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Abstract. We present interoperability as a guiding framework for statisti-
cal modelling to assist policy makers asking multiple questions using di-
verse datasets in the face of an evolving pandemic response. Interoperabil-
ity provides an important set of principles for future pandemic preparedness,
through the joint design and deployment of adaptable systems of statistical
models for disease surveillance using probabilistic reasoning. We illustrate
this through case studies for inferring and characterising spatial-temporal
prevalence and reproduction numbers of SARS-CoV-2 infections in England.
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1. BACKGROUND AND KEY PRINCIPLES OF
INTEROPERABILITY

Faced with the coronavirus disease 2019 (COVID-19)
pandemic that posed an urgent and overwhelming threat
to global population health, policy makers worldwide
sought to muster reactive and proactive analytic capabili-
ties in order to track the evolution of the pandemic in real
time, and to investigate potential control strategies. In the
United Kingdom, governmental health data analytic ca-
pabilities were strengthened in the midst of the pandemic
with the creation in May 2020 of the Joint Biosecurity
Centre (JBC), whose mission was to provide evidence-
based, objective analysis, assessment and advice so as
to inform the response of local and national decision-
making bodies to current and future epidemics. Early on,
the JBC established links with external academic or insti-
tutional groups, and in particular the health programme
(lead Chris Holmes) and the digital technology project
within the defence and security programme (lead Mark
Briers) of The Alan Turing Institute (herein Turing).

+Members of The Alan Turing Institute and Royal Statis-
tical Society’s “Turing-RSS Health Data Lab”, in partner-
ship with the UK Health Security Agency, part of NHS Test
and Trace within the Department of Health and Social Care,
https://www.turing.ac.uk/research/research-projects/turing-rss-health-
data-lab, formerly known as the “Turing-RSS Statistical Modelling
and Machine Learning Laboratory”.
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In parallel, institutions such as the Royal Society and
the Royal Statistical Society (RSS) established task force
groups to contribute their collective expertise to the UK
government and public bodies. The RSS Covid-19 Task
Force [11] was created in April 2020. Besides intervening
on statistical issues, co-chairs and members of its steering
group were mindful of ensuring coordination and avoid-
ing duplication with other initiatives. Under the leader-
ship of Chris Holmes (Turing and RSS Covid-19 Task
Force) and with the support of Sylvia Richardson (RSS
president-elect, co-chair of the RSS Covid-19 Task Force)
and Peter Diggle (steering group of RSS Covid-19 Task
Force), a partnership to provide additional capacity to the
JBC was established between Turing and the RSS. This
resulted in the creation in October 2020 of the “Statistical
Modelling and Machine Learning Laboratory” within the
JBC, now known as the “Turing-RSS Health Data Lab”
(the Lab). The Turing-RSS Lab’s aims are to work within
the JBC to provide additional capacity through indepen-
dent, open-science research based on rigorous statistical
modelling and inference directed at JBC priority areas.
In October 2021, the United Kingdom Health Security
Agency (UKHSA) was created, which incorporated the
JBC, and the Lab’s partnership then became a partnership
with UKHSA.

Established against the background of a fast moving
pandemic, this partnership brought into focus a number
of interesting challenges to conventional statistical prac-
tice arising, in particular, from the need to model real-
time, messy data from diverse sources, in order to effi-
ciently address rapidly evolving public health demands.
The dynamic nature of the pandemic and the resulting
public health priorities led to frequent changes in the spe-
cific questions being asked of the data, with focus of-
ten shifting unpredictably and suddenly. This challenged
conventional statistical analysis protocols that target spe-
cific research questions, as these would take too long to
deliver, and carry an associated risk of redundancy. In-
stead, it was necessary to develop robust, easy-to-update
and reuseable modules which could be integrated into ar-
bitrarily complex models to provide analyses useful for
decision-making.

We will often use the terminology “model” alongside
the distinct but related terminology “module/modular/
modularity”, so it is useful to compare and contrast these
concepts at the outset:

• Model. “A statistical model is a probability distribution
constructed to enable inferences to be drawn or deci-
sions made from data” [13]. A model can be comprised
of one or more modules.

• Module. A module is a model component or, more pre-
cisely, a joint probability distribution linking some or
all of: observed data, latent (unobserved) parameters or
random effects, and user-specified hyperparameters.

Of course the distinction between model and module is
not strict, as a simple model may also be a module of a
more complex model. Rather than trying to be pedantic
with the above definitions, we are simply aiming to con-
vey the spirit and sense of the vocabulary we use through-
out the paper.

Our practice and strategic thinking led us to develop a
set of inter-connected health protection models, and to ar-
ticulate the principle of “interoperability” as an important
statistical concept and goal for future disease surveillance
systems.1 In this article, we discuss the emerging princi-
ples of interoperability of statistical models that we have
operationalised since 2021, and we illustrate these on case
studies carried out in the Lab. Interoperability can be use-
fully, and loosely, characterised as “an operational statis-
tical and computational data-driven framework based on
modularized inference designed to provide timely anal-
yses and future preparedness for decision making on re-
lated questions relevant to a common process”. At its core,
interoperability is driven by the need to optimally fulfil
the following complementary principles:

P.1 Shared latent quantities. When building models to
answer different questions, harmonize the models’ es-
sential elements by incorporating common key latent
quantities, for example, disease prevalence.

P.2 Modularity. Use modular statistical approaches, such
as Bayesian graphical models, as a foundation for in-
ference and computations to ensure both modelling
agility and principled propagation of uncertainty.

P.3 Structural robustness. When one or more modules or
data sources are considered potentially unsound, con-
sider specifying robust model structures, in which the
failure or misspecification of one module has a lim-
ited impact on other modules; aim for transparent and
appropriate sharing of information across diverse data
modules, paying particular attention to possibility of
conflict between data sources.2

P.4 Dynamic model validation. Identify opportunities for
ongoing dynamic assessment of model performance,
ideally that can be applied to multiple models sharing
latent quantities and/or addressing similar questions.

P.5 Composability.3 Strive for efficient transfer of results
of analyses between different computational tools,
with the freedom to implement each module of analy-
sis primarily in its most convenient software package.

1We stress at the outset that when we refer simply to “interoper-
ability”, we always mean statistical interoperability. The concept of
interoperability referred to in engineering or for computer hardware is
not the subject of this paper.

2We distinguish structural robustness from the more general statis-
tical notion of robustness, namely good performance across of wide
class of possible true data generating mechanisms.

3We use the term composability by analogy with its definition in
system design as a principle that deals with the inter-relationships of
components.
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P.6 Probabilistic programming. Fit models using mod-
ular, efficient, high-level probabilistic programming
languages, allowing flexible and fast implementation
of complex methods and nimble repurposing of scripts
as new data and questions arise.

P.7 Data pipelines. Maintain version-controlled data
streams synchronised across a system of models and
modules, accompanied by vigilant quality control, for
example through global visualization of data inputs
and results.

P.8 Reproducibility. Ensure the generation of stable re-
producible results via an open-source code base, cou-
pled with tight control on code and data versioning.

There are obvious connections between these objec-
tives. The key desirability of modularity informed our
choice of Bayesian inference methods and Bayesian
graphical models as the core statistical framework. We
have heavily relied on the known flexibility of Bayesian
hierarchical models (BHMs) with latent (Gaussian) pro-
cess components to deliver predictive and/or explana-
tory inferences while accommodating complex data struc-
tures and measurement processes and enabling principled
data synthesis (for examples, see [1] and the introductory
chapter of [25]). Recent work on Markov melding [24]
and statistical learning, and on cutting or restricting infor-
mation flow between modules [8, 29, 35, 39, 54] is partic-
ularly relevant to anchor and operationalize our goals.

2. INTRODUCTION TO INTEROPERABILITY AS A
STRATEGIC GOAL, INFORMED BY CURRENT
APPROACHES TO DISEASE SURVEILLANCE

Integrated infectious disease surveillance has unusual
characteristics from a statistical analysis perspective.
Multiple research questions on disparate outcomes are
targeted towards better understanding of a common un-
derlying process, for example, of the disease spread and
its evolution in time and space. Asking multiple questions
of a single process opens up a spectrum of modelling ap-
proaches. At one extreme, different models using poten-
tially partially overlapping data could be built indepen-
dently to estimate common latent characteristics of the
disease under consideration. At the other extreme, we can
look to build a single universal joint model covering ev-
ery facet of the disease process that is theoretically able to
answer any question. Our conjecture is that, in the face of
the constraints and operational challenges outlined above,
there is an optimal middle ground in which we develop
models and analysis plans and couple them according to
the guiding principles of interoperability.

2.1 Building Separate Models for Common Key
Latent Quantities

Many flavours of epidemic models have been devel-
oped for tracking COVID-19 disease transmission rang-
ing from agent-based simulation models to age-structured

compartmental models or discretized semi-mechanistic
models using renewal equations [2, 20]. It is not our pur-
pose to give a comprehensive review of these but simply
to take stock of the rich diversity of modelling approaches
and data sources chosen by different teams to inform the
calibration or estimation of epidemic parameters. In the
UK, a number of academic modelling groups have been
actively participating in the expert advisory panel Scien-
tific Pandemic Influenza Group on Modelling (SPI-M),
a subgroup of the Scientific Advisory Group for Emer-
gencies (SAGE), which has advised the UK government
from the start of the pandemic. The adopted collegiate
mode of working of SPI-M has fostered the development
of a set of distinct models for estimating key epidemic
quantities and producing short-term forecasts. Besides the
differences between the modelling approaches, the choice
of primary data sources and the ways to embed this infor-
mation into the modelling framework may also differ, cre-
ating an ensemble of models with complex connections.
This parallel model development step is then followed by
a meta-analysis of the estimates of the key epidemic pa-
rameters at regular intervals, and the synthesized results
are communicated to the public, as well as used by policy
makers [18].

Such a strategy has the benefit of structural robustness
for inference on latent quantities, such as the much quoted
effective reproduction number, here denoted Reff

t , aimed
at protecting against misspecification of one or more of
the models in the ensemble, as well as countering undue
influence of artefacts connected to particular data sources.
But it also raises unresolved statistical issues on how best
to formulate criteria for including suitable models in the
ensemble, and how to weight a set of inter-connected
models in the final estimate. The UK government web-
site lists ten academic groups producing models which
contribute to the ensemble [18], and pooled estimates are
computed via a random effects meta-analysis in which
all models are given equal weight [40]. From a statisti-
cal perspective, using weights based on some measure of
short-term predictive performance for each model would
be a natural alternative, but could be potentially challeng-
ing to operationalize, as it requires all models to produce
comparable predictive outputs; see [5] for a discussion
of forecast evaluation metrics. Hence, meta-analysing re-
sults from an ensemble of models, while attractively oper-
ationally simple, results in overall estimates with unclear
statistical properties, due to models using the same or
overlapping inputs, and uncertainty not being fully prop-
agated.

2.2 Building a Full Joint Model

At the other end of the spectrum, one could strive to
develop a single “uber-model” which contains all latent
quantities of interest and a comprehensive set of data
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sources. The corresponding full joint posterior distribu-
tion of all the parameters of interest could then be derived
simultaneously, using the paradigm of Bayesian graphical
models. While theoretically optimal (provided the model
is well specified) a full joint model is particularly chal-
lenging in a fast moving epidemic situation because it re-
quires expansion, adaptation and revision each time a new
piece of information needs to be integrated, whether it is
a new data source (e.g., presence of SARS-CoV-2 in geo-
localised wastewater data), or a new policy or intervention
influencing the structure of the model (e.g., vaccination),
or the behaviour of people (e.g., mobility).

Such increasing model complexity is accompanied by a
heightened risk of misspecification and conflict between
sources of information. This makes it hard to understand
how different data sources are balanced in their contri-
bution to the overall results, and difficult to track the in-
fluence of the assumptions made on how information is
shared [58], for example, across space and time. More-
over, inevitable errors and quirks that occur in real time
epidemiological data can result in contamination of infer-
ence whereby misspecification in one part of the model
adversely affects analysis in another part. This may be
hard to diagnose and correct for. Computationally, fitting
a full joint model typically requires intricate and dedi-
cated programming, though this can be mitigated if full
modularity is embedded in the programming language; in
Section 3.6 we will discuss such computational strategies
with particular reference to the Turing.jl language
[21], one of the probabilistic programming languages we
are using in the Lab. Building a full joint model is also
likely to be computationally demanding as data accrues
and the associated number of model parameters increases,
requiring frequent fine tuning of inference algorithms.

In spite of these implementational challenges, full joint
modelling has been applied successfully in a number of
inferential contexts during this pandemic. For example,
the University of Cambridge Medical Research Coun-
cil Biostatistics Unit (BSU) and Public Health England
(PHE) model uses a deterministic age-structured compart-
mental model [4], data on daily COVID-19 confirmed
deaths, and published information on the risk of dying
and the time from infection to death, as primary sources
from which they estimate the number of new severe acute
respiratory syndrome coronavirus 2 (SARS-COV-2) in-
fections over time. Starting in the early months of 2020
from a pre-existing flu transmission model, the BSU-PHE
model has continually been adapted and complexified. In
its December 2021 release, the model accounts for the
ongoing immunisation programme and latest estimates of
vaccine efficacy, differential susceptibility to infection in
each adult age group, and incorporates estimates of com-
munity prevalence from the Office of National Statistics
COVID-19 Infection Survey [10, 57].

2.3 Interoperability of Models—the Middle Ground

Between building separate models and building a single
full joint model, the Lab experience of the COVID-19
pandemic has motivated us to adopt a strategy of interop-
erability of models for disease surveillance. Our overar-
ching goal is to ensure adaptability of models and mod-
ules so they can be repurposed as needed, while maintain-
ing a consistent treatment of uncertainty, and ensuring our
approach is as robust to misspecification as possible. We
see interoperability as a journey, and the case studies pre-
sented in Section 4 are there to illustrate the principles
and to show the direction of travel, not the fully equipped
arrival lounge.

A software engineering analogy is pertinent here: we
believe that there is benefit from moving from a “parallel”
approach, in which several separate models are analysed
simultaneously and then the results integrated by model
averaging, towards a soft “serial” approach, where input
and output components and loose chains of models are
considered. In a straightforward serial process, one could
use posterior output as input into the next model. How-
ever, doing this in a fully Bayesian manner can be as
computationally demanding as a full uber-model. Further-
more, as we will illustrate in our first case study (Sec-
tion 4.2), there are instances where it is beneficial to cut
feedback [29]. In other cases, the serial process will be
akin to approximate Bayesian melding where posterior
outputs are approximated by a suitable parametric distri-
bution [24].

3. THE MANY INGREDIENTS OF INTEROPERABILITY

Interoperability is driven by a desire to deliver timely
and robust statistical inference to answer several related
research questions on a common process. As such, inter-
operability intersects and affects many aspects of the sta-
tistical workflow, from model specification and inference
to computations and data deployment.

3.1 Shared Latent Quantities

We consider there to be an important distinction be-
tween an underlying model for the scientific process of in-
terest, S say, with parameters θ whose interpretation does
not depend on what data are available, and an observa-
tion model for data D given S, with parameters φ. Dawid
[14] calls θ and φ the extrinsic and intrinsic parameters,
respectively. Making this distinction clarifies how a new
data-source can be added to an existing model without
the need to re-build the model from scratch. In the current
context, our inferential focus is on extrinsic latent quanti-
ties such as incidence, prevalence or the growth rate. We
note, however, that care is needed in defining precisely the
inferential target to answer any particular question; for ex-
ample, an unqualified reference to “prevalence” as a latent
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quantity is open to multiple interpretations. In the case
studies in Section 4, we use point prevalence defined as
the number of individuals in the population who would
be found to be PCR-positive if tested, averaged over a
specified time interval (e.g., over a week for the debias-
ing model described in Section 4.2.1).

3.2 Modularity

Once latent quantities and scenarios of interest are spec-
ified, a common modelling framework is desirable for
building each model, to facilitate principled propagation
of uncertainty. We have chosen to formulate our mod-
els within the flexible framework of Bayesian hierarchical
models (BHM) as it brings to the foreground conditional
independence assumptions between the quantities of in-
terest (whether observables or not) and encodes the prob-
abilistic relationships between them. BHMs clarify infor-
mation flows through the use of Directed Acyclic Graphs
(DAGs), key assumptions made on exchangeability and
ways of borrowing information. They also enable inclu-
sion of new data sources in the DAGs in a coherent and
computationally efficient manner.

It is often helpful to decompose a complicated model
into smaller modules. For example, modules could rep-
resent different parts of the prior, the evolving dynamics
of the latent epidemic, and the likelihood model for differ-
ent data sources. Modularity creates a spectrum of choices
between the full joint model approach and the interoper-
ability approach.

Working within a Bayesian inference framework en-
ables the possibility of coherent propagation of uncer-
tainty without resorting to the direct specification of a full
joint model. We wish to be able to freely specify each
module separately, and then subsequently join them into
a single full joint model via their common parameters.
This can be accomplished via Markov melding [24, 41],
which builds upon the ideas of Markov combination [15,
42] and Bayesian melding [56]. Markov melding can be
used to join several Bayesian models that involve a com-
mon parameter, with the prior combined using a “pooling
function”. The joint Markov melded model is the product
of the conditional distributions of each module (given the
common parameter) and the pooled prior for the common
parameter [24].

We apply Markov melding at various points in our case
studies in Section 4. In Section 4.2, our core model com-
bines two modules and two sources of data to infer the
posterior distribution of debiased prevalence; there we use
a form of Markov melding for the model’s bias parame-
ter, creating its prior via product-of-experts pooling, that
is, the combined prior is proportional to the product of
module-specific priors.

3.3 Structural Robustness

When models are constructed from multiple modules, a
desirable property is that misspecification of one module
does not adversely affect others. Cut models [29, 35, 54]
and semi-modular inference [8] can be deployed to block,
or respectively regulate, the information flow from mis-
specified modules to more trustworthy modules. Cut mod-
els have been applied in a broad range of areas, such as
pharmacokinetic-pharmacodynamic data modeling [39,
54, 71], complex computer models [35] and epidemiology
[44]. Cut and semi-modular models can be computation-
ally challenging to fit, requiring nested MCMC by default
[29], though there is currently much active work on devel-
oping more effective computationally strategies [30, 37,
54, 55, 70] as well as clarifying such models’ technical
properties [36, 49, 55].

We provide details of our use of cut posterior distri-
butions in Section 4.2.2, as an example of structural ro-
bustness. In this case we are giving more weight to an
unbiased-by-design source of evidence within our inter-
operability framework, relative to a data module that may
suffer from misspecification.

As a further point of note on the use of cut posterior
distributions, many epidemiological models make use of
knowledge of generation intervals, serial intervals, and
incubation periods. These are typically estimated from
small-scale but direct studies of transmissions, produc-
ing broad confidence/credible intervals reflecting the in-
herent uncertainties (e.g., [3]). If these are used as priors
for generation/serial intervals or incubation periods for a
large scale epidemiological model such as Epimap ([66];
see Section 4.5), the lower quality yet larger amounts of
information in the large scale data (e.g., test counts in case
of Epimap, but can also include hospitalisation and death
counts) can easily overwhelm the priors. Instead a com-
mon approach (besides Epimap, see also [7]) is to draw
multiple samples from the priors of these quantities, com-
pute the posterior predictive distribution for each sample,
then aggregate across prior samples to capture the uncer-
tainties over the generation/serial interval and incubation
period. This can be equivalently viewed as nested Monte
Carlo estimation for a cut posterior distribution.

3.4 Dynamic Model Validation

Adopting a common inference framework for all mod-
els (here we choose to use Bayesian inference) allows a
unified interpretation of their results. Additionally, it fa-
cilitates the adoption of common ways to validate out-
puts, including the type of metrics to use, for example, the
use of marginal predictive distributions on observables.
As an example, in Section 4.2.4 and Figure 2, we are able
to identify which model is performing best in terms of
prediction by validating the resulting posterior estimates
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against held-out gold-standard data. More generally, us-
ing a modular approach has the benefit to make each mod-
elling component easier to validate using similar criteria
on shared parameters.

3.5 Composability

Here we are concerned with computational strategy. We
use the term “composability” for an approach which is
sometimes called “recursive” or “two stage” in a Bayesian
framework, [28, 38], and has been advocated as a way to
enable computationally-efficient model exploration and
cross-validation [23] and integrate different statistical
software packages [31]. As examples, in our last two case
studies (Sections 4.4 and 4.5), we transfer results between
analyses via a Normal approximation, which can also be
viewed as an approximation to Markov melding, as dis-
cussed in [24]; we discuss this approach in more detail in
Section 4.2.5.

From an operational point of view, it is also easier to
perform unit testing, debugging and identification of com-
putational bottlenecks within small, self-contained mod-
ules. For example, one can perform the prior, posterior or
conditional predictive checks for these components inde-
pendently. Then, using the modules, one can freely choose
between building a joint model by assembling these com-
ponents or treating them as separate models, perform in-
ference, and connect them using a cut or melding mecha-
nism as introduced in Sections 3.2 and 3.3.

Considerations of interoperable modularity suggest
there are benefits in targeting the marginal distributions of
core quantities that feature within multiple models. This
is because inference from these marginal models can then
be fed into multiple downstream analyses, providing a
common and coherent representation of key parameters.

3.6 Probabilistic Programming

One powerful way of performing statistical inference
in an automated and timely manner is probabilistic pro-
gramming, which allows one to write models in a con-
cise, modular, intuitive syntax and automate Bayesian in-
ference by using generic inference strategies (e.g., Gibbs
sampling, Hamiltonian Monte Carlo). This significantly
speeds up iterating models4 during a preliminary data
analysis phase. However, most probabilistic programming
languages lack native support for interoperability. We thus
based our implementation on the Julia programming
language [32], a very fast language, specially designed
for numerical computations, together with Turing.jl
[21] an independently developed software package5 im-
plemented in Julia.

4The process of specifying and estimating models, making it practi-
cable to explore a range of models.

5The name Turing given to this software package has nothing to do
with The Alan Turing Institute.

Julia has the advantage that it contains highly spe-
cialized implementations for specific computations, for
example, convolutions, that are essential for our epi-
demic models, drastically improving computational per-
formance. Turing.jl provides a convenient syntax
for defining, for example, a standard Julia function
that computes the log-probability of any desired gener-
ative model and samples from that model. Moreover, to
fully embrace the modularisation principle, we added a
new module feature in the Turing.jl language. Each
specified module behaves like an independent model and
allows us to perform all kinds of operations and diagnos-
tics available to a full model. Moreover, the programming
language allows these modules to be combined into
more complex models, similarly to assembling elemen-
tal probability distributions. Thus, the module feature al-
lows us to break a highly complex model into many com-
posable, reusable modules. Note that the Julia commu-
nity has extensively tested many of the dependencies of
the internal packages, and that we have ourselves tested
“under the hood” implementations of numerical compu-
tations such as “convolution” to ensure reproducibility.

In principle, any general-purpose programming lan-
guage can implement the optimisations available in Tur-
ing.jl. However, Julia makes such optimisations ac-
cessible by providing high-level dynamic language fea-
tures similar to Python without sacrificing performance.
For example, we can implement convolutions in Stan,
but the code is not very concise and much less reusable.
These issues make Turing.jl more suitable for com-
plex and computationally demanding models. Modularity
via high-level language abstraction in these models is re-
quired to keep the implementation composable, interop-
erable, and reusable.

We experimented with the module feature on the
Epimap model of the local reproduction number [66]. The
module mechanism enables us to implement interoper-
ability between Epimap and the Debiasing model with
a minimal amount of extra work (i.e., one author imple-
mented the code for interoperability of Epimap and De-
biasing models within a day). It also allowed us to spot
and fix a computational bottleneck arising from distribu-
tional changes. We discuss more details of this example
of interoperability in Section 4.5.

3.7 Data Pipelines

The data deployment and its synchronisation is of
paramount importance to ensure interoperable modelling,
requiring meticulous data synthesis pipelines and high
quality data curation and tracking. To ensure that inter-
operable models provide a coherent and robust set of out-
puts, consistent, high quality data feeds must be used.
This is challenging when the generation of datasets is
evolving rapidly, the data are frequently changing, and the
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downstream synthesis is continually being updated and
modified. The complex datasets generated are typically
being made available to a diverse user group resulting in
data proliferation and redundancy. Parallel, superficially
redundant data feeds may be maintained to increase re-
silience, analogous to the Redundant Arrays of Inexpen-
sive Disks (RAID) storage framework [9]. Note that dif-
fering levels of information governance, dependent upon
the proposed data use, dictate the granularity of data avail-
able to specific users, requiring strict data management to
ensure data synchronisation.

Data curation processes may be performed at the source
of the data and centrally for both basic data cleaning and
sophisticated curation [69]. The tracking of metadata de-
scribing the data granularity and data curation are impor-
tant to assess outputs that are comparable. All of these
factors mean that the same core data may be required to
be provided to users in several different forms, with varied
provision and annotation of metadata. The data selection
requirements for our interoperable models may also vary
(e.g., the level of granularity of age or geography may be
different) and so transparency of the data transformation
is key to informing interoperability. To reduce data re-
dundancy, “Single-source-of-truth” or “Master Data Man-
agement principles” could be applied to the provision of
datasets. These principles suggest that only a single, mas-
ter copy of each dataset is maintained, and that datasets
are combined into, for example, a data warehouse by link-
ing rather than duplication. The deployment of resilient
ETL (Extract-Transform-Load) processes that implement
the differing business logic (e.g., data transformations) to
capture and integrate data from multiple feeds into a sin-
gle data repository facilitates downstream consistent data
feeds, data synchronisation and reduces redundancy. In
this manner, the ETL facilitates the definition of the data
transformation and processes required to manage rapidly
evolving data and its underlying structure. The data ware-
house is then a stable research-ready dataset that facili-
tates data releases and snapshots of the primary data, for
example, COVID-19 test results, to specified users.

3.8 Reproducibility

Reproducibility is the principle that all policy decisions
or publication should be based on analysis outputs that
can be generated exactly by other researchers in their
own computing environments, given the same data in-
puts and hyperparameter settings. Reproducible, reliable,
and transparent results comprise one of the key ingre-
dients of the data life science framework for veridical
data science, that is, “principled inquiry to extract reli-
able and reproducible information from data, with an en-
riched technical language to communicate and evaluate
empirical evidence in the context of human decisions and
domain knowledge”, as proposed in [69]. To achieve re-
producibility, both input data and software code must be

versioned, and each version must be retrievable at a later
date. Code versioning is easily achieved using a source
code management tool such as Git [22]. Data versioning
can be achieved through a variety of methods, depending
on the stability of the data structures. For static data struc-
tures, temporal tables (or manually timestamped records)
provide the ability to query data as of a specific time. The
normalised data structures described above promote static
data structures; when new fields are required, a new table
is used instead of adding fields to existing tables. When
changes in schemas are unavoidable, regular data dumps
with named versions may be more appropriate.

4. CASE STUDIES

Our case studies are chosen to illustrate some of the
benefits and issues relating to interoperability that the
Lab has encountered in its work. The concept of inter-
operability first crystallised through our work on debi-
ased prevalence [51]. In Section 4.2, we describe this
work and demonstrate how careful information synthesis
(in this case cutting feedback) between data modules im-
proved prevalence estimation. In Section 4.3, we demon-
strate how we can coherently integrate and propagate the
uncertainty of resulting estimates of debiased prevalence
into a compartmental epidemic model.

In the final two case studies, in Sections 4.4 and 4.5,
we provide additional examples of model interoperability,
showing different methods of inputting debiased preva-
lence into other models to answer new questions. In each
case study, we outline some additional advantages (e.g.,
computational ease) but also new questions that arise in
the process (e.g., appropriate handling of uncertainty in
the prevalence estimates or how to link models built for
different time scales).

Overall, the case studies demonstrate how analyses in a
demanding, fast-moving, public health context can be op-
erationalised within a framework that flexibly combines a
set of independent analysis modules.

4.1 Data

We first describe the data used across the case studies.
All scripts and data to reproduce the results of our case
studies are available online.6

4.1.1 Randomized surveillance data. These record u

positive tests out of U total subjects tested. The REal-
time Assessment of Community Transmission (REACT)
study is a nationally representative prevalence survey of
SARS-COV-2 based on repeated polymerase chain reac-
tion (PCR) tests of cross-sectional samples from a repre-
sentative subpopulation defined through stratified random
sampling from England’s National Health Service patient
register [60].

6https://github.com/alan-turing-institute/ukhsa-turing-rss-
interoperability

https://github.com/alan-turing-institute/ukhsa-turing-rss-interoperability
https://github.com/alan-turing-institute/ukhsa-turing-rss-interoperability
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4.1.2 Targeted surveillance data. These record n pos-
itive tests of N total subjects tested. Pillar 1 tests com-
prise “all swab tests performed in Public Health England
(PHE) labs and National Health Service (NHS) hospitals
for those with a clinical need, and health and care work-
ers”, and Pillar 2 is defined as “swab testing for the wider
population” [17]. Pillar 1 + 2 testing has more capacity
than REACT, but the protocol incurs ascertainment bias
as those at higher risk of being infected are more likely
to be tested, such as front-line workers, contacts traced to
a COVID-19 case, or the subpopulation presenting with
COVID-19 symptoms, such as loss of taste and smell
[17]. The ascertainment bias potentially varies over the
course of the pandemic as the testing strategy and capac-
ity changes. We exclude lateral flow tests and use only test
data from Pillar 1 + 2 PCR tests.

4.1.3 Population metadata. We enrich the testing data
by population characteristics related to the following mea-
sures of ethnic diversity and socio-economic deprivation
in each local area:

• Ethnic diversity. The proportion of BAME (Black,
Asian and Minority Ethnic) population is retrieved
from the 2011 Census.

• Socio-economic deprivation. The 2019 Index of Mul-
tiple Deprivation (IMD) score is retrieved from the
Department of Communities and Local Governments
[46]. IMD is a composite index calculated at Lower
Super Output Area level (LSOA) and based on several
domains representing deprivation in income, employ-
ment, education, crime, housing, health and environ-
ment. For other geographies, for example, Lower Tier
Local Authority (LTLA) which we use in the case stud-
ies, the IMD is obtained as the population weighted
average of the corresponding LSOAs, using the 2019
mid-year population counts.

4.1.4 Commuter flow data. As one of its data inputs,
the Epimap model [66] uses commuting flow data from
the 2011 Census [67]. After preprocessing, these data are
used to create a flux matrix F that determines how trans-
mission events occur within and between lower tier lo-
cal authoritys (LTLAs); see [66] for full details. In Sec-
tion 4.5.4, we will discuss the relationship between flux
matrix F and estimates of Reff

i,w .

4.2 Estimating and Adjusting for Ascertainment Bias
in Pillar 1 + 2 Data

We now summarise our debiasing model, which com-
bines targeted surveillance data with randomized surveil-
lance data to obtain local estimates of prevalence. A use-
ful way of motivating the debiasing model is to com-
pare the properties of the randomised and targeted surveil-
lance datasets. REACT provides unbiased information on
prevalence, though with limited sample size and publicly

accessible only at a coarse spatiotemporal scale. In con-
trast, Pillar 1 + 2 has a large sample size providing strong
and biased information about fine-scale spatiotemporal
variation in prevalence, but which can be useful for preva-
lence estimation when the bias is smooth and estimable.
In other words, our model is aimed at using Pillar 1 + 2 to
extend REACT to a finer spatiotemporal scale. Full details
can be found in [51] along with accompanying R code.7

4.2.1 Debiasing model. The REACT data provide ac-
curate but relatively imprecise estimates of prevalence at
the PHE region level (i.e., coarse scale). Note that RE-
ACT total test counts U tend to be much smaller than
Pillar 1 + 2 test counts N , with U/N of order 10−2. The
REACT data likelihood for the PCR-positive prevalence
proportion π is

P(u of U | π)

= HyperGeometric(u | M,πM,U),(1)

for πM ∈ Z,

based on observing u positive tests out of a total of U

randomly allocated in a population of known size M ; our
inference under (1) and (2) is based on a latent integer
number of infected πM (see [51] for details). Note that,
for simplicity, we are ignoring the stratified sampling de-
sign in likelihood (1). We also assume here for simplicity
that the PCR-tests have perfect specificity and sensitivity;
it is straightforward to incorporate known type I and II er-
ror rates within the test debiasing framework (see [51] for
further details).

In contrast, test positivity rates in Pillar 1 + 2 data are
strongly biased upwards relative to the population preva-
lence proportion, as the testing is directed at the higher
risk population (e.g., symptomatics, frontline workers).
We show how careful modelling of the ascertainment pro-
cess allows us to estimate prevalence accurately, and with
good precision, even at a fine-scale level such as LTLA.

We introduce the following causal model for the obser-
vation of n of N positive targeted (e.g., Pillar 1 + 2) tests:

P(n of N | π, δ, ν)

= Binomial
(
n | πM,P(Tested | Infected)

)
(2)

×Binomial
(
N − n | (1 − π)M,

P(Tested | NotInfected)
)
,

where δ and ν parameterise (on log odds scale) the
binomial success probabilities P(Tested | Infected) and
P(Tested | NotInfected):

δ := log
(

Odds(Tested | Infected)

Odds(Tested | NotInfected)

)
,(3)

ν := log Odds(Tested | NotInfected).(4)

7https://github.com/alan-turing-institute/jbc-turing-rss-
testdebiasing

https://github.com/alan-turing-institute/jbc-turing-rss-testdebiasing
https://github.com/alan-turing-institute/jbc-turing-rss-testdebiasing


INTEROPERABILITY AND PANDEMIC PREPAREDNESS 191

FIG. 1. Models for debiasing. (a) Cut model where the dashed line represents cutting feedback from Pillar 1 + 2 to π . (b) Data-dependent prior
pDD(δ) has been created from cut posterior for δ from stage (a), and now only Pillar 1 + 2 data are used to infer π at the local (LTLA) level.

By causal, we mean that we explicitly take into account
the way the Pillar 1 + 2 data was generated by inferring,
and conditioning in (2), on the probability of individuals
in the population being tested. We provide a detailed de-
scription of the model in [51]. The parameter requiring
most careful treatment is δ, that is, the log odds ratio of
being tested in the infected versus the noninfected sub-
populations.

Our default approach for the other parameter, ν, is to
use the plug-in estimator ν̂ := logit[(N − n)/M] in like-
lihood (2), because it allows fast and tractable computa-
tion, and is precise with little bias when prevalence is low.
While this allows for efficient computation, heuristically
using the sub-optimal plug-in estimator can lead to model
misspecification because of its bias when prevalence is
high, a point we return to in Section 4.2.3.

4.2.2 Structurally robust estimation of ascertainment
bias δ. In Figure 1(a), the joint posterior distribution
(without cutting any information flow) is

p(π, δ | u of U,n of N,ν)
(5)

= p(π | u of U,n of N,ν) × p(δ | π,n of N,ν),

and we use the plug-in estimator ν = ν̂ ≡ logit[(N −
n)/M] for computational convenience, as introduced in
Section 4.2.1. This provides effective inference when the
model space contains the true data generating mechanism
and ν̂ is not too biased. However, if the Pillar 1 + 2 like-
lihood (2) is misspecified for any reason, then inference
on π , and hence on δ, can be adversely affected. In the
current context, the consequences of misspecification are
particularly severe because, conditional on δ, the rela-
tive sample sizes lead to the Pillar 1 + 2 likelihood (2)
typically containing far more information on π than the
REACT likelihood (1).

With this in mind, we use a cut posterior distribution,
as described in [29]:

pcut(π, δ | u of U,n of N,ν)

:= p(π | u of U) × p(δ | π,n of N,ν)
(6)

again with plug-in estimator ν = ν̂. where the first dis-
tribution on the RHS of (6) is no longer conditioning on
the n of N from Pillar 1 + 2. Switching from model (5)
to (6) “cuts feedback” from Pillar 1 + 2 to π in inference
on (π, δ). Figure 2(a)–(b) compares the joint full posterior
(5) with the joint cut posterior (6) for Pillar 1 + 2 and RE-
ACT data gathered in London during the week commenc-
ing (W/C) 14th Jan 2021. In this week, the Pillar 1 + 2
data were n of N = 60,749 of 326,986 and the REACT
data were u of U = 101 of 3,778, that is, the Pillar 1 + 2
data have 87 times as many tests as REACT that week.

The joint posteriors in Figure 2(a)–(b) have clearly
quite different support. The mean (95% CI) for δ under
the full posterior is 3.5 (3.2 −3.9) whilst under the cut
posterior it is 2.4 (2.2 −2.7). Which model, full or cut, is
estimating δ more accurately? Note that in the cut poste-
rior (6) the marginal distribution of the prevalence propor-
tion π depends only on the REACT data,

pcut(π | u of U,n of N) = p(π | u of U),(7)

and that the maximum likelihood estimator for π based
on model P(u of U | π) at (1) is approximately unbiased,
since REACT is a designed, randomised study. We say
that the estimator is approximately unbiased as, for sim-
plicity, we do not account for the stratified sampling de-
sign nor for the nonresponse (> 75%), which we assume
is noninformative. Thus, under a weakly informative prior
pflat(π), the cut-posterior π -marginal mean (95% CI) of
2.7 (2.2 −3.2) estimates π reasonably accurately. How-
ever, the full-posterior π -marginal mean of 1.4 (1.1 −1.6)
is quite different, suggesting that the Pillar 1 + 2 causal
testing model at (2) is misspecified and, having a rela-
tively large amount of data, swamps the accurate infor-
mation in the REACT data.

4.2.3 Exploring model misspecification. We initially
posit two explanations for the model misspecification
identified in Figure 2(a)–(b):
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FIG. 2. Comparison of full vs cut posterior inference for bias parameter δ under different inference strategies for ν. (a) Full, misspecified
joint log posterior—logarithm of equation (5) with ν = ν̂. (b) Cut, misspecified joint log posterior—logarithm of equation (6) with ν = ν̂. (c)
Full, improved joint log posterior—logarithm of equation (5) with ν = ν̂MLE. (d) LTLA-level debiased % prevalence based on full, misspecified
posterior (vertical) vs gold-standard REACT % prevalence (horizontal), one point per LTLA. (e) LTLA-level debiased % prevalence based on cut,
misspecified posterior (vertical) vs gold-standard REACT (horizontal). (f) LTLA-level debiased % prevalence based on full, improved posterior
(vertical) vs gold-standard REACT (horizontal). In panels (a-c) the marginal posterior distributions are plotted at the panel top and right edges,
with marginal means labelled. Inference is based on REACT and Pillar 1 + 2 data for London and its constituent LTLAs for W/C 14th Jan
2021. The gold-standard LTLA-level estimates used for validation on the horizontal axes in (d-f) are based on REACT round 8 aggregated data
(6th-22nd Jan 2021).

(E1) Violation of the Binomial distributional assump-
tion in (2) through over-dispersion caused by systematic
variation of δ, ν and π across subpopulations within an
LTLA having different COVID-19 beliefs and behaviours;

(E2) Bias in the plug-in estimator ν̂ = logit[(N −
n)/M] introduced in Section 4.2.1.

Upon further investigation, we conjecture that explanation
(E2) is the main source of misspecification because, while
it allows efficient computation, using the sub-optimal
plug-in estimator ν = ν̂ can lead to model misspecifi-
cation because of its bias when prevalence is high. To
illustrate this, we note that a better plug-in approach
would instead use the unbiased MLE estimator ν̂MLE :=
logit[(N − n)/{M(1 − π)}]. However, estimator ν̂MLE is
more computationally expensive as it requires the un-
known prevalence π as an input (and this is why we do

not apply ν̂MLE as our default).8 To target ν̂MLE we im-
plement Algorithm 1, which estimates ν according to its
π -conditioned maximum likelihood estimator ν̂MLE :=
logit[(N − n)/{M(1 − π)}] alternately with estimating
π . For the current example, this leads to the estimate
ν̂MLE = −3.460 which is to be contrasted with the biased,
computationally convenient estimate ν̂ = −3.486.

The joint (π, δ) full posterior downstream of this im-
proved estimator ν̂MLE is shown in Figure 2(c), and has
π -marginal mean (95% CI) of 2.6 (2.3 −2.9), which is
now compatible with the cut-posterior’s estimate of 2.7
(2.2 −3.2) shown in in Figure 2(b). It is interesting to
compare the width of these intervals, noting that the pos-

8The most principled approach would be jointly to infer (π, δ, ν),
though again at a greater computational cost (we do not fit the joint
model here).
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Algorithm 1 Fixed point algorithm targeting ν̂MLE

Input: REACT u of U , Pillar 1 + 2 n of N , and popula-
tion size M

π̂ ← 0
repeat

ν̂ ← logit N−n
(1−π̂)M

π̂ ← argmax
π

p(π | u of U,n of N, ν̂)

where p(π | ·) here is (5) marginalized wrt δ

until convergence
ν̂MLE ← ν̂

Output: ν̂MLE

terior distribution in Figure 2(c) is relatively concentrated
compared to the one in Figure 2(b). This reflects the ex-
tra information on π provided by the Pillar 1 + 2 data in
the full model, relative to the cut model in which informa-
tion flow from Pillar 1 + 2 to π is blocked, as illustrated
in Figure 1(a).

It is a matter of taste and expediency whether one
chooses to fit the full joint model, or to use the unbiased
plug-in ν̂MLE, or to use the biased plug-in ν̂ repaired by
cut modelling. In our case, the heuristic estimator ν̂ ap-
plied with a cut model is far more computationally effi-
cient, and we are able to validate the overall method to
be unbiased. It is an interesting choice philosophically
to incorporate a deliberately misspecified module, which
is then repaired using cut modelling, into the the overall
model. Our choice reflected our priority on computation-
ally tractability.

Note that the bias of ν̂ relative to ν̂MLE tends to be larger
for high prevalence and will have a greater impact when
the Pillar 1 + 2 sample size is large (both of which apply
to the illustrative example of London w/c 14th Jan 2021,
where prevalence is estimated at 2.7% and N = 326,986).
We further compare and contrast inference under the full
and cut posteriors after having applied them to estimate
local prevalence in Section 4.2.4.

4.2.4 Inferring cross-sectional local prevalence. We
specify a data-dependent prior pdata−dependent(DD)(δJ,w)

for each week w in each region J , based on the poste-
rior distribution at (6). We begin by approximating the
marginal posterior distribution for δJ,w with a moment-
matched Gaussian based on the cut posterior:

pDD(δJ,w)
(8)

:= Normal
(
δJ,w | μ̂J,w, τ̂ 2

J,w

)
≈ pcut(δJ,w | uJ,w of UJ,w,nJ,w of NJ,w).(9)

For example, in the case of the marginal density at the top
of Figure 2(b), we specify pDD(δJ,w) by setting μ̂J,w =
2.4 and τ̂J,w = 0.1 for London W/C 14th Jan 2021. Each
of the three inferential approaches shown columnwise in

Figure 2 will yield its own data-dependent prior in the
form of (8) which approximates the δ-marginal posteri-
ors at the top of panels Figure 2(a)–(c), and which then
feeds forward into the cross-sectional debiased % preva-
lence estimates on the vertical axes of Figure 2(d)–(f) re-
spectively.

While this approach provides a prior for weeks at which
both Pillar 1 + 2 and REACT data are available (since
we are able to estimate δ), we also wish to interpolate
and/or extrapolate information on δ to weeks at which
REACT data are unavailable (e.g., between sampling
rounds). We achieve this by introducing a smoothing com-
ponent into a product-of-experts prior ([27]; details in Ap-
pendix A), thereby allowing us to specify independent pri-
ors pDD(δJ,w) of the form (8) for all weeks, including
those without REACT data.

Having specified a prior on δ at the coarse-scale regions
J , we proceed to perform full Bayesian inference at a fine-
scale LTLA i using the prior from its corresponding re-
gion, pDD(δJ [i],w). We plot cross-sectional % prevalence
posterior medians (with 95% posterior CIs) on the verti-
cal axes of Figure 2(d)–(f), with each point corresponding
to the estimated % prevalence for one LTLA in London
for W/C 14th Jan 2021. Observe in Figure 2(d)–(f) that
the horizontal REACT CIs are relatively broad, compared
to the vertical debiased Pillar 1 + 2 CIs, exemplifying the
relatively large amount of information in the Pillar 1 + 2
data if δ can be inferred.

The results in Figure 2(d)–(f) are also informative for
our discussion of inference under the various models,
because we are able to validate against “gold-standard”
LTLA-level randomised surveillance data aggregated
across round 8 of the REACT study (6th–22nd Jan 2021).
On the horizontal axis, we plot the REACT unbiased
prevalence estimates (with 95% exact binomial CIs).
Compared to the accurate REACT estimates, the debi-
ased prevalence estimates based upon the full posterior
in Figure 2(d) are biased downwards—the estimated bias
across the LTLAs plotted is −1.28% (SE = 0.11%). In
contrast, the debiased prevalence estimates based on the
cut posterior in Figure 2(e) appear to be accurate, having
estimated bias of −0.01% (SE = 0.11%). The full poste-
rior estimates based on improved plug-in estimator ν̂MLE
in Figure 2(f) also appear accurate, having estimated bias
of −0.04% (SE = 0.11%).

4.2.5 General interoperability between models. The
graph in Figure 3(a) relates the debiasing model (in
the i,w plate) to another arbitrary model with parame-
ters (π, θ) and data/covariates Y (with Y not containing
Pillar 1 + 2). One approach to fitting Figure 3(a)’s model
would be to perform full Bayesian inference directly, that
is, sampling from (θ,π, δ). However, as will be illustrated
with the SIR model in Section 4.3, we can reduce the com-
putational complexity by first marginalising with respect
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FIG. 3. Interoperable interface of debiasing output with a model parameterised by θ and with other data Y . (a) Full interoperable model. (b)
Collapsed representation, in which the full model has been marginalized wrt δ. We use π to denote the entire spatiotemporal collection of prevalence
proportions π1:I,1:W .

to δJ [i],w yielding the marginal likelihood

p(ni,w of Ni,w | πi,w)

=
∫

p(ni,w of Ni,w | πi,w, δJ [i],w)

× pDD(δJ [i],w) dδJ [i],w,

(10)

which is an unnormalized function of πJ,w encapsulat-
ing all information on πJ,w that results from observing
ni,w of Ni,w positive Pillar 1 + 2 tests. As illustrated in
Figure 3(b), we then need sample only (θ,π) in the δ-
marginalised interoperable model.

While the marginal likelihood p(ni,w of Ni,w | πi,w) at
(10) can easily be evaluated pointwise, it does not have a
closed parametric form. We can further simplify inference
at the interface between models by approximating (up to
a multiplicative constant) the marginal likelihood with a
parametric distribution. A Gaussian moment-matched ap-
proximation on log odds scale (Figure 3(b)),

p̂(ni,w of Ni,w | πi,w)

πi,w∝ Normal
(
logit π̂i,w | logitπi,w, σ̂ 2

i,w

)
,

(11)

is a natural choice here because it provides an empirically
good fit and also integrates conveniently with methods
and software for hierarchical generalised linear models
with logit link function, as we shall see in Section 4.4.
This approach of summarising a module with a moment-
matched Gaussian distribution for use as an approximate
likelihood term in subsequent modules has been previ-

ously widely used in simpler contexts, including evidence
syntheses [68] and more general hierarchical models [12,
38].

Depending on the context, either one of (10) or (11)
may be preferred. Using the exact marginal likelihood at
(10) avoids making a Gaussian approximation, but (10)
can be computationally unwieldy as it is a mass function
on integer prevalence πM . The Gaussian approximated
marginal likelihood at (11) is often more computationally
convenient to integrate with other models. We use (10) in
Section 4.3 and we use (11) in Sections 4.4 and 4.5.

4.3 Interoperability with an SIR Model

The marginal likelihood p(ni,w of Ni,w | πi,w) from
(10) can be used to link the Pillar 1 + 2 data directly to
latent prevalence nodes in a graphical model. As a con-
crete example, we implemented a full Bayesian version
of the standard stochastic SIR model [6, 51, 63]. Figure 4
illustrates the SIR model DAG, relating prevalence pro-
portion πi,w , effective reproduction number Reff

i,w , and
test data (n of N)i,w ≡ ni,w of Ni,w . Note that Figure 4
is a special case of Figure 3(b) with data node Y empty
and θ = Reff

i,1:W . In Figure 4, each πi,w is linked to its
corresponding test data (n of N)i,w via the marginal like-
lihood p(ni,w of Ni,w | πi,w) of (10). Consecutive πi,w

and Reff
i,w nodes are related by a discrete time Markov

chain, in which the stochastic change in the number in-
fected at week w, relative to week w − 1, is modelled as
the difference between a Poisson-distributed number of
new infections and a Binomial-distributed number of new
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FIG. 4. Directed acyclic graph showing interoperability of the debiasing model output with a stochastic SIR epidemic model. Latent nodes for
LTLA i’s prevalence and effective reproduction number in week w, πi,w and Reff

i,w respectively, are shown, along with weekly Pillar 1 + 2 test
counts, integrated via the debiasing model-outputted marginal likelihood at (10). Details of the discrete time Markov chains on the latent nodes are
given in equations (12)-(14).

recoveries:

πi,wMi − πi,w−1Mi | πi,w−1,Reff
i,w−1

(12)
= # new infections − # recoveries,

# new infections | πi,w−1,Reff
i,w−1

(13)
∼ Poisson

(
γReff

i,w−1πi,w−1Mi

)
,

# new recoveries | πi,w−1
(14)

∼ Binomial(πi,w−1Mi, γ );
γ is the (pre-specified) probability of recovery from one
week to the next; and the Reff

i,w are modelled sequentially
by an AR1 process. We sample from the full Bayesian
posterior for this SIR model using MCMC methods (see
[51] for details).

Figure 5 compares, for three example LTLAs, the
cross-sectional posteriors for π with the SIR-model
MCMC-sampled longitudinal posteriors for π and Reff.
The width of the SIR posterior 95% credible intervals are
often much narrower than the cross-sectional posterior CI
width, illustrating the benefit of sharing prevalence infor-
mation across time points within the framework of an epi-
demiological model. Fitting the full Bayesian SIR model
provides posterior credible intervals on the effective re-
production number Reff (Figure 5 bottom panels), which
is an important measure of spatiotemporally local rates of
transmission. In Section 4.5, we compare these estimates
of local Reff (based on Pillar 1 + 2 from a single LTLA
only) with spatially smoothed estimates of local Reff from
Epimap [66].

4.4 Interoperability Between Debiasing and
Space–Time Equality Analysis

There is extensive evidence to suggest that ethnically
diverse and deprived communities have been differen-
tially affected by the COVID-19 pandemic in the UK
[43, 47, 61]. It is thus very important to be able to relate
unbiased prevalence estimates such as those introduced
in Section 4.2 to area level covariates, in order to assess
associations between the spread of the virus and particu-
lar population characteristics. Given the infectious nature
of the disease, residual heterogeneity is likely to have a
spatio-temporal structure, which needs to be accounted
for in the model. Failing to account for autocorrelation
may result in narrower credible intervals for parameters of
interest and may inflate covariates effects [33]. One option
to incorporate sources of spatial autocorrelation in esti-
mates of disease surveillance metrics such as prevalence,
would be to run the debiasing model presented in Sec-
tion 4.2.4 augmented by a spatio-temporal prior structure
both on the πi,w and on the ascertainment bias δi , while si-
multaneously adding the population characteristics as co-
variates to assess their impact on the spread of the disease.
However, such a strategy would entail a prohibitive com-
putational cost, not only due to the large number of latent
variables typically involved in the specification of even a
relatively simple spatio-temporal model, but also because
of implementing a cut model in such a high-dimensional
setting. As an alternative, in this section we illustrate two
interoperable models which differ in how they treat the
uncertainty of prevalence estimates.

We focus on ethnic composition and socio-economic
deprivation as covariates of interest, to assess the impact
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FIG. 5. SIR longitudinal posterior (% prevalence and effective reproduction number) compared with cross-sectional posterior for % prevalence.
Top panels: cross-sectional % prevalence posterior median and 95% CIs (black points and whiskers), and SIR modelled % prevalence posterior
median and 95% CIs (blue curves). Bottom panels: SIR modelled longitudinal Reff

i,w posterior median and 95% CIs.

of socio-economic factors on the evolution of the pan-
demic. As our aim is to assess a link between prevalence
proportion and these two factors, first we specify a prob-
ability distribution for the outcome, πi,w as

logit(πi,w)|ηi,w, σ 2 ∼ Normal
(
ηi,w, σ 2)

,(15)

where ηi,w is a linear predictor containing the area level
variables of interest as well as space and time structured
random effects defined at (18) below, while σ 2 is the vari-
ance of the error term.

Since πi,w is unknown, it is not possible to fit this model
directly. A first interoperable approach, which we call the
naive model, simply consists of plugging in the debiased
prevalence proportion point estimates (e.g., median) π̂i,w ,
outputted by the debiasing model of Section 4.2:

logit(π̂i,w)|ηi,w, σ 2 ∼ Normal
(
ηi,w, σ 2)

.(16)

This model considers the prevalence estimates as fixed
quantities, neglecting their uncertainty.

A second interoperable approach accounts for the pos-
terior uncertainty from the debiased prevalence model via
(11), similarly to [19, 53]. In practice, for the ith LTLA
and wth week this heteroscedastic model reformulates
(16) to include the variance component σ̂ 2

i,w:

logit(π̂i,w)|ηi,w, σ 2 ∼ Normal
(
ηi,w, σ̂ 2

i,w + σ 2)
.(17)

In both models, we use the following specification for the
linear predictor ηi,w , in order to assess the effect of the
area level variables of interest (proportion of BAME and
IMD score) on the prevalence estimates:

ηi,w = β0 + β1BAMEi + β2IMDi + λi + εw,(18)

where β0 is the global intercept, {β1, β2} quantify the ef-
fects of the covariates of interest, λi denotes the area spe-
cific random effect accounting for spatial autocorrelation,
and εw represents the temporal random effect. Details on
the model specification can be found in Appendix B.

Output from the two interoperable modelling
approaches presented above is used to examine the ef-
fects of socio-economic factors (i.e., ethnic diversity
and socio-economic deprivation) on COVID-19 unbi-
ased prevalence.9 Additionally, the models allow us to
characterise the baseline spatial distribution of preva-
lence across LTLAs in England, after accounting for their
socio-economic and ethnic profiles. This enables us, for
example, to identify LTLAs that have been particularly
badly affected by COVID-19 relative to their level of de-
privation and size of BAME population, and as a result
may require further consideration by policy-makers.

9For a detailed analysis of the effect of time varying association be-
tween deprivation, ethnicity and SARS-CoV-2 infections in England,
please see [52].
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FIG. 6. Posterior median of the spatial random effect λ.

FIG. 7. Posterior probability of having a positive spatial residual.

TABLE 1
Posterior median and corresponding 95% Credible Interval for the parameter estimates of the Naive (left) and Heteroscedastic (right) space–time
equality analyses. Estimates for the fixed effect coefficients are on the Odds Ratio scale. The precision of the time and spatial random effects, 1/σ 2

ε

and τ , are defined in Appendix B

Naive Heteroscedastic

Median 95% CI Median 95% CI

BAME effect (β1) 1.22 (1.17, 1.28) 1.20 (1.15, 1.25)
IMD effect (β2) 1.11 (1.07, 1.16) 1.11 (1.07, 1.15)

Precision of the Gaussian residuals (1/σ 2) 2.67 (2.59, 2.73) 4.05 (3.95, 4.15)
Precision of time random effect (1/σ 2

ε ) 30.41 (13.72, 48.51) 31.37 (19.38, 52.29)
Precision of spatial random effect (τ ) 10.89 (9.03, 13.28) 12.26 (10.00, 14.56)
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While both models are examples of interoperability,
they differ in how they handle uncertainty in the debi-
ased prevalence proportion outcome measure; the naive
model treats the prevalence estimates as fixed quantities,
while the heteroscedastic model propagates their uncer-
tainty through an additional variance term. This difference
is predominantly reflected in the uncertainty of parameter
estimates. Although the posterior median point estimates
for the effects of IMD and BAME (Table 1) and the un-
derlying spatial fields (Figure 6) are largely indistinguish-
able, the precision for the global error term (i.e., 1/σ 2) is
almost twice as large in the heteroscedastic model. Preci-
sion for the spatial component is also larger in the het-
eroscedastic model compared to the naive model, sug-
gesting that the global error and the spatial random ef-
fect in the naive model were capturing part of the spatial
variability present in the prevalence proportion estimates.
It is also interesting to note that the exceedance proba-
bility map corresponding to the heteroscedastic model is
sharper, showing that the ranking of areas deviating from
the national average is influenced by the inclusion of un-
certainty on the debiased prevalence estimates (Figure 7).

4.5 Interoperability Between the Debiasing and
Epimap Models

Epimap is a hierarchical Bayesian method for estimat-
ing the local instantaneous reproduction number Reff

i,t that
models both temporal (day t) and spatial (LTLA) depen-
dence in transmission rates [66]. Epimap incorporates in-
formation on population flows to model transmission be-
tween local regions, and performs spatiotemporal smooth-
ing on the Reff

i,t . The data inputted to Epimap are daily
positive Pillar 1 + 2 test counts at LTLA level, the ni,t in
our notation.

4.5.1 Epimap model overview. The observation model
for ni,t is an overdispersed negative binomial model with
mean Ei,t given by a convolution of a testing delay dis-
tribution DTest+

s with the past incidences Xi,1:t [20], that
is,

ni,t | Xi,1:t ∼ NegBin(Ei,t , φi),(19)

Ei,t ≡
t∑

s=0

Xi,t−sD
Test+
s ,(20)

where φi ∼ N+(0,5).
LTLA i’s incidence Xi,t is probabilistically modelled

conditional on past incidences X1:n,1:t−1 via local and
cross-coupled infection loads, denoted Zi,t and Z̃i,t re-
spectively. Specifically, the local infection load Zi,t is
given by a convolution of Ws with the past incidences
Xi,1:t , where the generation distribution Ws is the prob-
ability that a given transmission event occurs s days af-
ter the primary infection. The local infection loads con-
tribute transmission events not only locally but also to

other regions, giving the cross-coupled infection load Z̃i,t ,
with inter-regional transmission defined via a flux matrix
F , built on the commuter flow data introduced in Sec-
tion 4.1.4, in which Fji denotes the probability that a pri-
mary case based in area j infects a secondary case based
in area i. In summary, the local and cross-coupled infec-
tion loads are defined as

Zi,t ≡
t∑

s=1

Xi,t−sWs, Z̃i,t ≡
n∑

j=1

F
(t)
j i Zj,t .(21)

The incidence Xi,t follows an overdispersed negative
binomial distribution with mean given by the product of
the reproduction number Reff

i,t with the cross-coupled in-

fection load Z̃i,t :

Xi,t | Reff
i,t ,X1:n,1:t−1 ∼ NegBin

(
Reff

i,t Z̃i,t , φ
)
.(22)

Note that the Reff
i,t are our primary inferential target, and

are estimated via the posterior distribution of the ratio
Xi,t/Z̃i,t . In Figures 8 and 9 below, we present the pos-
terior distribution of the weekly averaged ratio, Reff

i,w :=
1
7

∑
t∈w Xi,t /Z̃i,t . A final aspect of the Epimap model is

the smoothing on Reff
i,t , whereby information is shared

across time and space through specification of various
Gaussian processes on logReff

i,t (see [66] for details).

4.5.2 Probabilistic interface between Epimap ME and
debiasing model MD. There are three immediate and im-
portant differences between Epimap and the debiasing
model that require attention at the model interface. First,
Epimap’s measure of infection burden is incidence (i.e.,
the number of new infections contracted in a time inter-
val), whilst the debiasing model is based on point preva-
lence, as we defined in Section 3.1. Second, Epimap is
at daily frequency, indexed t , while the debiasing model
is at weekly frequency, indexed w. Third, some LTLAs
were recently merged to create a more coarse-scale local
geography, and the debiased model works with the newer
coarser LTLA geography, while Epimap still works with
the older finer-scale LTLA geography.

To map from incidence to prevalence, we draw from
the existing COVID-19 literature on the probability of
testing PCR positive when swabbed s days post infection
[26]; we denote this as

DPCR+
s := P(would test PCR+ on day s |

contract virus day 0).
(23)

To address the daily-to-weekly mapping, we average the
daily prevalence proportion (mapped from daily inci-
dence) across the days of each week. To address the mod-
els’ differences in LTLA geography, we are able straight-
forwardly to preserve the geographies of both models by
deterministically aggregating Epimap’s latent incidences
as part of the mapping between models described below
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FIG. 8. Maps of estimated Reff
i,w for three different models across all LTLAs in England W/C 4th December 2020. (a) Epimap (ME). (b) Epimap

debiased interoperable model (MED). (c) Debiased SIR model (MD).

in (25) (details omitted for simplicity), thereby creating a
seamless interface between models. In summary, the map-
ping from daily incidence Xi,t to weekly prevalence pro-
portion πi,w is

πi,w ≡ 1

7

∑
t∈w

πi,t ,(24)

πi,t ≡ 1

Mi

t∑
s=0

Xi,t−sD
PCR+
s ,(25)

with Mi denoting local population size. Finally, the latent
weekly prevalence proportions πi,w in the interoperable
Epimap model are related to the debiasing model outputs
(π̂i,w, σ̂ 2

i,w) via the approximate π -marginal likelihood of
(11) (see also Figure 3(b)):

logit(π̂i,w) | Xi,1:t[w]

∼ Normal
(
logit(π̂i,w) | logit(πi,w), σ̂ 2

i,w

)
,

(26)

where t[w] denotes the final day in week w.
In summary, the interface between Epimap and debi-

asing models is created by removing Epimap’s observa-
tion model of (19) and (20), and replacing it with the
debiasing-model outputted marginal likelihood defined at
(24), (25) and (26).

4.5.3 Comparing and contrasting estimated Reff
i,w

across models. We estimated Reff
i,t under each of the three

models: Epimap (ME) described in Section 4.5.1; the
debiased SIR model (MD) output as described in Sec-
tion 4.3; and the interoperable combination of Epimap
and debiased models (MED) described in Section 4.5.2.
Movie 1 in the Supplementary Material [50] provides a
global perspective on the results, showing the longitudinal
changes via maps evolving through time. Figure 8 shows
one snapshot of this movie, for all LTLAs in England W/C

4th December 2020. The general theme is one of consis-
tency in Reff

i,w estimates across models, but there are points

in space and time at which results differ. We will discuss
these differences, demonstrating that they can help us to
characterise and understand model performance.

4.5.4 Interpreting model outputs via data synchronisa-
tion. We turn first to the maps in Figure 8, visually com-
paring and contrasting the three models across all LTLAs
in W/C 4th December 2020. One interesting feature here
is the presence of a few LTLAs with low Reff

i,w in both

ME and MED, but with relatively high Reff
i,w in MD.

The two most prominent, coloured blue in Figure 8(a)–
(b), are (North Warwickshire, Craven), which have Reff

i,w

estimated to be (0.37, 0.47) by ME and (0.33, 0.42) by
MED, but estimated to be higher at (0.80, 0.90) by MD.
When we compare two models that differ in both data in-
puts and in probabilistic structure (as do ME and MD)
any difference in results cannot immediately be attributed
solely to either data or model structure. However, by con-
straining the two models to have the same data inputs—
as we have here by using the prevalence outputs of MD

as inputs to MED—we can potentially learn more. Ob-
serving that MED agrees with its “model twin” ME, but
disagrees with its “data twin” MD, leads us to conclude
that differing results in (North Warwickshire, Craven) be-
tween MD and ME arise because of differences in model
structure rather than because of differences in data inputs.

We examine the hypothesis that the differences in
(North Warwickshire, Craven) Reff

i,w between ME and
MD are attributable to Epimap’s cross-coupled infection
load, Z̃i,t in (21), which allows transmission across re-
gional boundaries; in contrast, the debiased SIR model
has only within-LTLA transmission. Note from (22) that
Epimap’s expected number of new infections is repre-
sented as the product E[Xi,t | Reff

i,t , Z̃i,t ] = Reff
i,t Z̃i,t , so

that low estimates of Reff
i,t will arise when the cross-

coupled infection load Z̃i,t is large relative to the latent
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FIG. 9. Longitudinal Reff
i,w trajectories superimposed above corresponding Pillar 1 + 2 test data. Top: posterior median and 95% CIs of Reff

i,w for
three models (see upper legend, where the “De-biasing”, “Epimap” and “Epimap debiased” models are referred to in the text as MD, ME and
MED respectively). Bottom: weekly test counts, positive ni,w and total Ni,w , as well as test positivity ni,w/Ni,w (see lower legend). Vertical dashed

lines in panels (b-c) indicate instances of model discordance in Reff
i,w estimates, preceding or coinciding with local surges in testing capacity.

incidence Xi,t . For 4th December 2020 in (North War-
wickshire, Craven) MED outputs a posterior median for
Xi,t of (42.7, 24.8) and for Z̃i,t of (114.5, 81.1), consis-
tent with the low Reff

i,t estimates of (0.33, 0.42). We can

further decompose the cross-coupled infection load Z̃i,t

into infection load Zi,t originating from within LTLA
i (27.5, 31.1), and Z−i,t originating from other LTLAs
(86.7, 49.9). See Figure 10 in Appendix C for a map of
the proportion of infection load arising external to each
LTLA. It is clear that for (North Warwickshire, Craven)
the majority of the infection load in the ME (and MED)
models is external, and that these are among only a hand-
ful of LTLAs having external load at > 50% of the infec-
tion burden. Through data synchronisation, theorizing on
salient differences between models, and examining con-
firmatory diagnostic plots, we have increased our under-
standing of the operational differences between the ME
and MD models.

4.5.5 Illustrating synergy between models. The top
panels in Figure 9 present longitudinal Reff

i,w curves for
three selected LTLAs for each of the three models;
the bottom panels display the corresponding Pillar 1 + 2
weekly test counts and positivity rate. First note that the

Reff
i,w plot for Birmingham in Figure 9(a) exhibits reas-

suring similarity between models; indeed this is what we
observe for the majority of LTLAs that are not shown in
Figure 9. But the LTLAs in Figure 9(b)–(c) display some
interesting and contrasting behaviour between models.

The vertical dashed line in each panel 9(b)–(c) coin-
cides with, or immediately precedes, a surge in commu-
nity testing capacity—see the sharp increase in total test
counts in the bottom panels at or after each dashed line.
Figure 9(b) includes a mass testing pilot study in Liver-
pool beginning 6th November 2020 which led test posi-
tivity to drop sharply from 11.9% in W/C 29th October
2020 to 3.6% the following week. Such an abrupt and lo-
calized change in testing ascertainment is at odds with the
spatiotemporally smooth parameterization of the debias-
ing model, leading to artefactual deflation of Reff

i,w in MD
in W/C 5th November (marked with a dashed line). The
Reff

i,w deflation is not however evident in ME or MED.
Turning to Figure 9(c) we note that, in mid-December

2020, parts of Essex and London, including the illustrated
example of Havering, were moved into Tier 3—the very
high alert level—and earmarked for extra community test-
ing. This led to a large spike in testing capacity and up-
take, but test positivity rates remained relatively constant
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in the two weeks following the dashed line (in contrast
to the mass testing pilot in Liverpool a month earlier: see
bottom panels of Figure 9(b)–(c)). This caused artefactual
inflation of Reff

i,t in ME, since positive cases surged in line
with testing capacity, and ME takes as input only the pos-
itive cases ni,t (but not the total tests Ni,t ). The other two
models, MED and MD, are not obviously affected by the
December 2020 testing surge in Figure 9(c).

The steady performance of the interoperable model
MED across Figure 9 points to a desirable synergistic
form of structural robustness—we aspire to synthesise
models in such a way that they support one another, with
the strengths of one model stabilising inference if and
when the other model shows any weakness with respect
to the data generating mechanism. The suboptimal Reff

i,w

estimation observed in 9(b)–(c) occurred when there were
sudden changes in the ascertainment mechanism; it is re-
assuring that both adversely affected models (MD in Fig-
ure 9(b) and ME in 9(c)) apparently return to agreement
with the other models just one week after these extreme
shifts in ascertainment bias.

5. DISCUSSION

Based on our experience, we believe that striving for in-
teroperability across all facets of the delivery of statistical
projects will provide:

• Agility: the ability to rapidly interlink and recycle sta-
tistical modelling outputs across analyses, with compo-
nents transferable across health security problems;

• Robustness: the structural assembly of modules that can
be tested independently and connected in such a way as
to mitigate any widespread impact of model misspeci-
fication;

• Sustainability: a shareable, high-quality, reusable,
open-source analytic code base of modules that grows
over time;

• Transferability: a way to facilitate co-ownership of
projects with public health and health policy teams, al-
lowing rapid impact from academia and industry to be
delivered against relevant, time-sensitive problems;

• Preparedness: solutions built for a specific health emer-
gency, such as the COVID-19 pandemic, can be re-
purposed to meet future public health challenges. In
particular, the necessary generic structural links be-
tween the data engineering architecture and the analytic
and modelling side will have already been built.

Many challenges lie ahead on the path towards an ef-
fective, interoperable, and comprehensive disease surveil-
lance system. From a statistical point of view, it is most
relevant to focus our attention on issues that are generic
and likely to recur when addressing a range of questions.
For brevity we will only mention three particularly chal-
lenging ones.

A major hurdle that interoperability will face is the need
to integrate evidence from data collected at different time
steps and spatial scales. For example, the time granularity
of the randomised survey data used in our debiased preva-
lence model is a week, yet most epidemic models have
been built on the basis of daily case numbers, thus neces-
sitating an additional time-alignment interface. Similarly,
it will be common to have to integrate different geogra-
phies into a single model, constrained by the data sources.
Misaligned geographies is a recurrent statistical issue that
has been much discussed in environmental sciences [48],
and for which pragmatic but robust solutions need to be
investigated.

A second challenge is situations when moment-
matched Gaussian distributions, as used here, do not
provide adequate approximations; alternatives include
particle-based approaches, in which posterior samples
from a module are used as a proposal within an MCMC
scheme [24, 38] or for importance sampling [45] or within
a sequential Monte Carlo scheme [34].

A final challenging issue that we have already encoun-
tered, and dealt with in Section 4.2.2 by using a cut poste-
rior, is how best to balance or weight different sources of
evidence, to take into account prior knowledge; see [16]
for a discussion of evidence weighting from an epidemi-
ological perspective. Rather than completely preventing
feedback, as per a cut posterior, it may be desirable to
only partially down-weight, as proposed by [8]. For ex-
ample, in the case of diagnostic tests, weights might take
into consideration their modus operandi and context of
use.

Although the analyses presented here were motivated
by the specific example of the COVID-19 pandemic, the
overarching principle of interoperability is pertinent in a
variety of contexts with complex modelling requirements
in a dynamic environment, such as climate change or nat-
ural disaster management.

APPENDIX A: LONGITUDINAL SMOOTHING PRIOR
FOR BIAS PARAMETER δ

We evaluate the cross-sectional cut posterior for δJ,w ,
the bias at week w in PHE region J (Figure 1(a)), and use
these to construct a prior to take forward to full Bayesian
inference at each LTLA in region J . To induce smooth-
ness we construct a “product-of-experts” prior [27]:

p(δJ,1:W) ∝ Normal(δJ,1:W | 0,�δ)

× ∏
w∈W

N
(
δJ,w | m̂J,w, ŝ2

J,w

)
(27)

× ∏
w/∈W

N(δJ,w | 0, vflat).

The first term on the right of (27) is a subjective prior
on the longitudinal smoothness of δ1:T encoding an AR1
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process in �δ , defined to be only very weakly informative
with respect to average location of δJ,1:W ; the second term
is the product of (approximations to) the cross-sectional
cut-posterior marginals from (6) at weeks W for which
REACT data are available, that is,∏

w∈W
pcut(δJ,w | uJ,w of UJ,w,nJ,w of NJ,w)

≈ ∏
w∈W

N
(
δJ,w | m̂J,w, ŝ2

J,w

);(28)

and the third term is a product of noninformative cross-
sectional priors when REACT data are unavailable.

The normalised form of (27) is MV Gaussian:

p(δJ,1:W) = Normal
(
δJ,1:W |μ̂out

δ , �̂
out
δ

)
,

μ̂
out
δ := (

�−1
δ + D−1)−1

D−1μ̂,(29)

�̂
out
δ := (

�−1
δ + D−1)−1

with (μ̂, diagonal matrix DW×W ) having elements (m̂J,w,

ŝ2
J,w) for w ∈ W and (0, vflat) for w /∈ W .

We denote the marginal distribution of (29) for week w

by

pDD(δJ,w) := Normal
(
δJ,w | μ̂J,w, τ̂ 2

J,w

)
,(30)

deploying these pDD(δJ [i],w) as data-dependent priors in-
dependently at each week w in LTLA i in region J [i] as
described in Section 4.2.4.

APPENDIX B: FULL MODEL SPECIFICATION FOR
THE SPACE–TIME EQUALITY ANALYSIS

Following [59, 64], we model λ = (λ1, . . . , λI ), the
random effect accounting for the spatial autocorrelation
across LTLAs, as

λ = 1√
τ
(
√

1 − ρv + √
ρu).(31)

The vector u = (u1, . . . , uI ) is a spatially structured ran-
dom effect with prior distribution

u|τ, ρ ∼ Normal
(
0,Q−)

,(32)

where Q−, is the inverse of the precision matrix of a
ICAR model, scaled in the sense of [65]. The vector
v = (v1, . . . , vI ) is an i.i.d. Gaussian random effect, that
is

v|τ, ρ ∼ Normal(0, I ),(33)

where I is the identity matrix. To account for the time
dependence, εw is modelled as a random walk of order 2.
Given �2εw = εw −2εw+1 +εw+2, this can be formalized
as

�2εw|σ 2
ε ∼ Normal

(
0, σ 2

ε

)
.(34)

Both λ and ε imply a degree of smoothing in space
and in time and help highlight persistent patterns in the
data. Finally we set a noninformative Gamma(1,5 ×
10−5) prior on the inverse of σ 2

ε and a noninformative
Normal(0,1000) prior for the fixed effect coefficients β1
and β2. All models in the case study presented in Sec-
tion 4.4 are fitted using the R package INLA [62].

APPENDIX C: ILLUSTRATION OF EPIMAP
EXTERNAL INFECTION LOAD

Figure 10 presents the proportion of infection load orig-
inating external to each LTLA on 4th December 2020. In
Section 4.5.4, we discuss the relatively low estimates of
Reff

i,w seen for (North Warwickshire, Craven), and we at-
tribute this to them experiencing a relatively large external
infection load, (North Warwickshire, Craven) are among
the approximately 10 LTLAs in this map with external
infection load proportionally > 50%.

ACKNOWLEDGMENTS

Chris Holmes and Sylvia Richardson contributed
equally to this research.

FUNDING

MB acknowledges partial support from the MRC Cen-
tre for Environment and Health, which is currently funded
by the Medical Research Council (MR/S019669/1). RJBG
was funded by the UKRI Medical Research Council
(MRC) [programme code MC_UU_00002/2] and sup-
ported by the NIHR Cambridge Biomedical Research
Centre [BRC-1215-20014]. BCLL was supported by the
UK Engineering and Physical Sciences Research Coun-
cil through the Bayes4Health programme [Grant num-
ber EP/R018561/1] and gratefully acknowledges funding
from Jesus College, Oxford. GN and CH acknowledge
support from the Medical Research Council Programme
Leaders award MC_UP_A390_1107. CH acknowledges
support from The Alan Turing Institute, Health Data Re-
search, U.K., and the U.K. Engineering and Physical Sci-
ences Research Council through the Bayes4Health pro-
gramme grant. SR is supported by MRC programme grant
MC_UU_00002/10; The Alan Turing Institute grant:
TU/B/000092; EPSRC Bayes4Health programme grant:
EP/R018561/1. HG and TF acknowledge partial support
from Huawei Research UK. Infrastructure support for the
Department of Epidemiology and Biostatistics is also pro-
vided by the NIHR Imperial BRC. Authors in The Alan
Turing Institute and Royal Statistical Society Statistical
Modelling and Machine Learning Laboratory gratefully
acknowledge funding from Data, Analytics and Surveil-
lance Group, a part of the UKHSA. This work was funded
by The Department for Health and Social Care (Grant



INTEROPERABILITY AND PANDEMIC PREPAREDNESS 203
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SUPPLEMENTARY MATERIAL

Movie of Reff for Three Different Models. (DOI:
10.1214/22-STS854SUPP; .zip). Movie showing maps
of effective reproduction number Reff

i,w for three differ-
ent models across local authorities in England between
W/C 31st October 2020 and W/C 2nd January 2021.
Left: Epimap model described in Section 4.5.1. Middle:
Epimap-Debiased interoperable model described in Sec-
tion 4.5.2. Right: SIR model based on debiased prevalence
outputs described in Section 4.3.
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