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Abstract  16 

ATP is an important extracellular signalling agent, operating in growth regulation, stomatal 17 

conductance and wound response. With the first receptor for extracellular ATP now identified 18 

in plants (P2K1/DORN1) and a plasma membrane NADPH oxidase revealed as its target, the 19 

search continues for the components of the signalling cascades they command. The 20 

Arabidopsis root elongation zone epidermal plasma membrane has recently been shown to 21 

contain cation transport pathways (channel conductances) that operate downstream of P2K1 22 

and could contribute to eATP signalling. Here, patch clamp electrophysiology has been used to 23 

delineate two further conductances from root elongation zone epidermal plasma membrane that 24 

respond to eATP, including one that would permit chloride transport. This perspective 25 

addresses how these conductances compare to those previously characterized in roots and how 26 

they might operate together to enable early events in eATP signalling, including elevation of 27 

cytosolic free calcium as a second messenger.  The role of the reactive oxygen species (ROS) 28 

that could arise from eATP’s activation of NADPH oxidases is considered in a qualitative 29 

model that also considers the regulation of plasma membrane potential by the concerted action 30 

of the various cation and anion conductances. The molecular identities of the channel 31 

conductances in eATP signalling remain enigmatic, but may yet be found in the multi-gene 32 

families of glutamate receptor-like channels, cyclic nucleotide-gated channels, annexins and 33 

aluminium-activated malate transporters. 34 
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Introduction  40 

Adenosine 5’-triphosphate (ATP) is well known as an essential cellular energy source. However, 41 

the recognition of ATP as an extracellular signalling agent in plants is becoming more 42 

widespread (Clark and Roux, 2018).  Extracellular ATP (eATP) has been shown to modulate 43 

growth and development, particularly of pollen and root hairs (Roux and Steinebrunner, 2007; 44 

Clark et al., 2010; Wu et al., 2018).  It is abundant at the apex of growing roots and root hairs 45 

in a range of plants (Kim et al., 2006) and is involved in root gravitropism and root curling 46 

(Tang et al., 2003; Yang et al., 2015). eATP can also regulate stomatal movement (Clark et al., 47 

2011; Hao et al., 2012; Wang et al., 2014; Chen et al., 2017). Activation of plant stress 48 

responses by eATP, notably wounding responses, may be through second messengers such as 49 
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nitric oxide, reactive oxygen species (ROS) and cytosolic free calcium ([Ca2+]cyt) (Demidchik 50 

et al., 2003a,2009; Song et al., 2006; Foresi et al., 2007; Torres et al., 2008; Wu et al., 2008; 51 

Choi et al., 2014). A key advance in the field comes from the identification of the first 52 

angiosperm eATP receptor, P2K1 (DORN1, Does not respond to nucleotides1) in Arabidopsis 53 

thaliana. The P2K1 nomenclature is preferred since this aligns the plant work with the greater 54 

body of animal literature focused on the P2X and P2Y families of purinergic receptors. The 55 

P2K1 plasma membrane (PM) receptor kinase commands increases in ROS and [Ca2+]cyt by 56 

eATP that operate in seedling wound transcriptional response and regulation of stomatal 57 

aperture (Choi et al., 2014; Chen et al., 2017).   58 

 59 

Ion fluxes across the PM are likely to be critical components of early eATP signal cascades, 60 

particularly in the generation of a [Ca2+]cyt
 signal. The majority of research to date on eATP-61 

induced ion fluxes has been on root cells, which have proved to be sensitive and experimentally 62 

tractable. eATP has been found to depolarize (i.e., make more positive) the PM potential of 63 

growing Arabidopsis root hairs (Lew and Dearnaley 2000), indicating cation influx/anion 64 

efflux. It has also been observed to affect root PM Ca2+, K+ and Na+ fluxes (Demidchik et al., 65 

2011; Dark et al., 2011; Lang et al., 2014 ; Zhao et al., 2016). Moreover, the Ca2+ and K+ fluxes 66 

in response to eATP vary spatially along the root (measured using an extracellular, self-67 

referencing ion-selective microelectrode; Demidchik et al., 2011; Dark et al., 2011). 68 

Arabidopsis elongation zone epidermis proved more sensitive to eATP than mature zone, also 69 

sustaining greater net Ca2+ influx and K+ efflux (Demidchik et al., 2011; Dark et al., 2011). 70 

Such Ca2+ influx across the PM could relate to eATP-induced [Ca2+]cyt increase as a second 71 

messenger. eATP has now been shown to elevate root [Ca2+]cyt, measured using the 72 

luminometric reporter aequorin and FRET-based reporters such as YC3.6 (Demidchik et al., 73 

2003a, 2009; Tanaka et al., 2010; Loro et al., 2012; Behera et al., 2018). Blocking putative PM 74 

Ca2+ influx channel proteins with lanthanides or chelating extracellular Ca2+ can prevent eATP-75 

induced [Ca2+]cyt elevation (Demidchik et al., 2003a, 2009; Behera et al., 2018), implicating 76 

such passive transporters in the generation of the [Ca2+]cyt signal. 77 

 78 

Patch clamp electrophysiology has been applied successfully to resolve eATP-activated PM 79 

Ca2+ influx channels in Arabidopsis root cells. Mature epidermal cells have a hyperpolarization 80 

activated calcium channel (HACC) conductance that is further activated by eATP (Demidchik 81 

et al., 2009). Similar HACC conductances activated by eATP have since been identified at the 82 

guard cell and pollen PM (Wang et al., 2014; Wu et al., 2018). In root epidermis, the HACC 83 

may lie downstream of the PM RBOHC NADPH oxidase isoform. This HACC may contribute 84 

to the net Ca2+ influx reported for this root zone (Demidchik et al., 2009, 2011; Shang et al., 85 

2009; Dark et al., 2011). Patch clamping has also implicated the heterotrimeric G protein α 86 

subunit in eATP activation of the PM HACC conductance of apical root cells (Zhu et al., 2017). 87 

Furthermore, patch clamping of elongation zone epidermal PM has revealed a small HACC-88 

like conductance (that also permits K+ influx) and a K+ efflux conductance (in 44 out of 113 89 

protoplasts) that are not only activated by eATP but lie downstream of P2K1 (Wang et al., 90 

2018).  The K+ efflux pathway resembles a depolarization-activated non-selective cation 91 

channel conductance (NSCC; Wang et al., 2018). It is feasible that these could contribute to 92 

the Ca2+ influx and K+ efflux evoked by eATP in the elongation zone epidermis (Demidchik et 93 

al., 2009, 2011; Dark et al., 2011). Thus, so far, little is known about the regulation of plant 94 

PM channels by eATP. Based on further patch-clamp studies here of PM conductances from 95 

root elongation zone epidermis, early ionic events in response to eATP (narrowed down to the 96 

level of ion channel conductance) are revealed in this Perspective.  97 

 98 
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Diverse conductances in the plasma membrane of Arabidopsis root epidermis  99 

A range of Ca2+-channels, K+-channels, NSCC and anion channels have been identified 100 

previously in Arabidopsis root epidermal PM through patch clamping (e.g., Demidchik et al., 101 

2002; 2007, 2009; 2014; Foreman et al., 2003; Pilot et al., 2003; Diatloff et al., 2004; Hedrich 102 

et al., 2012; Laohavisit et al., 2012; Makavitskaya et al., 2018). Using the same experimental 103 

conditions as our previous study (that identified the eATP-activated small HACC-like and K+ 104 

efflux conductances; Wang et al., 2018), 26 out of 113 protoplasts from elongation zone 105 

epidermis were found to have a large time-dependent HACC conductance (Véry and Davies, 106 

2000) under control conditions, which was accompanied by an instantaneous outward current 107 

at depolarized voltages (Figure 1A). eATP increased HACC currents rapidly (within a minute) 108 

after treatment and activation lasted for at least 10 mins (Figure 1A). This was a similar time 109 

course to the eATP-activated HACC from mature epidermal protoplasts, in which activation 110 

persisted for up to 20 minutes (Demidchik et al., 2009). NaCl (600 µM, the control for the Na-111 

ATP salt) did not cause HACC activation (Figure S1).  eATP-induced HACC inward currents 112 

were blocked by the lanthanide cation channel blocker Gd3+, indicating cation permeability 113 

(Figure S2A).  Qualitatively, the eATP-activated HACC resembled those found in Arabidopsis 114 

root tip cell PM, Vicia faba guard cell PM and tobacco pollen PM (Wang et al., 2014; Zhu et 115 

al., 2017; Wu et al., 2018).  116 

 117 

Protoplasts (11 out of 113) also presented a conductance dominated by a non-linear outward 118 

current that activated around the equilibrium potential for K+ (EK annotated on the current 119 

voltage (I-V) graph in Figure 1B). This resembled previously characterized Shaker outward K+ 120 

channel conductances (Gaymard et al., 1998; Ache et al., 2000; Hosy et al., 2003; Li et al., 121 

2016) and would mediate K+ efflux from the cytosol. Similar to the plant Shaker outward K+ 122 

channels reported so far (Gaymard et al., 1998; Ache et al., 2000; Hosy et al., 2003; Li et al., 123 

2016; Wang et al., 2019), this conductance was inhibited by external application of the classical 124 

K+ channel blocker, tetraethylammonium (TEA) (Figure S2B). This Shaker-like outward 125 

conductance was not significantly affected by eATP (Figure 1B). This distinguishes the 126 

conductance from the eATP-activated NSCC K+ efflux conductance found by Wang et al. 127 

(2018).  Additionally, the time constant of activation at 23 mV (185.3 ± SE 22.7; n=6) of the 128 

Shaker-like outward conductance is two-fold slower than the NSCC outward conductance, 129 

suggesting that they are distinct conductances. 130 

 131 

An anion conductance was evident in 12 protoplasts. This reversed close to ECl (Figure 1C)  132 

indicating an anion (Cl-) permeability. The I-V relationships for control and plus eATP trials of 133 

the individual protoplasts tested are shown in Figure S3. There was variation in the magnitude 134 

of current, and statistical analysis of the eATP effect was after normalization (Maierhofer et al., 135 

2014). Qualitatively, this conductance resembles a root epidermal PM conductance that permits 136 

ascorbate efflux (Makavitskaya et al., 2018) and the mild deactivation at negative voltages 137 

resembles that of the wheat Al3+-activated ALMT1 anion channel (Zhang et al., 2008) . Anion 138 

fluxes (especially Cl- fluxes) in eATP signalling are poorly documented, possibly due to the 139 

methodological limitations of using self-referencing ion-selective electrodes (Shabala et al., 140 

2013; Pottosin et al., 2018). This anion conductance would permit anion efflux at 141 

hyperpolarized voltage and anion influx at depolarized voltage. Anion influx responded rapidly 142 

(within a minute) to eATP, while efflux was significantly increased after 3 minutes and was 143 

significant for several minutes after (Figure 1C). The eATP-activated conductance was 144 

insensitive to Gd3+ (Figure S2C), further supporting its identity as an anion conductance. This 145 

conductance may be relevant to the effects of eATP on membrane voltage. Overall, of the 113 146 

protoplasts studied, the most frequently occurring conductances were the small HACC-like 147 

conductance (that also permits K+ influx) and the K+ efflux conductance reported by Wang et 148 
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al. (2018). The remaining 20 protoplasts of the 113 that were not described here did not display 149 

a clear conductance type. 150 

 151 

Multiple conductances could operate in root epidermal eATP signalling  152 

Combining this new knowledge of eATP-activated root epidermal conductances with findings 153 

from previous studies (Choi et al., 2014; Chen et al., 2017; Demidchik et al., 2003a, b, 2007, 154 

2009, 2011; Gutermuth et al., 2018; Pottosin et al., 2018; Rodrigues et al., 2017; Shang et al., 155 

2009; Tavares et al., 2011; Véry and Davies, 2000; Wang et al., 2018; Wilkins et al., 2016) 156 

allows generation of a hypothetical and qualitative model of the early steps in eATP signalling 157 

in Arabidopsis epidermis (Figure 2). This presumes that the conductances found to be activated 158 

by eATP here and by Wang et al. (2018) would all be present in one cell, despite the varying 159 

frequency of occurrence in patched protoplasts. Those frequencies may reflect different levels 160 

of cellular maturity at the point of release or perhaps even the PM state (pump-state, K+-state 161 

or depolarized state; Tyerman et al., 2001) at the initiation of patching. In this model, eATP is 162 

expected to modulate the root epidermal PM potential through the regulation of these ion 163 

conductances. eATP recognition is postulated to be by the PM receptor P2K1 (Choi et al., 2014; 164 

Wang et al., 2018). This could possibly phosphorylate the channels involved here, with the 165 

HACC as a prime target.  However, in guard cells P2K1 phosphorylates the RBOHD NADPH 166 

oxidase, resulting in elevated production of ROS (Chen et al., 2017). This could also occur in 167 

the root epidermis (perhaps even with the RBOHC isoform; Demidchik et al., 2009) as eATP 168 

can increase root epidermal cytosolic ROS (mainly H2O2) within seconds in an RBOH-169 

dependent manner, which in turn activates downstream [Ca2+]cyt signalling (Demidchik et al., 170 

2009, 2011). It is envisaged that extracellular H2O2 (as a downstream product of RBOH activity)  171 

could enter the cytosol through PM aquaporins, in common with guard cells (Rodrigues et al., 172 

2017). Due to the fast activation found here of the HACC conductance upon eATP addition 173 

(Figure 1A), this HACC may therefore be directly or indirectly responsive to ROS (Figure 2). 174 

Which ROS and at which membrane face? Activation of elongation zone epidermal HACC by 175 

extracellular H2O2
 has been found but the time course of activation was not reported 176 

(Demidchik et al., 2007).  Entry of H2O2 into the cytosol could also produce intracellular 177 

hydroxyl radicals (formed through a Cu+ catalyst in the Fenton reaction (Richards et al., 2015) 178 

to activate Ca2+ influx (Rodrigo-Moreno et al., 2013). HACC activation in this cell type by 179 

extracellular hydroxyl radicals occurs in a few minutes (Foreman et al., 2003) and also occurs 180 

in mature epidermis (time course not reported; Laohavisit et al., 2012). All scenarios assume 181 

that ROS could be generated under patch clamp conditions. Supporting this, eATP activation 182 

of the mature epidermis HACC in patch clamp was lost in the rbohc loss of function mutant, 183 

and prevented in wild type by the reductant dithiothreitol, suggesting that ROS production is 184 

possible (Demidchik et al., 2009). Also, activation of guard cell PM HACC by eATP was 185 

prevented by DPI (diphenyleneiodonium), an inhibitor of flavoproteins including NADPH 186 

oxidases, placing the HACC downstream of such enzymes (Wang et al., 2014).  187 

 188 

    189 

As Ca2+ is transported into the cytosol, it could lead to a depolarization of the root epidermal 190 

PM and possibly have a positive feedback effect on the RBOH (through EF hands) and the 191 

HACC (Wilkins et al., 2016).  It has been shown previously that increased [Ca2+]cyt shifts the 192 

HACC activation threshold to depolarized voltage and increases current magnitude 193 

(Demidchik et al., 2002; Véry and Davies, 2000). Then, a subsequent Cl- release at more 194 

depolarized voltage through the eATP-activated anion conductance (Figure 1C) could deepen 195 

the PM depolarization (Figure 2). It may also be that Cl- efflux through the anion conductance 196 

is stimulated by the increased [Ca2+]cyt. The precedent for this comes from the Arabidopsis 197 
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pollen tube apical PM, where hyperpolarisation-induced [Ca2+]cyt increase causes increased Cl- 198 

efflux (Tavares et al., 2011), possibly through Ca2+-dependent protein kinases (Gutermuth et 199 

al., 2018). Another stimulator could be eATP-induced ROS (Kim et al., 2006; Demidchik et 200 

al., 2009). Indeed, it has been reported that extracellular hydroxyl radicals could induce efflux 201 

of cytosolic anions from barley elongation zone epidermal protoplasts, which could contribute 202 

to root PM depolarization (Pottosin et al., 2018). If the eATP-activated anion conductance 203 

found here were capable of releasing ascorbate to the extracellular PM face (Makavitskaya et 204 

al., 2018), it could even promote ascorbate-fueled extracellular hydroxyl radical production 205 

(Richards et al., 2015; Makavitskaya et al., 2018). 206 

 207 

After sufficient depolarization, the activation of Cl- influx through the anion conductance 208 

(Figure 1C) and K+ efflux through the NSCC-like conductance (Wang et al., 2018) would 209 

increase. The latter was found only to be significant after 8 min exposure to eATP (Wang et al., 210 

2018) and may well be a late event. Qualitatively, this NSCC-like conductance resembles an 211 

elongation zone PM NSCC conductance found to be activated by extracellular hydroxyl 212 

radicals (Demidchik et al., 2003b). It may be that hydroxyl radicals are involved in eATP 213 

signalling. Alternatively, as high extracellular H2O2 inhibits K+ efflux by the PM NSCC 214 

(Demidchik et al., 2003b), late activation of the NSCC-like conductance could reflect the 215 

lowering of H2O2 concentration at the extracellular PM face.  The induction of cation efflux 216 

and anion influx upon longer ATP treatment (>3 minutes) could finally repolarize the PM of 217 

the root epidermis. Although the NSCC-like conductance found by Wang et al. (2018) is 218 

proposed to participate in the PM repolarization in the present model (Figure 2), a potential 219 

role for the Shaker-like outward conductance (shown in Figure 1B) cannot be excluded. When 220 

PM repolarizes to a certain voltage, passing the activation potential of the NSCC-like 221 

conductance, the Shaker-like outward conductance might contribute (probably after 8 minutes) 222 

to continuing the PM repolarization, thus eventually hyperpolarizing the plasma membrane.  223 

Future directions 224 

While eATP has been shown to depolarize the PM (Lew and Dearnaley, 2000), showing the 225 

dependency on P2K1 would be critical to start verifying this model. P2K1 has been shown to 226 

be required for the eATP-activated root epidermis PM HACC-like and NSCC-like 227 

conductances (Wang et al., 2018). Whether P2K1 (or an as yet unknown receptor; Clark and 228 

Roux, 2018) governs the eATP-induced HACC and anion currents remains, however, to be 229 

elucidated. The relationship between P2K1 and RBOHs in the root epidermis also needs to be 230 

tested, as does the possible role of ROS in activating the conductances found in the present 231 

study. It has been reported that H2O2 induces reactive carbonyl species (RCS) and that these 232 

significantly inhibit K+ inward channels in guard cell PM (Islam et al., 2016). It would be 233 

interesting to test root epidermis overexpressing 2-alkenal reductase (an RCS scavenger; Islam 234 

et al., 2016) to see whether eATP signalling would normally result in inhibition of K+ inward 235 

channels through RCS production. 236 

 237 

Searching for the molecular identities of these root epidermal conductances in eATP signalling 238 

is imperative. Patch-clamp analyses of Cyclic Nucleotide-Gated Channel (CNGC) mutants 239 

suggested that CNGC2, 4, 5 and 6 from Arabidopsis could contribute to HACC conductances 240 

(Ali et al., 2007; Gao et al., 2012; Wang et al., 2013; Tian et al., 2019). The CNGC family has 241 

also been proposed to encode NSCC (Köhler et al, 1999; Jammes et al., 2011; Demidchik, 242 

2014). So far, Arabidopsis CNGC14 has been discounted as a contributor to eATP-induced 243 

[Ca2+]cyt
 elevation in roots (Shih et al., 2015). Arabidopsis CNGC20 may be a candidate if eATP 244 

were to promote production of intracellular ROS, as this channel subunit has been found at the 245 

PM (Fischer et al., 2013) and may have an intracellular copper-binding site to permit Fenton 246 
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generation of hydroxyl radicals for its own activation (Demidchik et al., 2014). In mature 247 

epidermis and root hairs, the hydroxyl radical-activated HACC is entirely reliant on Annexin1 248 

(Laohavisit et al., 2012), raising the possibility of this protein’s involvement in younger cells. 249 

In addition to the CNGC family and annexins, the Glutamate Receptor-like (GLR) family 250 

provides other candidates for HACCs and NSCC (Roy et al., 2008; Tapken and Hollmann, 251 

2008; Swarbreck et al., 2013; Toyota et al., 2018). Arabidopsis GLR3.3 and GLR3.6 operate 252 

in wound-induced leaf [Ca2+]cyt
 increase (Vincent et al., 2017) and so would be prime 253 

candidates. For the Shaker-like K+ efflux conductance that appeared insensitive to eATP, it 254 

could be shaped by the GORK (Guard cell Outward Rectifier K) channel, since this is expressed 255 

in root epidermis and has been characterized as a root K+ outward channel in Arabidopsis 256 

(Ivashikina et al., 2001; Demidchik, 2014). Moreover, it can contribute to root cell PM 257 

hyperpolarization (Planes et al., 2014), consistent with a role in restoring the PM voltage at the 258 

end of eATP signalling.  However, root PM GORK releases K+ in response to extracellular 259 

hydroxyl radicals (Demidchik et al., 2010), which is at odds with the production of this ROS 260 

in the current model. The expectation would be for GORK to be activated, but with maximal 261 

activation by radicals occurring after 15-20 minutes (Demidchik et al., 2010); recordings here 262 

may not have been long enough.  Moreover, GORK is a tightly regulated channel, controlled 263 

by its positional clustering (Eisenach et al., 2014), 14-3-3 binding and [Ca2+]cyt-dependent 264 

phosphorylation status (van Kleef et al., 2018) and so other regulatory factors could be at play.   265 

  266 

The novel finding here of an eATP-activated anion conductance adds another component to 267 

eATP signalling. Plant PM anion fluxes can involve slow-activating and rapid-activating anion 268 

channels, provided by members of the SLAC (Slow Anion Channel-associated) and ALMT 269 

(Aluminium-activated Malate Transporter) families respectively (Hedrich et al., 2012). At this 270 

point, an ALMT channel appears the most likely candidate for the eATP-activated anion 271 

channel but members of the ATP-binding cassette superfamily should be considered given that 272 

mammalian ABC transporters can function as Cl- channels (Anderson et al., 1991). In addition 273 

to this perspective on the molecular identities of channels in eATP signalling, it is important to 274 

note two other transporters that are omitted from our simplistic model; the PM H+-ATPase and 275 

Ca2+-ATPase. The PM H+-ATPase plays a major part in generating the membrane potential, 276 

setting the electrochemical driving force for eATP-induced Ca2+ influx. AHA2 is the 277 

predominant PM H+-ATPase in Arabidopsis root cells (Falhof et al., 2016). Accordingly, 278 

Arabidopsis roots lacking the AHA2 isoform have a lower eATP-induced [Ca2+]cyt increase 279 

than wild type (Haruta and Sussman, 2012). Whether the eATP-induced [Ca2+]cyt increase 280 

regulates H+-ATPase activity remains to be determined. The PM Ca2+-ATPases (ACA8 and 281 

ACA10) that pump Ca2+ out of the cytosol to help end the eATP-induced [Ca2+]cyt signal in root 282 

cells (Behera et al., 2018) are unlikely to contribute to membrane potential repolarization as 283 

such transporters are electroneutral Ca2+:2H+ exchangers (Luoni et al., 2000). They could, 284 

however, contribute to the cytosolic acidification that lags behind the eATP-induced [Ca2+]cyt 285 

increase in root cells (Behera et al., 2018). This acidification is unlikely to affect the channels 286 

mediating Ca2+ influx (Behera et al., 2018) but could induce activation of slow anion channels 287 

(Colcombet et al., 2005) and the PM H+-ATPase (Behera et al., 2018). Whether the activation 288 

of PM H+-ATPase by the cytosolic acidification (Behera et al., 2018) could help in PM 289 

repolarization needs to be addressed.   290 

 291 

Overall, further investigation of the functional properties of the root epidermal PM 292 

conductances activated by eATP (and other extracellular nucleotides) will be required to make 293 

progress in understanding their molecular identities and the downstream signalling pathways. 294 

 295 

 296 
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 312 

Figure legends 313 

Figure 1. Effect of eATP on diverse PM conductances from root elongation zone 314 

epidermis.  315 

Protoplasts were isolated and used in whole cell patch clamp recordings as described previously 316 

(Wang et al., 2018). Origin of the protoplasts was confirmed with the N9093 epidermal-specific 317 

GFP reporter line (Diatloff et al, 2004). This configuration measures populations of channels. 318 

Plasma membrane potential was held at -137 mV prior to a step-wise voltage protocol of 20 319 

mV increments. Whole-cell currents were recorded in a bath solution containing (mM): 20 320 

CaCl
2
, 0.1 KCl, 5 MES-Tris, pH 5.6. Pipette solution comprised (mM): 40 K-gluconate, 10 321 

KCl, 0.4 CaCl
2
, 1 BAPTA, 2 MES-Tris, pH 7.2. Osmolarity of both solutions was adjusted to 322 

280-290 mosM with D-sorbitol. Representative current traces of (A) the HACC conductance, 323 

(B) the outward Shaker-like conductance and (C) the anion conductance under control and 324 

eATP conditions (300 µM) are shown in the left panel. Corresponding mean I/V relationships 325 

for control (○) and eATP (●) treatments are shown in the central panel with time of treatment 326 

indicated. The right panel presents the time course of eATP-activated outward currents at +43 327 

mV (●) and inward currents at -257 mV/-217 mV (○) for each type of conductance. Data are 328 

mean ± SE (n=4 in a; 5 in b; 4 in c). Negative current is net cation influx or anion efflux. 329 

Positive current is net cation efflux or anion influx. * denotes significant difference from 330 

control. *p<0.05, ** p<0.01(Student’s t-test).  331 

 332 

Figure 2. Schematic of a hypothetical pathway of eATP-activated conductances in root 333 

epidermal plasma membrane. 334 

Hypothetical model integrating the eATP-induced PM conductances from this study and 335 

previous findings referenced in the main text. The signal cascade is presented from left to right, 336 

starting with eATP perception by the receptor. Polarity of the PM potential at the cytosolic face 337 

is represented by “-“ or “+”. Phosphorylation is indicated by “P”. An early event would be Ca2+
 338 

influx through hyperpolarisation activated Ca2+ channels (HACC). Extracellular H2O2 could 339 

enter the cytosol through aquaporins (AQP). H2O2
 could directly act on ion channels or be 340 

converted to hydroxyl radicals (OH
●
) through Fenton reactions (indicated by question marks).  341 
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Anion channels would sequentially permit Cl- efflux then influx and non-selective cation-342 

permeable channels (NSCC) would facilitate K+ efflux. The overall sequence would promote 343 

repolarization of the PM potential. Arrows indicate possible activation pathways but do not 344 

necessarily imply direct interactions. The dashed arrows are predicted pathways, which are 345 

highly recommended to be investigated in future.  346 
  347 

 348 
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