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Abstract 

Cerebral ischaemia is a frequent finding in post mortem studies following traumatic brain injury (TBI), 

but clinical studies using 15oxygen positron emission tomography (15O PET) suggest that classical 

ischaemia is uncommon beyond the first 24 hours after injury. Evidence of metabolic failure in the 

absence of classical ischaemia may represent ongoing neuronal dysfunction and progressive neuronal 

loss. Any therapeutic intervention that mitigates such metabolic derangements before they result in 

irreversible neuronal injury may improve tissue fate and improve the functional outcome for patients. 

 

Energy failure was spatially defined, characterised, and mapped using 15O and 18Fluoromisinidazole 

([18F] FMISO) positron emission tomography. This enabled differentiation of classical ischaemia, 

diffusion hypoxia, and established infarction, and provided data on the dominant local mechanism at 

any given time after TBI. My thesis also aimed to examine the utility of diffusion tensor imaging and 

whole-brain proton MR spectroscopy (WB 1H MRS) as imaging biomarkers to investigate normobaric 

hyperoxia as a therapeutic option following traumatic brain injury (TBI). 

 

Using ([18F] FMISO PET evidence of tissue hypoxia consistent with microvascular ischaemia was found 

across the injured brain. The impact of normobaric hyperoxia (NBH) was examined in a clinical TBI 

cohort using diffusion tensor imaging and WB 1H MRS. Some evidence of benefit was found within the 

perilesional brain, but further studies should examine the value of a longer period of exposure to NBH 

and whether this has implications for functional outcome. 
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Chapter 1  Review of the literature 

Introduction  

Traumatic brain injury (TBI) is a neurological disorder, with enormous impact on the nation’s health. 

Head injury accounts for less than 1 % of all deaths; but in the age group of 15 to 24 years, it can be 

attributed for up to 15% of deaths.1 Head injury caused 156,000 national health service (NHS) hospital 

admissions in 2015-16, requiring over 0.5 million acute hospital bed-days, and over 50,000 intensive 

care unit bed-days annually.2 It is the leading cause of disability in people under 40, and it severely 

disables 150 – 200 people per million annually in the United Kingdom (UK). In North America, TBI 

affects 1.4 million people, at an estimated annual cost of $56 billion.1,3-7 

Management of traumatic brain injury  

Prevention of secondary brain damage lies at the heart of intensive care management following TBI. 

The common factors associated with worsening secondary brain damage following trauma are 

ischaemia, hypoxemia, hyper and hypocarbia and intracranial hypertension.8 Hypoxemia occurred in 

22.4% of severe TBI patients and was significantly associated with increased morbidity and mortality.9 

A single pre-hospital observation of hypotension (systolic blood pressure < 90 mmHg) was amongst 

the five most potent predictors of poor outcome after TBI and was independent of other significant 

predictors including age, admission motor Glasgow Coma Scale (GCS) score, intracranial diagnosis, and 

pupillary status.8  

Intracranial pressure 

The intracranial blood volume of approximately 200 ml is contained in the venous sinuses and pial 

veins, which constitute the capacitance vessels of the cerebral circulation.10 A reduction in this volume 

can buffer rises in the volume of other intracranial contents such as the brain and cerebrospinal fluid 

(CSF). When these compensatory mechanisms to control intracranial pressure (ICP) have been 

exhausted, even small increases in CBV can result in steep rises of ICP.11  The position of the system 

on this curve can be expressed in terms of the pressure-volume index, which is defined as the change 

in intracranial volume that produces a ten-fold increase in ICP.  This usually is about 26 ml, but may 

be markedly lower in patients with pre-existing intracranial hypertension, who are on the steep part 

of the intracranial pressure-volume curve.  Except for oedema reduction by mannitol and hypertonic 

saline, the only intracranial constituent whose volume can be readily modified by physiological or 

pharmacological interventions is the parenchymal CBV, whose capacity is set by intrinsic vasomotor 

tone.12  Although the total size of CBV is only a small part of the intracranial volume, and interventions 

to modify it only produce small absolute changes (typically ~ 10 ml or less), they may result in marked 

reductions in intracranial pressure in the presence of intracranial hypertension.13   
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Conversely, inappropriate clinical management may cause the CBV to increase.  Although the absolute 

magnitude of such an increase in CBV may be small, it may result in steep rises in ICP in the presence 

of intracranial hypertension. Interventions aimed at reducing CBV in patients with intracranial 

hypertension such as hyperventilation may have noticeable effects on CBF and result in cerebral 

ischaemia. The drugs that produce different effects on CBF may have similar effects on CBV and using 

CBF measurement to infer the impact on CBV and ICP may result in erroneous conclusions. While 

normal ICP is less than 10mmHg, different authors have used threshold values from 15 - 25 mmHg as 

a limit beyond which treatment is initiated, although most centres treat a persistent increase in ICP > 

20 mmHg.14-17 

Cerebral perfusion pressure and control of intracranial pressure 

The driving pressure in most organs is the difference between arterial and venous pressure. However, 

in the brain, the downstream pressure is not the jugular venous pressure, but the intracranial 

pressure. This is because the brain lies in a closed cavity, and when ICP is elevated, it results in the 

collapse of the bridging pial veins and venous sinuses, which act as starling resistors. Consequently, 

the CPP is defined as the difference between mean arterial pressures (MAP) and mean ICP: 

     CPP = MAP – ICP 

Management of patients within specialist neuro-intensive care units using protocol-driven therapy 

aimed at preserving CPP, and minimising elevations in ICP has resulted in improved outcome. While 

the Traumatic Coma Data Bank suggests that an ICP > 20 mmHg provides the most accurate predictor 

of outcome, there are no prospective multi-centre studies demonstrating the effectiveness of ICP 

monitoring. Cerebral perfusion pressure is of importance in traumatic brain injury since elevations in 

ICP result in reductions in CPP and cerebral ischaemia, which leads to secondary brain injury. There is 

strong evidence that maintenance of a CPP above 60 mmHg improves outcome in patients with head 

injury with rises in ICP. The effect of cerebral perfusion pressure is summarised in Figure 1-1 

Interdependence of cerebral blood volume and intracranial pressure and the rationale for maintaining 

the cerebral perfusion pressure. Even though hypotension is harmful, there is no convincing evidence 

for the effectiveness of supernormal CPP.18 

Acute TBI is characterised by a primary (ictus) and secondary injury phases. The aim of acute TBI 

management in the critical care unit is to limit the on-going insults resulting in secondary injury. 

Secondary brain injury is often caused by a dynamic interplay between ischaemic, metabolic, 

inflammatory and cytotoxic processes.19,20 The primary insult also results in an immediate disturbance 
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of the cerebral circulation, resulting in cerebral ischaemia that contributes significantly to about 90% 

of deaths after closed head injury.21 

 

 

Ischaemia 

Severe head injury is associated with direct and indirect effects on CBF and metabolism, which show 

temporal and spatial variations.22 Cerebral blood flow can be high, normal or low after ictus, but is 

typically reduced. Thirty percent of patients undergoing CBF studies within 6 - 8 hours of a head injury 

have significant cerebral ischaemia.23-27 Global hypoperfusion in these studies was associated with 

100% mortality at 48 hours, and regional ischaemia with significant neurocognitive deficits. Initial CBF 

reductions are replaced, especially in patients who achieve good outcome, by a period of a relative 

increase in CBF, which towards the end of the first-week after ictus, may be replaced by a reduction 

in CBF due to arterial vasospasm associated with traumatic subarachnoid haemorrhage (Figure 1-2).10 

Cerebral blood flow changes are non-uniform in the injured brain. Blood flow tends to be reduced 

near intracranial contusions and does not respond to augmentation of cerebral perfusion pressure.28,29 

   

Figure 1-1 Interdependence of cerebral blood volume and intracranial pressure and the rationale for maintaining the cerebral perfusion pressure 
There is a vicious cycle with an increase in the intracranial pressure; it reduces the cerebral perfusion pressure (CPP), resulting in vasodilation and 
an increase in cerebral blood volume (CBV), and finally a rise in intracranial pressure (ICP). (Redrawn from Menon DK et al.) 

 

 

Figure 1-2 Spectrum of cerebral blood flow patterns following severe head injury 
After an initial period of ischaemia lasting < 24 hours, cerebral blood flow (CBF) rises and may exceed average values on the second to fourth day. Later, CBF may fall 
to subnormal levels, due to vasospasm secondary to traumatic subarachnoid haemorrhage. In some patients CBF may never rise and is associated with poor 
outcome. [Redrawn from the textbook of neuroanaesthesia and neurointensive care edited by Menon et al.] 
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Ischaemic brain damage is perpetuated by factors such as hypotension, hypoxia, raised intracranial 

pressure, oedema, focal tissue compression, microvascular injury, and in the late phase, arterial 

vasospasm. Graded reductions in CBF are associated with specific electrophysiological and metabolic 

consequences, all of which are triggered at particular levels of CBF (Figure 1-3).10 Some of these 

thresholds for metabolic events are well recognised, but others, such as the development of acidosis, 

cessation of protein synthesis and the failure of osmotic regulation have only recently received 

attention.30-33 Ischaemia is thus a continuum between normal cellular function and cell death. Cell 

death is dependent on the duration of ischaemia and other circumstances that can modify the effects 

of tissue hypoxia. The effects of ischaemia may be ameliorated by metabolic depression produced by 

hypothermia or drugs and exacerbated by increased metabolic demand associated with excitatory 

neurotransmitter release or compounded by other mechanisms of secondary injury (such as cellular 

calcium overload or reperfusion injury). 

  

 

 

Figure 1-3 Electrophysiological and metabolic consequences of graded reductions in cerebral blood flow 
There are physiological and metabolic consequences around contusions, which can be explained by a graded decrease in cerebral blood flow (CBF). 
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It is essential to recognise that reductions in CBF do not always equate to ischaemia; a diagnosis of 

ischaemia requires showing that CBF is inadequate to meet oxygen demand. For example, reductions 

in CBF associated with coupled reductions in the cerebral metabolic requirement of oxygen (e.g. 

following sedation) represent appropriate hypoperfusion.10 Increases in CBF that do not meet 

increased metabolic demand (e.g. with seizures in the context of intracranial hypertension) can be 

interpreted as hyperperfusion, but in reality, represent ischaemia (Figure 1-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Excitotoxicity and Neuroinflammation 

Studies with microdialysis techniques have shown that one of the most significant factors causing 

secondary brain injury is the excessive release of excitotoxins such as glutamate and aspartate at the 

time of primary brain injury. There is also a complex cascade of the cellular inflammatory response 

which propagates secondary brain damage.34,35 This inflammatory process lasts from hours to days 

contributing continuously to the cause of secondary brain damage.36 The inflammatory response 

resulting from an acute TBI is not limited to the brain, and multiple organ dysfunction syndromes are 

commonly seen. The principal molecules in the brain involved in this cascade are growth factors, 

catecholamines, neurokinins, cytokines and chemokines. The Interleukins (IL) are a group of pro and 

anti-inflammatory cytokines, and increased levels following intracerebral haemorrhage correlate with 

the magnitude of perilesional oedema and mortality.37-40 Inflammatory cytokines facilitate 

neurotoxicity by encouraging excitotoxicity and the inflammatory response, but simultaneously, they 

 

Figure 1-4 Relationship of cerebral blood flow to the presence of ischaemia under conditions of varying metabolism 
Changes in cerebral blood flow (CBF) levels may be misleading since a diagnosis of ischaemia or hyperaemia demands that CBF levels be assessed in the 
context of metabolic requirements (MET). (Redrawn from the textbook of neuroanaesthesia and neurointensive care edited by Menon et al.) 
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promote neurotropic mechanisms and induction of cell growth factors that are neuroprotective.41 

Unfortunately, there is no convincing evidence of benefit from using these targets as a therapeutic 

option in TBI.42,43 

 

Second tier therapies for the management of raised intracranial pressure 

In the presence of refractory intracranial hypertension ‘second tier’ therapies are required in 

addition to conventional standard treatment. These include barbiturate coma, hypothermia and 

surgical treatment (diversion of cerebrospinal fluid via the lumbar or ventricular drain and 

decompressive craniectomy). Data suggest that surgical decompression results in a reduction in ICP 

with an increase in the number of survivors, with some having poor neurocognitive outcomes. The 

management protocol for patients treated within the Neurosciences Critical Care Unit (NCCU) at 

Addenbrooke’s Hospital,44 Cambridge, is detailed in Figure 1-5. 
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 Figure 1-5 Head injury protocol in the Neurosciences Critical Care Unit, Addenbrooke’s Hospital, Cambridge 

 (Abbreviations : Neurosciences Critical Care Unit (NCCU), Central Venous Pressure (CVP), intracranial pressure (ICP), jugular bulb venous saturation (SjVO2), 
Magnetic resonance imaging (MRI), cerebral perfusion pressure (CPP), space occupying lesion (SOL), Pressure reactivity index (PRI), brain tissue oxygenation 
(BtPO2) form licox,  arterial oxygen saturation (SpO2), Proton pump inhibitors (PPI), electrocardiogram (ECG), electroencephalogram (EEG), bispectral index 
(BSI), creatine kinase (CK),  arterial partial pressure of carbon dioxide (PaCO2), computed tomography (CT). 
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Long term neuronal loss – Apoptosis, Selective neuronal loss, mitochondrial and 

autoregulatory failure after traumatic brain injury  

Apoptosis refers to the distinct morphological changes after programmed cell death, developing after 

the elimination of cells during development. Apoptosis is now recognised as an essential factor in 

secondary brain injury.45 Cells undergoing apoptosis die without membrane rupture and therefore, 

elicit a reduced inflammatory response in contrast to cells undergoing necrosis. There is, therefore, a 

suggestion that neuronal apoptosis after TBI may be a protective response by the brain to remove 

injured tissue cells without affecting the healthy brain.45 Apoptotic cells have been identified within 

contusions in the acute post-traumatic period, and in regions remote from the site of injury days and 

weeks after trauma.46 

Evidence for selective neuronal loss within normal appearing brain following head injury 

The rotational acceleration-deceleration after head injury also causes shear strain and deformation 

resulting in diffuse axonal injury (DAI or traumatic axonal injury) typically in the deep white matter 

and grey-white interface.47,48 In experimental models and humans, the initial hyperacute neurological 

damage is followed by slow progressive neuronal loss lasting for years. This ongoing loss of neurons 

may provide the neuroanatomical substrate for neurocognitive decline following neurotrauma.49-51 

This selective neuronal loss (SNL) can result in cortical thinning, white matter atrophy, hippocampal 

volume loss, temporal lobe atrophy and increase in total ventricular volume. Experimental studies 

have revealed evidence of selective neuronal loss within the hippocampus, amygdala, entorhinal and 

piriform cortices, thalamus, hypothalamus, and perilesional cortex.52-58 Since conventional MRI does 

not pick up SNL, we need alternative techniques such as DTI and WB 1H MRS.59-64 Understanding the 

mechanisms, temporal profile and extent of such neuronal injury may result in the design of novel 

neuroprotective agents or improved management strategies that result in a better outcome for 

patients. 

Mitochondrial dysfunction after traumatic brain injury 

Mitochondria play an essential role in the recovery after an acute TBI. It is required for the 

maintenance of neuronal energetics to preserve the ionic equilibrium and repair after ictus.65 It also 

plays a role in the creation, clearance of free radicals (when unchecked would damage the brain) 

and modulation of apoptosis of vulnerable neurons resulting in selective neuronal loss.66 In acute 

traumatic brain injury, the presence of hypoxia due to microvascular collapse may lead to in regions 

of low oxygen tension leading to nitric oxide release competitively inhibiting cytochrome oxidase 

thereby rendering mitochondrial respiration dependent on the level of cellular oxygen.67 Protecting 

the mitochondria by hyperoxia can be a readily available neurotherapeutic option in severe 
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traumatic brain injury.  In this thesis I will explore normobaric hyperoxia as a therapeutic option to 

mitigate the diffusion barrier resulting in mitochondrial failure after TBI.  

Autoregulation after traumatic brain injury  

Autoregulation refers to the ability of the cerebral circulation to maintain cerebral blood flow at a 

relatively constant level during despite changes in cerebral perfusion pressure, by altering 

cerebrovascular resistance. In critically ill patients with TBI, there is significant intersubject and 

within-subject temporal variation of cerebral autoregulation during the first 4–5 days after injury.68,69 

Young patients who had autoregulation guided therapy after an acute traumatic brain injury had 

better outcomes compared to patients without.68,70  
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Chapter 2 Generic materials and methods 

This chapter describes the basic physical principles of the imaging techniques used in this thesis. This 

summary is not meant to represent an exhaustive review of these topics but provides a framework 

for the methodology used in subsequent chapters of this thesis. This discussion is organised into three 

major sections diffusion tensor imaging, spectroscopy and positron emission tomography with the 

principles of image processing described for each. 

 

Diffusion tensor imaging 

Diffusion imaging is used non-invasively to examine the microstructure and microenvironment of the 

brain. This modality is based on the diffusion of free water within brain tissue. These advances have 

been used to probe and predict the outcomes following microstructural derangements in TBI.59,71-74 

 

Physical principles of diffusion weighted imaging 

Diffusion-weighted imaging (DWI) provides tissue contrast based on differences in the diffusion of 

water molecules within the brain.75-80 Diffusion within the brain is determined by the 

microarchitecture and environment of tissue in which the diffusion takes place.80 Diffusion of water 

molecules within the cerebrospinal fluid (CSF) is less limited than the diffusion of molecules within the 

extracellular and intracellular spaces.80 Einstein’s equation governs diffusion, and the distance 

travelled by the molecule is given by the formula 

r2= 2Dt 

(Where “r2” is an average value for the square of the distance travelled and “D” is the diffusion 

coefficient and “t” is time) 

The diffusion coefficient can be calculated by the following formula 

D = RT / 6πNvr 
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Where R is the ideal gas constant (in SI units), π is 3.14, N = Avogadro constant 6 X 1023, T is the 

absolute temperature, v is the viscosity of the solvent (0.001 for water in SI units), r is the radius of 

the particle or molecule. The diffusion coefficient of water at 20oC is 2.0 × 10−3mm2/s. 

 

  

Figure 2-1 Diffusion in a neuron and white matter tracts of brain 
[A] Myelinated axons within white matter restrict the diffusion of water perpendicular to their course 
[B] The direction of diffusion within a block of white matter tracts is predominantly parallel to the orientation of the tract 
[C] The direction of movement within a region is defined using Eigen vectors in three orthogonal axes (λ1 represents the axial, and λ2 and λ3 represent the two 
perpendicular radial axes) 
[D] Diffusion within various compartments within the brain. Diffusion is unrestricted within the cerebrospinal fluid (CSF), is isotropic within grey matter (GM) and 
anisotropic within white matter (WM). 

 

 

 

D 
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Diffusion of water within the brain is not isotropic, as there are tissue membranes and barriers to 

diffusion (e.g. myelin sheath). This anisotropic nature caused by neuronal membranes results in 

preferential diffusion of water along the long axis of white matter tracts than radially in fibres (Figure 

2-1). This “anisotropic” property of water diffusion could be used to probe the orientation of neurons 

and white tracts at a microscopic level (a measure of the functional connectivity in the brain).80,81 At 

the typical resolution of diffusion tensor imaging (DTI) (2 – 3mm) diffusion in CSF and grey matter is 

isotropic while the white matter has anisotropic diffusion. This information may also be helpful to 

define, quantify, and differentiate extra and intraneuronal swelling in acute traumatic brain injury.82 
 

Anisotropic diffusion and the biological basis of anisotropy 

Basser described the anisotropic behaviour of water during image acquisition using a diffusion tensor 

model, which is a matrix in three directions. The diffusion tensor is obtained by acquiring multiple 

images, each sensitive to diffusion at a different orientation, and fitting these data to create a diffusion 

tensor. This tensor helps us to quantify the mean diffusivity of the water molecule and the fractional 

anisotropy of the tissue. 
 

Fractional anisotropy 

A variety of summary statistics have been used to compute and express the extent of anisotropy, and 

the mean diffusivity in tissue. Fractional anisotropy (FA) is one such metric used, and it is calculated 

by the following formula. If diffusion is unconstrained (i.e., isotropic), FA is close to zero. If diffusion 

has one primary orientation (i.e., is anisotropic), FA can approach 1. 

 

Where  is mean diffusivity or MD 

 

Following traumatic brain injury, fractional anisotropy in white matter is mostly decreased and is 

indicative of traumatic axonal degeneration and demyelination with resultant disruption of white 

matter microstructure.83 



29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean diffusivity or “trace water” 

The diffusivity along the principal axis or the principal diffusion vector is also called axial diffusivity. 

The smaller diffusivities orthogonal to the principal diffusion coefficient are averaged to produce the 

radial diffusivity or perpendicular diffusivity [(λ2 + λ3)/2]. A useful metric for summarising the total 

diffusivity of a particular tensor is mean diffusivity, which is the average of the sum of three 

eigenvalues. 
 

Apparent Diffusion Coefficient 

The apparent diffusion coefficient (ADC) describes the magnitude of water diffusion and produces 

characteristic changes in cytotoxic and vasogenic brain oedema (Figure 2-2). It is obtained by dividing 

the magnitude of molecular movement by overall diffusivity in each voxel calculated from all the 

diffusion weighted images acquired.80 Hahn identified a reduction in signal in response to spin echo, 

due to the effects of diffusion, using different diffusion-sensitising factors (b values). The reduction in 

the signal is explained by translational diffusion, and calculations are used to generate the diffusion 

maps by using two different b values, b0 and b>0. A parametric image containing these data is called 

a diffusion map or apparent diffusion map (ADC).80 

  

 

Figure 2-2 Fractional Anisotropy and Apparent Diffusion Coefficient maps in a volunteer 
Fractional anisotropy (FA) maps have a value between zero and one explained by the anisotropicity of underlying tissues (cerebrospinal 
fluid (CSF), white matter and grey matter). The apparent diffusion coefficient (ADC) map is obtained by quantifying the movement of the 
water molecule, note that the CSF is bright due to unrestricted water movement. 
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Translating diffusion tensor imaging physics to pathophysiology in head injury and its limitations 

Diffusion tensor imaging can be used to image and predict prognosis after TBI in children and adults. 

DTI is unique in its ability to probe tissue microstructure non-invasively following head injury and can 

reveal numerous abnormalities which are not visible using conventional imaging techniques. Lesions 

such as cytotoxic and vasogenic oedema (Figure 3-3) help to define the “at risk regions” of the brain 

after a TBI. Such data provide improved prediction of neurocognitive outcomes following TBI.73,84-89 

Intersecting fibres limit the sensitivity of diffusion images as it is unable to resolve the diffusion 

maxima in these regions. Subject movement can cause signal dropouts and artefacts in DTI.80,84,89 A 

summary of expected changes of various DTI metrics in traumatic brain injury are given in Table 2-2. 

 

 

Figure 2-3 Temporal profile of cytotoxic and vasogenic oedema after traumatic brain injury 
Cytotoxic oedema is a feature of early traumatic brain injury, where the at-risk region of the brain can be identified and subjected to 
neurotherapeutic options. Vasogenic oedema appears late after traumatic brain injury. 
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Magnetic resonance spectroscopy 

Magnetic resonance spectroscopy (MRS) of the brain provides a quantitative readout for chemicals in 

vivo after traumatic brain injury (e.g. N - Acetylaspartate, glucose, lactate, choline and creatine).90 

When tissue is placed in an external magnetic field, hydrogen nuclei in the tissue resonate at their 

Larmor frequency. Interactions of the electronic shell of these protons with the surrounding molecules 

result in local alterations of the magnetic field, changing the spin frequency of the atom (chemical 

shift, described below).91 This shift in the resonant frequency of the spins gives information about the 

molecule containing the 1H atom and is expressed as parts per million of Radiofrequency (RF) of the 

B0 field. Some metabolites such as lactate (due to the presence of multiple methylene and methyl 

groups) generate splitting of the resonances (see spin to spin coupling below).92 The area under the 

metabolite peak is directly proportional to the number of nuclei that contribute to it and hence to the 

concentration of the chemical species being studied (Figure 2-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proton magnetic resonance spectroscopy acquisition requires an anatomical image, on which a 

volume of interest (VOI) can be specified for acquisition of spectral data. Different techniques may be 

used to acquire the spectrum (single voxel, multi-voxel and echo-planar spectroscopic imaging (EPSI)) 

imaging using both long and short echo times (TE). Proton magnetic resonance spectroscopy is 

challenging because of millimolar concentrations of metabolites, which can be overwhelmed by water 

(Figure 2-5), macromolecules (e.g. scalp lipids and pericontusional mobile lipids). Magnetic field 

 

Figure 2-4 1H MRS Spectrum with water suppression acquired during whole brain proton spectroscopy. 
Note that the metabolic resonances are marked 



32 

 

inhomogeneity induced by local tissue anatomy (e.g. paranasal sinuses) or pathology (e.g. blood) can 

also reduce the spectral resolution.93 

 

 

 

Chemical shift and signal intensity  

The magnetic field surrounding a given nucleus is modified by the electron shell surrounding the 

nucleus, with a subtle change in the local resonant frequency, which gives rise to chemical shift.91,94 

The chemical shift gives direct information about the nuclei, thereby aiding in the identification of 

compounds. The chemical shift is referenced to a spectral peak of known chemical shift, which is 

ideally a singlet resonance. In 1H spectra acquired in vitro, tetramethylsilane (abbreviated as TMS, 

formula Si(CH3)4) is commonly used for this purpose. In the case of in vivo 1H MRS of the brain, N 

acetylaspartate is used as a reference compound which has a chemical shift of 2.02ppm. 

 

Water and fat suppression:  

The high concentration of tissue water can swamp (Figure 2-5) the metabolite peaks (Figure 2-4). 

Water suppression is achieved by a frequency selective excitation that picks out the water resonance 

and then destroying the resultant XY magnetisation from water using large gradients. The spectral 

excitation pulse immediately follows this, when there has been no T1 recovery for the water spins, 

and they contribute substantially attenuated signal to the spectrum.95,96 A similar approach cannot be 

used for fat suppression since the chemical shift of fat resonances overlies the metabolites of interest, 

 

Figure 2-5 Unsuppressed water spectrum acquired during whole-brain proton spectroscopy 
Note the concentration of water in unsuppressed spectra is 2.3x106  (Chemical shift is shown on the x-axis) 
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hence spatially selective saturation pulses are used, so the fat spins contribute less to metabolic 

imaging.97 

Spin-spin coupling 

The resonance from some molecules, such as lactate, can be split into multiplets (in the case of lactate, 

a doublet resonating at 1.3 ppm).93,95 The magnetic moment of protons in the methyl resonance of 

the lactate molecule interact with the neighbouring nuclei and adjacent electrons, resulting in spin-

spin splitting referred to as J coupling. The J coupling evolves with echo time, resulting in variation in 

spectral intensity. Consequently, this should be taken into account and integer multiples of the 

reciprocal value should be chosen as echo times for spectroscopy experiments. As an example, for 

lactate, the j coupling is 6.9 Hz, and the TE should be multiple of 1/J. As a result, the lactate doublet is 

at maximum intensity TEs of 144ms (inverted), and 288 ms (upright ).95 
 

Localising MRS signals 

Spectroscopic data can be acquired from a single volume element (voxel), or multiple voxels 

simultaneously. While the acquisition of data from multiple voxels is attractive, the localisation 

schemes involved are complex and can result in artefacts. 

 

Single voxel, two dimensional and three dimensional MR spectroscopic imaging (MRSI) 

The volume of interest is localised using three orthogonal pulses. Single voxel spectroscopy (SVS) 

provides measurements limited to only a few pre-determined anatomical regions of interest.94,98 Two 

dimensional and three-dimensional imaging phase-encoding gradients to encode spatial information 

after the RF pulses and the gradient of slice selection. Multivoxel spectroscopy is preferred for TBI as 

anatomically normal areas of the brain may show significant biochemical pathology.99 MRSI is one 

such imaging modality which uses multiple phase encoding steps to localise a large volume within a 

selected slab of tissue, thus improving the utility of spectroscopic imaging.99 The result of 2D MRSI is 

a matrix, called a spectroscopy grid (placed on a structural image), for localisation. The size of this grid 

corresponds to the previously determined field of view (FOV). The number voxels in a grid are directly 

proportional to the number of phase encoding steps, and more voxels give better spatial resolution 

but is time-consuming.93,95,100-103 These techniques are not used for the experiments in my thesis as 

they cannot image the whole brain. 

 

Whole brain spectroscopy using Metabolite Imaging and Data Analysis System 

In the 3D sequence, multiple grids are acquired within one FOV, as implemented in the Metabolite 

Imaging and Data Analysis System (MIDAS) by Maudsley et al. The MRSI data are acquired by 

volumetric spin echo acquisition that uses two-dimensional phase encoding, echoplanar readout, 

frequency selective water suppression and lipid inversion nulling.99,104-112 The MRSI data are acquired 
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using volumetric spin echo [TR/TE =1710/70 milliseconds, FOV 280x280x180mm3, 100 read, 50x50 

phase encoding steps, 18 slices over a 135mm slab with an acquisition time of 26 minutes. This 

sequence also includes lipid inversion nulling, spin echo excitation for metabolite signal and 20o flip 

angle gradient echo for water reference acquired in an interleaved fashion. The T1 and MRSI are 

acquired at an angulation of +15o to the anterior commissure-posterior commissure line to improve 

field inhomogeneity caused by the paranasal air sinuses.  

In this thesis, I have used MIDAS acquisition system. Metabolite data were reconstructed using MIDAS 

and resulted in images composed of 64×64×32 voxels with an individual voxel volume of 

approximately 1 ml. The acquisition time for this sequence was 26 minutes. In awake volunteers, this 

longer acquisition time limited the number of repetitions that can be performed to quantify the 

within-subject, intersubject, and between session variability of spectroscopic data acquisition. 

 

Quantitation of proton magnetic resonance spectra 

In a nutshell, quantitation methods enable an analysis of individual metabolite components from the 

free induction decay. Approaches to spectral quantitation may deal with data in the time domain (e.g. 

jMRUI) or frequency domain (e.g. MIDAS). Metabolite Imaging and Data Analysis System uses a 

frequency domain analysis with prior knowledge.96,113 

 

Peak ratios and absolute quantification 

The total area under a metabolite resonance in a 1H MR spectrum is directly proportional to the 

concentration of the metabolite. Metabolite concentrations are usually expressed as ratios (relative 

quantification) rather than as absolute concentrations. In vivo quantification methods include either 

an external reference method (a vial of known concentration of metabolite is placed next to the head, 

and simultaneously data is acquired for both). Alternatively a water reference image, which uses 

unsuppressed water concentrations from the same voxel as a reference, with unsuppressed spectra 

obtained before or after metabolite spectra.99,110 The MIDAS technique uses a water reference image 

for quantification. A summary of expected 1H MRS  changes in traumatic brain injury are given in Table 

2-2.  
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Absolute quantitation versus metabolic ratios in proton spectroscopy  

Absolute concentration of metabolites (Table 2-1) have been used more recently in experimental 

studies.100,114 This is due to the improvement in the quantitation methods (e.g. MIDAS), and the ability 

to independently quantitate the concentration with a good between and within-subject variability.113 

In traumatic brain injury, it is important to quantitate the absolute concentration as it gives the ability 

to independently asses the metabolite changes rather than the ratio of metabolite peaks. Also, 

following TBI, there are independent changes in creatine, choline and NAA that mean that ratios may 

not be an appropriate method if WB 1H MRS is used as a biomarker. 

 

Metabolite GM Mean (range) WM Mean (range) Mixed Mean (range) 

N Acetyl Aspartate 8.8 (5.2-11) 9.6 (4.5-12)  

Creatine 8.6 (6.4-9.3) 7.0 (5.5-8.9)  

Choline 1.6 (1.0-2.0) 1.8 (1.3-2.5)  

Myo-inositol 5.6 (4.1-11) 5.2 (3.1-10)  

Glutamate 9.0 (8.2-11) 6.9 (5.1-8.1)  

Lactate   1.0(0.4-1.9) 

 

Table 2-1  Normal whole brain concentrations in millimoles of metabolites quantified by in vivo proton spectroscopy in brain 
Average values of metabolites averaged from various studies. (GM – grey matter, WM white matter, Mixed– mixed grey and white matter). 
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Table 2-2 Metrics used in this thesis for diffusion tensor imaging and proton spectroscopy of the brain 
The physical principles of acquisition, pathological association and changes seen in acute traumatic brain injury. Fractional anisotropy (FA), 
Mean diffusivity (MD), Radial diffusivity (RD),  Axial diffusivity (AD), N acetyl aspartate (NAA), Creatine (Cr) and Choline (Cho) 

 

 

 

 Metric  Physical principles  Pathologic 

associations  

Pathologic Changes 

in traumatic brain 

injury   

Diffusion 

tensor 

imaging 

Fractional 

anisotropy 

(FA) 

Quantifies degree of 

anisotropy of diffusion 

process 

Reflect loss or 

disruption of 

white matter  

↓ FA  

 Mean 

diffusivity 

(MD) 

Quantifies overall 

diffusion independent of 

fibre direction 

Reflect fibre 

disruption and 

neuronal swelling  

↑ MD  

 Radial 

diffusivity 

(RD) 

Quantifies rate of 

diffusion in the 

transverse or 

perpendicular directions 

Reflect the 

integrity of Myelin 

sheaths 

↑ RD 

 Axial 

diffusivity 

(AD) 

Quantifies rate of 

diffusion along the fibre 

tract main direction  

Reflect axonal 

degeneration 

↑ AD  

Proton 

spectroscopy 

N acetyl 

aspartate 

(NAA) 

Observed at 2.2 parts per 

million (ppm) 

Reflect neuronal 

energy 

metabolism, 

integrity and 

death 

↓ NAA 

 Creatine (Cr) Observed at 3.0 ppm Reflect cellular 

energy 

metabolism 

↓ Cr  

 Choline 

(Cho) 

Observed at 3.2 ppm Reflect myelin 

degradation and 

or destruction 

↑ Cho 
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Positron emission tomography  

Physical principles 

Positron emission tomography (PET) is unique and is referred to as “molecular imaging”, as it uses 

radiolabelled isotopes to image functional, biochemical and physiological properties within tissues. 

The tracer compounds used are produced from the isotopes of elements such as carbon, nitrogen, 

oxygen and fluorine, which are rich in excess protons.115 Although the technique is costly and 

associated with additional exposure to radiation, it has unique functional capabilities which are used 

for early detection, characterisation, and “real-time” monitoring of disease (e.g. ischaemia in head 

injury).22,26,116,117 

 

15Oxygen positron emission tomography 

The oxygen-15 steady-state PET technique implemented within the WBIC utilises three 15O emission 

scans (H2
15O, 15O2 and C15O), and appropriate arterial data, to produce three-dimensional quantitative 

parametric images of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic 

requirement of oxygen (CMRO2) and oxygen extraction fraction (OEF).22,26,117-123 

Oxygen-15 has a half-life of 123 seconds, and consequently, it must be produced on the same site as 

the PET scanner using a cyclotron. In the Wolfson brain imaging centre (WBIC), oxygen-15 is produced 

through the bombardment of nitrogen-14 with deuterons.115 As oxygen-15 has an excess of nuclear 

charge, it decays through b+ decay, emitting a neutrino (a very weakly interacting particle) and a 

positron, which is the positively charged antiparticle of the electron. The positron travels a short 

distance in tissue (a few millimetres for oxygen-15), losing most of its kinetic energy through collisions 

with electrons before it annihilates with an electron. The kinetic and rest mass energy of the electron-

positron system is converted into energy in the form of two photons, each with an energy of 511keV, 

that travel at almost 180° to each other.23,115 As the photons are emitted simultaneously, incidence 

detection can detect the pair of photons from the same annihilation selectively; the typical timing 

window within which photons are paired up is 12 nsecs. If this data is acquired for all lines through 

the tracer distribution over a 180° range, then tomographic image reconstruction can be performed 

to recover the three-dimensional tracer distribution from the measured data. These detectors consist 

of crystals that convert gamma radiation into scintillation light; the scanner used for this work (GE 

Advance) has 12096 bismuth germanate crystal elements. Within each detector block (6x6 crystal 

array, Figure 2-6), crystals are coupled to photomultiplier tubes that convert the scintillation light into 

an electrical signal that can be recorded by the PET scanner. 
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Figure 2-6 Array of detectors in positron emission tomography scanner used in this thesis 
Taken during repair of Wolfson brain imaging centre. (Adapted and redrawn from Veenith et al Current opinion in anaesthesiology) 

 

 

 

 

 

 

Figure 2-7 Acquisition and visualisation of the positron emission tomography image using an integrated approach 
Adapted and redrawn from veenith et al Current opinion in anaesthesiology 
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Steady-state model 

The oxygen-15 steady-state PET technique implemented within the WBIC utilises three 15O emission 

scans (H2
15O, 15O2 and C15O), and appropriate arterial data, to produce three-dimensional quantitative 

parametric images of CBF, CBV, CMRO2 and OEF (Figure 2-7). The time and spatially dependent 

concentration of radioactivity within the brain will be defined as CT, and the time-dependent 

concentration of radioactivity within the arterial and venous blood will be defined as Ca and Cv, 

respectively. In the steady-state CBF technique, H2
15O is administered intravenously over 10 minutes 

before data acquisition, during which time a state of dynamic equilibrium is reached.124-129 

At this point, the continuous arrival of 15O to the brain is balanced by its washout and the rate of 

radioactive decay. After the initial 10 minutes, and once a state of dynamic equilibrium is reached, the 

H2
15O infusion is continued for a further 10 minutes to acquire the necessary PET emission data. At 

the WBIC, two five minute emission scans of the brain provide measurements of tissue radiotracer 

concentration (CT), and arterial radioactivity samples (Ca) are obtained at 10, 15 and 20 minutes after 

the start of infusion. Cerebral blood flow is calculated independently for each five-minute frame using 

the mathematical average of Ca [H2
15O] measurements taken at 10 and 15 minutes and 15 and 20 

minutes, respectively. For the measurement of CBV, labelled carbon monoxide (C15O) is administered 

in trace amounts in the air by inhalation during a 60-second bolus. During this time the C15O binds 

avidly to haemoglobin, in the form of carboxyhaemoglobin, and remains confined to the intravascular 

space. Following a minute for equilibration throughout the vascular compartment, emission data are 

collected over a single five-minute frame, and arterial radioactivity measurements are obtained at one 

and six minutes post inhalation. Regional CBV is calculated from the ratio of radioactivity in the brain 

to that within the peripheral blood. 

Since the haematocrit is lower within the cerebral microvasculature compared to the peripheral 

blood, this difference must be taken into account in the final calculation of CBV. The tissue 

radioactivity measurement must be corrected for radioactive decay that occurs during the five-minute 

frame. Imaging is reconstructed in combination with data from a 60-minute blank scan acquired on 

the same day used to correct the emission data for photon attenuation.117,121-123,128,130 Images were 

reconstructed into 2.34 x 2.34 x 4.25 mm voxels using a filtered back projection algorithm, with 

corrections applied for randoms, dead time, normalisation, scatter, attenuation and sensitivity. This 

resulted in images with isotropic resolution (6.7 mm FWHM) at the centre of the field of view. Emission 

images were then smoothed using an isotropic 4 mm Gaussian filter, resulting in a final spatial 

resolution of ~7 – 8mm FWHM. Parametric maps of CBF, CBV, CMRO2 and OEF were calculated by 

inputting simultaneous PET emission and arterial tracer activity measurements into standard models. 
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We used a blood-brain partition coefficient for H2
15O (r) of 0.95 based on previous in vitro data and a 

small to large vessel haematocrit ratio (r) of 0.85. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

Figure 2-8  Steady-state H2
15O and 15O2 

used in PET studies. 
Tissue radioactivity versus time curve 
obtained during a steady-state oxygen-
15 protocol. After six hundred seconds 
(10 minutes) a state of dynamic 
equilibrium is achieved, after which 
two five minute emission frames 
(dotted lines) are obtained and arterial 
radioactivity measurements are 
obtained at 10, 15 and 20 minutes. 
 

Figure 2-9 Bolus C15O used in PET studies  
Tissue radioactivity versus time curve 
obtained following a sixty second bolus of 
C15O. Regional CBV is calculated from the 
ratio of radioactivity in the brain during a 
single five minute frame (dotted lines), 
corrected for decay, to that within an arterial 
sample taken at the start of the emission 
frame. 
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Measurements of oxygen extraction fraction and oxygen metabolism 

Measurements of OEF and CMRO2 are obtained following a steady-state inhalation of 15O2 (Figure 2-8). 

Trace amounts of labelled 15O2 are inhaled in the air for 10 minutes until a state of dynamic equilibrium 

is achieved. As with the infusion of H2
15O, the inhalation is continued for a further 10 minutes, during 

which time two five minute emission frames and arterial radioactivity measurements are obtained. 

The tracer model used in the calculation of OEF and CMRO2 describes the fate of the administered 

15O2. Since there are no stores of oxygen in the brain, 15O2 extracted from the blood (approximately 

40 %) is metabolised to produce H2
15O, and subsequently washed out of the brain. The quantitative 

measurements of OEF and CMRO2 thus require three emission scans (H2
15O, 15O2 and C15O) (Figure 2-8 

and Figure 2-9) in order to enable measurement of all these sources of 15O activity.116,117,120,121,128,131 

First, to obtain an expression for the OEF, one must divide the cerebral activity obtained during the 

15O2 inhalation by that obtained during the infusion of H2
15O, 
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 Finally, CMRO2 can be derived from the following relationship. 

CMRO2 (µmol/100ml/min) = CBF.OEF.BOC 

BOC = (1.34 x Hb x SpO2 x 0.01) + (0.023 x PaO2) 

Where BOC is the blood oxygen content (given below) in µmol/100ml calculated as, where Hb is 

haemoglobin (g/100ml), SaO2 is the fractional oxygen saturation of arterial blood, and PaO2 is the 

arterial partial pressure of oxygen (kPa).125,126,132-141 

18F-fluoromisonidazole positron emission tomography 

Tissue hypoxia can be imaged using the PET tracer 18Fluoromisonidazole ([18F] FMISO), which is 

trapped in hypoxic but viable tissue through oxygen-dependent bioreduction. This approach has been 

used in a variety of setting such as cancers, subarachnoid bleeds and embolic strokes to identify 

ischaemia and potentially salvageable brain tissue.142-154 This PET ligand has been used in this thesis to 

define the distribution and fate of hypoxic tissue in traumatic brain injury. 

Positron emission tomography data using [18F]FMISO, are typically analysed by comparing potentially 

ischaemic tissue with known normal areas. The Cambridge PET imaging group have implemented 

kinetic tracer modelling of [18F]FMISO in animals, which has been extended to patients and volunteers. 

Also, we utilise a recently developed method (BAFPIC) for kinetic analysis of irreversible tracers, which 

will facilitate superior quantification of hypoxia from [18F]FMISO data through more robust estimation 
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of k3 (trapping rate) and Ki (influx rate), especially at the voxel level compared to the nonlinear least 

squares (NLLS) modelling in hypoxic tissue.155 

[18F]FMISO injection (300 MBq) emission data were acquired in the 3D mode for 2.5 hours. Arterial 

plasma samples were obtained to provide the input function for kinetic analysis. Voxel-wise 

compartmental modelling utilised the irreversible version of bias-noise properties of the basis function 

method (BAFPIC a basis function approach to two tissue plasma input compartmental modelling). 

Hypoxia was mapped using the kinetic parameter (k3) determined from BAFPIC, which denotes the 

trapping rate of [18F]FMISO in tissue.19,156,157 
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Chapter 3 Aims and hypothesis 

Evidence of ischaemic injury is common at autopsy in TBI, and 15oxygen positron emission tomography 

(15O PET) studies have shown that reduced perfusion represents true classical ischaemia, and 

treatments targeting this improves clinical outcome.29,120,158 Classical ischaemia is uncommon beyond 

24 hours and does not robustly predict pan-necrosis in TBI.27 Some PET studies have found abnormal 

energy metabolism after a TBI in the absence of classical ischaemia supporting a role for non-

ischaemic pathophysiology.29,123,159 Understanding and reversing such non-ischaemic 

pathophysiologic processes may improve outcome.160,161 Conventional (e.g. jugular oximetry) and 

newer (e.g. microdialysis, brain tissue oxygen and cortical electrodes) monitoring techniques provide 

insights into pathophysiology.162,163 However, these techniques detect either global or localised 

abnormalities and can miss distant focal pathophysiology. Rational approaches to understanding 

pathophysiology predicate the need for advanced imaging using PET and MRI.19,23 

Post-mortem studies show widespread microvascular occlusion and perivascular oedema in TBI, 

associated with evidence of selective neuronal loss.123 These findings may explain the relevance of 

antemortem ischaemia from the Cambridge group using 15O PET and brain tissue oximetry, which 

showed vascular to tissue gradients for oxygen tension in the injured brain.123 Several recent studies 

have used microdialysis and brain tissue oxygen monitoring to show that increases in the fraction of 

inspired oxygen (FiO2) can reduce extracellular fluid (ECF) lactate, although this may not result in an 

improvement in the lactate-pyruvate ratio.164,165 While the reversal of classical ischaemia is a 

theoretical mechanism for this finding; it seems more feasible that higher brain oxygen levels may 

overcome diffusion barriers to oxygen delivery, or compensate for mitochondrial dysfunction. Indeed, 

in regions of low oxygen tension, nitric oxide can competitively inhibit cytochrome oxidase and 

thereby render mitochondrial respiration dependent on the level of cellular oxygen.166 Data also 

suggest that hyperoxia can improve oxygen metabolism, particularly within pericontusional and white 

matter regions, while a microdialysis study also found improvement in oxygen metabolism.164 These 

studies showing an improvement in brain metabolism with hyperoxia require further confirmation. 

Ex-vivo studies in clinical and experimental TBI suggest an impaired function of the mitochondria 

(typically < 4 hours) after injury.167 Proton magnetic resonance spectroscopy (1H MRS) provides 

imaging of n-acetylaspartate (NAA), a mitochondrial metabolite which is found almost exclusively in 

mature neurons.168 Permanent reductions in NAA is suggestive of neuronal loss.168 Diffusion hypoxia 

and mitochondrial dysfunction are potential mechanisms responsible for disorders in energy 

metabolism resulting in a neuronal loss that require further assessment using proton spectroscopy 

and PET imaging.29,164,166,167,169-172 Such an evaluation requires that we demonstrate a mismatch 
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between the distributions of classical ischaemia (characterised by reduced CBF and high oxygen 

extraction fraction (OEF) using 15O PET) and tissue hypoxia.29,164,173 

Tissue pO2 and microdialysis monitoring provide continuous but a focal sampling of brain tissue. Tissue 

hypoxia can be imaged across the whole brain using the PET tracer 18Fluoromisonidazole ([18F] FMISO), 

which is trapped in hypoxic but viable tissue through oxygen-dependent bioreduction.174-176 This PET 

ligand has been used to study the distribution and fate of hypoxic tissue in ischaemic stroke, cerebral 

haemorrhage, and subarachnoid haemorrhage but not TBI.174,177 Combined 15O and [18F]FMISO PET 

with 1H MRS could be used to demonstrate whether transient reductions in NAA occur in brain regions 

without increased OEF or trapping of [18F]FMISO. Such data imply evidence of mitochondrial 

dysfunction rather than ischaemia (Error! Reference source not found.). 

 

 

 

 
 

 

 

 

 

 

 

 

Aims and hypotheses  

My studies have enrolled patients within a mechanistic and subsequent interventional cohort using 

normobaric hyperoxia as a neurotherapeutic option. Before the commencement of the interventional 

clinical studies, it was essential to address important methodological issues. The data from these 

studies provided a useful context for interpretation of the clinical datasets. 

 

Methodological Aims 

Inter-subject variability and reproducibility of Diffusion Tensor Imaging within and between different 

imaging sessions 

These studies, which are presented in Chapter 4, aimed to provide reference data on intersubject 

variability and reproducibility of fractional anisotropy, apparent diffusion coefficient, radial and axial 

diffusivity measurements in a group of healthy volunteers. These data will inform the design of 

Type of ischaemia  15O PET 1H MRS 18F FMISO uptake 

Classical  
Ischaemia 

CBF↓ 
OEF↑ 

NAA ↔ 
Lactate ↑ 
Creatine ↓ and ↔ 

↑ 

Microvascular  
Ischaemia 

CBF ↓ 
OEF ↔ 

NAA ↔ 
Lactate ↑ 
Creatine ↓ and ↔ 

↑ 

Mitochondrial 
dysfunction 

CBF ↔ 
OEF ↔ / ↓ 

NAA – Transient ↓ 
Lactate ↑ 
Creatine ↓ 

↔ 

 
Table 3-1 Mechanisms of energy failure following head injury 
15oxygen positron emission tomography (15O PET); proton magnetic resonance spectroscopy (1H MRS); 18Fluoromisonidazole (18F FMISO); 
cerebral blood flow (CBF), oxygen extraction fraction (OEF), n-acetylaspartate (NAA). 
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interventional studies, where repeated measurements are conducted within the same session, and 

longitudinal studies, where assessments are repeated over time in several different imaging sessions.   

Comparison of inter subject variability and reproducibility of whole brain proton spectroscopy  

These studies, which are presented in Chapter 5, aimed to provide reference data on intersubject 

variability and reproducibility of commonly used metabolite ratios (Cho/Cr, NAA/Cho and NAA/Cr) and 

individual signal-intensity normalised metabolite concentrations (NAA, Cho and Cr) in a group of 

healthy volunteers using MIDAS. These data will inform the design of interventional studies, where 

repeated measurements are conducted within the same session and longitudinal studies where 

assessments are repeated over time in several different imaging sessions. 

 

Experimental Hypotheses  

Within the first patient cohort, I have described the mechanisms of energy failure seen following 

traumatic brain injury using 15O and [18F]FMISO PET in comparison with MRI. The second patient 

cohort underwent a phase 2 evaluation of normobaric hyperoxia as a therapeutic option using DTI and 

whole brain (WB) 1H MRS in the setting of acute TBI. 

Hypothesis I: Tissue hypoxia can occur in the absence of conventional macrovascular ischaemia and is 

consistent with diffusion hypoxia resulting from microvascular ischaemia (Chapter 6) 

Hypothesis II: Diffusion tensor imaging can be utilised to demonstrate the impact of normobaric 

hyperoxia (NH) within at-risk pericontusional tissue following traumatic brain injury (Chapter 7) 

Hypothesis III: Normobaric hyperoxia will improve derangements in diffusion tensor imaging found 

distant from visible contusions following traumatic brain injury (Chapter 8) 

Hypothesis IV: Normobaric hyperoxia will improve metabolic derangements identified by whole-brain 

proton spectroscopy following traumatic brain injury (Chapter 9) 

  



46 

 

Chapter 4 Inter-subject variability and reproducibility of Diffusion 

Tensor Imaging within and between different imaging sessions 

 

Introduction 
 

Diffusion tensor imaging (DTI) has been used to identify neuronal injury and predict outcome in a 

variety of neurological disorders such as traumatic brain injury,73,88,178-180 multiple sclerosis,181-183 

Alzheimer's dementia184 and psychiatric disorders.185,186 Previous human studies using DTI have 

provided valuable reference data regarding typical values within different brain structures, and several 

groups have reported data comparing DTI measurements between subjects, between scanners in 

different centres, following service upgrades, and reproducibility within the same centre over time.187-

202 However, there are limited data that compare intersubject variability and reproducibility of DTI 

measurements, or published studies that compare the reproducibility of DTI measurements obtained 

within the same imaging session (within session reproducibility) with that obtained during repeat 

imaging sessions on the same or different days (between session reproducibility) required to use DTI 

as an imaging biomarker.202 This is of relevance for group comparisons with healthy volunteers, and 

longitudinal and interventional studies where DTI can be used as a non-invasive imaging biomarker of 

disease progression or response to therapy. The rational design and interpretation of such studies are 

hampered by lack of knowledge on the variability of DTI measurements in data obtained during the 

same scanning session compared with similar data obtained during a different session or day. In 

studies where consecutive measurements are performed on each subject under resting, and 

experimental conditions problems associated with variation between subjects due to individual 

differences (intersubject variability) can be limited. However, baseline DTI measurements may vary 

within an individual patient (intrasubject variability) and limit the ability to detect significant changes 

over time or following a therapeutic intervention. Where DTI is repeated after several days or weeks 

in different imaging sessions, the measurements may vary within an individual patient even in the 

absence of disease progression due to a combination of intrasubject and scanner variability.195,203 

These studies aimed to provide reference data on intersubject variability and reproducibility of 

fractional anisotropy, apparent diffusion coefficient, radial and axial diffusivity measurements in a 

group of healthy volunteers. These data will inform the design of interventional studies, where 

repeated measurements are conducted within the same session, and longitudinal studies, where 

assessments are repeated over time in several different imaging sessions. 
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Materials and Methods 

Ethics statement 

Ethical approval was obtained from the Cambridgeshire 2 Research Ethics Committee (reference 

number 97/290) and written informed consent was obtained from all volunteers per the Declaration 

of Helsinki. 

Imaging data acquisition 

Twenty-six healthy volunteers without any history of neuropsychiatric disorder or substance abuse 

underwent imaging using a 3T Siemens Verio MRI scanner (Siemens AG, Erlangen, Germany) within 

the Wolfson Brain Imaging Centre (WBIC), University of Cambridge. All volunteers were right-handed 

(ten males and sixteen females) with mean (range) age of 34 (25 – 44) years and employed by 

Cambridge University Hospitals NHS Trust. Each subject was requested to attend two imaging sessions 

and undergo DTI twice during each session. Twenty-two volunteers attended a second imaging session 

within a mean (range) of 33 (3-181) days. Structural sequences included 3D T1-weighted 

magnetisation prepared rapid gradient echo (MPRAGE), fluid-attenuated inversion recovery (FLAIR), 

gradient echo and dual spin echo (proton density/T2-weighted). The DTI data were acquired using 63 

non-collinear directions, b=1000 s/mm2 with one volume acquired without diffusion weighting (b = 0), 

echo time (TE) 106ms, repetition time (TR) 11700ms, 63 slices, field of view 192mm x 92mm, 2mm3 

isotropic voxels, and an acquisition time of 13:50 minutes. The two DTI sequences were interspersed 

within the structural sequences at different intervals within each imaging session in order to allow 

realistic comparison with clinical studies. In a single subject, the second DTI dataset from the baseline 

imaging session was not completed due to scanner malfunction, while four volunteers failed to attend 

the second imaging session within six months. Imaging data were checked for patient movement, and 

data sets degraded by motion artefact were excluded.59,72,178,179,204,205 
 

Image processing  

Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and axial diffusivity (AD) maps were 

created using the Oxford Centre for Functional MRI of the brain FSL Diffusion Toolbox, while radial 

(RD) diffusivity values were calculated as the mean of the second and third eigenvalues.206,207 To aid 

coregistration, the skull and extracranial soft tissue were stripped from the T1 weighted image using 

the Brain Extraction Tool of FSL.208 The diffusion weighted data were normalised using a two-step 

approach. First, volunteer T1 weighted images were coregistered to the Montreal Neurological 

Institute 152 (MNI152) template using the vtkCISG normalised mutual information algorithm.209 Using 

the b = 0 images, the diffusion weighted data were coregistered to the subjects own T1 weighted 

image obtained during the same session. The transformation matrix normalising the MPRAGE was 

then applied to the diffusion weighted data. Regions of interest (ROIs) from the Harvard Oxford 
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subcortical and MNI structural probabilistic atlases available within FSL were applied in normalised 

space (Figure 4-1).208,210 All normalised images were inspected using FSL View by a single experienced 

clinical investigator (TV) to confirm that data processing had completed successfully and that the ROIs 

were aligned and corresponded to the regions specified. The ROI template was modified by the 

erosion of a single voxel using fslmaths to improve spatial localisation and reduce the impact of 

coregistration, normalisation and partial volume errors. The FA, mean ADC, AD and RD values for the 

different ROIs were calculated using in-house software using Matlab (Mathworks, Natick, USA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Region of interest template in MNI152 space used for intersubject, within and between session variability of diffusion tensor imaging 
T1 weighted magnetic resonance image in MNI152 space (2mm resolution) showing frontal lobe left (Frontal L), frontal lobe right (Frontal R), anterior corpus 
callosum (ACC), caudate left (Caudate L), caudate right (Caudate R), thalamus left (Thalamus L), thalamus right (Thalamus R), posterior corpus callosum (PCC), 
occipital left (Occipital L) and occipital right (Occipital R). Additional regions not shown include body corpus callosum, ventral midbrain, dorsal midbrain, forceps 
minor, forceps major and bilateral regions covering the hippocampus, parietal lobe, temporal lobe, cerebral peduncle, pons, cerebellum, anterior thalamic 
radiation, superior longitudinal fasciculus, inferior longitudinal fasciculus, cingulum, uncinate fasciculus and corticospinal tract. 
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Analysis Strategy 

The baseline data from all 26 volunteers were used to calculate the intersubject variability, while 

within the session and between-session reproducibility was calculated from available data. The 

acquisition of two sets of imaging data in each of the two imaging sessions allows the calculation of 

four independent sets of DTI data, which could be used to assess the reproducibility of measurements. 

We used the average SD for all DTI measurements obtained in 26 volunteers in both sessions to 

calculate the population 95% prediction interval (PI) for zero change (using two SD values). Although 

these average data are beneficial, the calculated SD could vary within different sessions and particular 

ROIs within subjects. It would, therefore, be helpful to have a more specific measure of variability 

within a session (within session reproducibility), and preferably for each ROI. While this is possible, 

the small sample numbers (two readings obtained in each of the two sessions) means that a current 

threshold of change higher than 2SD cannot be used to assess the statistical significance of changes in 

this context. While any estimate of variance based on a `t` distribution with two degrees of freedom 

must be treated with caution, the statistical theory suggests that a threshold of 4.3 SDs may provide 

an estimate of the 95% prediction interval for zero change. These within session measurements could, 

therefore, be used to assess the significance of the changes in DTI parameters following a therapeutic 

intervention within the same imaging session. 

Statistical analysis: Statistical analyses were conducted using Statview (Version 5, 1998, SAS 

Institute Inc., Cary, North Carolina, USA) and SPSS® Statistics Version 21 (IBM ® Corporation, New York, 

United States). All data are expressed and displayed as mean and standard deviation (SD) unless 

otherwise stated. To compare the reproducibility of DTI measurements, the SD and coefficient of 

variation (CoV) (CoV = SD/mean) of measurements were calculated within each ROI. Data were 

compared using paired t-tests, factorial analysis of variance (ANOVA) and intraclass correlation (ICC) 

as appropriate. Using ANOVA, the residual standard deviation was used to calculate the 95% 

prediction interval for zero change of repeat DTI studies. All p values are quoted after Bonferroni 

corrections for multiple comparisons (where appropriate). 

Results 

Intersubject variability of diffusion tensor imaging metrics 

The intersubject variability of DTI measurements (Figure 4-2) is displayed in Table 4-1A for the 

predominantly white matter and Table 4-1B for mixed cortical and deep grey matter regions. The 

intersubject variability was high for all the calculated parameters with a mean (range) CoV across the 

ROIs for FA of 7.9 (3.3 – 31.7%) and 6.8 (3.3 – 19.2%), ADC of 7.3 (2.4 – 33.7%) and 7.1 (1.8 – 30.9%), 

AD of 4.5 (1.5 – 15.0%) and 6.0 (1.9 – 27.4%) and RD of 12.4 (3.6 – 63.2%) and 8.1 (2.6 – 33.3%) for 

the white matter and mixed cortical and deep grey matter regions respectively. 
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Figure 4-2 Variability in fractional anisotropy measurements 
Box and whisker plot for fractional anisotropy values (mm2/second) for the white matter region of interest (ROI) measurements. The spread of data within each ROI reflects inter subject variation, while the difference between runs 1 – 2 and 3 – 
4 reflects within session reproducibility, and the change from first to second sessions reflects between session reproducibility. The central lines in each box denote median values, the lower and upper boundaries the 25th and 75th centile, the 
error bars the 10th and 90th centile, and the closed circles outlying data points. Anterior corpus callosum (ACC), body corpus callosum (BCC), posterior corpus callosum (PCC), left anterior thalamic radiation (ATR L), right anterior thalamic radiation 
(ATR R), left superior longitudinal fasciculus (SLF L), right superior longitudinal fasciculus (SLF R), left inferior longitudinal fasciculus (ILF L), right inferior longitudinal fasciculus (ILF R), left cingulum (Cingulum L), right cingulum (Cingulum R), left 
uncinate fasciculus (UFL), right uncinate fasciculus (UFR), left corticospinal tract (CST L), right corticospinal tract (CST R), dorsal midbrain (dorsal MB), ventral midbrain (ventral midbrain), left cerebral peduncle (CP L), right cerebral peduncle (CP 
R), left pons (pons L) and right pons (pons R). 
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Region of Interest (ROI) 
FA (mm2/second) ADC (mm2/second) Axial diffusivity (mm2/second) Radial diffusivity (mm2/second) 

Mean SD CoV (%) Mean SD CoV (%) Mean SD CoV (%) Mean SD CoV (%) 

Ant corpus callosum 0.667162 0.079716 11.9 0.000828 0.000052 6.2 0.001604 0.000071 4.4 0.000440 0.000092 20.9 

Body corpus callosum 0.564869 0.179244 31.7 0.000997 0.000187 18.7 0.001678 0.000091 5.4 0.000657 0.000286 43.5 

Post corpus callosum 0.695110 0.101172 14.6 0.000993 0.000335 33.7 0.001812 0.000271 15.0 0.000584 0.000369 63.2 

Ant thalamic radiation left 0.407562 0.019832 4.9 0.000833 0.000037 4.5 0.001198 0.000031 2.6 0.000652 0.000042 6.4 

Ant thalamic radiation right 0.366557 0.019831 5.4 0.000936 0.000046 5.0 0.001274 0.000036 2.9 0.000768 0.000052 6.7 

Sup longitudinal fasciculus left 0.345421 0.012185 3.5 0.000845 0.000027 3.2 0.001135 0.000027 2.4 0.000699 0.000029 4.1 

Sup longitudinal fasciculus right 0.371603 0.012607 3.4 0.000828 0.000023 2.7 0.001146 0.000023 2.0 0.000669 0.000024 3.6 

Inf longitudinal fasciculus left 0.387245 0.017434 4.5 0.000817 0.000020 2.4 0.001171 0.000018 1.5 0.000641 0.000026 4.0 

Inf longitudinal fasciculus right 0.413091 0.019417 4.7 0.000860 0.000029 3.4 0.001258 0.000033 2.6 0.000660 0.000034 5.2 

Cingulum left 0.301153 0.035238 11.7 0.000900 0.000051 5.6 0.001184 0.000049 4.1 0.000762 0.000058 7.6 

Cingulum right 0.300470 0.051387 17.1 0.001013 0.000098 9.7 0.001311 0.000086 6.5 0.000861 0.000113 13.1 

Uncinate fasciculus left 0.399732 0.018942 4.7 0.000816 0.000021 2.6 0.001177 0.000027 2.3 0.000636 0.000024 3.8 

Uncinate fasciculus right 0.373047 0.022351 6.0 0.000915 0.000051 5.5 0.001273 0.000046 3.6 0.000736 0.000057 7.7 

Corticospinal tract left 0.485927 0.016789 3.5 0.000838 0.000036 4.3 0.001275 0.000034 2.7 0.000621 0.000037 6.0 

Corticospinal tract right 0.485927 0.018213 3.7 0.000819 0.000034 4.2 0.001256 0.000030 2.4 0.000603 0.000035 5.9 

Forceps Minor 0.391980 0.015603 4.0 0.000895 0.000032 3.6 0.001269 0.000038 3.0 0.000706 0.000035 5.0 

Forceps Major 0.410602 0.033072 8.1 0.000934 0.000077 8.2 0.001354 0.000082 6.0 0.000724 0.000082 11.3 

Ventral Midbrain 0.575076 0.065234 11.3 0.000806 0.000102 12.6 0.001405 0.000147 10.4 0.000506 0.000089 17.5 

Dorsal Midbrain 0.535710 0.037926 7.1 0.000778 0.000044 5.6 0.001262 0.000070 5.5 0.000536 0.000047 8.7 

Cerebral peduncle left 0.504359 0.023937 4.7 0.000701 0.000027 3.9 0.001136 0.000041 3.6 0.000483 0.000027 5.6 

Cerebral peduncle right 0.527349 0.017429 3.3 0.000683 0.000023 3.4 0.001132 0.000030 2.6 0.000459 0.000026 5.6 

Pons left 0.528268 0.030525 5.8 0.000816 0.000091 11.2 0.001308 0.000094 7.2 0.000570 0.000092 16.2 

Pons right 0.545961 0.027195 5.0 0.000792 0.000065 8.3 0.001300 0.000062 4.8 0.000537 0.000071 13.2 

Mean 0.460182 0.038056 7.9 0.000854 0.000066 7.3 0.001301 0.000062 4.5 0.000631 0.000076 12.4 

 

A 
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Region of Interest (ROI) 
FA (mm2/second) ADC (mm2/second) Axial diffusivity (mm2/second) Radial diffusivity (mm2/second) 

Mean SD CoV (%) Mean SD CoV (%) Mean SD CoV (%) Mean SD CoV (%) 

Caudate left 0.245963 0.047207 19.2 0.001230 0.000379 30.9 0.001473 0.000403 27.4 0.001108 0.000369 33.3 

Caudate right 0.293710 0.041241 14.0 0.000770 0.000106 13.8 0.000999 0.000116 11.6 0.000655 0.000106 16.2 

Thalamus left 0.344843 0.016470 4.8 0.000781 0.000023 2.9 0.001054 0.000024 2.3 0.000645 0.000026 4.0 

Thalamus right 0.352215 0.017537 5.0 0.000756 0.000013 1.8 0.001029 0.000020 1.9 0.000619 0.000016 2.6 

Hippocampus left 0.284409 0.017636 6.2 0.001030 0.000061 5.9 0.001314 0.000059 4.5 0.000887 0.000063 7.2 

Hippocampus right 0.291187 0.016893 5.8 0.001113 0.000073 6.6 0.001421 0.000073 5.2 0.000959 0.000075 7.8 

Frontal lobe left 0.248031 0.010789 4.4 0.001015 0.000046 4.5 0.001234 0.000049 4.0 0.000905 0.000045 5.0 

Frontal lobe right 0.241779 0.008078 3.3 0.001038 0.000048 4.6 0.001255 0.000049 3.9 0.000930 0.000048 5.2 

Parietal lobe left 0.261730 0.010499 4.0 0.001016 0.000055 5.4 0.001250 0.000055 4.4 0.000899 0.000055 6.2 

Parietal lobe right 0.260676 0.009041 3.5 0.001038 0.000051 4.9 0.001271 0.000051 4.0 0.000921 0.000051 5.5 

Occipital lobe left 0.247951 0.014531 5.9 0.000952 0.000049 5.2 0.001171 0.000051 4.3 0.000842 0.000049 5.8 

Occipital lobe right 0.240892 0.010980 4.6 0.000996 0.000053 5.3 0.001213 0.000054 4.5 0.000887 0.000052 5.9 

Temporal lobe left 0.249815 0.017455 7.0 0.000903 0.000040 4.5 0.001127 0.000047 4.2 0.000791 0.000038 4.9 

Temporal lobe right 0.257036 0.013190 5.1 0.000963 0.000027 2.8 0.001199 0.000026 2.2 0.000845 0.000028 3.4 

Cerebellum left 0.234565 0.020717 8.8 0.000839 0.000063 7.5 0.001038 0.000069 6.6 0.000739 0.000060 8.2 

Cerebellum right 0.230964 0.018121 7.8 0.000834 0.000058 7.0 0.001029 0.000057 5.5 0.000737 0.000060 8.1 

Mean 0.267860 0.018149 6.8 0.000955 0.000072 7.1 0.001192 0.000075 6.0 0.000836 0.000071 8.1 

 

B 

Table 4-1A and 1B Intersubject variability for diffusion tensor imaging measurements 
Intersubject variability for Fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial and radial diffusivity. Data displayed were obtained in 26 subjects and show mean, standard deviation (SD) and coefficient of variation 
(CoV) for predominantly white matter (A) and mixed cortical and deep grey matter (B) regions of interest (ROI). 
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Within-session and between-session reproducibility of diffusion tensor imaging 

The ROI data for within and between sessions reproducibility were variable across the different brain 

regions but lower than the values for intersubject variability (Table 4-2A, Table 4-2B, Table 4-2C and 

Table 4-2D). The within-session reproducibility measurements were significantly lower than between 

session reproducibility measurements for all the DTI parameters (p < 0.001, paired‘t’ test with 

Bonferroni correction). As an example, the difference between intersubject variability, within and 

between session reproducibility is displayed for FA in figure 4-2. 
 

The mean (range) ROI ICC for within session measurements were for FA 0.79 (0.46 – 0.99) and 0.81 

(0.57 – 0.93), ADC 0.91 (0.73 – 0.99) and 0.92 (0.74 – 0.98), AD 0.82 (0.59 – 0.98) and 0.89 (0.68 – 

0.98), and for RD 0.89 (0.76 – 0.99) and 0.91 (0.59 – 0.99) for the white matter and mixed cortical and 

deep grey matter regions respectively. The between session measurements were for FA 0.78 (0.56 – 

0.98) and 0.69 (0.42 – 0.93), ADC 0.79 (0.17 – 0.99) and 0.78 (0.40 – 0.98), AD 0.74 (0.47 – 0.98) and 

0.68 (0.19 – 0.98), and for RD 0.82 (0.46 – 0.99) and 0.79 (0.48 – 0.99) for the white matter and mixed 

cortical and deep grey matter regions respectively. 
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 FA ADC AD RD 

 
Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Ant corpus callosum 2.0 x 10-2 ± 1.6 x 10-2 1.9 x 10-2 ± 1.7 x 10-2 1.2 x 10-5 ± 1.1 x 10-5 1.5 x 10-5 ± 1.2 x 10-5 2.2 x 10-5 ± 2.0 x 10-5 2.5 x 10-5 ± 2.1 x 10-5 1.9 x 10-5 ± 1.9 x 10-5 2.3 x 10-5 ± 2.3 x 10-5 

Body corpus callosum 1.7 x 10-2 ± 1.5 x 10-2 1.8 x 10-2 ± 1.8 x 10-2 2.3 x 10-5 ± 2.2 x 10-5 3.2 x 10-5 ± 2.8 x 10-5 2.6 x 10-5 ± 2.8 x 10-5 3.5 x 10-5 ± 2.5 x 10-5 2.4 x 10-5 ± 2.4 x 10-5 3.3 x 10-5 ± 3.5 x 10-5 

Post corpus callosum 1.0 x 10-2 ± 1.5 x 10-2 1.0 x 10-2 ± 8.2 x 10-3 2.2 x 10-5 ± 3.7 x 10-5 2.3 x 10-5 ± 2.4 x 10-5 2.1 x 10-5 ± 2.8 x 10-5 2.3 x 10-5 ± 2.0 x 10-5 2.2 x 10-5 ± 4.1 x 10-5 2.2 x 10-5 ± 2.9 x 10-5 

Ant thalamic radiation left 3.6 x 10-3  ± 5.1 x 10-3 4.6 x 10-3 ± 4.6 x 10-3 6.4 x 10-6 ± 1.0 x 10-5 9.7 x 10-6 ± 9.9 x 10-6 7.4 x 10-6 ± 8.1 x 10-6 1.1 x 10-5 ± 9.2 x 10-6 6.5 x 10-6 ± 1.2 x 10-5 9.6 x 10-6 ± 1.1 x 10-5 

Ant thalamic radiation right 4.5 x 10-3 ± 6.0 x 10-3 5.3 x 10-3 ± 4.9 x 10-3 8.7 x 10-6 ± 1.7 x 10-5 1.1 x 10-5 ± 1.4 x 10-5 8.8 x 10-6 ± 1.5 x 10-5 1.3 x 10-5 ± 1.2 x 10-5 9.5 x 10-6 ± 1.9 x 10-5 1.2 x 10-5 ± 1.5 x 10-5 

Sup longitudinal fasciculus left 4.9 x 10-3 ± 1.9 x 10-2 4.4 x 10-3 ± 1.4 x 10-2 5.6 x 10-6 ± 2.2 x 10-5 8.2 x 10-6 ± 1.7 x 10-5 9.1 x 10-6 ± 3.8 x 10-5 1.2 x 10-5 ± 3.0 x 10-5 4.2 x 10-6 ± 1.4 x 10-5 6.7 x 10-6 ± 1.2 x 10-5 

Sup longitudinal fasciculus right 5.4 x 10-3 ± 1.9 x 10-2 5.9 x 10-3 ± 1.4 x 10-2 3.3 x 10-6 ± 1.0 x 10-5 7.7 x 10-6 ± 1.0 x 10-5 6.6 x 10-6 ± 2.6 x 10-5 1.3 x 10-5 ± 2.2 x 10-5 2.5 x 10-6 ± 3.2 x 10-6 6.0 x 10-6 ± 5.6 x 10-6 

Inf longitudinal fasciculus left 5.1 x 10-3 ± 1.7 x 10-2 4.9 x 10-3 ± 1.2 x 10-2 3.1 x 10-6 ± 2.7 x 10-6 6.1 x 10-6 ± 5.3 x 10-6 5.7 x 10-6 ± 1.6 x 10-5 7.9 x 10-6 ± 1.4 x 10-5 4.7 x 10-6 ± 9.9 x 10-6 7.3 x 10-6 ± 8.0 x 10-6 

Inf longitudinal fasciculus right 5.2 x 10-3 ± 1.3 x 10-2 5.1 x 10-3 ± 9.6 x 10-3 4.3 x 10-6 ± 5.5 x 10-6 7.9 x 10-6 ± 6.4 x 10-6 7.0 x 10-6 ± 1.6 x 10-5 9.5 x 10-6 ± 1.3 x 10-5 6.2 x 10-6 ± 1.0 x 10-5 8.9 x 10-6 ± 8.1 x 10-6 

Cingulum left 7.3 x 10-3 ± 8.3 x 10-3 7.9 x 10-3 ± 7.1 x 10-3 1.2 x 10-5 ± 1.4 x 10-5 1.3 x 10-5 ± 1.0 x 10-5 1.6 x 10-5 ± 2.0 x 10-5 1.6 x 10-5 ± 1.6 x 10-5 1.3 x 10-5 ± 1.5 x 10-5 1.4 x 10-5 ± 1.2 x 10-5 

Cingulum right 8.0 x 10-3 ± 9.5 x 10-3 9.6 x 10-3 ± 8.3 x 10-3 1.9 x 10-5 ± 1.5 x 10-5 2.2 x 10-5 ± 1.8 x 10-5 2.4 x 10-5 ± 1.8 x 10-5 2.5 x 10-5 ± 1.9 x 10-5 1.9 x 10-5 ± 1.7 x 10-5 2.0 x 10-5 ± 1.8 x 10-5 

Uncinate fasciculus left 4.6 x 10-3 ± 8.0 x 10-3 5.4 x 10-3 ± 6.7 x 10-3 4.7 x 10-6 ± 5.3 x 10-6 7.3 x 10-6 ± 6.8 x 10-6 6.4 x 10-6 ± 4.9 x 10-6 9.6 x 10-6 ± 8.3 x 10-6 6.6 x 10-6 ± 1.2 x 10-5 9.1 x 10-6 ± 1.0 x 10-5 

Uncinate fasciculus right 4.8 x 10-3 ± 4.2 x 10-3 4.7 x 10-3 ± 3.4 x 10-3 7.7 x 10-6 ± 9.0 x 10-6 9.0 x 10-6 ± 8.5 x 10-6 8.2 x 10-6 ± 9.4 x 10-6 1.0 x 10-5 ± 8.5 x 10-6 9.7 x 10-6 ± 9.7 x 10-6 1.0 x 10-5 ± 8.9 x 10-6 

Corticospinal tract left 6.7 x 10-3 ± 2.0 x 10-2 6.5 x 10-3 ± 1.5 x 10-2 6.4 x 10-6 ± 1.0 x 10-5 9.9 x 10-6 ± 1.0 x 10-5 1.0 x 10-5 ± 2.8 x 10-5 1.4 x 10-5 ± 2.2 x 10-5 6.8 x 10-6 ± 1.2 x 10-5 1.0 x 10-5 ± 1.1 x 10-5 

Corticospinal tract right 6.4 x 10-3 ± 1.5 x 10-2 7.0 x 10-3 ± 1.2 x 10-2 5.3 x 10-6 ± 7.7 x 10-6 9.2 x 10-6 ± 9.6 x 10-6 8.9 x 10-6 ± 2.0 x 10-5 1.4 x 10-5 ± 1.8 x 10-5 6.0 x 10-6 ± 1.3 x 10-5 9.6 x 10-6 ± 1.3 x 10-5 

Forceps Minor 5.5 x 10-3 ± 6.9 x 10-3 6.9 x 10-3 ± 6.2 x 10-3 7.9 x 10-6 ± 8.4 x 10-6 1.0 x 10-5 ± 8.2 x 10-6 9.4 x 10-6 ± 9.0 x 10-6 1.4 x 10-5 ± 1.1 x 10-5 8.9 x 10-6 ± 1.1 x 10-5 1.2 x 10-5 ± 8.7 x 10-6 

Forceps Major 5.4 x 10-3 ± 1.5 x 10-2 4.3 x 10-3 ± 1.1 x 10-2 4.6 x 10-6 ± 6.6 x 10-6 7.3 x 10-6 ± 6.7 x 10-6 7.9 x 10-6 ± 2.1 x 10-5 1.0 x 10-5 ± 1.7 x 10-5 5.6 x 10-6 ± 7.5 x 10-6 7.4 x 10-6 ± 5.8 x 10-6 

Ventral Midbrain 3.0 x 10-2 ± 3.7 x 10-2 2.6 x 10-2 ± 2.5 x 10-2 3.0 x 10-5 ± 2.6 x 10-5 4.3 x 10-5 ± 3.4 x 10-5 5.1 x 10-5 ± 5.1 x 10-5 6.3 x 10-5 ± 4.4 x 10-5 2.2 x 10-5 ± 1.8 x 10-5 2.9 x 10-5 ± 2.3 x 10-5 

Dorsal Midbrain 1.3 x 10-2 ± 1.1 x 10-2 2.1 x 10-2 ± 1.8 x 10-2 1.3 x 10-5 ± 1.4 x 10-5 3.1 x 10-5 ± 3.7 x 10-5 1.6 x 10-5 ± 1.6 x 10-5 3.5 x 10-5 ± 3.5 x 10-5 1.9 x 10-5 ± 1.9 x 10-5 2.5 x 10-5 ± 2.8 x 10-5 

Cerebral peduncle left 7.5 x 10-3 ± 7.6 x 10-3 9.3 x 10-3 ± 7.4 x 10-3 8.8 x 10-6 ± 1.1 x 10-5 1.5 x 10-5 ± 1.3 x 10-5 1.4 x 10-5 ± 1.5 x 10-5 2.0 x 10-5 ± 1.5 x 10-5 9.4 x 10-6 ± 1.0 x 10-5 1.4 x 10-5 ± 1.3 x 10-5 

Cerebral peduncle right 5.9 x 10-3 ± 4.3 x 10-3 6.9 x 10-3 ± 5.0 x 10-3 7.4 x 10-6 ± 6.2 x 10-6 1.1 x 10-5 ± 8.7 x 10-6 1.2 x 10-5 ± 1.0 x 10-5 1.7 x 10-5 ± 1.2 x 10-5 8.5 x 10-6 ± 8.3 x 10-6 1.3 x 10-5 ± 1.6 x 10-5 

Pons left 8.9 x 10-3 ± 8.1 x 10-3 1.2 x 10-2 ± 1.1 x 10-2 1.3 x 10-5 ± 1.2 x 10-5 3.1 x 10-5 ± 2.2 x 10-5 1.6 x 10-5 ± 1.5 x 10-5 3.6 x 10-5 ± 2.3 x 10-5 1.7 x 10-5 ± 1.6 x 10-5 2.8 x 10-5 ± 3.0 x 10-5 

Pons right 7.7 x 10-3 ± 7.3 x 10-3 1.3 x 10-2 ± 7.4 x 10-3 1.1 x 10-5 ± 9.3 x 10-6 2.7 x 10-5 ± 2.1 x 10-5 1.5 x 10-5 ± 1.3 x 10-5 2.7 x 10-5 ± 2.4 x 10-5 1.4 x 10-5 ± 1.2 x 10-5 2.7 x 10-5 ± 2.6 x 10-5 

Mean 7.1 x 10-3 ± 1.3 x 10-2 8.3 x 10-3 ± 1.1 x 10-2 1.0 x 10-5 ± 1.6 x 10-5 1.7 x 10-5 ± 2.1 x 10-5 1.4 x 10-5 ± 2.2 x 10-5 2.1 x 10-5 ± 2.5 x 10-5 1.1 x 10-5 ± 1.7 x 10-5 1.6 x 10-5 ± 2.1 x 10-5 
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 FA ADC AD RD 

 
Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Caudate left 9.0 x 10-3 ± 7.5 x 10-3 9.1 x 10-3 ± 8.5 x 10-3 4.1 x 10-5 ± 4.1 x 10-5 4.2 x 10-5 ± 3.5 x 10-5 4.8 x 10-5 ± 4.5 x 10-5 4.9 x 10-5 ± 4.0 x 10-5 3.1 x 10-5 ± 3.5 x 10-5 3.0 x 10-5 ± 2.7 x 10-5 

Caudate right 9.2 x 10-3 ± 8.1 x 10-3 9.7 x 10-3 ± 7.2 x 10-3 1.4 x 10-5 ± 1.9 x 10-5 1.9 x 10-5 ± 3.3 x 10-5 1.5 x 10-5 ± 1.9 x 10-5 2.1 x 10-5 ± 3.5 x 10-5 1.3 x 10-5 ± 1.9 x 10-5 1.7 x 10-5 ± 3.2 x 10-5 

Thalamus left 6.1 x 10-3 ± 4.5 x 10-3 6.8 x 10-3 ± 4.9 x 10-3 7.9 x 10-6 ± 6.8 x 10-6 1.1 x 10-5 ± 8.4 x 10-6 1.1 x 10-5 ± 8.3 x 10-6 1.6 x 10-5 ± 1.1 x 10-5 7.8 x 10-6 ± 8.2 x 10-6 1.1 x 10-5 ± 1.6 x 10-5 

Thalamus right 5.7 x 10-3 ± 4.9 x 10-3 6.9 x 10-3 ± 5.7 x 10-3 6.2 x 10-6 ± 4.8 x 10-6 8.8 x 10-6 ± 6.1 x 10-6 8.2 x 10-6 ± 7.8 x 10-6 1.4 x 10-5 ± 9.8 x 10-6 7.5 x 10-6 ± 7.9 x 10-6 1.1 x 10-5 ± 1.7 x 10-5 

Hippocampus left 4.2 x 10-3 ± 4.8 x 10-3 4.8 x 10-3 ± 4.3 x 10-3 7.0 x 10-6 ± 8.4 x 10-6 1.3 x 10-5 ± 1.1 x 10-5 8.5 x 10-6 ± 8.1 x 10-6 1.4 x 10-5 ± 1.2 x 10-5 8.2 x 10-6 ± 1.2 x 10-5 1.4 x 10-5 ± 2.0 x 10-5 

Hippocampus right 4.7 x 10-3 ± 6.7 x 10-3 5.7 x 10-3 ± 3.8 x 10-3 9.7 x 10-6 ± 9.8 x 10-6 1.6 x 10-5 ± 1.2 x 10-5 1.1 x 10-5 ± 9.0 x 10-6 1.6 x 10-5 ± 1.3 x 10-5 9.2 x 10-6 ± 1.2 x 10-5 1.6 x 10-5 ± 1.9 x 10-5 

Frontal lobe left 3.1 x 10-3 ± 3.7 x 10-3 4.1 x 10-3 ± 4.1 x 10-3 9.1 x 10-6 ± 9.6 x 10-6 2.0 x 10-5 ± 1.6 x 10-5 1.1 x 10-5 ± 1.3 x 10-5 2.3 x 10-5 ± 2.0 x 10-5 9.6 x 10-6 ± 8.0 x 10-6 1.5 x 10-5 ± 1.3 x 10-5 

Frontal lobe right 3.2 x 10-3 ± 3.0 x 10-3 3.9 x 10-3 ± 3.6 x 10-3 9.0 x 10-6 ± 8.4 x 10-6 2.0 x 10-5 ± 1.7 x 10-5 1.1 x 10-5 ± 1.1 x 10-5 2.4 x 10-5 ± 2.1 x 10-5 8.9 x 10-6 ± 7.7 x 10-6 1.6 x 10-5 ± 1.4 x 10-5 

Parietal lobe left 3.7 x 10-3 ± 4.3 x 10-3 4.9 x 10-3 ± 4.9 x 10-3 7.3 x 10-6 ± 8.4 x 10-6 1.3 x 10-5 ± 1.2 x 10-5 9.1 x 10-6 ± 1.1 x 10-5 1.7 x 10-5 ± 1.6 x 10-5 7.1 x 10-6 ± 8.2 x 10-6 1.3 x 10-5 ± 1.3 x 10-5 

Parietal lobe right 2.4 x 10-3 ± 2.8 x 10-3 4.0 x 10-3 ± 3.6 x 10-3 4.5 x 10-6 ± 3.3 x 10-6 1.2 x 10-5 ± 1.2 x 10-5 5.1 x 10-6 ± 4.3 x 10-6 1.4 x 10-5 ± 1.4 x 10-5 5.7 x 10-6 ± 6.3 x 10-6 1.2 x 10-5 ± 1.4 x 10-5 

Occipital lobe left 5.0 x 10-3 ± 6.8 x 10-3 5.5 x 10-3 ± 5.2 x 10-3 6.5 x 10-6 ± 6.8 x 10-6 1.3 x 10-5 ± 9.4 x 10-6 9.3 x 10-6 ± 1.0 x 10-5 1.5 x 10-5 ± 1.2 x 10-5 6.4 x 10-6 ± 7.2 x 10-6 1.2 x 10-5 ± 1.4 x 10-5 

Occipital lobe right 3.7 x 10-3 ± 4.7 x 10-3 4.4 x 10-3 ± 4.8 x 10-3 6.3 x 10-6 ± 6.6 x 10-5 1.3 x 10-5 ± 1.2 x 10-5 8.8 x 10-6 ± 9.2 x 10-6 1.5 x 10-5 ± 1.5 x 10-5 7.4 x 10-6 ± 8.1 x 10-6 1.4 x 10-5 ± 1.7 x 10-5 

Temporal lobe left 6.7 x 10-3 ± 8.5 x 10-3 6.7 x 10-3 ± 7.5 x 10-3 1.0 x 10-5 ± 9.4 x 10-6 1.3 x 10-5 ± 1.1 x 10-5 1.4 x 10-5 ± 1.4 x 10-5 1.7 x 10-5 ± 1.6 x 10-5 8.6 x 10-6 ± 8.2 x 10-6 1.4 x 10-5 ± 1.6 x 10-5 

Temporal lobe right 4.4 x 10-3 ± 5.1 x 10-3 4.7 x 10-3 ± 4.8 x 10-3 7.0 x 10-6 ± 5.4 x 10-6 1.1 x 10-5 ± 8.5 x 10-6 8.9 x 10-6 ± 8.1 x 10-6 1.3 x 10-5 ± 1.0 x 10-5 1.3 x 10-5 ± 4.4 x 10-5 1.5 x 10-5 ± 3.6 x 10-5 

Cerebellum left 4.5 x 10-3 ± 4.7 x 10-3 1.3 x 10-2 ± 1.3 x 10-2 1.2 x 10-5 ± 1.5 x 10-5 3.5 x 10-5 ± 3.8 x 10-5 1.5 x 10-5 ± 1.9 x 10-5 4.4 x 10-5 ± 4.9 x 10-5 1.3 x 10-5 ± 1.4 x 10-5 2.4 x 10-5 ± 2.7 x 10-5 

Cerebellum right 4.0 x 10-3 ± 4.4 x 10-3 1.2 x 10-2 ± 1.2 x 10-2 8.9 x 10-6 ± 1.1 x 10-5 3.1 x 10-5 ± 3.4 x 10-5 1.2 x 10-5 ± 1.3 x 10-5 4.0 x 10-5 ± 4.2 x 10-5 1.2 x 10-5 ± 1.2 x 10-5 2.4 x 10-5 ± 2.4 x 10-5 

Mean 5.0 x 10-3 ± 5.8 x 10-3 6.6 x 10-3 ± 7.2 x 10-3 1.0 x 10-5 ± 1.6 x 10-5 1.8 x 10-5 ± 2.2 x 10-5 1.3 x 10-5 ± 1.8 x 10-5 2.2 x 10-5 ± 2.7 x 10-5 1.1 x 10-5 ± 1.8 x 10-5 1.6 x 10-5 ± 2.2 x 10-5 
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  FA ADC AD RD 

  
Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Ant corpus callosum  3.2 ± 2.6 3.0 ± 2.7 1.5 ± 1.3 1.9 ± 1.4 1.4 ± 1.3 1.6 ± 1.3 4.3 ± 4.6 5.2 ± 5.0 

Body corpus callosum  3.6 ± 3.6 3.8 ± 4.2 2.4 ± 2.4 3.1 ± 2.7 1.6 ± 1.7 2.1 ± 1.6 3.9 ± 4.6 5.2 ± 5.7 

Post corpus callosum  1.6 ± 2.1 1.5 ± 1.3 2.2 ± 3.4 2.2 ± 2.1 1.1 ± 1.4 1.3 ± 1.0 3.8 ± 6.6 4.0 ± 4.2 

Ant thalamic radiation left  0.9 ± 1.3 1.1 ± 1.1 0.8 ± 1.2 1.2 ± 1.2 0.6 ± 0.7 0.9 ± 0.8 1.0 ± 1.8 1.4 ± 1.6 

Ant thalamic radiation right  1.3 ± 1.6 1.5 ± 1.4 0.9 ± 1.8 1.2 ± 1.4 0.7 ± 1.2 1.0 ± 0.9 1.2 ± 2.3 1.5 ± 1.8 

Sup longitudinal fasciculus left  1.7 ± 7.4 1.4 ± 5.5 0.7 ± 3.0 1.0 ± 2.3 0.9 ± 4.0 1.1 ± 3.1 0.6 ± 2.3 1.0 ± 1.8 

Sup longitudinal fasciculus right  1.7 ± 6.3 1.7 ± 4.7 0.4 ± 1.4 1.0 ± 1.3 0.6 ± 2.6 1.1 ± 2.2 0.4 ± 0.5 0.9 ± 0.9 

Inf longitudinal fasciculus left  1.4 ± 5.0 1.3 ± 3.6 0.4 ± 0.3 0.7 ± 0.7 0.5 ± 1.4 0.7 ± 1.2 0.7 ± 1.5 1.1 ± 1.2 

Inf longitudinal fasciculus right  1.3 ± 3.5 1.3 ± 2.5 0.5 ± 0.7 0.9 ± 0.7 0.6 ± 1.3 0.8 ± 1.1 0.9 ± 1.6 1.4 ± 1.2 

Cingulum left  2.5 ± 2.8 2.7 ± 2.3 1.3 ± 1.5 1.4 ± 1.1 1.3 ± 1.6 1.4 ± 1.3 1.7 ± 1.9 1.9 ± 1.6 

Cingulum right  2.7 ± 3.0 3.2 ± 2.6 1.9 ± 1.5 2.2 ± 1.8 1.8 ± 1.4 1.9 ± 1.5 2.2 ± 1.9 2.4 ± 2.0 

Uncinate fasciculus left  1.2 ± 2.1 1.4 ± 1.8 0.6 ± 0.6 0.9 ± 0.8 0.5 ± 0.4 0.8 ± 0.7 1.0 ± 1.8 1.4 ± 1.5 

Uncinate fasciculus right  1.3 ± 1.2 1.3 ± 0.9 0.8 ± 1.0 1.0 ± 0.9 0.6 ± 0.8 0.8 ± 0.7 1.3 ± 1.4 1.4 ± 1.2 

Corticospinal tract left  1.5 ± 4.8 1.4 ± 3.5 0.8 ± 1.4 1.2 ± 1.3 0.8 ± 2.4 1.1 ± 1.9 1.1 ± 1.9 1.9 ± 1.8 

Corticospinal tract right  1.4 ± 3.6 1.5 ± 2.9 0.7 ± 1.0 1.1 ± 1.2 0.7 ± 1.7 1.1 ± 1.5 1.0 ± 2.1 1.6 ± 2.1 

Forceps Minor  1.5 ± 1.9 1.8 ± 1.7 0.9 ± 0.9 1.1 ± 0.9 0.7 ± 0.7 1.1 ± 0.8 1.3 ± 1.5 1.6 ± 1.2 

Forceps Major  1.5 ± 4.4 1.1 ± 3.2 0.5 ± 0.8 0.8 ± 0.8 0.6 ± 1.8 0.8 ± 1.4 0.8 ± 1.1 1.0 ± 0.8 

Ventral Midbrain  5.5 ± 6.6 4.7 ± 4.4 3.9 ± 3.5 5.7 ± 4.5 3.8 ± 4.0 4.7 ± 3.4 4.3 ± 3.6 5.8 ± 4.5 

Dorsal Midbrain  2.5 ± 2.2 4.0 ± 3.4 1.7 ± 1.7 3.8 ± 4.4 1.3 ± 1.2 2.7 ± 2.5 3.3 ± 3.0 4.5 ± 4.9 

Cerebral peduncle left  1.5 ± 1.6 1.8 ± 1.5 1.3 ± 1.6 2.2 ± 1.9 1.2 ± 1.4 1.8 ± 1.4 1.9 ± 2.1 3.0 ± 2.6 

Cerebral peduncle right  1.1 ± 0.9 1.3 ± 0.9 1.1 ± 0.9 1.7 ± 1.3 1.0 ± 0.9 1.5 ± 1.1 1.8 ± 1.7 2.8 ± 3.3 

Pons left  1.7 ± 1.6 2.3 ± 2.1 1.5 ± 1.5 3.8 ± 2.8 1.2 ± 1.2 2.8 ± 1.8 2.9 ± 2.6 4.9 ± 5.4 

Pons right  1.4 ± 1.4 2.3 ± 1.4 1.4 ± 1.2 3.4 ± 2.6 1.2 ± 1.0 2.1 ± 1.8 2.6 ± 2.0 4.8 ± 4.4 

Mean  1.9 ± 3.7 2.1 ± 3.0 1.2 ± 1.9 1.9 ± 2.4 1.1 ± 1.9 1.5 ± 1.9 1.9 ± 2.9 2.6 ± 3.5 
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 FA ADC AD RD 

 
Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Within session 
reproducibility 

Between session 
reproducibility 

Caudate left 3.8 ± 3.4 3.9 ± 4.0 3.3 ± 3.3 3.6 ± 3.0 3.2 ± 2.9 3.4 ± 2.8 2.9 ± 3.2 3.0 ± 2.8 

Caudate right 3.2 ± 2.9 3.4 ± 2.5 1.7 ± 2.2 2.2 ± 3.0 1.4 ± 1.7 2.0 ± 2.6 1.9 ± 2.5 2.2 ± 3.4 

Thalamus left 1.8 ± 1.3 2.0 ± 1.5 1.0 ± 0.9 1.4 ± 1.1 1.0 ± 0.8 1.5 ± 1.0 1.2 ± 1.2 1.6 ± 2.3 

Thalamus right 1.6 ± 1.4 2.0 ± 1.6 0.8 ± 0.6 1.2 ± 0.8 0.8 ± 0.8 1.3 ± 1.0 1.2 ± 1.1 1.8 ± 2.5 

Hippocampus left 1.5 ± 1.7 1.7 ± 1.6 0.7 ± 0.8 1.2 ± 1.1 0.6 ± 0.6 1.1 ± 0.9 0.9 ± 1.3 1.6 ± 2.2 

Hippocampus right 1.6 ± 2.3 2.0 ± 1.4 0.9 ± 0.9 1.4 ± 1.1 0.8 ± 0.6 1.1 ± 0.9 1.0 ± 1.3 1.7 ± 2.0 

Frontal lobe left 1.2 ± 1.5 1.7 ± 1.6 0.9 ± 1.0 1.9 ± 1.6 0.9 ± 1.0 1.9 ± 1.6 1.1 ± 0.9 1.6 ± 1.5 

Frontal lobe right 1.4 ± 1.2 1.6 ± 1.5 0.9 ± 0.8 2.0 ± 1.7 0.9 ± 0.9 1.9 ± 1.7 1.0 ± 0.8 1.7 ± 1.5 

Parietal lobe left 1.4 ± 1.6 1.9 ± 1.9 0.7 ± 0.8 1.3 ± 1.2 0.7 ± 0.9 1.3 ± 1.2 0.8 ± 0.9 1.4 ± 1.4 

Parietal lobe right 0.9 ± 1.1 1.6 ± 1.4 0.4 ± 0.3 1.2 ± 1.2 0.4 ± 0.3 1.2 ± 1.2 0.6 ± 0.6 1.3 ± 1.5 

Occipital lobe left 2.1 ± 2.8 2.2 ± 2.1 0.7 ± 0.7 1.3 ± 1.0 0.8 ± 0.8 1.3 ± 1.0 0.7 ± 0.8 1.4 ± 1.6 

Occipital lobe right 1.6 ± 2.0 1.9 ± 2.0 0.6 ± 0.6 1.3 ± 1.2 0.7 ± 0.7 1.3 ± 1.2 0.8 ± 0.8 1.5 ± 1.8 

Temporal lobe left 2.7 ± 3.4 2.8 ± 3.0 1.1 ± 1.0 1.5 ± 1.2 1.3 ± 1.2 1.5 ± 1.4 1.1 ± 1.0 1.8 ± 1.9 

Temporal lobe right 1.7 ± 2.0 1.9 ± 1.9 0.7 ± 0.6 1.2 ± 0.9 0.7 ± 0.7 1.1 ± 0.9 1.8 ± 6.9 1.9 ± 5.3 

Cerebellum left 2.1 ± 2.5 5.9 ± 6.4 1.5 ± 2.1 4.3 ± 4.9 1.5 ± 2.1 4.4 ± 5.1 1.7 ± 1.9 3.3 ± 3.8 

Cerebellum right 1.9 ± 2.2 5.5 ± 6.3 1.1 ± 1.4 3.8 ± 4.0 1.2 ± 1.4 4.0 ± 4.2 1.6 ± 1.7 3.2 ± 3.1 

Mean 1.9 ± 2.3 2.6 ± 3.3 1.1 ± 1.5 1.9 ± 2.4 1.1 ± 1.4 1.9 ± 2.4 1.3 ± 2.3 1.9 ± 2.7 

 

4D 

Table 4-2 Within and between session variability of diffusion tensor imaging region of interest measurements 
Individual white matter (A and C) and mixed cortical and deep grey matter (B and D) region of interest measurements for within session reproducibility obtained in the first and second imaging sessions in 26 and 22 subjects 
respectively, and the between session reproducibility for those 22 subjects who underwent imaging at both sessions. Data displayed are standard deviation (A and B) and percentage coefficient of variation (C and D) of 
measurements for fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial (AD) and radial (RD) diffusivity 
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Calculation of 95% prediction interval for zero change 

Using the four DTI measurements obtained from both sessions, we used ANOVA to determine the 

significance of the differences (Table 4-3). These confirm that there is a significant difference between 

regions and subjects and that there is a significant interaction between brain region and subject. The 

residual variance of the DTI measurements which could not be accounted for by the known 

independent variables is shown in Table 4-3, and the calculated SD for FA, ADC, AD and RD were 1.2 x 

10-2, 3.2 x 10-5, 3.2 x 10-5 and 8.4 x 10-5 mm2/second respectively. The overall population 95% 

prediction intervals for zero change (based on two SD values) were therefore 2.4 x 10-2, 6.3 x 10-5, 6.3 

x 10-5 and 1.7 x 10-4 mm2/second for FA, ADC, AD and RD respectively. The calculated SD for the within-

session measurements were 7.1 x 10-3, 1.0 x 10-5, 1.4 x 10-5 and 1.1 x 10-5 mm2/second for FA, ADC, AD 

and RD respectively. An estimate of the overall 95% prediction interval for zero change (based on 4.3 

SD values) within a single imaging session was therefore 3.1 x 10-2, 4.5 x 10-5, 5.9 x 10-5 and 4.7 x 10-5 

mm2/second for FA, ADC, AD and RD respectively. 

 

  
Parameter Session DF Sum of Squares Mean Square F Value p Value 

FA 
ROI 38 5.4 x 101 1.4 9.6 x 103 <.0001 

subject 21 3.5 x 10-1 1.7 x 10-2 1.1 x 102 <.0001 
ROI * subject 798 5.3 6.6 x 10-3 4.4 x 101 <.0001 

Residual 2574 3.8 x 10-1 1.5 x 10-4   

ADC 
ROI 38 4.6 x 10-5 1.2 x 10-6 2.1 x 103 <.0001 

subject 21 2.2 x 10-6 1.1 x 10-7 1.9 x 102 <.0001 
ROI * subject 798 2.9 x 10-5 3.6 x 10-8 6.4 x 101 <.0001 

Residual 2574 1.5 x 10-6 5.7 x 10-10   

AD 
ROI 38 9.5 x 10-5 2.5 x 10-6 3.0 x 103 <.0001 

subject 21 1.9 x 10-6 8.9 x 10-8 1.1 x 102 <.0001 
ROI * subject 798 2.7 x 10-5 3.4 x 10-8 4.1 x 101 <.0001 

Residual 2574 2.1 x 10-6 8.3 x 10-10   

RD 
ROI 38 7.3 x 10-5 1.9 x 10-6 2.8 x 102 <.0001 

subject 21 2.0 x 10-6 9.5 x 10-8 1.4 <.0001 
ROI * subject 798 2.5 x 10-5 3.2 x 10-8 4.6 <.0001 

Residual 2574 1.8 x 10-5 6.9 x 10-9   

 

Table 4-3 Analysis of variance table for diffusion tensor imaging parameters 
Data (mm2/second) were obtained from 26 volunteers using the region of interest (ROI) template for fractional anisotropy (FA), apparent diffusion coefficient 
(ADC), axial diffusivity (AD), and radial diffusivity (RD). Degrees of freedom (DF). 
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Discussion 
 

This study provides additional reference data concerning intersubject variability and reproducibility of 

DTI conducted within the same imaging session (within a session) and different imaging sessions 

(between session) in a group of healthy volunteers. As reported previously, we found that intersubject 

variability was high,202 with substantial variability across the brain for all the calculated parameters. 

While the DTI measurements were stable with CoV values of ~ 5%, the repeated DTI sequences 

obtained during the same session (within session) had lower CoV values than those obtained from 

measurements obtained in a different imaging session separated by up to six months. The calculated 

95% prediction intervals for zero change of repeat DTI measurements were similar for the data 

obtained within the same session and that calculated from all the measurements obtained over both 

imaging sessions. These prediction intervals can be calculated for individual ROIs and utilised in 

interventional studies to quantify change within a single imaging session, or to assess the significance 

of the change in longitudinal studies of brain injury and disease. The factors affecting the 

reproducibility of DTI parameters include changes within the MR scanner or individual subjects. 

Features related to the scanner include B0 field inhomogeneities, scanner drift, gradient coil stability, 

signal to noise ratio and software upgrades. Such factors may be more significant when imaging is 

acquired within different imaging sessions, rather than repeat acquisitions within the same session 

where such parameters are more likely to be similar. Regular servicing and daily quality assurance 

measurements seek to ensure that an MR scanner is operating normally. There were no upgrades or 

changes in MR scanner hardware or software during the period of this study. Also, daily signal to noise 

ratio measurements was not significantly different for the six months of this study (p = 0.08, Friedman 

test. Data not shown). 

There are individual subject factors such as head movements, and positioning within the scanner field 

was minimised to limit variability. All subjects were positioned within the head coil according to the 

standard operating procedure, and their alignment was confirmed before imaging. We monitored 

subject movement, and all data were checked during acquisition and processing for evidence of 

motion artefact. While no subject was excluded during acquisition or processing in these analyses, DTI 

had to be repeated in one subject during an imaging session due to subject movement. We performed 

all analyses following image coregistration and spatial normalisation to MNI standard space. We used 

a standard ROI template covering the whole brain from the Harvard Oxford subcortical and MNI 

structural probabilistic atlases available within FSL. Finally, all ROIs were manually inspected to ensure 

that they were aligned with the imaging data and corresponded to the regions specified. In summary, 

we considered possible sources of DTI variability within our centre and attempted to limit their impact 

and ensure that the data we acquired were comparable within and between the different imaging 

sessions. 
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While our results for DTI reproducibility are in line with published data,211 we report data specifically 

concerning the difference between intersubject variability, within session and between-session 

reproducibility. Our data for healthy volunteers are broadly concordant with results from other 

groups, and show that these are high, with mean (range) CoV of 7% (3 – 32) for FA, 7% (2 – 34) for 

ADC, 5% (2 – 27) for axial diffusivity and 11% (3 – 63) for radial diffusivity. To be sure that DTI values 

derived from an individual patient are significantly lower, with a confidence of 95%, these figures 

suggest that we need to have mean ROI FA values (for example) that are at least 14% lower than 

volunteer means. This estimate and the secure distinction of a patient group as abnormal is further 

confounded by the fact that intersubject CoV in patients with neurological disorders is larger, and is 

variable across different brain regions. These figures underline the difficulty of using DTI in small 

groups of patients with various causes of neurological disease who have variable pathophysiology. In 

practice, however, estimated sample sizes in such studies are moderated by the fact that the changes 

in DTI are often dramatic, and significance is often detected with manageable numbers,59,212,213 despite 

the large intersubject variability in volunteer and patients groups. 

 

However, it is essential to point out that these figures are largely irrelevant when considering the 

power and design of clinical studies, were the subject is his or her own control, and the relevant 

parameter is intrasubject variability or reproducibility. Our data show that these figures for CoV are 

much smaller than those obtained from the discussion in the previous paragraph. Also, we provide 

reference data for FA, ADC, AD and RD in healthy volunteers demonstrating that the CoV for within-

session reproducibility is lower than between session reproducibility (Table 4-2). These data provide 

helpful guidance for designing clinical studies and suggest that it should be possible to detect 

differences of approximately 5 to 10% with confidence, particularly within single session 

interventional studies. For example, although the reproducibility of measurements is variable for the 

different brain regions, we can use these data to calculate sample sizes for interventional and 

longitudinal clinical studies. Even when we consider the brain region with the highest CoV (ventral 

midbrain), we should be able to detect a 10% change in DTI with 95% power at a significance level of 

1% within a group of 10 subjects within a single interventional or longitudinal study design. Such 

estimates only strictly apply to our scanner and institution, but they provide a useful starting point for 

study design. There are several factors particular to our scanning protocols and institutional setup that 

limit the use of the reproducibility measurements that we provide. These include, but might not be 

limited to, scanner, acquisition protocols, data correction and reconstruction, and processing. Despite 

these variations, it should be possible for other groups to use the methodology that we describe to 

derive ‘in house’ data for their studies. Also, although these data guide designing further clinical 
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studies, particular groups of subjects (including those with brain injury) may require sedation and 

control of ventilation as part of clinical care.213,214 
 

Methodological limitations 

While we were able to obtain multiple DTI datasets on up to two occasions in this group of volunteers, 

scanner availability and subject tolerance prevented us from acquiring further DTI datasets within the 

same session and additional scanning sessions. We found that the within-session reproducibility 

measurements were lower than between session reproducibility measurements obtained over six 

months. The expected change in DTI in healthy volunteers of a similar age over up to six months is 

small and unlikely to have resulted in the differences we have found.215,216 The 95% prediction intervals 

for zero change for the within-session DTI measurements were similar to that calculated from the DTI 

measurements obtained within all sessions. The lack of difference between these measures could be 

related to the fact that we were only able to obtain two sets of DTI within each session and that the 

95% prediction interval for zero change for within-session measurements is based on 4.3 rather than 

2 SDs. These overall prediction intervals for zero change are calculated from all the ROI data, but can 

easily be calculated for individual ROIs using the same technique and used as a method for 

determining the significance of changes following an intervention or longitudinal change over time. 

 

There were differences in the intersubject variability and reproducibility of DTI across the different 

brain regions. These differences are demonstrated in Table 4-1, Table 4-2 and Figure 4-2 and are 

particularly relevant within the corpus callosum, caudate, cingulum and midbrain structures. The 

increase in variability and lower reproducibility of these regions may be related to partial volume 

errors within these relatively small structures secondary to variation in the quality of coregistration 

and spatial normalisation within individual subjects. We tried to limit these errors by eroding the ROI 

template by a single voxel to improve accuracy. Despite this, errors remain within some ROIs where 

DTI values differ in closely adjacent brain regions. However, the purpose of this study was to 

determine the variability of measurements using an ROI template and standard processing pipeline. 

While variability in the fitting of template ROIs in individual subjects may result in higher intersubject 

variability for particular brain regions, this is less likely for measurements of reproducibility within the 

same subject. Here any differences in ROI template fitting between the sessions are likely to be small. 

However, these regional differences underline that DTI studies seeking to compare different subject 

groups or assess interventional or longitudinal change should compare data from within the same 

brain region using the same data processing technique. 
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Conclusions 

This study provides additional reference data concerning intersubject variability and reproducibility of 

DTI conducted in a group of healthy volunteers. The CoV for repeat DTI measurements obtained during 

the same session was lower than those obtained from measurements obtained in a different imaging 

session separated by up to six months. These data can be used to calculate the 95% prediction interval 

for zero change and may inform the design of interventional studies to quantify change within a single 

imaging session or to assess the significance of the change in longitudinal studies. 
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Chapter 5 Comparison of inter subject variability and reproducibility 

of whole brain proton spectroscopy 

 

Introduction 

Proton magnetic resonance spectroscopic imaging (1H MRS) can be used in the diagnosis, assessment 

of progression and prediction of outcome in a variety of neurological disorders such as brain 

tumours,217 traumatic brain injury,108,110,218 multiple sclerosis,219,220 motor neuron disease,221 

Alzheimer’s dementia222 and psychiatric disorders.223,224 The metabolites reliably measured with 

proton spectroscopy (1H MRS) at medium to long echo times include N-acetylaspartate (NAA), 

Creatine (Cr) and Choline (Cho) containing compounds. These provide a measure of neuronal integrity, 

metabolism and a marker of neuronal breakdown and turnover, respectively.168,225While targeted 

imaging of regions of interest (with single voxel or two dimensional 1H MRS) allows evaluation of local 

neuronal loss and glial proliferation; whole brain imaging provides an assessment of the global burden 

of neurological disease even in regions that appear structurally normal. Proton magnetic resonance 

spectroscopy has been used to non-invasively evaluate normal appearing brain in a variety of 

neurological disorders, including multiple sclerosis and head injury.226,227 Whole brain proton 

spectroscopy (WB 1H MRS) data acquired with Metabolic Imaging and Data Acquisition Software 

(MIDAS)96,228,229 provides a fully automated pipeline for processing and interpreting WB 1H MRS data. 

Previous studies using MIDAS and other 1H MRS techniques have provided invaluable reference data 

regarding normal values within different brain regions and reproducibility of such data.109,230,231 

However, there are limited data comparing intersubject variability and reproducibility of WB 1H MRS 

measurements within the same imaging session (within session reproducibility) and those obtained 

during repeat imaging sessions on different days (between session reproducibility). This is of relevance 

for group comparisons with healthy controls, and longitudinal and interventional studies where WB 

1H MRS is used as a biomarker of disease progression or response to therapy. The rational design and 

interpretation of such studies are hampered by lack of knowledge regarding how the variability of WB 

1H MRS measurements in data obtained during the same scanning session differs when compared 

with similar data obtained during a different session or day. In studies where consecutive 

measurements are performed on each subject under resting, and experimental conditions problems 

associated with variation between subjects due to individual differences (intersubject variability) can 

be limited. However, baseline MIDAS WB 1H MRS measurements may vary within an individual patient 

(intrasubject variability) and limit the ability to detect significant changes over time or following a 

therapeutic intervention. Where imaging is repeated after several days or weeks in different sessions, 
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the measurements may vary within an individual patient even in the absence of disease progression 

due to a combination of intrasubject and scanner variability.113,232 Without knowledge of such 

differences, it is difficult to accurately determine the clinical significance of pathophysiological 

changes, as they evolve following various causes of brain injury or disease. 

These studies aimed to provide reference data on intersubject variability and reproducibility of 

commonly used metabolite ratios (Cho/Cr, NAA/Cho and NAA/Cr) and individual signal-intensity 

normalised metabolite concentrations (NAA, Cho and Cr) in a group of healthy volunteers using 

MIDAS. These data will inform the design of interventional studies, where repeated measurements 

are conducted within the same session and longitudinal studies where assessments are repeated over 

time in several different imaging sessions. 

 

Materials and Methods 

Ethics statement 

Ethical approval was obtained from the Cambridgeshire 2 Research Ethics Committee (reference 

number 97/290) and written informed consent was obtained from all volunteers in accordance with 

the Declaration of Helsinki. 

Imaging data acquisition 

Thirty-two healthy volunteers without any history of neuropsychiatric disorder or substance abuse 

underwent imaging using a 3T Siemens Verio MRI scanner (Siemens AG, Erlangen, Germany) with 12 

channel detection within the Wolfson Brain Imaging Centre (WBIC), University of Cambridge. All 

volunteers were right-handed (fourteen males and eighteen females) with mean (range) age of 34 (25 

– 50) years and were employed by Cambridge University Hospitals NHS Trust. Twenty-two volunteers 

attended a second imaging session within a mean (range) of 33 (3 – 181) days. At each imaging session 

subjects were imaged twice with MIDAS along with standard structural imaging. Structural sequences 

included 3D T1-weighted magnetisation prepared rapid gradient echo (MPRAGE), fluid attenuated 

inversion recovery (FLAIR), gradient echo and dual spin echo (proton density/T2-weighted). Whole 

brain spectroscopy data were acquired using a volumetric spin echo (TR/TE 1710/70 milliseconds, flip 

angle of 73o, 50 phase encoding steps and a field of view of 280x280x180mm3) covering the whole 

brain with an acquisition time of 26 minutes as described by Maudsley et al.96,228,233 This sequence also 

included lipid inversion nulling and an unsuppressed water spectroscopy dataset acquired with 20o 

flip angle acquired in an interleaved fashion. The MIDAS and MPRAGE were acquired at an angulation 

of +15 to +20O to the AC-PC line to improve brain coverage and limit field inhomogeneities from the 

frontal and sphenoid air sinuses. The MPRAGE (TR/TE 2150/4.4 and flip angle 8°) was acquired within 

each imaging session with one-millimetre isotropic resolution. 
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Spectroscopic data processing 

Parametric maps were created using the automated pipeline of MIDAS and the data for NAA, Cho and 

Cr were individual signal-intensity normalised to institutional units (iu) based on the tissue water signal 

derived from the water reference dataset. Metabolite data were reconstructed using MIDAS and 

resulted in images composed of 64x64x32 voxels with an individual voxel volume of approximately 

1ml. Voxel data with line width greater than 12 Hz were excluded from further analysis as previously 

described by Maudsley et al.109,111,228 The WB 1H MRS parametric maps were spatially normalised using 

a two-step approach using FSL.206,207 First, control T1 weighted images were coregistered to water 

spectroscopic images using FMRIB's Linear Image Registration Tool (FLIRT).234 This was followed by 

coregistration of control T1 weighted images to the MNI152 template using FMRIB's Non-linear Image 

Registration Tool (FNIRT).234 Combined transformation matrixes were then applied to all parametric 

images used in the analyses. Representative white matter, deep grey and mixed regions of interest 

(ROIs) from the Harvard Oxford subcortical and MNI structural probabilistic atlases available within 

FSL were then applied in normalised space (Figure 5-1). All coregistered images were subsequently 

inspected to ensure that the ROIs were correctly aligned and corresponded to the regions specified. 

The ROI template was modified by the erosion of a single voxel using FSL to improve spatial localisation 

and reduce the impact of coregistration, normalisation and partial volume errors. The mean values for 

metabolites for each ROI were calculated using in-house software written in Matlab (Mathworks, 

Natick, USA). 
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Analysis Strategy 

Each of the 32 volunteers were invited to attend two separate imaging sessions where two MIDAS 

sequences were obtained. This resulted in a maximum of four independent sets of WB 1H MRS data 

(runs) for each subject, which could be used to assess the reproducibility of measurements. Twenty-

two subjects underwent imaging in both sessions. The baseline data from all 32 volunteers were used 

to calculate intersubject variability. For the repeat MIDAS measurements obtained in the same 

subject, the data were split into that obtained during the same imaging session and that obtained in 

two different imaging sessions to calculate within session and between session reproducibility 

respectively. Therefore, the available paired data from each session (run 1 & 2 and 3 & 4 respectively) 

were used to calculate within session reproducibility, and the available combinations of the four 

datasets from the different sessions were used to calculate between session reproducibility (runs 1 & 

3, 1 & 4, 2 & 3, and 2 & 4). The inclusion of all potential combinations ensures that any variation in the 

 

Figure 5-1 Region of interest template with a representative spectra from right thalamus used for calculating metabolite ratios for whole brain 
proton spectroscopy 
T1 weighted magnetic resonance image in MNI152 space (2mm resolution) showing frontal lobe left (L Frontal), frontal lobe right (R Frontal), anterior 
corpus callosum (ACC), thalamus left (L Thalamus), thalamus right (R Thalamus), occipital left (L Occipital), occipital right (R Occipital), putamen left (L 
Putamen) and putamen right (R Putamen). Additional regions not shown include body corpus callosum, posterior corpus callosum, dorsal mid brain, 
ventral mid brain and bilateral regions covering the corticospinal tract,  anterior thalamic radiation, inferior longitudinal fasciculus, superior longitudinal 
fasciculus, pallidum, hippocampus, parietal lobe, temporal lobe, cerebral peduncle and pons. 
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order of the individual sequences obtained within each particular session is accounted for within the 

calculated average measurement of between session reproducibility and reflects clinical practice. 
 

In order to help design any future interventional study using proton spectroscopy, we need to know 

how much deviation in a repeat measurement we would accept as no or zero change. We used the SD 

of measurements obtained in this healthy volunteer study to calculate a ‘confidence interval’ for zero 

change of a repeat measurement in the same subject. We used the average SD for all measurements 

obtained in 32 volunteers in both sessions to calculate the population 95% prediction interval (PI) for 

zero change (using two SD values).113,116,118,232 These calculated thresholds are prediction intervals for 

assuming no changes from zero with the repeat WB 1H MRS measurement rather than confidence 

intervals for the variability of the measurement. This estimate for the variation in repeat 

measurements means that we would accept a positive or negative change in a patient as being 

indicative of zero change as long as it were less than two times the standard deviation of the repeat 

measurement obtained in our healthy volunteer group. Although these average data are extremely 

useful, the calculated SD could vary within different sessions and particular ROIs within subjects. It 

would, therefore, be helpful to have a more specific measure of variability within a session (within 

session reproducibility), and preferably for each ROI. While this is possible, the small sample numbers 

(two readings obtained in each of the two sessions) means that a conventional threshold of change 

greater than 2SD cannot be used to assess the statistical significance of changes in this context.  For a 

t distribution with two degrees of freedom, the statistical theory suggests that an estimate of the 95% 

prediction interval for zero change may be provided by a threshold of 4.3 SDs. These within session 

measurements could, therefore, be used to assess the significance of the changes in WB 1H MRS 

parameters following a therapeutic intervention within the same imaging session. We have previously 

published this analysis strategy for diffusion tensor imaging and 15O positron emission 

tomography.116,118,232 

 

Statistical analysis 

Statistical analyses were conducted using Statview (Version 5, 1998, SAS Institute Inc., Cary, North 

Carolina, USA) and SPSS® Statistics Version 21 (IBM ® Corporation, New York, United States). All data 

are expressed and displayed as mean and standard deviation (SD), unless otherwise stated. To 

compare the reproducibility of WB 1H MRS measurements, the SD and coefficient of variation (CoV) 

(CoV = SD/mean) of measurements were calculated within each ROI. Data were compared using paired 

t-tests, factorial analysis of variance (ANOVA) and intraclass correlation (ICC) as appropriate. Using 

ANOVA, the residual standard deviation was used to calculate the 95% prediction interval for zero 

change of repeat WB 1H MRS studies. All p values are quoted after Bonferroni corrections for multiple 

comparisons (where appropriate). 



68 

 

 

Results 

Intersubject variability for whole brain proton spectroscopic imaging 

The intersubject variability of the metabolite ratios (Cho/Cr, NAA/Cr and NAA/Cho) and 

concentrations (NAA, Cho and Cr) using the ROI template (Figure 5-1) are displayed in Table 5-1 and 

5-2 respectively. In Figure 5-2 NAA, Cr and Cho signal-intensity normalised metabolite concentration 

parametric maps are displayed in comparison with a structural image. The intersubject variability was 

high with a mean (range) CoV across the ROIs for Cho/Cr of 21 (11 – 62%), NAA/Cho 17 (11 – 55%), 

NAA/Cr 13 (8 – 37%), NAA 12 (6 – 23%), choline of 31 (13 – 69%) and creatine 19 (7 – 61%) (Figure 5-3 

and Figure 5-4). 
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 Choline/Creatine NAA/Choline NAA/Creatine 

Region of Interest  Mean SD CoV % Mean SD CoV % Mean SD CoV % 

Anterior corpus callosum 0.63 0.39 61.81 5.23 2.85 54.58 1.79 0.67 37.35 

Body of corpus callosum 0.27 0.07 24.47 6.45 0.93 14.47 1.59 0.23 14.35 

Posterior corpus callosum 0.28 0.05 17.04 6.78 0.78 11.53 1.81 0.23 12.86 

Corticospinal tract right 0.29 0.04 13.57 4.98 0.67 13.41 1.40 0.14 10.26 

Corticospinal tract left 0.29 0.06 21.11 4.85 0.56 11.57 1.37 0.12 8.62 

Anterior thalamic radiation right 0.32 0.06 18.37 5.29 0.67 12.68 1.44 0.12 8.30 

Anterior thalamic radiation left 0.31 0.07 22.61 5.54 0.68 12.26 1.46 0.11 7.63 

Inferior longitudinal fasciculus right 0.24 0.04 17.26 7.16 0.81 11.35 1.49 0.12 8.09 

Inferior longitudinal fasciculus left 0.22 0.03 13.13 6.65 0.78 11.68 1.38 0.12 8.46 

Superior longitudinal fasciculus right 0.23 0.03 11.93 6.77 0.83 12.30 1.50 0.13 8.57 

Superior longitudinal fasciculus left 0.21 0.03 12.51 6.26 0.78 12.52 1.36 0.11 8.17 

Thalamus right 0.31 0.05 15.84 5.37 0.68 12.58 1.59 0.18 11.57 

Thalamus left 0.30 0.05 15.62 5.58 0.67 12.08 1.63 0.20 12.09 

Pallidum right 0.29 0.05 16.50 5.71 0.84 14.67 1.49 0.12 8.23 

Pallidum left 0.30 0.07 22.54 5.82 0.79 13.66 1.54 0.16 10.18 

Putamen right 0.28 0.04 15.62 5.75 0.84 14.65 1.47 0.14 9.88 

Putamen left 0.30 0.06 20.25 5.70 0.74 12.95 1.50 0.15 10.18 

Dorsal Mid Brain 0.37 0.08 21.14 4.84 0.94 19.49 1.71 0.22 13.10 

Ventral Midbrain 0.35 0.08 21.93 5.11 0.78 15.34 1.64 0.14 8.33 

Frontal lobe right 0.21 0.06 27.24 4.42 0.87 19.79 0.97 0.13 13.79 

Frontal lobe left 0.22 0.09 40.53 4.25 0.90 21.13 0.92 0.14 15.03 

Hippocampus right 0.33 0.06 16.57 4.97 0.95 19.14 1.49 0.21 13.87 

Hippocampus left 0.33 0.04 13.19 4.88 0.91 18.59 1.50 0.23 15.24 

Occipital right 0.17 0.08 45.79 9.27 1.89 20.34 1.47 0.26 17.76 

Occipital left 0.16 0.05 29.32 7.97 1.67 20.96 1.30 0.21 15.95 

Parietal right 0.18 0.04 21.17 6.37 1.16 18.27 1.24 0.18 14.25 

Parietal left 0.17 0.03 16.75 5.92 1.01 17.05 1.15 0.14 12.19 

Peduncle right 0.28 0.04 14.32 4.69 0.65 13.80 1.27 0.17 13.37 

Peduncle left 0.28 0.05 18.23 4.59 0.56 12.20 1.23 0.15 12.00 

Pons right 0.45 0.11 24.90 3.94 0.90 22.73 1.74 0.42 24.08 

Pons left 0.46 0.12 26.18 4.18 1.18 28.24 1.78 0.48 27.16 

Temporal right 0.19 0.02 11.00 4.60 0.75 16.22 1.04 0.13 12.94 

Temporal left 0.18 0.02 12.62 4.20 0.73 17.33 0.95 0.14 14.65 

Mean  0.29 0.06 21.24 5.58 0.93 16.96 1.43 0.19 13.30 

 

 

 

Table 5-1 Intersubject variability of metabolite ratios for whole brain proton spectroscopy  
Intersubject variability for Choline /Creatine, N-Acetyl aspartate (NAA)/Choline and N-Acetyl aspartate/Creatine. Data displayed were obtained in 
32 subjects and show mean, standard deviation (SD) and percentage coefficient of variation (CoV%) for each region of interest (ROI). 
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 NAA Cho Cr 

Region of Interest Mean SD CoV % Mean SD CoV % Mean SD CoV % 

Anterior corpus callosum 11778.3 2644.6 22.5 3928.9 1593.9 40.6 9561.7 3934.6 41.1 

Body of corpus callosum 14215.7 1799.0 12.7 2535.7 1131.0 44.6 9357.7 2010.0 21.5 

Posterior corpus callosum 14769.6 1782.9 12.1 2256.2 377.8 16.7 8508.9 1788.5 21.0 

Corticospinal tract right 12802.3 765.3 6.0 2660.9 334.7 12.6 8612.0 561.5 6.5 

Corticospinal tract left 12545.5 691.9 5.5 2651.9 407.9 15.4 8667.5 804.0 9.3 

Anterior thalamic radiation right 11825.9 882.6 7.5 2973.8 1568.1 52.7 9130.7 3498.9 38.3 

Anterior thalamic radiation left 12371.3 722.3 5.8 2958.6 1307.1 44.2 8946.8 1674.1 18.7 

Inferior longitudinal fasciculus right 13292.0 1147.9 8.6 2220.6 817.6 36.8 9015.0 1466.9 16.3 

Inferior longitudinal fasciculus left 12006.4 1119.4 9.3 1976.1 437.8 22.2 8232.2 794.6 9.7 

Superior longitudinal fasciculus right 13347.6 992.9 7.4 2067.6 302.5 14.6 8578.7 613.6 7.2 

Superior longitudinal fasciculus left 11969.7 1139.7 9.5 1905.6 285.7 15.0 7986.0 675.7 8.5 

Thalamus right 12445.6 1926.6 15.5 2417.1 474.5 19.6 8043.5 1531.9 19.0 

Thalamus left 12371.1 2000.5 16.2 2313.6 442.4 19.1 7825.0 1594.3 20.4 

Pallidum right 12804.3 1312.2 10.2 2517.1 542.8 21.6 8952.5 1091.4 12.2 

Pallidum left 13159.7 1388.3 10.5 2554.0 509.3 19.9 8877.8 1140.2 12.8 

Putamen right 13276.7 1546.3 11.6 2601.2 647.9 24.9 9356.6 1079.3 11.5 

Putamen left 13664.1 1426.8 10.4 2791.6 742.0 26.6 9473.1 1071.1 11.3 

Dorsal Mid Brain 13584.3 2699.4 19.9 3003.7 791.2 26.3 8169.9 1740.5 21.3 

Ventral Mid brain 13478.7 1588.7 11.8 2840.5 546.8 19.3 8576.1 1110.9 13.0 

Frontal lobe right 7793.6 767.3 9.8 1991.8 1156.6 58.1 6519.3 2158.9 33.1 

Frontal lobe left 7724.7 818.0 10.6 2042.6 1261.6 61.8 6379.4 1701.0 26.7 

Hippocampus right 12640.0 1255.2 9.9 3121.1 928.0 29.7 9388.5 1823.7 19.4 

Hippocampus left 12628.8 1315.5 10.4 3257.6 1660.3 51.0 9433.9 2998.5 31.8 

Occipital right 12968.4 1817.8 14.0 1667.8 1146.9 68.8 8480.5 1905.3 22.5 

Occipital left 11378.9 1562.1 13.7 1507.6 627.7 41.6 7655.5 1042.3 13.6 

Parietal right 11321.4 1039.0 9.2 1668.9 532.8 31.9 7682.2 914.2 11.9 

Parietal left 10300.9 977.7 9.5 1550.0 468.8 30.2 7164.8 834.4 11.6 

Peduncle right 16640.8 1451.7 8.7 3771.9 618.9 16.4 13721.4 2252.4 16.4 

Peduncle left 16388.9 1198.7 7.3 3760.7 927.0 24.6 13589.7 1511.0 11.1 

Pons right 14199.4 2778.6 19.6 3757.8 918.3 24.4 8322.3 1989.1 23.9 

Pons left 14712.8 2663.6 18.1 4076.3 1777.4 43.6 9308.0 5645.1 60.6 

Temporal right 9137.6 1119.4 12.3 1834.7 341.9 18.6 6849.1 881.4 12.9 

Temporal left 8266.0 1267.6 15.3 1683.3 344.8 20.5 6203.0 751.6 12.1 

Mean  12479.1 1442.7 11.6 2571.7 787.0 30.7 8683.9 1654.3 19.0 

 
Table 5-2 Intersubject variability of metabolite concentrations for whole brain proton spectroscopy 
Intersubject variability for N-Acetyl aspartate (NAA), Choline (Cho) and Creatine (Cr). Data displayed were obtained in 32 subjects and show mean, 
standard deviation (SD) and percentage coefficient of variation (CoV%) for each region of interest (ROI). 
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Figure 5-2 Region of interest template with a representative spectra from right thalamus  
T1 weighted magnetic resonance image in MNI152 space (2mm resolution) with a representative spectra from the right thalamus and N-acetyl aspartate 
(NAA), Creatine (Cr) and Choline (Cho) signal-intensity normalised metabolite concentration parametric maps. PPM (parts per million). 
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Figure 5-3 Variability in N Acetyl Aspartate / Creatine ratio measurements 
Box and whisker plot for N Acetyl Aspartate / Creatine ratio for a selection of the regions of interest (ROI), including right (R) and left (L) corticospinal (CST), anterior thalamic radiation (ATR), thalamus, putamen, 
frontal lobe, hippocampus and temporal lobe. The spread of data within each ROI reflects inter subject variation, while the difference between runs 1 – 2 and 3 – 4 reflects within session reproducibility, and the 
change from first to second sessions reflects between session reproducibility. The central lines in each box denote median values, the lower and upper boundaries the 25th and 75th centile, the error bars the 10th 
and 90th centile, and the closed circles outlying data points.  
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Figure 5-4 Variability in N Acetyl Aspartate concentration  
Box and whisker plot for N Acetyl Aspartate for a selection of the regions of interest (ROI), including right (R) and left (L) corticospinal (CST), anterior thalamic radiation (ATR), thalamus, putamen, frontal lobe, 
hippocampus and temporal lobe. The spread of data within each ROI reflects inter subject variation, while the difference between runs 1 – 2 and 3 – 4 reflects within session reproducibility, and the change from 
first to second sessions reflects between session reproducibility. The central lines in each box denote median values, the lower and upper boundaries the 25th and 75th centile, the error bars the 10th and 90th 
centile, and the closed circles outlying data points. 
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Within session and between session reproducibility of whole brain proton spectroscopic imaging 

The individual ROI data for within and between session reproducibility were variable across the 

different brain regions, but lower than the values for intersubject variability (Table 5-3). The within 

and between session reproducibility measurements were similar for Cho/Cr, NAA/Choline, Cho and Cr 

(11.9%, 11.4%, 14.3 and 10.6% vs. 11.8%, 11.4%, 13.5% and 10.5%, and p = 0.44, 0.87, 0.08 and 0.86 

respectively, paired ‘t’ tests), but for NAA/Creatine and NAA between session reproducibility was 

lower than within session reproducibility (9.3% and 9.1% vs. 10.1% and 9.9%, p < 0.05 paired ‘t’ test 

with Bonferroni correction). The difference between intersubject variability, within and between 

session reproducibility is displayed for a selection of ROIs for the metabolite ratios and concentrations 

in figure 5-3 and 5-4, respectively. 

The intraclass correlation coefficient (ICC) for within and between session reproducibility within brain 

regions of mixed cortical and deep grey, and white matter are displayed in Table 5-4. 
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 Cho/Cr NAA/Cho NAA/Cr 

 Within Session Between Session Within Session Between Session Within Session Between Session 

Anterior corpus callosum 0.21 ± 0.21 0.23 ± 0.20 1.73 ± 1.40 2.63 ± 2.86 0.48 ± 0.42 0.50 ± 0.47 

Body of corpus callosum 0.03 ± 0.03 0.05 ± 0.06 0.69 ± 0.65 0.68 ± 0.64 0.18 ± 0.16 0.16 ± 0.14 

Posterior corpus callosum 0.04 ± 0.08 0.05 ± 0.08 0.51 ± 0.50 0.55 ± 0.56 0.25 ± 0.30 0.25 ± 0.31 

Corticospinal tract right 0.03 ± 0.05 0.02 ± 0.03 0.52 ± 0.63 0.60 ± 0.70 0.09 ± 0.15 0.10 ± 0.15 

Corticospinal tract left 0.03 ± 0.03 0.03 ± 0.05 0.48 ± 0.58 0.46 ± 0.55 0.11 ± 0.21 0.09 ± 0.17 

Anterior thalamic radiation right 0.04 ± 0.08 0.05 ± 0.08 0.32 ± 0.37 0.32 ± 0.26 0.09 ± 0.13 0.06 ± 0.10 

Anterior thalamic radiation left 0.04 ± 0.05 0.04 ± 0.04 0.29 ± 0.22 0.35 ± 0.33 0.06 ± 0.08 0.06 ± 0.06 

Inferior longitudinal fasciculus right 0.03 ± 0.07 0.03 ± 0.09 0.50 ± 0.59 0.52 ± 0.48 0.07 ± 0.10 0.06 ± 0.09 

Inferior longitudinal fasciculus left 0.02 ± 0.05 0.02 ± 0.04 0.50 ± 0.69 0.44 ± 0.53 0.08 ± 0.14 0.06 ± 0.09 

Superior longitudinal fasciculus right 0.01 ± 0.02 0.01 ± 0.02 0.59 ± 0.74 0.61 ± 0.68 0.07 ± 0.07 0.06 ± 0.06 

Superior longitudinal fasciculus left 0.01 ± 0.02 0.01 ± 0.01 0.38 ± 0.40 0.44 ± 0.34 0.06 ± 0.08 0.06 ± 0.06 

Thalamus right 0.03 ± 0.03 0.03 ± 0.03 0.52 ± 0.45 0.46 ± 0.48 0.12 ± 0.12 0.12 ± 0.10 

Thalamus left 0.03 ± 0.02 0.03 ± 0.03 0.56 ± 0.46 0.61 ± 0.51 0.14 ± 0.16 0.14 ± 0.13 

Pallidum right 0.04 ± 0.04 0.03 ± 0.03 0.57 ± 0.66 0.51 ± 0.58 0.13 ± 0.17 0.12 ± 0.15 

Pallidum left 0.05 ± 0.06 0.04 ± 0.05 1.11 ± 1.12 0.99 ± 0.95 0.18 ± 0.24 0.15 ± 0.17 

Putamen right 0.03 ± 0.03 0.03 ± 0.03 0.66 ± 0.62 0.48 ± 0.52 0.12 ± 0.14 0.11 ± 0.13 

Putamen left 0.04 ± 0.04 0.04 ± 0.04 0.74 ± 0.84 0.73 ± 0.80 0.14 ± 0.18 0.13 ± 0.15 

Dorsal mid brain 0.04 ± 0.07 0.04 ± 0.07 0.46 ± 0.42 0.54 ± 0.45 0.27 ± 0.42 0.26 ± 0.40 

Ventral mid brain 0.06 ± 0.06 0.05 ± 0.05 0.62 ± 0.58 0.55 ± 0.64 0.22 ± 0.32 0.20 ± 0.28 

Frontal lobe right 0.04 ± 0.04 0.03 ± 0.04 0.47 ± 0.28 0.57 ± 0.48 0.07 ± 0.06 0.08 ± 0.08 

Frontal lobe left 0.05 ± 0.05 0.04 ± 0.05 0.38 ± 0.31 0.50 ± 0.47 0.06 ± 0.05 0.07 ± 0.08 

Hippocampus right 0.03 ± 0.03 0.02 ± 0.03 0.48 ± 0.33 0.49 ± 0.38 0.14 ± 0.11 0.13 ± 0.10 

Hippocampus left 0.03 ± 0.04 0.03 ± 0.03 0.53 ± 0.48 0.52 ± 0.46 0.18 ± 0.15 0.16 ± 0.15 

Occipital right 0.03 ± 0.08 0.05 ± 0.13 1.09 ± 1.09 1.22 ± 1.13 0.09 ± 0.13 0.11 ± 0.14 

Occipital left 0.03 ± 0.07 0.03 ± 0.06 0.91 ± 0.92 0.90 ± 0.86 0.09 ± 0.10 0.09 ± 0.09 

Parietal right 0.03 ± 0.08 0.03 ± 0.08 0.72 ± 0.68 0.81 ± 0.74 0.10 ± 0.13 0.12 ± 0.13 

Parietal left 0.02 ± 0.04 0.02 ± 0.03 0.49 ± 0.50 0.69 ± 0.60 0.09 ± 0.14 0.11 ± 0.15 

Peduncle right 0.10 ± 0.26 0.06 ± 0.19 0.43 ± 0.38 0.42 ± 0.38 0.17 ± 0.19 0.15 ± 0.17 

Peduncle left 0.09 ± 0.33 0.08 ± 0.28 0.42 ± 0.39 0.39 ± 0.42 0.13 ± 0.22 0.12 ± 0.21 

Pons right 0.06 ± 0.06 0.05 ± 0.04 0.63 ± 1.02 0.54 ± 0.79 0.21 ± 0.16 0.17 ± 0.15 

Pons left 0.06 ± 0.06 0.06 ± 0.05 0.68 ± 1.23 0.53 ± 0.96 0.24 ± 0.19 0.22 ± 0.18 

Temporal right 0.02 ± 0.04 0.02 ± 0.03 0.32 ± 0.33 0.39 ± 0.33 0.07 ± 0.08 0.05 ± 0.07 

Temporal left 0.02 ± 0.02 0.02 ± 0.02 0.44 ± 0.55 0.39 ± 0.48 0.10 ± 0.13 0.08 ± 0.10 

Mean  0.04 ± 0.10 0.04 ± 0.09 0.60 ± 0.73 0.63 ± 0.87 0.14 ± 0.20 0.13 ± 0.20 

 

A 



76 

 

 

 Cho/Cr NAA/Cho NAA/Cr 

 Within Session Between Session Within Session Between Session Within Session Between Session 

Anterior corpus callosum 39.56 ± 34.49 46.44 ± 35.47 41.96 ± 40.19 47.03 ± 38.81 40.69 ± 40.56 38.17 ± 37.48 

Body of corpus callosum 10.71 ± 7.72 14.59 ± 13.44 10.33 ± 9.86 10.53 ± 9.64 11.09 ± 9.58 9.92 ± 7.66 

Posterior corpus callosum 10.36 ± 15.49 12.99 ± 15.49 7.78 ± 8.39 8.35 ± 8.72 12.93 ± 14.36 12.68 ± 14.41 

Corticospinal tract right 8.15 ± 11.83 7.24 ± 8.49 8.92 ± 8.72 10.75 ± 11.00 5.57 ± 6.83 6.54 ± 7.48 

Corticospinal tract left 8.21 ± 8.91 8.54 ± 11.98 8.63 ± 8.73 8.59 ± 8.94 6.50 ± 9.37 5.98 ± 7.99 

Anterior thalamic radiation right 12.29 ± 17.17 12.49 ± 16.87 6.63 ± 8.65 6.34 ± 5.97 6.68 ± 11.84 4.62 ± 8.63 

Anterior thalamic radiation left 11.74 ± 12.45 11.06 ± 11.21 5.39 ± 4.66 6.58 ± 6.58 4.45 ± 6.73 4.45 ± 4.72 

Inferior longitudinal fasciculus right 7.47 ± 11.18 9.01 ± 14.85 7.70 ± 10.50 7.79 ± 8.22 5.17 ± 8.28 4.08 ± 6.72 

Inferior longitudinal fasciculus left 8.80 ± 11.95 7.51 ± 9.58 8.80 ± 15.09 7.60 ± 11.26 6.50 ± 13.10 5.12 ± 9.11 

Superior longitudinal fasciculus right 5.26 ± 7.34 5.46 ± 6.46 7.80 ± 8.51 8.47 ± 8.18 4.27 ± 3.98 3.94 ± 3.93 

Superior longitudinal fasciculus left 5.99 ± 6.54 6.16 ± 5.52 6.32 ± 8.12 7.14 ± 6.22 4.37 ± 7.11 4.86 ± 5.35 

Thalamus right 9.10 ± 7.04 9.05 ± 8.39 9.83 ± 8.49 8.38 ± 8.82 7.56 ± 7.23 7.91 ± 6.52 

Thalamus left 8.44 ± 7.22 9.67 ± 8.10 10.16 ± 8.33 11.01 ± 9.07 8.81 ± 8.51 8.35 ± 7.58 

Pallidum right 12.54 ± 12.38 10.84 ± 9.75 11.90 ± 18.78 9.93 ± 14.88 10.00 ± 16.35 8.58 ± 13.02 

Pallidum left 14.69 ± 18.61 12.82 ± 15.19 20.59 ± 25.85 17.26 ± 20.01 14.13 ± 22.87 11.12 ± 16.82 

Putamen right 11.28 ± 9.83 10.19 ± 10.22 13.04 ± 15.64 9.20 ± 12.42 8.98 ± 13.40 8.15 ± 11.15 

Putamen left 11.96 ± 13.74 12.21 ± 13.27 14.48 ± 20.63 13.15 ± 16.67 11.21 ± 18.53 9.47 ± 14.13 

Dorsal mid brain 10.58 ± 12.20 9.68 ± 11.80 9.89 ± 9.67 11.15 ± 9.24 14.38 ± 17.92 13.82 ± 15.09 

Ventral mid brain 17.27 ± 16.76 14.07 ± 13.13 13.50 ± 17.99 10.99 ± 15.45 13.97 ± 21.91 12.09 ± 17.39 

Frontal lobe right 16.12 ± 13.73 14.71 ± 15.11 10.03 ± 6.45 12.96 ± 11.93 6.84 ± 6.76 8.15 ± 8.28 

Frontal lobe left 18.83 ± 15.03 17.00 ± 16.07 8.56 ± 7.40 11.34 ± 12.00 6.50 ± 5.81 7.34 ± 8.24 

Hippocampus right 8.44 ± 9.05 7.71 ± 7.78 9.88 ± 6.36 9.92 ± 7.17 9.88 ± 8.01 9.03 ± 7.43 

Hippocampus left 11.08 ± 15.17 8.87 ± 11.62 12.05 ± 12.26 11.51 ± 11.51 13.80 ± 13.84 11.98 ± 13.01 

Occipital right 11.27 ± 15.53 13.04 ± 22.14 13.52 ± 17.83 13.83 ± 14.95 6.99 ± 12.66 7.68 ± 10.33 

Occipital left 11.35 ± 18.54 11.08 ± 17.57 12.81 ± 15.86 12.21 ± 13.82 6.89 ± 9.52 7.13 ± 7.67 

Parietal right 8.37 ± 13.84 10.15 ± 13.54 10.61 ± 9.97 12.15 ± 10.74 7.22 ± 8.23 9.06 ± 8.90 

Parietal left 7.77 ± 12.53 9.27 ± 11.44 7.92 ± 8.51 11.36 ± 9.84 6.81 ± 8.96 9.02 ± 10.03 

Peduncle right 16.93 ± 25.85 13.01 ± 19.52 9.75 ± 10.40 9.45 ± 9.10 12.55 ± 14.44 11.24 ± 11.89 

Peduncle left 12.33 ± 21.86 12.20 ± 18.94 9.79 ± 10.34 8.91 ± 10.24 9.18 ± 10.44 8.93 ± 10.51 

Pons right 12.89 ± 12.02 10.61 ± 8.31 13.10 ± 15.61 11.86 ± 13.39 12.72 ± 10.05 9.57 ± 9.16 

Pons left 13.78 ± 12.87 14.85 ± 11.69 14.52 ± 15.40 11.69 ± 14.43 15.22 ± 12.94 12.61 ± 11.73 

Temporal right 8.35 ± 12.58 8.46 ± 10.05 7.86 ± 9.41 9.07 ± 8.80 7.07 ± 9.77 5.63 ± 8.36 

Temporal left 11.18 ± 13.93 9.34 ± 11.57 13.12 ± 20.92 10.86 ± 16.65 12.94 ± 18.93 9.63 ± 15.11 

Mean  11.91 ± 15.77 11.83 ± 15.65 11.43 ± 15.62 11.44 ± 14.77 10.06 ± 15.29 9.30 ± 13.43 
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 NAA  Cho Cr 

 Within Session Between Session Within Session Between Session Within Session Between Session 

Anterior corpus callosum 3279.9 ± 2703.7 2968.5 ± 2697.1 1878.8 ± 2338.6 1719.7 ± 2458.7 3697.5 ± 2975.4 3814.5 ± 3818.6 

Body of corpus callosum 1141.0 ± 815.6 1314.2 ± 1162.3 492.2 ± 1191.7 656.2 ± 1355.5 1201.2 ± 1391.4 1317.6 ± 1327.6 

Posterior corpus callosum 1091.4 ± 989.5 1186.1 ± 1089.6 318.2 ± 376.5 323.3 ± 387.4 1309.3 ± 1398.6 1432.2 ± 1454.5 

Corticospinal tract right 702.9 ± 734.4 590.2 ± 608.4 284.2 ± 646.5 256.6 ± 500.8 519.4 ± 671.9 504.0 ± 614.5 

Corticospinal tract left 673.5 ± 700.7 558.0 ± 625.5 231.7 ± 240.5 196.4 ± 194.1 521.8 ± 544.5 378.7 ± 465.1 

Anterior thalamic radiation right 827.2 ± 912.2 740.0 ± 775.1 422.3 ± 422.9 523.5 ± 598.9 716.5 ± 565.6 904.9 ± 1558.5 

Anterior thalamic radiation left 789.7 ± 1023.5 727.1 ± 938.9 387.9 ± 374.1 424.0 ± 536.9 604.6 ± 677.1 731.0 ± 860.9 

Inferior longitudinal fasciculus right 798.9 ± 929.8 816.7 ± 881.6 179.7 ± 175.5 287.8 ± 607.3 627.6 ± 553.7 712.5 ± 901.6 

Inferior longitudinal fasciculus left 802.6 ± 1058.1 775.9 ± 969.3 207.5 ± 431.0 202.7 ± 317.7 419.8 ± 430.0 466.5 ± 498.6 

Superior longitudinal fasciculus right 548.9 ± 655.5 624.2 ± 673.6 208.5 ± 285.7 216.2 ± 226.4 465.4 ± 459.7 471.0 ± 454.4 

Superior longitudinal fasciculus left 623.6 ± 768.8 657.1 ± 726.0 197.0 ± 190.2 177.3 ± 178.5 493.8 ± 529.0 478.7 ± 508.6 

Thalamus right 1307.2 ± 1442.7 1214.1 ± 1308.9 294.7 ± 242.3 266.5 ± 269.1 864.7 ± 682.2 968.4 ± 780.6 

Thalamus left 1219.0 ± 1244.6 1301.8 ± 1171.3 330.9 ± 304.3 399.7 ± 438.0 996.5 ± 757.5 1079.0 ± 894.7 

Pallidum right 1211.9 ± 1209.2 1087.1 ± 1259.3 427.3 ± 354.7 334.5 ± 299.4 847.8 ± 581.4 722.5 ± 635.1 

Pallidum left 1457.9 ± 1760.3 1212.6 ± 1515.8 453.0 ± 300.8 365.3 ± 314.9 935.8 ± 814.1 829.6 ± 789.2 

Putamen right 1154.7 ± 1145.8 1084.7 ± 1280.7 368.4 ± 404.2 317.3 ± 407.0 794.9 ± 720.1 770.7 ± 726.4 

Putamen left 1286.2 ± 1634.9 1289.1 ± 1553.6 416.5 ± 365.3 413.6 ± 434.6 804.7 ± 763.3 775.7 ± 788.2 

Dorsal Mid Brain 2179.9 ± 2135.5 1996.1 ± 1847.3 423.3 ± 328.8 415.8 ± 311.8 1160.2 ± 1060.2 1229.0 ± 881.1 

Ventral Midbrain 1348.3 ± 1791.0 1184.9 ± 1597.5 412.7 ± 360.1 316.6 ± 315.8 947.6 ± 939.3 901.7 ± 835.9 

Frontal lobe right 451.9 ± 529.9 548.9 ± 575.8 379.3 ± 499.0 409.2 ± 396.5 700.7 ± 667.7 756.8 ± 912.2 

Frontal lobe left 516.0 ± 575.2 596.0 ± 565.1 537.9 ± 560.2 430.3 ± 463.8 826.1 ± 826.4 739.7 ± 591.6 

Hippocampus right 861.7 ± 658.3 845.6 ± 764.6 388.7 ± 341.1 289.6 ± 226.4 797.4 ± 555.3 676.4 ± 532.2 

Hippocampus left 1050.0 ± 1232.9 1001.4 ± 1147.3 380.9 ± 300.4 338.5 ± 278.2 853.3 ± 765.6 790.2 ± 659.6 

Occipital right 658.8 ± 781.0 749.0 ± 837.7 235.3 ± 368.6 390.9 ± 986.0 526.1 ± 653.5 770.4 ± 1264.1 

Occipital left 582.0 ± 799.6 567.2 ± 692.2 277.4 ± 611.4 269.8 ± 644.9 496.8 ± 542.5 545.5 ± 717.1 

Parietal right 528.1 ± 648.3 536.3 ± 609.6 232.4 ± 445.5 208.5 ± 334.0 465.2 ± 594.3 494.0 ± 540.5 

Parietal left 507.5 ± 598.6 527.3 ± 610.9 177.0 ± 216.8 152.8 ± 192.4 487.6 ± 581.7 491.7 ± 535.7 

Peduncle right 1578.9 ± 1632.0 1470.6 ± 1444.0 770.9 ± 1507.8 541.6 ± 1107.7 1199.7 ± 1218.9 1295.7 ± 1422.0 

Peduncle left 1357.3 ± 1592.7 1337.8 ± 1269.4 960.6 ± 3271.4 862.4 ± 2572.0 1065.0 ± 1330.2 1230.5 ± 1142.6 

Pons right 1590.4 ± 1560.1 1617.1 ± 1589.4 411.3 ± 295.7 395.4 ± 384.1 990.4 ± 638.2 1048.3 ± 776.8 

Pons left 1569.6 ± 1464.3 1401.8 ± 1561.0 553.4 ± 612.4 368.8 ± 474.5 1532.3 ± 2594.0 985.7 ± 797.7 

Temporal right 843.6 ± 924.7 768.5 ± 884.4 185.3 ± 137.6 176.5 ± 204.3 513.8 ± 503.8 557.1 ± 551.7 

Temporal left 892.9 ± 1170.0 839.5 ± 1017.6 196.4 ± 159.4 183.8 ± 192.8 545.4 ± 674.7 522.7 ± 591.2 

Mean  1073.7 ± 1350.1 1034.4 ± 1280.9 412.8 ± 896.0 388.8 ± 835.9 876.6 ± 1163.6 890.7 ± 1223.2 
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 NAA Cho Cr 

 Within Session Between Session Within Session Between Session Within Session Between Session 

Anterior corpus callosum 38.0 ± 41.5 33.1 ± 38.1 44.6 ± 37.8 40.5 ± 37.9 42.1 ± 38.2 37.5 ± 37.2 

Body of corpus callosum 8.6 ± 6.2 9.5 ± 8.4 15.8 ± 17.8 18.8 ± 22.3 13.7 ± 14.0 14.6 ± 13.9 

Posterior corpus callosum 8.0 ± 7.4 8.4 ± 7.8 13.9 ± 13.7 13.9 ± 14.7 16.1 ± 15.7 17.6 ± 16.9 

Corticospinal tract right 5.7 ± 6.2 4.8 ± 5.2 8.8 ± 13.6 8.1 ± 11.1 6.1 ± 7.5 5.9 ± 7.0 

Corticospinal tract left 5.7 ± 6.3 4.7 ± 5.6 8.7 ± 8.3 7.6 ± 7.3 6.4 ± 7.9 4.7 ± 6.7 

Anterior thalamic radiation right 7.9 ± 9.7 6.9 ± 8.1 14.5 ± 12.9 16.9 ± 14.8 8.5 ± 7.0 9.5 ± 10.4 

Anterior thalamic radiation left 7.2 ± 10.4 6.5 ± 9.1 13.0 ± 10.7 14.7 ± 15.6 7.0 ± 7.6 8.4 ± 9.6 

Inferior longitudinal fasciculus right 6.6 ± 8.2 6.6 ± 7.5 8.3 ± 7.0 9.6 ± 13.1 7.0 ± 5.8 7.6 ± 7.8 

Inferior longitudinal fasciculus left 7.6 ± 11.5 7.1 ± 10.1 8.5 ± 11.2 8.7 ± 9.4 5.4 ± 6.1 5.8 ± 6.5 

Superior longitudinal fasciculus right 4.4 ± 5.8 5.0 ± 5.8 10.1 ± 11.7 10.5 ± 10.0 5.6 ± 6.1 5.8 ± 6.1 

Superior longitudinal fasciculus left 5.5 ± 7.7 5.8 ± 7.2 10.4 ± 9.5 9.5 ± 9.3 6.5 ± 8.3 6.4 ± 7.9 

Thalamus right 10.5 ± 11.0 9.9 ± 9.8 12.5 ± 10.6 11.6 ± 11.5 10.7 ± 9.0 12.3 ± 10.4 

Thalamus left 10.2 ± 11.5 10.9 ± 10.3 14.3 ± 13.0 16.7 ± 16.5 12.7 ± 10.9 13.7 ± 11.8 

Pallidum right 11.1 ± 14.4 9.6 ± 13.2 16.7 ± 13.3 13.1 ± 12.3 10.1 ± 7.8 8.8 ± 9.1 

Pallidum left 14.3 ± 23.4 11.0 ± 18.4 19.3 ± 15.3 15.5 ± 14.9 12.5 ± 16.6 10.6 ± 14.1 

Putamen right 10.0 ± 12.0 9.0 ± 11.9 14.2 ± 13.0 12.3 ± 14.0 9.1 ± 8.6 8.9 ± 9.1 

Putamen left 12.1 ± 19.4 11.1 ± 16.4 16.6 ± 14.3 16.0 ± 16.0 10.0 ± 12.3 9.3 ± 12.0 

Dorsal Mid Brain 15.5 ± 15.3 14.2 ± 12.1 14.0 ± 11.9 14.1 ± 10.7 13.2 ± 12.1 14.8 ± 10.8 

Ventral Midbrain 13.0 ± 24.1 10.3 ± 18.6 16.4 ± 16.1 12.5 ± 13.7 12.9 ± 16.3 11.8 ± 13.4 

Frontal lobe right 6.3 ± 8.6 7.6 ± 9.0 18.3 ± 16.7 20.8 ± 17.4 11.0 ± 10.1 11.6 ± 11.8 

Frontal lobe left 7.1 ± 9.0 8.1 ± 8.6 23.4 ± 16.2 20.7 ± 19.7 12.3 ± 10.9 11.7 ± 9.7 

Hippocampus right 7.4 ± 5.9 7.1 ± 6.6 13.0 ± 8.6 10.5 ± 8.1 8.7 ± 5.9 7.8 ± 6.3 

Hippocampus left 9.6 ± 12.8 8.7 ± 11.4 12.9 ± 10.4 12.1 ± 10.0 9.1 ± 7.5 9.0 ± 7.7 

Occipital right 5.6 ± 7.5 6.1 ± 7.1 11.4 ± 14.1 13.0 ± 18.8 5.9 ± 7.3 7.7 ± 9.8 

Occipital left 5.6 ± 8.9 5.4 ± 7.9 11.3 ± 16.0 11.4 ± 15.7 6.1 ± 6.7 6.6 ± 7.4 

Parietal right 4.7 ± 5.9 4.8 ± 5.5 10.3 ± 11.9 10.0 ± 10.7 5.8 ± 7.6 6.4 ± 7.2 

Parietal left 4.8 ± 5.7 5.1 ± 5.8 9.7 ± 8.8 8.5 ± 8.5 6.6 ± 8.6 6.9 ± 7.9 

Peduncle right 10.9 ± 13.0 9.8 ± 11.0 15.9 ± 19.1 12.0 ± 15.5 10.1 ± 12.7 9.9 ± 11.5 

Peduncle left 9.8 ± 13.3 9.2 ± 10.3 13.3 ± 22.2 12.3 ± 18.7 8.9 ± 14.0 9.7 ± 11.5 

Pons right 13.5 ± 16.4 12.1 ± 13.2 12.7 ± 11.4 11.7 ± 11.8 13.4 ± 9.6 13.4 ± 10.4 

Pons left 12.9 ± 14.9 10.5 ± 13.0 14.5 ± 16.7 11.1 ± 15.5 15.7 ± 16.7 12.7 ± 11.4 

Temporal right 10.8 ± 13.5 9.2 ± 12.1 10.6 ± 7.4 9.5 ± 9.0 8.5 ± 9.2 8.6 ± 8.8 

Temporal left 14.4 ± 24.0 12.0 ± 19.1 13.6 ± 14.3 12.1 ± 14.0 11.2 ± 17.4 10.0 ± 14.4 

Mean 9.9 ± 15.4 

 

9.1 ± 13.4 

 

14.3 ± 15.9 

 

13.5 ± 16.2 

 

10.6 ± 13.8 

 

10.5 ± 13.2 

  

D 

Table 5-3 Within session and between 
session variability of metabolites for 
whole brain proton spectroscopy 
Individual region of interest 
measurements for within session 
reproducibility obtained in the first and 
second imaging sessions in 17 and 16 
subjects respectively, and the between 
session reproducibility for those 22 
subjects who underwent imaging at both 
sessions. Data displayed are standard 
deviation (A & C) and percentage 
coefficient of variation (B & D) for 
metabolite ratios (Choline 
(Cho)/Creatine (Cr), N-Acetyl aspartate 
(NAA)/ Choline and NAA/Cr and 
metabolite concentrations (NAA, Cho 
and Cr). 
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Calculation of 95% prediction interval for zero change 

Using the four WB 1H MRS measurements obtained from both sessions, we used ANOVA to determine 

the significance of the differences (Table 5-5). These confirm that there is a significant difference 

between regions and subjects, and that there is a significant interaction between brain region and 

subject. The residual variance of the measurements that cannot be accounted for by the known 

independent variables is shown in Table 5-5. The calculated SD values were 0.10, 1.03 and 0.28 for 

Cho/Cr, NAA/Cho, NAA/Cr and 1709.7, 913.2 and 1521.4 iu for NAA, Cho and Cr respectively. The 

overall population 95% prediction interval for zero change (based on two SD values) were therefore 

0.20, 2.06 and 0.56 for Cho/Cr, NAA/Cho and NAA/Cr and 3419.4, 1826.4 and 3042.8 iu for NAA, Cho 

and Cr respectively. For the within session measurements the calculated SD values were 0.10, 1.11 

and 0.23 for Cho/Cr, NAA/Cho, NAA/Cr and 1399.7, 1115.9 and 1292.8 iu for NAA, Cho and Cr 

respectively and were similar to the data obtained from all four sessions. These data can be used to 

calculate prediction intervals within individual ROIs. For the within session data (Table 5-3A&C) an 

estimate of the 95% prediction intervals for zero change within individual ROIs should be based on 4.3 

SD values. As an example, this results in a 95% prediction interval for zero change for NAA, Cho and Cr 

within a single imaging session of 3839.5, 844.5 and 2345.2 iu for the left temporal, and 3557.0, 1815.9 

and 3081.0 iu for the right anterior thalamic radiation respectively. These prediction intervals can be 

used to assess the impact of therapeutic interventions within a single session, but also to assess the 

impact of treatment and disease progression over time within different imaging sessions. 

 Mixed White 

 Within Between Within Between 

Cho/Cr 0.76(0.72 − 0.80) 0.71(0.68 − 0.75) 0.50(0.41 − 0.58) 0.58(0.53 − 0.63) 

NAA/Cho 0.84(0.82 − 0.87) 0.82(0.80 − 0.84) 0.78(0.74 − 0.82) 0.56(0.51 − 0.61) 

NAA/Cr 0.76(0.72 − 0.80) 0.79(0.76 − 0.81) 0.60(0.52 − 0.66) 0.55(0.49 − 0.60) 

NAA 0.81(0.77 − 0.84) 0.80(0.78 − 0.83) 0.63(0.56 − 0.68) 0.58(0.53 − 0.63) 

Cho 0.84(0.81 − 0.86) 0.75(0.71 − 0.78) 0.53(0.44 − 0.60) 0.61(0.56 − 0.66) 

Cr 0.84(0.81 − 0.86) 0.77(0.74 − 0.79) 0.73(0.68 − 0.77) 0.66(0.61 − 0.70) 

 
Table 5-4 Within session and between session intraclass correlation coefficient for metabolites 
Data displayed are mean (95% Confidence interval) intraclass correlation coefficient for metabolite ratios (Choline (Cho)/Creatine (Cr), N Acetyl 
Aspartate (NAA)/Cho, NAA/Cr) and metabolites (NAA, Cho and Cr) for mixed cortical and deep grey, and white matter brain regions. 
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Discussion 
 

This study provides additional reference data concerning intersubject variability and reproducibility of 

metabolite ratios, and individual signal-intensity normalised metabolite concentrations obtained 

using WB 1H MRS conducted within the same imaging session (within session) and different imaging 

sessions (between session) in a group of healthy volunteers. As reported previously, we found that 

intersubject variability was high.231 The reproducibility of metabolite ratios and concentrations were 

lower than intersubject variability (10 – 15% vs. 15 – 30%), but there was substantial variability across 

the brain for all the calculated parameters. The within and between session reproducibility 

measurements were similar for Cho/Cr, NAA/Cho, Cho and Cr but for NAA/Creatine and NAA between 

session reproducibility was lower than within session reproducibility. The calculated overall 

population 95% prediction intervals for zero change of repeat MIDAS measurements were 0.20, 2.06 

and 0.56 for metabolite ratios (Cho/Cr, NAA/Cho and NAA/Cr) and 3419.4, 1826.4 and 3042.8 iu for 

Parameter Session DF Sum of Squares Mean Square F Value p Value 

Cho/Cr 
ROI 32 17.18 0.54 52.86 <.0001 

subject 31 2.86 0.09 9.07 <.0001 
ROI * subject 992 14.70 0.01 1.46 <.0001 

Residual 1815 18.44 0.01   

NAA/Cho 
ROI 32 3105.79 97.06 91.19 <.0001 

subject 31 657.96 21.22 19.94 <.0001 
ROI * subject 992 1264.47 1.27 1.2 0.0006 

Residual 1815 1931.76 1.06   

NAA/Cr 
ROI 32 113.60 3.55 61.42 <.0001 

subject 31 24.16 0.78 13.48 <.0001 
ROI * subject 992 83.45 0.08 1.46 <.0001 

Residual 1815 104.90 0.08   

 

 

 
Parameter Session DF Sum of Squares Mean Square F Value p Value 

NAA 
ROI 32 8.3 x 109 2.6 x 108 89.1 <.0001 

subject 31 1.2 x 109 3.7 x 107 12.8 <.0001 

ROI * subject 992 3.7 x 109 3.7 x 106 1.3 <.0001 

Residual 1815 5.3 x 109 2.9 x 106   

Cho 

ROI 32 1.2 x 109 3.7 x 107 43.9 <.0001 

subject 31 3.5 x 108 1.1 x 107 13.4 <.0001 

ROI * subject 992 1.5 x 109 1.5 x 106 1.9 <.0001 

Residual 1815 1.5 x 109 8.3 x 105   

Cr 

ROI 32 4.7 x 109 1.5 x 108 63.3 <.0001 

subject 31 1.0 x 109 3.3 x 107 14.1 <.0001 

ROI * subject 992 4.4 x 109 4.4 x 106 1.9 <.0001 

Residual 1815 4.2 x 109 2.3 x 106   

 

 

 

A 

B 

Table 5-5 Analysis of variance table for whole brain proton magnetic resonance spectroscopy 
Data were obtained from 32 volunteers using the region of interest (ROI) template for metabolite ratios (A) and metabolite concentrations (B). 
Choline – Cho, Creatine – Cr, N acetyl aspartate – NAA and DF  – Degrees of freedom. 
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metabolite concentrations (NAA, Cho and Cr) respectively. These prediction intervals can be calculated 

for individual ROIs and utilised in interventional studies where the response to therapy can be 

assessed, or to assess the significance of the change from disease progression within longitudinal 

studies of nervous system disorders. 

The factors affecting the reproducibility of WB 1H MRS parameters include changes within the MR 

scanner or individual subjects. Features related to the scanner include B0 field inhomogeneities 

(heating during the long acquisition process), scanner drift, gradient coil stability, signal to noise ratio 

and software upgrades. Such factors may be more significant when imaging is acquired within 

different imaging sessions, rather than repeat acquisitions within the same session where such 

parameters are more likely to be similar. Regular servicing and daily quality assurance measurements 

seek to ensure that an MR scanner is operating normally. It is necessary to monitor such changes, and 

where possible, take steps to limit their impact on the spectroscopic data obtained. Importantly, there 

were no upgrades or changes in MR scanner hardware or software during the period of this study. 

While scanner variability is important there are individual subject factors that can induce substantial 

variability in WB 1H MRS. These include head movements and positioning within the scanner field of 

view. In particular, data acquisition within the volume of interest is sensitive to inhomogeneities that 

can result from proximity to the sphenoid and frontal sinuses. We undertook standard procedures to 

limit such variability. All subjects were positioned within the head coil according to standard operating 

procedures within our institution and the alignment confirmed before commencing imaging. 

Following standard imaging for localisation, we monitored subject movement, and all data were 

checked during processing for movement artefact. No data sets were excluded in these analyses due 

to subject motion during the scan. Also, we performed all analyses following image coregistration and 

spatial normalisation to MNI standard space. We used a standard ROI template covering the whole 

brain from the Harvard Oxford subcortical and MNI structural probabilistic atlases available within FSL. 

While the use of this analysis strategy sought to reduce variability within our comparisons, we eroded 

the ROI template by a single voxel within FSL in order to improve spatial localisation and reduce the 

impact of coregistration, normalisation and partial volume errors. Finally, all ROIs were manually 

inspected to ensure that they were correctly aligned with the imaging data and corresponded to the 

regions specified. In summary, we considered possible sources of WB 1H MRS variability within our 

centre and attempted to limit their impact and ensure that the data we acquired were comparable 

within and between the different imaging sessions. 

While our results for WB 1H MRS reproducibility are in line with published data, we report data 

specifically concerning the difference between intersubject variability, within session and between 
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session reproducibility. It is useful to consider the sources of variability in WB 1HMRS data in the 

setting where we are trying to address the significance of changes between normal physiology and 

disease states, or changes that are the consequence of a therapeutic intervention.  In the first case, 

the relevant sources of error are the intersubject variability in the patient and volunteer groups. Our 

data for healthy volunteers are broadly concordant with results from other groups,111 and show that 

these are high, with mean (range) CoV for Cho/Cr 21 (11 – 62%), NAA/Cho 17 (11 – 55%), NAA/Cr 13 

(8 – 37%), NAA 12 (6 – 23%), Cho 31 (13 – 69%) and Cr 19 (7 – 61%). To be certain that WB 1H MRS 

values derived from an individual patient are significantly lower, with a confidence of 95%, these 

figures suggest that we need to have mean ROI NAA values (for example) that are at least 23% lower 

than volunteer means. This estimate and the secure distinction of a patient group as abnormal is 

confounded by the fact that intersubject CoV in patients with neurological disorders is likely to be 

larger than controls, and variable across different brain regions. These figures underline the difficulty 

of using WB 1H MRS in small groups of patients with different causes of neurological disease who have 

variable pathophysiology. In practice, the estimated study sample size is moderated by the dramatic 

changes in metabolite concentration that occur in patients. For example, following mild traumatic 

brain injury there is approximately a 20% reduction in NAA and increase in Cho even where structural 

imaging appears normal, and in severe traumatic brain injury changes of up to a 50% can 

occur.171,172,235-239 Hence the significance of metabolite change is often detected with manageable 

numbers, despite the large intersubject variability in volunteer and patients groups. 

However, it is important to point out that these figures are largely irrelevant when considering the 

power and design of clinical studies, when WB 1H MRS is being used to monitor changes within the 

same subject in the same scanning session (within session reproducibility) or during longitudinal 

assessments over time in several different imaging sessions (between session reproducibility). In such 

settings, the subject is his or her own control, and the relevant parameter is intrasubject variability or 

reproducibility. Our data show that these figures for CoV are smaller than those obtained from the 

discussion in the previous paragraph. Also, we provide reference data for metabolites in healthy 

volunteers, demonstrating that the CoV for within session reproducibility is broadly comparable to 

that obtained in different imaging sessions (Table 5-3 and Table 5-4). While the reproducibility of 

NAA/Creatine and NAA was significantly lower for between session compared to within session 

measurements, the absolute differences were small. This finding is not consistent with the lack of 

difference for the other metabolites and is unlikely to be clinically relevant. We found no evidence to 

suggest that within session reproducibility was smaller than between session reproducibility 

measurements. These data provide helpful guidance for designing clinical studies and suggest that for 

NAA or NAA/Cr it should be possible to detect differences of 20% with confidence. For example, 
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although the reproducibility of measurements is variable for the different brain regions, we can use 

these data to calculate sample sizes for interventional and longitudinal clinical studies.240 For a lobar 

ROI such as the right frontal region the between session CoV was 8% for NAA, and we should be able 

to detect a 20% change with 95% power at a significance level of 1% within a group of 10 subjects 

within a single interventional or longitudinal study design. Such estimates only strictly apply to our 

scanner and institution, but they provide a useful starting point for any spectroscopic study design. 

There are several factors particular to our scanning protocols and institutional setup that limit the use 

of the reproducibility measurements that we provide. These include, but might not be limited to, 

scanner, acquisition protocols, data correction and reconstruction, and processing. Despite these 

variations, it should be possible for other groups to use the methodology that we describe to derive 

‘in house’ data for their studies. Also, although these data guide designing clinical studies, particularly 

in groups of subjects (including those with brain injury) that may require sedation and control of 

ventilation as part of clinical care. While such patient groups may appear complex and difficult to 

manage within the context of an imaging study the fact that they remain completely immobile and 

have stable physiology should result in lower CoV for reproducibility measurements and an increase 

in the sensitivity of interventional studies.116 

 

Methodological limitations 

The volunteers included in this study ranged in aged from 25 – 50 years, and since metabolite levels 

are associated with age,106,221 this may account for some of the variability in the intersubject analysis. 

While we were able to obtain multiple WB 1H MRS datasets on up to two occasions in this group of 

volunteers, scanner availability and subject tolerance (duration and noise) prevented us from 

acquiring further WB 1H MRS datasets within the same session and additional scanning sessions. A 

repeat imaging session was performed within a mean (range) of 33 (3 – 181) days, and variation in this 

interval could result in biological differences between the datasets obtained within a few days 

compared to those obtained after several months. However, any expected change in WB 1H MRS in 

healthy volunteers of a similar age over up to six months is small and unlikely to have resulted in the 

differences we have found.241 In addition, we found no relationship between scan reproducibility and 

the interval between the two imaging sessions. 

 

We found variability in the 1H MRS measurements and their reproducibility across the different brain 

regions. In addition, there was more variability in metabolite data involving choline, which probably 

reflects the lower concentration of choline within the brain.242 These differences are demonstrated in 

Table 5-1, Table 5-2, Table 5-3, Figure 5-3 and Figure 5-4 were particularly relevant for the corpus 
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callosum, deep grey matter, midbrain, frontal, occipital and some white matter regions. We found no 

relationship between the ROI volume and intersubject variability and reproducibility of 1H MRS for any 

of the metabolites (data not shown). Despite this, the cause of these differences may in part be related 

to inhomogeneities in the B0 field induced by the frontal and sphenoidal air sinuses, partial volume 

errors within relatively small regions, locally variant metabolite concentrations, and variation in the 

quality of coregistration and spatial normalisation within individual subjects. We tried to limit these 

errors through careful review of all the transformed imaging datasets, shimming the scanner before 

each MIDAS data acquisition, and eroding the ROI template by a single voxel to improve accuracy. 

Despite this, errors remain within some ROIs where 1H MRS values differ in closely adjacent brain 

regions. However, the purpose of this study was to determine the variability of measurements using 

an ROI template and standard processing pipeline. While variability in the fitting of template ROIs in 

individual subjects may result in higher intersubject variability for particular brain regions, this should 

be less likely for measurements of reproducibility within the same subject. Here any differences in ROI 

template fitting between the sessions should be small. These regional differences underline that 1H 

MRS studies should compare data within the same brain region using the same data processing 

technique. Our figures for reproducibility are higher than that reported by Maudsley et al. using the 

same acquisition sequence.109 This reflects our inclusion of a larger study group and that we utilised a 

standard processing pipeline and ROI template covering the whole brain within normalised space that 

we would typically apply to patient studies. While the data we report are specific to our methods, the 

reproducibility measurements that we report provide a useful starting point for study design. 

 

Conclusions 

This study provides additional reference data concerning intersubject variability and reproducibility of 

WB 1H MRS conducted in a group of healthy volunteers. The CoV for repeat WB 1H MRS measurements 

obtained during the same session were similar to that obtained from measurements obtained in a 

different imaging session separated by up to six months. These data can be used to calculate the 95% 

prediction interval for zero change and may inform the design of interventional studies to quantify 

change within a single imaging session or to assess the significance of the change in longitudinal 

studies.  
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Chapter 6 Pathophysiological mechanisms of cerebral ischaemia and 

diffusion hypoxia in traumatic brain injury 

 

Introduction 
 

The Cambridge group have previously used 15oxygen positron emission tomography (15O PET) to define 

evidence of cerebral ischaemia following early clinical head injury.118,120 While ischaemia was related 

to regions of structural injury, it was distributed across the brain and found in regions that appeared 

structurally normal.243 While other 15O PET studies have found less convincing evidence of ischaemia, 

these typically demonstrate evidence of metabolic dysfunction that correlates with focal microdialysis 

and brain tissue oxygen monitoring derangements, and ultimately, were associated with late cognitive 

decline and cerebral atrophy.160,244 Brain tissue oxygen and microdialysis identify evidence of tissue 

hypoxia and metabolic dysfunction, particularly within perilesional regions following traumatic brain 

injury (TBI), and protocol-driven management has been shown to improve outcome.159,164,245-250 We 

have previously used brain tissue oxygen and 15O PET to demonstrate an increased gradient for oxygen 

diffusion within hypoxic brain regions in the absence of classical ischaemia.123 This is consistent with 

microvascular ischaemia and is supported by ex-vivo clinical and experimental studies demonstrating 

perivascular oedema, microvascular thrombosis and occlusion associated with selective neuronal 

loss.250-253 

 

18Fluoromisonidazole ([18F]FMISO) is a hypoxia PET tracer that undergoes selective bioreduction within 

hypoxic cells where it becomes irreversibly bound. This imaging modality has been used to investigate 

and identify severely hypoxic but viable tissue following stroke.144,254-256 There are no published data 

concerning the use of [18F]FMISO PET following TBI or direct comparison with 15O PET. This study aimed 

to compare the burden and distribution of classical ischaemia using 15O PET with regional tissue 

hypoxia as defined by 18Fluoromisonidazole PET in patients following early head injury. 

 

Materials and methods 

Ethical approval was obtained from the Cambridge Central Research Ethics Committee (06/Q108/359) 

and written informed consent, or consultee agreement from next-of-kin where appropriate were 

obtained in all cases in accordance with the Declaration of Helsinki. Also, approval was obtained from 

the Administration of Radioactive Substances Advisory Committee (83/2050/21530). 
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Subjects 

Ten adult patients (9 males) with a mean (range) age 52 (30 – 68) years with TBI were recruited from 

the Neurosciences Critical Care Unit, Addenbrooke’s Hospital, Cambridge, UK. Patients presented with 

a mean (range) post-resuscitation Glasgow Coma Score (GCS) of 7 (3 – 12) but deteriorated to a GCS 

< 8 requiring sedation and ventilation for control of intracranial pressure (ICP) (Table 6-1). Patients 

were recruited to this imaging study between days 1 – 8 post-injury at a time when they were still 

sedated and ventilated to facilitate ICP control. All patients were managed by protocol-driven care; 

which included sedation, paralysis and ventilation aiming for ICP < 20 mmHg, cerebral perfusion 

pressure > 65 mmHg, and where available BtpO2 values > 15 mmHg. Physiological stability was 

meticulously ensured during imaging through the titration of fluids and vasoactive agents and the 

presence of a critical care physician and nurse. Patients who received the surgical intervention 

(cerebral spinal fluid (CSF) drainage or decompressive craniectomy) or second-tier medical therapies 

(barbiturate coma or moderate hypothermia (33–35°C)) prior imaging are specified in Table 6-1. 

Outcome was evaluated using the Glasgow outcome scale (GOS) at six months. All patients admitted 

to the neurocritical care unit requiring sedation, paralysis and ventilation for the maintenance of ICP 

control were considered for this study to avoid selection bias. The recruitment rate for this study was 

low because of duration of study (three hours) and the inherent complexity of triple oxygen PET scan. 

Patients were recruited over one year.   

Ten healthy volunteers (8 males) with mean (range) age of 45 (29 – 59) years underwent 15O PET and 

another ten healthy volunteers (8 males) with mean (range) age of 55 (41 – 76) years underwent 

[18F]FMISO PET. We used two separate volunteer groups (15O and [18F]FMISO PET) for this study 

because of the combined duration of triple oxygen and FMISO PET acquisition and discomfort for 

unsedated patients. 
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Table 6-1 Patient Characteristics 
C, craniotomy; D, death; DAI, diffuse axonal injury; DC, decompressive craniectomy; EDH, extradural hemorrhage; EVD, external ventricular drain; F, female; 
GCS, Glasgow coma score; GOS, Glasgow outcome score; GR, good recovery; M, male; MD, moderate disability; RTA, road traffic accident; SD, severe disability; SDH, subdural hemorrhage; tSAH, 
traumatic subarachnoid hemorrhage. 
 

Subject Age Sex Mechanism Injury GCS Marshall APACHE ISS Neurosurgery Second tier medical 
therapies 

Days to Imaging GOS 

1 47 M Assault Contusions 8 5d 19 16 DC  5 SD 

2 59 M Fall Contusions and SDH 4 5c 24 38 DC  1 D 

3 34 M Fall Contusions, SDH and DAI 6 5b 25 16 EVD, DC  5 MD 

4 60 F RTA EDH and tSAH 4 5a 25 20 C Hypothermia 2 GR 

5 30 M RTA Contusions, SDH and DAI 3 5b 17 29 DC  1 MD 

6 65 M Assault Contusions, SDH and tSAH 12 6d 11 25   8 GR 

7 58 M Fall Contusions, SDH, tSAH and DAI 8 6c 20 34   8 GR 

8 66 M RTA Contusions, SDH and DAI 10 6d 15 13  Hypothermia 3 MD 

9 31 M Fall Contusions, SDH and DAI 5 6d 16 42 EVD, DC Hypothermia 5 SD 

10 68 M Fall Contusions, EDH, SDH and tSAH 11 6d 17 29   5 GR 
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Imaging 

All subjects underwent structural imaging for coregistration with magnetic resonance imaging (MRI) 

using a 3T Siemens Verio MRI scanner (Siemens AG, Erlangen, Germany) within the Wolfson Brain 

Imaging Centre, University of Cambridge. The sequences obtained included a 3D T1-weighted 

magnetisation prepared rapid gradient echo (MPRAGE), fluid-attenuated inversion recovery (FLAIR), 

gradient echo (GE), susceptibility weighted (SWI), dual spin echo (proton density/T2-weighted) and 

diffusion tensor imaging (DTI).232 

Positron emission tomography (PET) studies were undertaken on a General Electric Advance scanner 

(GE Medical Systems, Milwaukee, USA). Image reconstruction included corrections for attenuation, 

scatter, randoms and dead time.120 

15Oxygen PET: Emission data were acquired in 3D mode during a 20 minute steady state infusion of 

800 MBq of H2
15O (two five minute frames at the end of the administration), following a 60-second 

inhalation of 300 MBq of C15O (single 5 minute frame), and in 2D mode during a 20 minute steady 

state inhalation of 7200 MBq of 15O2 (two five minute frames at the end of the administration). 

Parametric maps of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen 

metabolism (CMRO2) and oxygen extraction fraction (OEF) were calculated by inputting simultaneous 

PET and arterial tracer activity measurements into standard models previously described by Coles et 

al.116,131 We used a blood-brain partition coefficient for H2
15O (ρ) of 0.95 based on the previous in vitro 

data and a small to large haematocrit ratio (r) of 0.85.120 

18Fluoromisonidazole PET: Following [18F]FMISO injection emission data were acquired in the 3D 

mode for up to 2.5 hours. Arterial plasma input function was used for kinetic analysis, and binding was 

quantified using BAFPIC257 (a basis function approach to two tissue irreversible compartmental 

modelling and Patlak graphical analyses to derive kinetic parameters from the dynamic [18F]FMISO PET 

emission. Parametric maps of K1, k3 and Ki were calculated. The rate constants K1 and k3 reflect tracer 

delivery to the brain and trapping within hypoxic tissue, respectively. The steady state uptake rate 

constant Ki = K1k3/(k2 + k3), where k2 is efflux of the tracer from tissue to blood. 

Image processing: The PET data were processed using custom designed automated software 

(PETAN128,258) incorporating elements of Statistical Parametric Mapping (SPM), Matlab (MathWorks, 

Inc., Natick, Maryland, USA) and Analyze (AnalyzeDirect, Inc., Lenexa, Kansas, USA). To aid 

coregistration, the skull and extracranial soft tissue were stripped from the T1 weighted image using 

the Brain Extraction Tool of FSL.259 Subsequently; this extracted brain was registered to the summed 

[18F]FMISO and H2
15O PET emission using SPM.260 In order to exclude brain tissue with irreversible 

injury from further analyses, we used a threshold value of CBF < 2.36 ml/100ml/min based on a 
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positive predictive value of 0.95 for non-viable tissue.27 Subsequently, we created a brain mask using 

the coregistered extracted T1 weighted image following removal of the CSF segment and the CBF 

threshold for non-viable tissue. This brain mask was applied to the parametric PET images and used 

to generate corrected parametric maps. 

Region of interest analysis 

Lesions were defined on native FLAIR and segregated into core, contusion and pericontusion using 

FLAIR, MPRAGE, GE and SWI images. Lesion core was identified as a region of mixed signal intensity 

consistent with haemorrhage and necrotic tissue and excluded from subsequent analyses. Contusion 

was identified as an area of high FLAIR signal consistent with oedema, and pericontusion as 1 cm 

border zone of normal-appearing tissue surrounding a contusion. The FLAIR images were coregistered 

to PET space using SPM8, and coregistration parameters applied to lesion ROIs. For comparison, a 

region of normal appearing mixed grey and white matter was defined in patients. 

 

Ischaemic brain volume 

We used OEF to assess the burden of classical ischaemia in order to avoid the confounding effects of 

drug and injury-induced metabolic suppression on CBF and CMRO2. Although it is difficult to find data 

that identify critical increases in OEF levels that still allow survival in the setting of ischaemia, we have 

previously validated a technique for patients with TBI.120,261,262 We estimated an individualised critical 

OEF threshold (OEFcrit; which equated to a cerebral venous oxygen content (CvO2) of 3.5 ml/100ml) 

for each subject as follows: 

                                                         

where, 

    

CaO2 is arterial oxygen content, Hb is the haemoglobin in g/100ml, SaO2 is the fractional arterial 

oxygen saturation, and PaO2 is the partial pressure of oxygen (kPa). Application of these thresholds to 

OEF images allowed us to calculate the volume of voxels with CvO2 values below this threshold and 

hence allowed estimation of the ischaemic brain volume (IBV). 
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Hypoxic brain volume 

We used k3 to assess the burden of tissue hypoxia since it is the rate constant for FMISO trapping 

under hypoxic conditions. Using the mean and standard deviation (SD) of voxel k3 values within the 

whole brain of each healthy volunteer we calculated the upper 99% confidence interval (CI) threshold 

using the mean plus three SDs. We used the volume of the brain with k3 values above this threshold 

to calculate the hypoxic brain volume (HBV). The volume, spatial location and mismatch between the 

HBV and IBV were examined. 

Comparison with tissue pO2: For subjects who underwent BtpO2 monitoring, this was monitored 

continuously with values recorded every 5 - 10 minutes throughout PET. A 20mm diameter ROI was 

drawn around the LICOX® sensor tip (Integra Neurosciences), and [18F]FMISO k3 compared with 

BtpO2. 

Statistical analysis: Statistical analyses were conducted using Statview (Version 5, 1998, SAS Institute 

Inc.). Data are expressed as median (range) unless otherwise stated. Data were compared using Mann 

Whitney U and Spearman’s rank tests and p values quoted after Bonferroni correction (where 

appropriate), with corrected p values < .05 considered significant. The Dice similarity coefficient was 

used to measure the degree of spatial overlap between IBV and HBV. 
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Results 

Regional physiology 

Physiology was highly variable even within regions that appeared structurally normal (Figure 6-1). 

When compared to data from healthy volunteers, contusions showed lower CBF and CMRO2 (p < 0.01 

Mann Whitney U test with Bonferroni correction), while CBV and OEF were variable but similar to 

control. Pericontusional tissue and regions that appeared structurally normal had lower CMRO2 than 

healthy volunteers (p < 0.01 Mann Whitney U test with Bonferroni correction), while CBF, CBV and 

OEF were similar to control. 
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Figure 6-1 Regional physiology 
Box and whisker plots of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen metabolism (CMRO2), and oxygen extraction 
fraction (OEF) in brain regions identified as contusion (dark grey), perilesion (diagonal), normal appearing (light grey) and healthy volunteers 
(white). The central lines in each box denote median values, the lower and upper boundaries the 25th and 75th centile, the error bars the 10th 
and 90th centile, and the closed circles outlying data points. p < 0.01 and p < 0.05, Mann Whitney U test with Bonferroni correction for 
comparison with control values from healthy volunteers and normal appearing regions within patients respectively. 
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Ischaemic brain volume 

When compared to healthy volunteers, patient IBV was significantly higher (56 (9 – 281) ml vs 1 (0 – 

11) ml; p < 0.001, Mann Whitney U test). While much of the IBV was close to visible lesions, with 23 

(4 – 65)% found within contusional and pericontusional regions, it was also distributed across the 

normal appearing brain (Figure 6-2). Physiology within the IBV is shown in Figure 6-3. There was no 

relationship between the IBV and days since injury or age (p = 0.49 and 0.34, respectively, Spearman’s 

rank test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 6-2 15O Evidence of cerebral ischaemia using 15O positron emission tomography following head injury 
Fluid-attenuated inversion recovery (FLAIR), cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), oxygen extraction fraction (OEF), 
ischaemic brain volume (IBV), 18F-fluoromisonidazole trapping rate (k3) and hypoxic brain volume (HBV) in patient 10 who sustained a head injury 
following a fall. During imaging cerebral perfusion pressure was 82 and intracranial pressure 12 mmHg. The FLAIR image demonstrates bilateral 
contusions within the temporal and parietal lobes on the right and the temporal lobe on the left. Cerebral blood flow is low in these regions, particularly 
on the right side. Cerebral oxygen metabolism is mildly reduced within the right temporal region, but there is a large increase in the OEF particularly 
within the right but also within the left temporal and parietal cortices. Increased k3 is found within the right temporal region but also across other 
injured and normal appearing regions. The region with a critical increase in OEF above the individually calculated ischaemic threshold (IBV) and the 
HBV are both shown in red overlying the FLAIR image. Within the total IBV of 131ml in this patient the mean CBF was 14 ml/100ml/min, CBV 3.4 
ml/100ml, CMRO2 84 µmol/100ml/min and OEF 90 %. The total HBV in this patient was 70ml and had mean CBF was 13 ml/100ml/min, CBV 2.2 
ml/100ml, CMRO2 47 µmol/100ml/min and OEF 49 %. The volume of overlap between these two tissues classes in this subject was 6ml. 
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Hypoxic Brain Volume 

The HBV was variable, but significantly higher in patients compared with healthy volunteers, with a 

median (range) of 29 (0 – 106) ml vs 9 (1 – 24) ml (p = 0.016, Mann Whitney U test). A trend for 

correlation between the IBV and HBV failed to achieve significance (rho = 0.61 and p = 0.07, 

Spearman’s rank test). The overlap volume between these two pathophysiological tissue classes was 

1 (0 – 19) ml, and there was substantial spatial mismatch (Dice similarity coefficient of 0 (0 – 0.1)) 

(Figure 6-2 and Figure 6-4). While the HBV was often related to visible lesions, with 37 (21 – 57)% 

found within contusional and pericontusional regions, it was also seen within the normal appearing 

brain (figures 6-2 and 6-4). Figure 6-3 shows a comparison of summary physiological data from the IBV 

and HBV tissue classes, the tissue that appeared structurally normal and was in neither of these classes 

and tissue from healthy volunteers. When tissue constituting the HBV was compared to that within 

the IBV (figure 6-3) it showed similar CBF (p = 0.22), CBV (p = 0.09) and CMRO2 (p = 0.14), but lower 

OEF (p < 0.001; Mann Whitney U tests with Bonferroni correction). Cerebral metabolism below 

 

Figure 6-3 Comparison of physiology within the ischaemic brain volume and hypoxic brain volume 
Box and whisker plots of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen metabolism (CMRO2), and oxygen extraction 
fraction (OEF) in brain tissue constituting the hypoxic brain volume (HBV) (dark grey), ischaemic brain volume (IBV) (diagonal), brain that appeared 
structurally normal (light grey) and healthy volunteers (white). The central lines in each box denote median values, the lower and upper boundaries 
the 25th and 75th centile, the error bars the 10th and 90th centile, and the closed circles outlying data points. p < 0.05, for comparison between 
the HBV and brain that appeared structurally normal within patients. p < 0.01, for comparison between the IBV and brain that appeared 
structurally normal within patients. p < 0.01, for comparison between the HBV and healthy volunteers. p < 0.01, for comparison between the 
IBV and healthy volunteers. For all comparisons between the HBV or IBV, and brain that appeared structurally normal in patients or healthy 
volunteers Mann Whitney U tests with Bonferroni correction were used. 
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published 15O PET thresholds for irreversible injury (37.6 mol/100ml/min) in TBI was observed in 

three of 10 patients in the HBV tissue class compared to one within the IBV tissue class. There was no 

relationship between the HBV and days since injury or age (p = 0.70 and 0.90 respectively, Spearman’s 

rank test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison with tissue pO2 measurements 

Tissue pO2 was available in five subjects, and measurements during PET were 34 (16 – 55) mmHg. The 

ROI around the LICOX probe tip showed no values of [18F]FMISO k3 or OEF that exceeded our HBV and 

IBV thresholds. 

 
  

 

Figure 6-4 Evidence of tissue hypoxia using 18Fluoromisonidazole positron emission tomography 
Fluid-attenuated inversion recovery (FLAIR), cerebral blood flow (CBF), oxygen extraction fraction (OEF), ischaemic brain volume (IBV), and 18F-
fluoromisonidazole trapping rate (k3) and hypoxic brain volume (HBV) in patient 9 who sustained a head injury following a fall. During imaging 
cerebral perfusion pressure was 80 and intracranial pressure 21 mmHg. The FLAIR image demonstrates haemorrhagic contusions with surrounding 
vasogenic oedema within bilateral frontal and right temporal regions. Additional areas of high signal consistent with injury are evident within the 
left thalamus and bilateral occipital regions. Finally, there are thin subdural haematomas over the right cortex and left frontal region. Cerebral blood 
flow is low within the frontal regions and is associated with increased k3 in the absence of an increase in OEF consistent with conventional 
macrovascular ischaemia. The HBV (100ml) in this subject had a mean CBF of 14 ml/100ml/min, CBV 2.1 ml/100ml, CMRO2 27 µmol/100ml/min and 
OEF 35 % and did not match the region of brain within the IBV (149ml) that had CBF of 15 ml/100ml/min, CBV 3.4 ml/100ml, CMRO2 63 

mol/100ml/min and OEF 88 %. The volume of overlap between these two tissues classes in this subject was 10ml. 
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Discussion 

Combining 15O and [18F]FMISO PET, we demonstrate evidence of conventional macrovascular cerebral 

ischaemia and tissue hypoxia up to a week post-TBI. Spatial matching of these two tissue classes was 

poor, with voxels contributing to the HBV more frequent within the vicinity of lesions. The IBV and 

HBV voxels showed comparable reductions in CBF, but the HBV tissue class showed a trend for lower 

CBV and CMRO2, and significantly lower OEF. Further, the HBV more frequently exhibited CMRO2 

values within the range of irreversible injury. While the IBV identifies conventional macrovascular 

ischaemia, the coexistence of normal OEF (identified by 15O PET) and low tissue pO2 (identified by high 

[18F]FMISO trapping) in the HBV is the typical signature of diffusion barrier hypoxia, which, along with 

lower CBV, implies microvascular collapse and ischaemia as an underlying mechanism. These findings 

confirm the existence of diffusion hypoxia, characterise its pathophysiological signature as distinct 

from macrovascular ischaemia, and show that the two have an incomplete spatial concordance. This 

is a potential target for future novel neuroprotective strategies. 

While 15O and [18F]FMISO PET have been used separately to identify ischaemia,255,256,263,264 we 

combined both tracers to interrogate pathophysiological derangements following TBI. For [18F]FMISO 

PET, we used kinetic analysis to calculate k3 as a measure of hypoxia. While Ki, the influx rate 

constants265 often used to quantify irreversible trapping/metabolism of a tracer in tissue, it is sensitive 

to changes in tracer delivery, which is CBF dependent. This confounding issue is obviated through 

estimation of k3, the rate constant for tissue [18F]FMISO trapping, and in the context of low CBF in the 

vicinity of contusions,28,266 k3 is more suited to represent trapping of [18F]FMISO within the hypoxic 

brain.155,267 The HBV was calculated from the total volume of voxels with k3 values larger than the 

upper 99% CI value from control data. 

Since derangements are common across the whole brain following TBI,120,266,268 we cannot utilise a 

similar approach used following an ischaemic stroke that defined increased [18F]FMISO trapping 

greater than the upper 99% CI value from the contralateral brain.269 Other studies used voxel-wise 

statistical testing to compare with controls following spatial normalisation.144,256 These are less 

applicable to TBI since structural distortions are usually larger, making spatial normalisation less 

dependable. We sought to identify [18F]FMISO trapping within areas of obvious injury and normal 

appearing regions, and therefore, used native PET space analyses to avoid artefacts from such 

processing techniques.72,179 The volumes of the hypoxic brain with increased [18F]FMISO trapping in 

our subjects were similar to those seen in ischaemic stroke,255 with a mean HBV of 47 ml in our 

patients, and four patients with a HBV > 5% of brain volume. 



 96 

We removed lesion core using MR and excluding CBF voxels < 2.36 ml/100ml/min based on a positive 

predictive value of 0.95 for non-viable tissue in TBI.27 Following TBI increased FLAIR signal can 

disappear on sequential imaging270 and is not predictive of pan-necrosis for all lesion voxels.27 Since 

derangements are often found in normal-appearing regions,268 we examined the whole brain, but 

highlighted when these were found within the vicinity of lesions using standard MR sequences. The 

mean HBV found outside contusion and pericontusion was 30 (0 – 75) ml, and four subjects had >50ml 

of such tissue. 

These results have implications for our understanding of oxygen delivery and utilisation in clinical TBI.  

Although the HBV and IBV showed some overlap, most IBV voxels did not show significant [18F]FMISO 

trapping.  This suggests that at least some of the voxels with OEF in excess of our threshold CvO2 values 

could maintain tissue pO2 levels above those that result in irreversible bioreduction of [18F]FMISO.  The 

pO2 at which this occurs is unclear, but in vitro data show that, while FMISO bioreduction shows some 

enhancement with pO2 <60 mmHg, it rises steeply at a pO2 < 10 mmHg.271 Given that the normal BtpO2 

is ~25 mmHg,272,273 it is possible that many IBV voxels had BtpO2 values in the 10 – 20 mmHg range, 

and our HBV threshold may simply be a more stringent physiological marker of tissue hypoxia. In 

comparison with the IBV, CMRO2 below thresholds, we have previously identified for survival27 were 

more common in the HBV. While [18F]FMISO trapping does not occur within necrotic tissue254 a 

proportion of these voxels may be destined for infarction, and the HBV may provide a more specific 

marker of tissue on the cusp of survival. 

To explore the relationship between OEF and [18F]FMISO k3 within viable brain, we excluded voxels at 

high risk of infarction based on the lower 95% confidence interval for non-lesion brain following TBI, 

using a CMRO2 threshold of 37.6 mol/100ml/min.27 In Figure 6-5, the subsequent relationship 

between OEF and k3 within individual patients is shown using locally weighted scatterplot smoothing 

(LOWESS)27,274,275 This shows variability between patients, with a subset showing increased [18F]FMISO 

trapping above an OEF threshold of ~ 60 − 70%, broadly consistent with conventional ischaemia. It is 

important to emphasise that levels of [18F]FMISO trapping were, in most cases, below our HBV 

thresholds and equivalent to tissue pO2 levels of ~10 – 25 mmHg.271 
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Given that these data provide a transition zone between normal tissue and that which shows 

increased [18F]FMISO trapping, it would be useful to have a physiological characterisation of tissue 

that shows pathological levels of [18F]FMISO trapping. While subjects showed increased [18F]FMISO 

trapping across the whole brain, there was none within the vicinity of focal BtpO2 monitoring probes. 

Clinically significant reductions in BtpO2 are typically reported below 10 – 15 mmHg,276 and our local 

treatment protocol aim to maintain values > 15 mmHg, which were achieved in all subjects. The lowest 

BtpO2 level recorded during the PET was 16mmHg. In terms of the threshold value at which [18F]FMISO 

trapping occurs in TBI, we can conclude that pO2 values within the HBV may have been < 10 – 15 

mmHg. 

The proportion of HBV voxels that had high OEF meeting the criteria for macrovascular ischaemia (IBV) 

was small (8%). This may relate to the fact that we imaged patients between days 1 – 8 post-injury, at 

a time when conventional ischaemia is less prevalent,122,130,277 but lesions remain at risk of expansion. 

This may have meant that many tissue regions showed complex and varying mixtures of macrovascular 

 

Figure 6-5 Relationship between PET parameters 
The relationship between oxygen extraction fraction (OEF) and [18F]FMISO trapping rate (k3) within voxels across the whole brain of individual patients 
(n=10) plotted using locally weighted scatterplot smoothing (Lowess) with 66% tension using Statview. Lowess is an outlier resistant method based on local 

polynomial fits. For this comparison voxels with cerebral oxygen metabolism less than 37.6 mol/100ml/min were excluded based on the lower 95% 
confidence limits for non-lesion voxels following head injury. 
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ischaemia and diffusion hypoxia, making detection of clear OEF thresholds for [18F]FMISO trapping 

challenging. Our study has limitations. This study recruited a small number of patients due to the 

inherent complexity of conduct of the trial. The temporal variability in neurophysiology after TBI 

during the recruitment window may have played a role in the final results, but we attempted to 

minimise variations in physiology by only recruiting patients undergoing aggressive therapy for ICP 

management in the critical care unit. 

Our characterisation of prominent [18F]FMISO trapping in perilesional regions is worth highlighting. 

Previous PET studies have shown severe derangements within and around cerebral contusions, but 

that increases in OEF consistent with cerebral ischaemia are not always identified.27,28 We found that 

tissue within the vicinity of such lesions is hypoxic but does not fulfil the criteria for conventional 

macrovascular ischaemia. An explanation for these findings comes from studies showing widespread 

microvascular occlusion and perivascular oedema after TBI,250,252,278 associated with selective neuronal 

loss.251 Conventional physiology dictates that to maintain CMRO2 in the face of low CBF, OEF must be 

increased.130,263 However, hypoxic regions may be less able to increase OEF due to an increased 

gradient for oxygen diffusion.123 This could explain our findings of low OEF and CBV despite evidence 

of low CBF and tissue hypoxia. Other studies have used DTI to demonstrate contusion expansion, and 

that a rim of low apparent diffusion coefficient consistent with cytotoxic oedema is often found 

surrounding contusions.72 This may characterise a region of microvascular failure, and represent a 

‘traumatic penumbra’ that may be rescued by effective therapy such as hyperoxia,25,179 or be 

subsumed as the contusion enlarges. 

These findings confirm the existence of diffusion hypoxia, characterise its pathophysiological signature 

as distinct from conventional macrovascular ischaemia, and show that the two have an incomplete 

spatial concordance. This physiological signature is consistent with microvascular ischaemia, and 

importantly, this mechanism is also found within regions that appear structurally normal. Such 

findings require further scrutiny and are relevant to the development of future neuroprotective 

strategies. 
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Chapter 7 Use of diffusion tensor imaging to assess the impact of 

normobaric hyperoxia within at-risk pericontusional tissue following 

traumatic brain injury 

 

Introduction 

Structural damage due to ischaemia and tissue hypoxia remains an important cause of neuronal loss 

following traumatic brain injury (TBI)121 as shown in the previous chapter. The Cambridge group have 

previously used 15O positron emission tomography (15O PET) to show that normobaric hyperoxia 

increases oxygen utilisation in “at-risk” regions of metabolically compromised tissue, typically in 

pericontusional regions and white matter.19,25 However, while previous studies demonstrate a 

consistent effect of hyperoxia in increasing brain tissue oxygen levels, reports of the impact on brain 

metabolism have been inconsistent, regionally variant, and dependent on the underlying metabolic 

state of the tissue concerned.25,164,279,280 Additional concerns have been raised regarding the potential 

deleterious effects on pulmonary function and worsening of neuronal injury due to oxidative stress. 

Studies within other pathologies such as stroke and myocardial infarction have also shown conflicting 

evidence of benefit and harm.281-290 Given this background, it is clear that further study of the regional 

effects of normobaric hyperoxia is warranted before definitive clinical trials of the intervention 

following traumatic brain injury (TBI). 

Diffusion tensor imaging has shown benefit in a variety of neurological disease states in predicting 

both local tissue and functional outcome.60,61,88,181,182,212,213,216,291-295 Studies following TBI have 

demonstrated evidence of traumatic axonal injury that is not evident using conventional imaging 

techniques.49-51,56,57,61,180,296-299 Diffusion tensor imaging (DTI) images dynamic metabolic processes, 

including cytotoxic oedema associated with cellular metabolic failure, and experience in stroke shows 

that these imaging changes are dynamic and reversible, suggesting that they may be able to image 

acute treatment effects.250,300,301 We have therefore used DTI to assess the impact of normobaric 

hyperoxia in this context, and provide data for the planning and design of future therapeutic trials of 

hyperoxia therapy for patients with a head injury. 

Materials and methods 

Ethical approval was obtained from the Cambridgeshire Research Ethics Committee (reference 

numbers 97/290 and 02/293) and written informed consent, or consultee agreement from next-of-

kin where appropriate were obtained in all cases in accordance with the Declaration of Helsinki. 
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Subjects 

Patients: Fourteen adult patients (12 males and two females) with a mean (range) age 41 (21 – 70) 

years with head injury were recruited from the Neurosciences Critical Care Unit (NCCU), 

Addenbrooke’s Hospital, Cambridge, UK between 2010 and 2012. Patients presented with median 

(range) post-resuscitation Glasgow Coma Score (GCS) of 7 (3 – 14) but deteriorated to a GCS < 8 

requiring sedation and ventilation for control of intracranial pressure (ICP) (Table 7-1). Patients were 

recruited to this imaging study between days one and nine post-injury and underwent imaging while 

sedated. Patients were excluded from this study if they had suffered a previous TBI, other neurological 

diseases, or had any contraindication to magnetic resonance imaging (MRI). All patients were 

managed by protocol-driven care; which included sedation, paralysis and ventilation to ensure that 

ICP < 20 mmHg and cerebral perfusion pressure > 65 mmHg were maintained. Physiological stability 

was meticulously ensured during imaging through the titration of fluids and vasoactive agents and the 

presence of a critical care physician and nurse. Patients who received the surgical intervention (CSF 

drainage or decompressive craniectomy) or second-tier medical therapies (barbiturate coma or 

moderate hypothermia (33–35°C)) before imaging are specified in Table 7-1. No other major changes 

occurred in the management of patients on the day of study.
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Subject Age Sex Mechanism Injury GCS Marshall 

score 

APACHE 

II 

ISS Neurosurgery Second tier therapies Days to MRI GOS 

1 53 M RTA Multiple contusions and DAI 4 NEML 17 34 -  4 MD 

2 34 M RTA tSAH, SDH and  IVH 4 NEML 21 20 EVD  3 VS 

3 34 M Assault Multiple contusions 8 EML 25 16 DC  3 SD 

4 21 M RTA Multiple contusions 10 NEML 21 50 - Hypothermia 2 MD 

5 31 M RTA Multiple SDH 6 EML 17 29 DC  1 MD 

6 29 M Assault Multiple contusions 10 EML 17 16 DC, EVD Hypothermia 2 GR 

7 58 M Fall Multiple contusions 10 NEML 20 34 - - 4 GR 

8 26 M RTA SDH and Multiple contusions 3 NEML 17 75 -  3 MD 

9 28 M Assault SDH and EDH 12 EML 24 36 DC  3 GR 

10 61 M Fall Multiple contusions 5 NEML 22 75 -  9 Not available 

11 60 M Fall Multiple contusions 14 NEML 8 34 - - 3 MD 

12 31 F Fall Multiple contusions 3 EML 25 75 DC Hypothermia 4 VS 

13 70 F RTA Multiple contusions 3 NEML 21 34 -  1 GR 

14 27 M RTA Multiple contusions 7 NEML 16 25 -  4 GR 

 Table 7-1 Patient characteristics 
M, male; F, female; RTA, road traffic accident, DAI, diffuse axonal injury; tSAH, traumatic subarachnoid haemorrhage, SDH, subdural haemorrhage; IVH, intraventricular haemorrhage; EDH, extradural haemorrhage, GCS, Glasgow coma 
score; NEML, non-evacuated mass lesion; EML, evacuated mass lesion; EVD external ventricular drain; DC, decompressive craniectomy; MRI, magnetic resonance imaging; GOS, Glasgow Outcome Score; MD, moderate disability; VS, 
vegetative state; SD, severe disability, GR, good recovery 
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Following acquisition of baseline diffusion tensor imaging (DTI) at a partial pressure of oxygen (PaO2) 

of approximately 75 – 90 torr (10 – 12 kPa) the fraction of inspired oxygen (FiO2) was increased to a 

maximum of 0.8 in order to achieve a PaO2 of approximately 225 – 260 mmHg (30 – 35 kPa). Following 

60 minutes to allow impact of higher PaO2 (and by inference, brain pO2) levels on cerebral metabolism, 

repeat DTI was obtained within the same imaging session without moving the patient. 

Controls: Seven controls (four females and three males) with a mean (range) age of 31 (22 – 42) years 

were exposed to graded oxygen therapy (21%, 60% and 100% inspired oxygen) delivered via a venturi 

mask (Flexicare Medical Limited, Mid Glamorgan, Wales). Diffusion tensor imaging was obtained at 

each level following an equilibration period of 15 minutes to assess the impact of oxygen therapy on 

the normal brain. 

Imaging 

All subjects were scanned using a 3T Siemens Verio MRI scanner (Siemens AG, Erlangen, Germany) 

within the Wolfson Brain Imaging Centre (WBIC), University of Cambridge. During the study period, 

there were no significant changes or upgrades to the scanner or software. The sequences obtained 

were structural sequences including a 3D T1-weighted magnetisation prepared rapid gradient echo 

(MPRAGE), fluid-attenuated inversion recovery (FLAIR), gradient echo (GE), susceptibility weighted 

(SWI) and dual spin echo (proton density/T2-weighted). The DTI data were acquired using 63 non-

collinear directions, b=1000 s/mm2 with one volume acquired without diffusion weighting (b = 0), echo 

time (TE) 106ms, repetition time (TR) 11700ms, 63 slices, field of view 192mm x 92mm, 2mm3 isotropic 

voxels, and an acquisition time of 13:50 minutes. A specialist neuroradiologist reviewed all acquired 

images as a part of clinical care. 

Image processing: Apparent diffusion coefficient (ADC) maps were created using the Oxford Centre for 

Functional MRI of the brain FSL Diffusion Toolbox. To aid coregistration, the skull and extracranial soft 

tissue were stripped from the T1 weighted image using the Brain Extraction Tool of FSL.206,207,259 The 

diffusion weighted data were normalised using a two-step approach. First, T1 weighted images were 

coregistered to the Montreal Neurological Institute 152 (MNI152) template using the vtkCISG 

normalised mutual information algorithm.209 The b = 0 images were subsequently coregistered to the 

subject’s T1 weighted image as described previously.113,232 The transformation matrix normalising the 

MPRAGE was then applied to the b = 0 images. All coregistered and normalised images were visually 

checked to ensure that they were aligned. 
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Region of interest analysis 

Standard template in controls: Regions of interest (ROIs) from the Harvard Oxford subcortical and 

MNI structural probabilistic atlases available within FSL were applied in normalised space. All 

coregistered images were inspected to ensure that the ROIs were aligned and corresponded to the 

regions specified. The ROI template was modified by the erosion of a single voxel using fslmaths to 

improve spatial localisation and reduce the impact of coregistration, normalisation and partial volume 

errors. The ADC values for the different ROIs were calculated using in-house software using Matlab 

(Mathworks, Natick, USA). 

Lesion-based analysis in patients:  

Lesions were defined in native FLAIR space (hand-drawn) by a single author (JG,  sense checked and 

confirmed for concordance by other authors TV and JPC), and segregated into regions defined as core, 

contusion and pericontusion using patient FLAIR, MPRAGE, GE and SWI images. SWI (three 

dimensional) and GE (two dimensional) were used to identify areas of bleeding and necrotic core in 

the contusion along with the structural imaging. 

Lesion core was identified as a region of mixed signal intensity consistent with haemorrhage and 

necrotic tissue, contusion as an area of high signal on FLAIR, and pericontusion as a 1 cm border zone 

of tissue surrounding the contusion (Figure 7-1). Where visible, we also defined a rim of cytotoxic 

oedema (‘traumatic penumbra’) on ADC images that we have previously reported around contusions 

using DTI (figure 7-2). The ROIs were drawn using Analyze 8.5 (Analyze Direct, Lenexa, KS, USA). FLAIR 

images were coregistered to T1 space using SPM8, and the coregistration matrix subsequently applied 

to the individual lesion ROIs. For comparison, a comparable region of the brain composed of mixed 

grey and white matter was defined in controls. 

Statistical analysis 

Statistical analyses were conducted using Statview (Version 5, 1998, SAS Institute Inc., Cary, North 

Carolina, USA). All data are expressed and displayed as mean and standard deviation (SD) unless 

otherwise stated. Individual ROIs were treated independently, since they represented a clinically 

relevant method of segmenting the brain, with specific location being irrelevant to this analysis. Data 

were compared using unpaired and paired t-tests and ANOVA. All p values are quoted after Bonferroni 

corrections (where appropriate) and corrected p values < .05 were considered significant. 
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Figure 7-1 Lesion regions of Interest drawn using Fluid attenuated inversion recovery (FLAIR) and apparent diffusion coefficient (ADC) images 
In FLAIR and ADC images lesion core (red), contusion (green) and perilesion (yellow) are identified on a single axial slice. 



 
 

105 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-2 Impact of hyperoxia on traumatic penumbra in apparent diffusion coefficient (ADC) image 
Fluid attenuated inversion recovery (FLAIR), gradient echo and ADC images at normoxia and hyperoxia demonstrating contusions within the left 
frontal and temporal parietal regions. These lesions have a haemorrhagic core shown by low signal on the gradient echo corresponding to the 
presence of blood degradation products, surrounded by a region of ‘vasogenic oedema’ with high signal on FLAIR and ADC. Around these lesions 
is a hypointense rim consistent with ‘cytotoxic oedema’, an example of which is shown at higher magnification and identified by the arrows. The 
final image has a colour map showing the ADC increase calculated from the difference between the ADC images following hyperoxia. This 
highlights that the increase in ADC occurs predominantly within this border zone immediately surrounding the contusions. 
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Results 

Impact of oxygen therapy on diffusion tensor imaging in healthy volunteers 

There was no significant ADC change using the standard template ROI for an increase in the inspired 

fraction of oxygen (FiO2) (p > 0.99, ANOVA). The mean (SD) ADC was 8.98 x 10-4 (1.37 x 10-4), 9.21 x 10-

4 (1.37 x 10-4) and 9.20 x 10-4 (1.35 x 10-4) mm/second for a FiO2 of 0.21, 0.6 and 1.0 respectively. 

 

Injured brain regions 

The mean (SD) ADC in contusional and pericontusional ROIs was 1.11 x 10-3 (1.41 x 10-4) and 1.08 x 10-

3 (1.79 x 10-4) respectively, and was significantly higher than controls (9.21 x 10-4 (2.78 x 10-5, p<0.01, 

ANOVA with Bonferroni correction). There was no significant change in ADC following hyperoxia 

within contusional ROIs (p = 0.16), but an increase within pericontusional ROIs (p < 0.05, paired t-test 

with Bonferroni correction). One subject with low pericontusional ADC showed an increase to within 

the normal range. The data are displayed compared to the mixed grey and white matter region from 

controls (figure 7-3). There was a rim of low ADC around brain contusions consistent with cytotoxic 

oedema in 13 subjects with a mean (range) volume of 8 (1 - 20) ml (figure 7-2). There was a significant 

increase in ADC towards the normal range (7.04 x 10-4 vs 8.28 x 10-4 p = 0.02, paired t-test). The data 

are displayed compared to a mixed grey and white matter region from controls, and shows that while 

all subjects demonstrate an increase this is to within or more than the normal range in four subjects 

(figure 7-4). 
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 Figure 7-3 Lesion based analysis 
Apparent diffusion coefficient (ADC) within brain tissue identified as contusion (A) and pericontusion (B) at baseline and following normobaric 
hyperoxia. The shaded box represents the 95% confidence interval for healthy controls from a region of mixed grey and white matter. 

 

 
Figure 7-4 Impact of hyperoxia within traumatic penumbra 
Changes in Apparent Diffusion Coefficient for the rim of cytotoxic oedema surrounding visible brain lesions in 13 subjects. The 
shaded box represents the 99% confidence interval for healthy controls from a region of mixed grey and white matter. 
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Discussion 

In this study, we used DTI to examine whether an increase in the fraction of inspired oxygen had any 

beneficial effects within the injured brain. We found no significant change in healthy volunteers and 

no evidence of benefit within lesion brain identified on structural imaging. The rim of cytotoxic 

oedema that we have previously defined as a region of ‘traumatic penumbra’ around brain 

contusions72 demonstrated a significant increase in ADC values towards normal. While an increase in 

the fraction of inspired oxygen has been reported to increase brain tissue partial pressure of oxygen, 

reduce microdialysis lactate and lactate-pyruvate ratio and improve brain metabolism, we show 

evidence of benefit within ‘at risk’ traumatic penumbral regions of the injured brain.164,165,302 While 

these data are provisional; they provide a framework to use DTI as an intermediate endpoint to assess 

the impact of changes in brain oxygenation and metabolism on lesion expansion and local tissue 

outcome over time within the injured brain. Further studies should address whether there is a benefit 

in using hyperoxia therapy over a more extended period of days in patients with a head injury.303 

Previous studies have demonstrated that patients with an increase in the severity, number and 

duration of episodes of tissue hypoxia tend to suffer poor outcome following head injury and evidence 

suggests that therapy guided by measurement of brain tissue oxygen levels may be associated with 

improved outcome.162,304,305 Interventional studies have demonstrated that an increase in the fraction 

of inspired oxygen can result in improvements in brain tissue oxygen levels, and reductions in brain 

lactate using microdialysis.248,306 While significant, the changes in lactate did not necessarily result in 

an improvement in oxidative metabolism since the lactate/pyruvate was not consistently lowered. 

The effects that result from an improvement in tissue oxygenation are clearly dependent on oxygen 

delivery and (probably) diffusion gradients in the injured brain.307 Pathophysiological derangements 

within the injured brain are spatially variant and are not limited to regions that appear structurally 

injured.307 Therefore, an adequate definition of the effects of hyperoxia across the injured brain 

demands measurement of regional and global cerebral metabolism using a physiological imaging 
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technique such as 15oxygen positron emission tomography (15O PET). A 15O PET study showed that 

ventilation with 100% oxygen in a group of 5 patients within 24 hours of severe head injury resulted 

in no change in hemispheric cerebral blood flow (CBF) or oxygen metabolism (CMRO2).308 These results 

are in contrast to a further study that demonstrated that a brief intervention (~ one hour) of 

normobaric hyperoxia resulted in an increase of CMRO2 within brain regions at the most significant 

risk of infarction. This analysis included perilesional and white matter regions of the injured brain. 

While these data suggest that the impact of hyperoxia may be dependent on the underlying 

physiological characteristics of different regions of the injured brain, another study using near-infrared 

spectroscopy has suggested that short term therapy with hyperoxia can improve oxygen metabolism 

within a frontal brain region.309,310 

An explanation for these findings comes from post-mortem studies showing widespread 

microvascular occlusion and perivascular oedema following TBI, associated with selective neuronal 

loss.250,251 The relevance of these findings to antemortem ischaemia is explained by 15O PET and brain 

tissue oximetry studies which show increased vascular to tissue gradients for oxygen tension in the 

injured brain.25 We have previously used DTI to demonstrate contusion expansion, and that a rim of 

low ADC consistent with cytotoxic oedema is often found surrounding a region of high ADC (vasogenic 

oedema). This rim of hypodensity may characterise a region of microvascular failure resulting in 

cytotoxic oedema, and represent a ‘traumatic penumbra’ that may be rescued by effective therapy or 

be subsumed as the contusion enlarges. Higher brain oxygen levels may overcome diffusion barriers 

to oxygen delivery, or compensate for mitochondrial dysfunction. Indeed, in regions of low oxygen 

tension, nitric oxide can competitively inhibit cytochrome oxidase and thereby render mitochondrial 

respiration dependent on the level of cellular oxygen.67 Ex-vivo studies in clinical and experimental 

head injury tissue show impaired function in mitochondria (typically < 4 hours of injury).170,311 

Experimental data also show that mitochondrial ATP production is preserved and that this is 

associated with improved cognitive recovery and reduce neuronal cell loss in the hippocampus 
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following injury and treatment with hyperbaric and normobaric hyperoxia.312 Experimental data also 

report that hyperoxia has neuroprotective and anti-inflammatory effects within the injured and 

ischaemic brain.313 Our clinical data are suggestive of normalisation of ADC values in such regions 

following a brief period of hyperoxia. However, we have no data on whether such an increase is 

beneficial in terms of preventing lesion expansion and improving functional outcome. Indeed, in two 

subjects, the increase in ADC was greater than the 95% confidence interval for controls and could 

reflect tissue injury. 

While the use of high partial pressures of oxygen may be beneficial in a variety of disease states and 

following brain injury, there may be a relatively narrow margin of safety due to the known toxic 

effects. The maximum FiO2 in this interventional study was limited to 0.8 to reduce potential side 

effects, including alveolar atelectasis and pulmonary injury. However, clinical studies in TBI have used 

short exposures of normobaric and hyperbaric hyperoxia and failed to demonstrate increased 

oxidative stress.314,315 While these clinical studies suggest that the use of high concentrations of 

inspired oxygen in this context may be safe, further studies are required to calculate the risk-benefit 

ratio and determine whether such therapy has a beneficial impact on patient outcome. Such data may 

permit a rational design of future clinical trials. 

While evidence of significant changes in brain oxygenation and metabolism and suggestions that 

improved outcome may be associated with targeted therapy are encouraging,249,316,317 a firm 

recommendation for clinical use of the intervention requires a clinical trial. Previous studies have 

suggested that hyperoxia therapy in TBI can improve mortality, but not a favourable outcome. A 

recently published phase II study315,318 from Rockswold et al. provided valuable evidence of the risks 

and benefits of hyperoxia therapy over several days. This study compared 60 minutes of hyperbaric 

hyperoxia (1.5 atmospheres) with three hours of 100% oxygen and standard care in a group of 69 

patients with a severe head injury. Patients received therapy on three consecutive days, starting 

within 27 hours of injury. While there was no change in global CMRO2, those patients with low baseline 
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CBF showed an increase in global CMRO2 following both hyper and normobaric hyperoxia. The 

microdialysate L/P ratio was also decreased in both treatment groups, and in the hyperbaric group, 

these changes were associated with a reduction in intracranial pressure (ICP). It was also noted that 

the beneficial effects on brain tissue oxygenation, CBF, CMRO2 and ICP lasted until the next treatment 

period. Importantly, there were no signs of pulmonary or cerebral toxicity. Another publication from 

the same group suggests that a combination of daily hyperbaric (60 minutes at 1.5 atmospheres) 

followed by three hours of normobaric hyperoxia (FiO2 1.0) can improve favourable outcome315. 

Despite the promising findings, the studies by Rockswold et al. do not provide definitive evidence of 

an improvement in clinical outcome. Evidence of a change in tissue fate may come from DTI, but 

evidence of improved outcome will require a large Phase II trial. Previous studies have shown serial 

DTI changes in grey and white matter following a head injury that represent microstructural injury. 

Our study addressed this within the time frame of metabolic changes that we have previously 

demonstrated with short term hyperoxia but was only able to show improvement in DTI parameters 

within a rim of potentially vulnerable tissue around brain contusions. However, we can use the data 

from this study and the recent Rockswold studies to refine the design of a future therapeutic trial of 

hyperoxia therapy following clinical head injury. In the studies published by Rockswold et al. subjects 

received daily exposure to hyperoxia within the first four days following injury, and we have shown 

that evolution of DTI signal changes within pericontusional tissue is maximal within the first 72 

hours.318,319 In our study, 9 of 14 subjects underwent intervention within 72 hours of injury, and only 

two subjects were studied within 24 hours of injury. Previous studies have demonstrated that 

evidence of ischaemia is more evident at earlier time points following injury. However, derangements 

in brain metabolism continue for many days post-injury, may be particularly prominent in white 

matter regions, and have shown evidence of improvement following hyperoxia therapy. In our study, 

changes in DTI parameters did not differ between those subjects imaged at earlier compared to later 

time points (p = 0.32). While Rockswold et al. used daily exposures of normo and hyperbaric hyperoxia, 
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the subjects in our study only underwent an intervention lasting approximately one hour using a FiO2 

of 0.8. The partial pressure of oxygen delivered and the duration of exposure may be relevant in 

determining the impact on the outcome, but we must balance the potential benefits with the lack of 

robust safety data beyond three days’ worth of treatment. 

Future studies should seek to confirm whether exposing patients with brain injury to high fractions of 

inspired oxygen during the management of raised ICP over several days is beneficial. This assessment 

could focus on DTI progression around cerebral contusions and within white matter regions319 as an 

intermediate endpoint, and as a cause of neurocognitive deficits at outcome.59,205 This would require 

a longitudinal study with imaging at regular intervals and correlation with structural imaging at 

outcome and neurocognitive assessment at 6 - 12 months post-injury. Such evidence would be useful 

in the design of any future large clinical trial. We have previously reported on the reproducibility of 

DTI measurements and found that for ADC, the SD of ROI measurements was 3.16 x 10-5 mm/second. 

Using such data to calculate sample sizes for interventional and longitudinal clinical studies we should 

be able to detect a 10% change in ADC with 95% power at a significance level of 1% within a group of 

15 subjects within a single interventional or longitudinal study design.232,320 

Conclusions 

Previous studies have suggested that cerebral metabolism can be improved through an increase in the 

fraction of inspired oxygen. Using DTI, we demonstrate that a short interval of normobaric hyperoxia 

may result in benefit within the rim of cytotoxic oedema around brain contusions. Future longitudinal 

studies should address whether a longer period of hyperoxia therapy during the time that patients 

require critical care management of raised ICP has a favourable impact on the evolution of tissue 

injury.  
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Chapter 8 Normobaric hyperoxia does not improve derangements in 

diffusion tensor imaging found distant from visible contusions 

following acute traumatic brain injury 

 

Introduction 

While normobaric hyperoxia (NH) has been used to increase brain tissue oxygen partial pressure 

(BtpO2) following traumatic brain injury (TBI), it is not used as a routine therapy.248,321,322 Reductions 

in BtpO2 are associated with worse outcome, and interventions aimed at optimising oxygen delivery 

have shown benefit.323 15O positron emission tomography (15O PET) has been used to show that NH 

can improve oxygen utilisation in “at-risk” regions of metabolically compromised tissue in 

pericontusional and white matter regions.164 Also, evidence obtained using diffusion tensor imaging 

(DTI) show how cytotoxic oedema within a rim of pericontusional tissue can be ameliorated with a 

short NH intervention.204 

 

These results are in conflict with evidence demonstrating increases in microdialysis glutamate, and 

studies showing an association between arterial hyperoxia and poor outcome following severe TBI. 

These highlight the potential deleterious effects on pulmonary function and worsening neuronal injury 

due to oxidative stress.290,324-326 Given this background, it is clear that further study of the regional 

effects of normobaric hyperoxia across the injured brain is warranted to ensure it is used 

appropriately. 

 

Diffusion tensor imaging has been used to demonstrate evidence of traumatic axonal injury following 

TBI even when conventional imaging appears normal.74,180 Imaging findings are dynamic and 

potentially reversible, suggesting that DTI could be used as a biomarker of the effectiveness of 

therapeutic interventions in TBI.204 In this study, we aimed to address the impact of NH distant from 

visible contusions. Such data should help inform the design and conduct of any future clinical trial of 

this intervention in TBI. 
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Materials and methods 
 

Ethical approval was obtained from the Cambridgeshire Research Ethics Committee (reference 

numbers 97/290 and 02/293), and assent from next-of-kin with later written informed consent, where 

appropriate, obtained in all cases in accordance with the Declaration of Helsinki. 

Subjects 
 

Patients 

Fourteen adult patients (12 males and two females) with median (range) age 33 (21 – 70) years with 

TBI were recruited from the Neurosciences Critical Care Unit (NCCU), Addenbrooke’s Hospital, 

Cambridge, UK between 2010 and 2012. Patients presented with median (range) post-resuscitation 

Glasgow Coma Score (GCS) of 7 (3 – 14), but all subsequently had a GCS < 8 requiring sedation and 

ventilation for control of intracranial pressure (ICP) (Table 2). Patients were recruited between day 1 

and day 9 post-injury (mean 3.3 days) and underwent imaging while sedated and ventilated. Patients 

with previous TBI, other neurological diseases, or contraindication to magnetic resonance imaging 

(MRI) were excluded. All patients were managed by protocol-driven care; which included sedation, 

paralysis and ventilation to ensure that intracranial pressure (ICP) < 20 mmHg and cerebral perfusion 

pressure > 60 mmHg were maintained.25 Physiological stability was meticulously ensured during 

imaging through the titration of fluids and vasoactive agents and the presence of a critical care 

physician and nurse. Patients who received surgical intervention (CSF drainage or decompressive 

craniectomy) or second-tier medical therapies (barbiturate coma or moderate hypothermia (33 – 

35°C)) before imaging are specified in Table 8-1. 

 

Based on previous imaging studies we acquired baseline DTI at a partial pressure of oxygen (PaO2) of 

approximately 75 – 90 mmHg (10 – 12 kPa) and then increased the FiO2 to a maximum of 0.8 in order 

to achieve a PaO2 of approximately 225 – 260 mmHg (30 – 35 kPa). Following 60 minutes to allow the 

impact of higher PaO2 (and by inference, brain pO2) levels on cerebral metabolism, repeat DTI was 

obtained within the same imaging session without moving the patient.
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Subject Age Sex Mechanism Summary of MRI findings Parenchymal 
lesion 

volume (ml) 

DAI GCS Marshall 

score 

APACHE 

II 

ISS Neurosurgery Second 
tier 

therapies 

Days to MRI GOS 

1 53 M RTA Bitemporal, basal ganglia& cortical contusions. Bilateral frontal SDH 100 Yes 4 NEML 17 34 -  4 MD 

2 34 M RTA Bilateral subcortical & deep white matter, corpus callosum, R thalamus, 

midbrain & cerebellar contusions. IVH, L occipital & fronto-temporal SDH 

20 Yes 4 NEML 21 20 EVD  3 VS 

3 34 M Assault Bilateral frontal, temporal, R occipital, 

thalamus & L cerebellar contusions. IVH 

607 No 8 EML 25 16 DC, R SDH 

EVD 

 3 SD 

4 21 M RTA Bilateral cortical, corpus callosum, dorsal midbrain & pons contusions 46 Yes 10 NEML 21 50 - H 2 MD 

5 31 M RTA Bilateral frontal, temporal & L occipito-parietal & midbrain contusions 259 No 6 EML 17 29 DC, R SDH  1 MD 

6 29 M Assault Bilateral frontal & temporal contusions. Bilateral temporal SDH 444 No 10 EML 17 16 DC, EVD H 2 GR 

7 58 M Fall Bilateral frontal, temporal & R parietal contusions. Bifrontal SDH & tSAH 122 No 10 NEML 20 34 - - 4 GR 

8 26 M RTA Bilateral frontal & temporal contusions. R temporal & L frontotemporal SDH 346 No 3 NEML 17 75 -  3 MD 

9 28 M Assault R frontotemporal contusions &R SDH 38 No 12 EML 24 36 DC  3 GR 

10 61 M Fall Bilateral frontal & temporal, corpus callosum & midbrain contusions. 

L SDH & IVH 

358 No 5 NEML 22 75 -  9 NA 

11 60 M Fall L Frontal, Temporal & Parietal contusions. L SDH 236 No 14 NEML 8 34 - - 3 MD 

12 31 F Fall R frontal, temporal, parietal, occipital, bilateral thalamic & midbrain contusions 

R SDH & IVH 

599 No 3 EML 25 75 DC, R SDH H 4 VS 

13 70 F RTA Bilateral frontal, parietal, corpus callosum & midbrain contusions. tSAH & IVH 23 Yes 3 2 21 34 -  1 GR 

14 27 M RTA Bifrontal contusions. R frontal SDH 52 No 7 NEML 16 25 -  4 GR 

 
Table 8-1 Patient characteristics 
C, craniotomy; D, death; DAI, diffuse axonal injury; DC, decompressive craniectomy; EDH, extradural hemorrhage; EVD, external ventricular drain; F, female; GCS, Glasgow coma score; GOS, Glasgow outcome 
score; GR, good recovery; M, male; MD, moderate disability; RTA, road traffic accident; SD, severe disability; SDH, subdural hemorrhage; tSAH, traumatic subarachnoid hemorrhage. 
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Controls 

A total of 32 healthy volunteers (19 females and 13 males) with a median (range) age of 34 (22 – 52) 

underwent DTI breathing room air. Six of these volunteers were exposed to graded oxygen therapy 

(60% and 100% inspired oxygen) delivered via a venturi mask (Flexicare Medical Limited, Mid 

Glamorgan, Wales) and underwent repeat DTI within the same imaging session. Diffusion tensor 

imaging and whole brain proton spectroscopy were obtained at each level of inspired oxygen (21%, 

60% and 100%) following an equilibration period of 15 minutes. The baseline data obtained breathing 

room air in all 32 subjects, and the graded oxygen therapy data in the six healthy volunteers, are 

presented in the results section of this manuscript. As part of a previously published study, 26 of these 

volunteers underwent DTI on up to 4 occasions within two imaging sessions separated by a maximum 

of six months. The reproducibility data from this historical cohort have been published and are used 

in the subsequent analyses (see Chapter 4). 

Imaging 

All subjects were scanned using a 3T Siemens Verio MRI scanner (Siemens AG, Erlangen, Germany) 

within the WBIC, University of Cambridge. During the study period, there were no major changes or 

upgrades to the scanner or software. Sequences included a 3D T1-weighted magnetisation prepared 

rapid gradient echo (MPRAGE), fluid attenuated inversion recovery (FLAIR), gradient echo (GE), 

susceptibility weighted (SWI), dual spin echo (proton density/T2-weighted) and whole brain proton 

spectroscopy (26 minutes). The DTI data were acquired over 13:50 minutes using 63 non-collinear 

directions, b=1000 s/mm2 with one volume acquired without diffusion weighting (b = 0), echo time 

(TE) 106ms, repetition time (TR) 11700ms, 63 slices, field of view 192mm x 92mm, and 2x2x2mm3 

isotropic voxels. All imaging was reviewed by a specialist clinical neuroradiologist. 

Image processing 

Fractional anisotropy, MD and AD maps were created using the Oxford Centre for Functional MRI of 

the brain FSL Diffusion Toolbox. While RD values were calculated as the mean of the second and third 

eigenvalues. To aid coregistration, the skull and extracranial soft tissue were stripped from the 

MPRAGE image using the Brain Extraction Tool of FSL. The diffusion weighted data were normalised to 

the Montreal Neurological Institute 152 (MNI152) template using the non-linear vtkCISG normalised 

mutual information algorithm. Using the same non-linear algorithm, the T1 weighted images were 

coregistered to the MNI152 template and each subject’s b = 0 image subsequently coregistered to the 

individual T1 weighted image. The transformation matrix normalising the MPRAGE was then applied 
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to the b = 0 images. All coregistered and normalised images were visually checked to ensure that they 

were aligned. 

Region of interest analysis 

Lesions were defined in native FLAIR space (hand-drawn) by a single author (JG,  sense checked and 

confirmed for concordance by other authors TV and JPC), and segregated into regions defined as core, 

contusion and pericontusion using patient FLAIR, MPRAGE, GE and SWI images. SWI (three 

dimensional), GE (two dimensional) were used to identify areas of necrotic core in the contusion along 

with the structural imaging. Lesion core was identified as a region of mixed signal intensity consistent 

with haemorrhage and necrotic tissue (GE, SWI and FLAIR) and contusion as an area of high signal on 

FLAIR (Figure 8-1). The ROIs were drawn using Analyze 8.5 (Analyze Direct, Lenexa, KS, USA). FLAIR 

images were coregistered to T1 space using SPM8, and the coregistration matrix applied to the 

individual lesion ROIs. 

Regions of interest from the Harvard Oxford subcortical and MNI structural probabilistic atlases 

available within FSL were applied in normalised space. The ROI template was modified by the erosion 

of a single voxel using the fslmaths tool within FSL to improve spatial localisation and reduce the 

impact of coregistration, normalisation and partial volume errors as previously described in this 

thesis232. In patients, these analyses were performed on “lesion free” brain by the exclusion of lesion 

core and contusion tissue following the transformation of the lesion ROI to normalised space (Figure 

8-2). While this resulted in the removal of a few regions were a lesion covered the entire ROI, normal 

appearing tissue from within the remaining volume of brain of each region was retained for 

subsequent analyses. The FA, MD, AD and RD values for the different ROIs were calculated using in-

house software using Matlab (Mathworks, Natick, USA). 

 

 

 

 

 

 

 

 

 

Figure 8-1 Lesion regions of Interest 
Fluid attenuated inversion recovery (FLAIR) image 
from subject 8 with lesion core and contusion 
highlighted on a single axial slice 
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Impact of hyperoxia 

Using published DTI reproducibility data from the historical cohort of 26 volunteers included in this 

manuscript (Chapter 4), we assessed the significance of changes in DTI parameters following NH. 

Based on the standard deviation (SD) of DTI measurements the overall population 99% PIs for zero 

change (based on three SD values) were 9.6x10-5, 9.6x10-5 and 2.5x10-4 mm2/second for AD, RD and 

MD respectively, and 3.6x10-2 for FA. We calculated the percentage of ROIs in patients with increases 

or decreases in DTI parameters greater than the overall 99% Prediction interval for zero change. Since 

measurements of reproducibility can vary depending on the brain region examined, we also used an 

estimate of the regional 99% prediction interval for zero change calculated for each ROI. As this is 

 

Figure 8-2 Individualised template regions of interest 
Standard T1 weighted magnetic resonance image and patient fluid attenuated inversion recovery (FLAIR), fractional anisotropy (FA) at baseline normoxia and 
following hyperoxia; all images are displayed in Montreal Neurological Institute 152 (MNI152) space. The region of interest (ROI) template for this subject (subject 
1) has been individualised by the exclusion of lesion core and contusion tissue. On the FLAIR image slice shown lesions can be seen within the right frontal and 
temporal cortex, white matter, right caudate and right thalamus. On this axial slice regions shown include frontal left (Front_L), frontal right (Front_R), temporal 
left (Temp_L), temporal right (Temp_R), parietal left (Par_L), parietal right (Par_R), occipital left (Occip_L), occipital right (Occip_R), anterior corpus callosum 
(ACC), posterior corpus callosum (PCC), caudate left (Caud_L) and thalamus left (Thal_L). 
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based on the four independent measurements obtained for each ROI in isolation, we must be more 

cautious. For a t distribution with 3 degrees of freedom, this should be based on 5.8 SD values, and 

this estimate was used for each individual ROI value in calculating the regional 99% prediction interval 

for zero change.179,232 

 

Data and statistical analysis 

Statistical analyses were conducted using Statview (Version 5, 1998, SAS Institute Inc., Cary, North 

Carolina, USA). All data are expressed and displayed as mean and SD unless otherwise stated. 

Individual ROIs were treated independently, since they represented a clinically relevant method of 

segmenting the brain, with specific location being irrelevant to this analysis. Data were compared 

using unpaired and paired t-tests and ANOVA. All p values are quoted after Bonferroni correction 

(where appropriate), and p values that remained < .05 following multiplication by the number of tests 

performed were considered significant. 

 
Results 

Effect of graduated oxygen therapy on diffusion tensor imaging in healthy volunteers 

The DTI data at each level of inspired oxygen are displayed in Table 8-2 and 8-3 for white and mixed 

cortical and deep grey matter regions, respectively. As expected, there were significant differences 

between the brain regions for fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) 

and mean diffusivity (MD) (p < 0.001 for all comparisons using ANOVA with Bonferroni correction). 

While the DTI parameters were variable across the different brain regions there were no significant 

changes in FA, AD, RD and MD with an increase in the fraction of inspired oxygen (FiO2) within white 

matter (p = 0.82, 0.87, 0.70 and 0.68 respectively, analysis of variance (ANOVA)) and mixed cortical 

and deep grey matter regions of interest (ROIs) (0.66, 0.32, 0.47 and 0.40 respectively, ANOVA). 
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 FA AD RD MD 

 21% 60% 100% 21% 60% 100% 21% 60% 100% 21% 60% 100% 

ACC 0.50221 ± 0.14227 0.51701 ± 0.13994 0.51598 ± 0.12946 0.00147 ± 0.00014 0.00151 ± 0.00012 0.00153 ± 0.00010 0.00063 ± 0.00014 0.00063 ± 0.00017 0.00065 ± 0.00014 0.00091 ± 0.00007 0.00093 ± 0.00009 0.00094 ± 0.00006 

BCC 0.62040 ± 0.18813 0.61152 ± 0.17453 0.60411 ± 0.18935 0.00163 ± 0.00021 0.00163 ± 0.00019 0.00162 ± 0.00020 0.00054 ± 0.00019 0.00056 ± 0.00018 0.00057 ± 0.00021 0.00091 ± 0.00010 0.00091 ± 0.00008 0.00092 ± 0.00012 

PCC 0.72065 ± 0.06245 0.70915 ± 0.06939 0.72249 ± 0.05558 0.00169 ± 0.00018 0.00169 ± 0.00018 0.00166 ± 0.00013 0.00045 ± 0.00019 0.00046 ± 0.00018 0.00041 ± 0.00010 0.00086 ± 0.00018 0.00087 ± 0.00018 0.00083 ± 0.00010 

ATR left 0.41352 ± 0.01627 0.41092 ± 0.01820 0.41295 ± 0.01898 0.00116 ± 0.00002 0.00116 ± 0.00002 0.00117 ± 0.00002 0.00061 ± 0.00002 0.00061 ± 0.00002 0.00062 ± 0.00003 0.00079 ± 0.00002 0.00080 ± 0.00002 0.00080 ± 0.00002 

ATR right 0.38022 ± 0.01080 0.38072 ± 0.01289 0.37752 ± 0.01495 0.00123 ± 0.00002 0.00123 ± 0.00002 0.00124 ± 0.00002 0.00071 ± 0.00002 0.00071 ± 0.00003 0.00072 ± 0.00003 0.00088 ± 0.00002 0.00089 ± 0.00003 0.00090 ± 0.00003 

SLF left 0.35047 ± 0.00847 0.34760 ± 0.01557 0.34740 ± 0.01195 0.00113 ± 0.00003 0.00113 ± 0.00003 0.00113 ± 0.00003 0.00069 ± 0.00003 0.00069 ± 0.00003 0.00070 ± 0.00003 0.00083 ± 0.00003 0.00084 ± 0.00003 0.00084 ± 0.00003 

SLF right 0.37194 ± 0.01291 0.37352 ± 0.01132 0.37423 ± 0.01091 0.00114 ± 0.00003 0.00115 ± 0.00002 0.00114 ± 0.00002 0.00066 ± 0.00002 0.00067 ± 0.00002 0.00067 ± 0.00002 0.00082 ± 0.00002 0.00083 ± 0.00002 0.00083 ± 0.00002 

ILF left 0.39235 ± 0.00718 0.39099 ± 0.01296 0.39078 ± 0.01037 0.00116 ± 0.00003 0.00116 ± 0.00004 0.00116 ± 0.00005 0.00062 ± 0.00002 0.00063 ± 0.00003 0.00062 ± 0.00003 0.00080 ± 0.00002 0.00080 ± 0.00003 0.00080 ± 0.00004 

ILF right 0.41145 ± 0.02079 0.40903 ± 0.02208 0.41097 ± 0.01977 0.00122 ± 0.00003 0.00122 ± 0.00003 0.00123 ± 0.00003 0.00064 ± 0.00003 0.00064 ± 0.00003 0.00064 ± 0.00003 0.00083 ± 0.00003 0.00083 ± 0.00003 0.00084 ± 0.00002 

C left 0.31285 ± 0.04658 0.31081 ± 0.04683 0.31204 ± 0.05076 0.00117 ± 0.00005 0.00117 ± 0.00004 0.00116 ± 0.00005 0.00072 ± 0.00005 0.00073 ± 0.00005 0.00072 ± 0.00005 0.00087 ± 0.00003 0.00088 ± 0.00002 0.00087 ± 0.00002 

C right 0.31179 ± 0.07048 0.30697 ± 0.07175 0.31259 ± 0.06668 0.00131 ± 0.00007 0.00132 ± 0.00008 0.00131 ± 0.00006 0.00084 ± 0.00012 0.00085 ± 0.00012 0.00083 ± 0.00013 0.00100 ± 0.00009 0.00100 ± 0.00009 0.00099 ± 0.00010 

UF left 0.39901 ± 0.01733 0.39133 ± 0.02412 0.39329 ± 0.01869 0.00115 ± 0.00003 0.00115 ± 0.00004 0.00115 ± 0.00004 0.00061 ± 0.00003 0.00062 ± 0.00004 0.00062 ± 0.00004 0.00079 ± 0.00003 0.00080 ± 0.00003 0.00080 ± 0.00004 

UF right 0.39146 ± 0.03456 0.39149 ± 0.03235 0.38938 ± 0.03364 0.00124 ± 0.00005 0.00124 ± 0.00005 0.00125 ± 0.00004 0.00068 ± 0.00005 0.00068 ± 0.00006 0.00069 ± 0.00005 0.00087 ± 0.00004 0.00087 ± 0.00005 0.00088 ± 0.00004 

CT left 0.48057 ± 0.01368 0.47754 ± 0.00970 0.47619 ± 0.01439 0.00130 ± 0.00003 0.00129 ± 0.00003 0.00130 ± 0.00003 0.00064 ± 0.00004 0.00064 ± 0.00004 0.00065 ± 0.00004 0.00086 ± 0.00004 0.00086 ± 0.00003 0.00087 ± 0.00004 

CT right 0.48926 ± 0.00934 0.48504 ± 0.00208 0.48648 ± 0.00921 0.00126 ± 0.00004 0.00126 ± 0.00004 0.00127 ± 0.00003 0.00059 ± 0.00004 0.00060 ± 0.00004 0.00060 ± 0.00003 0.00081 ± 0.00004 0.00082 ± 0.00004 0.00082 ± 0.00003 

F Mi 0.36611 ± 0.01964 0.36525 ± 0.02001 0.36728 ± 0.01612 0.00122 ± 0.00003 0.00122 ± 0.00004 0.00124 ± 0.00002 0.00071 ± 0.00004 0.00071 ± 0.00004 0.00072 ± 0.00003 0.00088 ± 0.00003 0.00088 ± 0.00004 0.00089 ± 0.00003 

F Ma 0.41639 ± 0.03417 0.41371 ± 0.04138 0.41553 ± 0.03673 0.00130 ± 0.00006 0.00130 ± 0.00006 0.00130 ± 0.00005 0.00068 ± 0.00005 0.00068 ± 0.00005 0.00068 ± 0.00005 0.00088 ± 0.00004 0.00089 ± 0.00004 0.00088 ± 0.00003 

VM 0.55563 ± 0.05028 0.54126 ± 0.04962 0.53096 ± 0.05866 0.00139 ± 0.00017 0.00137 ± 0.00021 0.00141 ± 0.00021 0.00049 ± 0.00019 0.00050 ± 0.00019 0.00054 ± 0.00025 0.00079 ± 0.00018 0.00079 ± 0.00020 0.00083 ± 0.00024 

DM 0.51031 ± 0.05171 0.50918 ± 0.05721 0.49917 ± 0.05955 0.00124 ± 0.00006 0.00125 ± 0.00005 0.00128 ± 0.00008 0.00054 ± 0.00009 0.00054 ± 0.00008 0.00058 ± 0.00009 0.00077 ± 0.00007 0.00078 ± 0.00007 0.00081 ± 0.00008 

CP left 0.50069 ± 0.02066 0.50010 ± 0.01832 0.48834 ± 0.01827 0.00112 ± 0.00009 0.00112 ± 0.00008 0.00112 ± 0.00006 0.00047 ± 0.00005 0.00048 ± 0.00005 0.00049 ± 0.00003 0.00069 ± 0.00006 0.00069 ± 0.00006 0.00070 ± 0.00004 

CP right 0.52664 ± 0.01868 0.52488 ± 0.01068 0.52953 ± 0.02562 0.00115 ± 0.00006 0.00115 ± 0.00007 0.00113 ± 0.00008 0.00046 ± 0.00001 0.00046 ± 0.00002 0.00045 ± 0.00003 0.00069 ± 0.00003 0.00069 ± 0.00004 0.00068 ± 0.00004 

P left 0.54257 ± 0.03019 0.52804 ± 0.04279 0.53039 ± 0.03928 0.00128 ± 0.00007 0.00127 ± 0.00010 0.00127 ± 0.00014 0.00051 ± 0.00006 0.00052 ± 0.00007 0.00052 ± 0.00008 0.00077 ± 0.00006 0.00077 ± 0.00008 0.00077 ± 0.00010 

P right 0.47292 ± 0.02088 0.45338 ± 0.04297 0.46720 ± 0.02883 0.00125 ± 0.00010 0.00126 ± 0.00016 0.00126 ± 0.00013 0.00059 ± 0.00007 0.00061 ± 0.00012 0.00060 ± 0.00010 0.00081 ± 0.00008 0.00083 ± 0.00013 0.00082 ± 0.00011 

Mean 0.45389 ± 0.11151 0.44998 ± 0.10941 0.45021 ± 0.10944 0.00127 ± 0.00017 0.00127 ± 0.00017 0.00128 ± 0.00017 0.00061 ± 0.00012 0.00062 ± 0.00013 0.00062 ± 0.00013 0.00083 ± 0.00010 0.00084 ± 0.00010 0.00084 ± 0.00010 

 
Table 8-2 Impact of oxygen therapy on diffusion tensor imaging parameters in healthy volunteers within white matter regions 

Data are mean  standard deviation using the atlas regions of interest applied in normalised space for fractional anisotropy (FA), mean diffusivity (MD) mm2/second, axial (AD) mm2/second and radial diffusivity (RD) mm2/second 
for six volunteers. Anterior corpus callosum (ACC), body corpus callosum (BCC), posterior corpus callosum (PCC), anterior thalamic radiation (ATR), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), 
Cingulum (C), uncinate fasciculus (UF), corticospinal tract (CT), forceps minor (F Mi), forceps major (F Ma), ventral midbrain (VM), dorsal midbrain (DM), cerebral peduncle (CP), pons (P). 
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 FA AD RD MD 

 21% 60% 100% 21% 60% 100% 21% 60% 100% 21% 60% 100% 

Caud left 0.31673 ± 0.02508 0.30618 ± 0.01805 0.30588 ± 0.02167 0.00098 ± 0.00004 0.00098 ± 0.00005 0.00098 ± 0.00005 0.00060 ± 0.00002 0.00062 ± 0.00002 0.00062 ± 0.00004 0.00073 ± 0.00002 0.00074 ± 0.00003 0.00074 ± 0.00004 

Caud right 0.25826 ± 0.01186 0.26358 ± 0.01362 0.26141 ± 0.01089 0.00100 ± 0.00005 0.00100 ± 0.00005 0.00101 ± 0.00005 0.00070 ± 0.00003 0.00070 ± 0.00004 0.00070 ± 0.00001 0.00080 ± 0.00003 0.00080 ± 0.00004 0.00081 ± 0.00002 

Thal left 0.34176 ± 0.01511 0.34810 ± 0.01540 0.35057 ± 0.01520 0.00102 ± 0.00003 0.00103 ± 0.00003 0.00103 ± 0.00002 0.00062 ± 0.00002 0.00061 ± 0.00001 0.00061 ± 0.00001 0.00075 ± 0.00002 0.00075 ± 0.00001 0.00075 ± 0.00001 

Thal right 0.33759 ± 0.01271 0.34540 ± 0.00680 0.33842 ± 0.01065 0.00107 ± 0.00004 0.00108 ± 0.00001 0.00108 ± 0.00002 0.00066 ± 0.00002 0.00066 ± 0.00002 0.00067 ± 0.00001 0.00080 ± 0.00002 0.00080 ± 0.00001 0.00081 ± 0.00002 

H left 0.27931 ± 0.01450 0.28370 ± 0.01449 0.28669 ± 0.01327 0.00130 ± 0.00005 0.00131 ± 0.00005 0.00132 ± 0.00006 0.00088 ± 0.00005 0.00089 ± 0.00004 0.00089 ± 0.00005 0.00102 ± 0.00004 0.00103 ± 0.00004 0.00103 ± 0.00005 

H right 0.28173 ± 0.01553 0.28166 ± 0.01753 0.28907 ± 0.01828 0.00144 ± 0.00005 0.00146 ± 0.00007 0.00146 ± 0.00005 0.00098 ± 0.00005 0.00099 ± 0.00006 0.00099 ± 0.00004 0.00113 ± 0.00005 0.00115 ± 0.00006 0.00115 ± 0.00004 

F left 0.24207 ± 0.00387 0.24104 ± 0.00709 0.24324 ± 0.00745 0.00124 ± 0.00008 0.00126 ± 0.00008 0.00125 ± 0.00007 0.00092 ± 0.00007 0.00093 ± 0.00007 0.00092 ± 0.00006 0.00102 ± 0.00008 0.00104 ± 0.00007 0.00103 ± 0.00006 

F right 0.23650 ± 0.00423 0.23606 ± 0.00211 0.23572 ± 0.00646 0.00128 ± 0.00007 0.00128 ± 0.00007 0.00128 ± 0.00005 0.00096 ± 0.00006 0.00095 ± 0.00006 0.00096 ± 0.00005 0.00106 ± 0.00006 0.00106 ± 0.00006 0.00106 ± 0.00005 

P left 0.25733 ± 0.00825 0.25441 ± 0.01647 0.25662 ± 0.01468 0.00126 ± 0.00011 0.00127 ± 0.00010 0.00127 ± 0.00010 0.00091 ± 0.00010 0.00092 ± 0.00009 0.00092 ± 0.00009 0.00103 ± 0.00010 0.00104 ± 0.00009 0.00104 ± 0.00009 

P right 0.25676 ± 0.00769 0.25622 ± 0.01135 0.25826 ± 0.01062 0.00129 ± 0.00007 0.00130 ± 0.00007 0.00130 ± 0.00006 0.00094 ± 0.00006 0.00095 ± 0.00006 0.00095 ± 0.00006 0.00106 ± 0.00006 0.00107 ± 0.00006 0.00106 ± 0.00006 

Temp left 0.23648 ± 0.00696 0.23727 ± 0.01211 0.23691 ± 0.00850 0.00109 ± 0.00003 0.00111 ± 0.00004 0.00111 ± 0.00003 0.00077 ± 0.00003 0.00078 ± 0.00004 0.00079 ± 0.00003 0.00088 ± 0.00003 0.00089 ± 0.00004 0.00090 ± 0.00003 

Temp right 0.25081 ± 0.00664 0.25316 ± 0.00908 0.25276 ± 0.00909 0.00118 ± 0.00002 0.00119 ± 0.00002 0.00120 ± 0.00002 0.00083 ± 0.00002 0.00084 ± 0.00002 0.00084 ± 0.00003 0.00094 ± 0.00002 0.00096 ± 0.00002 0.00096 ± 0.00003 

O left 0.24035 ± 0.01366 0.24140 ± 0.01701 0.24371 ± 0.01533 0.00115 ± 0.00005 0.00116 ± 0.00004 0.00116 ± 0.00004 0.00083 ± 0.00005 0.00084 ± 0.00004 0.00084 ± 0.00005 0.00094 ± 0.00005 0.00095 ± 0.00004 0.00095 ± 0.00005 

O right 0.23499 ± 0.01004 0.23343 ± 0.01326 0.23542 ± 0.01063 0.00118 ± 0.00005 0.00119 ± 0.00003 0.00119 ± 0.00003 0.00086 ± 0.00004 0.00087 ± 0.00003 0.00087 ± 0.00003 0.00096 ± 0.00004 0.00098 ± 0.00003 0.00097 ± 0.00003 

Cereb left 0.22897 ± 0.01667 0.22951 ± 0.01207 0.23166 ± 0.01633 0.00103 ± 0.00009 0.00104 ± 0.00009 0.00106 ± 0.00008 0.00074 ± 0.00009 0.00075 ± 0.00009 0.00076 ± 0.00008 0.00084 ± 0.00009 0.00085 ± 0.00009 0.00086 ± 0.00008 

Cereb right 0.22549 ± 0.01729 0.22826 ± 0.01589 0.22658 ± 0.01788 0.00102 ± 0.00007 0.00103 ± 0.00008 0.00103 ± 0.00008 0.00074 ± 0.00007 0.00075 ± 0.00009 0.00075 ± 0.00008 0.00083 ± 0.00007 0.00085 ± 0.00009 0.00084 ± 0.00008 

Mean 0.26407 ± 0.03850 0.26496 ± 0.03954 0.26581 ± 0.03910 0.00116 ± 0.00014 0.00117 ± 0.00014 0.00117 ± 0.00014 0.00081 ± 0.00013 0.00082 ± 0.00013 0.00082 ± 0.00013 0.00092 ± 0.00013 0.00093 ± 0.00013 0.00093 ± 0.00013 

 
Table 8-3 Impact of oxygen therapy on diffusion tensor imaging parameters in healthy volunteers within mixed cortical and deep grey matter regions 

Data are mean  standard deviation using the atlas regions of interest applied in normalised space for fractional anisotropy (FA), mean diffusivity (MD) mm2/second, axial (AD) mm2/second and radial diffusivity (RD) mm2/second for six volunteers. 
Caudate (Caud), thalamus (Thal), hippocampus (H), frontal (F), parietal (P), temporal (Temp), occipital (O), cerebellum (Cereb). 
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Diffusion tensor imaging in patients and healthy volunteers 

Patient characteristics are shown in Table 8-1. For the 14 patients and 32 healthy volunteers, there 

was no significant difference in age (p = 0.48, Mann-Whitney U test). The baseline ROI data for healthy 

volunteers and normoxic patients from predominantly white matter, and mixed cortical and deep grey 

matter are summarised in Table 8-4 and 8-5, respectively. These demonstrate that baseline patient 

data show lower FA, MD, AD and RD values than healthy volunteers in a variety of normal appearing 

white and mixed cortical and deep grey matter regions (p < 0.05, unpaired t-tests with Bonferroni 

correction). 
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 FA  AD  RD  MD  

 Control Normoxia p value Control Normoxia p value Control Normoxia p value Control Normoxia p value 

ACC 0.63677 ± 0.12020 0.49887 ± 0.20845 0.0095 0.00158 ± 0.00011 0.00136 ± 0.00053 0.034 0.00048 ± 0.00013 0.00050 ± 0.00023 0.6457 0.00085 ± 0.0007 0.00080 ± 0.00030 0.3749 

BCC 0.58257 ± 0.18841 0.33346 ± 0.20998 0.0004 0.00166 ± 0.00012 0.00117 ± 0.00055 <0.0001 0.00064 ± 0.00028 0.00062 ± 0.00027 0.8352 0.00097 ± 0.00019 0.00081 ± 0.00034 0.0438 

PCC 0.70273 ± 0.08119 0.57710 ± 0.13015 0.0004 0.00177 ± 0.00022 0.00139 ± 0.00029 <0.0001 0.00056 ± 0.00035 0.00045 ± 0.00015 0.2763 0.00095 ± 0.00027 0.00078 ± 0.00014 0.0280 

ATR left 0.40868 ± 0.01945 0.35482 ± 0.07519 0.0004 0.00119 ± 0.00003 0.00105 ± 0.00018 <0.0001 0.00064 ± 0.00004 0.00057 ± 0.00009 0.0003 0.00083 ± 0.0004 0.00074 ± 0.00011 0.0002 

ATR right 0.36912 ± 0.01944 0.29968 ± 0.09557 0.0003 0.00127 ± 0.00004 0.00107 ± 0.00035 0.0035 0.00076 ± 0.00005 0.00065 ± 0.00023 0.0139 0.00093 ± 0.00005 0.00081 ± 0.00025 0.0115 

SLF left 0.34637 ± 0.01184 0.31853 ± 0.06529 0.0229 0.00113 ± 0.00003 0.00106 ± 0.00022 0.0638 0.00070 ± 0.00003 0.00064 ± 0.00014 0.0255 0.00084 ± 0.00003 0.00078 ± 0.00017 0.0380 

SLF right 0.37167 ± 0.01266 0.32277 ± 0.05725 <0.0001 0.00114 ± 0.00002 0.00104 ± 0.00017 0.0014 0.00067 ± 0.00002 0.00061 ± 0.00010 0.0017 0.00083 ± 0.00002 0.00076 ± 0.00012 0.0020 

ILF left 0.38820 ± 0.01635 0.32670 ± 0.09123 0.0005 0.00117 ± 0.00002 0.00101 ± 0.00028 0.0029 0.00064 ± 0.00003 0.00056 ± 0.00016 0.0061 0.00081 ± 0.00002 0.00072 ± 0.00019 0.0059 

ILF right 0.41278 ± 0.01966 0.31476 ± 0.13090 0.0001 0.00125 ± 0.00004 0.00099 ± 0.00041 0.0008 0.00066 ± 0.00004 0.00053 ± 0.00022 0.0026 0.00085 ± 0.00003 0.00069 ± 0.00028 0.0025 

C left 0.30335 ± 0.03759 0.30404 ± 0.04193 0.9562 0.00118 ± 0.00005 0.00113 ± 0.00021 0.2290 0.00075 ± 0.00006 0.00070 ± 0.00015 0.1165 0.00089 ± 0.00005 0.00085 ± 0.00017 0.1613 

C right 0.30259 ± 0.05510 0.26216 ± 0.07964 0.0573 0.00131 ± 0.00008 0.00108 ± 0.00033 0.0006 0.00086 ± 0.00012 0.00070 ± 0.00024 0.0040 0.00101 ± 0.00010 0.00084 ± 0.00027 0.0029 

UF left 0.39960 ± 0.01869 0.28661 ± 0.11856 <0.0001 0.00117 ± 0.00003 0.00091 ± 0.00037 0.0002 0.00063 ± 0.00003 0.00051 ± 0.00020 0.0014 0.00081 ± 0.00002 0.00066 ± 0.00023 0.0006 

UF right 0.37650 ± 0.02579 0.24896 ± 0.13432 <0.0001 0.00127 ± 0.00005 0.00090 ± 0.00049 0.0001 0.00073 ± 0.00006 0.00053± 0.00029 0.0005 0.00091 ± 0.00005 0.00069 ± 0.00032 0.0004 

CT left 0.48492 ± 0.01647 0.44921 ± 0.05182 0.0009 0.00128 ± 0.00003 0.00118 ± 0.00012 <0.0001 0.00063 ± 0.00004 0.00058 ± 0.00006 0.0011 0.00084 ± 0.00004 0.00078 ± 0.00007 0.0002 

CT right 0.48655 ± 0.01715 0.43681 ± 0.06783 0.0003 0.00126 ± 0.00003 0.00113 ± 0.00015 <0.0001 0.00060 ± 0.00004 0.00053 ± 0.00007 <0.0001 0.00082 ± 0.00004 0.00073 ± 0.00009 <0.0001 

F Mi 0.38713 ± 0.01928 0.29800 ± 0.11998 0.0002 0.00126 ± 0.00004 0.00105 ± 0.00043 0.0093 0.00071 ± 0.00004 0.00061 ± 0.00026 0.0413 0.00089 ± 0.00003 0.00077 ± 0.00029 0.0266 

F Ma 0.41169 ± 0.03333 0.37233 ± 0.05808 0.0056 0.00134 ± 0.00008 0.00120 ± 0.00019 0.0005 0.00072 ± 0.00008 0.00064 ± 0.00011 0.0137 0.00093 ± 0.00008 0.00083 ± 0.00013 0.0028 

VM 0.56403 ± 0.06007 0.51104 ± 0.17386 0.1515 0.00139 ± 0.00015 0.00109 ± 0.00036 0.0006 0.00050 ± 0.00011 0.00040 ± 0.00015 0.0104 0.00080 ± 0.00012 0.00064 ± 0.00021 0.0029 

DM 0.53050 ± 0.04129 0.45870 ± 0.09509 0.0014 0.00125 ± 0.00007 0.00116 ± 0.00021 0.0341 0.00054 ± 0.00006 0.00055 ± 0.00012 0.6100 0.00077 ± 0.00005 0.00075 ± 0.00014 0.4959 

CP left 0.50314 ± 0.02263 0.51864 ± 0.03881 0.1092 0.00113 ± 0.00006 0.00113 ± 0.00005 0.8293 0.00048 ± 0.00003 0.00047 ± 0.00004 0.3588 0.00070 ± 0.00004 0.00069 ± 0.00004 0.6371 

CP right 0.52636 ± 0.01760 0.52704 ± 0.02997 0.9257 0.00114 ± 0.00004 0.00113 ± 0.00006 0.8368 0.00046 ± 0.00002 0.00046 ± 0.00004 0.7512 0.00068 ± 0.00002 0.00069 ± 0.00004 0.8190 

P left 0.53110 ± 0.02903 0.52361 ± 0.06831 0.6193 0.00129 ± 0.00008 0.00121 ± 0.00018 0.0567 0.00056 ± 0.00009 0.00052 ± 0.00011 0.1752 0.00079 ± 0.00007 0.00075 ± 0.00013 0.1399 

P right 0.52891 ± 0.03832 0.51575 ± 0.05788 0.3833 0.00128 ± 0.00007 0.00118 ± 0.00012 0.0009 0.00055 ± 0.00007 0.00051 ± 0.00007 0.1515 0.00079 ± 0.00007 0.00073 ± 0.00008 0.0212 

Mean 0.45335 ± 0.11535 0.39476 ± 0.14502  0.00129 ± 0.00018 0.00112 ± 0.00032  0.00063 ± 0.00015 0.00056 ± 0.00018  0.00085 ± 0.00011 0.00075 ± 0.00020  

 
Table 8-4 Region of interest data within white matter regions in healthy volunteers and normoxic patients 
Data are mean  standard deviation using the atlas regions of interest applied in normalised space for fractional anisotropy (FA), mean diffusivity (MD) mm2/second, axial (AD) mm2/second and radial diffusivity (RD) mm2/second for 32 healthy 
volunteers and 14 patients with head injury. Anterior corpus callosum (ACC), body corpus callosum (BCC), posterior corpus callosum (PCC), anterior thalamic radiation (ATR), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus 
(ILF), Cingulum (C), uncinate fasciculus (UF), corticospinal tract (CT), forceps minor (F Mi), forceps major (F Ma), ventral midbrain (VM), dorsal midbrain (DM), cerebral peduncle (CP), pons (P). For the comparison between normoxic patients and 
healthy controls unpaired t-tests with Bonferroni correction for multiple comparisons were utilised, and a p < 0.0022 was considered significant. Significant results are highlighted in bold. 
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 FA  AD  RD  MD  

 Control Normoxia p value Control Normoxia p value Control Normoxia p value Control Normoxia p value 

Caud left 0.26092 ± 0.05327 0.29957 ± 0.07987 0.0688 0.00137 ± 0.00042 0.00098 ± 0.00021 0.0027 0.00101 ± 0.00039 0.00060 ± 0.00014 0.0005 0.00112 ± 0.00041 0.00074 ± 0.00014 0.0016 

Caud right 0.28511 ± 0.04115 0.22121 ± 0.08821 0.0025 0.00100 ± 0.00012 0.00103 ± 0.00054 0.8329 0.00066 ± 0.00010 0.00074 ± 0.00045 0.3801 0.00078 ± 0.00010 0.00085 ± 0.00046 0.4196 

Thal left 0.34373 ± 0.01600  0.34940 ± 0.09018 0.7457 0.00105 ± 0.00003 0.00098 ± 0.00028 0.2294 0.00064 ± 0.00003 0.00056 ± 0.00019 0.0205 0.00078 ± 0.00003 0.00070 ± 0.00022 0.0755 

Thal right 0.34814 ± 0.01676 0.33398 ± 0.09947 0.4630 0.00104 ± 0.00003 0.00111 ± 0.00038 0.3440 0.00063 ± 0.00002 0.00067 ± 0.00028 0.4024 0.00077 ± 0.00002 0.00082 ± 0.00031 0.3799 

H left 0.28230 ± 0.01721  0.27675 ± 0.04647 0.5754 0.00131 ± 0.00006 0.00119 ± 0.00027 0.0278 0.00089 ± 0.00006 0.00078 ± 0.00020 0.0120 0.00103 ± 0.00006 0.00092 ± 0.00023 0.0221 

H right 0.28868 ± 0.01590 0.24806 ± 0.07484 0.0084 0.00143 ± 0.00006 0.00114 ± 0.00040 0.0005 0.00096 ± 0.00007 0.00075 ± 0.00028 0.0003 0.00112 ± 0.00006 0.00090 ± 0.00031 0.0008 

F left 0.24658 ± 0.01024 0.23134 ± 0.04662 0.1028 0.00124 ± 0.00006 0.00116 ± 0.00024 0.1240 0.00091 ± 0.00005 0.00084 ± 0.00018 0.0605 0.00102 ± 0.00005 0.00095 ± 0.00020 0.0974 

F right 0.24100 ± 0.00749 0.20716 ± 0.06476 0.0086 0.00126 ± 0.00005 0.00111 ± 0.00036 0.0287 0.00094 ± 0.00005 0.00081 ± 0.00028 0.0166 0.00105 ± 0.00005 0.00092 ± 0.00029 0.0267 

P left 0.26126 ± 0.01020 0.25815 ± 0.02866 0.6087 0.00125 ± 0.00007 0.00114 ± 0.00020 0.0093 0.00090 ± 0.00006 0.00079 ± 0.00017 0.0020 0.00102 ± 0.00007 0.00091 ± 0.00018 0.0047 

P right 0.26039 ± 0.00906 0.25118 ± 0.03396 0.1827 0.00127 ± 0.00005 0.00117 ± 0.00015 0.0015 0.00092 ± 0.00005 0.00082 ± 0.00012 0.0001 0.00104 ± 0.00005 0.00094 ± 0.00012 0.0005 

Temp left 0.24581 ± 0.01440 0.20667 ± 0.08940 0.0277 0.00112 ± 0.00005 0.00093 ± 0.00042 0.0173 0.00079 ± 0.00004 0.00064 ± 0.00030 0.0100 0.00090 ± 0.00004 0.00075 ± 0.00033 0.0191 

Temp right 0.25492 ± 0.01031 0.19311 ± 0.09262 0.0011 0.00120 ± 0.00003 0.00089 ± 0.00043 0.0005 0.00084 ± 0.00003 0.00062 ± 0.00030 0.0002 0.00096 ± 0.00003 0.00072 ± 0.00034 0.0007 

O left 0.24578 ± 0.01287 0.25494 ± 0.01641 0.0544 0.00117 ± 0.00005 0.00108 ± 0.00013 0.0029 0.00084 ± 0.00005 0.00075 ± 0.00011 0.0002 0.00095 ± 0.00005 0.00086 ± 0.00011 0.0007 

O right 0.23925 ± 0.01151 0.23656 ± 0.07214 0.8468 0.00120 ± 0.00006 0.00103 ± 0.00030 0.0042 0.00088 ± 0.00005 0.00072 ± 0.00020 <0.0001 0.00099 ± 0.00005 0.00082 ± 0.00023 0.0008 

Cereb left 0.23434 ± 0.01828 0.22973 ± 0.04483 0.6374 0.00104 ± 0.00007 0.00097 ± 0.00013 0.0419 0.00074 ± 0.00007 0.00069 ± 0.00010 0.0432 0.00084 ± 0.00007 0.00078 ± 0.00011 0.0477 

Cereb right 0.22928 ± 0.01782 0.22957 ± 0.02782 0.9674 0.00103 ± 0.00006 0.00099 ± 0.00008 0.0848 0.00074 ± 0.00006 0.00070 ± 0.00007 0.0920 0.00084 ± 0.00006 0.00080 ± 0.00008 0.0919 

Mean 0.26672 ± 0.04034 0.25173 ± 0.07812  0.00119 ± 0.00017 0.00106 ± 0.00031  0.00083 ± 0.00016 0.00072 ± 0.00024  0.00095 ± 0.00016 0.00084 ± 0.00025  

 

Table 8-5 Region of interest data within mixed cortical and deep grey matter regions in healthy volunteers and normoxic patients 

Data are mean  standard deviation using the atlas regions of interest applied in normalised space for fractional anisotropy (FA), mean diffusivity (MD) mm2/second, axial (AD) mm2/second and radial diffusivity (RD) mm2/second for 32 healthy 
volunteers and 14 patients with head injury. Caudate (Caud), thalamus (Thal), hippocampus (H), frontal (F), parietal (P), temporal (Temp), occipital (O), cerebellum (Cereb). For the comparison between normoxic patients and healthy controls 
unpaired t-tests with Bonferroni correction for multiple comparisons were utilised, and a p < 0.0031 was considered significant. Significant results are highlighted in bold 
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Impact of hyperoxia in patients 

The ROI data in patients at normoxia and following hyperoxia for white matter and mixed cortical and 

deep grey matter are shown in Table 8-6 and 8-7 respectively. These demonstrate that there were no 

changes in AD and MD. Within white matter, FA was lower and RD higher within the left uncinate 

fasciculus (p < 0.05, paired t-tests with Bonferroni correction). Within mixed cortical and deep grey 

matter, FA was significantly lower following hyperoxia within the right caudate and occipital regions 

(p < 0.05, paired t tests with Bonferroni correction). 
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 FA  AD  RD  MD  

 Normoxia Hyperoxia p value Normoxia Hyperoxia p value Normoxia Hyperoxia p value Normoxia Hyperoxia p value 

ACC 0.49887 ± 0.20845 0.46601 ± 0.19273 0.0334 0.00136 ± 0.00053 0.00131 ± 0.00052 0.0529 0.00050 ± 0.00023 0.00050 ± 0.00024 0.8849 0.00080 ± 0.00030 0.00077 ± 0.00031 0.0554 

BCC 0.33346 ± 0.20998 0.33884 ± 0.21408 0.4982 0.00117 ± 0.00055 0.00116 ± 0.00054 0.2799 0.00062 ± 0.00027 0.00060 ± 0.00025 0.1193 0.00081 ± 0.00034 0.00079 ± 0.00032 0.0456 

PCC 0.57710 ± 0.13015 0.57336 ± 0.12501 0.7631 0.00139 ± 0.00029 0.00137 ± 0.00032 0.7383 0.00045 ± 0.00015 0.00045 ± 0.00015 0.5701 0.00078 ± 0.00014 0.00076 ± 0.00018 0.3469 

ATR left 0.35482 ± 0.07519 0.33935 ± 0.06744 0.0220 0.00105 ± 0.00018 0.00103 ± 0.00018 0.0114 0.00057 ± 0.00009 0.00056 ± 0.00010 0.2084 0.00074 ± 0.00011 0.00072 ± 0.00013 0.0613 

ATR right 0.29968 ± 0.09557 0.28401 ± 0.09722 0.0061 0.00107 ± 0.00035 0.00107 ± 0.00034 0.4104 0.00065 ± 0.00023 0.00065 ± 0.00022 0.4066 0.00081 ± 0.00025 0.00079 ± 0.00026 0.0466 

SLF left 0.31853 ± 0.06529 0.31750 ± 0.06472 0.8144 0.00106 ± 0.00022 0.00106 ± 0.00022 0.9032 0.00064 ± 0.00014 0.00064 ± 0.00014 0.9765 0.00078 ± 0.00017 0.00078 ± 0.00017 0.8687 

SLF right 0.32277 ± 0.05725 0.32151 ± 0.05791 0.7934 0.00104 ± 0.00017 0.00104 ± 0.00018 0.9763 0.00061 ± 0.00010 0.00061 ± 0.00010 0.6550 0.00076 ± 0.00012 0.00075 ± 0.00013 0.6819 

ILF left 0.32670 ± 0.09123 0.32196 ± 0.08965 0.0556 0.00101 ± 0.00028 0.00101 ± 0.00028 0.3297 0.00056 ± 0.00016 0.00056 ± 0.00016 0.9433 0.00072 ± 0.00019 0.00071 ±0.00020 0.1586 

ILF right 0.31476 ± 0.13090 0.30828 ± 0.12736 0.0448 0.00099 ± 0.00041 0.00099 ± 0.00041 0.7629 0.00053 ± 0.00022 0.00053 ± 0.00022 0.1948 0.00069 ± 0.00028 0.00068 ± 0.00028 0.2155 

C left 0.30404 ± 0.04193 0.29809 ± 0.03727 0.2383 0.00113 ± 0.00021 0.00110 ± 0.00018 0.1035 0.00070 ± 0.00015 0.00068 ± 0.00015 0.0484 0.00085 ± 0.00017 0.00082 ± 0.00016 0.0695 

C right 0.26216 ± 0.07964 0.23905 ± 0.07162 0.0130 0.00108 ± 0.00033 0.00104 ± 0.00033 0.0988 0.00070 ± 0.00024 0.00068 ± 0.00024 0.2510 0.00084 ± 0.00027 0.00080 ± 0.00027 0.0910 

UF left 0.28661 ± 0.11856 0.27719 ± 0.11528 0.0011 0.00091 ± 0.00037 0.00091 ± 0.00037 0.6681 0.00051 ± 0.00020 0.00052 ± 0.00020 0.0021 0.00066 ± 0.00023 0.00065 ± 0.00026 0.3428 

UF right 0.24896 ± 0.13432 0.24308 ± 0.13207 0.0097 0.00090 ± 0.00049 0.00090 ± 0.00049 0.7409 0.00053± 0.00029 0.00053 ± 0.00030 0.3017 0.00069 ± 0.00032 0.00065 ± 0.00036 0.1331 

CT left 0.44921 ± 0.05182 0.44727 ± 0.04226 0.8566 0.00118 ± 0.00012 0.00119 ± 0.00009 0.5719 0.00058 ± 0.00006 0.00059 ± 0.00004 0.2257 0.00078 ± 0.00007 0.00079 ± 0.00005 0.3778 

CT right 0.43681 ± 0.06783 0.43413 ± 0.06456 0.8495 0.00113 ± 0.00015 0.00114 ± 0.00014 0.6354 0.00053 ± 0.00007 0.00054 ± 0.00006 0.2061 0.00073 ± 0.00009 0.00074 ± 0.00009 0.5114 

F Mi 0.29800 ± 0.11998 0.28593 ± 0.11483 0.0120 0.00105 ± 0.00043 0.00105 ± 0.00043 0.8826 0.00061 ± 0.00026 0.00062 ± 0.00025 0.0090 0.00077 ± 0.00029 0.00077 ± 0.00031 0.5523 

F Ma 0.37233 ± 0.05808 0.36734 ± 0.05747 0.0326 0.00120 ± 0.00019 0.00119 ± 0.00019 0.7544 0.00064 ± 0.00011 0.00064 ± 0.00011 0.5321 0.00083 ± 0.00013 0.00083 ± 0.00013 0.9731 

VM 0.51104 ± 0.17386 0.41313 ± 0.15136 0.0208 0.00109 ± 0.00036 0.00098 ± 0.00036 0.0344 0.00040 ± 0.00015 0.00036 ± 0.00014 0.0326 0.00064 ± 0.00021 0.00057 ± 0.00021 0.0213 

DM 0.45870 ± 0.09509 0.45470 ± 0.09622 0.6912 0.00116 ± 0.00021 0.00115 ± 0.00022 0.5138 0.00055 ± 0.00012 0.00054 ± 0.00012 0.3076 0.00075 ± 0.00014 0.00074 ± 0.00015 0.3755 

CP left 0.51864 ± 0.03881 0.50183 ± 0.03786 0.2359 0.00113 ± 0.00005 0.00110 ± 0.00008 0.2290 0.00047 ± 0.00004 0.00046 ± 0.00005 0.2358 0.00069 ± 0.00004 0.00067 ± 0.00005 0.1441 

CP right 0.52704 ± 0.02997 0.51477 ± 0.03095 0.1299 0.00113 ± 0.00006 0.00112 ± 0.00006 0.4128 0.00046 ± 0.00004 0.00046 ± 0.00005 0.9786 0.00069 ± 0.00004 0.00068 ± 0.00005 0.5297 

P left 0.52361 ± 0.06831 0.49732 ± 0.08016 0.1299 0.00121 ± 0.00018 0.00118 ± 0.00020 0.0358 0.00052 ± 0.00011 0.00050 ± 0.00012 0.1257 0.00075 ± 0.00013 0.00073 ± 0.00014 0.0394 

P right 0.51575 ± 0.05788 0.48313 ± 0.07295 0.0630 0.00118 ± 0.00012 0.00116 ± 0.00014 0.2579 0.00051 ± 0.00007 0.00051 ± 0.00009 0.9642 0.00073 ± 0.00008 0.00073 ± 0.00010 0.6623 

Mean 0.39476 ± 0.14502 0.38033 ± 0.13861  0.00112 ± 0.00032 0.00110 ± 0.00031  0.00056 ± 0.00018 0.00055 ± 0.00018  0.00075 ± 0.00020 0.00074 ± 0.00021  

 
Table 8-6 Region of interest data within white matter regions in normoxic and hyperoxic patients 
Data are mean  standard deviation using the atlas regions of interest applied in normalised space for fractional anisotropy (FA), mean diffusivity (MD) mm2/second, axial (AD) mm2/second and radial diffusivity (RD) mm2/second for 14 
patients with head injury. Anterior corpus callosum (ACC), body corpus callosum (BCC), posterior corpus callosum (PCC), anterior thalamic radiation (ATR), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), Cingulum (C), 
uncinate fasciculus (UF), corticospinal tract (CT), forceps minor (F Mi), forceps major (F Ma), ventral midbrain (VM), dorsal midbrain (DM), cerebral peduncle (CP), pons (P). For the comparison between normoxic and hyperoxic patients paired t-
tests with Bonferroni correction for multiple comparisons were utilised, and a p < 0.0022 was considered significant. Significant results are highlighted in bold. 
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 FA  AD  RD  MD  

 Normoxia Hyperoxia p value Normoxia Hyperoxia p value Normoxia Hyperoxia p value Normoxia Hyperoxia p value 

Caud left 0.26092 ± 0.05327 0.27767 ± 0.07919 0.0545 0.00137 ± 0.00042 0.00097 ± 0.00022 0.2827 0.00101 ± 0.00039 0.00061 ± 0.00013 0.8614 0.00112 ± 0.00041 0.00073 ± 0.00016 0.3045 

Caud right 0.28511 ± 0.04115 0.19793 ± 0.08400 0.0010 0.00100 ± 0.00012 0.00103 ± 0.00054 0.7154 0.00066 ± 0.00010 0.00076 ± 0.00044 0.3644 0.00078 ± 0.00010 0.00085 ± 0.00047 0.9001 

Thal left 0.34373 ± 0.01600  0.34006 ± 0.09364 0.3427 0.00105 ± 0.00003 0.00096 ± 0.00025 0.2320 0.00064 ± 0.00003 0.00054 ± 0.00016 0.3468 0.00078 ± 0.00003 0.00068 ± 0.00019 0.2857 

Thal right 0.34814 ± 0.01676 0.31502 ± 0.09599 0.1183 0.00104 ± 0.00003 0.00107 ± 0.00034 0.2343 0.00063 ± 0.00002 0.00065 ± 0.00023 0.5554 0.00077 ± 0.00002 0.00079 ± 0.00026 0.3623 

H left 0.28230 ± 0.01721  0.26040 ± 0.04050 0.0268 0.00131 ± 0.00006 0.00118 ± 0.00027 0.2343 0.00089 ± 0.00006 0.00079 ± 0.00020 0.1988 0.00103 ± 0.00006 0.00092 ± 0.00022 0.7549 

H right 0.28868 ± 0.01590 0.22844 ± 0.07136 0.0244 0.00143 ± 0.00006 0.00115 ± 0.00039 0.5317 0.00096 ± 0.00007 0.00077 ± 0.00028 0.1794 0.00112 ± 0.00006 0.00090 ± 0.00031 0.8673 

F left 0.24658 ± 0.01024 0.22486 ± 0.02626 0.3944 0.00124 ± 0.00006 0.00117 ± 0.00021 0.7043 0.00091 ± 0.00005 0.00085 ± 0.00017 0.1921 0.00102 ± 0.00005 0.00096 ± 0.00019 0.7320 

F right 0.24100 ± 0.00749 0.19822 ± 0.05414 0.1786 0.00126 ± 0.00005 0.00111 ± 0.00033 0.7611 0.00094 ± 0.00005 0.00082 ± 0.00026 0.2848 0.00105 ± 0.00005 0.00092 ± 0.00028 0.7473 

P left 0.26126 ± 0.01020 0.24623 ± 0.02936 0.1439 0.00125 ± 0.00007 0.00114 ± 0.00020 0.9095 0.00090 ± 0.00006 0.00080 ± 0.00016 0.3040 0.00102 ± 0.00007 0.00091 ± 0.00017 0.5460 

P right 0.26039 ± 0.00906 0.24493 ± 0.03334 0.2826 0.00127 ± 0.00005 0.00118 ± 0.00013 0.9294 0.00092 ± 0.00005 0.00084 ± 0.00010 0.2873 0.00104 ± 0.00005 0.00095 ± 0.00011 0.5020 

Temp left 0.24581 ± 0.01440 0.18931 ± 0.08033 0.0098 0.00112 ± 0.00005 0.00091 ± 0.00041 0.7466 0.00079 ± 0.00004 0.00065 ± 0.00029 0.6335 0.00090 ± 0.00004 0.00074 ± 0.00033 0.2284 

Temp right 0.25492 ± 0.01031 0.17901 ± 0.08160 0.0203 0.00120 ± 0.00003 0.00088 ± 0.00041 0.3056 0.00084 ± 0.00003 0.00063 ± 0.00030 0.5390 0.00096 ± 0.00003 0.00071 ± 0.00034 0.1902 

O left 0.24578 ± 0.01287 0.24138 ± 0.01921 0.0185 0.00117 ± 0.00005 0.00107 ± 0.00012 0.3962 0.00084 ± 0.00005 0.00075 ± 0.00011 0.3149 0.00095 ± 0.00005 0.00086 ± 0.00011 0.8351 

O right 0.23925 ± 0.01151 0.21773 ± 0.06625 0.0025 0.00120 ± 0.00006 0.00101 ± 0.00029 0.5054 0.00088 ± 0.00005 0.00072 ± 0.00020 0.9072 0.00099 ± 0.00005 0.00082 ± 0.00023 0.5505 

Cereb left 0.23434 ± 0.01828 0.22161 ± 0.03535 0.2294 0.00104 ± 0.00007 0.00098 ± 0.00011 0.1807 0.00074 ± 0.00007 0.00070 ± 0.00009 0.0878 0.00084 ± 0.00007 0.00079 ± 0.00010 0.1024 

Cereb right 0.22928 ± 0.01782 0.22366 ± 0.02530 0.1595 0.00103 ± 0.00006 0.00099 ± 0.00011 0.2355 0.00074 ± 0.00006 0.00071 ± 0.00007 0.0806 0.00084 ± 0.00006 0.00080 ± 0.00007 0.1561 

Mean 0.26672 ± 0.04034 0.23795 ± 0.07417  0.00119 ± 0.00017 0.00105 ± 0.00030  0.00083 ± 0.00016 0.00072 ± 0.00023  0.00095 ± 0.00016 0.00083 ± 0.00025  

 
Table 8-7 Region of interest data within mixed cortical and deep grey matter regions in normoxic and hyperoxic patients 
Data are mean  standard deviation using the atlas regions of interest applied in normalised space for fractional anisotropy (FA), mean diffusivity (MD) mm2/second, axial (AD) mm2/second and radial diffusivity (RD) mm2/second for 14 
patients with head injury. Caudate (Caud), thalamus (Thal), hippocampus (H), frontal (F), parietal (P), temporal (Temp), occipital (O), cerebellum (Cereb). For the comparison between normoxic and hyperoxic patients paired t-tests with 
Bonferroni correction for multiple comparisons were utilised, and a p < 0.0031 was considered significant. Significant results are highlighted in bold. 
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The percentage of white and mixed cortical and deep grey matter ROIs in patients and healthy 

volunteers exposed to hyperoxia showing a change in DTI parameters following NH that was greater 

than the overall population and regional 99% prediction intervals (PIs) for zero change are summarised 

in figure 8-3 and 8-4 respectively. In healthy volunteers, these changes are shown from baseline air to 

100% oxygen. Using the overall population 99% PI, significant decreases in FA were found within 16% 

of white matter ROIs from 9/14 patients and in 14% of mixed cortical and deep grey matter ROIs from 

8/14 patients. Changes in the other DTI parameters were less frequent; some regions showed 

significant decreases in AD and MD while RD was generally unchanged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-3 Impact of hyperoxia in patients 
Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) within atlas regions of interest (ROI) applied in 
normalised space for 14 patients using “lesion free” brain by exclusion of lesion core and contusion tissue. Data displayed are the percentage 
number of white (white) and mixed cortical and deep grey matter (grey) ROIs showing a change greater than the overall population (left panel) 
and individual regional (right panel) 99% prediction interval (PI) for zero change. The total number of regions in this cohort was 320 and 223 for 
white matter and mixed cortical and deep grey matter respectively. 
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Table 8-8 and Table 8-9 provide a detailed list of which patients and regions showed significant change 

for white and mixed cortical and deep grey matter regions respectively. Decreases in FA were found 

across the whole brain in many different brain regions. Table 8-10 and Table 8-11 provide the 

equivalent data for the 6 healthy volunteers who underwent graded exposure to oxygen. The results 

using the individual ROI reproducibility data were similar and demonstrate significant FA decreases in 

9% of white and 19% of mixed cortical and deep grey matter ROIs respectively (see figure 8-3 and 8-

4). Table 8-12 and Table 8-13 provide a detailed list of the regions showing significant change for white 

and mixed cortical and deep grey matter in patients, while Table 8-14 and Table 8-15 show the 

equivalent for healthy volunteers. 

 

 
Figure 8-4 Impact of hyperoxia in healthy volunteers 
Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) within atlas regions of interest (ROI) applied in 
normalised space for 6 healthy volunteers. Data displayed are the percentage number of white (white) and mixed cortical and deep grey matter 
(grey) ROIs showing a change greater than the overall population (left panel) and individual regional (right panel) 99% prediction interval (PI) for 
zero change. The total number of regions i this cohort was 138 and 96 for white matter and mixed cortical and deep grey matter respectively. 
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 FA AD RD MD 

Subject Increases Decreases Increases Decreases Increases Decreases Increases Decreases 

1  VM, P right, ACC, CP left, DM, P left, CP 
right, C right, CT right, ATR left 

 VM, ACC, P right, CP 
left, P left 

    

2  VM, P right, P left, ATR right, CP left, F 
Mi 

      

3         

4  VM  VM    VM 

5  VM, CP left, ATR right, ACC, CT right, 
DM 

 DM, PCC, SLF R, F 
Ma, VM 

   PCC, UF right, DM, SLF 
right 

6 VM, CT right, PCC, CT left, 
CP left, BCC, DM, SLF right, 
SLF left, P left 

C right PCC, CT right, CT left, 
VM, CP left 

C right, C left   CT left, CT right, 
PCC 

C right, C left, UF left, 
ATR left, UF right 

7         

8   VM      

9         

10  VM, C right, P left, CP right, CP left  VM, C right     

11  VM, ATR right, ACC, P right, P left, ATR 
left, CP right, CP left, CT right 

P right    P right VM 

12         

13 BCC VM, P right, ACC, C right, P right, C left, 
CP right, CP left, CT left, ATR left 

 VM, ACC, PCC, P left    VM 

14  VM       

N (%) regions 11 (3) 50 (16) 7 (2) 22 (7) 0 0 4 (1) 14 (4) 

 

Table 8-8 Patient white matter regions demonstrating a change following hyperoxia using the population 99% prediction interval 
Regions showing a significant increase or decrease following hyperoxia that was greater than the overall population 99% prediction interval (PI) are shown for 14 patients with head injury for fractional anisotropy (FA), mean diffusivity (MD), 
axial (AD) and radial diffusivity (RD). The total number of regions in this patient cohort was 320, and the number (N) and percentage (%) of this total showing a change is provided in the table. Anterior corpus callosum (ACC), body corpus 
callosum (BCC), posterior corpus callosum (PCC), anterior thalamic radiation (ATR), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), Cingulum (C), uncinate fasciculus (UF), corticospinal tract (CT), forceps minor (F Mi), 
forceps major (F Ma), ventral midbrain (VM), dorsal midbrain (DM), cerebral peduncle (CP), pons (P). 
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 FA AD RD MD 

Subject Increases Decreases Increases Decreases Increases Decreases Increases Decreases 

1  H left, H right, Thal left, Temp right, P right, O 
right, O left, Thal right, Temp left 

      

2  Temp right, H right, Temp left, O right  Caud right    Caud right 

3         

4        H right 

5  Thal right, Cereb left, Thal left, Caud right, O 
right 

Caud right O right, P right, 
Temp left 

Caud right  Caud right, Thal 
right 

Temp right, F right 

6 F left, P left, F right, 
Thal left, P right, 
Thal right 

H right, Caud left P right, P left, F right, F 
left, H right 

Thal right, Thal 
left 

 Thal right, Thal 
left 

P right, P left, H 
right 

Thal right, Thal left, Caud 
right, Caud left 

7         

8  Caud left       

9         

10   Caud right      

11  Caud left, Caud right, Thal right, Thal left  Caud left     

12         

13  Temp left, H left, Caud right, Caud left, F right       

14  Caud right       

N (%) regions 6 (3) 31 (14) 7(3) 7 (3) 1 (0) 2 (1) 5(2) 8 (4) 

 

Table 8-9 Patient mixed cortical and deep grey matter regions demonstrating a change following hyperoxia using the population 99% prediction interval 
Regions showing a significant increase or decrease following hyperoxia that was greater than the overall population 99% prediction interval (PI) are shown for 14 patients with head injury for fractional anisotropy (FA), mean diffusivity (MD), 
axial (AD) and radial diffusivity (RD). The total number of regions in this patient cohort was 223, and the number (N) and percentage (%) of this total showing a change is provided in the table. Caudate (Caud), thalamus (Thal), hippocampus (H), 
frontal (F), parietal (P), temporal (Temp), occipital (O), cerebellum (Cereb). 
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 FA AD RD MD 

Volunteer Increases Decreases Increases Decreases Increases Decreases Increases Decreases 

1 ACC P left ACC P left     

2 PCC BCC  PCC    PCC 

3 ACC        

4         

5  VM  VM     

6  ACC, VM, P right VM    VM  

N (%) regions 3 (2) 6 (4) 2(1) 3 (2) 0 0 1(1) 1 (1) 

 
Table 8-10 Healthy volunteer white matter regions demonstrating a change following hyperoxia using the population 99% prediction interval 
Regions showing a significant increase or decrease following hyperoxia that was greater than the overall population 99% prediction interval (PI) are shown for 6 controls for fractional anisotropy (FA), mean diffusivity (MD), axial (AD) and radial 
diffusivity (RD). The total number of regions in this patient cohort was 138, and the number (N) and percentage (%) of this total showing a change is provided in the table. Anterior corpus callosum (ACC), body corpus callosum (BCC), posterior 
corpus callosum (PCC), anterior thalamic radiation (ATR), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), Cingulum (C), uncinate fasciculus (UF), corticospinal tract (CT), forceps minor (F Mi), forceps major (F Ma), 
ventral midbrain (VM), dorsal midbrain (DM), cerebral peduncle (CP), pons (P). 
 

 FA AD RD MD 

Volunteer Increases Decreases Increases Decreases Increases Decreases Increases Decreases 

1         

2         

3         

4         

5         

6 Caud right Caud left Caud right      

N (%) regions 1 (1) 1 (1) 1(1) 0 0 0 0 0 

 Table 8-11 Healthy volunteer mixed cortical and deep grey matter regions demonstrating a change following hyperoxia using the population 99% prediction interval 
Regions showing a significant increase or decrease following hyperoxia that was greater than the overall population 99% prediction interval (PI) are shown for 6 controls for fractional anisotropy (FA), mean diffusivity (MD), axial (AD) and radial 
diffusivity (RD). The total number of regions in this patient cohort was 96, and the number (N) and percentage (%) of this total showing a change is provided in the table. Caudate (Caud), thalamus (Thal), hippocampus (H), frontal (F), parietal 
(P), temporal (Temp), occipital (O), cerebellum (Cereb). 
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 FA AD RD MD 

Subject Increases Decreases Increases Decreases Increases Decreases Increases Decreases 

1  ACC, ATR left, ATR right, ILF right, C 
right, CT right, VM, CP left, CP right, P 
left, P right 

 ACC, VM, CP left, P 
right 

   ACC 

2  ATR right       

3         

4  VM       

5  ATR left, ATR right, VM, CP left  PCC, SLF left, SLF 
right, ILF left, UF left, 
F Ma, DM 

ATR right SLF right  PCC, ATR left, SLF right, 
IFL left, IFL right, UF 
right, F Mi, F Ma 

6 PCC, ATR left, SLF left, SLF 
right, CT left, CT right, VM, 
CP left 

 PCC, CT left, CT right, 
CP left 

C left, C right CT left, CT 
right 

ATR left, C 
left, C right 

CT left, CT right ATR left, ATR right, ILF 
left, ILF right, C left, C 
right, UF left, UF right 

7        ILF L, UF L, UF R 

8         

9         

10  C right       

11  ACC, ATR left, ATR right, VM, P left, P 
right 

 ACC, ATR left, VM     

12         

13  ATR left, C left, C right, VM, CP right, P 
left 

 C left    C left 

14         

N (%) regions 8 (3) 30 (9) 4(1) 17 (5) 3 (1) 4 (1) 2(1) 21 (7) 

 
Table 8-12 Patient white matter regions demonstrating a change following hyperoxia using the regional 99% prediction interval 
Regions showing a significant increase or decrease following hyperoxia that was greater than the regional 99% prediction interval (PI) are shown for 14 patients with head injury for fractional anisotropy (FA), mean diffusivity (MD), axial (AD) and 
radial diffusivity (RD). The total number of regions in this patient cohort was 320, and the number (N) and percentage (%) of this total showing a change is provided in the table. Anterior corpus callosum (ACC), body corpus callosum (BCC), 
posterior corpus callosum (PCC), anterior thalamic radiation (ATR), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), Cingulum (C), uncinate fasciculus (UF), corticospinal tract (CT), forceps minor (F Mi), forceps major (F 
Ma), ventral midbrain (VM), dorsal midbrain (DM), cerebral peduncle (CP), pons (P). 
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 FA AD RD MD 

Subject Increases Decreases Increases Decreases Increases Decreases Increases Decreases 

1  Thal left, Thal right, H left, H right, P 
left, P right, Temp left, Temp right, O 
left, O right 

 Thal R, H left    Thal right 

2  H left, H right, F left, F right, P left, 
Temp left, Temp right, O left, O right 

 Caud right  Caud right  Caud right 

3         

4        H right 

5  Thal left, Thal right, F left, F right, P left, 
P right, O right 

Caud R, Thal R P right, Temp L, O 
right 

Caud right, 
Thal right 

 Caud right, Thal 
right, P right, 
Temp right, O 
right 

 

6 Thal left, Thal right, F left, F 
right, P left, P right 

Caud left, H left, H right H right, F left, F right, 
P left, P right, Temp 
R, O left, O right 

Thal L, Thal R H right, F 
right, P 
left, P right 

Thal left, 
Thal right 

H right, P left, P 
right 

Caud right, Thal left, Thal 
right 

7         

8         

9         

10  P left, O right       

11  Caud left, Caud right, Thal left, Thal 
right 

      

12         

13  H left, F left, F right, P left, Temp left, O 
left, O right 

      

14  O right       

N (%) regions 6 (3) 43 (19) 10(4) 8 (4) 6 (3) 3 (1) 8(4) 6 (3) 

 
Table 8-13 Patient mixed cortical and deep grey matter regions demonstrating a change following hyperoxia using the regional 99% prediction interval 
Regions showing a significant increase or decrease following hyperoxia that was greater than the regional 99% prediction interval (PI) are shown for 14 patients with head injury for fractional anisotropy (FA), mean diffusivity (MD), axial (AD) 
and radial diffusivity (RD). The total number of regions in this patient cohort was 223, and the number (N) and percentage (%) of this total showing a change is provided in the table. Caudate (Caud), thalamus (Thal), hippocampus (H), frontal (F), 
parietal (P), temporal (Temp), occipital (O), cerebellum (Cereb). 
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 FA AD RD MD 

Volunteer Increases Decreases Increases Decreases Increases Decreases Increases Decreases 

1   ACC ILF left, P left   ACC ILF left 

2 PCC   PCC  PCC P left PCC, CP right 

3         

4         

5         

6     VM  P right  

N (%) regions 1 (1) 0 1 (1) 3 (2) 1 (1) 1 (1) 3(2) 3 (2) 

 
Table 8-14 Healthy volunteer white matter regions demonstrating a change following hyperoxia using the regional 99% prediction interval 
Regions showing a significant increase or decrease following hyperoxia that was greater than the regional 99% prediction interval (PI) are shown for 6 controls for fractional anisotropy (FA), mean diffusivity (MD), axial (AD) and radial diffusivity 
(RD). The total number of regions in this patient cohort was 138, and the number (N) and percentage (%) of this total showing a change is provided in the table. Anterior corpus callosum (ACC), body corpus callosum (BCC), posterior corpus 
callosum (PCC), anterior thalamic radiation (ATR), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), Cingulum (C), uncinate fasciculus (UF), corticospinal tract (CT), forceps minor (F Mi), forceps major (F Ma), ventral 
midbrain (VM), dorsal midbrain (DM), cerebral peduncle (CP), pons (P). 
 

 FA AD RD MD 

Volunteer Increases Decreases Increases Decreases Increases Decreases Increases Decreases 

1   Temp right    Temp right  

2         

3         

4   Thal right    Thal right  

5         

6  Caud left Caud right, P right    P right  

N (%) regions 0 1 (1) 4 (4) 0 0 0 3(3) 0 

 
Table 8-15 Healthy volunteer mixed cortical and deep grey matter regions demonstrating a change following hyperoxia using the regional 99% prediction interval 
Regions showing a significant increase or decrease following hyperoxia that was greater than the regional 99% prediction interval (PI) are shown for 6 controls for fractional anisotropy (FA), mean diffusivity (MD), axial (AD) and radial diffusivity 
(RD). The total number of regions in this patient cohort was 96, and the number (N) and percentage (%) of this total showing a change is provided in the table. Caudate (Caud), thalamus (Thal), hippocampus (H), frontal (F), parietal (P), temporal 
(Temp), occipital (O), cerebellum (Cereb). 
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Discussion 

In this study we used DTI to examine whether an increase in the fraction of inspired oxygen had any 

beneficial effects within deep grey and mixed cortical, and white matter regions distant from visible 

contusions following TBI. Baseline patient data showed evidence of traumatic injury with lower MD 

and FA in several regions compared with healthy volunteers, consistent with cytotoxic oedema and 

axonal injury, respectively. Exposure to a brief period of NH had no effect on healthy volunteers, and 

did not ameliorate these findings in patients with some regions showing further FA decreases 

following the intervention. Using published reproducibility data from a historical cohort of 26 healthy 

volunteers we demonstrated that 16% of white matter and 14% of deep grey and mixed cortical 

regions in patients showed a reduction in FA more than the expected population 99% PI for zero 

change. The mechanistic basis for some of the DTI findings are unclear but implies that a short period 

of NH has no beneficial impact within the brain that appears normal using conventional structural 

imaging. To confirm these findings and investigate further will require a longer duration of hyperoxia 

with serial DTI and conventional MRI in comparison with clinical outcome. 

Monitoring of focal tissue oxygen and brain metabolism using microdialysis has shown that hyperoxia 

can correct derangements and may be associated with improved outcome.165,179,306,327 Further, a 15O 

PET study suggested that improvements in metabolism with hyperoxia may be particularly relevant 

within brain regions with physiology consistent with the greatest risk of infarction.164 We have also 

used DTI to demonstrate contusion expansion within a rim of low MD consistent with cytotoxic 

oedema that surrounds a region of high MD (vasogenic oedema), and a short interval of normobaric 

hyperoxia can increase MD values towards normal within this perilesional rim.179 Both these imaging 

studies demonstrate how a short period of exposure to normobaric hyperoxia (~60 minutes) can result 

in potential benefit. Such findings suggest improvements in oxygen delivery that may relate to 

evidence of microvascular injury19 within the ‘traumatic penumbra’ and are consistent with post 

mortem studies showing microvascular occlusion and perivascular oedema associated with selective 

neuronal loss post-TBI. Increased brain oxygen levels may overcome diffusion barriers to oxygen 

delivery or improve mitochondrial function where low oxygen tension allows nitric oxide to 

competively inhibit cytochrome oxidase.67 Mitochondrial dysfunction has been shown in ex vivo 

clinical, and experimental TBI studies,170 and mitochondrial function can be preserved using 

hyperoxia.328 Other studies demonstrate that hyperoxia has neuroprotective and anti-inflammatory 

effects within the injured brain.170,312,313 
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While these changes are most evident within perilesional regions, pathophysiological derangements 

are also evident in regions distant from visible injury based on conventional structural imaging.120,268,329 

Several PET studies have shown evidence of ischaemia and other metabolic derangements within the 

brain that may initially appear structurally normal but ultimately demonstrates late atrophy, and is 

associated with poor outcome.120,160,244,330 Further, benefit shown with normobaric hyperoxia in the 

15O PET study by Nortje et al. within the brain demonstrating physiology consistent with the greatest 

risk of infarction included normal appearing white matter.164 Studies using DTI are particularly relevant 

in this regard since evidence of cytotoxic oedema, and traumatic axonal injury is often identified using 

this technique when conventional structural imaging appears normal.47 Our findings were consistent 

with these data. Despite the exclusion of visible contusions and other areas of brain injury, the patient 

regional baseline data demonstrated significant DTI abnormalities consistent with cytotoxic oedema 

and axonal injury in comparison with healthy controls. Such regions were the focus of this study, and 

our expectation was that we might see an amelioration of cytotoxic oedema and other DTI signal 

changes in brain distant from contusions following hyperoxia secondary to an improvement in oxygen 

delivery and/or mitochondrial function. It is important to acknowledge that any change must be 

sustained if it is to result in improved neuronal survival and better functional outcome for patients, 

but it is likely that this will require a much longer period of exposure to NH. However, we wished to 

demonstrate whether it was possible to use DTI as a biomarker of the trajectory of such injury or its 

recovery in the assessment of therapeutic interventions such as hyperoxia. Previous imaging studies 

have limited exposure to NH to one hour,164,204and have conducted repeat imaging within a single 

session in which changes in other physiological and patient-related factors can be minimised. There 

are also concerns regarding excessive exposure to NH since it can result in atelectasis and pulmonary 

injury, increased oxidative stress and potential harm in critically ill patients. In this context, a further 

preliminary study of the impact of NH on the injured brain was warranted. 

 

Experimental and clinical ischaemia following middle cerebral artery occlusion results in early 

evidence of cytotoxic oedema with a reduction in MD, and while AD and RD are typically reduced, it 

has been hypothesised that oligodendrite swelling can compress the axoplasm and result in a greater 

decrease in RD than AD within the white matter.331,332 This may explain why acute ischaemia can result 

in an initial increase in white matter FA if imaging is conducted within 4.5 hours of acute stroke.332,333 

Later, loss of cellular integrity results in large decreases in white matter FA.332These finding are 

relevant to ischaemic stroke, but were hyperoxia to improve oxygen delivery and attenuate cytotoxic 

oedema following TBI, MD should increase towards normal and, in theory, an increase in RD that was 

greater than AD could result in an initial reduction in white matter FA. While we did find evidence of 
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low MD in TBI patients at baseline consistent with cytotoxic oedema, we did not see evidence of an 

increase in MD towards normal within white or grey matter regions following exposure to hyperoxia. 

This suggests that the intervention was ineffective, or that a longer period of hyperoxia was needed 

to demonstrate any effect. Also, the lack of evidence for a reversal of cytotoxic oedema cannot explain 

our finding of a reduction in FA within the white or grey matter. 

We exposed healthy volunteers to oxygen therapy since oxygen has a known paramagnetic effect and 

could have resulted in systematic changes to our DTI findings.334 We saw no relationship between a 

step increase in administered oxygen and any of the DTI parameters. Healthy volunteers received 

oxygen via a venturi mask, in comparison with TBI patients who received fixed concentrations of 

inspired oxygen via a closed ventilatory circuit as they had been intubated and ventilated as part of 

routine clinical care. The Venturi mask provides a means of reliably titrating the FiO2 in spontaneously 

breathing subjects,335 and while arterial blood gases were not monitored in healthy volunteers each 

step increase in delivered oxygen will have resulted in higher PaO2. Following 15 minutes of breathing, 

60% oxygen volunteers underwent ~ 45 minutes of imaging (DTI and whole brain proton spectroscopy) 

while continuing to breath 60% oxygen. Then, following an additional 15 minutes breathing 100% 

oxygen imaging was repeated for the last time. So, by the final DTI sequence subjects had been 

breathing an increased fraction of inspired oxygen for over 60 minutes. At this stage, the PaO2 of the 

healthy volunteers would have been at least as high as that achieved in patients.204 

In patients, we looked for regions where changes in DTI were more significant than the 99% PI for zero 

change using published data from 26 healthy historical volunteers who underwent DTI on up to four 

occasions within two imaging sessions.232 Both patients and volunteers underwent scanning within 

the Wolfson Brain Imaging Centre (WBIC) using the same scanner, software version and scanner 

sequences. Since patients underwent baseline and post-intervention imaging during the same session 

the expected variability in patients, who were also sedated and paralysed during imaging, is likely to 

be at least as good as that found in awake spontaneously breathing healthy volunteers who 

underwent repeat DTI during two sessions separated by up to six months.232 

Patients suffered a TBI and the presence of brain lesions will produce errors in spatial processing, 

particularly were non-linear algorithms are used to co-register and transform data to a standard 

template. The ROI template was eroded by a single voxel to limit problems resulting from co-

registration, normalisation and partial volume errors. Visible areas of injury were manually delineated 

in native space, and subsequently, a normalised binary mask of the lesions was used to exclude this 

volume of brain tissue from the individualised standard ROI template of each patient. All registered 

datasets were reviewed to ensure that the spatial processing had not resulting in significant errors, 
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and no subjects were excluded on this basis. While these concerns may lead to an overestimate of the 

difference between regional DTI values in patients compared to healthy volunteers, it is important to 

emphasise that the focus of this study was to compare change following NH within individual subjects 

during the same imaging session. There were no structural differences between the baseline and post 

NH datasets, and therefore, any small errors in registration and normalisation would have been 

replicated in both datasets.  Patients were sedated, paralysed and ventilated throughout imaging 

sessions as part of routine care. This would have prevented movement artefact and helped optimise 

data collection, processing and subsequent analyses. Under these circumstances, small changes within 

individual ROIs that relate to problems with spatial processing would be unlikely to introduce 

systematic errors between baseline and post NH intervention imaging within individual subjects. 

While it is possible that the DTI changes we found occurred purely by chance, we cannot ignore the 

fact that over 10% of all patient regions showed a fall in FA greater than the 99% PI for zero change 

following NH. 

While the significance of a fall in FA following brief exposure to hyperoxia is unknown, it still represents 

some detectable and reversible change in the local tissue environment that did not occur in healthy 

volunteers exposed to a similar intervention. Given the concern regarding the use of hyperoxia, it 

would be important to exclude the possibility, however small, that this could represent some early 

evidence of axonal injury within white matter resulting from oxidative stress. In chronic TBI a reduction 

of FA within white matter is consistent with axonal injury, with the extent of changes dependent on 

the time since ictus.329 Interestingly, late cortical FA increases can also occur and may relate to scarring 

post mild TBI.336,337 Clearly, it would be important to undertake serial MRI with DTI to understand how 

these DTI parameters evolve within both grey and white matter following exposure to longer periods 

of NH. At the very least these findings demonstrate how such measurements could be used to assess 

the impact of a longer duration of therapeutic NH and should be compared with the evidence of late 

tissue fate based on structural MR and clinical outcome. Finally, since AD and RD are parameters that 

relate to the orientation of white matter fibres the small changes we found within mixed cortical and 

deep grey matter following hyperoxia are of little consequence. 

Patients underwent imaging between days 1 – 9 (mean 3.3 days)  post-injury, and DTI changes may 

reflect different trajectories within individual subjects with a resolution of cytotoxic and vasogenic 

oedema (Figure 2-3, page 30), temporal variability in microvascular ischaemia and neurophysiology 

along  with the loss of tissue integrity within established lesions. Despite this concern, there was no 

significant interaction between FA changes following hyperoxia and the time since injury (p = 0.59, 

ANOVA). We did not measure the temporal impact of neurophysiology in this study but patients in 
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this cohort sustained TBI severe enough to require intensive care management of raised intracranial 

pressure and had comparable imaging patterns of injury. Despite this, the outcome was variable, and 

it is possible that the changes in DTI parameters seen may reflect individual variability within this small 

cohort. However, reductions in FA were seen in over half the patients and the majority of brain regions 

with no apparent relationship to injury type or eventual outcome. Nevertheless, definitive statements 

concerning the significance of DTI changes would require data from a larger cohort of patients showing 

evidence of sustained reductions in FA associated with poor functional outcome in comparison with a 

control arm before it could be concluded that they were indicative of axonal injury.338 Sequential 

imaging could be used as a biomarker of the trajectory of such injury or its recovery in the assessment 

of therapeutic interventions such as hyperoxia. 

Previous clinical studies have suggested that the use of high partial pressures of oxygen may be 

beneficial,248,318 but there may be a relatively narrow margin of safety.290 We limited the maximum 

FiO2 in this interventional study to 0.8 to minimise direct side effects such as alveolar atelectasis and 

pulmonary injury. Clinical studies show little evidence of increased oxidative stress when therapy is 

applied in a controlled manner within the first three days post-injury.314 We show how changes in DTI 

can be detected in patients following NH based on reproducibility data from a historical group of 

healthy volunteers. The pathophysiological basis and significance of any fall in FA following exposure 

to NH remain unknown, particularly following such a brief intervention. 

Nevertheless, any potentially adverse effect should be considered, and further studies should 

incorporate serial DTI to help determine how and when this intervention should be used within a 

precision medicine approach to optimise the beneficial impact on patient outcome. Such data could 

be invaluable in the design of any future clinical trial since studies to date do not provide definitive 

evidence of an improvement in clinical outcome.315 

Prior TBI studies have suggested that an increase in the fraction of inspired oxygen can improve 

cerebral metabolism within perilesional and normal appearing white matter,164,309 and using DTI, result 

in benefit within the rim of cytotoxic oedema found around brain contusions.178 Using DTI, we showed 

evidence of cytotoxic oedema and traumatic axonal injury distant from visible lesions with no 

improvement following the short-term administration of normobaric hyperoxia. To confirm these 

findings and investigate further will require a longer duration of hyperoxia with serial DTI and 

conventional MRI in comparison with clinical outcome. 

  



 
 

141 

 
 

 

Chapter 9 Impact of normobaric hyperoxia on the metabolic 

derangements identified by whole-brain proton spectroscopy 

following severe traumatic brain injury 

 

Introduction 
  

Classical cerebral ischaemia and late energy failure remain a significant cause of neuronal loss after 

traumatic brain injury (TBI). We have previously used diffusion tensor imaging (DTI) and 15O positron 

emission tomography (15O PET) to show that normobaric hyperoxia increases oxygen utilisation and 

may benefit “at risk” regions such as the rim of cytotoxic oedema found in the vicinity of contusions 

following head injury. The response to normobaric hyperoxia depends on the underlying regional 

metabolic derangements within brain tissue.164 While hyperoxia has shown benefit in some studies 

after brain injury, there are concerns regarding the deleterious effects of hyperoxia on the brain and 

other organ systems such as lungs and heart.290,339-349 These concerns justify further study of the 

regional metabolic effects of normobaric hyperoxia before large scale clinical trials are commenced. 

We have used structural MR imaging and diffusion tensor imaging to identify “at risk brain regions” 

regions with evidence of structural injury, vasogenic and cytotoxic oedema. Whole brain proton 

spectroscopy (WB 1H MRS) and diffusion tensor imaging provide insights into progression and 

outcome in a variety of neurological disorders, including traumatic brain injury.113,179,232,243,350 

 

Metabolites reliably measured with whole brain proton spectroscopy (WB 1H MRS) at an echo time of 

70 milliseconds include N-acetyl aspartate (NAA) a metabolite reflecting neuronal integrity, exclusively 

found in brain, Creatine (Cr) a putative marker of phosphate metabolism and Choline (Cho) containing 

compounds indicating breakdown and turnover of neuronal membrane.99,108,109,112,113,168,228,233 Whole 

brain proton spectroscopy (WB 1H MRS) data acquired with Metabolic Imaging and Data Acquisition 

Software (MIDAS) provides a fully automated pipeline for processing and interpreting WB 1H MRS 

data.96 Whole brain proton spectroscopic imaging data can be used to quantify dynamic metabolic 

processes, neuronal integrity, and metabolic fate of tissue after traumatic brain injury.103,168,351-354 This 

would be the first study to use WB 1H MRS to assess the impact of a neurotherapeutic option such as 

normobaric hyperoxia on the regional metabolic state in patients following traumatic brain injury. This 

study could also provide insights into the metabolic fate of injured brain tissue and potential impact 

on outcome following TBI. 
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Material and Methods 

Ethical approval was obtained from the Cambridgeshire Research Ethics Committee (reference 

numbers 97/290 and 02/293) and written informed consent, or written assent from next-of-kin where 

appropriate were obtained in all cases following the Declaration of Helsinki. 

Subjects  

Patients  

Twelve adult patients (10 males and two females) with a mean (range) age 41.5 (21 – 70) years with 

head injury were recruited from the Neurosciences Critical Care Unit (NCCU), Addenbrooke’s Hospital, 

Cambridge, UK. Recruited patients presented with a median (range) post-resuscitation Glasgow Coma 

Score (GCS) of 7 (3 – 14) with deterioration to a GCS < 8 requiring sedation and ventilation for control 

of intracranial pressure (ICP) (Table 9-1). 

Patients were recruited to this imaging study between mean (range) days 3 (1 – 9) post-injury and 

underwent imaging while they were sedated in the critical care unit. Patients were excluded from this 

study if they had suffered a previous TBI, any other neurological disease or had any contraindication 

to magnetic resonance imaging (MRI). Patients were managed by protocol-driven care, which included 

sedation, paralysis and ventilation to ensure that intracranial pressure (ICP) < 20 mmHg and cerebral 

perfusion pressure > 65 mmHg were maintained. Physiological stability was meticulously ensured 

during imaging through the titration of fluids and vasoactive agents by a critical care physician and 

specialist neurocritical care nurse. Patients who received the surgical intervention (CSF drainage or 

decompressive craniectomy) or second-tier medical therapies (barbiturate coma or moderate 

hypothermia (33–35°C) before imaging are specified in Table 9-1. No other significant changes 

occurred in the management of patients on the day of study. 

Following the acquisition of baseline WB 1H MRS at a partial pressure of oxygen (PaO2) of 

approximately 10 – 12 KPa (75-90 mmHg) the fraction of inspired oxygen (FiO2) was increased to a 

maximum of 0.8 to achieve a PaO2 of approximately 30 – 35 KPa (225-260 mmHg). Following a 60-

minute equilibration period (and by inference, brain pO2) a repeat WB 1H MRS was obtained within 

the same imaging session without moving the patient.  

Controls 

Two groups of healthy volunteers underwent WB 1H MRS. Seven controls (four females and three 

males) with a mean (range) age of 31 (22 – 42) years were exposed to graded oxygen therapy (room 

air, 60% and 100% inspired oxygen) delivered via a venturi mask (Flexicare Medical Limited, Mid 

Glamorgan, Wales). WB 1H MRS was obtained at each level following an equilibration period of 15 
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minutes as described previously in my thesis.179 This equilibration time was double the time taken for 

normobaric hyperoxia to equilibrate with brain tissue oxygenation (PtbO2) in patients with severe 

traumatic brain injury with brain tissue oxygen monitoring system in situ (LICOX®, Integra Life Sciences 

Corporation, Plainsboro, NJ). A further 11 healthy volunteers (six males and four females) with mean 

(range) age of 34 (25 – 44) years underwent WB 1H MRS on up to four occasions within two imaging 

sessions separated by a maximum of six months to look at the test-retest variability of WB 1H MRS 

when repeated up to four occasions. 
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Table 9-1 Patient characteristics 
C, craniotomy; D, death; DAI, diffuse axonal injury; DC, decompressive craniectomy; EDH, extradural hemorrhage; EVD, external ventricular drain; F, female; GCS, Glasgow coma score; GOS, Glasgow outcome score; GR, good recovery; M, 
male; MD, moderate disability; RTA, road traffic accident; SD, severe disability; SDH, subdural hemorrhage; tSAH, traumatic subarachnoid hemorrhage. 

Subject Age Sex Mechanism Summary of MRI findings Parenchymal 
lesion 

volume (ml) 

DAI GCS Marshall 

score 

APACHE 

II 

ISS Neurosurgery Second 
tier 

therapies 

Days to MRI GOS 

1 53 M RTA Bitemporal, basal ganglia& cortical contusions. Bilateral frontal SDH 100 Yes 4 NEML 17 34 -  4 MD 

2 34 M RTA Bilateral subcortical & deep white matter, corpus callosum, R thalamus, 

midbrain & cerebellar contusions. IVH, L occipital & fronto-temporal SDH 

20 Yes 4 NEML 21 20 EVD  3 VS 

3 34 M Assault Bilateral frontal, temporal, R occipital, 

thalamus & L cerebellar contusions. IVH 

607 No 8 EML 25 16 DC, R SDH 

EVD 

 3 SD 

4 21 M RTA Bilateral cortical, corpus callosum, dorsal midbrain & pons contusions 46 Yes 10 NEML 21 50 - H 2 MD 

5 31 M RTA Bilateral frontal, temporal & L occipito-parietal & midbrain contusions 259 No 6 EML 17 29 DC, R SDH  1 MD 

6 29 M Assault Bilateral frontal & temporal contusions. Bilateral temporal SDH 444 No 10 EML 17 16 DC, EVD H 2 GR 

7 58 M Fall Bilateral frontal, temporal & R parietal contusions. Bifrontal SDH & tSAH 122 No 10 NEML 20 34 - - 4 GR 

8 26 M RTA Bilateral frontal & temporal contusions. R temporal & L frontotemporal SDH 346 No 3 NEML 17 75 -  3 MD 

9 28 M Assault R frontotemporal contusions &R SDH 38 No 12 EML 24 36 DC  3 GR 

10 61 M Fall Bilateral frontal & temporal, corpus callosum & midbrain contusions. 

L SDH & IVH 

358 No 5 NEML 22 75 -  9 NA 

11 31 F Fall R frontal, temporal, parietal, occipital, bilateral thalamic & midbrain contusions 

R SDH & IVH 

599 No 3 EML 25 75 DC, R SDH H 4 VS 

12 70 F RTA Bilateral frontal, parietal, corpus callosum & midbrain contusions. tSAH & IVH 23 Yes 3 2 21 34 -  1 GR 
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Image processing 

Lesion analysis:  Lesions were defined in native FLAIR space (hand-drawn) by a single author (JG,  sense 

checked and confirmed for concordance by other authors TV and JPC), and segregated into regions 

defined as core, contusion and pericontusion using patient FLAIR, MPRAGE, GE and SWI images. SWI 

(three dimensional) and GE (two dimensional) were used to identify areas of bleeding and necrotic 

core in the contusion along with the structural imaging. Lesion core was identified as a region of mixed 

signal intensity consistent with haemorrhage and necrotic tissue, contusion as an area of high FLAIR 

signal, and pericontusion as a 1 cm border zone surrounding the contusion, as described previously in 

this thesis.113,204,232 Where visible, we also defined a rim of cytotoxic oedema (‘traumatic penumbra’) 

on ADC images (figure 9-1). The FLAIR images were coregistered to unsuppressed water image space 

using FSL, and the coregistration matrix subsequently applied to the lesion ROIs. For comparison, a 

comparable region of the normal appearing brain composed of mixed grey and white matter was 

defined. Parametric maps for NAA, Cho and Cr were created using the automated pipeline of MIDAS 

and were signal intensity normalised to institutional units (iu) based on the tissue water signal derived 

from the water reference dataset.96,113 

Voxel data with line width greater than 13 Hz were excluded from further analysis as previously 

described by Maudsley et al. combined transformation matrices were then applied to all parametric 

images used in the analyses. Spectroscopic data were analysed by the following with an additional false 

discovery rate (FDR) of 0.01 used to correct for the number of regions of interest (equivalent to 

uncorrected p<0.0023). 

Lesion free ROI analysis: Parametric maps of NAA, choline and Creatine were created with 

MIDAS.96,106,107,109,111-113,221,355 The WB 1H MRS parametric maps were spatially normalised using a two-

step approach using FSL.206,207 First, control T1 weighted images were coregistered to water 

spectroscopic images using FMRIB's Linear Image Registration Tool (FLIRT).234 This was followed by 

coregistration of control T1 weighted images to the MNI152 template using FMRIB's Non-linear Image 

Registration Tool (FNIRT).234 The “lesion free” analysis was performed by the exclusion of lesion core 

and contusion tissue following the transformation of the lesion ROI to normalised space. Combined 

transformation matrices were then applied to all parametric images used in the analyses. 

Representative white matter, deep grey and mixed regions of interest (ROIs) from the Harvard Oxford 

subcortical and MNI structural probabilistic atlases available within FSL were then applied in 

normalised space. All coregistered images were subsequently inspected to ensure that the ROIs were 

correctly aligned and corresponded to the regions specified. Prior to statistical tests, voxels were 

excluded based on the following quality criteria as previously described by Maudsley et al. (i) fitted 
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metabolite linewidth >13 Hz; (ii) having an outlying value >2.5 times the standard deviation of all valid 

voxels over the image; and (iii) having a Cramér-Rao Lower Bounds for fitting of Cr of >40%; and (iv) 

having >30% CSF contribution to the voxel volume. All coregistered images were subsequently 

inspected to ensure that the ROIs were correctly aligned and corresponded to the regions specified. 

The mean values for NAA, Cho and Cr in institutional units for each ROI were calculated using in-house 

software written in Matlab (Mathworks, Natick, USA).356,357 

 

 

 

 

 

 

 

 

 

 

Results 

Impact of oxygen therapy on whole brain proton spectroscopy in healthy volunteers 

The effect of an increase in the fraction of inspired oxygen on WB 1H MRS parameters in healthy 

volunteers using the standard template ROI is shown in Table 9-2 and Figure 9-2 . There were no 

significant changes in any of the WB 1H MRS parameters using the standard template ROI with an 

increase in the FiO2 (p values were 0.16, 0.86, and 0.77 for NAA, creatine, and choline respectively 

using ANOVA with Bonferroni correction). 

 Table 9-2 Impact of oxygen therapy on whole brain proton spectroscopy metabolite concentrations in healthy volunteers 
Data are mean ± standard deviation of the standard template regions of interest for N acetyl aspartate (NAA), Creatine and Choline for seven 
volunteers 

 Inspired oxygen concentration 

 Room air Sixty Hundred 

NAA 10850.5 ± 2961.4 10277.8 ± 3087.4 10254.5 ± 3251.1 

Creatine 8094.7 ± 3100.4 8194.9 ± 3130.1 8051.4 ± 2823.8 

Choline 2457.6 ± 1571.8 2480.4 ± 1583.9 2391.1 ± 1233.8 

 

 
Figure 9-1 Lesion based regions of interest 
Fluid attenuation inversion recovery (FLAIR) with lesion core (1, red), contusion (2, green) and pericontusion (3, yellow), and an apparent diffusion 
coefficient (ADC) map depicting the rim of cytotoxic oedema (low signal) surrounding the region of vasogenic oedema (high signal) related to the 
contusion following head injury. These show the brain tissue that represents the cytotoxic and vasogenic regions of interest used in the analyses. 



 
 

147 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-2 Metabolite concentration in healthy volunteers at room air, sixty and hundred percentage of oxygen   
Box and whisker plots within healthy volunteers for N Acetyl aspartate (NAA), Creatine and Choline. The central lines in each box denote median values, the lower and upper boundaries the 25th and 75th centile, the error bars the 10th and 90th 
centile, and the closed circles outlying data points. There were no statistically significant differences at various oxygen concentrations in volunteers. 
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Baseline metabolite concentration in at-risk regions after TBI 

The metabolic profile across the injured brain (Figure 9-3) and in healthy volunteers at normoxia is 

shown in Table 9-3 and Figure 9-4. There were no differences between the normal appearing brain in 

patients and healthy volunteers for NAA, creatine or choline (p values > 0.8). In patients, NAA was 

lower within contusion, pericontusion and vasogenic oedema regions, while creatine was lower within 

contusion and vasogenic oedema regions compared to normal appearing brain. 

 

 

 

 

 

 

 

 

Figure 9-3 Parametric maps of metabolites in a patient with traumatic brain injury 
Fluid attenuation inversion recovery (FLAIR) magnetic resonance image demonstrating extensive bilateral frontal and temporal contusions which extend to the parietal 
region on the left side of the brain.  The haemorrhagic lesion core has low signal on FLAIR corresponding to the presence of blood degradation products. The parametric 
maps obtained at normoxia show spatial variation of n-acetyl aspartate (NAA), creatine and choline related to these traumatic lesions. 
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Normoxia Hyperoxia Controls 

Mean SD) Range Mean (SD) Range Mean (SD) Range 

 

 

NAA 

Contusion 8909.2 ± 2603.9 5769.1 - 13454.3 8524.4 ± 2591.5 4447.9 - 12279.2 13161.8 ± 993.9 11100 - 14700 

Pericontusion 10916.9 ± 2059.8 5992.8 - 13416 10662.6 ± 1654.1 7937.1 - 12626.3 

Cytotoxic oedema  11217.2 ± 2991.8 795.7 - 16551.6 10178.5 ± 2372.6 5692.6 - 13592.6 

Vasogenic oedema 9734.9 ± 3613.8 4560 - 16551.6 8844.5 ± 3146.8 5258.7 - 14877.7 

Normal appearing brain 13856.7 ± 1311.9 10654.3 - 15580.4 12452.2 ± 2075.2 8727.9 - 15320.8 

 

 

Creatine 

Contusion 7531 ± 1484.4 4551.4 - 9245 7324.9 ± 1714 4239.3 - 9518.7 9396.2 ± 1361.4 7860 - 13900 

Pericontusion 8625.1 ± 1421.4 5856.9 - 10343.8 8581.3 ± 1054.4 6474 - 10197.8 

Cytotoxic oedema  8368.8 ± 1373 6150.5 - 10520.2 8019.1 ± 1129.2 6169.5 - 9190.6 

Vasogenic oedema 7489.2 ± 2188.1 3027.2 - 11320.9 7298.5 ± 1652.5 4455.6 - 9522.9 

Normal appearing brain 9419.6 ± 947.5 7539.3 - 10793.6 8927.2 ± 1273.2 6350.6 - 10957.4 

 

 

Choline 

Contusion 2275.8 ± 601.1 1459.7 - 3280.7 2286.2 ± 785 1100 - 3528.4 2577.9 ± 931.9 1620 - 6700 

Pericontusion 2590.8 ± 660.8 1365.8 - 3901.4 2520.8 ± 479.4 1752.6 - 3269.7 

Cytotoxic oedema  2708.2 ± 679.9 1758.1 - 3674.2 2440.9 ± 555.5 1227.4 - 3371.1 

Vasogenic oedema 2238.9 ± 564.9 1078.9 - 2912.5 2286.0 ± 653.8 1131.8 - 3640 

Normal appearing brain 2470.8 ± 372.8 1836.8 - 3027.4 2226.7 ± 499.3 1005.5 - 2902.1 

 

 

 

Table 9-3 Impact of oxygen therapy on injured brain measured with whole brain proton spectroscopy in patients with severe traumatic brain injury 
Data are mean ± standard deviation of the lesion regions of interest and the ranges for N acetyl aspartate (NAA), Creatine and Choline. There were no statistically significant differences between baseline normoxia and 
hyperoxia. 
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Figure 9-4 Baseline regional physiology  
Box and whisker plots within healthy volunteers (control), and normal appearing brain, pericontusion, contusion, cytotoxic oedema and vasogenic oedema from patients for N Acetyl aspartate (NAA), Creatine and Choline. 
The central lines in each box denote median values, the lower and upper boundaries the 25th and 75th centile, the error bars the 10th and 90th centile, and the closed circles outlying data points. # p < 0.003, ANOVA with 
Dunns test for comparison between normal appearing brain to ‘at-risk’ regions such as pericontusion, contusion, cytotoxic oedema and vasogenic oedema within patients. 
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Baseline metabolite concentration in injured brain  

Deep grey matter regions of interest: Significant decreases in NAA were found within five out of eight 

ROIs (63%), while choline was increased in both thalami (25% of ROIs) compared to healthy volunteers 

(Figure 9-5).  

Mixed cortical regions of interest: Significant decreases in NAA were found within seven out of 14 ROIs 

(50%), decreases in creatine in five ROIs (36%), and decreases in choline in two ROIs (14%) compared 

to healthy volunteers (Figure 9-6). 

White matter regions of interest: Significant decreases in NAA were found within 11 out of 15 ROIs 

(73%) and decreases in creatine in three ROIs (20%) compared to healthy volunteers (Figure 9-7). 

Impact of normobaric hyperoxia on metabolite concentration in patients 

The effect of an increase in the fraction of inspired oxygen on WB 1H MRS parameters within the 

normal appearing brain from deep grey matter, mixed cortical and white matter regions are shown in 

Figure 9-5,Figure 9-6 and Figure 9-7. While there were significant differences between baseline 

patients and healthy volunteers for NAA, creatine and choline within several lesion free brain regions 

were found, but there were no changes seen following exposure to hyperoxia. 
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Figure 9-5 Region of interest analysis within deep grey matter regions 
N Acetyl aspartate (NAA), Creatine and Choline within atlas regions of interest (ROI) applied in normalised space in 11 healthy volunteers and 12 patients. In patients, these analyses were performed on “lesion free” brain by exclusion of 
lesion core and contusion tissue. Data displayed are mean ± standard deviation for deep grey matter ROIs for healthy volunteers (black), patients at baseline (grey) and following hyperoxia (white). (*p < 0.01 unpaired t test with Bonferroni 
correction) for comparison between healthy volunteers and baseline patients. There were significant differences between healthy controls and region of interest at baseline in patients(normoxia) for NAA, and choline. Caud L, caudate left, 
Caud R, caudate right; Thal  L, thalamus left; Thal R, thalamus right, Palli R, pallidum right, Palli L, pallidum Left, Put R, putamen right,  Put L, putamen left. 
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Figure 9-6 Region of interest analysis within mixed cortical regions of interest 
N Acetyl aspartate (NAA), Creatine and Choline within atlas regions of interest (ROI) applied in normalised space in 11 healthy volunteers and 12 patients. In patients, these analyses were performed on “lesion free” brain by exclusion 
of lesion core and contusion tissue. Data displayed are mean ± standard deviation for mixed ROIs for healthy volunteers (black), patients at baseline (grey) and following hyperoxia (white). (*p < 0.01 unpaired t test with Bonferroni 
correction) for comparison between healthy volunteers and baseline patients. There were significant differences between healthy controls and region of interest at baseline for patients for NAA (seven regions), creatine (five regions) 
and choline (two regions) . CB R cerebellum right, CB L cerebellum left, Front R, frontal lobe right, Front L, Frontal lobe left, Hipp R, hippocampus right, Hipp L, hippocampus left, Occ R, Occipital right, Occ L, Occipital left,  Par R, parietal 
right, Par L parietal left, Pons R, pons right, Pons L, pons left, Temp R, Temporal right, Temp L, temporal left. 
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Figure 9-7 Region of interest analysis within white matter regions of interest 
N Acetyl aspartate (NAA), Creatine and Choline within atlas regions of interest (ROI) applied in normalised space in 11 healthy volunteers and 12 patients. In patients, these analyses were performed on “lesion free” brain by 
exclusion of lesion core and contusion tissue. Data displayed are mean ± standard deviation for white matter ROIs for healthy volunteers (black), patients at baseline (grey) and following hyperoxia (white). (*p < 0.01 unpaired 
t test with Bonferroni correction) for comparison between healthy volunteers and baseline patients. There were significant differences between healthy vounteers and baseline(normoxia) white matter normal appearing 
regions of interest. ACC, anterior corpus callosum; BCC, body corpus callosum; PCC, posterior corpus callosum; ATR L, anterior thalamic radiation left; ATR R, anterior thalamic radiation right; SLF L, superior longitudinal 
fasciculus left; SLF R, superior longitudinal fasciculus right; ILF L, inferior longitudinal fasciculus left; ILF R, inferior longitudinal fasciculus right; C L, CST L, corticospinal tract left; CST R, corticospinal tract right, VMB, ventral 
midbrain, DMB, dorsal midbrain. 
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Discussion  

In this study we used whole brain proton spectroscopy (WB 1H MRS) to demonstrate derangements 

in brain metabolism (NAA, creatine and choline) across the injured brain, and whether exposure to 

normobaric hyperoxia had any beneficial impact. Within the vicinity of brain lesions, we found that 

contusion, pericontusion and the region of vasogenic oedema showed the most significant reductions 

in NAA and creatine compared to healthy volunteers and normal appearing brain in patients. In lesion-

free brain regions, there were significant reductions in NAA in deep grey matter (63% of ROIs), mixed 

cortical regions of interest (50% of ROIs) and white matter regions (73% of ROIs) compared to healthy 

volunteers. There were also reductions in creatine within mixed cortical (50%) and white matter ROIs 

(20%). These data suggest that following acute severe TBI there is micro-architectural disruption with 

neuronal and mitochondrial dysfunction, leading to a reduction in NAA,168,339,340,342,346,349,358-364 and 

energy failure resulting in a depletion of creatine.239,365 There was also an increase of choline in the 

thalamus suggestive of neuroinflammation and breakdown of neurons associated with poor 

neurocognitive outcome.365-368 

We have previously shown that normobaric hyperoxia (NH) through an increase in brain tissue 

oxygenation can  reduce microdialysis lactate and the lactate-pyruvate ratio and improve brain oxygen 

metabolism and structural integrity in “at risk” regions.19,164,204 We found no evidence of any impact 

of normobaric hyperoxia on NAA, creatine or choline using whole brain proton spectroscopy in 

patients or healthy volunteers. There were no identifiable benefits in lesional, perilesional, the regions 

of cytotoxic and vasogenic oedema and normal appearing brain following trauma. Further studies 

should address whether a longer period of exposure to normobaric hyperoxia is required to 

demonstrate evidence of possible benefit. Previous studies have demonstrated that NH results in an 

increase in brain tissue oxygen levels and an improvement in the cellular redox state.309,369 The effects 

that occur from an improvement in tissue oxygenation are dependent on oxygen delivery and local 

blood flow. While the measurement of lactate would confirm the existence of tissue ischaemia after 

NH, at an echo time of 70ms lactate cannot be reliably quantified due to its peculiar chemical shift as 

a doublet which peaks at long TEs. At short echo times, it is superimposed on the mobile lipids after 

head injury.While the use of high partial pressures of oxygen may be beneficial in a variety of disease 

states and following brain injury, there is a relatively narrow margin of safety due to the known toxic 

effects such as atelectasis and tracheobronchitis while more prolonged exposure (days) can result in 

diffuse pulmonary damage.345,349,363,364,370-372 Central nervous system toxicity is limited to hyperbaric 

exposures, and symptoms vary in severity and onset depending on the partial pressure and duration 

of exposure. Symptoms include nausea, headache, dizziness, blurred vision and ultimately seizures. 
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Concerns regarding oxidative injury have led to the less liberal use of oxygen therapy in conditions 

such as cardiopulmonary resuscitation, myocardial infarction and stroke — the toxic effects are 

related to the generation of reactive oxygen species (ROS) and oxidative cellular injury.281,364 The 

generation of ROS is increased following an experimental head injury, and this effect can be 

potentiated by hyperoxia therapy and result in further tissue injury. However, clinical studies in head 

injury have used short exposures of normobaric and hyperbaric hyperoxia and failed to demonstrate 

increased oxidative stress.315,318,319 While these clinical studies suggest that the use of high 

concentrations of inspired oxygen in this context is safe, further studies are required to determine 

whether such therapy has any beneficial impact on patient outcome. We wished to undertake a Phase 

II study of hyperoxia following head injury using WB 1H MRS as an intermediate imaging endpoint, to 

show whether the structural and metabolic changes previously demonstrated resulted in metabolic 

improvements as defined by WB 1H MRS in at-risk traumatic penumbral tissue. The approach was 

based on the fact that previous imaging studies have shown increases in oxygen metabolism25 and 

reversal of cytotoxic oedema within at-risk and perilesional brain tissue following TBI.204 Using WB 1H 

MRS we were unable to demonstrate any impact of NH across the injured brain. Importantly, we also 

demonstrate that this is not because exposure to hyperoxia produces a systematic change in WB 1H 

MRS signal in both healthy volunteers and patients that would limit the utility of such imaging. 

The maximum FiO2 in this interventional study was limited to 0.8 to reduce potential side effects, 

including alveolar atelectasis and pulmonary injury. Other published studies have used short term 

exposure with a FiO2 of 1.0 or repeated short term exposure to hyperbaric oxygen. These have not 

reported an increased incidence of toxicity. While 9 of 14 subjects underwent intervention within 72 

hours of injury, only two subjects were studied within 24 hours of injury. Previous studies have 

demonstrated that evidence of ischaemia is more evident at this earlier time point following injury. 

However, derangements in brain metabolism continue for many days post-injury. Therefore, the 

absence of change in this small pilot cohort does not prove, or disprove, that exposure to NH may 

result in any significant biological effect. We did not account for hypothermia as a treatment 

administered to patients (only three patients) as a part of staged management for ICP increases 

because of small numbers. This may have altered the Cr levels and neuronal energetics in the brain. 

Another limitation is small number of patients in this phase two study using imaging as a biomarker. 

It is plausible that that may have contributed to the lack of benefit shown in this study.  Rather, it is 

likely that any effect on brain metabolism that results from exposure to NH may require a longer 

period of exposure, or that WB 1H MRS is not a sensitive biomarker in this regard. Future studies 

should explore whether such methodology could be refined to address these issues further.  
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Chapter 10 Summary and conclusions 

In this thesis, I have used diffusion tensor imaging proton (DTI), whole brain spectroscopy (WB 1H 

MRS), and 15O in conjunction with 18Fluoromisonidazole ([18F]FMISO) positron emission tomography, 

to improve our understanding of the pathophysiological mechanisms of energy failure and neuronal 

loss following acute traumatic brain injury. The interpretation of imaging was optimised through 

assessment of the impact of inter-subject variability and within-session reproducibility on data 

analyses. The results of my experiments provide an improved understanding of the incidence and 

burden of cerebral ischaemia, explored mechanisms responsible for the usage of normobaric 

hyperoxia (NH) as a therapeutic option (using 18Fluoromisonidazole ([18F]FMISO)), and assessed the 

impact of NH as a therapeutic option within injured and normal appearing brain following TBI. 

Methodological Aims 

Given the potential errors in the acquisition of DTI and WB 1H MRS data, the following areas were 

examined before moving to the substantive studies described in this thesis: 

Inter-subject variability and reproducibility of Diffusion Tensor Imaging within and between different 

imaging sessions (Chapter 4) 

The quantification of DTI and the construction of parametric maps are heavily reliant on the underlying 

statistical accuracy of this technique. To optimise the results and applicability of data for patients with 

TBI, a prospective study was undertaken in a group of healthy volunteers. Twenty-six healthy 

volunteers without any history of neuropsychiatric disorder or substance abuse underwent imaging 

using a 3T Siemens Verio MRI scanner (Siemens AG, Erlangen, Germany) within the Wolfson Brain 

Imaging Centre (WBIC), University of Cambridge. All volunteers were right-handed (ten males and 

sixteen females) with mean (range) age of 34 (25 – 44) years and employed by Cambridge University 

Hospitals NHS Trust. In this methodological experiment, I obtained the confidence limits of normative 

data in grey, white, deep grey and mixed regions of interest, which allowed further studies in patients. 

Such data processing techniques were aimed to create a pipeline to analyse the DTI data accurately 

and to use it as an imaging biomarker to study neurotherapeutic options. The results of these studies 

provide reference data concerning intersubject variability and reproducibility of DTI conducted in a 

group of healthy volunteers. 
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Comparison of inter subject variability and reproducibility of whole brain proton spectroscopy (Chapter 

5) 

This study provides additional reference data concerning intersubject variability and reproducibility of 

commonly used metabolite ratios (Cho/Cr, NAA/Cho and NAA/Cr) and individual signal-intensity 

normalised metabolite concentrations (NAA, Cho and Cr) in a group of 32 healthy volunteers. The 

reproducibility of metabolite ratios was lower than intersubject variability (10 – 15% vs 15 – 20% for 

NAA/Cr, NAA/Cho and Cho/Cr) but there was substantial variability across the brain for all the 

calculated parameters. The within and between session reproducibility measurements were similar 

for Cho/Cr and NAA/Choline, but for NAA/Creatine between session, reproducibility was lower than 

within session reproducibility. For intensity normalised metabolite concentrations (NAA, Cho and Cr) 

we found that intersubject variability was high, particularly for Cho. The reproducibility of metabolites 

was lower than intersubject variability (10 – 15% vs 15 – 30% for NAA, Cho and Cr) but there was 

substantial variability across the brain for all the calculated parameters. The within and between 

session reproducibility measurements were similar for Cho and Cr, but for NAA between session 

reproducibility was lower than within session reproducibility. The estimated overall population 95% 

prediction intervals for zero change of repeat MIDAS measurements were 3419.4, 1826.4 and 3042.8 

iu for NAA, Cho and Cr respectively. Based on these additional results, a reference database 

concerning intersubject variability and reproducibility of WB 1H MRS in various regions of interest in 

volunteers, we conducted experiments with normobaric hyperoxia in patients with TBI. These two 

studies suggest that we could use absolute metabolite concentration of metabolites as a biomarker 

for evaluating normobaric hyperoxia as a therapeutic option provided that we apply appropriate 

corrections for the within session, between session and intersubject variability of the measurement 

techniques. 

 

Experimental Hypotheses 
 

Hypothesis I: Tissue hypoxia can occur in the absence of conventional macrovascular ischaemia and is 

consistent with diffusion hypoxia resulting from microvascular ischaemia (Chapter 6) 

The spatial distribution of cerebral ischaemia (IBV) and tissue hypoxia (HBV) did not match, with the 

HBV found closely related to injured regions and the surrounding border zone. The IBV and HBV had 

comparable reductions in CBF and CMRO2, but the HBV had lower CBV and OEF and more CMRO2 

values within the range of irreversible injury. Evidence of cerebral ischaemia and tissue hypoxia were 

also found within brain regions that appeared structurally normal. These findings suggest that IBV and 
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HBV identify brain regions at risk of ischaemic injury but that the underlying pathophysiological 

mechanisms differ. Within the HBV there is little evidence of classical macrovascular ischaemia. 

Instead, tissue hypoxia occurs in the absence of high OEF and is suggestive of microvascular ischaemia. 

Hypothesis II: Diffusion tensor imaging can be utilised to demonstrate the impact of normobaric 

hyperoxia (NH) within at-risk pericontusional tissue following traumatic brain injury (Chapter 7) 

The rim of cytotoxic oedema that we have previously defined as a region of ‘traumatic penumbra’ 

around brain contusions demonstrated a significant improvement in ADC values towards normal. 

These results suggest that NH results in benefit within the rim of cytotoxic oedema around brain 

contusions. This data supports the use of NH as a therapeutic intervention to overcome the 

microvascular ischaemia demonstrated in hypothesis I. 

Hypothesis III: Normobaric hyperoxia will improve derangements in diffusion tensor imaging found 

distant from visible contusions following traumatic brain injury (Chapter 8) 

There were no significant changes in fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity 

(RD) and mean diffusivity (MD) with an increase in the fraction of inspired oxygen (FiO2) within normal 

appearing white matter and mixed cortical and deep grey matter regions of interest (ROIs). This study 

implies that a short period of NH has no beneficial impact within the brain that appears normal 

following head injury using conventional structural imaging. 

Hypothesis IV: Normobaric hyperoxia will improve metabolic derangements identified by whole-brain 

proton spectroscopy following traumatic brain injury (Chapter 9) 

We found that contusion, pericontusion and the region of vasogenic oedema showed the most 

significant reductions in NAA and creatine compared to healthy volunteers and normal appearing 

brain in patients. In lesion-free brain regions, there were significant reductions in NAA within deep 

grey matter, mixed cortical regions of interest and white matter regions compared to healthy 

volunteers. There were also reductions in creatine within mixed cortical and white matter ROIs. These 

data suggest that following acute severe TBI, there is micro-architectural disruption with neuronal and 

mitochondrial dysfunction, leading to a reduction in NAA, and energy failure resulting in a depletion 

of creatine. Despite evidence of widespread metabolic derangements, these studies showed no 

apparent benefit within brain regions defined as lesional, perilesional, cytotoxic and vasogenic 

oedema with short term exposure to NH. There were also no apparent benefits within brain regions 

that appeared structurally normal following head injury. 
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Conclusions 

This thesis demonstrates that the pathophysiological derangements following TBI are complex and 

heterogeneous. They include classical microvascular ischaemia and tissue hypoxia consistent with 

microvascular ischaemia and mitochondrial dysfunction. Such derangements suggest a target for 

novel therapeutic interventions and normobaric hypoxia (NH) was chosen as a therapeutic option that 

can increase tissue oxygenation and could result in benefit. Using DTI, we found an improvement in 

tissue microstructure within perilesional tissue, but derangements in metabolism identified using 

whole-brain proton spectroscopy did not improve following a short NH exposure. These discordant 

findings warrant further exploration of the potential therapeutic benefits of a longer period of 

exposure to such therapy within a cohort of TBI subjects at risk of metabolic derangements, further 

neuronal loss and poor outcome. 

  



 
 

161 

 
 

 

Chapter 11 The direction of future research 
 

The results of the studies described in this thesis provide answers to some of the questions that were 

raised in the introduction. However, several issues remain to be answered, and the data raise new 

questions that will require further experimental studies. The studies detailed in this thesis could be 

extended or improved upon in several ways. 

 

Extension of present studies 

Research hypothesis: Would increasing the number of patients and/or the duration of hyperoxia 

demonstrate evidence of benefit? 

These studies indicate that for the assessment of the impact of normobaric hyperoxia (NH) on 

cognitive outcomes, the examination of more patients with TBI in a multicentre clinical trial within the 

first 12-48 hours of head injury is required. To enrich the cohort studied, the inclusion criteria should 

include the requirement of stage two therapies for high intracranial pressures (ICP) at randomisation, 

as this subgroup of patients, appear to be at greatest risk of tissue hypoxia and microvascular 

ischaemia. Also, the selection of this patient group would allow mechanistic evaluation of the 

incidence, mechanisms and effect on the outcome of regional ischaemia in clinical head injury. 

 

Data analysis techniques 

One of the aims of this thesis was to demonstrate that derangements in physiology following head 

injury are not limited to regions with clearly identifiable structural lesions. Our studies also suggest 

that normobaric hyperoxia is helpful within regions of the at-risk brain with evidence of cytotoxic 

oedema on MRI. The next step would be to test the impact of normobaric hyperoxia in regions of 

microvascular ischaemia identified using novel imaging techniques such as [18F]FMISO PET. The follow-

up imaging studies are as follows  

Is there evidence that microvascular ischaemia defined by [18F]FMISO PET in TBI would benefit from 

normobaric hyperoxia therapy? 

These studies would utilise ROIs with evidence of microvascular ischaemia generated from [18F]FMISO 

PET imaging. These patients would then be subjected to normobaric hyperoxia and its impact on 

microvascular ischaemia assessed. Such data would help define the anatomical and physiological 

characteristics of brain tissue that represents a realistic target for neuroprotective therapy. 
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Sequential imaging studies and neurocognitive outcome assessment 

To address the importance of early physiological derangements on the outcome would require a series 

of [18F]FMISO and 15O PET data acquisitions and comparison with the late (twelve months) structural 

(volumetric T1 and T2 MRI) and cognitive outcome (eGOS). Such data would allow the generation of 

putative thresholds for tissue damage. The significant limitations of such a technique include the high 

incidence of secondary ischaemic insults and heterogeneity of lesions after head injury. Although 

there are methodological difficulties, such data would provide evidence concerning the significance 

of early physiological derangements such as microvascular ischaemia and provide a framework upon 

which to base clinical care and future neuroprotective therapy. Absence of long term longitudinal 

follow-up at one year is a significant limitation in traumatic brain injury research, but it is hard to 

achieve due to the inherent complexity and heterogeneity of this disease. The outcome of large 

patient cohorts with serial imaging (Track-TBI and Center-TBI) studies may help address this need. 

 

Imaging of neuronal loss 

Although several studies of clinical head injury have provided insights into pathophysiology, and many 

interventions are useful in pre-clinical models, most clinical trials of novel neuroprotective 

interventions have failed to show a benefit. It is imperative that further studies are required to map 

the temporal profile of neuronal loss after head injury. These studies would inform when best to apply 

neurotherapeutic therapies to improve outcome. The data in this thesis provide evidence of regional 

microvascular ischaemia after head injury. Although these data provide insight into pathophysiological 

mechanisms of cerebral ischaemia following a head injury, they raise several important questions: 

a) How does microvascular dysfunction relate to long term neuronal loss? 

 
b) What are the time windows for effective neuroprotection? 

 
c) How does the extent and temporal relationship of neuronal loss relate to behavioural outcome? 

 

The answers to these questions will go a long way in defining the spatial, temporal and physiological 

characteristics of tissue that represents a realistic target for neuroprotection following head injury. 

To investigate these issues adequately in clinical head injury will require a variety of imaging 

techniques and assessment of neurocognitive outcome. In addition to sequential 15O PET imaging, 

techniques such as MRI (fluid attenuation inversion recovery (FLAIR), DWI and diffusion tensor 
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imaging (DTI)), WB 1H MRS and phosphorus spectroscopy should allow improved demonstration of 

the acute and late impacts of head injury on brain metabolism and tissue outcome. 

 

Clinical implications and the effects of therapy 

These studies have shown early physiological derangements such as microvascular ischaemia. The 

significance of such derangements and how it translates to long term neuronal loss are unknown. To 

understand this, further studies with serial structural imaging, including diffusion tensor imaging, are 

required along with longitudinal neurocognitive assessments. Interventions such as NH also need to 

be longer, at least covering the period where intensive therapy for ICP control is needed in patients 

with evidence of microvascular ischaemia and mitochondrial dysfunction. The data presented in this 

thesis provide additional evidence of the potential use of normobaric hyperoxia in head injury. The 

selection of an optimal partial pressure of oxygen or brain tissue PO2 based on neuroimaging was not 

addressed. 

These studies should be extended to hyperosmolar therapies to include mannitol and hypertonic 

saline. Mannitol is a sugar alcohol which exerts its ICP-lowering effects via an immediate non-osmotic 

and slightly delayed osmotic effects. The early plasma expansion reduces blood viscosity, and this, in 

turn, improves regional cerebral microvascular flow and oxygenation. Mannitol also establishes an 

osmotic gradient between plasma and brain cells, drawing water from the cerebral extracellular space 

into the vasculature, thereby reducing cerebral oedema. Hypertonic saline administration produces 

an osmotic gradient between the intravascular and intracellular/interstitial compartments, leading to 

shrinkage of brain tissue (where the blood-brain barrier is intact) and therefore a reduction in ICP. 

Hypertonic saline also augments volume resuscitation and increases circulating blood volume, mean 

arterial blood pressure and cerebral perfusion pressure. Future therapeutic studies should target the 

effects of alternative approaches that are used to improve local perfusion, i.e. those of mannitol and 

hypertonic saline. The regional effects of such interventions could be addressed by the same methods 

employed in the studies in this thesis. 
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