for the differential operators, which yields the matrix eigenvalue problem

Mβ = σβ. (2.31)
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The growth rate of the most unstable mode is given by the maximum eigenvalue of
the matrix M. This growth rate depends on Pe and R, as well as, time t0 and the
wavenumber of the perturbation k.

Figure 2.5(b) shows the marginal stability curve σ(k, t0) = 0, where σ is the growth
rate of the most unstable mode, for R = 3 and a variety of Peclet numbers. The system
is always initially stable and goes unstable at a critical time t∗

0 > 0. Zooming into the
region around wavenumber k = 2π (figure 2.5(c)), which is the largest mode that is
permissible inside the domain, we notice that for Pe = 20, the marginal stability curve
lies above k = 2π for only a finite amount of time: once the marginal stability curve
falls below this value, the flow is again stable. In fact, this transition back to stability
at large t0 is a general feature for all R and Pe and this intermittent stability suggests
that if the interface is diffuse enough, the instability can be suppressed, in agreement
with experimental evidence (Loggia et al., 1999). Finally, we notice that for Peclet
numbers smaller than some critical value Pec(R), the growth rate is only positive for
wavenumbers smaller than 2π. These modes do not fit in the domain and the interface
is therefore always stable. For example, in figure 2.5(c) the critical Peclet number lies
between 15 and 20.

The transitions out of, and back into, stability, occur as diffusion tends to arrest
the instability. The system is initially stable because, for small t, the growth of the
interface (O(t− 1

2 )) outpaces the exponential growth of the perturbations. Matching
the diffusive length-scale ( t1/2

Pe1/2 ) to the length-scale of the most unstable perturbation
( 1

RPe) gives a transition time t ∼ 1
R2Pe . At sufficiently large times, the base flow is again

stable, because the background concentration gradient has weakened to such an extent
that transverse diffusion ( 1

Pey2 ) can smear out the advective growth of perturbations
(u ∂c

∂x
∼ RPe1/2

t1/2 ). Balancing these two terms for y ∼ O(1) gives a transition time to
return to stability, t ∼ R2Pe3. At some critical Peclet number, Pec, the time-scales
of the initial instability and subsequent stabilization match, and the instability is
completely suppressed. This balance gives Pec ∼ 1

R
. The transition back to stability

also indicates that fingering can be prevented by allowing the interface to diffuse
before injection for a time O(R2Pe3), or by initializing (for example by pre-mixing) a
concentration gradient of width O(RPe).

Figure 2.5(d) shows Pec(R) calculated from the linear stability analysis, which
agrees with this predicted scaling. The figure also shows estimates of Pec from direct
numerical simulations, which give a reasonable agreement with the theory.
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Fig. 2.6 (a) Plot of the transveresely averaged concentration against the similarity variable
x/t. Here R = 2, Pe = 1000 and the time, given by the colour, ranges from 10 to 20. Each
curve plotted represents the average of five different simulations. The dashed lines represent
the three different model solutions: simple Koval (blue, dashed), fitted Koval (green, dotted),
and parabolic Koval (black, dot-dashed) . (b) Plot of the transverse variance in concentration
for Pe = 2000, 4000, 8000, and 16000 at t = 8, 4, 2 and 1. By sampling at these different
times, we normalize for the effect of the onset of the instability. The variance calculated from
the simple Koval model is given by the blue dashed line.

2.4.2 Intermediate times: non-linear coalescence regime

The linear instability results in a number of fingers which grow exponentially and
independently of their neighbours. After some time, the fingers begin to interact
with each other. Although the non-linear finger interactions exhibit complex and
chaotic patterns and vary significantly over time and from simulation to simulation, the
number of fingers, mixing length, and Nusselt number are largely indifferent to the exact
intermediary mechanisms (see rescaled data in figure 2.4). The transversely averaged
concentration is asymmetric, non-linear, and evolves in a self-similar fashion (figure
2.6(a)). There have been many attempts to model the behaviour of the transversely
averaged concentration, with one of the simplest and most widely used models being
the empirically derived formula of Koval (1963). While this model has been revisited
by multiple authors (Booth, 2010; Yortsos and Salin, 2006), a fully closed model is
yet to be derived. In this section we start by re-deriving the simple model that was
first proposed by Koval (hereafter, the ‘simple Koval model’), and comment on its
strengths and shortcomings. In order to address one of these shortcomings, we then
propose a simple improvement to the model, which gives a qualitative improvement
when compared with the numerical simulations.

The simple Koval model can be derived in the limit where both the aspect ratio
of the fingers and the Peclet number are large, (hn ≫ 1 and Pe ≫ 1 respectively).
Under these conditions the flow is predominantly horizontal and longitudinal diffusion
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is negligible. The velocity is calculated by taking the leading order expansion in hn in
(2.23),

∂u

∂y
− Ru

∂c

∂y
= R

∂c

∂y
, (2.32)

which has solution
u = eRc∫ 1

0 eRcdy
− 1. (2.33)

Substituting this form for the velocity into (2.18) and neglecting longitudinal diffusion
gives,

∂c

∂t
+ ∂

∂x

(∫ 1
0 ceRcdy∫ 1
0 eRcdy

− c

)
= 0. (2.34)

The simple Koval model proceeds under the assumption that the fingered region consists
of ηb(x) leftward-propagating fingers of width wb(x) with uniform concentration c = 0
and ηf(x) rightward-propagating fingers of width wf(x) with uniform concentration
c = 1. Under these assumptions, (2.34) becomes

∂c

∂t
+ ∂

∂x

(
ηf

∫ wf

−wf
eRdy

ηf

∫ wf

−wf
eRdy + ηb

∫ wb
−wb

1dy
− c

)
= 0. (2.35)

In addition, the total area of the fingers has to add up to one, ηfwf + ηbwb = 1, and
the total concentration in the forward propagating fingers has to equal the transverse
average, ηfwf = c. Combining these constraints and simplifying (2.35) results in a
hyperbolic equation for c,

∂c

∂t
+ ∂

∂x

(
Mc

Mc + 1 − c
− c

)
= 0, (2.36)

where M ≡ eR = µ2/µ1 is the viscosity ratio between the two unmixed fluids. The
solution to (2.36) is

c(x, t) =


1 x/t < 1

M
− 1

1
M−1

(√
M

x/t+1 − 1
)

1
M

− 1 ≤ x/t ≤ M − 1
0 x/t > M − 1.

(2.37)

Although coalescence occurs through a nonlinear diffusive process, the longitudinal
spreading of the interface is advectively dominated. As a result, the flow is self-similar
in the variable x/t and has finite forward velocity M − 1 and finite backward velocity
1/M − 1. This asymmetry comes from the fact that in order to maintain a transversely
uniform pressure, the leading, less viscous fingers must travel M times faster than
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the more viscous surrounding fluid downstream, and the trailing more viscous fingers
must travel 1/M times as fast as the less viscous surrounding fluid upstream, in the
non-travelling frame. Figure 2.6(a) compares (2.37) to the numerical simulations.
The simple Koval model accurately predicts two qualitative features of the non-linear
spreading process: an asymmetric concentration profile, and self-similarity in the
variable x/t. However, this model greatly over-predicts the spreading of the mixing
zone (figure 2.6(a)). To account for the difference between the model and experiments,
Koval, in their original work, empirically fit an effective viscosity Me to the experiments
of Blackwell et al. (1959), yielding,

Me =
[
0.22eR/4 + (1 − 0.22)

]4
. (2.38)

The prediction of (2.37) with M replaced by Me in (2.38), which we denote the ‘fitted
Koval’ model, gives a remarkably good fit with our numerical results (figure 2.6(a)).
Indeed, the agreement in figure 2.6(a) is all the more surprising given that (2.38)
was fitted for fluids with a different relationship between viscosity and concentration
than we are using here. Nonetheless, in spite of recent attempts, there is no rigorous
derivation of this form of effective viscosity ratio. Furthermore, this fitted model tends
to break down for large M (Malhotra et al., 2015).

One of the critical assumptions of the Koval model is that the concentration is
either exactly one or exactly zero. We interrogate this assumption by plotting the
concentration field from a simulation with a large Peclet number (Pe = 16000) in figure
2.7(a). We find that even at very large Pe, the concentration is not just one or zero
but varies in both the streamwise and transverse direction. The concentration along
the local maxima and minima of the fingers (figure 2.7(b)) decreases and increases
towards the tips, respectively. In the transverse direction, the concentration takes
on a single maximum or minimum in each finger, which, in its simplest form, can be
approximated by a parabola (figure 2.7(c)). These two factors together result in a much
smaller prediction for the transverse variance in concentration than the simple Koval
model predicts (figure 2.6(b)). Interestingly, in this limit of large Pe, the variance is
independent of the Peclet number, which suggests that the Peclet number has no effect
on the effective viscosity in this regime in agreement with the fact that (2.37) and
(2.38) have no dependence on Pe.

Motivated by these observations, we suggest a very simple improvement to the
simple Koval model, which addresses one of its main assumptions. In the simple
Koval model, the viscosity is uniformly given by eR or 1 in each finger, which follows
from the assumption of uniform concentration in each finger. However, we observe
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Fig. 2.7 (a) Snapshot of the concentration profile at t = 1 for a simulation with
Pe = 16000 and R = 2. Superimposed are lines which follow the peaks (orange) and
troughs (blue) in concentration. (b) Concentration profile along peaks (orange) and
troughs (blue). (c) Concentration profile in the transverse direction at x = 0 centred
around the peaks (orange) and troughs (blue).
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that the concentration actually varies across the fingers, and we can approximate
this variation as being parabolic. In fact, the significant improvement to the simple
model by the empirical fit (2.38) suggests that the main consequence of ignoring this
variation is an inaccurate calculation of the effective viscosity. We therefore propose a
simple modification of the Koval model in which the viscosity varies with a quadratic
concentration profile across each finger; that is, µ(y) = eR(1−y2/w2

f ) and µ(y) = eR(y2/w2
b )

in the forward and backward propagating fingers, respectively. Note that we find that
the model results do not depend very strongly on the transverse profiles so long as it
has a roughly parabolic shape and provided the mean viscosity in the fingers is the
same. For instance, the effective viscosity found by assuming the fingers have Gaussian
transverse profiles is similar to the parabolic case (not shown). In all other respects,
we retain the same assumptions as in the simple Koval model: the fingers are still
assumed to be horizontally uniform, and to obtain a simple analytical solution with
the same functional form as the simple Koval model, the mean concentration in each
finger is still assumed to be either zero or one.

Under these assumptions, (2.35) instead becomes

∂c

∂t
+ ∂

∂x

 ηf

∫ wf

−wf
eR(1−y2/w2

f )dy

ηf

∫ wf

−wf
eR(1−y2/w2

f
)dy + ηb

∫ wb
−wb

eR(y2/w2
b
)dy

− c

 = 0. (2.39)

Combining (2.39) with the same constraints as before, and solving, results in the same
expression for c as (2.37) but with an effective viscosity ratio

Me = eRerf(
√

R)
erfi(

√
R)

, (2.40)

where erfi(x) is the imaginary error function. We denote this model as the ‘parabolic
Koval’ model. Note that, as with the simple Koval model, the improved model does not
depend on the width or the number of fingers as observed in the numerical simulations.
However, in common with the simple Koval model, this choice of viscosity leads to
discontinuous transverse concentration profiles. Although discontinuous, this form
for the concentration allows one to improve on the simple model by accounting for
measured variations in the concentration across the fingers.

Figure 2.8 plots the effective viscosity ratio extracted from the numerical simulations
(dots), together with the predictions of the simple Koval model (S-K), the empirically
fit effective viscosity (F-K) (2.38), and the analytically derived model with parabolic
transverse profiles (P-K) (2.40). The simple Koval model overpredicts the effective
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Fig. 2.8 Plot of the effective viscosity ratio measured for different values of R and Pe.
Each point plotted is calculated by extracting the value of M from a least-squares fit
of (2.37) to the transversely averaged concentration profiles c(x, t), at five different
times t = 10, 11, 12, 13, 14 and five different simulations. These measurements are then
averaged and the error bars represent one standard deviation in these measurements.
The three different model predictions are: simple Koval (blue, dashed), fitted Koval
(green, dotted), and parabolic Koval (black, dot-dashed)

viscosity of the fingered region, whereas the parabolic model agrees well with both
the empirical fit and numerical experiments. In fact, the parabolic model predicts
smaller effective viscosities than the empirical fit for R > 3 in qualitative agreement
with experiments by Malhotra et al. (2015). Although the model agrees well with
the data, it remains, of course, an approximation: it does not take into account the
along-flow variations in concentration, and it still assumes the concentration (but not
the viscosity) is either one or zero in each finger. Nevertheless, we have shown that an
accurate effective viscosity in the Koval model can be derived simply by assuming the
viscosity varies smoothly in the transverse direction.

2.5 Late times: single-finger exchange-flow regime

2.5.1 Numerical observations

At late times, we find a new flow regime which, to leading order, involves a single pair
of fingers counter-propagating through a linear background concentration gradient as
shown by the snapshots in figure 2.9. The concentration field is dominated by a nearly
uniform background gradient in the horizontal direction with some small transverse
deviations superimposed (figure 2.9(a)). The concentration deviations (figure 2.9(b))
are horizontally uniform and have a single maximum (i.e. they form a single finger).
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Fig. 2.9 Snapshots at t = 500 for R = 2, Pe = 2000. (a) Colourmap of the concentration
with overlain contours of the raw (solid) and transversely averaged (dashed) concentration.
(b) Colourmap of c′(x, y) = c(x, y) − c(x). (c) Colourmap of the horizontal velocity u. (d)
Colourmap of the vertical velocity v. Note that the x-axis has been compressed by a factor
of 10 in these plots.

The horizontal velocity u (figure 2.9(c)) tracks closely the concentration deviations
while the vertical velocity v (figure 2.9(d)) is only appreciable at the tips.

Figure 2.10 shows how the concentration field evolves over time. We find that the
transversely averaged concentration, c(x), is linear and steady in the interior. The fluid
flow only widens the mixing region by filling in the linear profile (inset to figure 2.10(a)).
In addition, we find that c is no longer skewed and c = 1/2 is in the middle of the
domain. These features are in stark contrast to the previous regime in which c(x) was
asymmetric and non-linear. Superimposed on this background concentration field are
horizontally uniform deviations which are sinusoidal in the transverse direction (figure
2.10(b)). These deviations decay in time, which ultimately results in a one-dimensional
linear concentration field that evolves purely by diffusion in the x direction.

We find that the single-finger state is stable, that is, no tip-splitting occurs. The
manner by which these fingers are stabilized is distinct from the classical Saffman-Taylor
finger where surface tension acts as the stabilizing force. In this case, weak longitudinal
concentration gradients and transverse diffusion not only stabilize the fingers but also
cause them to decay.

2.5.2 Asymptotic model

The late-time regime is characterized by a linear background gradient with a single
pair of counter-propagating fingers superimposed. The fingers have a very large aspect
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Fig. 2.10 (a) Plot of the transversely averaged concentration. (b) Plot of the longitudinally
averaged concentration cL(y) =

∫ Γ/2
−Γ/2 c(x, y)dx = 1

2 +
∫ Γ/2

−Γ/2 c′(x, y)dx. A sinusoidal fit for
t = 150 is given by the dashed black line. In both plots R = 2, Pe = 2000 and the time,
given by the colour, ranges from 150 to 550.

Fig. 2.11 (a) Plots of c(x) for R = 2, Pe = 500, 1000, 2000 (dashed) and Pe = 1000 and
R = 1, 1.5, 2.5, 3, 4 (solid) at t = 200. (b) c as a function of x/(RPe), with the fitted line
c = 1/2 − 24.9x/RPe (black, dashed)
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ratio, and so the velocity is given by (2.33), which for small deviations c′, reduces to

u = Rc′ + O(c′2). (2.41)

We look for a steady interior solution for c, for which (2.18) becomes

1
Pe

∂2c

∂x2 = O(c′2), (2.42)

or
c = −αx + 1

2 + O(c′2). (2.43)

Given that the net change in concentration of the two fluids must be equal and opposite,
the concentration at the mid-plane must be 1/2, which determines the constant of
integration in (2.43).

Substituting the steady transversely averaged concentration (2.43) and velocity
(2.41) into equation (2.19) results in a partial differential equation for the evolution of
the deviations,

∂c′

∂t
− αRc′ = 1

Pe
∂2c′

∂y2 + O

(
c′

Peh2

)
+ O(c′2). (2.44)

The leading order behaviour of (2.44) is a balance between the growth/decay of the
concentration deviations, advection of the background concentration gradient and
transverse diffusion. Advection of the background tends to cause the deviations to
grow since positive deviations tend to move high concentrations downstream (and
negative deviations move low concentrations upstream), while diffusion causes them
to attenuate. This competition results in the exponential decay of the fingers and
eventual shutdown of the instability. Furthermore, this equation is independent of x;
therefore, the deviations must be horizontally uniform, as observed. The single-finger
solution to the leading order truncation of (2.44) is,

c′(y, t) = sin(2πy)e−γ(t−t∗), (2.45)

where t∗ is a virtual origin relating to the transition between regimes and

γ = 4π2

Pe − αR. (2.46)

Note that, while a solution of (2.44) with any integer number of fingers is permissible,
solutions with more fingers decay more rapidly over time, and the solution with k = 2π

(2.45) is the slowest decaying mode.
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Fig. 2.12 (a) Plot of γ (circles) and αR (diamonds) as functions of Pe and R (colours). (b)
Ratio of γ, measured from the simulations as the decay rate of the maximum of c′ at x = 0,
to γ(αR), calculated using equation (2.46) where α is the slope of c measured at t > 200.

The slope α of the interior profile in (2.43) is set by the amount of mixing that
occurs during the intermediate and late-time regimes. In both regimes u ∼ R and
t ∼ Pe. Therefore, once the system has shutdown, the width of the mixing zone will
have become h ≈ 1/α ∼ RPe, such that αR = Â/Pe, for some constant Â. We fit
Â = 24.9 to the collapsed transversely averaged concentration profiles (figure 2.11(b)).

We verify this model by measuring α and γ from the numerical simulations. We
calculate α by measuring the slope of c at x = 0 at some late time, and γ by measuring
the decay rate of the maximum of c′ at the mid-plane. Plots of the numerically measured
γ and αR are given in figure 2.12(a) and both quantities exhibit the predicted 1/Pe
scaling. Finally, the validity of equation (2.46) is tested by plotting the ratio of γ

measured from the simulations and γ(α) calculated using equation (2.46). This quantity
is plotted in figure 2.12(b) and deviates by a maximum of 4% over a range of Peclet
numbers and log-viscosity ratios.

2.5.3 Total convective mixing

One of the major implications of this final single-finger exchange-flow regime is that
the viscous-fingering instability can only generate a finite amount of convective mixing.
In figure 2.13a we plot the time-integral of the convective flux through the midplane,

F =
∫ ∞

0

∫ 1

0
uc′|x=0 dydt, (2.47)

as a function of the Peclet number and log-viscosity ratio. We find that the flux
increases linearly with both Pe and R for Pe ≫ 1, and can be fit by the functional
form F = âR(Pe − b̂/R), where the shift in the Peclet number, b̂/R, corresponds to
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Fig. 2.13 (a) Time-integrated convective exchange flux F (2.47) between the two fluids as a
function of Pe and R (colours), as calculated from the numerical simulations. In order to
calculate the infinite time integral in (2.47), we integrate the numerical data out to t = 200,
which is well into the late-time regime in all simulations, and fit a decaying exponential
function E(t) to the flux

∫ 1
0 uc′|x=0dy for subsequent times such that F =

∫ 200
0

∫ 1
0 uc′|x=0 dydt+∫∞

200 E(t)dt. The lines of best fit (black) correspond to the fit F = 5.3×10−3R(Pe−45/R). (b)
Ratio of the time-integrated convective exchange flux and the final slope of the transversely
averaged concentration.

the onset of the instability as described in section 2.4.1. We find that the numerical
data is best fit with â = 5.3 × 10−3 and b̂ = 45 (solid lines in figure 2.13(a)).

Of course, provided advection dominates the horizontal transport, the quantity F

can also be directly related to the slope α of the late-time profiles, by mass conservation.
Such a balance gives

F ≈
∫ ∞

0
c̄dx ≈ 1

8α
. (2.48)

For the three values of R plotted, we find that this prediction gives good agreement for
Pe > O(100) (figure 2.13(b)), which suggests that for the range of R plotted, horizontal
diffusion plays a negligible role in mixing for Pe > O(100).

2.6 Discussion and Conclusions

2.6.1 Summary

In this chapter, miscible viscous fingering in a semi-infinite planar geometry was
investigated using high-resolution simulations. Three distinct regimes were identified:
an early-time linearly unstable regime, an intermediate-time non-linear regime, and a
late-time single-finger exchange-flow regime. In each of these regimes, the predominant
balances and scalings for the mixing length h, the number of fingers n, and the total
convective transport Nu were identified (table 2.1).
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Early-times Intermediate-times Late-times
X ∼ D1/2T 1/2 X ∼ RU

φ
T X ∼ RUa2

φD

Y ∼ φD
RU

Y ∼ RU
φ

T, Y ∼ D1/2T 1/2 Y ∼ a

Table 2.2 Dimensional length scales X and Y as a function of dimensional time T .
We define a mean injection velocity U = Q/a. The transition from the early-time
to intermediate-time regime occurs at T ∼ O( φ2D

R2U2 ) and the transition from the
intermediate-time to late-time regime occurs at T ∼ O(a2

D
). The vertical length-scale in

the intermediate regime first grows advectively, then diffusively, as discussed in section
2.3.1.

The dimensional characteristic length scales of the flow structures are summarized
in table 2.2. The early-time fingering dynamics are set by a local balance of advection
and diffusion at the finger scale and hence are independent of the width of the porous
medium a. The flow is more unstable - that is, the flow has finer structures and faster
growth rates - when the viscosity contrast and velocity are large, or the diffusivity is
small. The fingers then spread longitudinally while coarsening, also independent of
the width of the porous medium. Finally, once the instability has had enough time to
diffuse transversely across the entire width of the porous medium, which occurs at a
time scale T ∼ a2/D, the flow enters the late-time regime. In this case, a single pair
of counter-propagating fingers remain, which occupy half of the width of the domain
respectively.

In section 2.4.1, it was shown that for sufficiently small Peclet numbers, the flow
can skip the intermediate regime, and for even smaller Peclet numbers, the instability
can be suppressed altogether. Linear stability analysis was used to identify this cut-off
for the instability and compared to numerical experiments.

In section 2.4.2 an improvement on current models for the transversely averaged
concentration in the non-linear regime was derived. First the simple Koval model
was derived, disagreements with the numerical simulations were identified, and an
improvement on one of its shortcomings was made by including a simple model of the
nearly parabolic concentration profile across propagating fingers. This ansatz was used
to derive the effective viscosity of the fingered region (2.39), in good agreement with
both the numerical simulations and the empirical fit to the Koval model.

Finally, in section 2.5 a new single-finger exchange-flow regime in which the flow
consists of a linear background gradient and counter-propagating fingers was identified.
These fingers exponentially decay and convection stops leaving a linear background
gradient. A model for the asymptotic behaviour was derived, which agreed with the
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numerical simulations. One important consequence of this eventual shutdown is that
there is a maximum amount of convective mixing that the instability can generate.
Since diffusion coefficients for typical pairs of fluids tend to be very small, this shutdown
is most relevant when the displacement process occurs at very small scales (small a) or
very long times.

2.6.2 Implications for carbon sequestration

To illustrate the relevant length and time scales in the late-time regime, we use
parameter values from the CO2 sequestration project at Sleipner to estimate the
‘shutdown time’, Tsd, taken to reach the late-time regime and the ‘final’ mixing zone
width H. For simplicity, we assume the two fluids are fully miscible, even though
CO2 and brine are only partially miscible, and take the parameter values of the
carbon-dioxide/brine system to be as follows (Boait et al., 2012; Neufeld et al., 2010):
background velocity, which is the buoyancy velocity, U = 4 × 10−6 ms−1; log-viscosity
ratio R = 2.5; porosity φ = 0.3; aquifer thickness a = 10 m; and diffusivity D = 2×10−9

m2s−1. In this case, the diffusivity is taken to be the molecular diffusivity of carbon
dioxide and brine Dm. Note that this is only valid when the pore-scale Peclet number,
defined as Uap/Dm (ap is the size of the pores), is small; otherwise the effective
diffusivity is given by an anisotropic velocity-dependent dispersion tensor that could
be significantly larger than Dm (Lake, 1989).

Using these parameters, the Peclet number of the flow is Pe = 7 × 104. The time
until shutdown can be approximated from the numerical simulations as Tsd ≈ 10−1a2/D

which gives a shutdown time of approximately 150 years. Furthermore, the mixing
zone can be approximated as H = 10−1.5Ra2U/φD which gives a 50 km long mixing
zone upon shutdown. In contrast, if the interface were stable and the mixing at the
interface only occurred through diffusion, the width of the mixing zone would grow
like

√
4Dt, which, after 150 years, would be approximately 5 m.

In a real porous medium, some of the assumptions made during the analysis may
no longer hold. In addition to the fluids only being partially miscible, we also neglect
velocity-dependent dispersion. When one fluid displaces another in a porous medium,
the natural tortuosity of the flow paths tend to aid in their dispersal and mixing. When
flow rates are small, this mechanical dispersion is negligible and mixing is dominated
by molecular diffusion, which is isotropic and constant (Woods, 2015). When flow
rates are large, mixing becomes dominated by mechanical dispersion, which is Fickian
and depends on the flow velocity. At early times, we expect this to enhance the
diffusion rate, but not to qualitatively impact the dynamics. At intermediate times,
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when diffusion is negligible, and the flow is advectively dominated, we expect this to
have little quantitative effect on the dynamics. At late times, mechanical dispersion
is important and can lead to faster transverse homogenization and earlier shutdown.
In the Sleipner example above, the flow rate and pore-size are sufficiently small such
that mechanical dispersion is negligible (Uap/Dm ∼ 10−2). In this chapter, we have
also neglected any spatial variations in the permeability field and the fact that the
fluids can have different densities. In the following chapters, the effect of these different
factors on the evolution of the displacement front, from onset to shutdown, will be
examined.





Chapter 3

Stable displacements in layered
porous media

The material in this and the following chapter form the basis of the publication (Nijjer
et al., 2019): Nijjer, J. S. & Hewitt, D. R. & Neufeld, J. A. (2019). Stable and unstable
miscible displacements in layered porous media. Journal of Fluid Mechanics 869.
468-499.

3.1 Introduction

Many physically relevant porous media are not homogeneous but vary on a wide range
of length scales from the pore-scale to the reservoir-scale in both an ordered and
disordered manner (Weber, 1986). In chapters 3 and 4, a similar approach as chapter
2 is taken to look at the role of permeability heterogeneities on the temporal evolution
of the displacement front in the case of stable (chapter 3) and unstable (chapter 4)
displacements.

Here, large-scale permeability variations that are perpendicular to the flow direction
are specifically focused on. This structure is widespread in nature, being characteristic
of geological formations consisting of different sedimentary sequences. When the
injected and ambient fluids have the same viscosity, the presence of permeability
heterogeneities tends to focus the flow through high-permeability regions leading to
spreading and mixing of the two fluids. Previous work has found that in general
three different flow regimes are found: an early-time diffusive regime, an intermediate-
time advective (ballistic) regime, and a late-time shear enhanced dispersion regime
(Camacho, 1993; Dentz and Carrera, 2007). The focus in this chapter and the next is
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to consider the effect of viscosity differences between the injected and ambient fluids
on the evolution of the displacement front in a layered porous medium.

A number of studies have considered the combined effects of randomly varying
permeability fields and viscosity variations on miscible displacements using theoretical
(Welty and Gelhar, 1991), numerical (Camhi et al., 2000; Chen and Meiburg, 1998c;
Nicolaides et al., 2015; Talon et al., 2004; Tan and Homsy, 1992; Tchelepi et al., 2004;
Waggoner et al., 1992) and experimental (Jiao and Hotzl, 2004; Tchelepi et al., 2004)
approaches. These studies have demonstrated that the flow can exhibit a range of
dynamical behaviour, including dispersing, channelling and fingering and highlight
the complexity of the flow patterns that arise. While these studies highlight some of
the interesting qualitative behaviour that can be observed in miscible displacement
flows when heterogeneity and viscosity variations interact, they do not provide a full
overview of the different dynamical regimes that occur and the temporal evolution of
the flow between them.

In contrast to randomly heterogeneous porous media, stable miscible displacements
in layered porous media with viscosity variations have received less attention. Two
notable exceptions are the works of Loggia et al. (1996) and Woods and Mingotti
(2016). Loggia et al. (1996) found in experiments in layered bead packs that when
the injected fluid is more viscous than the ambient, channelling is observed when the
viscosity ratio is smaller than the ratio of permeabilities, and a shock-front is attained
when the viscosity ratio is larger than the ratio of permeabilities. Similarly, Woods and
Mingotti (2016) found in experiments in a Hele-Shaw cell, that injecting a more-viscous
fluid reduced the focusing effect due to the permeability variations and also found that
injecting a less-viscous fluid intensified the focusing effect. However, in both of these
works a sharp-interface between the fluids was assumed and mixing was neglected.

The aim of this chapter is to identify the full life-cycle and evolution of stable
miscible displacements in layered porous media. Having achieved this, reduced-order
models for the spreading and dispersion of the fluids will be developed, which can be
used to quantitatively predict and up-scale flow in heterogeneous porous media.

This chapter is laid out as follows. In §3.2, the problem setup is briefly outlined.
In §3.3, uniform viscosity displacements where the two fluids have the same viscosity
are considered. In §3.4 the effect of small viscosity variations, both stabilizing and de-
stabilizing are examined and in §3.5 large stabilizing viscosity variations are considered.
In each of §3.3-3.5 the time-evolution of the concentration field and the different
regimes through which the flow evolves are discussed, and reduced-order models for the
evolution of the concentration field are derived and compared to the direct numerical
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Fig. 3.1 A schematic of the model geometry. The porous medium is semi-infinite and
has a permeability structure that is only a function of the transverse coordinate, y.
The porous medium is initially saturated with a fluid of viscosity µ = 1. Another fluid,
with viscosity µ = e−R, which is fully miscible with the first, is injected at a constant
unit flow rate.

simulations. In §3.6 stable displacements in geological contexts with a more realistic
and complex permeability structure are considered.

3.2 Problem Formulation

A schematic of the problem geometry is shown in figure 3.1. As described in detail in
chapter 2 for a homogeneous reservoir, we consider a semi-infinite, two-dimensional
porous strip of finite width. We assume the fluid flow obeys Darcy’s law and is
incompressible. We also assume that the viscosity depends on the concentration of
the injected fluid, which evolves through advection and diffusion. These equations are
given in dimensionless form as

− (u + 1)µ = k
∂p

∂x
, −vµ = k

∂p

∂y
, (3.1)

∂u

∂x
+ ∂v

∂y
= 0, (3.2)

µ(c) = e−Rc, (3.3)

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 1

Pe

(
∂2c

∂x2 + ∂2c

∂y2

)
. (3.4)

Note that as before, the velocity (u, v) is given relative to a moving frame that is
travelling with the average speed of the injected fluid. Whereas in chapter 2 a constant
permeability was assumed, here we consider a spatially varying permeability field.
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We consider flows that are periodic in the transverse (ŷ) direction,

c(x, 0, t) = c(x, 1, t), u(x, 0, t) = u(x, 1, t), v(x, 0, t) = v(x, 1, t). (3.5)

The upstream and downstream flux is zero (in the moving frame) and the transverse
velocity vanishes in the far-field so that,

∫ 1

0
u dy → 0 for x → ±∞, (3.6)

∂c

∂x
→ 0 as x → ±∞, (3.7)

v → 0 for x → ±∞. (3.8)

We initialize the concentration field to have a step jump,

c(x, t = 0) = c0(x) = H(−x), (3.9)

where H(x) is the Heaviside function.
The system is described by two non-dimensional parameters, the Peclet number

Pe = Q/D, and the log-viscosity ratio R, as well as the non-dimensional permeability.
As before, we focus on the limit of large but finite Peclet number, which is typical
in most geologic scenarios. In this chapter we also consider three different cases for
the log-viscosity ratio: the uniform viscosity case R = 0, where the injected and
ambient fluids have the same viscosity; the small viscosity limit, where the viscosity
ratio between the injected and ambient fluids is small compared to the permeability
variations; and the stable limit, where the injected fluid is more viscous than the
ambient fluid and the viscosity ratio is large compared to the permeability variations.
In chapter 4 we consider the unstable limit, where the injected fluid is less viscous
than the ambient fluid and the viscosity ratio is large compared to the permeability
variations.

In chapters 3 and 4, we consider only layered heterogeneous media for which
k = k(y). In fact, for most of the numerical results presented here, we further restrict
our attention to log-permeabilities which vary sinusoidally (De Wit and Homsy, 1997a,b;
Sajjadi and Azaiez, 2013):

ln (k) = −σ cos (2πny) − ln (I0(σ)) , (3.10)
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where I0 is the modified Bessel function of the first kind, which ensures a unit average
dimensionless permeability. This simplification retains the dominant physics of perme-
ability heterogeneities in the form of layering, and can be described by two parameters
instead of the infinite space of possible permeability functions. These two parameters
are the log-permeability variance σ and wavenumber n, which measure the strength
and inverse of the length scale of the permeability variations, respectively. We solve
(3.1)-(3.4) along with the form of the permeability, (3.10), numerically (for more details
see appendix A). While some of our results are presented for general k(y), most the
numerical simulations use (3.10) as the form for the permeability structure. In §3.6
and §4.7 we briefly consider the dynamics in more complex permeability structures.

In the absence of hydrodynamic instabilities, as is the case in this chapter, there is
no mechanism for dynamic interactions between layers, and so n can be scaled out of
the system. This is done by introducing rescaled variables ŷ = ny, x̂ = nx, t̂ = n2t, in
which case the flow evolves exactly as it would with n = 1, but with an effective Peclet
number P̂e = Pe/n2. For clarity, we therefore limit our analysis in this chapter to the
case where n = 1.

In order to investigate how the macroscopic features of the flow evolve, we again
focus on the evolution of the transversely averaged concentration c(x, t) =

∫ 1
0 c dy and

the mixing length h(t). In chapters 3-5 we define the mixing length to be the variance
in concentration about the initial condition c0(x) (3.9),

h(t) =

√√√√∫∞
−∞ x2(c − c0)2 dx∫∞

−∞(c − c0)2 dx
. (3.11)

Note that we use this measure instead of the more common definition, h∗ = x|c=0.01 −
x|0.99, which was used in the previous chapter, because it more accurately captures the
spreading behaviour when the concentration field has long-tails (see appendix 3.A).

3.3 Uniform viscosity displacements R = 0
We first consider the case where the injected and ambient fluids have the same viscosity.
While this case has been explored by a number of authors (e.g. Berentsen et al., 2005;
Camacho, 1993; Dentz and Carrera, 2007), we outline it here both for completeness
and to set the stage for the analysis in chapters 3 and 4. Results from a representative
simulation are given in figure 3.2. As was noted earlier, if the flow is hydrodynamically
stable, n can be scaled out of the problem and so we only consider the case where
n = 1. In this case, the permeability is highest in the centre of the channel and lowest
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Fig. 3.2 Evolution of the concentration field for R = 0 and (σ, Pe) = (1, 100). (a) The
imposed permeability k(y) = e− cos(2πy)/I0(1). (b) Evolution of the mixing length, h,
as a function of time, t. The dots correspond to the snapshots (c-e). (c-e) Plots of the
concentration field with overlain streamlines vs. x/h and y at (c) t = 5 × 10−4, (d)
t = 0.32 and (e) t = 200.

at the top and bottom boundaries (figure 3.2(a)) resulting in faster flow in the middle
compared to the top and bottom boundaries. In the moving frame, this causes the
fluid in the middle of the channel to move to the right and the fluid near the top and
bottom boundaries to move to the left. This shear spreads and mixes the fluids. To
quantify this spreading, we plot the evolution of the mixing length, h(t), in figure 3.2(b).
We find that the mixing evolves through three distinct regimes each with a different
scaling behaviour. The concentration fields corresponding to each of these regimes
are plotted in figures 3.2(c-e). In the first and third regimes, the concentration fields
look nearly indistinguishable: the concentration is nearly transversely uniform and
relatively diffuse in the streamwise direction. In the second regime, there is a relatively
sharp interface aligned with the permeability variations. Based on these observations,
we expect that in the first (early-time) and third (late-time) regimes, the streamwise
transport is diffusively dominated, whereas in the second (intermediate-time) regime,
the streamwise transport is advectively dominated.

Since R = 0, the concentration acts as a passive tracer. This means that the
velocity is decoupled from the concentration field, and is given from (3.1) by

u(y) = k(y) − 1, v = 0. (3.12)
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In the case of sinusoidally varying log-permeability (3.10), the velocity is,

u = e−σ cos(2πy)

I0(σ) − 1, v = 0. (3.13)

Given this fixed, known velocity the concentration simply evolves via the advection-
diffusion equation (3.4). In the following sections, we consider the dominant balances
in (3.4) to determine how the concentration field evolves in time.

3.3.1 Early-time behaviour: initial diffusion

At early times, the streamwise concentration gradient between the fluids is large and the
concentration is transversely homogeneous. In this case, diffusion across the interface
dominates and the primary balance in the advection-diffusion equation is

∂c

∂t
= ∂c

∂t
= 1

Pe
∂2c

∂x2 . (3.14)

Using the initial and boundary conditions (3.9) and (3.7) the concentration evolves
self-similarly as

c = c = 1
2 + 1

2erf
− x√

4t/Pe

 , (3.15)

which holds at all times when the permeability is homogeneous (k = 1). The mixing
length grows like h ∼ t1/2 and can be calculated explicitly by substituting (3.15) into
(3.11) (figure 3.3(a)).

This behaviour always holds initially, irrespective of the parameter choices, since
diffusive growth of the interface O(t1/2/Pe1/2) always outpaces advective spreading
O(∆ut) (where ∆u is a characteristic spreading velocity, related to the permeability
field through (3.12)). In fact, the transition to the intermediate regime occurs precisely
when the growth rates become equal, giving a transition time t = O(1/Pe∆u2).

3.3.2 Intermediate-time behaviour: advection

After a time O(1/Pe∆u2), spreading induced by the difference in permeability overtakes
longitudinal diffusion. The leading-order balance in (3.4) becomes

∂c

∂t
+ u

∂c

∂x
= 0, (3.16)
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Fig. 3.3 Evolution of the mixing length and transversely averaged concentration for
R = 0 in the intermediate-time regime. (a) Scaled plot of the mixing length h(t) for
Pe ranging from 100 to 2000 and σ ranging from 0.1 to 2. The black lines correspond
to the predictions for the mixing length calculated from the analytical solutions (3.15)
(dashed) and (3.18) (dotted). (b) Plot of the transversely averaged concentration,
c(x, t) vs. x/t for (R, Pe) = (0, 500), σ ranging from 0.2 to 1.8 and ten logarithmically
spaced times between 1 and 3. The characteristic spreading velocity is taken to be the
maximum velocity difference between the layers, ∆u ∼ sinh(σ)/I0(σ).

and the flow simply stretches the diffused solution that arises from the early-time
regime. In fact, since the rate of advective stretching is much faster than diffusion to
good approximation, we can ignore the effects of the early-time regime completely and
the solution to (3.16) is simply the travelling wave

c = c0 [x − u(y)t] = H [u(y) − x/t] , (3.17)

given the initial condition, (3.9). The transversely averaged concentration, c(x, t) can
be calculated by averaging (3.17),

c(x, t) =
∫ 1

0
H [u(y) − x/t] dy. (3.18)

The model gives good agreement with the numerical simulations (figure 3.3(b)) and
is able to reproduce the asymmetric profiles, which arise due to the fact that the
permeability is not symmetric about k = 1. Since the interface is stretched at a
constant rate, the mixing length grows like h ∼ ∆ut (figures 3.3(a), 3.4(b)).

3.3.3 Late-time behaviour: shear-enhanced dispersion

The transition to the late-time regime occurs once the concentration has diffused across
the entire channel, homogenizing the concentration in the transverse direction; this
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Fig. 3.4 Evolution of the mixing length and transversely averaged concentration for
R = 0 in the late-time regime. (a) Shear enhanced dispersivity S versus σ with
asymptotic limits (3.46) (dashed) and (3.49) (dot-dashed). (b) Scaled plot of h vs.
t for Pe ranging from 100 to 2000 and σ ranging from 0.1 to 2. The black lines
correspond to the predictions for the mixing length calculated from the analytical
solutions (3.18) (dotted) and (3.15) with (3.22) (dashed). (c) Plot of the transversely
averaged concentration, c(x, t) vs. the late-time similarity variable x/

√
t/Pe∗ for the

same parameters as (b) at t = 200. The theoretical solution (3.15) with (3.22) is given
by the dashed line.

occurs at a time O(Pe). In this case, the mixing zone is long and thin and transverse
diffusion balances longitudinal advection (cf. Taylor dispersion e.g. Aris, 1956; Taylor,
1953). This is in contrast to the previous regime, when the flow evolved purely by
longitudinal advection. In the limit of small deviations from the mean (c′ ≪ c) and a
long, thin mixing zone, the evolution equation for the concentration deviations (2.19)
reduces to

(k − 1) ∂c

∂x
= 1

Pe
∂2c′

∂y2 , (3.19)

while the transversely averaged concentration still evolves according to (2.18). Given
that c is independent of y, we integrate this equation twice and impose periodicity and
zero-mean deviations (

∫ 1
0 c′ = 0), to give

c′ = Pe ∂c

∂x

[∫ y

0

∫ ζ

0
(k(η) − 1) dηdζ −

∫ 1

0

∫ s

0

∫ ζ

0
(k(η) − 1) dηdζds

]
. (3.20)

Substituting and solving for the convective flux in (2.18), using the expression for the
velocity (3.12), leads to

∂uc′

∂x
= −Pe ∂2c

∂x2

[∫ 1

0

(∫ y

0
(k(η) − 1) dη

)2
dy

]
. (3.21)
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This convective flux can be written in the form of an effective diffusivity such that
(2.18) reduces to

∂c

∂t
= ∂

∂x

[
1

Pe∗
∂c

∂x

]
,

1
Pe∗ = 1

Pe
(
1 + Pe2S

)
(3.22)

where
S = − 1

Pe ∂c/∂x

∫ 1

0
uc′dy =

∫ 1

0

(∫ y

0
(k(η) − 1) dη

)2
dy (3.23)

is the shear-enhanced dispersivity, which only depends on the permeability structure
(cf. Van den Broeck and Mazo, 1983).

For our choice of sinusoidally varying log-permeability, this integral cannot be
solved analytically, but is instead integrated numerically for varying σ and plotted in
figure 3.4(a). In appendix 3.B, we derive the asymptotic limits of the shear-enhanced
dispersivity for large and small σ (given as dashed and dot-dashed lines respectively in
figure 3.4(a)).

The solution to equation (3.22) is again the similarity solution (3.15), but now
with a modified Peclet number Pe∗ (figure 3.4(c)). When the total dispersivity is
dominated by the shear-enhanced dispersivity, Pe2S ≫ 1, the effective dispersion scales
like Pe∗ ∼ 1/(Pe∆u2). In figure 3.4(b) we use this scaling to collapse the mixing length
as a function of time over a range of parameters.

In summary, in the presence of permeability layering but in the absence of viscosity
variations, the flow evolves through three regimes: early-time diffusion, intermediate-
time advection and late-time shear-enhanced dispersion.

3.4 Small viscosity variations |R| < σ

Next we consider the effect of viscosity variations that are weak compared to the
permeability; that is, the log-viscosity ratio is smaller than the log-permeability
variance, |R| < σ.

Recall as in chapter 2, in the absence of permeability variations and when R < 0,
the flow is hydrodynamically stable and evolves as a simple diffusing front. When
R > 0 and the Peclet number is sufficiently large, the flow is unstable and a set of
complex nonlinearly evolving fingers develop. However, if permeability layering is
introduced, the flow tends to be forced along the permeability pathways (De Wit and
Homsy, 1997b; Shahnazari et al., 2018) and as the permeability variance is increased,
the flow becomes more and more channelized. In this case flows that would otherwise
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Fig. 3.5 Colourmaps of the concentration field with overlain streamlines for |R| < σ.
(a,b) R = 0.4, (c,d) R = 0 and (e,f) R = −0.4 and (σ, Pe, n) = (1, 500, 1). The
snapshots are taken at (a,c,e) intermediate times (t = 1) and (b,d,f) late times (t = 31).
Note that the aspect ratios of the late-time figures are distorted.

be fingering become stabilized. This is especially true when the permeability variability
dominates over viscous variability, σ > |R|. Although instabilities are still possible
(and are further discussed in chapter 4), in this section we focus on flows that remain
hydrodynamically stable and follow the permeability pathways imposed.

Figure 3.5 shows the concentration field overlain with streamlines for σ = 1 and
R = 0.4, 0 and −0.4 at intermediate times (left) and late times (right). For all three
values of R, we find that the concentration field evolves in qualitatively the same
manner: after an early-time diffusive regime, as in §3.3.1, at intermediate times the
flow is dominated by advective stretching (figure 3.5(a,c,e)); and at late times the flow
is dominated by shear enhanced dispersion (figure 3.5(b,d,f)). The main difference
between flows where R ̸= 0 and R = 0 is that at intermediate-times the interface
is either stretched (R > 0) or compressed (R < 0) relative to the uniform viscosity
case owing to the viscosity-enhanced or viscosity-tempered streamwise velocity. At
late-times, the viscosity contrast seems to have little effect and the concentration field
and streamlines look nearly indistinguishable. In the following subsections we examine
the effects of small viscosity variations on the evolution of the three regimes identified
in §3.3. We begin in §3.4.1 with a consideration of how viscosity contrasts affect the
fluid velocity.
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3.4.1 Vertical flow equilibrium

Unlike when the viscosities are equal, R = 0, we cannot simply integrate (3.1) to give
a fixed expression for the velocity. Near the interface, when the injected fluid is more
viscous than the ambient, R < 0, the streamwise velocity is reduced, whereas when
the injected fluid is less viscous than the ambient, R > 0, the streamwise velocity is
increased. Under the assumption that the flow is long and thin, the pressure is only a
function of the longitudinal coordinate and is constant along any transverse slice. This
limit, often referred to as ‘vertical flow equilibrium’ (Yortsos, 1995), implies that

µ (u + 1)
k

= −dp

dx
. (3.24)

Combining (3.24) with the fact that the flux vanishes in any transverse slice in the
moving frame, the velocity can be written as

u(x, y, t) = k(y)
µ(x, y, t)

[∫ 1

0

k(s)
µ(x, s, t)ds

]−1

− 1. (3.25)

If the viscosity is uniform, then the permeability sets the velocity, u = k − 1, as in
(3.12). If, instead, the permeability is uniform, then the viscosity sets the velocity,
u(y) = µ−1/

∫ 1
0 µ−1dy − 1 (this leads to the fast low-viscosity fingers and slow high-

viscosity fingers characteristic of the viscous-fingering instability as described in §2.4.2).
When both the permeability and viscosity vary, depending on the sign of R and c′, the
permeability and viscosity can interact either constructively or destructively. The effect
of varying viscosity is only important at the interface; far upstream and downstream,
where the viscosity is uniform, the velocity variations are simply imposed by the
structure of the permeability field.

Decomposing the concentration into the transverse average and deviations c =
c(x) + c′(x, y), (3.25) becomes independent of the average concentration and only
depends on the transverse variations,

u(x, y, t) = k(y)
e−Rc′(x,y,t)

[∫ 1

0

k(s)
e−Rc′(x,s,t) ds

]−1

− 1. (3.26)

In the case of sinusoidal log-permeability variations, (3.26) may be expressed as

u(x, y, t) = e−σ cos(2πy)+Rc′(x,y,t)∫ 1
0 e−σ cos(2πs)+Rc′(x,s,t)ds

− 1. (3.27)
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3.4.2 Intermediate-time behaviour: viscously coupled advec-
tion

After the early-time diffusion regime the flow transitions to the intermediate-time
regime dominated by advective spreading. The effect of a non-zero viscosity ratio
on the evolution of the mixing length is shown in figure 3.6(a). Similar to the case
when R = 0, the mixing zone grows linearly in time. However as R is increased, the
growth rate of the mixing zone, ḣ = dh/dt, increases. The nearly uniform spacing
between the curves suggests that the growth rate varies linearly in R. The transversely
averaged concentration is again asymmetric and evolves self-similarly (figure 3.6(b)),
although it differs appreciably from the uniform viscosity case at the downstream tips
(cf. snapshots in figure 3.5(a,c,e)).

We first note that diffusion is negligible in this regime. This results in concentration
deviations that are almost exactly either c′ = −c or c′ = 1 − c (figure 3.6(c)). To
estimate the overall effect of the deviations on the velocity, we average the deviations
across the length of the fingered region, which leads to a roughly sinusoidal variation
across the domain aligned with the permeability structure and with magnitude ≃ 1/2
(dashed black line in figure 3.6(c)). Substituting these average deviations into (3.27),
the mean streamwise velocity reduces to

u = e−(σ+R/2) cos(2πy)∫ 1
0 e−(σ+R/2) cos(2πs)ds

− 1. (3.28)

This approximate model results in intermediate-time dynamics that are equivalent to
the uniform viscosity case, but with an effective log-permeability ratio σeff = σ + R/2.
Given (3.28), we can calculate h as in §3.3.2, and extract ḣ by fitting a linear profile
h = ḣt. Modelling the effective permeability in this way gives reasonably good
agreement with the numerical simulations (figure 3.6(d)), although it underestimates
the spreading rate for large |R|. This is because, at the boundary of the forward
and backward propagating tips, the velocity is faster, u = eσ+R/I0(σ), and slower,
u = e−(σ+R)/I0(σ), respectively, than this model predicts.

3.4.3 Late-time behaviour: viscosity-dependent shear-enhanced
dispersion

At late times, after advectively spreading, the concentration evolves diffusively again.
This evolution is analogous to the late-time behaviour of the uniform viscosity case
but the addition of viscosity variations modifies the effective diffusivity.
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Fig. 3.6 Evolution of the mixing length and transversely averaged concentration for
|R| < σ in the intermediate-time regime. (a) Evolution of the mixing length for
(σ, Pe) = (1, 2000) and R ranging from −0.4 to 0.4; the inset shows the same data
normalized by the uniform viscosity displacement mixing length. (b) Plot of c vs.
x/t for the same parameters as (a) for 10 logarithmically spaced times in the range
1 6 t 6 3. (c) Plot of the concentration deviations c′ as a function of y at three
different points in x corresponding to c = 0.75 (red), c = 0.5 (green) and c = 0.25 (blue)
for (R, σ, Pe) = (−0.4, 1, 2000). The longitudinally averaged concentration deviations
(averaged over the mixing zone),

∫
h c′dx/h, is given by the dashed black line. (d)

Plot of the spreading rate ḣ calculated by least-squares fitting a function of the form
h = h0 + ḣt to the numerical results for t in the range 1 6 t 6 3, for Pe = 2000 (circles)
and Pe = 4000 (squares). The theoretical predictions for ḣ, calculated using (3.28) and
(3.18), are given by the solid lines.
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Fig. 3.7 Plot of S vs. |β| for R < 0 and R > 0. The solid black lines correspond to
S, (3.31), calculated by numerically integrating (3.30). The leading order small-|β|
asymptotic behaviour, which is equal to when R = 0, is given by the dashed red line
and the next order corrections in β are given by the dot-dashed blue lines, (3.35).

As in §3.3.3, we assume that the flow is long and thin, transverse velocities are
negligible so the fluid flow is predominantly in the streamwise direction and the
concentration deviations are small and evolve on a much faster time-scale than their
transverse average. Equation (2.18) remains unchanged, but (3.19) becomes

(
keRc′(x,y,t)∫ 1

0 keRc′(x,s,t)ds
− 1

)
∂c

∂x
Pe = ∂2c′

∂y2 (x, y, t) (3.29)

because of the dependence of the velocity on the concentration through (3.26). Again
we impose periodic boundary conditions and zero-mean deviations.

Before solving, we first rescale the deviations, c̃ = Rc′, such that (3.29) becomes
(

kec̃∫ 1
0 kec̃ds

− 1
)

β = ∂2c̃

∂y2 , (3.30)

where β = R Pe ∂c/∂x = Pe ∂ ln µ(c)/∂x, incorporates all of the parameters in the
problem, and can be thought of as a rescaled bulk concentration or viscosity gradient.
Since β is independent of y, we can solve for c̃ by integrating (3.30) twice. We perform
this integration numerically, although the limits of small β, which is relevant here
and is considered in §3.4.3, and large β, which we find to be useful and is considered
later in §3.5.1, can be treated analytically. Having solved for c̃, we then calculate the
shear-enhanced dispersivity,

S = − 1
β

∫ 1

0
uc̃dy, (3.31)
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(cf. 3.23). Solutions of S for σ = 1 and R > 0 and R < 0 are given in figure 3.7. When
R = 0, (3.30) reduces to (3.19) and S is exactly as described by (3.23), a permeability-
dependent constant. When the viscosity varies, the dispersivity is enhanced when the
injected fluid is less viscous (R > 0) and diminished when the injected fluid is more
viscous (R < 0), than the ambient fluid. Since β ∝ ∂c/∂x, and diffusion always causes
concentration gradients to diminish in time, β generally decreases over time. When |β|
is large (i.e. the viscosity gradient is large, as at early times), and R > 0, S diverges,
whereas when R < 0, S tends to zero. The former limit is unphysical and corresponds
to scenarios where the interface is unstable. The latter case is discussed in more detail
in section 3.5, in the context of stable injections. When |β| is small (i.e. the viscosity
gradient is small, as at late times), S becomes independent of β and tends to the value
for R = 0. This suggests that at late enough times, the effective diffusivity will always
become independent of the log-viscosity ratio, and the flow will always evolve like the
uniform viscosity case.

When |R| < σ, we need to only consider the small-|β| limit because by the time
the flow reaches the late-time regime, β is inevitably small. We can justify this claim
using a scaling argument: once the flow reaches the late-time regime, which occurs
at a time t = O(Pe), the mixing length will have grown to a width h = O(Pe∆u),
or equivalently, the concentration gradient is ∂c/∂x = O(1/Pe∆u). This means that
when the flow transitions to the late-time regime, |β| = O(R/∆u) < O(1).

Small viscosity gradient limit: |β| ≪ 1

For β ≪ 1, we start by expanding the concentration deviations as c̃ = βc̃1+β2c̃2+O(β3).
Substituting into (3.29), expanding, and equating powers of β gives

∂2c̃1

∂y2 = k − 1,
∂2c̃2

∂y2 =
(
kc̃1 − kkc̃1

)
. (3.32)

Given that the concentration deviations must satisfy periodicity and have vanishing
mean, we find that

c̃1 = I (k − 1) − I (k − 1) , (3.33)

c̃2 = I
(
kc̃1 − kc̃1k

)
− I

(
kc̃1 − kc̃1k

)
, (3.34)

where I(f) =
∫ y

0
∫ ζ

0 fdηdζ for a given function f(η) and, as before, the overbar refers
to a transverse average. The shear-enhanced dispersivity, S, is thus

S = − 1
β

∫ 1

0
uc̃dy = kc̃1 + β

(
kc̃2

1 − kc̃1
2 + kc̃2

)
+ O(β2). (3.35)
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Fig. 3.8 Evolution of the mixing length and transversely averaged concentration for
|R| < σ in the late-time regime. (a) Evolution of the mixing length h, normalized by
the uniform viscosity displacement mixing length hR=0 for (σ, Pe) = (1, 100) and R
ranging from −0.4 and 0.4. (b) Plot of the difference between c for R ̸= 0 and R = 0.
The profiles are measured at t = 100 for the same parameters as (a). The theoretical
predictions, found by solving (3.36) with either the exact solution of S (by solving
(3.30)), or (3.35), are given by the dashed and dotted black lines respectively.

The leading-order contribution to S is identical to the R = 0 limit in §3.3.3 and is
plotted in figure 3.7 as a dashed red line. The first-order corrections are given by
dot-dashed blue lines.

Comparison to numerical simulations

We now use the calculated shear-enhanced dispersivity to determine how c evolves in
time. Allowing S to vary in space, (2.18) yields a nonlinear diffusion equation for c,

∂c

∂t
= 1

Pe
∂

∂x

{[
1 + Pe2S (β(x))

] ∂c

∂x

}
, (3.36)

where β(x) = R Pe ∂c/∂x depends on the local mean concentration gradient. We
solve (3.36) numerically with no flux boundary conditions in the far-field using a
Crank-Nicolson predictor-corrector method. We use both the exact form for S (by
solving (3.30) and calculating (3.31)), and the small-|β| approximation, (3.35). The
model concentration fields are initialized with a diffuse error-function solution although
the long-time results are indifferent to the exact initial conditions. The non-uniform
dispersion results in profiles that deviate from the classical error-function solution owing
to the enhanced or diminished dispersion in regions of large concentration gradients.

Figure 3.8(a) shows the evolution of the normalized mixing length, h/hR0 , where
hR0 = h(t, R = 0), for different R, from the full 2D numerical simulations (solid coloured
lines) and model results (dashed and dotted black lines). As expected, increasing R



60 Stable displacements in layered porous media

Fig. 3.9 Evolution of the concentration field for stable displacements |R| > σ, R < 0.
(R, σ, Pe) = (−1, 0.1, 100). (a-d) Colourmaps of the concentration field with overlain
streamlines at (a) t = 3.6, (b) t = 17.8, (c) t = 89.1 and (d) t = 447. (e) Colourmap of
the concentration deviations c′ = c − c at t = 3.6. (f) Colourmap of the streamwise
velocity u at t = 3.6.

results in increased spreading, while the effects of variations in the viscosity reduce
as t is increased. The reduced-order model not only captures this behaviour but also
accurately predicts the manner in which the flow evolves. This can be further seen in
figure 3.8(b) which compares the reduced-order model predictions for c with the full 2D
numerical simulations. The very good agreement between both of the model solutions
and the numerical results suggests that the late-time behaviour can be accurately
modelled by (3.36) with (3.35).

3.5 Large stabilizing viscosity variations |R| > σ, R <

0
Whereas in the previous section the flow evolves in qualitatively the same manner
as the uniform viscosity case (R = 0), when the viscosity ratio is larger than the
permeability ratio, the concentration evolves in a qualitatively different manner. Here
we consider the case where the injected fluid is more viscous than the ambient fluid
(R < 0) and the magnitude of the log-viscosity ratio is larger than the log-permeability
ratio.

Figures 3.9(a-d) show a sequence of snapshots of the concentration field in this
limit. The interface is initially not stretched by the permeability variations owing to
the large streamwise gradient in viscosity (figure 3.9(a)). This is because, for large
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Fig. 3.10 (a) Plot of S normalized by its small-|β| limit vs. β and (b) plot of S
normalized by its large-|β| limit vs. β for σ ranging from 1 to 5. The dashed black
lines denote the asymptotic limits (3.35) and (3.40) in (a) and (b) respectively and the
dotted lines correspond to the approximate solution (3.42) for σ = 5.

|∂c/∂x|, distorting the interface generates large transverse gradients in concentration.
These correspond to large, stable transverse gradients in viscosity (and hence pressure)
which tend to force the profile back to vertical. Ultimately, this results in a stationary
interface (in the moving frame) where the streamwise velocity goes to zero (figure
3.9(f)). Far upstream and downstream, where the viscosity is transversely uniform,
the velocity is imposed by the permeability. The abrupt change in velocity at the
interface drives a circulation on either side of the interface carrying concentration away
from it. As the fluids mix, the concentration, and hence viscosity gradients at the
interface weaken. Over time, the stabilizing viscous forces become sufficiently weak
that the streamwise velocity can grow and streamlines begin to penetrate through
the interface (figures 3.9(b,c)). Eventually the interface becomes very diffuse and the
velocity becomes predominantly longitudinal (figures 3.9(d)) as in the cases considered
in previous sections. In contrast to those cases, however, where the concentration
deviations, (c′), are O(1) until the late-time regime, the concentration deviations here
are always small because the concentration remains relatively transversely uniform
with no large-scale channelling into layers.

3.5.1 Concentration model

As found in §3.4.3, the shear enhanced dispersivity S is given by (3.31) where β =
R Pe ∂c/∂x and c̃ is given by (3.30) and u by (3.26). However, unlike in §3.4.3, for
viscosity-stabilized flows, we now expect this model to apply for all time, rather than
just at late times, given that the flow remains nearly transversely uniform (c′ ≪ 1). In
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particular, |β| is not just small but can take on any value. We thus first consider the
large-β limit.

We start by expanding c̃ in powers of 1/β, c̃ = c̃0 + c̃1/β + O(1/β2). Substituting
into (3.30) expanding and equating different powers of β, we find

kec̃0∫ 1
0 kec̃0dy

− 1 = 0, (3.37)

and so,
c̃0 = − ln(k) + ln(k), c̃1 = ∂2c̃0

∂y2 , (3.38)

and
c̃1 = −

(
kk′′ − (k′)2

k2

)
, (3.39)

where we have again used the fact that
∫ 1

0 c̃0 =
∫ 1

0 c̃1 = 0. To leading order, the
concentration deviations align themselves such that the streamwise velocity is zero.
The shear-enhanced dispersivity in this limit is

S = 1
β

∫ 1

0
uc̃dy = 1

β2

∫ 1

0
ln(k)

(
kk′′ − (k′)2

k2

)
dy + O

(
1
β3

)
. (3.40)

In the case of sinusoidally varying log-permeability, this limit corresponds to

S = 2σ2π2

β2 + O

(
1
β3

)
. (3.41)

Equations (3.35) and (3.40) correspond to the small- and large-viscosity gradient
asymptotic limits of the shear-enhanced dispersivity and are plotted on top of the full
solutions in figures 3.10(a,b) respectively. We can also combine the two limits into a
very simple approximate analytical composite solution; for example for the case of a
sinusoidally varying log-permeability,

Scomp =
(

1
S∗ + β2

2σ2π2

)−1

, (3.42)

where S∗ =
∫ 1

0 [
∫ y

0 (k − 1)dη]2 dy is the leading-order behaviour in (3.35). This ap-
proximate solution reasonably captures the general behaviour of the shear-enhanced
dispersivity without having to solve (3.30) exactly (see dotted lines in figure 3.10, which
recover the β ≪ 1 and β ≫ 1 limits).
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Fig. 3.11 Evolution of the mixing length and transversely averaged concentration for
|R| > σ, R < 0. (a) Plot of h vs. t for (R, Pe) = (−2, 300) and σ ranging from 0 to
0.3. (b) Plot of c(x, t) for (R, σ, Pe) = (−2, 0.2, 300) and t = 32, 100, 320, 1000. The
theoretical predictions, found by solving (3.36), with either the exact solution of S
(found by solving (3.30)), or (3.42), are given by the dashed and dot-dashed black lines
respectively.

3.5.2 Comparison to numerical simulations

We solve the reduced-order model (3.36) both directly and using the approximate
composite solution (3.42), in the same manner as §3.4.3 with a step initial condition
(3.9). The comparisons to the transversely averaged concentration profiles from the full
numerical simulations are given in figure 3.11(b). The exact solution of the reduced
model is not only able to capture the sharp interface and the long tails, but it also
accurately predicts the evolution of the concentration field. Using the composite
approximation of S in the reduced model also captures the qualitative evolution of
the transversely averaged concentration although it slightly overestimates the amount
of spreading that occurs. The mixing length is also shown as a function of time for
different σ in figure 3.11(a). The very good agreement between the reduced-order model
and the full simulations over a range of σ and t, suggests that the full 2D problem can
be reduced to solving a 1D nonlinear diffusion equation for all times in this limit.

3.6 Non-sinusoidally varying permeability

The reduced-order models, thus far, have been derived for arbitrary permeability fields,
but the numerical simulations have been restricted to log-permeabilities that vary
sinusoidally in space at one frequency. In this section, we briefly consider stable miscible
displacements in a more complex porous medium (figure 3.12). For more details about
the permeability structure used, see the Salt-Creek derived permeability field in §4.7.
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Fig. 3.12 (a) Permeability data used in the numerical simulations. The permeability
structure is derived from the measurements at Salt Creek (Bickle et al., 2017). See
§4.7 for more details.

Fig. 3.13 Evolution of the concentration field for a constant viscosity displacement in
a complex permeability structure and (R, Pe) = (0, 500). (a,b,c) The results of the
numerical simulations, and (d,e,f) the model solutions. The snapshots are taken at
(a,b) early times (t = 0.002), (c,d) intermediate times (t = 6), and (e,f) late times
(t = 100).
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Fig. 3.14 Evolution of the concentration field with overlain streamlines for |R| > σ,
R < 0 and a complex permeability structure. The results of the (a,b,c) numerical
simulations, and (d,e,f) model solutions. The snapshots are taken at (a,b) t = 1.5, (c,d)
t = 25, and t = 100.

Figure 3.13 shows the evolution of the concentration field for a uniform viscosity
displacement in a porous medium composed of many Fourier modes. Since R = 0,
the fluid flow is purely horizontal and given by (3.12). As was found in §3.3, the flow
evolves through the three regimes. At early times, the interface grows diffusively (figures
3.13(a,d)). At intermediate times, the interface is stretched by the heterogeneous flow-
field and diffusion is relatively unimportant (figures 3.13(b,e)). At late times, the
concentration field is vertically well-mixed and the interface evolves through shear-
enhanced dispersion (figures 3.13(a,d)). In general, we find that the reduced-order
models derived in §§3.3.1-3.3.3 show good agreement with the full 2D simulations.

Figure 3.14 shows the evolution of the concentration field for a stabilizing viscosity
contrast and with the same porous medium. When the injected fluid is more-viscous
than the ambient fluid, the viscosity difference between the fluids tends to suppress
channeling due to the permeability heterogeneities. We find that far upstream and
downstream, where the viscosity is transversely uniform, the velocity is imposed by the
permeability field, whereas, at the interface the concentration deviations align with
the permeability field to ensure zero horizontal flow. This change in velocity results
in a circulation on either side of the interface. Whereas in §3.5 this circulation was
symmetric, here it is asymmetric, being more pronounced near the top of the domain
where the permeability variation is large. In the non-travelling frame, the interface
travels as a shock-like front that travels with the average injection velocity. Over
time, due to the circulation and streamwise diffusion, the viscosity gradient at the
interface weakens. Eventually, the viscosity gradient is insufficient to maintain the
shock-like front and streamlines penetrate through the interface (figures 3.14(b,c,e,f)).
In this case, the fluid flow becomes dominated by the imposed permeability and the
interface evolves through shear-enhanced dispersion. The reduced-order model found
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Fig. 3.15 Long-time evolution of c(x, t) for σ = 0.3, (Pe) = (100) and t ranging from
10 − 1000. The viscosity ratio is (a) stabilizing R = −1, (b) uniform viscosity R = 0
and (c) de-stabilizing R = 1. The asymptotic, viscosity-independent solution, (3.15)
with (3.22) is given by the dashed line.

by solving (3.36) with (3.30) is able both to capture these qualitative features and to
quantitatively predict the evolution of the concentration field.

3.7 Discussion and Conclusions

In this chapter, stable miscible displacements in heterogeneous porous media were
examined. The main goal throughout this chapter has been to better understand the
structure and evolution of the concentration field during stable displacement processes
through the use of high-resolution numerical simulations and reduced-order modelling.
Motivated by the fact that many geological formations consist of layered sedimentary
sequences, permeability structures that vary perpendicular to the flow direction were
considered. Furthermore, in this chapter the following viscosity configurations were
examined: injected fluids that were equally-viscous, nearly equally-viscous, and more-
viscous than the ambient fluid. In general it was found that the flow evolves through
three main flow regimes.

At early times, the concentration field evolves through diffusion across an ini-
tially sharp interface and is independent of both the log-viscosity ratio, R, and
log-permeability ratio, σ (see §3.3.1). Once advection begins to outpace diffusion
(t ∼ O(1/Pe)) the flow transitions to the intermediate-time regime. At intermediate
times, the interplay between viscosity and permeability variations leads to different be-
haviour depending on the relative size of R and σ. When permeability effects dominate
(σ > |R|; §3.4); the viscosity modulates the effective permeability of the medium but
otherwise evolves qualitatively in the same manner as when the two fluids have equal
viscosity. When the injected fluid is more viscous than the ambient (|R| > σ and R < 0;
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Fig. 3.16 Plot of two different measures of h vs. t for (σ, Pe) = (0.3, 300) and R = −1, −2.
The solid lines correspond to (3.11) and the dashed lines correspond to (3.43)

§3.5), the viscosity contrast tends to prevent channelling at the interface and reduces
spreading of the two fluids relative to the equal viscosity, R = 0 case. Finally, once
the interface has become long and thin and transversely homogenized (t ∼ O(Pe)) the
flow transitions to the late-time regime. At late times, the flow becomes dominated by
shear-enhanced dispersion which asymptotically becomes independent of the viscosity
ratio and only depends on the permeability structure. Figure 3.15 demonstrates this
behaviour: it shows the evolution of the concentration field for R = 0, R < 0, and
R > 0. Although spreading is initially hindered (R < 0), or enhanced (R > 0), at
late times they both tend to the same viscosity-independent self-similar solution. This
means that for processes that occur over very small length scales or very long time
scales, the viscosity difference becomes insignificant and the permeability structure
dictates the rate of spreading and mixing of the two fluids. Note that these different
possible regimes are summarized in the following chapter in figures 4.10(a,b).

In summary, the flow evolves through three distinct regimes: an early-time regime
dominated by longitudinal diffusion, an intermediate-time regime dominated by lon-
gitudinal advection and a late-time regime dominated by shear-enhanced dispersion.
Informed by high resolution numerical simulations, simple models that capture the
dominant physics in each of the regimes were developed, which provide an easy way of
quantitatively predicting the average behaviour of these systems.
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Appendix 3.A Comparison of mixing length met-
rics

Figure 3.16 shows a comparison of the mixing length quantity used in chapters 3-5
(3.11) and the more typical measure

h = h∗ = x|c=0.01 − x|c=0.01. (3.43)

It can be seen that h calculated using (3.43) shows no discernible difference between the
two simulations, whereas h calculated using (3.11) is noticeably different at intermediate
times. This is because the simulations shown in figure 3.16 correspond to large
stabilizing viscosities whose concentration profiles are composed of a sharp gradient
at the interface, which depends on the viscosity ratio, and long tails upstream and
downstream, which are independent of the viscosity ratio. Since (3.43) only picks up
the growth of the tail regions, it is independent of R, whereas (3.11) accounts for the
evolution of the sharp concentration gradient and hence depends on R. We therefore
use (3.11) to measure the mixing length due to this sensitivity to the structure of the
concentration field.

Appendix 3.B Asymptotic solutions for uniform vis-
cosity displacements

When the variations in the permeability are small (σ ≪ 1), equation (3.13) becomes

u = k − 1 ≃ −σ cos(2πy), (3.44)

such that at intermediate times, the characteristic spreading velocity is

∆u = 2σ, (3.45)

and at late times, the shear-enhanced dispersivity, (3.23), is

S =
∫ 1

0

[∫ y

0
(k(η) − 1) dη

]2
dy ≃ σ2

8π2 . (3.46)

When the variations in the permeability are large (σ ≫ 1), the fluid velocity
diverges at y = 1/2 and tends to −1 everywhere else. The characteristic spreading
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velocity is
∆u ≃ (2πσ)1/2. (3.47)

At late times, the shear-enhanced dispersivity, S, is given by (3.23). Taylor-expanding
I0(σ) as σ → ∞, (3.23) becomes,

S =
∫ 1

0

∫ y

0

 e−σ cos(2πη)

eσ
[
(2πσ)−1/2 + O (σ−3/2)

] − 1
 dη

2

dy. (3.48)

Solving using Laplace’s method gives,

S =
∫ 1

0
[−y + H(y − 1/2)]2 dy + O(σ−1) = 1

12 + O(σ−1). (3.49)





Chapter 4

Unstable displacements in layered
porous media

The material in this and the preceding chapter form the basis of the publication (Nijjer
et al., 2019): Nijjer, J. S. & Hewitt, D. R. & Neufeld, J. A. (2019). Stable and unstable
miscible displacements in layered porous media. Journal of Fluid Mechanics 869.
468-499.

4.1 Introduction

In many geological contexts, including during carbon capture and storage, both
permeability heterogeneities and viscous fingering can play important roles in controlling
the evolution of the displacement front and the interpenetration of the fluids. Whereas
in chapter 2 miscible viscous fingering in homogeneous porous media was examined, and
in chapter 3 stable miscible displacements in heterogeneous porous media were examined,
in this chapter the combined effects of permeability heterogeneities and viscous fingering
on the mixing and spreading of the injected and ambient fluids are considered. The
interplay between permeability variations and the viscous fingering instability can lead
to a rich set of dynamics. For example, spatial gradients in permeability (Al-Housseiny
et al., 2012; Rabbani et al., 2018), time-varying permeabilities (Zheng et al., 2015b), or
reactive permeabilities (Pihler-Puzovic et al., 2012) can be used to suppress instabilities,
while structured permeabilities can be used to template fluid patterns (Chen, 1987;
Chen and Wilkinson, 1985).

As in chapter 3, specific attention is paid to layered porous media where permeability
variations are perpendicular to the flow direction. Here, however, the focus is on
unstable viscosity variations where a less-viscous fluid is injected into a porous medium
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saturated with a more-viscous fluid. In chapter 3 it was found that when the fluid
flow remained stable the characteristic length scale of the flow was imposed by the
permeability. However, when the interface is unstable, a new evolving characteristic
length-scale is introduced by the fingering instability and the interplay between these
two length scales can lead to different dynamics. Although a number of studies have
examined unstable displacements in randomly heterogeneous porous media (Afshari
et al., 2018, 2019; Araktingi and Orr Jr., 1993; Chen and Meiburg, 1998c; Fayers et al.,
1992; Jiao and Hotzl, 2004; Khataniar and Peters, 1992; Nicolaides et al., 2015; Tchelepi
et al., 2004), there has been relatively little work on unstable displacements in layered
porous media.

One simple but widely used method to parameterize the combined effects of viscous
fingering and permeability heterogeneities on the spreading of the injected and ambient
fluids is the Koval K-factor model (Koval, 1963). The K-factor model provides a way
of predicting the rate of spreading of the injected and ambient fluids. To estimate
the total rate of spreading involves independently parameterizing the effect of viscous
fingering on spreading rate in a homogeneous medium and the effect of the permeability
heterogeneities on spreading rate of a passive tracer. The predicted rate of spreading
is then simply a product of the two calculated spreading rates. Although this provides
a simple way of characterizing both effects, not surprisingly given the highly nonlinear
nature of the system, the K-factor model does not accurately predict the evolution of the
concentration field in structured porous media (Sajjadi and Azaiez, 2013; Shahnazari
et al., 2018).

Sajjadi and Azaiez (2013) used numerical simulations of unstable flows in periodically
layered porous media, to identify a series of different flow regimes through which the
flow evolves. They demonstrated that adding permeability heterogeneities tended
to cause channelling - that is, flow predominantly along permeability layers - rather
than chaotic fingering. They also found that the interface could channel and finger
across layers. However, while this study highlighted some of the interesting qualitative
behaviours that can be observed in miscible displacement flows when heterogeneities
and unstable viscosity variations interact, they do not provide quantitative predictions
for the evolution of the spreading and mixing, nor a full overview of the different
dynamical regimes that occur. In this chapter, our goal is to identify the different flow
regimes that arise and the dominant physics at play when a less-viscous fluid is injected
into a layered heterogeneous porous medium saturated with a more-viscous fluid, and
to develop reduced-order models for the spreading and dispersion of the fluids.
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This chapter is laid out as follows. In §4.3, the general patterns and regimes that
are seen when the permeability field is composed of a single dominant wavelength
are described. In §§4.4-4.6 each of these regimes are discussed in more detail, paying
particular attention to the time-evolution of the concentration field, and reduced-order
models for its evolution are derived. Finally in §4.7 more realistic permeability fields
that have more than one dominant wavelength are briefly considered.

4.2 Problem formulation

We briefly discuss the model setup here as it is identical to that of chapter 3; see §3.2
for the full details. As in chapter 3, the dimensionless governing equations are

− (ũ + 1)µ = k
∂p

∂x̃
, −vµ = k

∂p

∂y
, (4.1)

∂ũ

∂x̃
+ ∂v

∂y
= 0, (4.2)

∂c

∂t
+ ũ

∂c

∂x̃
+ v

∂c

∂y
= 1

Pe

(
∂2c

∂x̃2 + ∂2c

∂y2

)
, (4.3)

µ(c) = e−Rc, (4.4)

ln (k) = −σ cos (2πny) − ln (I0(σ)) , (4.5)

and the boundary and initial conditions are given by (3.5)-(3.9).
In this chapter we only consider the unstable case where the viscosity variations

are larger than the permeability variations R > σ. Note that the interface can also be
unstable if R < σ and the Peclet number is sufficiently large. In this chapter we also
explicitly consider the effect of the number of layers, n. This is because in contrast to
chapter 3 where the transverse length scale of the flow was imposed by the permeability,
here there is competition between the evolving wavelength of the viscous fingering and
the imposed wavelength of the permeability structure. We find that this competition
results in rich intermediate-time dynamics for which the value of n can be important.

4.3 Displacement pattern and regimes

In the absence of any permeability variations, σ = 0, this configuration is hydrody-
namically unstable (provided Pe is sufficiently large). In homogeneous media such
unstable miscible displacements evolve through three flow regimes (cf. chapter 2): at
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Fig. 4.1 Evolution of the concentration field for |R| > σ and R > 0. (a-d) Colourmaps
of the concentration field for (R, σ, Pe, n) = (2, 0.1, 4000, 4) at (a) t = 0.1, (b) t = 8,
(c) t = 104 and (d) t = 1500. Note that the aspect ratio is increasingly compressed
in figures (b-d). (e,f) Evolution of h(t) for (Pe, n) = (1000, 4) and: (e) R = 2 with
varying σ; and (f) σ = 0.1 with varying R.
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early times, the flow is linearly unstable, where the interface grows diffusively, and
fingers grow exponentially; at intermediate times, the fingers have finite amplitude and
propagate and interact with each other nonlinearly leading to coarsening; and at late
times, a single pair of counter-propagating fingers remain which propagate and slow,
leaving a well-mixed interior.

In the presence of permeability layering, there is a competition between the evolving
wavelength of viscous fingering and the imposed wavelength of the permeability struc-
ture. The competition between viscous fingering, which acts to coarsen the transverse
length-scale, and permeability layering, which acts to impose a fixed length scale,
results in rich intermediate-time dynamics. As a result, the number of layers n can no
longer be scaled out of the problem. Nonetheless, as before, the early-time dynamics
are still dominated by longitudinal diffusion across the sharp interface (cf. §3.3.1), and
the late-time dynamics are dominated by shear-enhanced dispersion which becomes
independent of the viscosity ratio at long times (cf. §3.4.3).

In general, there are four possible intermediate-time regimes through which the flow
can evolve, representative snapshots of which are given in figure 4.1. In the first regime
(I), fingering occurs within the permeability layers and these fingers coarsen until they
coincide with the imposed permeability layering (figure 4.1(a)). In the second regime
(II), the flow follows the imposed layered structure while diffusing across the layers,
which causes the flow to slow down (figure 4.1(b)). In some cases, this flow can then
be unstable, leading to a third regime (III) which corresponds to fingering over a
transverse length-scale that is larger than that imposed by the permeability (figure
4.1(c)). These fingers then also coarsen, leading to a fourth regime (IV) where a single
pair of counter-propagating fingers remain (figure 4.1(d)). This pair of fingers slows,
leaving a well-mixed region that eventually evolves through shear-enhanced dispersion.
Note that regimes III and IV can only occur if n > 1.

The growth of the mixing length can be drastically different depending on which
regime the flow is in (figure 4.1(e,f)). When the flow fingers (regimes I and III), as with
a homogeneous porous medium, the mixing length grows linearly in time. When the
flow is channelling or in the single-finger exchange flow regime (regimes II and IV) the
mixing length tends to a constant value. As σ is increased from 0 (uniform permeability
case), we see a transition from pure viscous fingering to channelling and fingering
behaviour (figure 4.1(e)). As R is increased from 0 (uniform viscosity case), we see a
transition from pure channelling behaviour to both channelling and fingering (figure
4.1(f)). Exactly which regimes occur depend on all four of the variables (R, σ, Pe, n)
in this problem. In general we find fingering behaviour (regimes I and III) is more
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Fig. 4.2 Evolution of the concentration field for R > σ in regime I with (R, Pe, n) =
(2, 8000, 2). (a,b) Colourmaps of the concentration field for (a) σ = 0.1 and (b) σ = 0
at t = 1. (c) Plot of the transversely averaged concentration c(x, t) and (d) transverse
variance in concentration var(c) =

∫ 1
0 c′2dy against the similarity variable x/t for σ

ranging from 0 to 0.3. In (c), the theoretical prediction (4.9) with effective viscosities
(2.40) and (4.10) are given by dashed and dot-dashed lines respectively.

significant for larger values of R and Pe, while channelling is more significant for larger
values of σ. Fingering across layers (regimes III and IV) is only relevant when n > 1,
and is most notable when the length scale of the permeability variations is small,
n ≫ 1.

In the following sections we review the different regimes and discuss some simple
models for the evolution of the transversely averaged concentration.

4.4 Regime I: fingering within layers

The flow is able to finger within the permeability layers when the length-scale of the
most unstable mode, y ∼ 1/RPe (Tan and Homsy, 1986), is small compared to the
length-scale imposed by the permeability y ∼ 1/n. Hence the flow always fingers for
sufficiently large Pe and is also observed to be enhanced when σ is small (De Wit
and Homsy, 1997b; Shahnazari et al., 2018). Note that fingering within layers is also
possible when permeability effects dominate over viscous effects, R < σ, so long as Pe
is sufficiently large.
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Fig. 4.3 Measure of the mixing zone variance, s2
c , as a function of the log-

permeability variations for (R, Pe, n) = (3, 8000, 2). The variance is defined as:
s2

c = 1/h
∫ x|c=0.01

x|c=0.99

∫ 1
0 (c − 1/2)2dydx

Figures 4.2(a,b) show snapshots of the concentration field for σ = 0.1 and σ =
0 respectively. The fingers evolve in a similar manner in both cases, leading to
an asymmetric transversely averaged concentration that evolves self-similarly with
similarity variable x/t (figure 4.2(c)). The main difference between the two simulations
is that the fingers move significantly faster when permeability heterogeneities are
present. For example, the mixing length grows at more than double the rate in the
simulation in figure 4.2(a) compared to the homogeneous case, which is far larger than
one would predict simply by considering the difference in permeability.

This difference is due to the structure of the flow being fundamentally different in
the two simulations. Whereas, in the homogeneous medium, the forward and backward
propagating fingers are, on average, about the same size, in the heterogeneous medium,
the backward propagating fingers are broad and aligned with the low permeability layers.
This means the two fluids tend to be much more segregated (figure 4.2(d)), and so the
effective viscosity difference between the forward- and backward-propagating fingers is
much larger in the heterogeneous medium, which leads to much faster spreading. This
fact can be seen in figure 4.3, which shows the variance of the concentration field inside
the mixing zone. For R = 3, we find that the variance is nearly constant until σ ≈ 0.02
after which there is an increase in the variance, corresponding to more segregated fluid.
We find this transition depends weakly on R, and modelling this transition remains
the subject of future work. We also observe from the simulations that the transversely
averaged concentration is broadly insensitive to σ for σ & 0.1 (for R = 2, figure
4.2(c,d)), which supports the idea that the presence of layered heterogeneity changes
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the spreading rate through the structure of the flow. In the following subsection we
extend the model presented in §2.4.2 for the homogeneous case by accounting for this
change in finger structure.

4.4.1 Concentration model

To model the nonlinear evolution of the fingered region, we again assume the flow is in
vertical flow equilibrium and that the streamwise velocity is given by (3.26). However,
unlike in §3.3.2 and §3.4.2 where the velocity depends on the permeability, here we
assume the velocity depends only on the viscosity,

u = eRc(x,y,t)∫ 1
0 eRc(x,s,t)ds

− 1, (4.6)

since σ < R. Substituting the streamwise velocity into (2.18) and neglecting longitudi-
nal diffusion gives

∂c

∂t
+ ∂

∂x

[∫ 1
0 cµ(c)dy∫ 1
0 µ(c)dy

− c

]
= 0. (4.7)

Next we suppose that the flow is composed of ηf(x) forward-propagating fingers
of width wf(x) and ηb(x) backward-propagating fingers of width wb(x). We make
the simplifying assumption that the forward- and backward-propagating fingers have
uniform concentration c = 1 and c = 0 respectively, but allow the viscosity to vary
inside the finger. We have the additional constraints that the transversely averaged
concentration is equal to the proportion of forward-propagating fingers ηfwf = c and
the total area of the fingers adds up to one, ηfwf + ηbwb = 1.

When modelling fingering in a homogeneous medium (σ = 0), we assumed that
the forward- and backward-propagating fingers had viscosities µ(y) ≈ eR(1−y2/w2

f ) and
µ(y) ≈ eR(y2/w2

f ) across the fingers respectively (cf. §2.4.2). When σ is small but finite
(for R = 3, this corresponds to σ & 0.02), the backward-propagating fingers are broad
and coincide with the low permeability layers. In this case, the viscosity in the fingers
is nearly uniform, µ(y) ≈ 1.

Substituting our assumptions for the concentration and viscosity into (4.7) gives,

∂c

∂t
+ ∂

∂x

 ηf

∫ wf

−wf
eR(1−y2/w2

f )dy

ηf

∫ wf

−wf
eR(1−y2/w2

f
)dy + ηb

∫ wb
−wb

1dy
− c

 = 0. (4.8)
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Fig. 4.4 Evolution of the concentration field for |R| > σ and R > 0 in the channelling
regime; (R, σ, Pe, n) = (2, 0.1, 500, 1). (a-d) Colourmaps of the concentration field
with overlain streamlines at (a) t = 20, (b) t = 60, (c) t = 100 and (d) t = 140. (e)
Colourmap of the concentration deviations c′ = c − c at t = 20. (f) Colourmap of the
streamwise velocity u at t = 20. Note that the aspect ratio of the figures is compressed
by a factor of 30, so variations in the x-direction seem more pronounced than they
actually are.

This has the solution

c(x, t) =


1 x/t < 1

Me
− 1

1
Me−1

(√
Me

x/t+1 − 1
)

1
Me

− 1 ≤ x/t ≤ Me − 1
0 x/t > Me − 1,

(4.9)

where
Me =

√
πeRerf(

√
R)

2
√

R
. (4.10)

The transversely averaged concentration evolves in exactly the same manner as in the
homogeneous case but with a larger effective viscosity. The model prediction, given
by the dot-dashed line in figure 4.2(c), gives good quantitative agreement with the
numerical simulations when σ ̸= 0. Thus we find that, although small amounts of
permeability heterogeneity would be expected to have a small effect on the spreading
rate, they can in fact result in a qualitative change in the structure of the flow and
lead to significantly faster spreading and mixing.
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Fig. 4.5 (a) Plot of c(x, t) from the numerical simulations (solid lines) and the theoretical
prediction overlain (dashed line) for (R, σ, Pe, n) = (2, 0.1, 1000, 1). (b) Plot of the
linear slope α of c, as a function of σ, showing a least-squares fit to the data from
numerical simulations (dots) and the theoretical solution (4.16) for K = 0.5 (solid line)
and K = 0.6 (dashed line).

4.5 Regime II: stable channelling

After the fluid fingers inside the high-permeability layers, it coarsens until a single
broad finger remains in each layer (figure 4.1(b)). Figures 4.4(a-d) show a sequence
of snapshots of the concentration field with overlain streamlines for (R, σ, Pe, n) =
(2, 0.1, 1000, 1) for which at intermediate times the flow is always in this channelling
regime. In this example, n = 1 and so the channelling consists of a single pair of
counter-propagating fingers. The flow is predominantly longitudinal except in regions
localized near large concentration gradients. Initially the streamwise velocity is large
and localized in the finger. Upstream and downstream, where the viscosity is uniform,
the velocity is imposed by the permeability, but is small relative to the contributions due
to viscosity variations (figure 4.4(f)). As time progresses, and the fluids become more
mixed, the effect of the viscosity reduces and the streamwise velocity in the fingered
region approaches the upstream and downstream velocity (figures 4.4(b,c,d)). The
concentration deviations, figure 4.4(e), are uniform in the x-direction, vary sinusoidally
in the y direction and are in phase with the velocity.

This behaviour resembles the late-time regime in the miscible viscous fingering
instability (i.e. when σ = 0, cf. §2.5). More specifically, the dynamics consist of an
interior region where the background gradient is linear and steady and the ends of
which are filled in by the propagating fingers (figure 4.5(a)). Superimposed on the
steady background gradient are sinusoidal concentration deviations which decay in
time.
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4.5.1 Concentration model

Here we generalize the analysis of §3.4.3 by allowing the concentration deviations
to evolve in time, and so derive a simplified model for the evolution of the mean
concentration field in this regime.

The stable exchange flow regime is characterized by a linear background gradient
with superimposed deviations that decay. In §3.5 we found that in the limit of large
aspect ratio and small, quasi-statically evolving deviations, (2.19) reduced to (3.29).
Here, in the channelling regime, the deviations decay exponentially, independently of
the transversely averaged concentration. We therefore generalize the analysis of §3.4.3
by allowing the deviations to evolve in time. Equation (2.18) remains the same, but
(2.19) becomes

∂c′

∂t
+ u

∂c

∂x
= 1

Pe
∂2c′

∂y2 . (4.11)

Again, the fluid flow is assumed to be in vertical flow equilibrium and so the velocity
is given by (3.27). For simplicity, we also assume σ ≪ 1, although the method below
can be generalized to σ = O(1). Since c′ ≪ c = O(1), (3.27) can be written, to leading
order, as

u = Rc′ − σ cos (2nπy) , (4.12)

and (4.11) becomes

∂c′

∂t
+ Rc′ ∂c

∂x
− 1

Pe
∂2c′

∂y2 = σ cos (2nπy) ∂c

∂x
. (4.13)

When σ = 0 this exactly recovers the late-time, single-finger exchange-flow behaviour
of the miscible viscous fingering instability (cf. §2.5). Solving (4.13) using separation
of variables yields

c′ =
(

−σ∂c/∂x

γ
+ Ke−γt

)
cos(2nπy), (4.14)

where γ = R∂c/∂x + 4n2π2/Pe. The constant of integration K corresponds to the
initial conditions at the onset of this regime and incorporates the nonlinear early-time
spreading. A simple approximation would be that K ≈ 1/2 corresponding to the
maximum amplitude of sinusoidally varying c′.

Depending on which term is dominant in (4.14), one gets one of two limiting
solutions to (2.18). When t is small, the second term in (4.14) dominates over the first.
The deviations are longitudinally uniform and decay exponentially, and the solution of
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(2.18) for c is
c = 1

2 − αx. (4.15)

This tendency to a steady linear profile can be seen in figure 4.5(a). When t is large,
the first term dominates over the second. In this case the deviations decay quasi-
steadily with the transversely averaged concentration. This case is exactly the small-β
limit discussed in §3.4.3 in the limit of small σ, and is dominated by shear-enhanced
dispersion. In this case c tends to the self-similar error-function solution (3.15) with
effective diffusivity (3.22). In addition, if σ > R, the first term, which scales like
O(σ/R) (given ∂c/∂x ∼ 1/RPe), is always larger than Ke−γt, consistent with the fact
that this channelling behaviour is only present when viscosity variations are more
important than permeability variations, R > σ.

Thus far the model is unable to predict the slope of the well-mixed interior region,
α. To close the model, we relate the convective flux to the mixing that occurs. We
consider a control volume containing everything to the right of the midplane. Neglecting
longitudinal diffusion, the total convective flux into this control volume must balance
the net change in concentration

∫ T

0

∫ 1

0
uc′dydt =

∫ ∞

0
cdx ≈ 1

8α
, (4.16)

where T is a timescale marking the end of this regime. Assuming the flow is always in
this channelling regime, we can substitute (4.12) and (4.13) into (4.16) to attain an
implicit equation for α. This control volume approach inherently depends on the choice
of T ; as T → ∞, the transversely averaged concentration evolves via shear-enhanced
dispersion and the estimate for α → 0. We therefore select T at the boundary between
the exchange-flow and shear-enhanced dispersion regimes such that the concentration
profile is linearly well-mixed in the interior and has not transitioned to the late-time
diffusive solution. For the simulations in figure 4.5, we find the choice T = 200 ≈ 3/γ

appropriate, although we note that predictions are broadly insensitive to the choice of
T as long as T ∼ O(1/γ).

To test the validity of this model, we compare the predicted steady interior slope,
α, to the results of the 2D numerical simulations (figure 4.5(b)). As the viscosity ratio
and permeability variance are increased, α decreases due to the increased fluid velocity.
The model shows reasonable agreement for K = 1/2. If we instead fit for a single value
of K across all of the simulations, we find excellent agreement with K ≈ 0.6. This
slightly larger value of K seems reasonable as the model likely underestimates the total
amount of mixing since it only considered mixing due to a single Fourier mode.
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Fig. 4.6 Evolution of the concentration field for |R| > σ and R > 0 in the viscous
fingering across layers regime; (R, Pe, n) = (2, 2000, 32). (a,b) Colourmaps of the
concentration field for (a) σ = 0.1 and (b) σ = 0 at t = 8. (c) Plot of h(t) for five
different simulations each (light,thin lines) and their average (dark, thick line). (d)
Plot of c(x, t) vs. the similarity variable x/t and t ranging from 6 − 20. Each curve
corresponds to the average across five different simulations.

4.6 Regimes III and IV: viscous fingering across
layers

As noted earlier, if n > 1, the channelling regime can become unstable to a viscous
fingering instability which has fingers that are wider than the imposed permeability
structure. The viscous fingers that develop in the heterogeneous medium are qualita-
tively similar to the fingers that develop in a homogeneous medium (figure 4.6(a,b))
and go through the same large-scale coarsening until a single finger remains. This
single finger then evolves in similar manner to the single-finger state in a homogeneous
medium (σ = 0).

One key difference between fingering in the homogeneous and the heterogeneous
media is that in the heterogeneous medium there tends to be more tip-splitting, aligned
with the permeability field, due to velocity heterogeneities at the finger tips as well
as fading and coalescence of fingers. The fact that the fingers are more unstable
leads to more variability from simulation to simulation, more intermittent flow and
nonuniform growth of the mixing length (figure 4.6(c)). The concentration field evolves
in qualitatively the same manner in both cases, the profile is asymmetric and again
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Fig. 4.7 (a) Permeability as a function of depth y at Salt Creek (Bickle et al., 2017). (b)
Low-pass filtered and attenuated permeability data used in the numerical simulations.
(c) Log-permeability distribution of the simulated data

has the similarity variable x/t (figure 4.6(d)). However the spreading rate is slower in
the case when heterogeneities are present. Modelling the difference in spreading rate is
the subject of future work.

Note that viscous fingering across layers is also possible when permeability effects
dominate over viscous effects, σ > R > 0. This can occur when the system reaches the
late-time regime and the interface is still hydrodynamically unstable. For the interface
to be stable, the width of the mixing zone must be h ∼ RPe (chapter 2). When
σ > R > 0, the mixing zone at the start of the late-time regime in the permeability
dominated scenario is h ∼ Pe∆u/n2 ∼ Peσ/n2 and so the late-time state may be
unstable to further coarsening via a viscous instability if R > σ2/n2.

4.7 Non-sinusoidally varying permeability

Thus far, in this chapter, we have only considered the ideal scenario where the
permeability variations have a single dominant wavelength. In this section we briefly
consider more complex permeability fields which consist of more than one dominant
wavelength. We consider two examples: a permeability field formed by superimposing
two different wavelength modes, and an analogue reservoir permeability field.

For the two-mode permeability, we take k to be

k = Aeσ1 sin(2n1πy)+σ2 sin(2n2πy), (4.17)

where A is chosen to ensure
∫ 1

0 kdy = 1. In this section we will look at one specific
two-mode example namely an equal superposition of a two-layer (n1 = 2) and five-layer
(n2 = 5) permeability field (σ1 = σ2 = 0.2). For our ‘analogue’ reservoir, we use the
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Fig. 4.8 Evolution of the (a) mixing length and (b) number of fingers, n, defined in
(2.21) for (R, Pe) = (2, 1000) and different permeability fields including the ‘analogue’,
two-mode, single-mode and homogeneous fields.

permeability field data from a recent CO2 sequestration experiment at Salt Creek
(Bickle et al., 2017). The permeability at the injection well is given in figure 4.7(a). The
permeability varies in magnitude by a factor of 100, and given we would like to consider
the case where the viscosity variations are larger than the permeability variations,
numerical simulations with the raw permeability data would be too difficult to perform.
Instead, we derive a permeability field that contains all of the same characteristics
as the Salt Creek data but with much smaller variations. To do so, we take the
Fourier decomposition of the log-permeability field, remove high-frequency modes and
attenuate the magnitude of all of the remaining modes. This derived data is given in
figure 4.7(b). It has the same characteristic shape as the original data, but with much
smaller variations. The derived log-permeability distribution is bimodally distributed,
being composed of regions that have relatively large and small permeabilities. Note
that our goal here is not to simulate a real reservoir but rather to consider the effect of
more realistic structure variations and patterns on viscosity dominated flows.

Figure 4.8(a) shows the evolution of the mixing length for the two example per-
meabilities as well as the reference cases of uniform permeability and single mode
variations. We find that the two-mode case initially follows an evolution comparable to
the five-layer medium, but over time tends to evolve like the two-layer medium. This
transition suggests that the early-time dynamics are dominated by short-wavelength
variations in the permeability and the late-time dynamics are dominated by long-
wavelength variations. This corresponds to resonance between the permeability field
and the evolving wavelength of the viscous fingering instability. However, we note
a continuous decrease in the number of fingers (figure 4.8(b)) as compared to the
five-layer case, and find that superimposing two modes mostly suppresses channelling
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Fig. 4.9 Evolution of the concentration field for (R, Pe) = (2, 8000) for different perme-
ability fields including the derived ‘realistic’, two mode, single mode and homogeneous
fields. (a) Plot of the transversely averaged concentration time-averaged from t = 0.5
to t = 1. The theoretical solution (4.9) with (4.10) is given by the black line. (b,c)
Snapshots of the concentration field for the (b) two mode permeability field and (c)
derived ‘realistic’ permeability field both taken at t = 0.6.

at the smaller wavelengths. This decrease in fingers continues until there are two
dominant fingers left and the flow evolves like the two-layer case and eventually shuts
down. Flows in the Salt-Creek derived permeability field show no channelling; n tends
to 1 and the mixing length grows linearly in time. The growth rate of the mixing zone
is much larger than viscous fingering alone in a homogeneous medium, and is larger
than one would predict simply by considering the difference in permeability.

Figure 4.9(a) shows the transversely averaged concentration in the fingering regime.
All four of the heterogeneous cases have much larger mixing zones compared to the
homogeneous case, and similar profiles. These profiles agree with the prediction (4.9)
with (4.10) derived in §4.4. This is because the permeability heterogeneities tend
to change the structure of the flow. This can be seen in figure 4.9(b,c), where the
backward-propagating fingers are broader and have a more uniform concentration than
the forward-propagating fingers.

4.8 Discussion and Conclusions

In this chapter, the dynamics of unstable miscible displacements in layered heteroge-
neous porous media were examined. A series of different regimes were identified that
arise due to the interplay between viscous fingering, which tends to cascade through a
range of length-scales, and the permeability structure, which has a fixed length scale.
Overall, depending on which regime the flow is in, the permeability heterogeneity can
either enhance or temper spreading relative to the uniform permeability case.
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Figure 4.10 summarizes the different possible regimes for viscously-dominated unsta-
ble displacements (figure 4.10(c)) as well as viscously-dominated stable displacements
(figure 4.10(a); §3.5) and permeability dominated displacements (figure 4.10(b); §3.3).
In each case the figure shows the instantaneous scaling exponent of the mixing length,
δ, where h = Atδ, for different Pe. At early times (regime 1 in figure 4.10), the con-
centration field evolves through diffusion across an initially sharp interface (δ = 1/2).
Once advection begins to outpace diffusion (t ∼ O(1/Pe)) the flow transitions to the
intermediate-time regime. At intermediate times (regime 2 in figure 4.10), depending
on the relative size of the viscosity and permeability variations, a range of possible
dynamics (δ ̸= 1/2) are possible. At late times (regime 3 in figure 4.10), once the
concentration field has become transversely homogenized, transport becomes dominated
by shear-enhanced dispersion (δ = 1/2).

For unstable displacements considered in this chapter, a number of different
intermediate-time regimes were identified (regimes 2I, 2II, 2III and 2IV in figure
4.10 (c)), which arise due to the interplay between the viscous fingering length scale
and the permeability length scale. First, fingering occurs within the permeability
layers (regime 2I; §4.4) and the fingers coarsen until they coincide with the imposed
permeability structure. Then the fingers stop coarsening and instead channel along
the imposed permeability while diffusing causing the fingers to slow down (regime 2II;
§4.5). If the permeability field consists of more than one dominant wavelength, this
channeling regime can be suppressed (§4.7). The interface then becomes unstable to
fingering across layers before tending to a single finger, which ultimately slows leaving
a well-mixed interior (regimes 2III, 2IV; §4.6). Overall, depending on which regime
the flow is in, the permeability heterogeneity can either enhance or temper spreading
relative to the uniform permeability case.

Together with chapter 3, the effect of viscosity and permeability variations on the
structure and evolution of miscible displacements in porous media was examined. At
early times, transport is diffusively dominated and independent of both the viscosity
and permeability, at intermediate times, transport is sensitive to both the viscosity
and permeability, and depends on the relative size of their variations and whether the
injected fluid is more or less viscous than the ambient fluid, and at late times transport
is dominated by shear-enhanced dispersion which only depends on the permeability
variations. In each case, by identifying the dominant physics in each of the regimes,
simple models that capture the average behaviour of these systems were developed.



Chapter 5

Miscible displacements with gravity
override

In the previous chapters, the two fluids only differed in viscosity, while all other physical
properties were assumed equal. However, in many geological settings, such as carbon
capture and storage, the density difference between the two fluids can be important
to understanding their mixing and spreading (Huppert, 2006). Thus, in this chapter,
the role of density as well as viscosity differences on the evolution of the displacement
front is examined.

Gravity currents in porous media have been studied in a wide array of contexts
including geological storage of carbon dioxide (Bickle et al., 2007; Boait et al., 2012),
geothermal power generation (Woods, 1999), contaminant migration (Simmons et al.,
2001) and coastal aquifer dynamics (Fleury et al., 2007). When a denser (lighter) fluid
displaces another in a porous medium, the density difference causes the injected fluid
to preferentially tilt and flow along the bottom (top) boundary. Huppert and Woods
(1995) studied this problem assuming the fluids had constant viscosity, the flow was
purely horizontal (vertical-flow equilibrium) and there was no mixing between the fluids
(sharp-interace limit). They found that the interface between the two fluids tilted,
leading to self-similar spreading of the fluids. More recently, the effects of diffusion and
vertical flow were considered by Szulczewski and Juanes (2013). When the two fluids
were fully miscible, and vertical flow was accounted for, it was found that a series of
different regimes arose depending on the dominant physical balances. At intermediate
times they found that diffusion and vertical flow could be neglected and reproduced
the dynamics outlined by Huppert and Woods (1995); however, at early and late times,
diffusion played a dominant role in mixing and spreading.
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In addition to having different densities, the two fluids can also have different
viscosities, a fact neglected by Huppert and Woods (1995) and Szulczewski and Juanes
(2013). Hesse et al. (2007), Pegler et al. (2014), and Zheng et al. (2015a) extended
the work of (Huppert and Woods, 1995) to study the effect of differing viscosities and
densities on the evolution of the displacement front in the limit of sharp interfaces
and vertical-flow equilibrium. They found that when the height of the current was
comparable to the height of the medium, viscosity played a dominant role in setting
the spreading rate of the gravity current, leading to significantly enhanced spreading if
the injected fluid was less viscous than the ambient fluid, or reduced spreading if the
injected fluid was more viscous than the ambient fluid. However, similar to Huppert
and Woods (1995), these works also omit the effects of diffusion and vertical flow.
Furthermore, these studies also assumed that the interface between the two fluids is
hydrodynamically stable; however, as demonstrated in the previous chapters, when a
less-viscous fluid is injected into a more-viscous one, viscous fingering can develop and
lead to the interpenetration of the two fluids and a highly non-trivial interface. Thus
far, the effect of viscous fingering on mixing and spreading in depth-integrated gravity
current models is not well understood.

In a similar vein, a number of authors have looked at the effect of gravity on
the viscous fingering instability. Rogerson and Meiburg (1993b) studied the onset
of the viscous fingering instability with a gravitationally-driven shear parallel to the
interface using linear stability analysis; Rogerson and Meiburg (1993a),Tchelepi et al.
(2004), Tchelepi and Orr Jr. (1994), Ruith and Meiburg (2000), Camhi et al. (2000),
and Riaz and Meiburg (2003) investigated the nonlinear evolution of the fingering
instability using numerical simulations; and Tchelepi and Orr Jr. (1994), and Berg et al.
(2010) examined the nonlinear evolution of the fingering instability using laboratory
experiments. While these studies highlight some of the interesting qualitative behaviour
that can be observed, they do not provide a full overview of the different dynamical
regimes, nor do they provide quantitative predictions for the evolution of the spreading
and mixing. Furthermore, in all of the work discussed above, the long-time asymptotic
behaviour, where mixing is important, is neglected.

The overarching aim of this chapter is to bridge the gap between these two dif-
ferent bodies of work, namely reduced-order modelling and high-resolution numerical
modelling to develop a quantitative understanding of the full life cycle of miscible
displacements with gravity override.

This chapter is laid out as follows. In §5.1, the problem is briefly outlined as it
is similar to the problems discussed in the previous chapters. In §5.2 two limiting
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Fig. 5.1 A schematic of the model geometry. The porous medium is semi-infinite, with
finite nondimensional width 1. The porous medium is initially saturated with a fluid
of density ρ2. Another fully miscible fluid, with density ρ1 is injected at a constant
unit flow rate.

cases are considered: the uniform viscosity case and the uniform density case. In
§5.3 the effects of both density and viscosity differences are examined and the flow
phenomenology and dominant dynamical regimes are identified. In §§5.4-5.6, these
regimes are examined in more detail and reduced-order models for the evolution of the
concentration field are derived. Finally, in §5.7.2, the implications of the results on
carbon capture and storage are briefly discussed.

5.1 Problem formulation

As in chapters 2-4, we consider a semi-infinite 2D porous medium that is infinite in the
x̂ direction (figure 5.1). We return to the case where the porous medium has uniform
permeability but now consider injected and ambient fluids that have different densities
ρ1 and ρ2 respectively. We assume a linear relationship between the concentration of
the injected fluid, c, and the density ρ,

ρ = ρ2 + (ρ1 − ρ2)c. (5.1)

As before, we also assume that the fluid flow obeys Darcy’s law, is incompressible and
that the concentration evolves through advection and diffusion and make the additional
assumption that the flow is Boussinesq (the difference in density is small relative to
the magnitude of the density itself). The governing equations and equations of state
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are given in dimensionless form as

− (u + 1)µ = ∂p

∂x
, −vµ =

(
∂p

∂y
+ Gρ

)
, (5.2)

∂u

∂x
+ ∂v

∂y
= 0, (5.3)

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 1

Pe

(
∂2c

∂x2 + ∂2c

∂y2

)
, (5.4)

µ(c) = e−Rc, (5.5)

ρ = ρ2

ρ1 − ρ2
+ c, (5.6)

where we have non-dimensionalized the density by ρ1 − ρ2. Note that as before the
velocity is given relative to a moving frame which travels with the average speed of the
injected fluid. We rescale the pressure, p to be the pressure in excess of the hydrostatic
pressure of the ambient fluid, p̃ = p − Gρ2y/(ρ1 − ρ2), in which case (5.2) becomes

− (u + 1)µ = ∂p̃

∂x
, −vµ =

(
∂p̃

∂y
+ Gc

)
. (5.7)

For notational convenience we drop the tildes in all subsequent expressions.
There are three important non-dimensional parameters in this problem:

G = g (ρ1 − ρ2) ka

Qµ2
, R = log(µ2/µ1), Pe = Q

D
. (5.8)

The gravity number, G, measures the ratio of pressures due to density differences and
those due to injection. Alternatively, it can be interpreted as a ratio of the rise/fall
velocity due to gravity, to the injection velocity. We only consider G > 0 since G < 0 is
equivalent to G > 0 with a vertical reflection of the coordinate system y → −y. Note
that in related convection problems the strength of the gravitational force is often
defined in terms of a Rayleigh number, Ra = g (ρ2 − ρ1) ka/Dµ2 (Hewitt et al., 2012),
which is equal to G Pe. In this chapter, we will only consider the case R > 0, that
is, when the injected fluid is less-viscous than the ambient fluid, and we will focus
predominantly on the geologically relevant limit, Pe ≫ 1.
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Similar to the work in the previous chapters, we consider flows where the upstream
and downstream flux (in the moving frame) as well as the transverse velocity are zero:

∂c

∂x
→ 0 as x → ±∞, (5.9)

∫ 1

0
u dy → 0 as x → ±∞, (5.10)

v → 0 as x → ±∞. (5.11)

The latter constraint is equivalent to a hydrostatic farfield pressure. In contrast to
the work in the previous chapters, we consider flows with no-flux boundary conditions
along the top and bottom boundaries instead of periodic boundary conditions,

∂c

∂y
= 0 for y = 0, 1, (5.12)

v(x, 0, t) = v(x, 1, t) = 0. (5.13)

We impose no-flux rather than periodic boundary conditions as there is no longer a
natural vertical symmetry in this problem (Rogerson and Meiburg, 1993a; Ruith and
Meiburg, 2000). We initialize the concentration field to have a step jump,

c(x, t = 0) = c0(x) = H(−x), (5.14)

where H(x) is the Heaviside function. We solve (5.3)-(5.7) numerically along with
boundary conditions (5.12)-(5.13) and initial condition (5.14) (for more details see
appendix A).

Again, in analyzing the large-scale behaviour of the flow, we focus on the evolution
of the transversely averaged concentration c(x, t) =

∫ 1
0 c dy and the mixing length h(t)

(3.11). In addition we also define the Nusselt number as the convective transport
through the midplane (travelling with the mean injection velocity),

Nu =
∫ 1

0
ucdy =

∫ 1

0
uc′dy, (5.15)

which we use to quantify the rate of mixing. Note that this is equivalent to the flux,
F , defined in chapter 2 by (2.47).
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Fig. 5.2 Evolution of the concentration field for R = 0 and (G, Pe) = (3, 100). (a-e)
Plots of the concentration field vs. x/h and y at (a) t = 1 × 10−4, (b) t = 0.036, (c)
t = 0.83, (d) t = 57 (e) t = 8000. (f) Evolution of the mixing length, h, as a function
of time, t. The dots correspond to the snapshots (a-e) and the dashed lines correspond
to the theoretical predictions from Szulczewski and Juanes (2013).

5.2 Limiting cases

In this section, we consider two limiting cases: the uniform viscosity case (log-viscosity
ratio R = 0) where the fluids differ only in density, and the uniform density case
(gravity number G = 0) where the fluids differ only in viscosity.

5.2.1 Uniform viscosity, R = 0
When R = 0 the problem reduces to the uniform viscosity gravity current problem
studied by Szulczewski and Juanes (2013). Snapshots of the concentration field from a
representative simulation are given in figure 5.2(a-e). In general, the density difference
between the two fluids causes the interface to tilt, with the denser injected fluid
travelling along the bottom boundary, which aids the spreading and mixing of the two
fluids. To quantify this spreading, we plot the evolution of the mixing length h in
figure 5.2(f) along with the corresponding theoretical predictions. In general we find
that the mixing length grows in time through five different regimes, each with different
power-law growth rates.
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First, as was the case in chapters 2-4, the concentration field is vertically homo-
geneous, and longitudinal diffusion dominates, leading to h ∼ t1/2 (figures 5.2(a,f)).
Second, once diffusion becomes unimportant, occuring at a time t ∼ O(1/G2Pe), the
interface slumps due to gravity. Vertical flow in this regime is important because
initially the vertical length scale of the mixing zone is larger than the horizontal
scale. This leads to so-called S-shaped slumping and linear growth of the mixing
zone, h ∼ t (figures 5.2(b,f)). Third, once the interface has become long and thin,
occuring at a time t ∼ O(1/G) vertical flow becomes unimportant and the flow is
predominantly horizontal. The interface continues to slump due to gravity and takes on
a characteristic straight-line profile (figure 5.2(c)). The mixing length grows sublinearly,
h ∼ t1/2, since the hydrostatic pressure gradient, which drives the flow, diminishes as
the interface slumps (figure 5.2(f)). Fourth, once the interface has become even longer
and thinner, occuring at a time O(Pe), transverse diffusion becomes important. A
balance between horizontal advection and transverse diffusion results in net horizontal
transport analagous to the shear-enhanced dispersion discussed in chapter 3. However,
because the horizontal velocity is proportional to the horizontal gradient in concen-
tration, the transport is subdiffusive, h ∼ t1/4 (figures 5.2(d,f)). Fifth, once the the
shear-enhanced dispersivity becomes small compared to molecular diffusion, occuring
at a time t ∼ O(G2Pe3), the interface grows diffusively again, h ∼ t1/2 (figures 5.2(e,f)).

5.2.2 Uniform density, G = 0
When G = 0, the problem reduces to the miscible viscous fingering problem described
in chapter 2. The only difference here is that no-penetration conditions are imposed
along the top and bottom boundaries instead of periodic boundary conditions. We
find that up until the late-time regime, this difference in boundary conditions has little
effect on the dynamics. To recap, at early times the interface grows diffusively, h ∼ t1/2,
while the instability grows exponentially (figures 5.3(a,f)). At intermediate times, the
instability saturates, fingers elongate and interact nonlinearly leading to coarsening
and advective growth of the mixing zone, h ∼ t (figures 5.3(b,f)). At late times, a
single dominant finger is left in the centre of the domain with counter-propagating
fingers along the top and bottom boundaries (figure 5.3(c)). The fingers eventually
slow leaving a well-mixed interior, h → const. (figures 5.3(d,f)).

With the addition of no-penetration top and bottom boundaries, as the single-finger
exchange-flow decays, a pair of wider counter-propagating fingers manifest themselves
along the boundaries (figures 5.3(e,f)). This is because, in contrast to the case with
periodic boundaries, a half wavelength mode is now permissible. Since this mode is
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Fig. 5.3 Evolution of the concentration field for G = 0 and (R, Pe) = (2.5, 500). (a-e)
Plots of the concentration field vs. x/h and y at (a) t = 2 × 10−2, (b) t = 2.6, (c)
t = 15, (d) t = 170 (e) t = 525. (f) Evolution of the mixing length, h, as a function of
time, t. The dots correspond to the snapshots (a-e) and the dashed lines correspond to
the theoretical predictions from Nijjer et al. (2018).

wider, it decays more slowly and is still unstable once the central propagating finger
decays away. This mode decays four times more slowly and spreads four times further
but also eventually decays away. We find that in the absence of any density differences,
the fingers cannot nonlinearly coarsen directly to the half wavelength state, and instead
the fingers always coalesce in the middle of the domain and decay before the secondary
instability is triggered. This is due to the merging mechanism which symmetrically
forces forward-moving fingers towards one another, thereby ‘pulling’ the fingers that
may be initially propagating along the boundaries away from them. As we will see
later, this is not the case when gravity is present as the gravitational forces introduce
preferential merging of fingers along the boundaries.

The temporal scalings for the early- to intermediate-time transition and intermediate-
to late-time transitions are as before, occuring at times t ∼ O(1/R2Pe) and t ∼ O(Pe)
respectively. However, there is an additional time-transition to the half-wavelength
mode which occurs at a time t ∼ O(Pe) as well, but with a larger pre-factor.
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5.2.3 Comparison of the two limiting cases

There are a number of similarities between the two limiting cases discussed. In both
cases, the early-time dynamics are dominated by longitudinal diffusion. At interme-
diate times diffusion becomes unimportant and spreading and mixing is dominated
by advection. Initially vertical flow is important but, as the interface is stretched
longitudinally, the flow becomes predominantly horizontal. At late times, there is a
balance between horizontal advection and transverse diffusion leading to a slow down
in the flow.

Despite these similarities, the manner in which the systems evolve are very different.
In the uniform viscosity case, there are no hydrodynamic instabilities and the dynamics
are insensitive to small changes in the initial conditions, while in the uniform density
case, the interface fingers chaotically which is highly sensitive to the initial conditions.
At intermediate times, in the uniform viscosity case, the mixing length first grows like
h ∼ t then like h ∼ t1/2 while in the uniform density case the mixing length grows like
h ∼ t. At late times, the mixing length grows like h ∼ t1/4 in the uniform viscosity
case but tends to a constant in uniform density case. In the uniform viscosity case, the
dynamics are decoupled and independent of the injection flux, whereas in the uniform
density case, injection is critical to the formation of fingers. The aim of the remainder
of this chapter is to outline how the aforementioned similarities and differences evolve
as both the viscosity and density are varied away from the limiting cases.

5.3 Overall dynamics

Consider the case where both the density and viscosity vary (G ̸= 0, R ̸= 0). Depending
on the choice of parameters, a range of different behaviours are possible. In figure 5.4,
we show a series of snapshots in time of the concentration field for a large and a small
value of G, each showing a range of different dynamics. In both cases the interface is
stretched longitudinally and eventually becomes well-mixed; however, the manner in
which the flow reaches this state depends on G.

At early times, in both cases, molecular diffusion dominates the dynamics. The
interface then slumps due to gravity, forming a pair of tongues along the top and
bottom boundaries, with the effect being more pronounced for larger G (figure 5.4(a,b)).
The slumping is asymmetric, due to the viscosity difference, as the forward propagating
tongue propagates much faster than the backward propagating tongue (figure 5.4(b)).
At intermediate times, depending on the relative magnitudes of G, and R (and Pe),
the interface can finger (figure 5.4(c)) or not finger (figure 5.4(d)). When the interface
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Fig. 5.4 Colourmaps of the concentration field for (R, Pe) = (2, 500) and (a,c,e,g)
G = 0.025, (b,d,f,h) G = 2. The snapshots are taken at times (a,b) t = 0.05, (c,d)
t = 2, (e,f) t = 30, and (g,h) t = 500. Evolution of (i) the mixing length, h and (j) the
Nusselt number, Nu, for the same parameters as (a-h).
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fingers, the fluid spreads more slowly as compared to the non-fingered case (figure
5.4(i,j)). Eventually, the fingered interface coarsens until a pair of counter-propagating
currents remain which resemble the non-fingered case (figure 5.4(e,f)). At late times,
in both cases, the interface becomes vertically homogenized and the growth of the
mixing zone slows and tends to the same value (figure 5.4(g,h)). This is analagous
to the shutdown of the viscous fingering instability in the G = 0 limit. Eventually,
horizontal advective transport becomes dominated by Taylor-dispersion, analagous to
the R = 0 limit, driven by horizontal gradients in c. This too also becomes negligible
over very long times and molecular diffusion dominates again.

Figure 5.4(i) shows the evolution of mixing length for large G, small G, and zero G.
When G is large, the mixing length initially grows like t, in a manner analogous to the
slumping regime in the uniform viscosity case. The mixing length then grows with a
scaling exponent less than 1 before tending to a constant mixing length. When G is
small, the dynamics are similar to the uniform density case G = 0: the mixing length
initially grows diffusively, then advectively, before tending to a constant. However,
the nonlinear regime is reached earlier, the pre-factor in the fingering regime is larger,
and the fingers coarsen directly to the half wavelength mode. In general, increasing G

leads to initially faster growth, but all three examples tend to nearly the same constant
mixing length. Over longer times the mixing length grows due to shear-enhanced
dispersion and h ∼ t1/4 (not shown), which increases with G and over even longer times
the mixing length grows due to longitudinal diffusion and h ∼ t1/2, independent of G.

Figure 5.4(j) shows the evolution of the convective flux through the midplane, Nu.
When G is large, the convective flux starts at a maximum and initially decays slowly.
After about t = 30, the decay rate increases, characteristic of exponential decay of
the flux, before tending to a constant. When G is small, the convective flux initially
exhibits power-law growth, then exponential growth, before saturating and fluctuating
about constant value. Eventually the flux coincides with the large G case and decays
in the same way, before tending to a smaller constant. The constant flux corresponds
to the shear-enhanced dispersive flux driven by density differences between the two
fluids. Over very long times (not shown), the convective flux decays to zero as the
fluids become more mixed. For comparison we show the uniform density case G = 0,
which grows exponentially, fluctuates about a constant and exponentially decays, before
growing again as the single finger state becomes unstable as discussed in §5.2.2.

In the following sections we discuss the different regimes that are possible in more
detail. We neglect a discussion of the early-time diffusive regime as the evolution is
the same as that described in §3.3.1.
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Fig. 5.5 Colourmaps of the concentration field in the slumping regime for (R, Pe) =
(1, 4000) and (G, t) = (a) (0.02, 0.6) and (b) (2, 0.07).

5.4 Slumping regime

Once advection begins to outpace diffusion, the interface slumps along the boundaries.
This leads to localized regions of fast flow but little motion away from the boundaries.
When G is small, small fingers, comparable to the fingering instability, grow along
the top and bottom boundaries while fingers along the rest of the interface grow more
slowly (figure 5.5(a)). This preference for fingering along the boundaries occurs because
the difference in density leads to slumping which preferentially perturbs the instability
along the boundaries. In this case the density difference perturbs the interface but the
growth of the fingers is still dominated by viscous effects. We therefore expect that
the mixing zone grows like h ∼ Rt (cf. §2.3.1). This rescaling does a reasonable job
of collapsing the data for G ≪ 1 (figure 5.6(b)) and the transition time only weakly
depends on G. Note that even when G is small, the initial growth of the mixing zone
is significantly enhanced when compared to the uniform density case (figure 5.6(b)).

When G is large, the interface slumps on a larger scale which is much faster than the
growth of the instability. This form of slumping is analogous to the equal viscosity case
(§5.2.1); however, because the injected fluid is less-viscous, the forward propagating
tongue travels faster than the backward propagating tongue, leading to asymmetric
slumping (figure 5.5(b)). We expect that in this regime the mixing zone grows like
h ∼ Gt. This rescaling does a reasonable job of collapsing the data for G > O(1)
(figure 5.6(b)) and the transition time depends only weakly on R.

5.5 Intermediate-time fingering and gravity current
regime

As was seen in figure 5.4(c,d), two different interface morphologies are possible at
intermediate times. The interface can either finger chaotically or be stabilized depending
on the size of G. Either way, at intermediate times this leads to asymmetric spreading,
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Fig. 5.6 Plots of h(t) for Pe = 100, G = {0.005, 0.01, 0.02, 1, 2, 4} and R = {0.5, 1, 2}.
The raw data is plotted in (a). (b) The mixing length rescaled by the predicted scalings
for the small-G slumping limit. The dotted lines denote simulations with G = 0,
Pe = 100 and R = {0.5, 1, 2}. (c) The mixing length rescaled by the predicted scalings
for the large-G slumping limit. The dotted lines denote simulations with R = 0,
Pe = 100 and G = {1, 2, 4}.

with the forward-propagating region travelling faster than the backward-propagating
region. However, the fingered interface tends to mix the fluids more rapidly and leads
to slower spreading. In both cases, the Nusselt number is nearly constant (figure 5.4(j)),
and the mixing zone grows nearly linearly in time (figure 5.4(i)).

5.5.1 Gravity stabilization of viscous fingering

Figure 5.7 compares the morphology of the interface for simulations with (R, Pe) =
(1, 4000) and different G. As G is increased, the interface goes from fingering chaotically
to propagating as a smooth current. This is in qualitative agreement with Rogerson
and Meiburg (1993b), who found that tangential shearing can stabilize the interface.

The interface morphology has a pronounced effect on the spreading and mixing of
the fluids. When G is small (G < 0.1 for the parameters in figure 5.7), the interface
fingers and the mixing zone grows linearly in time, with a rate that is insensitive to
G. This is analogous to the uniform density limit G = 0. As G is increased, there is
an abrupt change in the morphology. The mixing zone still grows linearly in time but
with a larger growth rate that is also insensitive to G (figure 5.7(g)). The change in
morphology is also reflected in the evolution of the Nusselt number which tends to
converge to one of two limits (figure 5.7(h)). This qualitatively agrees with the findings
of Berg et al. (2010), who found an abrupt change in breakthrough times (the time it
takes for the injected fluid to transit a fixed length) as G was varied. For much larger
values of G (not shown), the mixing zone grows like t1/2 in a manner analogous to the
uniform viscosity limit R = 0.
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Fig. 5.7 Colourmaps of the concentration field for (R, Pe) = (1, 4000) at t = 1 and G =
(a) 1, (b) 0.5, (c) 0.25, (d) 0.1, (e) 0.05, and (f) 0.025. (g) The transversely averaged
concentration, c against the similarity variable x/t along with the G = 0 theoretical
solution (2.37) with (2.40) (dashed line). (h) Nu(t) for different values of G.

Fig. 5.8 Stable vs. unstable displacements for (a) Pe = 4000 and (b) R = 2. Filled
circles denote simulations where no fingers were observed during the entire length of
the simulations, while unfilled circles denote simulations where fingers were observed
for at least some portion of the simulation. Dashed lines show predicting stability
boundaries G ∼ R2Pe.
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Fig. 5.9 Evolution of the transversely averaged concentration (or equivalently the height
of the current above the base) found by solving (5.20) for (a) small-times, (R, G) = (2, 8)
and t ranging logarithmically from 0.03 to 1 and (b) large-times, (R, G) = (2, 2) and t
ranging logarithmically from 1 to 32. The small-time asymptotic limit found by solving
(5.21) and large-time asymptotic limit (5.22) are given by dashed black lines.

To understand the transition from the fingered interface to the smooth current
requires comparing the time-scale of the growth of the instability (O(1/R2Pe)) with
the rise/fall time of the fluid (O(1/G)). If the fluid falls/rises to the boundary faster
than the instability can grow, the instability will be suppressed. This suggests that
when G > O(R2Pe), the interface will always spread as a gravity current and will not
finger. Figure 5.8 maps the stability boundary in G − R and G − Pe phases spaces.
We find the transition occurs when G ≈ 5 × 10−5R2Pe in agreement with the simple
scaling argument, where the pre-factor is determined by fitting the numerical results.

5.5.2 Concentration model

At intermediate times, the interface is long and thin and the flow is predominantly
horizontal. For small G, the interface fingers, and the transversely averaged concen-
tration evolves similar to the uniform density limit (figure 5.7(g)), for moderate G,
the interface is stable, the transversely averaged concentration has the same shape
but much larger horizontal extent (figure 5.7(g)), and for large G, the interface is
also stable but the transversely averaged concentration is nearly linear (figure 5.10(a))
and the horizontal extent evolves diffusively rather than advectively. In all cases, the
horizontal scale is larger than the vertical scale and longitudinal diffusion is negligible.

Combining (5.7), (5.3) and (5.5), assuming the flow is in ‘vertical flow equilibrium,’
that is the flow is long and thin and that vertical gradients in the pressure are small,
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gives
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There are two main contributions to the horizontal velocity: the first term corresponds
to the background pressure gradient and is driven by the viscosity difference between
the two fluids and the second term corresponds to the gradient in buoyancy.

When G is small, the dynamics resemble the uniform density limit discussed in
§2.4.2. For stable displacements, i.e. for moderate and large G, we make the simplifying
assumption that the two fluids remain completely segregated, that is the concentration
field is

c =

1, 0 ≤ y ≤ c(x, t),
0, c(x, t) < y ≤ 1,

(5.18)

where c is the transversely averaged concentration, or equivalently the height of the
current above the base. Substituting into (5.17), we find that

u =


(M − 1)(1 − c)
Mc + (1 − c) − GM(1 − c)

Mc + (1 − c)
∂c

∂x
, 0 ≤ y ≤ c(x, t)

c(1 − M)
Mc + (1 − c) + GMc

Mc + (1 − c)
∂c

∂x
, c(x, t) < y ≤ 1.

(5.19)

where M = eR is the ratio of the ambient to injected viscosity (cf. Pegler et al., 2014).
This leads to the prediction of plug-like flow in each of the two fluids. Substituting
this form for the velocity into (2.18) yields a nonlinear advection-diffusion equation for
the evolution of the transversely averaged concentration,

∂c

∂t
+ ∂

∂x

[
(M − 1)c(1 − c)

Mc + (1 − c) − MGc(1 − c)
Mc + (1 − c)

∂c

∂x

]
= 0. (5.20)

The transport of concentration (in the moving frame) is driven by advection (term
two) and gravitational slumping (term three). We solve (5.20) numerically, assuming an
initial concentration as in (5.14) and with no-flux boundary conditions in the far-field,
using a Crank-Nicolson predictor-corrector method. Representative solutions of (5.20)
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Fig. 5.10 Plot of the transversely averaged concentration for (a) small times,
(R, Pe, G, t) = (1, 4000, 14, 1) and (b) large-times (R, Pe, G, t) = (2, 4000, 0.5, 10) from
the two dimensional numerical simulations (black lines). The coloured lines represent
the four different model solutions: the full sharp-interface model (5.20), the small-time
limit of the sharp-interface model (5.21), the large-time limit of the sharp-interface
model (5.22) and the diffuse-interface model (5.24) with (5.23)). The size of the diffuse
region l = 0.03 is chosen to fit the full 2D numerical simulations.

for small and large times are given in figure 5.9(a) and 5.9(b) respectively. In both
cases the interface spreads asymmetrically and tends to a self-similar profile in time.
For small times the flow may be described by the similarity variable x/(Gt)1/2 and
for large times the flow may instead be described by the similarity variable x/t. To
understand this transition we note that the gravitational slumping term, proportional
to ∂c/∂x, is initially very large but decreases over time. This leads to two limiting
cases of equation (5.20). In the small-time limit, the advective term may be neglected
whereas in the large-time limit the gravitational slumping term may be neglected.

By taking the ratio of the gravitational slumping term to the advective term
in (5.20), that is the ratio of the buoyancy contribution to the flux to the viscous
contribution, we find that the latter can be neglected when −GM∂c/∂x/(M − 1) ≫ 1,
that is for M ≫ 1, h ≪ G. If h ∼ (Gt)1/2, this suggests a transition time of t ∼ O(G).
If t ≪ O(G), the equations admit a similarity solution of the form c(η) with similarity
variable η = x/(Gt)1/2 where c satisfies

η
dc

dη
= d

dη

[
Mc(1 − c)

Mc + (1 − c)
dc

dη

]
. (5.21)

The solution of (5.21) with fixed c in the far-field is given in figure 5.10(a). The solution
has the same similarity variable as Huppert and Woods (1995) but a different shape.
It is asymmetric and depends on the viscosity ratio of the fluids owing to the fact that
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the injected less-viscous fluid travels faster than the more-viscous ambient fluid. Note
that Pegler et al. (2014) and Zheng et al. (2015a) solve the same equation, (5.21), but
in the unconfined limit and find that the mixing zone grows like h ∼ t2/3.

In the large-time limit, the buoyancy contribution to the flux can be neglected. In
this case the concentration evolves self-similarly as

c(x, t) =


1 x/t < 1

M − 1,

1
M − 1

(√
M

x/t + 1 − 1
)

1
M − 1 ≤ x/t ≤ M − 1,

0 x/t > M − 1.

(5.22)

This is exactly the ‘Naive Koval’ model predicted for viscous fingering with a binary
concentration distribution (cf. §2.4.2), and is given by the dashed black line in figure
5.9(b).

In figure 5.10(a,b) we compare the full 2D numerical simulations to the full solutions
of (5.20) as well as the small- and large-time limits of (5.20) for two different values of
G. When G = 0.5, that is G is small but the interface does not finger (figure 5.10(b)),
the 1D model shows good agreement with the 2D simulations, as does the large-time
limit. Gravity acts to force the flow into a single current rather than a set of fine
fingers, but does not impact the growth rate of the mixing zone. When G = 14, that
is when G is large (figure 5.10(a)), the 1D model again shows good agreement with
the 2D simulations, as does the small-time limit of (5.20). In both cases, although
there is good agreement in the body of the current, the tips tend to propagate slower
than predicted. This was also observed in experiments by Pegler et al. (2014), who
suggested that diffusion was the cause of the slow spreading. In the next subsection
we improve on (5.20) by considering two fluids separated by a diffuse region.

In this section we have considered stable displacements where the two fluids are
separated by a nearly sharp interface. However, when the interface does finger,
transverse mixing across the fingers leads to a breakdown of this approximation and
results in slower spreading. Assuming that the concentration varies smoothly across
the fingers, the transversely averaged concentration has the same similarity solution as
the ‘Naive Koval’ model but with an effective viscosity ratio Me = eRerf

√
R/erfi

√
R

(cf. §2.4.2).
Figure 5.11(a) shows the evolution of the mixing length from simulations with

small to moderate G along with the theoretical solution (5.22) with both the actual
viscosity ratio (sharp-interface limit) and the effective viscosity ratio (viscous fingering
limit). For (R, Pe, tend) = (1, 4000, 10), we find that for G < 0.05, the mixing length
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Fig. 5.11 Plot of h(t) for (R, Pe) = (1, 4000) and different values of G in the intermediate-
time regime. (b) Plot of the spreading rate ḣ calculated by least-squares fitting a
function of the form h = h0 + ḣt to the numerical results for t in the range 5 ≤ t ≤ 10,
for Pe = 4000 and different G and R. The theoretical predictions for h in (a) and ḣ (b)
are found from the solution (5.22) with M = eR and M = eRerf(

√
R)/erfi(

√
R) and

are given by dashed and dot-dashed lines respectively.

grows like the viscous fingering limit and when G > 0.05, the mixing length grows
like the large-time gravity curent limit. When G = 0.05, the interface first fingers but
the fingers coarsen over time due to gravitational coarsening leading to a change in
morphology from viscous fingering to gravity current like spreading. This transition
occurs at a time t ∼ O(1/G), that is when the fingers have had enough time to fall.
This transition occurs so long as 1/G < O(Pe), that is this change in morphology
occurs before the flow tranistions to the late-time regime.

Figure 5.11 (b) shows the spreading rate, defined as the rate of change of the mixing
length, ḣ, as a function of R and G. For both values of R, we find a distinct shift in
ḣ from the viscous fingering limit to the gravity current limit. The ‘Parabolic Koval’
model shows excellent agreement for both values of R and the ‘Naive Koval’ model
shows excellent agreement for R = 1, but overestimates the spreading rate for R = 3.
This discrepancy is likely a result of mixing at the tip of the current, which we address
in the next subsection.

5.5.3 The effect of mixing on current propagation

In §5.5.2 we assumed a sharp-interface separated the two fluids. Here we consider the
effect of a diffuse interface on the evolution of the interface. In a given vertical slice,
for a given transversely averaged concentration c, the relative flow of the two fluids is
maximized when there is a binary distribution of concentration, and therefore mixing
in general tends to slow their relative velocities.
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First, combining the general form for the horizontal velocity (5.17) with the evolution
equation for the transversely averaged concentration (2.18), yields
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+ ∂
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To identify the effect of diffusion and mixing on the shape and evolution of the
transversely averaged concentration field, we make the ansatz that

c = 1
2 + 1

2erf
(

c(x, t) − y

l

)
, (5.24)

instead of (5.18), where l is the width of the diffuse region, which we expect depends on
the parameters in the problem. Substituting (5.24) into (5.23), results in a nonlinear
advection-diffusion equation with one additional parameter l. With this model we now
include the effects of a diffuse boundary layer on the propagation of the gravity current;
however, we ignore any spatial variations in the thickness of the boundary layer and
any time dependence. We make this simplification assuming that the steepening of the
concentration gradient due to stretching at the interface balances diffusion leading to a
slowly varying boundary layer thickness (see, for example, de Anna et al., 2014).

We plot the solution to (5.23) with (5.24) in figure 5.10(b,c) (dashed dark-blue
line). We find that in both the large-time and small-time limits, the diffusive model
predicts a much slower tip and gives much better agreement with the 2D simulations
than any of the other models.

5.6 Late-time shutdown and viscously-enhanced
Taylor slumping regime

Over long times, diffusion in the transverse direction tends to homogenize the concen-
tration field vertically. The concentration gradient in this case is predominantly in
the streamwise direction, as is the fluid flow. In this late-time regime, the interface
evolves in one of two ways. First, in the same manner as the shutdown of the viscous
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Fig. 5.12 Colourmaps of the (a,b) concentration field, (c,d) concentration deviations
c′ (with overlain contours), and (e,f) streamwise velocity, u (with overlain contours)
for (a,c,e) (R, Pe, G, t) = (1.5, 1000, 0.1, 1000) (small G) and (b,d,f) (R, Pe, G, t) =
(1.5, 100, 10, 1000) (large G). The left panels correspond to flow in the shutdown regime
and the right panels correspond to flow in the viscously-enhanced Taylor slumping
regime. Note that the aspect ratio of the figures is compressed by a factor of 30, so
variations in the x-direction seem more pronounced than they actually are.
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Fig. 5.13 (a) Evolution of c for (R, Pe, G) = (1.5, 1000, 0.3) and t spaced evenly from 150
to 900. (b) Plot of c(x) at t = 1000 for R ranging from 0.5 to 2.5, G ranging from 0.01 to
0.8 and Pe ranging from 300 to 1000. (c) Plot of Nu(t) for (R, Pe, G) = (1.5, 1000, 0.3).
The solid and dashed black lines denote theoretical predictions with K = 0.5 and
K = 0.6 respectively.

fingering instability, the concentration field is composed of a steady linear background
gradient with decaying deviations superimposed. The streamwise velocity closely
tracks the deviations and both are horizontally uniform (figure 5.12(a,c,e)). Second,
the background concentration evolves asymmetrically, with the slope being shallower
upstream. The velocity no longer tracks the deviations and neither the velocity nor
the concentration is horizontally uniform (figure 5.12(b,d,f)).

5.6.1 Concentration model

The late-time regime is characterized by a weak background concentration gradient
with small deviations superimposed. Assuming the flow is long and thin, the horizontal
velocity is given by (5.17). By making the additional approximation that ∂c/∂x ≫
∂c′/∂x (5.17) becomes

u =
eRc′ −

∫ 1

0
eRc′

dy∫ 1

0
eRc′

dy
+ GeRc ∂c

∂x

eRc′
(∫ 1

0
eRc′

dy
)

y − eRc′
∫ 1

0
eRc′

ydy∫ 1

0
eRc′

dy

 . (5.25)

Next, assuming c′ ≪ 1 and ∂c/∂x ≪ 1, Taylor-expanding and neglecting terms O(c′2)
and O (c′∂c/∂x) yields

u = Rc′ + GeRc ∂c

∂x

(
y − 1

2

)
+ O

(
c′ ∂c

∂x

)
+ O(c′2). (5.26)
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As before, there are two main contributions to the horizontal velocity. The first
term, driven by the viscosity difference between the two fluids, is, to leading order,
proportional to the vertical deviations in the concentration. The second term, driven
by the density difference between the two fluids, is only dependent on the transversely
averaged concentration.

By substituting (5.26) into (2.19), and neglecting terms O(c′2), we find that the
evolution equation for the deviations is given by

∂c′

∂t
+ Rc′ ∂c

∂x
+ GeRc

(
∂c

∂x

)2 (
y − 1

2

)
= 1

Pe
∂2c′

∂y2 . (5.27)

Solving (5.27) with no flux boundary conditions in the vertical,

c′ =
∑
n≥1

Kne−γt + 2 − 2 cos(πn)
π2n2

GeRc

γ

(
∂c

∂x

)2
 cos(πny), (5.28)

where γ = R∂c/∂x + n2π2/Pe and Kn = 2
∫ 1

0 c′(x, y, 0) cos(πny)dy corresponds to the
initial conditions at the onset of the regime. When G = 0 this reduces to the late-time,
shutdown regime of the miscible viscous fingering instability (cf. §2.5.2). When R = 0,
this reduces to the Taylor-slumping regime described by Szulczewski and Juanes (2013).
In general, when both R ̸= 0 and G ̸= 0, the flow transitions from the shutdown regime
to a viscously-enhanced Taylor-slumping regime. This is analogous to the dynamics in
§4.4.1 where the dynamics transition from the shutdown regime to the shear-enhanced
dispersion regime. The shutdown regimes in both cases are similar. However, the
viscously-enhanced Taylor-slumping regime differs from the shear-enhanced dispersion
regime.

In the shutdown regime, i.e. for small t, the exponentially decaying term, which is
O(1), dominates. The flow is dominated by the slowest decaying mode and c′ and u

can be approximated as

u ≈ Rc′ ≈ RK1e
−γt cos (πy) . (5.29)

As in §2.5.2 and §4.4.1, the concentration deviations and streamwise velocity are
horizontally uniform and decay exponentially. Substituting (5.28) into (2.18), we find
that the transversely averaged concentration has the steady linear solution

c = 1
2 − αx, (5.30)
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Fig. 5.14 (a) The similarity solution of (5.37) for R = 0, 0.5, 1, 1.5, 2, 2.5, 3. The
analytical solution for R = 0 is given by the black line (Szulczewski and Juanes, 2013).
(b) The evolution of c for (R, Pe, G) = (3, 10, 10) at t = {100, 140, 200, 280, 400}. The
theoretical predictions, found by solving (5.36), are denoted by dotted lines.

with the fluid flow filling in the linear profile (figure 5.13(a)).
To determine α and γ uniquely, we follow the same approach as §4.5.1. We

neglect longitudinal diffusion and relate the time-integrated convective flux through
the midplane with the net change in concentration of the right half of the domain,
namely,

∞∫
0

1∫
0

uc′dydt ≈
∞∫

0

c(x)dx = 1
8α

. (5.31)

Substituting (5.29) into (5.31), and assuming that most of the mixing occurs in the
shutdown regime, γ = 2K2αR and so

αR = π2

(2K2 + 1)Pe , γ = 2K2π2

(2K2 + 1)Pe . (5.32)

As in chapter 4, we might expect that K = 0.5 corresponding to the deviations being
at most 1 or 0 at t = 0 but we find that this underestimates the mixing. By instead
fitting K to the numerical simulations, we find K ≃ 0.6. This slightly larger value of
K accounts for the fact that the deviations are not sinusoidal from t = 0 in addition
to nonlinear effects. With this value for K we find much better agreement with the
numerical simulations for a wide range of simulations (figure 5.13(b,c)). Note that this
value of K matches what was found in chapter 3 and is slightly larger than K = 0.55
which was found in chapter 2.

In the viscously-enhanced Taylor-slumping regime, i.e. for large t, the exponentially
decaying terms in (5.28) and (5.26) become negligible and the gravitational terms
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dominate. Expanding c′ and u in powers of ∂c/∂x we find,

c′ =GeRcPe
(

∂c

∂x

)2 (−1
24 + y2

4 − y3

6

)
+ O

( ∂c

∂x

)3
 , (5.33)

u =GeRc

(
∂c

∂x

)(
y − 1

2

)
+ O

( ∂c

∂x

)2
 . (5.34)

Combining, the convective flux uc′ is

1∫
0

uc′dy = PeG2e2Rc

120

(
∂c

∂x

)3

+ O

( ∂c

∂x

)5
 . (5.35)

Substituting this flux into (2.18) yields a nonlinear diffusion equation for the evolution
of c,

∂c

∂t
= ∂

∂x

 1
Pe + Pe

120

(
GeRc ∂c

∂x

)2
 ∂c

∂x

 . (5.36)

This is analogous to the shear-enhanced dispersion regime discussed in chapter 3, but
with a dispersion coefficient that depends on the local concentration gradient.

By neglecting the effects of molecular diffusion, (5.36) admits a similarity solution
of the form c(η) with similarity variable η = x/(G2Pe t/120)1/4 where c satisfies the
nonlinear differential equation

d

dη

e2Rc

(
dc

dη

)3
 = −η

4
dc

dη
. (5.37)

The solution of (5.37) for different values of R is given in figure 5.14(a). When
R = 0, the interface spreads symmetrically, whereas when R > 0, the interface slumps
preferentially upstream.

The solution to the full diffusion equation (5.36) along with the full numerical
simulations are plotted in figure 5.14(b). We find very good agreement between the
numerical simulations and the reduced model.

The transition between the shutdown regime and the viscously-enhanced Taylor-
slumping regime occurs when the two limiting solutions for c, (5.30) and the solution
of (5.37), overlap, that is at t ∼ R4Pe3/G2. In fact, if G is sufficiently large such that
the gravitational term in (5.28) is O(1), the shutdown regime can be skipped entirely,
that is, when G ∼ O(R2Pe). Note that this is the same scaling as the transition from
stable to unstable displacements described in §5.5.1, but with a larger pre-factor.
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Over very long times, the viscously-enhanced Taylor-slumping term in (5.36)
becomes negligible compared to the molecular diffusion term, occuring at a time
t ∼ O(G2Pe3), and the interface evolves through longitudinal dispersion again.

5.7 Discussion and conclusions

5.7.1 Summary

In this chapter, the range of dynamics that are possible during miscible displacements
of a more-viscous fluid, by a less-viscous fluid of a different density were examined.
Figure 5.15 delineates the different possible regimes in G − t phase space for three
different values of Pe. In each case the instantaneous scaling exponent of the mixing
length, δ, where h = Atδ, is plotted for representative simulations. In general, nine
different regimes are possible.

At very early times (regime I), the interface is very sharp and diffusion across it
dominates, leading to t1/2 growth of the interface. Once advection outpaces diffusion the
interface begins to slump (regimes II,III; §5.4). The dynamics are either dominated by
density differences, leading to a transition at t ∼ O(1/G2Pe) or by viscosity differences,
leading to a transition at t ∼ O(1/R2Pe). In this regime, the interface is sharp and
vertical flow is important. Eventually, the interface becomes long and thin and vertical
flow becomes unimportant. If G > O(R2Pe) the interface is stabilized and does not
finger. In this case, spreading is initially dominated by gravity (regime IV; §5.5.2)
leading to t1/2 spreading, then after t ∼ O(G) the dynamics become dominated by the
background pressure gradient (regime V; §5.5.2) and the mixing zone grows linearly
in time. If, however, G < O(R2Pe), the interface can finger, which on average leads
to linear growth of the mixing zone in time (regime III; §5.5.2). Note that, because
the dynamics are chaotic, the scaling exponent varies over time (note the speckle
in figure 5.15), but, on average, the interface spreads linearly. If G < O(Pe), the
fingers coalesce until a single dominant finger is left propagating in the centre of the
domain with counter-propagating fingers along the top and bottom boundaries. As
the single-finger exchange-flow decays, a pair of wider counter-propagating fingers
propagating along the boundaries manifest themselves (figures 5.3(e,f)), which also
propagate and slow leaving a well-mixed interior (regime VII; §5.2.2). If G > O(Pe),
either the interface is stable or it fingers and the fingers coarsen along the boundaries.
Eventually, after t ∼ O(Pe), diffusion homogenizes the concentration field transversely,
and the shutdown regime is reached (regime VI; §5.6). In this regime, the fluid flow
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Sleipner In Salah Salt Creek

tdim = a2φ

Q
3.5 × 106s 6 × 106s 7 × 103s

G = ∆ρgka

Qµ2
5 0.08 0.02

Pe = Q

D
2 × 104 5 × 103 1.5 × 104

R = log
(

µ2

µ1

)
2.5

Table 5.1 Characteristic advective time-scale tdim and dimensionless variables G, R, Pe
for the three carbon dioxide sequestration case studies.

slows and the concentration field consists of a linear background gradient which is
filled in exponentially (i.e. δ → 0). After t ∼ O(R4Pe3/G2), the density difference
between the two fluids becomes important again and the interface evolves through
viscously-enhanced Taylor-slumping (regime VIII; §5.6). Over very long times, as the
interface becomes more diffuse, Taylor-slumping becomes negligible and the interface
evolves through longitudinal diffusion again with the same solution as regime I (regime
IX; not shown).

5.7.2 Implications for carbon sequestration

We consider three case studies of carbon dioxide sequestration to demonstrate the
physical timescales over which the identified regimes are applicable. We consider
the sequestration of CO2 at Sleipner (Bickle et al., 2007; Boait et al., 2012), In
Salah (Vasco et al., 2010), and Salt Creek (Bickle et al., 2017). As was the case in
chapter 2, for illustrative purposes, we assume the two fluids are fully miscible, even
though the injected and ambient fluids are only partially miscible and the miscibility
varies across the three different scenarios. We take the properties of the fluids to
be: viscosity of the injected CO2, µ1 = 6 × 10−5Pa s, viscosity of the ambient fluid,
µ2 = 7 × 10−4Pa s, density of the injected CO2, ρ1 = 7 × 102kg/m3, density of the
ambient fluid (brine), ρ2 = 1 × 103kg/m3 (Huppert and Neufeld, 2014), and diffusion
coefficient D = 2 × 10−9m2/s (Cadogan et al., 2014). Note that the diffusivity is
taken to be constant and equal to the molecular diffusivity of carbon dioxide and
brine as we find the pore-scale Peclet number in the three different case studies is
less than one. Furthermore, although these properties will vary significantly between
these three case studies given the different depths, temperatures, and ambient fluid
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compositions (at Salt Creek and In Salah CO2 is injected into depleted oil fields,
whereas at Sleipner CO2 is injected into a saline aquifer), for simplicity we will assume
they are the same in all three cases. The main differences between the three injection
scenarios are the injection rates, permeabilities and thicknesses of the formations. The
Utsira formation at Sleipner is 200m thick and formed of nine distinct layers and so
we take our representative length scale to be thickness of one layer or a = 20m. The
formation is relatively homogeneous and has a permeability of k = 2.5 × 10−12m2 and
porosity φ = 0.35. CO2 is injected at a rate of about Q = 4 × 10−5m2/s. The Krechba
formation at In Salah has a similar characteristic length scale a = 20m, however it
is less porous, φ = 0.15, less permeable, k = 1 × 10−14m2, and injection is slower,
Q = 1 × 10−5m2/s. The Frontier formation at Salt Creek is 20m thick and highly
heterogeneous, and fluid flow is believed to be dominated by a few layers that are
1m thick with φ = 0.2 and k = 1.5 × 10−13m2. We estimate the injection velocity by
dividing the distance between the injection and production wells by the breakthrough
time of the bulk of the CO2, Q = 3 × 10−5m2/s.

The relevant non-dimensional parameters for these three case studies are summarized
in table 5.1. Comparing the three scenarios, we find gravity to be relatively important
at Sleipner but unimportant at In Salah or Salt Creek. Comparing G to the critical
Gcrit for fingering, we expect that Sleipner is mostly stable to fingering (Gcrit ≈ 6)
whereas at In Salah (Gcrit ≈ 1) and Salt Creek (Gcrit ≈ 5) we expect that the interface
is initially dominated by fingering. We summarize the dimensional time-scales for the
different regimes in each of the three cases in figure 5.16. We find that Sleipner is
currently in the large-time gravity current limit, In Salah, by the end of injections
would have just transitioned from the viscous fingering limit to the large-time gravity
current limit, while at Salt Creek, at the time of breakthrough, we expect that the
interface would have reached the shutdown regime. By identifying the important
parameters and the appropriate dimensional timescales, we are able to identify the
dominant physical balances in the flow and make predictions for how the interface
evolves.



118 Miscible displacements with gravity override

Fig. 5.16 Evolution of the displacement front in the three case studies. The black dots
denote the time since injection at Sleipner, the total injection time at In Salah, and
time until breakthrough at Salt Creek.



Chapter 6

Flow and deformation in a confined
poroelastic medium

6.1 Introduction

In chapters 2-5 injection driven flow and mixing in porous media where the solid phase
was rigid were considered. However, fluid flowing through a soft porous medium can
significantly deform it and change its flow properties. This coupling of fluid flow and
deformation can be seen in a wide array of contexts from the regulation of mucus in
the gut (Datta et al., 2016) to the flow of partially molten rock through the Earth’s
mantle (McKenzie, 1984). In this chapter this coupling is explored using high precision
laboratory experiments.

The theory of poroelasticity, the coupling of Darcy flow to elastic deformation
in the solid matrix, dates back to the seminal works of Terzaghi and Biot (see for
example Biot, 1941; Terzaghi, 1943). This theory for linear poroelasticity is only valid
in the limit of small deformations and, since then, efforts have been made to generalize
this theoretical frame work for large deformations (see for example MacMinn et al.,
2016). In this chapter, the specific case of radial flow in a highly deformable medium
is considered. Although there have been a number of related theoretical works in
this geometry, including Kenyon (1979) and Barry and Aldis (1993) who considered
fluid-driven deformation in linearly elastic porous shells, and Auton and MacMinn
(2017, 2018) who considered the fully coupled nonlinear problem in the limit of large
deformations, there has been relatively little experimental work to date.

Experimentally, fluid injection in deformable granular packings acts as a prototypical
example of fluid-solid coupling in porous media and has been studied in a variety
of contexts and can result in a wide range of morphologies of flow. These include
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multiphase displacements, where the ambient and injected fluids are different phases
(Dalbe and Juanes, 2018; Eriksen et al., 2015; Sandnes et al., 2011, 2007), and single-
phase displacements, where the ambient and injected fluids are the same (Berhanu
et al., 2012; Kudrolli and Clotet, 2016; Mahadevan et al., 2012). Although these
systems can exhibit large deformations, the deformation tends to be plastic.

More recent experiments have examined flow through deformable granular packings
where the individual grains are elastic. In this case the matrix is able to go through
substantial elastic deformation in addition to plastic deformation. These packings have
been used to study gravity-driven flow (Hewitt et al., 2015), centrifugal compaction,
(Nordstrom et al., 2010), and fluid-driven compaction in uniaxial (Hewitt et al., 2016)
and cylindrical geometries (MacMinn et al., 2015). However, all of these experiments
have considered packings that are initially at or near the ‘jammed state’ and have not
considered the systematic variation of the initial packing fraction. In experiments with
rigid granular media, it was found that the choice of initial packing fraction could lead
to very different dynamics from pore invasion to a fluidised solid-phase (Sandnes et al.,
2011). The use of elastic particles here allows interrogation of a wide range of initial
porosities from weakly confined cases where the solid has porosity much larger than
the jamming transition to strongly confined cases where the porosity is much smaller
than the jamming transition.

In this chapter the fluid-driven deformation of a packing of soft elastic spheres
in a cylindrical geometry is studied. In doing so, the effect of changing the initial
confinement of the solid on the dynamic and steady-state behaviour of the porosity
field is examined. This chapter is laid out as follows. In §6.2 the experimental setup
is discussed as well as the techniques used to measure the porosity field. In §6.3 an
axisymmetric model for the evolution of the porosity field is derived and both the
transient and steady-state behaviour of the system are considered. In §6.4 and §6.5
the model predictions are compared to the experimental results.

6.2 Experiments on flow through a deformable ma-
trix

We consider a deformable porous cylinder of radius b surrounded by a rigid permeable
barrier. The medium has some unstrained thickness d0 corresponding to an unstrained
porosity φ0 and is fully saturated with a fluid with viscosity µ. The medium is then
strained to some new thickness d corresponding to some initial porosity Φ. Fluid is
then injected from a point source at the center of the medium. The fluid flow deforms



6.2 Experiments on flow through a deformable matrix 121

Fig. 6.1 (a) A schematic showing the experimental setup. The apparatus consisted of
a circular cell with impermeable top and bottom boundaries and a rigid permeable
circumference. The top boundary was adjustable to impose a fixed initial confinement,
d. The cell was filled with a packing of transparent soft hydrogel spheres, which formed
an idealized poroelastic medium. The medium was saturated with blue-dyed water
and the same fluid was injected through an inlet in the centre of the cell with a flux
Q set by a constant head H. Time-lapse images are taken at a regular interval and
dye-attenuation was used to measure the depth integrated porosity field. (b) Top view
of the confined porous region showing the imaging section. Since the particles are
undyed, regions of high porosity appeared dark. When fluid is injected into the cell, a
cavity of radius a(t) opened.

the medium resulting in a cavity of size a(t) and porosity field, φ(r, θ, t). In this
section, we describe a suite of experiments used to study this coupling of fluid flow
and deformation in a variably confined deformable porous medium.

6.2.1 Experimental setup

The experimental setup, shown schematically in figure 6.1, consisted of ∼ 750, 000
polydisperse soft hydrogel spheres packed in a cylindrical cell of diameter 2b = 300mm.
The cell had a metal circumference with a lattice of holes with mean diameter 0.8 ±
0.1mm and mean spacing 0.8 ± 0.1mm which acted as a porous barrier that allowed
fluid to flow but prevented the beads from passing. The size and spacing of the holes
was smaller than the beads and ensured that the beads did not align to block all of
the holes. The cell had an impermeable top boundary that was adjustable so that
the depth of the cell, d, could be varied as well as an impermeable bottom boundary.
The cell was contained within a larger tank and the packing was always saturated
with water. An outlet in the larger tank ensured the fluid height outside the cell was
maintained at a fixed height larger than d. The inlet to the cell, located in the middle
of the bottom boundary, was connected to a header tank at a height H above the base
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of the cell and the height of the header tank was varied from 5 − 80cm. The header
tank consisted of two reservoirs. Fluid was pumped from one reservoir to the other
and allowed to overflow back into the source reservoir. This ensured that the height
of the fluid was fixed, thereby maintaining a constant head. The header tank was
connected to the inlet of the cell with two tubes joined by a valve. It was found that
the hydraulic resistance of this tubing was typically much larger than the packing of
spheres and so the constant header tank acted as a source of constant volumetric flux
Q ∼ H into the cell.

The soft spheres used in the experiments were sodium poly-acrylamide hydrogel
spheres (JRM Chemical). The hydrogel spheres, which started as dry grains with
radius ∼ 0.15 mm, were swollen in a bath of deionized water. The resulting swollen
spheres were nearly index-matched and density-matched with the deionized water and
had mean radius 0.64 ± 0.17 mm (figure 6.2(c)). The experiments were initialized by
first filling the cell and larger containing tank with blue-dyed deionized water (0.08%;
Ingram Brothers blue food colouring). The spheres were then poured into the cell and
were spread to a roughly uniform height. Since the beads were not dyed, they could
be visualized in the dyed water. This fact is used to measure the solid fraction using
dye attenuation techniques (cf. §6.2.2). Deionized water was used throughout the
experiments as it was found that it produced the largest (most swollen) beads and
prevented dye leaching into the spheres.

6.2.2 Calibration

In addition to measuring the cavity size a, dye attenuation techniques were used to
measure the depth averaged porosity, φ of the analogue porous medium. To do so, a
panel of red LEDs was used to produce a nearly uniform light sheet, which illuminated
the cell from below and a Nikon D7000 camera imaged the packing from above. The
blue-dyed interstitial water absorbed and attenuated the light whereas the un-dyed
spheres allowed the light to pass through unperturbed. The total amount of attenuation
imaged from above could therefore be related to the depth-integrated quantity of dye.
From this the spatial distribution of the depth-integrated volume of dyed fluid and
hence the depth-averaged porosity field can be inferred. To calibrate the light intensity
against the depth-integrated fluid volume, the cell was incrementally filled with varying
depths of dyed fluid, h, and the mean light intensity in the cell was measured (figure
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Fig. 6.2 (a) A series of images showing the light intensity (a.u.) after
passing through varying depths of dyed fluid. From left to right, h =
{0, 3.86, 6.14, 8.1, 10, 12.07, 14.81, 16.72, 18.49}mm. The black dot in the centre of
the images is the inlet into the cell. (b) Calibration data from the different images in
(a). The equation for the dashed best fit line is I(h)/I(0) = e−0.23h. (c) Histogram of
the radii of the swollen hydrogel spheres from a sample of 1249 spheres. The mean
radius is rsphere = 0.64 ± 0.17mm.

6.2(a,b)). It was found that the intensity obeyed a classical Lambert-Beer law,

I(h)
I(0) = e−Ah, (6.1)

where I(h)/I(0) is the normalized light intensity and A is the absorbency of the
dye. Fitting to the calibration data, it is found that for the specific choice of dye
concentration, A = 0.23 ± 0.01mm−1.

6.2.3 Validation

First the calibration data is independently validated to ensure that the addition of the
hydrogel spheres did not interfere with the dye attenuation measurements, that is, they
did not absorb or scatter any light. To do so, the experimental set up described above
was used to uniaxially compress a known volume of spheres (without any externally
imposed flow). With the addition of the spheres, there are now two phases, one of
which is colourless, and so the effective depth-averaged fluid height h is now h = φd.
To compress the medium, the cell depth d was reduced, which reduced φ and h but
the difference d − h remained unchanged, since the fluid but not the solid could escape.
Figure 6.3(a) shows the azimuthally-averaged depth-integrated fluid height for different
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Fig. 6.3 Validation of the dye attenuation technique through uniaxial compression of
the packing of spheres without any externally imposed flow. (a) Plot of the azimuthally
averaged depth integrated fluid volume. Here the colours correspond to different
confinements, d, which can be seen in (b). (b) Plot of the mean depth integrated fluid
volume for varying d. The x-intercept of the dashed line of best fit, 9.5mm, corresponds
to the mean depth integrated solid quantity in the cell.

confinements. As expected, decreasing d reduces the fluid height h. Interestingly,
above d > 21mm, a reduction in d resulted in a uniform reduction in h suggesting
little movement in the solid. However, for 17 < d < 21mm (0.44 < Φ < 0.55, which
corresponds to packings near jamming), h is smallest near the boundary suggesting
build-up of the solid phase near the boundary. This occurs because as the confinement
is changed, outward flow is induced, resulting in compression of the solid towards the
outer boundary. For d < 17mm, the fluid and therefore the solid evens out and h

decreases uniformly again. A plot of the mean depth integrated fluid volume versus
the confinement is given in figure 6.3(b). As expected, h decreases linearly with d and
the x-intercept of 9.5mm corresponds to the mean depth integrated solid quantity in
the cell. This measurement of the solid volume agrees with the measurement of the
solid volume outside of the cell, thereby providing an independent validation of the
calibration methods.

6.2.4 Experimental results

A total of 30 different experiments were conducted with different injection rates, Q,
and different initial confinement d. Since the amount of solid remained constant across
experiments, changing d amounted to changing the initial porosity of the packing Φ.
The areal flux (the total volumetric flux divided by the depth of the medium) was varied
from Q/d = 1 × 10−4m2/s to Q/d = 1 × 10−3m2/s and the initial porosity was varied
from strongly confined media, Φ = 0.37 (smaller than the critical porosity for jamming)
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Fig. 6.4 Porosity field measurements for an experiment with Φ = 0.49 and Q/d =
6 × 10−4m2/s. (top) Greyscale images showing the depth-averaged porosity field.
(bottom) The azimuthally-averaged depth-averaged porosity field. The porosity at
t = 0 is given by the dashed red lines. Note that for clarity we show the azimuthally
averaged data reflected about the origin as well. Also note that the experimental data
starts at r = 10mm corresponding to the edge of the inlet. The porosity field is nearly,
but not quite, uniform to start. This is because as the confinement d is set, fluid is
driven outward driving compaction along the boundary (cf. §6.2.3).

to weakly confined media, Φ = 0.62 (above the jamming transition) summarized in
appendix 6.A. In each case, the spatial distribution of the depth-integrated porosity
field φ(r, θ, t) as well as the cavity size, a(t) were measured.

Between experiments the spheres were spread to a roughly uniform height before
fixing the lid. At t = 0, the inlet to the cell was opened and fluid flowed radially
outwards and compacted the analogue porous medium. The fluid exited the cell and
filled the larger containing tank which overflowed into a reservoir on a mass-balance.
Time-lapse images of the bead pack were taken at a rate of 1 picture per 1-4 seconds and
dye attenuation techniques were used to infer the spatial distribution of the porosity
field.

A representative series of snapshots from an experiment with Φ = 0.49 and Q/d =
6 × 10−4m2/s are given in figure 6.4. The porosity field starts as nearly uniform.
As fluid is injected, the medium compacts and a cavity opens. In the second panel,
although not immediately obvious, there are two bright compacted regions: one near
the outer boundary, which travels inwards, and one at the edge of the cavity region,
which travels outwards. Eventually these compacting fronts converge and a steady-state
is reached. The steady-state porosity field consists of a ‘cavity region’ of relatively
high porosity surrounded by a ‘compacted region’ of relatively low porosity. Note
that within the dark cavity region some bright particles can be seen, which suggests
that the the cavity region is not pure fluid but rather a dilute suspension of spheres.
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However, the number of particles in this region is small and so when modelling the
cavity region we will assume it is pure fluid. Across the suite of experiments we find
that the transient evolution of the deformable medium depends on the experimental
parameters; compaction can be driven inward from the outer boundary or outward
from the inner boundary. However, the steady-state behaviour remains qualitatively
the same across the experiments.

For the experiments discussed in this chapter, the porosity remains relatively ax-
isymmetric and we can therefore azimuthally average it without any loss of information.
All of the results presented in this chapter will involve the azimuthally averaged porosity
field or quantities derived from it. In §6.3 we derive an axisymmetric mathemati-
cal model for the evolution of the porosity field and the cavity size. In §6.4 and
§6.5 we compare the model with the steady-state and transient experimental results,
respectively.

6.3 Mathematical modelling

To describe this system we consider a simple axisymmetric model for the coupling of
flow and deformation in an idealized poroelastic medium. We start by describing the
general model before considering the results for specific choices of constitutive equations.
For a detailed discussion on the effect of the choice of boundary conditions and choice
of constitutive equations see Auton and MacMinn (2017, 2018) and MacMinn et al.
(2016).

6.3.1 Governing equations

Consider an axisymmetric deformable porous medium centered around an injection
point. The medium is constrained by a rigid but porous barrier at a distance b from the
injection point. The local fluid and solid fractions are φ(r, t) and 1−φ(r, t) respectively.
We assume that both the fluid and solid are incompressible and so continuity of the
fluid and solid phases require,

∂φ

∂t
+ 1

r

∂

∂r
(rφvf ) = 0, (6.2)

∂ (1 − φ)
∂t

+ 1
r

∂

∂r
(r (1 − φ) vs) = 0, (6.3)



6.3 Mathematical modelling 127

where vf and vs are the interstitial fluid velocity and solid velocity respectively. We
further assume that the flow of the fluid relative to the solid obeys Darcy’s law,

φ (vf − vs) = −k

µ

∂p

∂r
, (6.4)

where µ is the viscosity of the fluid phase, p is the fluid pressure, and k, is the
permeability.

A total stress balance in the medium gives

∇ · Σ = 0, (6.5)

where Σ is the total stress which is equal to the phase-averaged stress in the fluid
and solid phases, Σ = φpI + (1 − φ)Σs, where, in common with Darcy’s law we have
assumed that the stress in the fluid phase is isotropic and given by the pressure p,
and Σs is the stress in the solid phase. Note that we take compression in the solid as
positive. Defining the effective solid stress σ = (1 − φ)(Σs − pI) and substituting into
(6.5) yields,

∇ · σ = −∇p. (6.6)

For axisymmetric fluid flow and solid displacement, (6.6) reduces to

∂σrr

∂r
− σθθ − σrr

r
= −∂p

∂r
, (6.7)

where σrr is the radial stress and σθθ is the hoop stress. Following Terzaghi’s principle,
we assume that the effective stress is related to the Eulerian strain, ζ in the solid phase,
σ = σ(ζ).

6.3.2 Initial and boundary conditions

At time t = 0, prior to injection, we assume that the medium has uniform porosity
Φ and initial cavity size a(0) ≪ b. In general, we find that the model results are
insensitive to the choice of a(0) and take it to be 0.01b in all of the results presented.

At t = 0, fluid is injected at a constant volumetric flux Q. Combining (6.2) and
(6.3) and integrating, we relate the interstitial fluid and solid velocities to the flux Q;

φ (vf − vs) + vs = Q

2πrd
. (6.8)
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The relative fluid velocity, φ(vf − vs) can then be related to the solid stress using (6.4),
(6.6) and (6.7), yielding

k

µ

(
∂σrr

∂r
− σθθ − σrr

r

)
+ vs = Q

2πrd
. (6.9)

Along the outer boundary, the solid is constrained by the porous barrier and so vs(b) = 0
such that

k

µ

(
∂σrr

∂r

∣∣∣∣
r=b

− σθθ(b) − σrr(b)
b

)
= Q

2πbd
. (6.10)

At the inner boundary, we assume that the solid is mechanically free, so the stress
normal to the boundary goes to zero, that is

σrr(a) = 0. (6.11)

Note that, in the experiments we will find that this is not necessarily the case - see
§6.4.

Finally, the inner boundary evolves with the solid velocity there,

da

dt
= vs(a). (6.12)

Another choice of boundary conditions is to impose a pressure drop across the
packing. Imposing a constant pressure drop is equivalent to setting the solid stress
and therefore porosity at the outer boundary (see Hewitt et al., 2016). This is because
the total stress is conserved and taken up by both the fluid and the solid phases. Since
the fluid (gauge) pressure is zero at the outer boundary, the pressure drop in the fluid
phase must be compensated by an equal stress increase in the solid phase.

6.3.3 Constitutive equations

To close the model, one requires constitutive laws for the permeability and solid stress.
The permeability for a packing of spheres of radius rsphere is often given by the simplified
Carman-Kozeny relation (Bear, 1988),

k(φ) =
r2

sphere

45
φ3

(1 − φ2) . (6.13)
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In general, the permeability also depends on the sphericity of the particles and the
tortuosity of the flow paths (Bear, 1988), both of which can vary substantially as the
packing is deformed. For simplicity we ignore these geometrical effects.

A number of different constitutive laws have been proposed for the solid stress in
a poroelastic medium; for a discussion of different constitutive laws see Auton and
MacMinn (2017, 2018); MacMinn et al. (2016). Here we assume that the solid only
resists changes in volume and that the stress is isotropic, σ(ζ) = σ(e)I, where e is
the volumetric strain in the solid measured in an Eulerian reference frame. This is
motivated by previous work with packings of soft, frictionless spheres that found that
the medium had negligible shear strength and that the solid stress could be taken to
isotropic and only dependent on the bulk strain (Hewitt et al., 2016; MacMinn et al.,
2015; Nordstrom et al., 2010).

The volumetric strain is related to the porosity through

e = φ − φ0

1 − φ0
, (6.14)

where φ0 is a reference porosity corresponding to zero stress in the solid. In the case of a
granular packing of frictionless particles, this corresponds to a randomly closed packing
of spheres (φ0 ≈ 0.41). Note that given the solid is deformable but incompressible, the
maximum volumetric strain is emax = −φ0/(1 − φ0). MacMinn et al. (2015) proposed
the solid stress be Hertzian elastic, Nordstrom et al. (2010) proposed a variety of
constitutive laws before settling on one that was Hertzian elastic for small strain and
diverged at some maximum strain and Hewitt et al. (2016) proposed a constitutive law
that was linearly elastic for small strain and diverged at some maximum strain. Here
we use the same constitutive law as Hewitt et al. (2016),

σ = − σ0e

1 − e/emax

= σ0

(
φ0

1 − φ0

)(
φ0 − φ

φ

)
. (6.15)

6.3.4 Nondimensionalization

We nondimensionalize the model equations by defining

r̃ = r

b
, ã = a

b
, σ̃ = σ

σ0
, k̃ = k

k0
, t̃ = t

t0
, Q = Q

Q0
, (6.16)

where we have defined the characteristic permeability, k0 = r2
sphere/45, time, t0 =

b2µ/k0σ0 and flux, Q0 = 2πdk0σ0/µ.
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Combining (6.3) and (6.9) yields a nonlinear advection-diffusion equation for the
evolution of the porosity field

∂φ

∂t̃
+ Q

r̃

∂φ

∂r̃
= φ2

0
1 − φ2

0

1
r̃

∂

∂r̃

[
r̃(1 − φ)k̃ dσ̃

dφ

∂φ

∂r̃

]
. (6.17)

The constitutive equations (6.13) and (6.15) become

k̃ = (1 − φ2)
φ3 and σ̃ =

(
φ0

1 − φ0

)(
φ0 − φ

φ

)
(6.18)

respectively. Furthermore, the boundary conditions (6.10) and (6.11) become

k̃
dσ̃

dφ

∂φ

∂r̃

∣∣∣∣
r̃=1

= Q and φ(ã) = φ0, (6.19)

and the kinematic condition (6.12) becomes

dã

dt̃
= Q

ã
− k̃

dσ̃

dφ

∂φ

∂r̃

∣∣∣∣
r̃=ã

. (6.20)

There are three dimensionless parameters in the problem: the dimensionless injection
flux, Q, the stress-free porosity φ0, and the initial porosity Φ. In the experiments and
in the model results presented in §6.3.5, the injection flux Q and initial porosity Φ are
varied and the cavity size ã(t̃) and porosity φ(r̃, t̃) are measured.

6.3.5 Model results

Equation (6.17) is solved numerically using a semi-implicit Crank-Nicolson time-
stepping scheme that is second-order accurate in space. For all of the results presented
in this section the stress-free porosity is set to φ0 = 0.4. Figure 6.5 shows the evolution
of the porosity field, φ(r̃, t̃) and the cavity size ã(t̃) for different Q and Φ. We consider
three different cases: a medium that is initially strongly confined, Φ < φ0 (figure
6.5(a,d)), a medium that is moderately confined, Φ = φ0 (figure 6.5(b,e)), and a
medium that is weakly confined, Φ > φ0 (figure 6.5(c,f)). When the medium is strongly
confined, the porosity is initially less than the stress-free porosity. The medium
therefore compacts at the outer boundary while decompacting at the inner boundary.
In the weakly confined case on the other hand, the porosity is initially above the
stress-free porosity everwhere and compacts at both the inner and outer boundary. In
both cases, a boundary layer structure grows inward from the two boundaries. When
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Fig. 6.5 Transient results of the theoretical model. The medium is initially (a,d)
strongly confined (Φ = 0.35) (b,e) moderately confined (Φ = 0.4) or (c,f) weakly
confined (Φ = 0.45) relative to the zero stress porosity φ0 = 0.4. (a-c) The evolution of
the porosity field, φ(r̃, ˜̃t) for flux Q = 0.04. The lines correspond to time t̃ between
t̃ = 0.02 and t̃ = 5.1 separated by a factor of 2. (d-f) The evolution of the cavity size
ã(t̃).
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Fig. 6.6 Steady-state results of the theoretical model. (a) Plot of the cavity size, ã, (b)
effective permeability, k̃eff, and (c) pressure drop ∆p̃ as a function of Q for different
initial porosities, Φ. (d) Plot of the maximum flux, that is the point where k̃eff → 0
and ∆p̃ → ∞. (e,f) Plots of φs(r̃) for (e) different initial porosities and Q = 0.02 and
(f) different injection fluxes and Φ = 0.4.

the medium is moderately confined, the inner boundary is already at the stress-free
porosity and so the medium compacts from the outer boundary inwards. In all three
cases, we find that the system, after an initial transient period, tends to evolve to a
steady-state and we find that this time scale varies only slightly with Q and Φ. We
look for these steady-state solutions in the following section.

Steady-state results

At steady-state the solid is stationary and the fluid flows through the pore space. The
viscous flow through the pore space tends to compress the solid and is balanced by
elasticity which tends to decompress it. Setting the time-derivative in (6.17) to zero
and integrating twice with boundary conditions (6.19) gives the steady-state porosity,
φs, implicitly as

−φ2
0

1 − φ0

[
1

1 − φs

− 1
1 − φ0

+ log
(

1 − φs

1 − φ0

)]
= Q log

(
r̃

ãs

)
. (6.21)
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We also have the additional constraint that the solid mass must be conserved,
∫ 1

ãs

(1 − φ)r̃dr̃ = π(1 − Φ)
[
1 − ã(0)2

]
. (6.22)

The steady-state cavity size can then be found using standard root-finding techniques.
The shape of the porosity field can be collapsed onto a single master curve, and the
two parameters set the porosity at the right boundary φs(1) and the cavity size, ãs.

In addition to the cavity size and porosity field, we also define two physically useful
quantities: the pressure drop across the packing

∆p = Q
∫ 1

ãs

dr̃

r̃k̃
, (6.23)

and the effective permeability

k̃eff = − log(ãs)
[∫ 1

ã

dr̃

r̃k̃

]−1

, (6.24)

which measures the effective resistance of the medium. Figures 6.6(a-c) show the
above defined quantities for different initial porosities Φ and injection fluxes Q. If
Φ > φ0, for arbitrarily small flow rates, the medium compacts until it is uniformly at
the zero stress-state, that is φs = φ0. By mass conservation, this means a cavity of size
ãs = [(Φ−φ0)/(1−φ0)]1/2 will open, and the effective permeability is k̃eff = φ3

0/(1−φ0)2,
independent of the initial porosity. If Φ < φ0, a minimum injection flux is required to
open a finite cavity. This is because the fluid flow needs to sufficiently compact the
medium downstream for the medium to decompact at the inner boundary. In general,
increasing Φ increases the cavity size as the medium becomes weakly confined and
easy to deform and as Q is increased, the cavity size also increases. However, for all Φ,
there is a maximum flux Q beyond which the permeability asymptotes to zero and the
pressure diverges, as no more flow can be forced through the medium. Equivalently,
if a pressure drop is imposed across the packing, the flux tends to a constant for
large pressure drops (see appendix 6.B). Figure 6.6(d) shows this maximum flux Qmax

as a function of the initial porosity, which we find increases monotonically with the
porosity. One interesting application of this is for the passive flow control of viscous
flows (Gomez et al., 2017), as a way of limiting the maximum flux through a system,
regardless of the input pressure. The montonic increase of the maximum flux with the
porosity suggests a simple way of tuning the passive flow control properties in this
model system.
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Fig. 6.7 Steady-state experimental measurements of the azimuthally averaged porosity
φs(r̃) for (a,b) different Φ and Q/d ≈ 1×10−3m2/s and (c,d) different Q/d and Φ = 0.43.
To minimize noise, five consecutive measurements of the porosity are averaged. (a,c)
Un-scaled data showing both the cavity and compacted regions. (b,d) Scaled-data
showing only the compacted region. The theoretical model, (6.21), with unknown
parameters φ0 and Q is fit to the experimental data. To do so, we first extract the
cavity size from the experimental results by fitting a linear profile near the edge of the
cavity and picking the point ãs that deviates from the linear profile by more than 1%.
Note that for Φ ≥ 0.58, the porosity in the cavity region is likely under-estimated as
the measurements are near the threshold of the dye-attenuation technique.

The steady-state porosity field is given in figures 6.6(e,f) for different Φ and different
Q. The porosity field takes on the same stress-free porosity at the inner boundary but
the porosity on the outer boundary is smaller for small Φ and large Q. Rescaling the
horizontal axis (figure 6.6(e) inset), we find the porosity collapses to a single master
curve; Q and Φ set the portion of the curve that is sampled as well as setting the size
of the cavity ãs.

In the following sections we present the steady-state and transient experimental
results and make quantitative comparisons with the model solutions.
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6.4 Steady-state experimental results

Each experiment was run for between 2 and 4 minutes and in that time 20 of the 30
experiments had reached a steady-state. As discussed before, the steady-state is nearly
axisymmetric and consists of a ‘cavity region’ of size as, which is mostly devoid of
particles, and a ‘compacted region’ where most of the particles accumulate. Figure 6.7
shows the steady-state azimuthally-averaged porosity field for different initial porosities
Φ (figures 6.7(a,b)) and different areal fluxes Q/d (figures 6.7(c,d)). In general we find
that the size of the cavity region increases with both Φ and Q/d.

The flow inside the cavity region consists of a large-scale circulation that is radially
outwards along the top boundary and radially inwards along the bottom boundary.
The Reynolds number inside the cavity region, defined using the characteristic depth of
the medium, is Recav ≡ Q/2πrν. The Reynolds number ranges from 0.8m/r to 4m/r,
decays away from the inlet and ranges from a maximum of 400 at the edge of the
inlet at the highest flow rates to a minimum of 20 at as at the lowest flow rates. This
relatively high Reynolds number flow results in a small number of particles that remain
in suspension as particles are continuously eroded and deposited at the inner boundary.
This occurs because the particles are nearly frictionless and density matched with the
fluid, and are therefore easy to mobilize. We expect that the rate at which particles
are eroded is proportional to the Shields parameter Θ ≡ ρQ2/asd∆ρgr3

sphere, which
measures the momentum of the fluid to the relative weight of the solid (Hogg et al.,
1996). We therefore expect to see more suspended particles for larger Q and smaller as

(smaller Φ), in qualitative agreement with the experiments.
Inside the compacted region, the porosity decreases with r̃ as the medium is more

compacted near the outer boundary. The porosity at the outer boundary is lowest for
initially strongly confined media and large flow-rates. The characteristic (pore-scale)
Reynolds number in this region is Recom ≡ Qrsphere/2πasdν and ranges from a minimum
of 0.2 at the outer boundary at the lowest flow rates to a maximum of 8 at the inner
boundary at the highest flow rates. Given the pore-scale Reynolds number is less
than 10, we expect Darcy’s law to apply in the compacted region (Bear, 1988). We
fit the theoretical model (6.17) to the experimental measurements in the compacted
region. In §6.3 we assumed φ0 was a material parameter corresponding to zero stress
at the inner boundary. Experimentally, we find that φs(ãs) = φ0 is not uniform across
experiments. To account for this fact, we fit φ0 in each of the experiments. We also fit
the dimensionless injection flux, Q, in order to determine the characteristic dimensional
flux Q0 = 2πk0σ0/µ. For Φ ≥ 0.43, the porosity on the inner boundary ranges from
0.41 to 0.44, in agreement with previous experiments (Hewitt et al., 2016), and is
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Fig. 6.8 Steady-state comparison of experimental and model results for different initial
confinement Φ and injection fluxes Q/d. (a) Plot of the cavity size, ã. The cavity size
is found by fitting a linear profile near ã and picking the point which deviates from
the linear profile by more than 1%. (b) Comparison of the experimentally measured
cavity size and the inferred cavity size from the model using fits for φ0 and Q. (c)
Comparison of the model fit Q and the experimentally imposed flux Q/d. The slope
of the line of best fit is 17 ± 2 and its inverse is the dimensional flux 2πk0σ0/µ. (d)
The inferred effective permeability from the model using fits for φ0 and Q.

higher for slower injections. The systematically larger φ0 for slower injections could be
due to the boundary between the compacted and cavity regions being sloped leading to
seemingly larger porosities for more sloped interfaces. Note that there is a significant
amount of uncertainty in the measurement of the inner boundary porosity as the
boundary between the compacted and cavity regions is not precise. This is in part due
to the near, but not exactly, axisymmetric structure of the porosity field. For Φ = 0.36,
that is for a packing that is initially confined past the jamming criterion, φ0 ranges
from 0.36 to 0.39. These values of φ0 are larger than Φ but smaller than the values
found in experiments that were not initially jammed (Φ ≥ 0.43). Also, unlike the other
experiments the transition from the cavity region to the compacted region is not as
sharp, which leads to large amounts of uncertainty in ãs and a potential breakdown of
the modelling assumptions.

Figure 6.8 shows steady-state global quantities ãs, Q and k̃eff. The steady-state
cavity size is an increasing function of Q and Φ. In figure 6.8(b) we compare the
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measured cavity size (measured directly from the images) and the inferred cavity size
(calculated based on the model fit to the porosity data in the compacted region). We find
good agreement between the two, although the model systematically underestimates
ãs. This is because, in writing (6.22) all of the particles are assumed to lie within
the compacted region. One could account for this discrepancy by modifying (6.22) to
account for a finite number of suspended particles which depend on Θ. We also use the
fitted porosity profiles to infer the effective permeability of the media (figure 6.8(d)).
The effective permeability is relatively similar in the weakly to moderately confined
cases, in qualitative agreement with the model for small fluxes. Nonetheless, even in this
small flux limit, we see a nearly 50% reduction in the permeability between the smallest
and largest flow rates for Φ = 0.43. The permeability in the strongle-confined limit
is much smaller and varies much less, suggesting the fluid flow does not significantly
deform the solid.

In figure 6.8(c) we compare the inferred flux (found from fitting the model to
the porosity data in the compacted region) to the actual flux imposed. For the
experiments with intial porosity larger than or equal to 0.43, the inferred flux scales
linearly with the imposed flux and the inverse of the slope of the line of best fit
corresponds to the dimensional flux 2πk0σ0/µ = 0.059±0.007m2/s. Given the viscosity
of water is µ = 0.95 ± 0.02 × 10−3Pa s and the characterisitc permeability scale is
k0 = r2

sphere/45 = 9 ± 5 × 10−5m2/s we find that the elastic modulus of the packing
of spheres is σ0 = 1000 ± 700Pa. This is quite close to the measured elastic modulus
in Hewitt et al. (2016) who found that a similar packing of spheres had an elastic
modulus of about 1900Pa. The main difference between the two experiments is that
here de-ionized water was used as the working fluid, which led to more swollen and
hence more elastic particles (Hoshino et al., 2018).

The pre-jammed case, Φ = 0.36, deviates from the rest of the experiments. This
discrepancy is likely because it is much more difficult to rearrange particles that are
pre-jammed into a particular configuration. This implies that our assumption that
the pressure is an isotropic function of φ may not be valid for initially compacted
media and that a more complicated constitutive law is required. One potentially simple
way of modelling the solid rheology in this limit would be to take σ0(Φ), an initial
porosity-dependent bulk elasticity that takes on the value 1000 ± 700Pa for Φ ≥ 0.42
and is larger otherwise. For the experiments with Φ = 0.37, we find the effective elastic
modulus is about 2000Pa. Determining whether this is a reasonable assumption, and
determining how the isotropy of the solid stress changes as it is compacted, is the
subject of future work.
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Fig. 6.9 Transient behaviour of the porosity field and cavity size for moderately
confined media (Φ = 0.43). (a) Experimental measurements of the transient evolution
of the porosity field for Q/d = 0.69 × 10−3m2/s. (b) Time-evolution of the model for
φ0 = 0.425 and Q = 0.0125. (c) Evolution of the normalized cavity size for different
injection rates and Φ = 0.43. The solid lines denote the model solution for the largest
and smallest fluxes.

6.5 Transient experimental results

In this section, we discuss the transient evolution of the porosity field in the moderately
confined and weakly confined limits. Note that, the experiments in strongly confined
media were not temporally resolved enough to make comparisons with the model
results.

6.5.1 Transient behaviour for Φ ≈ φ0

In addition to steady-state measurements, we also examine the transient evolution of
the porosity field. The experimental results are given in figure 6.9(a) for a moderately
confined packing (Φ = 0.43). A cavity opens quickly and the medium compacts
primarily at the outer boundary. The slope of the porosity remains relatively constant
on the boundary and the medium continues to compact until it reaches a steady state
(in about 10 − 15s). Using the steady-state fit for parameters Q and φ0 from §6.4,
we solve (6.17) for the transient evolution of the porosity field. Contrary to previous
experiments (Hewitt et al., 2016), which found that the dynamics evolved on a much
longer time scale than predicted, here we find that the model quantitatively agrees
with the experiments. Although our steady-state porosity measurements do not evolve
(within the errors of the experiments), it is possible that there is a secondary time-scale
over which the solid matrix continues to deform slowly, for instance through creep
(Allen and Kudrolli, 2018) or de-swelling of the individual spheres (Hewitt et al., 2016).
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Fig. 6.10 Transient behaviour of the porosity field and cavity size for weakly confined
media, Φ = 0.62. (a) A snapshot of the porosity field for Q/d = 1 × 10−3m2/s and
t = 5s. (b) Experimental measurements of the deviations of the porosity field from
the initial porosity for Q/d = 1 × 10−3m2/s. Solid rich regions are denoted by thick
lines. (c) Plot of the location of the compaction front, r̃cf. r̃cf is defined as the (φ − Φ
weighted) centre of mass of the solid rich region. The solid line denotes a point simply
advected with the injected fluid.

This could result in small, experimentally unnoticable, changes in φ but drastically
different upscaled quantities k̃eff and ∆p̃.

In figure 6.9(c) we show the evolution of the normalized cavity size for different
injection fluxes. Across the five experiments, we see very little variation in the
characteristic time scale with the flux. This finding agrees with the theoretical model
(§6.3.5), where the time scale only weakly depended on the injection rate Q. In fact,
the model does a reasonable job of capturing the transient evolution of the cavity size
across all of the experiments.

6.5.2 Transient dynamics for Φ > φ0

Whereas for Φ ≈ φ0 the model and the experiments show that the medium compacts
inwards from the outer boundary, when Φ > φ0, a compaction front, which propagates
outward from the inner boundary, forms. Figure 6.10(a) shows a snapshot of one such
compaction front from an experiment with with Φ = 0.62. When injection begins,
the particles near the inlet are fluidized forming a particle rich front. These fluidized
particles are then advected downstream by the background fluid flow. As they are
advected, the front accumulates particles downstream leading to a growing front (figure
6.10(b)). Downstream of the compaction front some compaction also occurs at the
outer boundary but it is small compared to the compacting front. The compacted
region eventually hits the outer boundary before tending to a steady-state profile. Note
that although the transient behaviour does not match the theoretical model (figure
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6.5(c,f)), the steady-state behaviour does, as the dominant balance at steady-state is
still a balance between the background fluid pressure and elastic deformation.

The reason the packing behaves differently from the previous section is because
the porosity is much larger than the jamming threshold, and therefore the particles
cannot communicate stresses elastically. Instead the packing deforms viscously through
microstructural rearrangment of the particles. The rheology of the packing in this case
is more analogous to a compacting viscous fluid seen in magma dynamics (Spiegelman,
1993a,b). Because the particles are nearly frictionless and density matched with the
injected fluid, we find that the cavity boundary is simply advected by the fluid flow
and travels with the background fluid speed r̃cf ∼ (Qt)1/2 (figure 6.10(c)). This is in
stark contrast to the transient behaviour observed in §6.5.2 where the cavity growth
was only weakly dependent on the injection rate.

Similar compacting behaviour has been also been seen in air injections in weakly
confined fluid-saturated granular packings (Sandnes et al., 2011, 2007) and suspension
flow in Hele-Shaw cells (Kim et al., 2017). One key difference however is that in those
experiments, surface tension was important; either to push grains ahead or act as an
impermeable boundary for particles to accumulate. In the experiments presented here,
there is no surface tension and the fluid is free to seep through the medium. The
compaction front here instead grows because particles near the inlet are easily fluidized
and compact the particles downstream through inter-particle interactions.

6.6 Conclusions

In this chapter experiments of fluid-driven compaction in a deformable porous medium
were presented. The experimental setup consisted of deformable hydrogel beads packed
to varying degrees in a cylindrical cell. The intial packing was varied from strongly
confined (the initial porosity was below the jamming threshold) to weakly confined
(the initial porosity was above the jamming threshold). Fluid was then injected into
the cell at a constant volumetric flux and the deformation of the medium was tracked
using time-lapse imaging.

It was found that as fluid was injected, the medium compacts and a cavity opens.
The compaction front tended to either propagate inwards from the outer boundary
for initial porosities near the stress-free porosity, Φ ≈ φ0, or outward from the inner
boundary when the initial porosity is larger than the stress-free porosity Φ > φ0. In
either case the porosity field consisted of two regions: a ‘cavity region’ mostly devoid
of particles and a ‘compacted region’ where particles accumulate. Eventually the
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Fig. 6.11 Two experiments showing asymmetric porosity fields. (a) Finger-like protru-
sions due to the de-stabilization of an outwardly propagating compaction front. (b)
Fingering behaviour due to flow in a cohesive porous medium. The greyscale denotes
the measured light intensity (a.u.).

system reached a steady-state where viscous stresses imparted by the fluid on the solid
balanced the compaction of the solid.

Correspondingly, an axisymmetric poroelastic continuum model was derived, assum-
ing a pair of nonlinear isotropic constitutive laws for the permeability and solid stress.
When fit, the model gave good agreement with the steady-state experimental results
and gave a fitted bulk modulus in line with previous measurements. Furthermore, the
transient evolution of the model was also in agreement with the experimental results
when Φ ≈ φ0. When Φ > φ0, the solid phase was easily fluidized and behaved as a
suspension, which was simply advected by the injected fluid, rather than as an elastic
solid.

In addition to altering the flow properties, deformation of the solid phase can play
a critical role in transport and mixing of passive scalars. This can be important in
CCS technologies where pore-scale dilation or contraction could lead to enhanced or
reduced residual trapping or dissolution. Another example is in the understanding of
temperature and composition transport in the mantle (Rees-Jones and Katz, 2018).
More generally, the topics discussed in chapters 2-5 could now also be modified to
consider transport in deformable media as well.

6.6.1 Asymmetric flows

To conclude, we briefly discuss experiments where the deformation was not axisymmet-
ric, two examples of which are given in figure 6.11. Figure 6.11(a) shows a snapshot of
the porosity field from an experiment with Φ = 0.62 and a large injection flux. We find
that the compaction band that propagates outwards becomes unstable to finger-like
structures. We suspect that the instability in this case is driven by a mechanism
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analogous to viscous fingering. Specifically, compacting the solid leads to locally higher
effective viscosity, which is invaded by the less viscous displacing fluid. Such a configu-
ration can be unstable to viscous fingering, resulting in unstable finger growth (note
that an analogous instability was seen in suspension flows in a Hele-Shaw cell, Kim
et al., 2017). In a different set of experiments of injection into a deformable porous
medium with cohesive particles, we also find asymmetric deformation. Figure 6.11(b)
shows a snapshot of the porosity field that is near jamming but where the particles
are cohesive. In the experiment, we chemically treated the hydrogel beads to promote
adhesion and find that when fluid is injected, finger-like structures grow on a much
larger scale than the grain size. Understanding these two phenomena is the subject of
future work.

Appendix 6.A List of experiments

Appendix 6.B Large pressure drop limit of the model

In this appendix we briefly consider the large pressure drop limit of the model where ∆p

across the packing is imposed instead of Q. As noted in §6.3.2, imposing a pressure drop
across the packing is equivalent to imposing the porosity at the outer boundary and
therefore the limit ∆p → ∞ is equivalent to φ(1) = φb → 0. The general steady-state
flux for arbitrary constitutive laws for the permeability and solid stress is given by:

Q log
( 1

ãs

)
=
∫ φb

φ0
kσ′dφ. (6.25)

After differentiation we find

∂Q
∂φb

log ãs = −k(φb)σ′(φb) − Q
ãs

∂ãs

∂φb

. (6.26)

Assuming the constitutive laws are monotonic functions of φ and assuming ∂ãs/∂φb < 0,
that is the cavity size grows as the outer porosity decays, then ∂Q/∂φb is always negative,
and never takes on a maximum or minimum.

In the limit of vanishing φb, if we suppose the stress diverges like σ ∼ φ−β
b , the

permeability decays like k ∼ φα
b , ãs is finite, and ∂ãs/∂φb → 0, then

∂Q
∂φb

∼ −φα−β−1
b . (6.27)
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H(±1cm) d(±0.5mm) Q/d(×10−3m2/s) Reached steady state?
80 25 1.1 yes
80 23 1.0 yes
80 21 1 yes
80 19 1.1 yes
80 17 1.1 yes
80 15 1.2 yes
40 25 0.52 yes
40 23 0.55 yes
40 21 0.6 yes
40 19 0.66 yes
40 17 0.69 yes
40 15 0.79 yes
20 25 0.35 no
20 23 0.37 no
20 21 0.34 yes
20 19 0.43 yes
20 17 0.48 yes
20 15 0.47 yes
10 25 0.21 no
10 23 0.22 no
10 21 0.24 no
10 19 0.26 no
10 17 0.26 yes
10 15 0.27 yes
5 25 0.14 no
5 23 0.15 no
5 21 0.16 no
5 19 0.17 no
5 17 0.18 yes
5 15 0.14 yes

Table 6.1 List of experiments.

This means that for α > β + 1, the flux tends to a finite value for vanishing φb, while
for α < β + 1, the flux diverges. For the consitutive laws described in §6.3, α = 3 and
β = 1, which means the flux tends to a finite value for vanishing φb or large ∆p.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis two distinct and fundamental features of flow through porous media were
examined; the mixing of two fully miscible fluids of differing viscosity and density in
homogeneous and heterogeneous porous media, and the flow-induced compaction of
deformable porous media. In each case, the work was motivated by constraints related
to the geological storage of carbon dioxide (CO2).

In chapters 2-5, the displacement of one fluid by another fully miscible fluid in a
semi-infinite porous medium was considered using high-resolution numerical simulations.
In doing so, the aim was to identify the main flow regimes and the dominant physical
balances in each of those regimes in order to develop simple models for the evolution
of the concentration field.

In chapter 2, the displacement of a more-viscous fluid by a less-viscous fluid in
a homogeneous porous medium was considered. Three distinct flow regimes were
identified: an early-time linearly unstable regime, an intermediate-time nonlinear
regime, and a late-time single-finger exchange-flow regime. The early-time growth of
the interface was found to be dominated by longitudinal diffusion and the early-time
fingering dynamics were set by a local balance between advection and diffusion at
the finger scale. It was also showed that for a given log-viscosity ratio, R, there is a
critical Peclet number, Pec, such that the instability is always suppressed. For the
range of R considered, this stability boundary could be estimated by Pec ≈ 55/R.
At intermediate times the fingers spread longitudinally while coarsening and a model
for the transversely averaged concentration was derived, which agreed with previous
empirical models as well as the numerical simulations. At late times a new shutdown
regime was found, which consisted of a single pair of counter-propagating fingers
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that exponentially slowed leaving a linearly well-mixed interior. We also derived a
model for this asymptotic behaviour, which showed good agreement with the numerical
simulations and the total amount of convective mixing, F , was found to be well
described by F ≈ 5.3 × 10−3R(Pe − 45/R). The implications for a specific CO2

sequestration case study were also considered.
Next, stable and unstable displacements in layered heterogeneous porous media were

examined in chapters 3 and 4, respectively. Specifically, the idealized case where the
log-permeability varied sinusoidally with magnitude σ and frequency n was considered.
In chapter 3 displacements where the injected and ambient fluids had the same viscosity
were first considered. As in chapter 2, it was found that the early-time growth of
the interface was dominated by longitudinal diffusion. At intermediate times the
fluids spread advectively while at late times the interface between the fluids evolved
through shear-enhanced dispersion. Next, the case where the injected and ambient
fluids had different viscosities was considered, but when the viscosity difference was
small compared to the permeability variations. In this limit the intermediate-time
dynamics evolved as if the medium had effective permeability variations σeff = σ + R/2,
and the late-time behaviour asymptotically approached the uniform viscosity case. The
case where the injected fluid was more viscous than the ambient fluid and the viscosity
variations were larger than the permeability variations was also considered. In this limit,
the viscosity variations tended to prevent channelling and reduced spreading and mixing
(as compared to the uniform viscosity case). Finally, a non-idealized permeability field
derived from a real reservoir was considered and comparisons between the reduced-order
models and the direct numerical simulations were made.

In chapter 4, injections of a less-viscous fluid into a layered heterogeneous porous
medium saturated with a more-viscous fluid where the viscosity variations were larger
than the permeability variations, were examined. As in chapter 2, it was found that this
configuration could be hydrodynamically unstable, and that there was a competition
between the evolving wavelength of the instability and the wavelength imposed by the
permeability. At intermediate times this competition lead to four different possible
regimes. First, the flow could finger within layers, resulting in nonlinear fingers that
elongated and coarsened, leading to, on aggregate, advective growth of the mixing
region. In this regime, small amounts of permeability heterogeneity qualitatively
changed the structure of the flow and resulted in significantly enhanced spreading
(as compared to a homogeneous medium). Second, the flow could channel along the
layers, with no finger-finger interactions or large-scale coarsening, which resulted in
exponentially slowing and diffusing fingers. Third, the interface fingered on a scale
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much wider than the imposed permeability, and resulted in advective growth of the
mixing region, which was slower than spreading in a homogeneous medium. Finally,
these fingers coarsened until a single pair of fingers were left, which evolved in a manner
similar to the shutdown regime in chapter 2. Finally, two non-idealized permeability
fields were considered, one that was the superposition of two different wavelength
modes, and one derived from a real reservoir.

In chapter 5, unstable displacements in homogeneous porous media were again
considered (as in chapter 2), but now the density of the two fluids was assumed to
be different, parameterized by G. Displacements where G ̸= 0 but the injected and
ambient fluids had the same viscosity were first considered before examining the overall
dynamics when both the density and viscosity varied. In general, at early times,
vertical flow was important and lead to either small-scale fingers along the boundary,
in the viscosity dominated limit, or large-scale slumping, in the density dominated
limit. At intermediate times, vertical flow could be neglected and the interface evolved
through either fingering, in the small G limit, a single pressure-driven gravity current,
in the moderate G limit, or a single density-driven gravity current, in the large G limit.
Over time the fingering and density-driven gravity current limits both tended to the
pressure-driven gravity current limit. Finally at late times, transverse diffusion was
important and a transition in the dynamics from a shutdown regime (analogous to the
shutdown regime in chapter 2) to a viscously-enhanced Taylor slumping regime was
found. Finally, the dominant physical balances in three different CO2 sequestration
case studies were considered, and it was found that viscous fingering was important at
In Salah and Salt Creek but unimportant at Sleipner.

In the final portion of this thesis (chapter 6) the fluid-driven compaction of a
deformable porous medium was examined. The experimental setup involved the
injection of water into a variably confined, water-saturated packing of soft hydrogel
spheres, and dye-attenuation techniques were used to measure the depth-averaged
porosity field. An axisymmetric, large-deformation, poroelastic model was derived
for the fluid flow and deformation of the porous medium. The steady-state results of
the model were then compared to the experiments, which showed good agreement for
packings with intial porosities above jamming, but there were discrepencies for initially
strongly confined porous media. The transient results of the poroelastic model also
showed good agreement with the experiments for initial porosities near jamming, but
for initially high porosities, the solid deformed viscously rather than elastically.



148 Conclusions and Future Work

Fig. 7.1 Preliminary numerical simulations of a less-viscous, more-dense fluid injected
into a layered porous medium saturated with a more-viscous, less-dense fluid. The
permeability field consists of four alternating layers of high and low permeability. (a)
t = 0.15, (b) t = 0.4, and (c) t = 1.

7.2 Future work

This thesis lays the ground work for a number of directions of further study. A natural
extension of the analyses in chapters 2-5 would be to consider the combined effects of
viscous fingering, layered permeability heterogeneities and buoyancy gradients. First,
this requires understanding the uniform viscosity case, where the permeability varies
and the injected and ambient fluids have different densities. Hinton and Woods (2018)
studied gravity currents in layered porous media in the limit of sharp-interfaces and
vertical-flow-equilibrium, which ignores any small scale fingering or mixing. Hup-
pert et al. (2013) studied, using experiments, the transition from convectively stable
configurations to convectively unstable ones. This transition resulted in small-scale
fingering, but the rate of mixing in the unstable configurations remain unknown. In
addition, by introducing different viscosity fluids, the interface can also be unstable to
viscous fingering, which can greatly enhance mixing and spreading. Some preliminary
numerical simulations are given in figure 7.1, which show a range of different small-scale
behaviour including viscous fingering, and Rayleigh-Taylor fingering, in addition to
stable regions that are channelized by the permeability field. The goal would be to
model the amount of mixing as a function of the different parameters.
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Another natural extension of the work in this thesis would be to consider the
effect of changing the geometry. Throughout this thesis only a two-dimensional planar
geometry was considered, and it is unknown as to how much the quantitative analyses
in chapters 2-5 change with different geometries. In two-dimensions, miscible flows in
cylindrical porous geometries have received relatively little attention. Although there
is a significant body of work that has examined miscible instabilities in Hele-Shaw cells
(see for example, Bischofberger et al., 2014; Lajeunesse et al., 1999), they have, for
the most part, been limited to fast, non-Darcian, flows. Two notable exceptions are
the works of Chui et al. (2015) and Videbaek and Nagel (2019) who considered slow
flows in Hele-Shaw cells; however, a quantitative description of the viscous fingering
instability, and the effects of permeability heterogeneities and buoyancy gradients is yet
to be explored. Similarly, investigations of miscible displacements in three-dimensional
geometries are relatively scarce. Although in three-dimensions, the flow evolves in
qualitatively the same way as the two-dimensional case (Zimmerman and Homsy,
1992a), there are quantitative differences (Riaz and Meiburg, 2003). Elucidating these
differences, and determining the long-time asymptotic behaviour is one potential avenue
for further work.

In chapters 2-5, it was assumed that the two fluids were fully miscible. However, as
alluded to in chapter 1, in many geological settings, including in the subsurface storage
of CO2, the fluids are only partially miscible. One way to extend the results in this
thesis would be to consider fully immiscible displacements using a Buckley-Leverett-
type formulation for the evolution of the saturation. This has been used to study the
onset of viscous fingering and qualitatively describe its nonlinear evolution (Riaz et al.,
2007; Riaz and Tchelepi, 2004, 2006), but a quantitative description of the overall
life-cycle of evolution remains to be understood. There are qualitative similarities
between miscible and immiscible displacements in porous media, but these similarities
and differences have not been systematically described.

To validate the modelling assumptions, and for a more complete understanding of
mixing due to miscible displacement processes, comparisons need to be made to simple
laboratory experiments, to check that the correct physics has been incorporated into the
models. Furthermore, direct comparisons need to be made to field-scale experiments
to quantify the effects of geological inhomogeneities.

In chapter 6, the model and the experimental results were, for the most part,
axisymmetric. However, in the conclusions of that chapter it was noted that finger-like
structures in weakly-confined and cohesive media also formed. One potential avenue
for future work would be to better understand, both using laboratory experiments and
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theoretical-modelling, the formation of the finger-like structures and their implications
to flow and transport.

More generally, outstanding questions remain at the intersection of these two
topics. Specifically, during the geological storage of carbon dioxide, the coupling of
mixing and deformation can influence the long-term storage capacity of a reservoir.
For example, mixing can impact deformation through the dissolution of the solid
phase, while flow-induced deformation can affect the transport properties through
the narrowing or dilation of pores. Therefore, further understanding the dynamics of
mixing in deformable porous media is critical to better inform the constraints on the
safe storage of CO2, in order to move this technology forward.
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Appendix A

Numerical method

In chapters 2 to 5, Darcy’s law, incompressibility and an advection-diffusion equation
along with the form for the permeability and equations of state for the viscosity and
density are solved numerically. The method in which these coupled equations are
numerically solved is outlined in this appendix.

A.1 Introduction

The non-dimensional equations in the moving frame that are solved in chapters 2 to 5
are

− (ũ + 1) = k(y)
µ(c)

∂p̃

∂x̃
, −vµ = k(y)

µ(c)

(
∂p̃

∂y
+ Gc

)
, (A.1)

∂ũ

∂x̃
+ ∂v

∂y
= 0, (A.2)

∂c

∂t
+ ũ

∂c

∂x̃
+ v

∂c

∂y
= 1

Pe

(
∂2c

∂x̃2 + ∂2c

∂y2

)
, (A.3)

where c is the local concentration of the injected fluid, u = (u, v) is the Darcy velocity
through the medium, p the pressure. For more details about the problem formulation
see §2.2. We assume the non-dimensional viscosity µ depends on the concentration

µ(c) = e−Rc, (A.4)

the permeability varies transversely

ln (k) = −σ cos (2πny) − ln (I0(σ)) , (A.5)



164 Numerical method

and the density varies linearly with the concentration

ρ = ρ2

ρ1 − ρ2
+ c. (A.6)

In total there are five important non-dimensional parameters: the log-viscosity ratio
R, the Peclet number Pe, the log-permeability variance σ, permeability wavenumber
n, and the gravity number G. In chapter 2 we consider flows where σ = G = 0, in
chapters 3 and 4 we consider flows where G = 0 and in chapter 5 we consider flows
where σ = 0.

Along the top and bottom boundaries we either impose periodic boundary conditions

c(x, 0, t) = c(x, 1, t), u(x, 0, t) = u(x, 1, t), v(x, 0, t) = v(x, 1, t) (A.7)

(chapters 2, 3 and 4) or no-flux boundary conditions

∂c

∂y
(x, 0, t) = ∂c

∂y
(x, 1, t) = v(x, 0, t) = v(x, 1, t) = 0 (A.8)

(chapter 5). Along the horizontal boundaries we either impose

u(−∞, y, t) = u(∞, y, t) = 0, (A.9)

c(−∞, y, t) = 1, c(∞, y, t) = 0, (A.10)

(chapter 2) or
v(−∞, y, t) = v(∞, y, t) = 0, (A.11)

∂c

∂x
(−∞, y, t) = 1,

∂c

∂x
(∞, y, t) = 0 (A.12)

(chapters 3, 4, and 5), although the precise choice of boundary conditions in the
horizontal direction do not effect the dynamics.

A variety of techniques have been used to solve the system of equations (A.1) to
(A.6). These include sprectral methods (De Wit and Homsy, 1997b; Tan and Homsy,
1988; Zimmerman and Homsy, 1991, 1992b, etc.), pseudo-spectral methods (Islam and
Azaiez, 2005) and finite-difference methods (Jha et al., 2011a,b, 2013). Here we use a
modified finite-difference method, which is numerically stable for all R.

First, given that the flow is incompressible, we write the velocity in terms of a
streamfunction Ψ(x, y, t):

u = ∂Ψ/∂y, v = −∂Ψ/∂x. (A.13)
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Fig. A.1 (a) Sample snapshot of the concentration field (b) magnified region showing
the corresponding gridding. Note that the streamfunction is also solved on the same
grid.

Combining equations (A.1) and (A.2) yields an elliptic equation for the streamfunction

∂2Ψ
∂x2 + ∂2Ψ

∂y2 − ∂Ψ
∂x

(
R

∂c

∂x

)
−∂Ψ

∂y

(
R

∂c

∂y
+ 2nπσ sin (2nπy)

)
=

R
∂c

∂y
+ GeRc ∂c

∂x
+ 2nπσ sin (2nπy) .

(A.14)

The boundary conditions on the velocity (A.7), (A.8), (A.9), and (A.11) become

Ψ(x, 0, t) = Ψ(x, 1, t), Ψ(x, 0, t) = Ψ(x, 1, t) = 0,

Ψ(−∞, y, t) = Ψ(∞, y, t) = 0,
∂Ψ
∂x

(−∞, y, t) = ∂Ψ
∂x

(∞, y, t) = 0
(A.15)

respectively

A.2 Gridding

In order to simulate an infinite strip, we impose the horizontal boundary condtions at
x = ±Γ/2, where Γ is chosen to be sufficiently large such that these boundaries are far
from the interface. We discretize the domain on a rectangular grid with (nx(t), ny(t))
grid points in the (x, y) direction (figure A.1).

To minimize computational time we use an adaptive grid. Firstly, since previous
work has shown that solutions are independent of the aspect ratio as long as the fingered
region is sufficiently far from the boundaries (Ruith and Meiburg, 2000; Tan and Homsy,
1988), we use a growing computational domain. Each simulation is initialized with a
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domain length Γ = 1 and whenever the fingered region approaches the boundary Γ and
nx are doubled. Specifically, the domain is doubled whenever c(x = −0.3Γ) < 0.999 or
c(x = 0.3Γ) > 0.001. We also allow the number of gridpoints to decrease in time as the
concentration gradients weaken. nx and ny are initially chosen such that fingers are
well resolved (see figure A.1(b)) and decrease in time as the concentration gradients
weaken. Specifically, the number of gridpoints in either the x or the y direction are
halved every time the maximum concentration gradient in that direction quarters.
This process only starts once the maximum concentration gradient has fallen below 10
and t > 100. These values were chosen empirically to ensure numerical accuracy and
stability while also minimizing computation time. We compared simulations with the
adaptive gridding scheme and simulations with fixed domain sizes to confirm that this
had no measurable effect on the dynamics.

A.3 Streamfunction equation

At each time step, we solve (A.3) using a second-order accurate iterative multi-grid
solver (Adams, 1999) with the solution at the previous time step used as an initial
guess. In doing so, the spatial derivatives of the concentration are discretized using
compact finite differences (see next section).

A.4 Advection-diffusion equation

At a given time step s, the diffusive terms Dxx := ∂2c
∂x2 /Pe and Dyy := ∂2c

∂y2 /Pe in (A.3)
are discretized using sixth order compact finite differences (Lele, 1992). These spatial
derivatives are found by solving the system of equations

MDi(cs) = Ncs. (A.16)

For a given row or column of c, the matrices M and N in the case of periodic
boundary conditions are band diagonal cyclic matrices with (Mk−1,k, Mk,k, Mk−1,k) =
(2/11, 1, 2/11) and (Nk−2,k, Nk−1,k, Nk,k, Nk+1,k, Nk+2,k) = (3, 48, −102, 48, 3)/44(δi)2.
In the case of non-periodic boundary conditions, lower-order accurate discretizations
are used on the boundaries.

The advective terms Ux := ux∂c/∂x and Uy := uy∂c/∂y in (A.3) are discretized
using a third-order upwinding scheme. For a given grid point l, k, the advective
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component in the x-direction is

Ux,l,k = ux,l,k

12δx

 (sgn(ux,l,k) − 1) cl−2,k + (4sgn(ux,l,k) − 8) cl−1,k+

(−6sgn(ux,l,k)) cl,k+ (8sgn(ux,l,k) + 4) cl+1,k + (−sgn(ux,l,k) − 1) cl+2,k

,

(A.17)

and y-component can be similarly discretized. For non-periodic boundary conditions,
lower-order accurate discretizations are used on the boundaries.

Equation (A.3) is then advanced explicitly in time using a third-order Runge-Kutta
scheme:

cs+1/2 − cs

∆t/2 = Lcs,

cs+1 − cs

∆t
= 2Lcs+1/2 − Lcs,

cs+1 − cs

∆t
= 1

6Lcs + 2
3Lcs+1/2 + 1

6Lcs+1,

(A.18)

where
Lc := Ux(ux, c) + Uy(uy, c) + Dxx(c) + Dyy(c). (A.19)

The time step, δt = min (10−6Pe, min (δx/umax, δy/vmax)) is chosen to be sufficiently
small to ensure stability of both the advective and diffusive parts.

A.5 Validation

We first validated the solver for the streamfunction by comparing to known analytical
solutions and found that errors decayed with the square of the grid resolution. We
similarly found that errors of the combined code decayed with both the grid resolution
and time-step. To validate the numerical scheme we first compare the numerical results
to the linear stability analysis of Pramanik and Mishra (2015) (figure A.2(a)) and find
very good agreement. We also find that the results are grid-independent; doubling of
the number of grid points has no qualitative or quantitative effect on the dynamics
in the nonlinear regime (figure A.2(b)). Note that in figure A.2(b), there are initially
discrepancies due to discretization error, but these errors become insignificant over
time.
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Fig. A.2 (a) Growth rate, γ, vs. wavenumber, k for (R, Pe, σ, n, G) = (3, 500, 0, 0, 0)
from the full 2D numerical simulations (dots) and linear stability analysis (dashed lines).
(b) Evolution of the mixing length, h, as a function of time t for (R, σ, Pe, n, G) =
(2, 0.01, 4000, 2, 0) and different grid-resolutions, nx × ny.
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