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Abstract

The prevalence and consequences of convection perpendicular to the plane

of accretion disks have been discussed for several decades. Recent simula-

tions combining convection and the magnetorotational instability have given

fresh impetus to the debate, as the interplay of the two processes can en-

hance angular momentum transport, at least in the optically thick outburst

stage of dwarf novae. In this thesis we seek to isolate and understand the

most generic features of disk convection, and so undertake its study in both

hydrodynamical and magnetohydrodynamical models.

In the first part of this thesis we investigate hydrodynamic convection

in disks. First, we investigate the linear phase of the instability, obtaining

estimates of the growth rates both semi-analytically, using one-dimensional

spectral computations, as well as analytically, using WKBJ methods. Next

we perform three-dimensional, vertically stratified, shearing box simulations

with the conservative, finite-volume code PLUTO, both with and without

explicit diffusion coefficients. We find that hydrodynamic convection can,

in general, drive outward angular momentum transport, a result that we

confirm with ATHENA, an alternative finite-volume code. Moreover, we

establish that the sign of the angular momentum flux is sensitive to the dif-

fusivity of the numerical scheme. Finally, in sustained convection, whereby

the system is continuously forced to an unstable state, we observe the for-

mation of various coherent structures, including large-scale and oscillatory

convective cells, zonal flows, and small vortices.

In the second part of this thesis we investigate magnetohydrodynamic

convection in disks. First, we perform inviscid, three-dimensional, vertically
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stratified zero-net-flux MHD shearing box simulations with the conserva-

tive, finite-volume code PLUTO without explicit cooling. We find that MRI

heating and weak cooling facilitated through advection of material across the

vertical boundaries alone results in a convectively stable disk structure. Next

we explore the interaction between convection and the MRI in controlled nu-

merical experiments in which we employ an explicit height-dependent cooling

prescription and explicit uniform resistivity. We find two characteristic out-

comes of the interaction between the two instabilities: MRI-dominated and

MRI/convective cycles. In particular we find that MRI/convective cycles lead

to alternating phases of convection-dominated quiescence (during which the

turbulent transport is weak) and MRI-dominated outbursts. During these

outbursts angular momentum transport is enhanced by nearly an order of

magnitude. Thus convection and the MRI do not generally interact in an

additive manner, though they can certainly interact in non-trivial ways. In

addition we find that convection in the non-linear phase takes the form of

large-scale and oscillatory convective cells, reproducing a key result of our

hydrodynamic investigations in a self-consistent manner, and demonstrating

that these structures are a generic feature of turbulent convection in astro-

physical disks.

In the final part of this thesis (which is independent of the first two) we

investigate the stress-pressure relationship in disks. The stresses accompa-

nying MRI turbulence are related to the pressure in the disk, and have been

shown to increase and decrease with the pressure. We examine the time

lag associated with this dependence and discuss its implications for thermal

instability.
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Chapter 1

Introduction

1.1 Accretion disks

An accretion disk is an astronomical object consisting of a disk of gas, dust,

or plasma in differential rotation about a central gravitating source, such as

a black hole, a white dwarf, a neutron star, or a young star. If a mechanism

exists for transporting most of the angular momentum outwards (away from

the central accretor), most of the mass of the disk will spiral inwards (we say

it is accreted). Such disks have been observed in a wide range of contexts

in astrophysics: around young stars (termed protoplanetary disks, or PPDs

for short), in close binary systems whereby one of the stars in the binary

accretes gas from its companion (termed cataclysmic variables [CVs] and X-

ray binaries [XRBs]), and also around the supermassive black holes at the

centers of galaxies (termed active galactic nuclei [AGN]).

Protoplanetary disks typically have radii in excess of 102 astronomical

units (AU), and have been directly imaged (Burrows et al., 1996; Brogan

et al., 2015). AGN have gaseous disks in their inner regions that have similar

sizes to PPDs reaching up to 103 AU for M87 (EHT Collaboration, 2019),

but can extend up to tens of parsecs (∼ 107 AU) if their outer dusty tori

are included (Ford et al., 1994; Jaffe et al., 1996). Disks in binary systems

are much smaller, typically 5 × 10−3 AU, or comparable to the solar radius

(which is ∼ 4.6 × 10−3 AU or around 7 × 1010 cm), and are too small to be
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imaged directly. Nevertheless, there is strong indirect observational evidence

for disks in binary systems both from their spectra and from variations in

their light curves. These observations will be discussed in more detail in

Section 1.2.3.

Galactic disks (such as the Milky Way), planetary rings (such as Saturn’s

rings), and accretion disks are three disk-like classes of object, that seem

similar at first glance but are quite different in terms of their accretion rates,

composition, dynamics (especially rotation law), and ratio of radial and ver-

tical sizes. The most important distinguishing factor between these classes

is the accretion rate. Planetary rings accrete on timescales much longer than

do gaseous disks: a rough estimate by Esposito (1986) yields a lifetime of

1012 years for Saturn’s rings, compared to typical PPD lifetimes of several

millions of years (Mamajek, 2009). Galactic disks do not really ‘accrete’ in a

comparable manner, except in the inner regions of AGN. Galactic disks also

differ from accretion disks primarily in that the self-gravity of their baryonic

components (stars and gas) completely determines the rotation law on scales

much less than that of the galaxy,1 while the rotation law of the galaxy on

scales comparable to the size of the galaxy is thought to be determined by

its dark matter content. In contrast, in accretion disks, which are composed

primarily of gas, it is the gravity of the central object that dominates the ro-

tation law of gas in the disk rather than the disk’s self-gravity (an exception

is protoplanetary disks in their early stages of formation, which are known

to be self-gravitating). At the other end of the spectrum, planetary rings

consist mostly of chunks of rock and ice, and their evolution is driven pri-

marily by inelastic collisions between their components. Finally, planetary

rings are typically much thinner than gaseous accretion disks, with a typical

ratio of characteristic scale height perpendicular to the plane of the disk H

to cylindrical radial size r of H/r ∼ 10−7 compared to H/r ∼ 10−3 − 10−2

for gaseous disks, and H/r ∼ 10−2− 0.1 for the stellar component of galactic

1As an example, the ratio of the magnitude of the gravitational force of the Sun

on the Earth to the gravitational force of Sgr A* on the Earth is given by F�/FA∗ =

(M�/MA∗)(dA∗/d�)2 ∼ 1011, where d� is the Eath-Sun distance, and dA∗ is the distance

of the Solar System from the galactic center.
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disks (Latter et al., 2017). Accretion disks, galaxies, and planetary rings are

typically treated separately in the literature, and in this thesis we restrict

our focus to accretion disks, only.

Accretion disks are common in space. Disks have been deduced from their

infrared excess in 60% to 80% of stars observed in nearby (. 1400 ly) clusters

younger than 1 Myr (Mamajek, 2009; Williams & Cieza, 2011). About one-

third of stars in the Milky Way are in binary or multiple systems (Lada,

2006), and Moe et al. (2019) report that the fraction of close (interacting)

binaries from various surveys varies from 10%±3% to 53%±12% depending

on the metallicity (i.e. the ratio of the abundance of iron to hydrogen). Some

fraction of these interacting binaries will have disks. Finally Chiang et al.

(2019) have estimated an AGN fraction of about 37% in a sample of nearly

16.5 thousand galaxies. The prevalence with which disks occur in space

can be understood through the relatively simple physical ingredients needed

to form a disk: gravity, rotation, and dissipation. These basic ingredients

admit a variety of formation mechanisms for disks, from the gravitational

collapse of a cooling rotating molecular cloud to form a torus of dust and gas

(the precursor to a protoplanetary disk), to the self-intersection and viscous

spreading of a stream of gas transferred from a secondary to a primary in

a close binary to form cataclysmic variable and X-ray binary disks, to the

accretion of gas onto supermassive black holes to form AGN.

If the disk is sufficiently cool that the radial pressure gradient is small, the

disk is said to be thin; quantitatively, H/r � 1. In this case the dominant

force balance in the cylindrical radial direction is given between the radial

component of gravity and the centrifugal force. In the vertical direction (i.e.

perpendicular to the plane of the disk) the dominant balance is between the

vertical component of gravity and the vertical pressure gradient. Finally,

the disk is in thermal equilibrium if there is a balance between heating and

radiative cooling.

In order for a disk to accrete there must be a residual inward drift of

material in addition to the dominant orbital motion. This can be facili-

tated by the viscous shear exerted between neighboring disk annuli orbiting

with different periods. A faster rotating ‘inner’ annulus will drag forward

11



its neighboring, slower moving, ‘outer’ annulus, and vice versa, the outer

annulus will retard the motion of the inner annulus. In the context of a disk

where the orbiting fluid elements are sitting in the gravitational potential of

a point source this will result in an increase in the orbital energy of the outer

annulus (i.e. it will move outwards), whereas the orbital energy of the inner

annulus will decrease (i.e. it will move inwards), and so the annulus will

spread. Furthermore since the viscous shear removes net orbital energy from

the annulus, the net effect of this process is a transfer of mass inwards and

a transfer of angular momentum outwards. In terms of the thermodynam-

ics, the viscous shear is responsible for extracting orbital and gravitational

potential energy in the disk which is subsequently converted into thermal en-

ergy (heat), and eventually carried away by radiation. Thus thermalization

of orbital energy in the disk contributes to the disk’s luminosity, leading to

observational signatures, which we discuss in greater detail in Section 1.2.3).

The precise mechanism facilitating outward transfer of angular momen-

tum in astrophysical disks remains an outstanding problem. It is known

that ordinary molecular viscosity results in accretion time-scales much longer

than the observed lifetimes of disks.2 Thus, angular momentum must be re-

moved through other processes. Hypotheses include (a) enhanced viscosity

(i.e. diffusion of momentum) due to turbulence induced by some instability,

(b) mass outflow through winds and jets, and (c) tidally induced waves (Ju

et al., 2016; Kurbatov et al., 2014). Not all disks exhibit jets or are subject

to strong tidal forces, however, therefore the focus for the last forty years has

been on enhanced viscosity due to turbulence νt as providing the dominant

mechanism for accretion. The simplest one-dimensional model of a disk is

often expressed through the viscous-diffusion equation, which governs the

time-evolution of an azimuthally and vertically-averaged annulus of surface

2To see this explicitly, consider the example given in Lin & Papaloizou (1985) for a

protoplanetary disk. Taking the (cylindrical) radial size to be r ∼ 1015 cm (∼ 70 AU),

and estimating the molecular viscosity from kinetic theory to be ν ∼ 106 cm2 s−1, the

viscous diffusion timescale is estimated to be τ ∼ r2/ν ∼ 1016 years. This is ten orders

of magnitude greater than protoplanetary disk lifetimes of ∼ 106 years inferred from

observations (Mamajek, 2009).
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density Σ and is given by

∂Σ

∂t
= −1

r

∂

∂r

[(
d(r2Ω)

dr

)−1
∂

∂r

(
νtΣr

3dΩ

dr

)]
, (1.1)

where Ω(r) is the angular frequency of the disk, which is a function the

cylindrical radius r. For a Keplerian disk, for which the angular frequency is

given by Ω = ΩK =
√
GM/r3/2, Equation 1.1 reduces to

∂Σ

∂t
=

3

r

∂

∂r

[
r1/2 ∂

∂r
(νtΣr

1/2)

]
. (1.2)

In early theoretical models of disks the turbulent viscosity νt was para-

metrized through a dimensionless parameter α through νt = αcsH, where cs

is the sound speed of the gas and H is the disk vertical scale height (Shakura

& Sunyaev, 1973). Later it was shown that the magnetorotational instability

(MRI), an instability associated with the interplay between magnetic fields

and the rotation of the disk, could lead to sustained turbulence and angular

momentum transport in ionized disks (Balbus & Hawley, 1991). Neverthe-

less, the α constrained from observations of dwarf novae during outburst

(α ∼ 0.1) remains an order of magnitude greater than that measured in sim-

ulations of MRI turbulence with zero-net magnetic flux (α ∼ 0.01) (King

et al., 2007).

More recently, simulations of MRI turbulence in stratified disks have

shown that the MRI is capable of generating a convectively unstable entropy

gradient. In particular, there has been some indication that an interplay

between convection and the magnetorotational instability might enhance an-

gular momentum transport (Bodo et al., 2013b; Hirose et al., 2014). In

addition convection transports heat from the disk mid-plane to the surface,

and might therefore be important in determining the quasi-steady vertical

structure of a disk.

The key aim of this thesis is to study internal flows and turbulence in

accretion disks, and how these contribute to the transport of angular mo-

mentum and heat. Thus we focus our investigations on convection, the

magnetorotational instability, and the interplay between the two. In Sec-
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tion 1.2 we discuss observations of disks, focusing on cataclysmic variables,

and on dwarf novae in particular, as these systems are the most promising

ones for exhibiting convective and MRI turbulence. A general introduction

to convection, including various applications to both geophysics and astro-

physics, is presented in Section 1.3. Applications of convection to different

disk types (dwarf novae, X-ray binaries and AGN, and protoplanetary disks)

are discussed separately in Section 1.4. In Section 1.5 we review the existing

literature studying the dynamics of both hydrodynamic and magnetohydro-

dynamic convection in accretion disks. Finally in Section 1.6 we present an

outline of the remainder of the thesis.

1.2 Background on cataclysmic variables

While convection has been discussed in the literature in the context of nearly

all types of disks (see Section 1.4), the most promising application is to a

subset of cataclysmic variables known as the dwarf novae. It is important to

emphasize, however, that there is currently no direct observational evidence

for convection in dwarf novae,3 as there is for, for example, of convection

in the Sun (see Figure 1.9). Nevertheless there is compelling theoretical

and numerical evidence that convection should be present in dwarf novae

(at least during outburst), and this theory in turn has been motivated by

observations. Thus it is important to know the basic observational properties

of these systems, which are reviewed below.

1.2.1 Classification of cataclysmic variables

Accretion disks can form in binary systems in which a white dwarf primary

and a secondary star interact via mass transfer of material from the sec-

ondary to the primary. When the white dwarf is co-orbiting with a low mass

secondary (i.e. M2 < M1, where M1 denotes the mass of the white dwarf)

that is on or near the main sequence, such that there is mass transfer from

the secondary to the white dwarf through Roche lobe overflow (i.e. when the

3Nor of the MRI, for that matter.
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secondary fills its critical equipotential surface), the system is called a cata-

clysmic variable (CV) (Knigge, 2011). About 1600 CVs are known, of which

around 318 have a known orbital period (Hellier, 2001). These typically ex-

hibit one or more outbursts in their light curves, hence their classification as

a ‘cataclysmic’ event. If, on the other hand, the white dwarf is co-orbiting

with a high mass evolved secondary (typically a red giant) such that mass

transfer from the secondary to the white dwarf occurs primarily via a stellar

wind (though there might also be some additional transfer of mass via Roche

lobe overflow), the system is termed a symbiotic star.4

CVs can be further subdivided based on the strength of the magnetic

field B1 of the white dwarf primary. This field can have appreciable effects

on the transfer of mass from the secondary, for example by truncating the

resultant accretion disk, or precluding the formation of a disk altogether.

There are non-magnetic CVs (for which B1 . 105 G or B1 . 10 T) and

magnetic CVs (for which B1 ∼ 105 − 108 G or B1 ∼ 10 − 104 T). Magnetic

CVs are further subdivided into polars (an archetype of which is AM Her) in

which there is no disk, the material instead being accreted along the white

dwarf’s magnetic field lines (a phenomenon known as ‘curtain accretion’),

and intermediate polars (an example of which is DQ Her) in which the white

dwarf is surrounded by an accretion disk. Note however, that non-magnetic

CVs are, strictly speaking, still magnetic: if sufficiently ionized, the disk

in a non-magnetic CV can interact with the external magnetic field of the

primary, as well as with its own (internal) field generated by fluid motions

in the disk through a dynamo process.

Non-magnetic CVs are subdivided into four broad classes based on their

observational characteristics. The classical novae (CN) are CVs in which

only one outburst has been observed, and during which the system brightens

by ∼ 12 mag over about three days. The outburst is thought to be due

to accretion onto the surface of the white dwarf, which eventually leads to

surface material undergoing thermonuclear runaway. Recurring novae (RN)

4Note that some symbiotic stars, too, are observed to undergo both brightness varia-

tions (roughly ∼ 1 mag over several years) as well as long-lasting outbursts (roughly 4− 5

mag over several years) (Kenyon, 1990).
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are classical novae whose outburst has been observed to repeat at least once.

Of the 10 RN known in our galaxy, these have been observed to brighten by

∼ 8-9 mag during outburst, with recurrence timescales ranging from decades

to nearly 100 years (Schaefer, 2010). Then there are the dwarf novae (DN),

CVs that are observed to undergo semi-regular outbursts, i.e. the outbursts

(during which the system is bright) are separated by periods of quiescence

(during which the system is dim compared to the outbursts). The periods

of outburst and of quiescence are also referred to as the ‘high state’ and ‘low

state’, respectively. Although the outburst magnitude, rise time, duration,

and intervals between outbursts vary between systems (and even within the

same system), dwarf novae are typically observed to brighten by 2-6 orders of

magnitude over 1-2 days during outburst, and subsequently decay to quies-

cence over several days to a week (Knigge, 2011). Intervals between outburst

typically last weeks to several months (or even years, in some cases). The

outbursts themselves are thought to originate in an instability in the disk

surrounding the white dwarf. This instability is described by the disk insta-

bility model (DIM), which we will discuss in greater detail in Section 1.2.4.

Finally, there are the nova-likes (NLs), which are CVs that are non-eruptive.

They are similar to dwarf novae, but appear to be permanently stuck in the

high state.

Dwarf novae (of which about 900 are known5) are themselves generally

divided into three classes based on their light-curves, each named after an

actual prototypical system. Dwarf novae that exhibit standstills, i.e. that

undergo a series of outbursts before becoming stuck in, or just below, the

high state for several months before undergoing repeated outbursts again, are

known as Z Cam type (about 20 are known). Dwarf novae whose light curves

occasionally exhibit powerful outbursts known as superoutbursts are classified

as SU UMa type (of which around 650 have been found). Superoutbursts

tend to be brighter than regular outbursts by about 0.5-1 mag and last for

around 14 days (compared to durations of 1-2 days for regular outbursts).

5Numbers for known dwarf novae and DN subtypes have been obtained from the cat-

alogue by Ritter & Kolb (2003) (updated in 2016). Note that actual numbers vary based

on catalogue, new observations, and reclassification of known systems.
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Figure 1.1: Schematic showing top down view of a typical cataclysmic vari-

able. The numbers surrounding the figure indicate the orbital phase at which

an observer viewing the binary edge-on sees a given portion of the binary.

Adapted from Hellier (2001).

Finally, all other dwarf novae are classified as U Gem type (about 85 are

known). A less common subclass are the AM CVn (Solheim, 2010), which

are dwarf novae in which a helium rich disk is observed (about 25 are known).

1.2.2 Structure of non-magnetic cataclysmic variables

The overall structure of a typical non-magnetic CV is shown in Figure 1.1.

There are six distinct components that contribute to the emission to various

degrees. In high-inclination (i.e. eclipsing) systems the contribution of any

individual component to the total emission varies with the orbital phase, a

fact that can be used to deduce a wealth of information about the individual
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components (see Section 1.2.3).6

The white dwarf primary is a stellar remnant which is supported from

gravitational collapse by electron degeneracy pressure. In CVs the primary

typically has a mass between 0.3M� and 1.3M�, a radius of R1 ∼ 10−3R�

(∼ 108 cm), and a surface temperature of Teff,1 ∼ (3.4-4) × 104 K. It has

a near-blackbody continuum spectrum with emission peaking in the UV.

Balmer lines (which are significantly pressure-broadened due to the large

surface gravity of the white dwarf) signify the presence of hydrogen atoms

at the surface.

The primary is surrounded by an accretion disk, which typically has an

outer radius of Rd ∼ (0.4-0.5)a (around 5× 10−3 AU) in outburst, where a is

the orbital separation of the binary (Warner, 1995). The disk is somewhat

smaller in quiescence (∼ 0.3a), which constitutes an important piece of ob-

servational evidence that the evolution of the disk in outburst is driven by

viscous accretion as hypothesized by the disk instability model (see Section

1.2.4). The surface temperature of the disk decreases with radius: during

outburst it varies from Teff,d ∼ (3-4)× 104 K in the innermost regions of the

disk to Teff,d ∼ 5× 103 K at the outer edge (La Dous, 1989). Finally, a nar-

row, hot boundary layer connects the disk to the surface of the white dwarf.

Temperatures in the boundary layer reach as high as TBL ∼ 105 K, which is

sufficiently hot for the boundary layer to radiate in the X-rays.

The secondary (typically a fully-convective red dwarf, or low mass M-type

main sequence star undergoing hydrogen fusion in its core) has a mass of

around M2 ∼ 0.12M�,7 a radius of R2 ∼ 0.15R�, and a surface temperature

of around Teff,2 ∼ 2900 K, with its emission peaking in the IR (Hellier, 2001).

Irradiation of the secondary by the white dwarf and the boundary layer

can heat the white dwarf facing side of the secondary to around ∼ 7500 K,

however. Material is transferred from the secondary to the disk via Roche

6We define the inclination of the disk as the angle it makes with the plane of the sky

relative to an observer on Earth. If the disk is viewed edge-on (‘high inclination’) its

inclination is i = 90◦; if it is viewed face-on (‘low inclination’) its inclination is i = 0◦.
7Note that, according to some classification systems, the secondary in CVs can have a

mass comparable to that of the white dwarf itself (Knigge, 2011).
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lobe overflow in a stream. The stream impacts the disk at the bright spot (or

hot spot), which has a temperature of around ∼ 1.3× 104 K.

1.2.3 Observations of non-magnetic CVs

In this section we wish to address three questions: ‘What is the evidence that

an accretion disk exists in the first place in cataclysmic variables?’; ‘What

can be inferred about the disk from observations?’; and ‘How can disk theory

be tested against observations?’.

Disks in binary systems are challenging to detect. For one, they are too

small to be resolved by the current generation of telescopes. As an example,

a disk of size ∼ 0.005 AU (∼ 7.48 × 1010 cm) at a distance of around 372 ly

(equivalent to the distance of SS Cyg, a well known U Gem type dwarf nova)

subtends an angle of around θ ∼ 4.38 × 10−5 arcsec, which is four orders of

magnitude smaller than the angular resolution of the Hubble Space Telescope

(HST) which is θHST ∼ 0.1 arcsec. Conversely a disk of the same size would

need to be less than ∼ 0.16 ly from Earth to be resolvable by the HST, and

thus significantly closer to Earth than Alpha Centauri, the nearest known

star, which is located at a distance of ∼ 4.37 ly from the Sun. Another

limiting factor in detecting disks in binary systems is that the observer has

to disentangle the disk’s emission from that of the other components in the

system, i.e. the white dwarf, the secondary star, the boundary layer, and the

hotspot.

Nevertheless there is compelling observational evidence that accretion

disks exist in CVs from their spectra and light-curves. In eclipsing systems

the disk can be inferred directly from dips in the light curves, which we

discuss in more detail below. Velocity line profiles (i.e. plots of the intensity

of a particular line vs. its velocity8) in these systems have a double-peaked

structure characteristic of matter in circular motion about the primary. In

high inclination systems (i.e. viewed edge-on) when the secondary eclipses

8For matter moving non-relativistically the shift in wavelength ∆λ of an emitted photon

(compared to its wavelength when emitted from a fluid parcel at rest) is directly propor-

tional to the velocity v of the emitting material along the line of sight, i.e. ∆λ/λ ≈ v/c.
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the edge of the disk moving towards the observer, the blue-shifted component

of the double-peaked line velocity profile disappears. Later, as the secondary

eclipses the edge of the disk moving away from the observer, the red-shifted

component of the line profile disappears and the blue-shifted component

reappears. Finally the continuum spectra of CVs can be fit very well by the

stretched blackbody spectrum of a disk in steady-state (see Section 1.2.3 for

a more detailed discussion).

There are two tools with which to investigate CVs observationally: spec-

tra (plots of intensity against wavelength), and light curves (plots of intensity

against time). Despite the fact that CV disks are too small to be imaged

directly, a wealth of information can be obtained from these systems from

their spectra and light curves. From photometry this includes both long-

duration light curves (taken over several months or even years) of disks at

all inclinations (which reveal details about their outbursts, such as their du-

ration, rise and decay times, and intervals between outbursts), as well as

short-duration light curves (taken over several hours) in high inclination sys-

tems, which reveal the eclipse of the disk and primary by the secondary. An

entire subdomain of CV photometry, known as eclipse analysis, is dedicated

to extracting a large amount of information from eclipse light curves (such

as the sizes of the white dwarf, the secondary, the disk, and even the hot

spot), including the technique of eclipse mapping from which a 2D disk tem-

perature distribution can be obtained from successive eclipse light curves.

Spectroscopy yields both continuum spectra, which provide one of the key

methods for testing disk theory against observations, as well as line spectra,

from which the presence of a disk (through velocity line profiles), and its

composition can be inferred. Furthermore, a technique known as Doppler

tomography can be used to extract a 2D disk velocity distribution from one

dimensional line velocity profiles. Each of these techniques is discussed in

further detail below.
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Figure 1.2: Orbital period Porb distribution (in hours) of non-magnetic cata-

clysmic variables. The top panel shows the distribution dwarf novae (includ-

ing U-Gem, Z Cam, and SU UMa subtypes), while the bottom panel shows

the distribution for nova-like variables. Adapted from Warner (1995).

Orbital period distribution

In systems with sufficiently high inclination, the orbital period Porb can be

inferred directly from the light curve. When the secondary, which is dimmer

than the disk and white dwarf primary, eclipses the disk and the white dwarf,

there is a dip in the light curve. Orbital periods tend to range between 1h

and 9h, and the distribution of orbital periods is bimodal with a period gap

between 2.2h ≤ Porb ≤ 2.8h (see Figure 1.2). Of the dwarf novae, the SU

UMa type tend to be concentrated below this period gap, whereas U Gem

and Z Cam type tend to be concentrated above the period gap. The mass

ratio q of CV systems ranges from q ∼ 0.3 for systems below the period gap

to ∼ 0.6 for systems above the period gap. From Kepler’s third law9 and for

9Kepler’s third law is given by P 2
orb = (4π2a3)/(GM1(1 + q)).
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a primary of mass ∼ 1M� this implies separations a of around a ∼ 0.9R� for

systems below the period gap and a separation of a ∼ 1.2R� above the gap.

Continuum spectra

The disk dominates emission during outburst, and continuum spectra provide

one of the key methods of testing disk theory against observations. The

spectral flux emitted by a disk with an inclination angle of i relative to an

observer at a distance d from the disk is given by

Fν =
2π cos i

d2

∫ Rd

R1

Iνrdr, (1.3)

where Rd is the outer disk radius, and Iν is the spectral intensity (Warner,

1995). If the disk is optically thick, each annulus in the disk will radiate like

a blackbody and so the spectral intensity can be approximated by Planck’s

law

Iν ∼ Bν(T ) =
2πν3

c2
(exp [−hν/kBT ]− 1)−1, (1.4)

where ν is the frequency of the emitted radiation, c is the speed of light, h

is Planck’s constant, and kB is Boltzmann’s constant. By assuming a steady

state (i.e. taking ∂tΣ = 0) and integrating the viscous diffusion equation

(cf. Equation 1.2), and by balancing viscous heating with radiative cooling,

a radial temperature profile of the form

T (r) =

[
3GM1Ṁd

8πσR3
1

]1/4(
1−

[
R1

r

]1/2
)1/4

(1.5)

can be derived (see, for example, Warner (1995)), where R1 is the radius

of the white dwarf primary, σ is the Stefan-Boltzmann constant, and Ṁd is

the accretion rate. Substituting Equations 1.5 and 1.4 into Equation 1.3 and

integrating over the radial direction yields the continuum spectrum for a disk

in steady state. It has the appearance of a ‘stretched blackbody’ as can be

seen in Figure 1.3. Most of the emission in the UV is from the disk, while

the hot boundary layer (whose contributions are not shown in Figure 1.3)
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Figure 1.3: Synthetic continuum spectra from successive disk annuli that are

each radiating as a blackbody around a 1M� white dwarf with an accretion

rate of 10−9M� yr−1. The dashed line corresponds to the integrated flux from

the entire disk. From La Dous (1989).

tends to dominate emission in the X-rays. Most of the IR radiation, on the

other hand, stems from the cooler outer regions of the disk, and from the

secondary.

From Equation 1.5, one can see that the theoretical spectrum is parametrized

by the mass and radius of the primary, M1 and R1, respectively, the disk

accretion rate Ṁd, and the binary inclination i. Thus, given independent

measurements of three of the four parameters, fitting spectra of the form

given by Figure 1.3 to observations provides a method of constraining the

fourth parameter.

Line spectra

An enormous amount of information about the disk can be inferred from

its emission and absorption lines, including its composition, size, 2D velocity
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distribution, the presence of winds, and the mass ratios and masses of the pri-

mary and secondary stars. Observed emission lines in the infrared reveal the

presence of ionized hydrogen, helium, calcium, and oxygen, while in the UV

emission lines for hydrogen, helium, carbon, nitrogen, oxygen, magnesium,

and silicon are typically observed.10

There is some evidence for P Cygni-like profiles in certain UV lines (e.g.

CIV), which suggests the existence of dipolar winds or outflows in some dwarf

novae disks. These line profiles (named after the blue hypergiant, P Cygni,

where they were first observed) are characterized by the feature that the

same line appears both in emission and in absorption. Analysis of the blue-

shifted component of these profiles suggest the radiation was emitted from

gas moving with a velocity comparable to the escape velocity of the primary,

thus suggesting the presence of an outflow. These winds remove angular

momentum from the disk, and thus might contribute to accretion: indeed

there are some arguments that wind-driven accretion can even dominate

viscous (turbulent) accretion during the quiescent phase of dwarf novae (Scepi

et al., 2019).

Another spectral diagnostic is that of line velocity profiles (i.e. plots

of line intensity against velocity). A fluid element orbiting with Keplerian

velocity vK(r) = rΩK(r) and located at a position (r, θ) in the plane of

a disk with inclination i will, at a given instance in time, have a velocity

component vD = vK(r) sin θ sin i along the line-of-sight of the observer. For

a fixed inclination angle, lines of constant projected velocity form a dipole

pattern on the surface of the disk (see the upper-left-hand panel of Figure

1.4). Thus each segment of the velocity profile consists of a contribution from

a certain band (in [r, θ]) in the disk: material that moves perpendicular to

the line of site (θ = 0) contributes to emission at the center of the line profile

(region A), while the wings are dominated by contributions from the faster

moving (but smaller) inner regions of the disk (region C). The truncated

crescents (region B) have the greatest area and result in the double-peaked

10A more exhaustive list of emission lines observed in dwarf novae in quiescence can be

found in Table 3.5 of Warner (1995).
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Figure 1.4: Left: schematic of line profile from an eclipsing binary system

viewed at phase φ = 0.25. The shaded areas at A, B, and C in the disk

contribute to the local minimum, the right-hand peak, and the right-hand

tail of the line profile, respectively. Right: synthetic line profiles (top), and

the actual observed double-peaked Hα line profile from the U-Gem type dwarf

nova Z Cha in quiescence (bottom). Adapted from Horne & Marsh (1986).

cusps in the line profile where vD = vK(Rd) sin i. Thus if the inclination of

the disk is known, the outer disk radius Rd can be inferred directly from the

cusps in the velocity profile.

Eclipse light curves

From the light-curve during eclipse (see Figure 1.5) the relative sizes of the

primary, the secondary, the disk, and the bright spot can be measured di-

rectly. In addition, synthetic light curves of the eclipse can be fitted to

observed eclipse light curves to deduce a wealth of parameters, including the

sizes of the primary, the secondary, and the disk, the mass ratio q, and the

inclination i. Such synthetic light curves were constructed for optically thick
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Figure 1.5: Smoothed eclipse light curve of the SU UMa type dwarf nova

Z Cha. The left-hand H above the eclipse indicates the phase at which the

bright spot is eclipsed by the secondary, while the right-hand H indicates

the phase at which the bright spot emerges from the eclipse. The two H’s

below the eclipse curve show the same but for the disk. From Hellier (2001).

Original from Wood et al. (1986).

disks by Zhang et al. (1986) and Zhang & Robinson (1987), who modeled the

disk temperature profile as a power law in radius. By fitting the synthetic

eclipse light curves to observations of the dwarf novae U Cas and U Gem,

they were able to provide an independent method of determining the radial

temperature profiles of the disks, and also introduced a method for deter-

mining the uncertainty of the fitted parameters. More recently Ghoreyshi

et al. (2011a,b) have constructed synthetic lights curves using their SHELL-

SPEC code which allows for a wider set of input parameters than those used

by Zhang et al. (1986), including the effects of jets and stellar winds, and is

also able to model the propagation of radiation in an optically thin medium.

They applied their code to model the Algol-type11 interacting binary AV

Del and determined that the observational light curves were best fit by an

optically thick disk.

11Algol variables are binary systems in which a main sequence primary, rather than a

white dwarf, accretes from a secondary via Roche lobe overflow.
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Figure 1.6: Left: surface brightness distribution of the disk in the U, B, and V

bands of the SU UMa type dwarf nova Z Cha in outburst reconstructed from

eclipse light curves using the technique of eclipse mapping. Right: compar-

ison of observed temperature profile (black dots) with temperature profiles

(solid lines) predicted by steady state disk theory. The theory is in close

agreement with observations for a mass transfer rate of 10−9M� yr−1. From

Horne & Cook (1985).

An important technique related to eclipse light curves is that of eclipse

mapping. Here 1D eclipse data is used to deduce the 2D temperature profile of

the disk. As the secondary begins to eclipse the disk, successive strips of the

disk are obscured from view; these strips subsequently reemerge as the eclipse

progresses. Thus different strips of the disk are visible at different times

during the eclipse, and different regions of the disk contribute to the overall

light curve at different times. Horne & Cook (1985) developed a method for

combining this data into a 2D intensity distribution. The distribution can be

compared to the theoretical distribution expected for a disk in steady state,

and can be used to infer the accretion rate of the disk (see Figure 1.6).
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Figure 1.7: The light-curve of the U-Gem-type dwarf nova SS Cyg taken over

a 10 year period showing the semi-regular outbursts characteristic of dwarf

novae. Credit AAVSO.

Light curves showing outbursts

Semi-regular, repeated outbursts are the defining feature of dwarf novae,

and any model attempting to explain observations of these systems needs to

account for the outbursts. One such model, the disk instability model, is

discussed in Section 1.2.4. Here we briefly discuss those properties of DN

outbursts that have been inferred from observations.

A typical light curve for the U-Gem type dwarf nova SS Cyg is shown

in Figure 1.7. From the light curve (taken over a period 10 years), it is

evident that no two outbursts are ever exactly alike. Nevertheless, several

patterns can be deduced from the long term light curves of SS Cyg and

other dwarf novae (see Warner (1995) and references therein for a detailed

discussion, from which the following figures have been obtained). It is helpful

to decompose the light-curve into various intervals. Recurrence times τrec (i.e.

times between successive outbursts) vary from system to system, but tend

to coalesce around similar values in any individual system (e.g. τrec ∼ 50

days for SS Cyg, whereas τrec ∼ 110 days for U Gem). The shortest intervals

observed was just 7 days, while the longest observed interval was 80 years.

The decay time τdecay tends to be of the order of several days, and is correlated
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with the orbital period of the system (e.g. τdecay ∼ 1 day for systems with

orbital periods Porb ∼ 1h, and τdecay ∼ 4 days for systems with orbital

periods Porb ∼ 9h). In addition, outbursts can be classified based on their

rise times τrise. The majority (∼ 64%) of systems have a ‘short’ rise time

of ∼ 2 days (known as ‘Class A’ outbursts), while the longest rise times are

∼ 10 days (known as ‘Class D’ outbursts). Finally, outburst durations have

a bimodal distribution, with most systems clustering around (τwidth ∼ 7 days

and τwidth ∼ 15 days).

1.2.4 Theoretical predictions: disk instability model

Several models have been proposed to explain the outbursts in dwarf novae,

of which the leading two candidates from the seventies onwards were the mass

transfer instability (MTI) and the disk instability model (DIM). The mass

transfer instability hypothesized that the outbursts originated due to a vari-

able mass transfer rate caused by an instability in the secondary (Paczynski,

1965; Bath, 1973), whereas the disk instability model hypothesized that the

outbursts originated in an instability in the disk (Smak, 1971; Osaki, 1974).

By the late 1980s, however, it had become clear that the former model

was increasingly in disagreement with observations (see Cannizzo (1993) for a

more comprehensive discussion). The MTI was not able to account for why

magnetic CVs (in which no disk is present) were not observed to undergo

outburst. Another drawback of the MTI was that the hot spot (where the

stream from the secondary intersects the disk) was not observed to vary ap-

preciably in brightness over the course of an outburst, in disagreement with

the MTI which predicted enhanced mass transfer (and therefore bright spot

intensity) during outburst. Finally, observations of the disk radius during

outburst provided definitive evidence that the disk increased in size (con-

sistent with viscous accretion), in direct contradiction with the MTI, which

predicted that the disk should shrink during outburst (Smak, 1984a). Thus

the mass transfer instability was ruled out on observational grounds, leaving

the disk instability model as the current favored model for explaining dwarf

novae outbursts.

29



Figure 1.8: Comparison of vertical disk structure models with numerical sim-

ulations in the effective temperature – surface density plane for dwarf novae.

The red lines show the hysteresis curve followed by a disk annulus. The solid

‘S-curves’ correspond to thermal equilibria computed using an α-disk model.

Data points are the results of 3D MHD fully compressible vertically stratified

numerical simulations, exhibiting an enhancement in α at the lower tip of

the upper S-curve. Adapted from Hirose et al. (2014).

The disk instability model is best explained with the help of Figure 1.8.

In this model outbursts are the result of a thermal-viscous instability in the

accretion disk which, together with the ionization/recombination of hydro-

gen, enables the disk to undergo a hysteresis loop in the plane of surface

density and effective temperature. To understand how the model works, first

consider the outer annulus of the disk during quiescence when the disk is

cool and partially ionized (e.g. at point C in Figure 1.8). Removal of gas

via viscous accretion in the annulus occurs at a lower rate than addition of

gas via Roche lobe overflow from the secondary. Thus mass transfer gradu-

ally results in the build up of material in the annulus and its surface density

gradually rises. This is accompanied by a rise in temperature, until the tem-
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perature is great enough to ionize hydrogen (at around 5000 K), which in

turn greatly increases the opacity of the disk fluid. This results in runaway

heating until the annulus settles into the ‘high state’ (point A in 1.8). The

accretion rate in the high state is large and the annulus is drained of mass

faster than it can be replenished by mass transfer from the secondary. Thus

the surface density (and temperature) of the annulus gradually decreases un-

til the annulus is cool enough such that hydrogen can recombine (point B in

1.8). The resultant drop in the opacity results in runaway cooling until the

disk is back in the ‘low state’, and the cycle is repeated.

To compare the disk instability model to observations requires solving

the full time-dependent viscous diffusion equation (Equation 1.2) in order to

produce a light-curve that can be directly compared with observations. Many

such calculations have been carried out (see, for example, Papaloizou et al.

(1983); Mineshige & Osaki (1983); Smak (1984b) and Hameury et al. (1998)),

and they are reviewed at length in Lasota (2001) and, more recently, in

Hameury (2019). In the previous paragraph we followed the evolution in the

plane of thermal equilibrium (Σ, Teff) of a single annulus. In an actual dwarf

nova outburst the entire disk (comprising many such annuli) undergoes this

process. Initially a single annulus in the disk reaches a critical surface density

at which it undergoes thermal runaway (point D in Figure 1.8). Whether

this annulus is located near the outer disk radius or further inside the disk

depends on the mass transfer rate from the secondary: a high mass transfer

rate will result in the outburst propagating from the outside-in (resulting in

an inward propagating heating front, in which neighboring annuli reach the

critical surface density and temperature at which they enter the high state).

A low mass transfer rate, on the other hand, enables material to diffuse

inward due to accretion until some annulus at smaller radii becomes the first

to reach its critical surface density. In this case the outburst propagates from

the inside-out. In either case, eventually one of the outer disk annuli, where

the surface density is lower to begin with compared to the rest of the disk,

reaches a minimum surface density and temperature at which hydrogen is

recombined, and thus transitions from the high to the low state. This results

in a cooling front propagating from the outside-in, which is associated with
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the decay from maximum in the light-curve.

The standard mechanism of the disk instability model described above

can reproduce at least the most generic features of observed light curves:

repeated outbursts. A further success of the model is that the two types of

outburst it predicts (outside-in and inside-out) have successfully accounted

for some of the different classes of observed outburst described in Section 1.2.3

(Hellier, 2001). During an outside-in outburst the heating front propagates

rapidly to annuli of smaller specific angular momenta; this is associated with

short rise times in the light-curve. Inside-out outbursts, on the other hand,

must propagate against the angular momentum gradient (i.e. they must

move material to radii with greater angular momenta); the heating front

travels more slowly in this case, and inside-out outbursts are associated with

longer rise times.

Despite these successes, however, the mechanism of dwarf novae out-

bursts presented above is highly idealized, and many issues remain (see La-

sota (2001); Hameury (2019)). In particular Lasota (2001) points out that

many time-dependent disk models used to calculate light curves are not ro-

bust to small changes in the numerical and physical set-up, such as boundary

conditions and irradiation. Some models that employ a fixed outer bound-

ary condition are known to result in weak (low amplitude), short duration

outbursts (see, for example, Hameury et al. (1998)). Other models exhibit

artifacts known as reflares in which the heating and cooling fronts are re-

flected, resulting in mini-bursts in the light-curve during decay that are not

observed in actual systems (Menou et al., 2000). Finally, DIM models predict

a gradual rise in the light curve during quiescence, in contrast to observa-

tions where the light curve is found to be constant or even decreasing slightly

over the duration of the low state.

1.3 Convection

Convection is an extremely common and well-studied phenomenon. It is

ubiquitous in nature, and is utilized widely in industry. It is found in envi-
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ronments as disparate as the interior of the Earth, in oceans, in the atmo-

sphere, the interiors of stars and giant planets, the moons of giant planets,

and perhaps, as this thesis attempts to investigate, in accretion disks. It is

even a part of our everyday lives, the classic example being convection in a

heated pot of water.

Perhaps unsurprisingly for a topic this heterogenous, the methods of tack-

ling the problem of convection are as diverse as the phenomenon itself: from

simple parcel arguments (Landau & Lifshitz, 1987), to mixing length the-

ory (Kippenhahn et al., 1990), to linear stability analyses (Ogilvie, 2016),

to dynamical systems approaches (Weiss & Proctor, 2014), and in numerical

simulations; from Boussinesq (Chandrasekhar, 1961), to anelastic (Gough,

1969), and (as in this thesis) fully compressible; in hydrodynamics and mag-

netohydrodynamics. Even the specific problem of the determining the criteria

for the onset of convection (which we will review in Section 1.3.3) emphasizes

different formulations of the instability criteria depending on the nature of

the problem. For example, the study of Rayleigh-Bénard convection using

the Boussinesq approximation (see, for example, Chandrasekhar (1961)), and

its generalization to rotating (Boubnov & Golitsyn, 1995) and MHD (Weiss

& Proctor, 2014) flows, emphasizes the role of dimensionless numbers in de-

termining the onset of convection. In the context of convection in stars one

often encounters a zoo of ‘gradients’ (Kippenhahn et al., 1990), while in the

field of disks the (sign) of the square of the buoyancy frequency is commonly

used (Stone & Balbus, 1996; Hirose et al., 2014; Held & Latter, 2018).

In Section 1.3.1 we provide a brief overview of the rich classification and

(some might say somewhat redundant) nomenclature of convective flows in

the literature, mainly based on the source of buoyancy for driving convection.

In Section 1.3.2 we discuss applications of convection in nature (with an

emphasis on astrophysical systems), including in stars, in the Earth’s interior,

oceans, and atmosphere, and in giant planets and their moons (a detailed

discussion of convection in disks is deferred to Section 1.4). Finally, in Section

1.3.3 we briefly review the linear theory of convective stability.
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1.3.1 Different types of convection

There are several different types of convection. Thermal convection (also

called free convection, thermogravitational convection, or buoyancy-driven

convection) refers to convection driven by buoyancy forces which arise due

to an unstable entropy gradient. A classic example of thermal convection

is Rayleigh-Bénard convection which refers to convection in the absence of

rotation and magnetic fields. Technically Bénard performed the experiments

before Rayleigh developed the theory (Bénard, 1900, 1901) and Rayleigh

studied true thermal convection (in the sense defined above) in a viscid fluid

(Rayleigh, 1916),12 whereas Bénard observed what is now known as thermo-

capillary convection (Block, 1956), i.e. convection in which variability of the

surface-tension coefficient plays a substantial role in driving convection. This

kind of surface-tension-driven convection is also occasionally referred to as

Bénard-Marangoni convection (Lappa, 2009).

Buoyancy forces can also arise due to a compositional gradient rather

than an entropy gradient, and convection driven by compositional gradients

is referred to as compositionally-driven convection (also sometimes called

gravitational convection, buoyant convection, or solutal convection). Con-

vection can also be driven by both entropy and compositional gradients. If,

however, one of the gradients is stabilizing while the other is destabilizing

a phenomenon can arise known as doubly diffusive convection (Huppert &

Turner, 1981). In this particular scenario, the thermal (or compositional)

diffusivity can cancel out the stabilizing gradient, and thus actually serves

to destabilize the fluid. (In astrophysics the term semi-convection (Spiegel,

1969) is sometimes used, whereas geophysicists refer to the process as ther-

mochemical convection (Breuer et al., 2010), and in oceanography the terms

thermohaline (Stern, 1960) or thermosolutal (Turner, 1974) convection are

common.)

12Note that Karl Schwarzschild derived the criterion for convective instability in an

inviscid fluid (in the context of stars) well before Rayleigh studied the problem. See

Schwarzschild (1906), an English translation of which is available in Menzel & Milne

(1966).
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Finally, in industrial applications the term forced convection is employed

to refer to ‘convection’ of fluid due to external forces other than gravity (or

buoyancy), such as the bulk motion of fluid driven by a fan or pump, though

this is really an advective rather than a convective process.13 Conversely,

convection that is driven by buoyancy is referred to as natural convection.

1.3.2 Convection in nature

Convection in stars

Convection is thought to play a key role in heat transport and magnetic

field generation in stellar interiors, where it is driven by the release of en-

ergy through nuclear fusion reactions. It is also one of the few instances of

convection in astrophysics for which there are direct images, mainly the tops

of convective cells in the Sun, which impart the solar surface with a distinct

granular pattern (see Figure 1.9).

The Sun is not the only star in which convection is present. Low mass

(M < 0.4M�), low luminosity M-type stars are fully convective throughout.

Intermediate mass (0.4 < M/M� < 1.5) G-type stars (such as the Sun) con-

sist of an inner radiative zone which is convectively stable (at least according

to the Schwarzschild stability criterion, cf. Equation 1.18), and in which the

bulk transfer of energy is carried by radiation. The radiative zone is sur-

rounded by an outer convective zone, which comprises around 30% of the

star’s radius. In general as the mass of a star is increased, the depth of the

convective zone decreases. In high mass stars (M > 1.5M�; type A , B, and

O), the position of the convective and radiative zones is reversed, however,

with the stars consisting of an inner convective zone surrounded by an outer

radiative zone (this reversal occurs because high mass stars can support nu-

clear reaction rates, such the carbon-nitrogen-oxygen (CNO) cycle, that are

particularly sensitive to temperature, and which produce very large temper-

ature gradients as a result; see below). Note that in low and high mass stars

the gravitational acceleration g changes sign at the base of the convective

13In this thesis we use the term forced convection to mean thermal convection that is

sustained through a heat source that has been added by hand, as in Section 3.4.

35



Figure 1.9: Image of the surface of the Sun taken in January 2020 at 789 nm

with the 4 m Inouye Solar Telescope on Mt. Haleakalā, Hawaii. The bright

cellular patterns are the tops of rising convective cells, while the darker lanes

correspond to cooler, sinking fluid. Bright spots indicative of magnetic fields

can be seen within the downflows. Credit NSO/NSF/AURA.

zone (which coincides with the stellar center), whereas in intermediate mass

stars g maintains the same sign throughout the convective zone.

As will be discussed in more detail in Section 1.3.3, amongst other things

a fluid is unstable to thermal convection provided the temperature gradient

exceeds a critical value (known as the Schwarzschild criterion for instability).

This temperature gradient (and thus convective stability) is related to the

internal properties of the star, mainly its opacity κ (which depends on the

density, temperature, and composition of stellar material) and heat flux F

(which is set by the release of nuclear energy in fusion reactions in the star).

In spherical coordinates, the radial temperature gradient dT/dr can be re-

lated to the flux of radiation through a spherical surface of radius r and the

opacity κ by

dT

dr
= − 3

4ac

κρ

T 3

F

4πr2
, (1.6)
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where a is the radiation constant, c is the speed of light, and T and ρ are

the temperature and density, respectively (Prialnik, 2000). Here it has been

assumed that stellar material is optically thick, and so radiation (photons)

propagates through the fluid diffusively. Thus Equation 1.6 indicates that

strong temperature gradients occur when either the heat flux F or the opacity

κ are large, and thus convection is favored under those circumstances. The

former condition is met in the interiors of high mass stars where hydrogen is

fused into helium via the CNO cycle, which is highly temperature sensitive.

Large opacities occur in stellar envelopes where cooler temperatures (com-

pared to the core) enable partial ionization of hydrogen, which in turn leads

to a large increase in the opacity.

Nucleosynthesis (or accretion) of heavier elements can also set-up un-

stable compositional gradients in stars, and under certain conditions stellar

interiors can be unstable to various types of doubly diffusive convection (for

reviews see Spiegel (1972); Garaud (2018)). This can occur when heavier

(e.g. helium rich) material is accreted from a secondary onto a primary in

binary systems (Stancliffe & Glebbeek, 2008), or when metal-rich planetesi-

mals are accreted onto a single star (Vauclair, 2004). Unstable compositional

gradients can also arise when nuclear burning occurs away from the center of

the star, for example off-center ignition of carbon in high mass (7 − 10M�)

asymptotic giant branch (AGB) stars (Siess, 2009). Finally, on the outer edge

of the hydrogen burning shell in red giants (which is still located within the

thermally convectively stable radiative zone), a rare nuclear reaction of the

form 3He + 3He −−→ 4H + p + p produces more particles per unit mass than

it started with and thus lowers the mean molecular weight (Ulrich, 1972).

The overall picture is similar to one in which (heavier) salt water lies on

top of (lighter) fresh water. The rising fluid elements manifest themselves as

narrow ‘fingers’ that can mix material from the hydrogen burning shell well

into the convective zone.

Finally, in high mass stars the opposite situation can occur, i.e. a destabi-

lizing thermal gradient is (over-)stabilized by a stable compositional gradient.

This is analogous to the situation in oceanography when hot, salty water lies

beneath cold, fresh water (see, for example, Turner (1974)). If the thermal

37



diffusivity is sufficiently large, an upwardly displaced ‘hot and salty’ fluid ele-

ment comes into thermal – but not compositional – equilibrium with its ‘cold

and fresh’ surroundings. Since salt water is denser then fresh water, the fluid

element will cease its upward rise and begin to descend. Thus an unstable

thermal gradient has been arrested by a stable compositional gradient. The

sinking fluid element will overshoot its equilibrium position, however, and

will begin to execute growing oscillations about that position, a phenomenon

known as convective overstability. In high mass stars this situation arises

when a helium-rich core is surrounded by a hydrogen-rich envelope (Spiegel,

1969, 1972). The large sensitivity of certain nuclear reaction rates (in partic-

ularly the CNO cycle) to temperature results in a large heat flux that renders

the core thermally convectively unstable. However, if the thermal diffusivity

is sufficiently large, an upward displaced helium-rich fluid element will come

into thermal equilibrium with the lighter hydrogen-rich surroundings and

thus begin to descend. The resultant oscillatory (or overstable) convection

efficiently mixes the helium-rich core and its hydrogen-rich surroundings.

Even compact objects such as white dwarfs and neutron stars are thought

to have convective outer layers. White dwarfs harbor a convective atmo-

sphere (comprising < 1% of the stellar radius) and consisting mostly of hy-

drogen (see Figure 1.10). Neutron stars have a very thin liquid ‘atmosphere’

(sometimes referred to as an ‘ocean’) just 30 m thick, enveloping a 1 km thick

crust. Accretion of material onto the neutron star surface undergoes nuclear

burning in which synthesis of heavy elements via rapid proton capture oc-

curs. The heavy material sinks to the ocean-crust boundary where lighter

elements are chemically separated from heavier ones. The lighter elements

then rise to the top in a form of compositionally-driven convection that mixes

the neutron star ocean (Medin & Cumming, 2011).

Convection on Earth: outer core

On Earth convection occurs in the outer core, in the mantle, in the crust

(in magma chambers), in the ocean, and in the atmosphere. In the outer

core of the Earth (which is composed primarily of liquid iron and nickel)
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Figure 1.10: Velocity streamlines showing convective cells in the atmosphere

of a white dwarf taken from a 2D numerical simulation. The solid contour

lines are lines of constant temperature. The effective temperature at the top

of the domain is Teff = 12 200 K and the gravitational acceleration was taken

to be log g = 8.0. Credit Freytag et al. (1996).

convection is driven by both thermal and compositional gradients due to

cooling of the hot inner core (specifically, crystallization of liquid iron at the

inner core boundary releases latent heat and leaves behind lighter elements;

Fearn & Loper (1981)).14 Although it is not definitively known whether the

outer core is in differential or uniform rotation,15 to first order the convec-

tive flows are arranged in columns aligned with the rotation axis as expected

from the Taylor-Proudman constraint, which restricts vertical motions in a

rotating fluid to narrow columns due to the influence of the Coriolis force

(Breuer et al. (2010); see also the left-hand panel of Figure 1.11). How-

ever the outer core is viscous, which breaks the restrictions imposed by the

14The decay of radioactive elements, such as potassium (K−40) also acts as a source of

heating, though it is unclear at present whether this is significant compared to the latent

heat released by solidification (Nimmo, 2007).
15At present it is thought to be more or less in uniform rotation (Chris Jones; private

communication)

39



Figure 1.11: Left: schematic of convection in Earth’s outer core. From David-

son (2015). Right: numerical simulations of convection in Earth’s outer core

exhibiting the effect of Rayleigh number Ra and angular speed Ω on convec-

tive patterns. The colorplot shows the axial vorticity and the snapshots are

latitudinal slices. From Miyagoshi et al. (2010).

Taylor-Proudman theorem and results in large-scale secondary convective

flows that assume a petal-like pattern. These convective fluid motions play

a fundamental role in generating and maintaining the Earth’s dipolar mag-

netic field, which varies between 0.3-0.6 G (30-60µT) at the Earth’s surface

(Aurnou et al., 2015), via the geodynamo (Davidson, 2015).16 Finally, high

Rayleigh number convection in the Earth’s outer core has been shown to

generate coherent structures, including spirals and large-scale vortices (see

right-hand panel of Figure 1.11).

16The possibility of the Earth’s magnetic field being a fossil field was ruled out because

the temperature in the outer core (∼ 6 × 103 K) is hotter than the Curie temperature

(1043 K) at which the spins of the electrons and nuclei that create the magnetic field of a

permanent magnetic are randomized. Thus a fossil field would have decayed within several

tens of thousands of years due to the effects of resistivity.
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Figure 1.12: Left: schematic of convective cells in the mantle of the Earth.

From Lappa (2009). Right: velocity colorplot exhibiting convective plumes,

taken from a high resolution 2D numerical simulation with adaptive mesh

refinement of mantle convection in a quarter shell. From Kronbichler et al.

(2012).

Convection on Earth: mantle

Between the edge of the outer core (at r ∼ 2.4×103 km) and the bottom of the

crust (at r ∼ 5.3× 103 km), convection is also found in what is known as the

Earth’s mantle (which consists primarily of molten rock containing iron and

magnesium). The mantle evolves on timescales that are much longer than

those of the outer core, and therefore the mantle can be treated as a solid

compared to the outer core. The heat source for convection in the mantle is a

combination of residual heat flux from the core, as well as decay of radioactive

elements within the mantle itself. Unlike in the outer core, magnetic fields

play no role in the convective motions in the mantle, because the mantle is a

nearly perfect electrical insulator and therefore cannot support any currents.

Convective flows in the mantle are, however, ultimately responsible for the

drift of the continents. The convective flows are cell-like: buoyant mantle

fluid rises, eventually forming a mid-ocean ridge between two oceanic plates,

while cool fluid sinks at subduction zones between continental and oceanic

plates (see Figure 1.12).
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Figure 1.13: Left: convection in the Earth’s atmosphere leads to distinct

cloud patterns: open-celled cumulus clouds (top panel), and closed-cell stra-

tus clouds (bottom panel). Credit: Lappa (2009). Right: schematic showing

the Earth’s ocean currents, which are manifestations of thermohaline con-

vection. Taken from Rahmstorf (2006).

Convection on Earth: oceans and atmosphere

Convection is also present in the Earth’s oceans and atmosphere. In the

oceans an example of convection is the Gulf Stream, a major ocean current

(about 100 km wide and 1 km deep) that stretches from the Gulf of Mexico

along the eastern coast of North America. It is an example of thermoha-

line convection (Rahmstorf, 2006), where northward-moving water cooled by

wind-driven evaporation increases in density and salinity until it reaches the

poles where it sinks under the lighter, less saline water of the North Atlantic.

This cool downdraft then moves southward to the equator where it is heated

by solar radiation, causing it to rise back up to the surface (see right-hand

panel of Figure 1.13).

In the Earth’s atmosphere convection is manifested on large-scales through

atmospheric circulation, and also on smaller scales inside clouds (Stevens,

2005; Emanuel, 1994). The large-scale atmospheric circulation (known as
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Hadley circulation, (Hadley, 1735)) consists of convective cells that are driven

by heating from the sides : the cells are heated by solar radiation at the equa-

tor and cooled at the poles (Wallace & Hobbs, 2006). They consist of three

giant cells in each quarter of the Earth’s atmosphere. Solar radiation can

also heat the Earth’s surface, which in turn warms the air above it. Thus on

smaller scales (sometimes referred to as mesoscales) convection is also man-

ifested as clouds, either as ‘open-cells’ (cumulus clouds) with broad down-

drafts at their centers and thin updrafts at their edges, or as ‘closed cells’

(stratus clouds) with broad updrafts at their centers and thin downdrafts at

their edges (see left-hand panel Figure 1.13).

Convection in giant planets and their moons

Outside of terrestrial applications, convection also plays an important role

in the giant planets, particularly Jupiter and Saturn. In both planets, con-

vection is thought to drive the zonal flows (or jets) that form the banded

structure of their atmospheres, with equatorial speeds reaching 150 ms−1

and 300 ms−1 in Saturn and Jupiter, respectively (Sun et al., 1993; Jones

& Kuzanyan, 2009). The lighter-colored flows (known as zones) correspond

to convective upwellings, while the darker-colored flows (known as belts) cor-

respond to downdrafts (Ingersoll et al., 2000; Gierasch et al., 2000). Rotation

and magnetic fields are important: the inner parts of Jupiter are thought to

be in solid body rotation, but in the outer parts the angular frequency in-

creases with cylindrical radius and rotation is constant on cylinders (Guillot

et al., 2018). Thus equatorial zonal flows rotate faster than zonal flows at

higher latitudes. Furthermore, there is now some evidence that composi-

tional gradients exist in giant planet interiors, and that these can stabilize

unstable thermal gradients, leading to an oscillatory form of doubly diffu-

sive convection (or semi-convection) similar to that found in the interiors of

high mass stars (see Section 1.3.2), with consequences for both heat transfer

and tidal dissipation (Pontin et al., 2020). In Saturn a particularly beautiful

convective feature is the hexagonal structure (about 2.5 × 104 km wide and

about 100 km deep) on its north pole imaged by the Cassini-Huygens mission
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(Yadav & Bloxham, 2020).17

The moons of Jupiter (particularly Europa, Ganymede, and Callisto)

have also been hypothesized to harbor saline liquid water oceans beneath

their icy crusts. Though there is still some debate as to how deep (and

how liquid) these subsurface oceans really are, the prevailing picture appears

to be that there is a thin (∼ 10-30 km) solid crust of brittle ice, while at

depths of around 100 km tidal dissipation is sufficient to completely melt

the ice to form a liquid ocean. Between the solid ice surface and the liquid

ocean there is a layer of warm or ‘mushy’ ice that is convecting. Note that

here convection is being driven not by an intrinsic internal heat source, but

by tidal dissipation (Pappalardo et al., 1998; Spohn & Schubert, 2003). A

convective dynamo might be responsible for generating the magnetic fields

(∼ 20-600 nT) measured at the moons’ equators (Zimmer et al., 2000). The

Cassini mission (1997-2017) also detected geysers erupting from the icy moon

Enceladus, which orbits Saturn, which have been interpreted as evidence of a

subsurface ocean (Iess et al., 2014). The possibility of tidal-dissipation-driven

convection in Enceladus has been discussed by Barr & McKinnon (2007).

1.3.3 Linear theory of convection

In this section we first introduce the concept of buoyancy, which is critical

to understanding the dynamics of convection. We will then present more

formal criteria for convection. Although later in this thesis we only consider

convection driven by unstable entropy (not compositional) gradients in disks,

here we will nevertheless present the criteria for convective instability in

the most general form possible, i.e. taking into account both thermal and

compositional gradients. This has the advantage that it will then be easy

to see how these general expressions simplify for various special cases, e.g.

for a uniform (i.e. chemically homogeneous) perfect gas in the local effective

gravitational potential of an accretion disk.

Convection is fundamentally a buoyancy-driven instability. The origin

17An alternative hypothesis is that the polar hexagon is formed by baroclinic instability

in the stably-stratified surface weather layer rather than convection (Aguiar et al., 2010).
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of buoyancy is due to the vertical variation (stratification) of pressure in

a fluid due to the effect of gravity.18 To see how this vertical variation in

pressure arises, consider an open tank filled with fluid at rest and of uniform

density ρf , and permeated by a uniform gravitational field g along the vertical

direction. Let the vertical distance from the surface of the fluid be a measure

of the depth z > 0 of a point in the fluid (let z = 0 at the surface). Now

consider the fluid contained within a fictional thin circular slab of area A

located at a depth z = h in the tank. The fluid in the slab must support the

weight mg of the fluid in a column of mass m above it, otherwise the fluid

would not be at rest. Thus the downward force on the slab due to gravity

Fg = mg must be balanced by an upward force FB. Rewriting the mass of

the column of fluid directly above the slab as m = ρfV , and substituting

for the volume of the column V = Ah, the upward force on the slab can be

written as FB = ρfAhg. Finally dividing both sides by the area A, we see

that the pressure is given by P = ρfhg. Thus pressure increases with depth

in a fluid sitting in a gravitational field in hydrostatic equilibrium.

Now suppose a cylindrical object of uniform density ρobj and volume

Vobj is immersed fully in the fluid. Let the vertical extent of the object be

such that it spans z = ht from the top of the object (i.e. the point of the

object closest to the surface) and z = hb at the bottom of the object; the

object has a vertical extent of ∆h = hd − ht. Since pressure increases with

depth, the pressure exerted at the top of the object Pt = ρfhtg will be less

than the pressure exerted at the bottom of the object Pb = ρfhbg. The net

upward force on the object is given by FB,obj = A(Pt − Pb) = −ρfA∆hg

(the minus sign is because the force points upwards, or towards the surface),

and is known as the buoyancy force. Thus we see that buoyancy arises due

to the vertical variation in pressure in the fluid, which itself is due to the

gravitational field permeating the fluid.

Taking the ratio of the magnitudes of the buoyancy force FB,obj and the

weight of the object Fg,obj = mobjg = ρobjA∆hg, we obtain FB,obj/Fg,obj =

18The reader should not mistake this to mean that every pressure gradient results in a

buoyancy force, however.
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ρf/ρobj. Thus if the density of the immersed object is less than the density

of the surrounding fluid FB,obj > Fg,obj and object will rise; otherwise if

ρobj > ρf the object will sink. Furthermore, we can obtain an important

insight by considering the fluid within a surface whose shape (and therefore

volume) is identical to that of the immersed object. Let such a parcel of fluid

have a mass mf . The fluid parcel is at rest, so its weight must be balanced by

the buoyancy force on the fluid parcel, thus FB,f = −mfg. But the buoyancy

force on the parcel of fluid must in turn be equal to that on the immersed

object, since the two have the same configuration, and so FB,f = FB,obj.

Thus we arrive at the key insight that the buoyancy force on the immersed

object is equal to the weight of the fluid it has displaced. This is known

as Archimedes’ principle. Note that this is true irrespective of the shape

of the object. To work out the buoyancy force on an object of arbitrary

shape we need only replace the object with an element of fluid of the same

shape and recognize that, since the fluid element is at rest, the buoyancy

force on the fluid element must be equal to its weight. If the density of the

fluid element is known, the problem of determining the buoyancy on the fluid

element reduces to that of finding the volume of the fluid element, and since

the volume of the fluid element is identical to that of the object we need only

work out the volume of the object to determine the buoyancy force on the

object, i.e. FB,obj = −ρfVobjg.

In the previous example we considered the buoyancy force on an object

immersed in the fluid. To generalize this consider instead a fluid, initially

in hydrostatic equilibrium, with a vertical gradient in density ρ(z) as well

as pressure P (z). The fluid is permeated by a uniform vertical gravitational

field. Suppose a fluid element is displaced adiabatically upwards from some

depth z = hb to a depth z = ht. Through the exchange of acoustic waves the

fluid element will come into pressure equilibrium with its new surroundings

on a dynamical timescale but it will, in general, have a different density ρel

to the surroundings at its new position ρsur = ρ(z(ht)). As in the previous

example, the gravitationally induced stratification in pressure results in a

buoyancy force on the fluid element. If ρel < ρsur the fluid element will

rise; otherwise it will sink. When this rising and sinking of fluid elements is
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sustained by some means (which we will discuss shortly) such that there is

a continuous circulation of fluid driven by the interplay between buoyancy

and gravity, the fluid is said to be convecting. Thus gravity can be thought

of as the very basic ingredient needed for convection in a fluid.19

There are two sources of buoyancy: entropy gradients in which case a fluid

element is lighter than its surroundings by virtue of having a higher specific

entropy than its surroundings, and compositional gradients, in which case a

fluid element is lighter than its surroundings by virtue of its composition. Of

course the converse can also hold: if a fluid element is cooled it will contract

causing it to become denser than its surroundings, or a fluid element might

be denser than its surroundings by virtue of its chemical composition. Thus

thermal convection can be driven either by ‘heating from below’ (as in the

traditional Rayleigh-Bénard experiment) or by ‘cooling from above’ (an ex-

ample of which is the rapidly cooling surface of the exposed liquid iron core

following the merger of two planetesimals (Neufeld et al., 2019)).20 Composi-

tional convection can be driven either by the synthesis of light elements from

below (such as on the surface of the Earth’s inner core) or by the synthesis

of heavy elements from above which subsequently sink (such as the hydrogen

burning shell in red giant stars).

Consider a fluid element located at some fiducial location z0 in a grav-

itational field of magnitude g, and suppose the coordinate axes are aligned

such that g points along the negative z-axis. For a chemically inhomogeneous

fluid with a general equation of state P = P (ρ, T, µ), the change in density

Dρ of a fluid element displaced by amount δz is given by (see (Kippenhahn

et al., 1990))

19A straightforward table-top demonstration of the absence of convection in zero grav-

ity (strictly speaking, microgravity) has been given by the ESA’s André Kuipers aboard

the International Space Station. See https://www.youtube.com/watch?v=GhQHXUy3tNg&

frags=pl%2Cwn. More quantitative descriptions of such experiments can be found in Nau-

mann (1999).
20By symmetry considerations, the planforms of the convective cells when convection

is driven by heating from below will be the same as those when convection is driven by

cooling from above in Boussinesq convection. Compressible effects or a spatially-dependent

viscosity, however, can break this symmetry.
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Dρ =
ρδ

HP

(
∇el −∇sur +

φ

δ
∇µ

)
δz, (1.7)

where ∇sur, ∇el, and ∇µ are various ‘gradients’ used to express the varia-

tion of a quantity with depth (for which the pressure P is typically used as

proxy).21 Explicitly, the temperature gradient of the surroundings ∇sur is

defined as

∇sur ≡
d lnT

d lnP
, (1.8)

the compositional gradient ∇µ of the surroundings is defined as

∇µ ≡
d lnµ

d lnP
, (1.9)

and φ and δ are defined as

φ ≡ ∂ ln ρ

∂ lnµ

∣∣∣∣
T,P

, and δ ≡ ∂ ln v

∂ lnT

∣∣∣∣
µ,P

= − ∂ ln ρ

∂ lnT

∣∣∣∣
µ,P

, (1.10)

respectively, where v ≡ 1/ρ is the specific volume. Note that δ is related to

the volume-expansivity α ≡ (∂ lnV/∂T )µ,P of the fluid by δ = Tα. Since

most fluids expand on heating δ can usually be assumed to be positive. For

the special case of an ideal gas with P = (R/µ)ρT , φ = 1 and δ = 1. Finally

the pressure-scale height is defined as

HP ≡ −
dz

d lnP
. (1.11)

Since the pressure generally increases with depth, dz/d lnP < 0 and so the

scale height, too, is a positive quantity, i.e. HP > 0.

The gradient ∇el ≡ d lnT/d lnP describes the variation in the tempera-

ture with depth of the fluid element as it moves through its surroundings.

In the special case that the fluid element moves without exchanging heat

with the surroundings, its motion is said to be adiabatic and the gradient

of the fluid element is equivalent to the adiabatic gradient, i.e. ∇el → ∇ad,

21In the literature, the temperature gradient of the surroundings ∇sur is usually denoted

simply by ∇.
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where the adiabatic gradient is defined as the derivative of temperature with

respect to pressure (or depth) at constant entropy s, i.e.

∇ad ≡
∂ lnT

∂ lnP

∣∣∣∣
s,µ

. (1.12)

Instability occurs when Dρ < 0. Thus the general instability criterion for

convection (known as the Ledoux criterion after Ledoux (1947)) is given by

∇el −∇sur +
φ

δ
∇µ < 0. (1.13)

The instability criterion given by Equation 1.13 is valid for a fluid of non-

uniform composition and for a general equation of state P = P (T, ρ, µ).

It is often more intuitive to think of convective instability in terms of the

motion of the displaced fluid element, rather than purely in terms of thermal

and compositional gradients. A fluid element that is displaced by an amount

δz in a gravitational field g will feel a buoyancy force density of fB = −|g|Dρ.

From Newton’s second law the acceleration of the fluid element is given by

ρ
d2δz

dt2
= −|g|Dρ. (1.14)

Substituting Equation 1.7 into Equation 1.14 and dividing through by ρ we

obtain

d2δz

dt2
= −

[
|g|δ
HP

(
∇el −∇sur +

φ

δ
∇µ

)]
δz. (1.15)

The quantity in the brackets has dimensions of frequency squared. It is

defined as the (square) of the buoyancy-frequency N2
B, i.e.

N2
B ≡

|g|δ
HP

(
∇el −∇sur +

φ

δ
∇µ

)
. (1.16)

The equation of motion of the fluid element is thus given by the second-

order ordinary differential equation d2δz/dz2 = −N2
Bδz. A displacement δz

will grow exponentially when N2
B < 0 (corresponding to instability), N2

B =

0 corresponds to marginal stability, and N2
B > 0 results in the displaced
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element undergoing oscillations (stability). These oscillations lead to waves

known internal gravity waves.

So far we have written the instability criterion for convection purely in

terms of ‘gradients’ (Equation 1.13), and in terms of a buoyancy frequency

(Equation 1.16). An equivalent way of considering convective instability is

to express the instability criterion in terms of an entropy gradient

1

cP

ds

dz
− φ

δ

d lnµ

dz
< 0. (1.17)

Thus negative entropy and positive compositional gradients destabilize the

fluid, whereas positive entropy and negative compositional gradients stabilize

the fluid. Some interesting scenarios arise, however, when the entropy and

compositional gradients are of the same sign. A fluid with a negative entropy

gradient (i.e. thermally unstable) and a negative compositional gradient

(i.e. compositionally stable) might be convectively stable if the magnitude of

the compositional gradient exceeds the magnitude of the entropy gradient.

Conversely, a fluid with a positive entropy gradient (i.e. thermally stable) and

a positive compositional gradient (i.e. compositionally unstable) might be

convectively unstable if the magnitude of the compositional gradient exceeds

the magnitude of the compositional gradient.

Two special cases arise from Equation 1.13. In the case of a fluid of

uniform composition ∇µ = 0, and the Ledoux criterion for instability reduces

to the Schwarzschild criterion for instability (Schwarzschild, 1906; Menzel &

Milne, 1966).22

∇sur > ∇el. (1.18)

In the case where the fluid element moves adiabatically ∇el → ∇ad and the

Schwarzschild criterion becomes

22The criterion was first derived in 1906 by Karl Schwarzschild (1873-1916), who is also

known for deriving the first exact solutions to the Einstein Field Equations for a static,

non-rotating, uncharged spacetime outside a spherical mass. His son, Martin Schwarzschild

(1912-1997), also worked on convection in stars and published a treatise on stellar structure

(Schwarzschild, 1958).
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∇sur > ∇ad, (1.19)

Thus convection is said to occur when the temperature gradient of the sur-

roundings is super-adiabatic. A further simplification can be made when the

fluid is described by a perfect gas equation of state. In this case ∇ad =

(γ − 1)/γ and thus the instability criterion reduces to the simple expression

∇sur ≡
d lnT

d lnP
>

(γ − 1)

γ
, (valid for perfect gas). (1.20)

This can be expressed equivalently in terms of the buoyancy frequency as

N2
B ≡ |g|

[
1

γ

d lnP

dz
− d ln ρ

dz

]
< 0, (valid for perfect gas). (1.21)

For the specific case of a thin accretion disk in a local (co-orbiting) reference

frame with angular frequency Ω0 (see Section 2.2), the vertical component of

the gravitational acceleration is given by g = −zΩ2
0.

The second case occurs when the entropy gradient is zero but the com-

positional gradient is non-zero. In this case the Ledoux criterion given by

Equation 1.17 reduces to

− φ

δ

d lnµ

dz
< 0. (1.22)

In the special case of an ideal gas δ = 1 and φ = 1, and the criterion becomes

d lnµ

dz
> 0, (1.23)

In other words the fluid is unstable when its mean molecular weight decreases

with depth (i.e. when ‘heavy’ fluid lies on top of ‘lighter’ fluid). This is a

general form of the Rayleigh-Taylor instability, except it involves a gradual

change in composition rather than a discontinuity.

Finally, the criteria discussed above constitute both necessary and suffi-

cient criteria for the onset of convection only in an inviscid fluid. In a viscous

fluid, the destabilizing buoyancy force is countered by the effects of viscos-

ity ν and thermal diffusivity χ. The ratio of destabilizing and stabilizing
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processes is quantified by the Rayleigh number

Ra ≡
∣∣N2

B

∣∣H4

νχ
, (1.24)

where H is the disk’s scale height. In a viscid fluid, the Rayleigh number

must exceed some critical value in order for the onset of convection to oc-

cur. Note that when magnetic fields and rotation are present the critical

Rayleigh number itself is a function of other dimensionless numbers involv-

ing the magnetic field strength, and the rotation frequency, respectively (see

Chandrasekhar (1961) for a detailed analysis). We will discuss other dimen-

sionless numbers that are relevant to convection in Section 3.1.4, and a more

detailed discussion of the Rayleigh number criterion in turbulent flows is

given Section 4.1.2.

1.4 Applications of convection in disks

1.4.1 Convection in dwarf novae

Convection (perpendicular to the plane of the disk) has long featured in the-

oretical models of dwarf novae. As discussed in Section 1.2.3, a defining

observational feature of dwarf novae is the presence of repeated outbursts in

their light curves. A key prediction of the disk instability mode (DIM) used

to explain these outbursts is the existence of two thermal equilibrium solu-

tions in the shape of an ‘S-curve’ in the plane of temperature against surface

density (Smak, 1971; Osaki, 1974). The exact instability mechanism enabling

the disk to transition between the two states remained unclear, however, until

Hōshi (1979) suggested that the transition could be facilitated through ion-

ization of hydrogen at temperatures around 104 K. Such ionization transitions

result in an opacity with a very strong temperature dependence, allowing for

a transition between the two thermal equilibrium solutions proposed in the

disk instability model. Hoshi’s refined model, however, utilized vertically

averaged equations which necessitated a separate calculation of the lower

and upper branches, and thus failed to account for the cyclical nature of the

outbursts.
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Convection appeared to solve this problem. The inclusion of a convec-

tive heat flux in the thermal energy equation in 1D steady state disk models

correctly predicted ‘S-curves’ for thermal equilibrium, thus enabling the disk

to undergo cycles between the low and the high states (Meyer & Meyer-

Hofmeister, 1981, 1982; Smak, 1982; Cannizzo et al., 1982). The significance

of convection in these cycles was called into question, however, by Faulkner

et al. (1983), who did not include an explicit convective heat flux in their 1D

steady state models and demonstrated that ionization/recombination of hy-

drogen and the subsequent strong temperature dependence of the opacity was

sufficient for the models to produce ‘S-curves’ for thermal stability, and there-

fore cyclical outbursts. Although Faulkner et al. (1983) demonstrated that

convection was not the cause of cyclical outbursts in dwarf novae, their cal-

culations indicated that convection was a natural consequence of the vertical

variation in ionization needed to produce these outbursts. More specifically,

convection shifts the position of the local maximum on the upper branch

of the S-curve, although the quantitative details of this shift depend on the

particular prescription used for the convective heat flux (Cannizzo, 1993).

1.4.2 Convection in LMXBs and AGN

Convection might also be present in low mass X-ray binaries (LMXBs), sys-

tems in which a black hole (BH) or neutron star (NS) primary accretes via

Roche lobe overflow from a low mass secondary. Like dwarf novae, LMXBs

are observed to undergo repeated outbursts. The outburst phase, however,

is much more complicated than in dwarf novae, consisting of multiple states.

‘Super soft’ and ‘high/SPL’ states are characterized by very high accretion

rates and are modeled by a geometrically thin, optically thick disk which ex-

tends all the way down to the innermost stable circular orbit (ISCO). The disk

in these states is likely radiation pressure dominated and hence convectively

unstable, at least according to simple alpha disk models (Bisnovatyi-Kogan

& Blinnikov, 1977; Tayler, 1980).

The disk morphology in the ‘low’ and ‘hard’ states, and in quiescence,

is more complicated than in the high states. The relatively cool, geomet-
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rically thin, optically thick outer regions of these disks are very similar to

those of dwarf novae. The inner regions, however, differ substantially from

dwarf novae disks. They are very hot, optically thin, and geometrically thick

(bearing greater similarity to tori than to thin disks). General relativistic ef-

fects and radiation pressure are important. These thick accretion flows (tori)

also carry over to low-luminosity active galactic nuclei (AGN), systems in

which an accretion disk surrounds a supermassive black hole at the center of

a galaxy.

Several theoretical models have been developed to describe the inner re-

gions of LMXBs and AGN. Narayan & Yi (1994) constructed models called

advection-dominated accretion flows (ADAFs). These models were shown to

be very convectively unstable in the plane of the disk, in fact so convectively

unstable that the disk fluid is advected inwards faster than it can thermalize.

Because rotation exerts a stabilizing influence on convection (via the Solberg-

Hoiland criterion, see, for example, Kippenhahn et al. (1990)), ADAF disks

are likely to be even more convectively unstable in the plane perpendicular

to the disk (where the Solberg-Hoiland criterion reduces to the less stringent

Schwarzchild criterion). Various extensions of, and modifications to, these

models have been introduced, including advection-dominated inflow outflow

solutions (ADIOS) (Quataert & Gruzinov, 2000), and convection-dominated

accretion flows (CDAFs) (Blandford & Begelman, 1999). The CDAF models,

in particular, enforce a constant entropy gradient in the radial direction, the

motivation being that an ADAF will settle into a marginally unstable state

due to the process of convection. However, the interiors of stars, too, are

only very marginally convectively unstable (formally defined as a very small

but negative N2
B), yet convection is thought to significantly influence their

structure. Therefore convection in CDAFs, though tame compared to con-

vection in ADAFs, likely plays an important role in determining the vertical

as well as radial structure of the disk.
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1.4.3 Convection in protoplanetary disks

The existence of thermal convection in cooler protoplanetary disks is not

clear. Steady-state models in which heating is provided solely via an alpha

viscosity have found that the disk can be convectively unstable in the inner

regions, generally within 10 AU, although the exact instability zones vary

depending on stellar mass, disk mass, and the magnitude of α (Pfeil & Klahr,

2019). Convection is facilitated through opacity transitions in these models,

in particular the change in opacity due to the melting of ice grains (at T ∼
160 K) and evaporation of metal/silicate grains ( at T ∼ 1000 K). Irradiation

of the disk by the central star might mitigate convection because heating

of the disk surface can result in the disk having an inverted temperature

profile (i.e. hot at the surface, cool at the mid-plane) which is not conducive

to convection. D’Alessio et al. (1998) performed calculations that included

contributions to heating both from irradiation and from viscous dissipation

via an alpha viscosity, and determined that the alpha viscosity dominated

heating only in the very innermost regions of the disk (r < 2 AU).

Of course the aforementioned models all simply prescribe the heat source

via an alpha viscosity. Thus identifying a physical mid-plane heat source

that could drive convection in protoplanetary disks remains an outstanding

problem. Disks around young stars are typically cold, and insufficiently ion-

ized to support the MRI. Nevertheless there are various heat sources that

can, in principle, drive convection in these systems. Early work by Lin &

Papaloizou (1980) considered very young (Class 0) protostellar disks that

were still contracting towards the mid-plane. They demonstrated that such

disks are inherently convectively unstable provided that the opacity is a suf-

ficiently steep power law function of the temperature.23 In the later stages

of protoplanetary disks a potential heat source for convection could be dis-

sipation of shocks launched by a high mass planet (Boley & Durisen, 2006;

Lyra et al., 2016), or dissipation of zonal magnetic fields facilitated through

ambipolar or Ohmic diffusion in mid-plane current sheets (Lesur et al., 2014;

23An example of a sufficiently steep opacity law relevant to the primordial solar nebula

is the melting of ice grains at temperatures of around 160 K.
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Béthune et al., 2017; Béthune & Latter, 2020). Finally FU Orionis are a

special subclass of protoplanetary disk that undergo outbursts. It is thought

that these outbursts are similar to those in dwarf novae, with the gas within

1 AU of the star sufficiently hot that it is fully ionized, leading to MRI turbu-

lence which ultimately dissipates heat around an optically thick mid-plane.

Further away from the mid-plane the disk is cool and only partially ionized.

Just like in dwarf novae systems this can set up an unstable entropy gradient

that can drive convection (Hirose, 2015).

1.5 Dynamics of convection in disks

The papers we discussed in the previous section considered convective in-

stability in various disk classes, but generally did not touch on the actual

character of convective flows in disks. In this section we look at the problem

from a slightly different angle, focusing on those works that investigated the

dynamics of convection in disks more closely, in particular its relation to an-

gular momentum transport and to the MRI. In the spirit of how the subject

is presented in the results chapters of this thesis, we have divided this into

a discussion of previous work on purely hydrodynamic convection in disks

(Section 1.5.1), and a discussion of MHD convection in disks (Section 1.5.2).

1.5.1 Hydrodynamic convection in disks

As mentioned in Section 1.4.3, accretion may instigate convection. But con-

vection might drive accretion itself. Motivated by considerations of the pri-

mordial solar nebula, Lin & Papaloizou (1980) constructed a simple hydrody-

namic model of a cooling young protoplanetary disk that was still contracting

towards the mid-plane. As we already mentioned earlier, they showed that

such models are convectively unstable provided that the opacity increases

sufficiently steeply with temperature. The heat source is initially provided

by gravitational contraction. But, as Lin & Papaloizou (1980) pointed out,

if convection is modeled, via a mixing length theory, with an effective vis-

cosity, the process might self-sustain, i.e. convective eddies could extract
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energy from the background orbital shear, and viscous dissipation of that

energy might replace the initial gravitational contraction as a source of heat

for maintaining convection.

In order to go beyond mixing length theory, Ruden et al. (1988) analysed

linear axisymmetric modes in a thin, polytropic disk in the shearing box ap-

proximation and estimated that mixing of gas within convective eddies could

result in values of α ∼ 10−3 − 10−2. They cautioned, however, that axisym-

metric convective cells could not by themselves exchange angular momentum:

such an exchange would have to be facilitated either by non-axisymmetric

modes, or by viscous dissipation of axisymmetric modes.

Following these early investigations, a debate ensued that centered not

so much on the size of α but rather on its sign.24 Dissipation of non-linear

axisymmetric convective cells was investigated by Kley et al. (1993) who

performed quasi-global simulations (spanning about 100 stellar radii) of ax-

isymmetric disks with alpha viscosity heating and radiative cooling. Their

aim was to measure the contribution of convection to the angular momen-

tum (AM) flux, which of course would be in addition to the background

AM flux facilitated by the explicit viscosity they included. They measured

an inward flux of angular momentum, but warned that this might be due

to the imposed axial symmetry and to their relatively high viscosity. Con-

vective shearing waves were first investigated by Ryu & Goodman (1992),

who concluded that linear non-axisymmetric perturbations would result in a

net inward angular momentum flux at sufficiently large time. These results

were questioned however by Lin et al. (1993), who examined analytically and

numerically a set of localized linear non-axisymmetric disturbances in global

geometry. They demonstrated that these modes could transport angular

momentum outwards in some cases, and opined that the inward transport of

angular momentum reported by Ryu & Goodman (1992) was an artifact of

the shearing box approximation.

24Interestingly the prevailing assumption among researchers at the time was that convec-

tion existed in protoplanetary disks, and thus discussion focused on whether it transported

angular momentum inwards or outwards, rather than on whether a viable heat source that

could sustain convection existed in the first place (Jim Stone; private communication).
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Interest in hydro convection waned after local non-linear 3D compress-

ible simulations showed that it resulted in inward rather than outward angu-

lar momentum transport. Using the finite-difference code ZEUS and rigid,

isothermal vertical boundaries, Stone & Balbus (1996) (hereafter SB96) ini-

tialized inviscid, fully compressible, and vertically stratified shearing box

simulations with a convectively unstable vertical temperature profile, and

measured a time-averaged value of α ∼ −4.2×10−5. Inward angular momen-

tum transport was also reported by Cabot (1996) who ran simulations similar

to those of SB96 but included full radiative transfer and a relatively high ex-

plicit viscosity. Analytical arguments for the inward transport of angular

momentum by convection were presented by SB96 which, crucially, assumed

axisymmetry, especially in the pressure field. However, in a rarely cited

paper Klahr et al. (1999) presented fully compressible, three-dimensional,

global simulations including explicit viscosity and radiative transfer of hy-

drodynamic convection in disks that gave some indication that non-linear

convection in disks actually assumes non-axisymmetric patterns.

Some fifteen years later, the claims of SB96 and of Cabot (1996) were

called into question: fully local shearing box simulations of Boussinesq hy-

drodynamic convection in disks using the spectral code SNOOPY and em-

ploying explicit diffusion coefficients indicated that the sign of angular mo-

mentum transport due to vertical convection can be reversed provided the

Rayleigh number (the ratio of buoyancy to kinematic viscosity and thermal

diffusivity) is sufficiently large (Lesur & Ogilvie, 2010). It would appear

then that vertical convection can possibly drive outward angular momentum

transport after all.

1.5.2 MHD convection in disks

Although convection was often discussed in the literature in the context of

models of dwarf novae disks (which should be sufficiently ionized to support

the MRI, at least in the high state), these models were purely hydrodynamic

in nature and modeled turbulent transport using an α viscosity (see Section

1.4.1). Only in the past few years has convection been investigated in MHD
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simulations of disks. A key claim that has emerged from these studies is that

the interplay between convection and MRI can enhance angular momentum

transport. Bodo et al. (2012) performed 3D fully compressible, vertically

stratified shearing box simulations with zero net magnetic flux (ZNF) in

PLUTO with explicit thermal diffusivity and a perfect gas equation of state,

and found that in regimes with low thermal diffusivity (χ ∼ 10−3−10−4) con-

vection resulted in a significant increase in the magnetic stress. A follow-up

paper by Gressel (2013), however, countered that the enhancement in stress

observed in Bodo et al. (2012) was in fact an artifact of the impenetrable

stress-free boundary conditions employed in their simulations.

More extensive 3D MHD shearing box simulations using the finite-difference

code ZEUS were later carried out to study the interplay between convection

and the MRI in vertically stratified shearing boxes in more detail, with par-

ticular applications to the hydrogen-dominated disks found in dwarf novae

(Hirose et al., 2014) and FU Orionis (Hirose, 2015). These simulations in-

cluded radiative transfer through flux-limited diffusion (FLD), as well as

opacity tables, a temperature- and density-dependent ratio of specific heats,

and a non-ideal equation of state. Hirose et al. (2014) observed convec-

tive/radiative cycles on the upper branch of their simulations, and claimed

that convection on the lower-end of the upper branch of the S-curve could

enhance α by as much as an order of magnitude. Coleman et al. (2016)

attempted to model dwarf novae outbursts in 1D disk models by incorporat-

ing the variation in α measured in the aforementioned simulations. Although

their models were consistent with observed outburst and quiescent durations,

they exhibited short bursts in magnitude during decay from outburst (known

as reflares) that have not been observed in real dwarf novae. Using the data

from Hirose et al. (2014) simulations, Coleman et al. (2017) investigated in

more detail the effect of convection on the MRI dynamo, and found that

convection in hydrogen-dominated disks could quench the toroidal field re-

versals observed in MRI simulations. Application to the helium-dominated

disks in AM CVns exhibited a similar enhancement of α on the lower-end

of the upper branch, but resulted in persistent rather than intermittent con-

vection (Coleman et al., 2018). Note that many of these works used the sign
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of the square of buoyancy frequency N2
B to determine whether convection

was present in their simulations or not, a criterion that is necessary but not

sufficient. We shall discuss this issue in more detail in Section 4.1.2.

The results of Hirose et al. (2014) – in particular intermittent convec-

tion and enhancement of α on the lower tip of the upper branch – were

corroborated with 3D MHD flux-limited diffusion shearing box simulations

carried out by Scepi et al. (2018a) using the finite-volume code PLUTO.

Scepi et al. (2018a) also observed convection in hotter regions of the lower

branch (which they referred to as the middle branch), but without an accom-

panying enhancement in α, thus calling into question the role of convection

in enhancing α.

Furthermore, when Scepi et al. (2018b) investigated the effects of a net

vertical magnetic field (NVF) configuration, they found that, in the absence

of resistivity, this resulted in an α which was higher on the lower branch

than in outburst. Scepi et al. (2018b) also found that with a NVF config-

uration wind -driven accretion dominated turbulent-driven accretion on the

lower branch, and in a follow-up paper demonstrated that wind-driven accre-

tion could reproduce dwarf nova light curves (Scepi et al., 2019). Thus Scepi

et al. (2019) proposed wind-driven accretion as an alternative hypothesis to

MRI/convection-driven turbulence as the mechanism for angular momentum

transport in dwarf novae.

1.6 Outline of thesis

In Chapter 2 we discuss the methods that we employ throughout this the-

sis. We begin by presenting the governing equations (Section 2.1). All of

the results in this thesis were obtained by considering a local region of an

accretion disk, known as the shearing box formalism, and thus we review this

formalism in Section 2.2. We then describe the numerical algorithms (Section

2.3), and astrophysical fluid dynamics codes that we use for our simulations

(Section 2.4). Finally we define the various diagnostics that we that we use

in our results chapters (Section 2.5).
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In Chapter 3 we discuss hydrodynamic convection in disks. We begin

by presenting our numerical set-up and equilibria in Section 3.1. In Section

3.2 we examine the linear theory of hydrodynamic convection in disks, in-

cluding calculations of the linear growth rates. The non-linear phase is then

investigated in Section 3.3 in unforced simulations, where we find that hydro-

dynamic convection can, in general, transport angular momentum outward.

In Section 3.4 we discuss simulations in which convection is sustained using

an artificial heat source, leading to large-scale oscillatory convective cells.

We discuss our results and conclusions in Section 3.5.

In Chapter 4 we turn our attention to magnetohydrodynamic convec-

tion in disks. In Section 4.2 we discuss stratified MHD simulations without

explicit cooling, with the aim of investigating the influence of the MRI on

the vertical structure of the disk in the absence of convection. Next, in or-

der to facilitate convection, we implement an explicit cooling term (Section

4.3), and find that the interplay between convection and the MRI can be

manifested in various distinct ways. We discuss our results in Section 4.4,

including how they compare to previous work and their application to dwarf

novae. Finally, we summarize our key results in Section 4.5.

In Chapter 5 (which is largely independent of the first two), we discuss

the stress-pressure relationship in disks. Pressure and stress are known to in-

teract in a non-trivial way, certainly more complicated than the simple linear

behavior posited by the alpha model, and this can have implications for ther-

mal instability, which we discuss in Section 5.1. In Section 5.2 we provide

a brief overview of our numerical set-up and cooling prescription. In Sec-

tion 5.3 we examine the time-lag between stress and pressure in unstratified

simulations by controlling the mean pressure using our cooling prescription.

Finally, we conclude the thesis in Chapter 6, where we summarize our key

results and discuss avenues for future work.
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Chapter 2

Methods

In this section we will discuss the physical models and numerical methods

used in later chapters. We start by presenting the governing equations and

parameters in Section 2.1. These equations are solved in the local reference

frame of an observer co-rotating at some fiducial radius in a disk. This is

known as the shearing box approximation, which is presented in Section 2.2.

In Section 2.3 we discuss the specific numerical algorithms used to solve the

equations, in particular the technique of finite volume methods. We briefly

present the codes that we use in Section 2.4. Finally, we discuss the various

diagnostics for analyzing data from our simulations in Section 2.5.

2.1 Governing equations

We model the disk as a fluid, an approximation that is valid provided that

the collision rate ωc of gaseous particles in the disk is much greater than

the orbital angular frequency Ω.1 This assumption generally holds in dwarf

novae, in protoplanetary discs, and in the outer regions of X-ray binaries and

active galactic nuclei (Latter et al., 2017). Thus we work with the equations

of magnetized gas dynamics (or of magnetohydrodynamics). These are given

1An equivalent statement of the validity of the fluid approximation is that the Knudsen

number, i.e. ratio of the mean free path λ of particles in the disk to the disk scale height

H, is much less than unity, i.e. Kn=λ/H � 1.

62



by the continuity equation (corresponding to conservation of mass)

∂tρ+∇ · (ρu) = 0, (2.1)

the momentum equation (corresponding to conservation of momentum)

∂tu + u · ∇u = −1

ρ
∇P −∇Φ +∇ ·T +

1

µ0ρ
(∇×B)×B, (2.2)

the thermal energy equation (corresponding to conservation of thermal en-

ergy)

∂t(ρe) + u · ∇(ρe) = −γρe∇ · u + T : ∇u + κ∇2T +
η

µ0

|∇ ×B|2 + Λ, (2.3)

and the induction equation governing the time evolution of the magnetic field

∂tB = ∇× (u×B) + η∇2B. (2.4)

These equations are closed with the caloric equation of state for a perfect

gas P = e(γ − 1)ρ where e is the specific internal energy. The adiabatic

index (ratio of specific heats) is denoted by γ and is taken to be γ = 5/3

in all our simulations. The temperature T , when needed, is recovered using

the thermal equation of state for a perfect gas P = (R/µ)ρT . Here P is the

thermal pressure of the fluid, ρ is mass density, R is the gas constant, and

µ is the mean molecular weight. In our simulations we set µ = 0.5, which

is appropriate for fully ionized hydrogen. Finally, in a few select simulations

we keep the temperature of the gas constant, i.e. the equation of state is

P = c2
sρ where the (isothermal) sound speed cs is constant in both space and

time. We refer to this as an isothermal equation state.

Φ(r, z) is the external gravitational potential due to a point source of mass

M , i.e. Φ = −GM/
√
r2 + z2 in cylindrical coordinates. In a non-inertial (i.e.

rotating) frame Φ can be combined with the centrifugal potential to form an

effective gravitational potential Φeff. Expansion of Φeff in a small parameter

(specifically the ratio of disk thickness to cylindrical radius) results in an ef-

fective gravitational acceleration that depends only linearly on the radial and

vertical coordinates. This simplification (together with appropriate bound-

ary conditions) is known as the shearing box approximation (see Section 2.2).
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Other terms in the equations include the viscous stress tensor T ≡ 2ρνS.

Here ν is the kinematic viscosity, and S ≡ (1/2)[∇u+(∇u)T]− (1/3)(∇·u)I

is the traceless shear tensor, and we omit the bulk viscosity. The thermal

conductivity is denoted by κ, but in our simulations we specify thermal

diffusivity χ rather than κ. The former is related to the latter via χ =

κ/(cpρ) where cp is the specific heat capacity at constant pressure. The

explicit magnetic diffusivity, where this is included, is denoted by η, and

the permeability of free space is denoted by µ0. The magnetic diffusivity is

related to the resistivity σ (not to be confused with the symbol we use for the

growth rate later on) by σ = 1/µ0η, though we often refer to the magnetic

diffusivity as a ‘resistivity’ later in this thesis. Note that where we employ

explicit diffusion coefficients, for simplicity we treat these as being constant

in both space and time. Thus the diffusion coefficients can be taken outside

the derivatives in the governing equations.

In some of our hydrodynamic simulations we mock up the effects of ra-

diative physics through a thermal relaxation term Λ = Λrelax ≡ −(ρe −
ρ0e0)/τrelax. This relaxes the thermal energy in each cell back to its initial

state e0(z) ≡ e(z, t = 0) on a timescale given by τrelax, where the initial state

is a convectively unstable state that might be the result of radiative cooling

balanced by internal or external heating. We refer to simulations run with

Λrelax 6= 0 as simulations of forced compressible convection. Conversely, sim-

ulations with Λrelax = 0 are referred to as unforced. Since convection moves

heat away from the mid-plane in our simulations, we choose the thermal

relaxation timescale τrelax to be the inverse of the linear growth rate of the

convective instability (which we derive in Section 3.2).

In our MHD simulations heating is provided self-consistently through

an internal heat source, thus we use a slightly simpler cooling prescription

compared to that employed in our hydro simulations. We implement opti-

cally thin cooling through a linear cooling term (also known as beta-cooling)

Λ = Λc ≡ −ρe/τc. This lowers the thermal energy in each cell on a cool-

ing timescale given by τc. In fully turbulent MRI simulations this cooling

is balanced by heating due to the dissipation of MRI turbulence (and resis-

tive or Joule-heating, when explicit resistivity is included). In all but one of
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Figure 2.1: Schematic of the shearing box, adapted from Mignone (2015).

The inset shows a global representation of the shearing box embedded within

a disk. The middle (bolded) box represents the active computational domain,

while the two boxes on either side represent image boxes (used to determine

the radial boundary conditions) that move at a constant speed w = ±qΩ0Lx

relative to the active domain.

the MHD simulations in which we employ explicit cooling, we use a height-

dependent cooling prescription to mock up the effects of an optically thick

mid-plane surrounded by an optically thin corona: this is facilitated by turn-

ing cooling on for |z| > 0.75H0. Note that in those regions where there is

explicit cooling, the cooling timescale is constant both in space and time.

2.2 Shearing box formalism

2.2.1 Tidal expansion of effective gravitational poten-

tial

Equations 2.1-2.4 govern the motion and thermodynamics of a fluid element

under the influence of an external gravitational potential Φ. A simplification
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can be made to the momentum equation (Equation 2.2) by working in the

shearing box approximation (Goldreich & Lynden-Bell, 1965; Hawley et al.,

1995a; Umurhan & Regev, 2004; Latter & Papaloizou, 2017), which treats

a local region of a disk as a Cartesian box centered at some fiducial radius

r = r0 and at the disk mid-plane plane z = 0, and orbiting with the angular

frequency of the disk at that radius Ω0 ≡ Ω(r0) (see Figure 2.1). A point in

the box has Cartesian coordinates (x, y, z) which are related to the cylindrical

coordinates (r, φ, z) through x = r − r0, y = r0(φ− φ0 − Ω0t) and z = z.

To derive the shearing box equations, first consider a rotating (non-

inertial) reference frame. In this frame terms due to the Coriolis and cen-

trifugal forces are added to the right-hand side of the momentum equation

∂tu + u · ∇u = · · · − ∇Φ− 2Ω× u−Ω× (Ω× r). (2.5)

Here we have assumed that the angular frequency of the reference frame is

equal to the local angular frequency Ω0 of the disk at r = r0, i.e. the angular

frequency is given by Ω = (0, 0,Ω0)T , where Ω0 is constant. Thus we may

rewrite the centrifugal term as the gradient of Ω× r to obtain

Ω× (Ω× r) = −1

2
∇|Ω× r|2, (2.6)

which can then be combined together with the gradient of the external grav-

itational potential Φ to form a term corresponding to the gradient of an

effective gravitational potential, i.e.

−∇Φ +
1

2
∇|Ω× r|2 = −∇

[
Φ− 1

2
|Ω× r|2

]
≡ −∇Φeff. (2.7)

Evaluating the cross product term (1/2)|Ω × r|2, we find that the effective

gravitational potential is given by

Φeff = Φ− 1

2
r2Ω2

0. (2.8)

Expanding Φeff about some fiducial point (r = r0, z = 0) in the disk to

second order (and assuming that x ≡ r − r0 � 1 and that |z/r0| � 1) we

obtain
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Φeff = Φ(r0, 0) +
∂Φ

∂r

∣∣∣∣
r0,0

x+
∂Φ

∂z

∣∣∣∣
r0,0

z

+
1

2

∂2Φ

∂r2

∣∣∣∣
r0,0

x2 +
1

2

∂2Φ

∂z2

∣∣∣∣
r0,0

z2 +
∂2Φ

∂r∂z

∣∣∣∣
r0,0

rz

+O(r3
0, z

3)

− 1

2
Ω2

0(r2
0 + 2r0x+ x2).

(2.9)

Note that in expanding Φeff we have implicitly assumed that |z/r0| � 1,

i.e. that the disk is thin. Furthermore, in Equation 2.9, the leading order

gravitational and centrifugal terms Φ(r0, 0) = −GM/r0 and −(1/2)Ω2
0r

2
0,

respectively, are constants and vanish on taking the derivative. Evaluating

the remaining terms in Equation 2.9 we obtain the tidal expansion of the

effective gravitational potential

Φeff = −Ω2
0S0x

2 +
1

2
Ω2

0z
2, (2.10)

where we have dropped the constant terms. Here S0 ≡ −rdΩ/dr|r=r0 is the

shear rate evaluated at the point r = r0.

The governing equations still involve gradient operators ∇ that are in

cylindrical polar coordinates. Assuming that any perturbations of interest

vary on length scales much smaller than the fiducial radius r0, we can adjust

the size of the shearing box (and thus the extent of the shearing box coordi-

nates x, y, and z) accordingly: therefore x, y, z � r0. This allows us to drop

subdominant cylindrical terms (which go as x/r0, y/r0, z/r0) in the gradient

operators. Thus ∇cylindrical ∼ ∇Cartesian. Making this replacement and using

the tidal expansion of the effective gravitational potential given by Equation

2.10, the momentum equation in the shearing box approximation becomes

∂tu + u · ∇u = −1

ρ
∇P + geff − 2Ω× u +∇ ·T +

1

µ0ρ
(∇×B)×B, (2.11)

where all gradient operators in Equation 2.11 are now in Cartesian coor-

dinates. Here the effective gravitational potential is embodied in the tidal
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acceleration geff = 2qΩ2
0xx̂ − Ω2

0zẑ, where q ≡ −d ln Ω/d ln r is the (dimen-

sionless) shear parameter. For Keplerian disks q = 3/2, a value we adopt

throughout this paper.

To complete the shearing box approximation we require that the mo-

mentum equation with modified gravitational acceleration together with the

usual equations for conservation of mass (Equation 2.1), conservation of en-

ergy (Equation 2.3), and the induction equation (Equation 2.4) are comple-

mented by appropriate boundary conditions (see, for example, Hawley et al.

(1995a)). We assume the shearing box (which constitutes the active domain,

i.e. the domain in which the solution of the governing equations is updated

in time) is accompanied by two image boxes at each radial boundary (see

Figure 2.1). Due to the linear shear, these image boxes (whose purpose is

purely to implement the radial boundary conditions) appear to slide past

the active domain relative to an observer located at the center of the active

domain. A fluid element leaving the active domain at the left-hand radial

boundary at the azimuthal position y will reappear at the right-hand radial

boundary at the azimuthal position of the right-hand image box y − qΩLxt.
To quantify this, let the radial, azimuthal, and vertical boundaries be located

at x = ±Lx/2, y = ±Ly, and z = ±Lz, respectively. For any flow variable

f (except the y-component of the velocity uy which we shall discuss shortly)

the boundary conditions are given by

f(x, y, z) = f(x+ Lx, y − qΩLxt, z) (x boundary), (2.12)

f(x, y, z) = f(x, y + Ly, z) (y boundary), (2.13)

at the x- and z-boundaries, respectively. For the y-component of the velocity

uy we use periodic boundary conditions in the y-direction (cf. Equation 2.13),

but the radial boundary condition is given by

uy(x, y, z) = uy(x+ Lx, y − qΩLxt, z) + qΩLx (x boundary). (2.14)

Thus in the shearing box approximation we are restricted to using so called

shear-periodic boundary conditions in the x-direction and periodic boundary
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conditions in the y-direction. (We are free to choose whatever boundary

conditions we wish in the z-direction.)

2.2.2 Conservation of energy in the shearing box

By dotting the momentum equation (Equation 2.11) with u, combining the

result with the continuity equation (Equation 2.1), thermal energy equa-

tion (Equation 2.3), and induction equation (Equation 2.4), and integrating

over the volume of the box we can synthesize an equation for the volume-

integrated total energy density E in the shearing box

∂

∂t

∫
V

EdV = −
∫
V

∇ · FdV +

∫
V

u · (ρgeff)dV, (2.15)

where the total energy density is defined as

E ≡ 1

2
ρu2 +

1

2µ0

B2 + ρe, (2.16)

and the flux of total energy density2

F ≡
[
u(E + Pt)−

1

µ0

(u ·B)B

]
, (2.17)

where the total pressure is given by Pt = P +B2/2µ0. Using the divergence

theorem to convert the first term on the right-hand-side into a flux through

the boundaries we obtain

∂

∂t

∫
V

EdV = −
∫
S

F · dS +

∫
V

u · (ρgeff)dV, (2.18)

where the surface integral is over the six faces of the (Cartesian) shearing

box.

To evaluate the surface integral, let us adopt periodic boundary condi-

tions at both the y- and z-directions. Thus the integrated flux through the

y-boundary oriented along the positive y-axis is equal and opposite to the

2For simplicity we have dropped diffusive terms (which can be incorporated as part of

the total flux) as well as the cooling term Λ (which, had we kept it, would appear as a

source term on the right-hand-side of Equation 2.15.)
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integrated flux through the opposite y-boundary, and likewise for the inte-

grated flux through the z-boundaries. All surface integrals except those over

the x-faces vanish, and the flux term reduces to∫
S

F · dS =

∫
X

Fxdydz, (2.19)

where Fx is the radial component of the flux vector defined in Equation 2.17

evaluated at x = Lx/2 and x = −Lx/2 at the right- and left-hand boundaries,

respectively. Applying the x-boundary conditions and substituting δuy =

qΩ0x+ uy we obtain∫
X

Fxdydz = −qΩ0Lx

∫
X

[
ρuxδuy −

1

µ0

BxBy

]
dydz. (2.20)

Finally, substituting Equation 2.20 into Equation 2.18 we obtain the following

equation for the time-evolution of the volume-integrated total energy density

∂

∂t

∫
V

EdV = qΩ0Lx

∫
X

[
ρuxδuy −

1

µ0

BxBy

]
dydz +

∫
V

u · (ρgeff)dV. (2.21)

Thus total energy is not conserved in the shearing box: flux of angular

momentum through the x-boundaries due to the Reynolds and magnetic

stresses act as sources for the total energy.

Note that in our code (see Section 2.4) the total energy density is defined

so as to omit contributions from the gravitational energy density ρΦeff. In this

formulation, work done by the tidal expansion of the gravitational potential

also acts as a source term in the total energy equation (Mignone et al.,

2012). It is possible, however, to avoid this by redefining the total energy

density such that it includes the contribution due to the effective gravity,

i.e. Ẽ ≡ E + ρΦeff. By rewriting the work done by gravity in terms of the

effective gravitational potential

u · (ρgeff) = −ρu · ∇Φeff, (2.22)

then using the identity

ρu · ∇Φeff = ∇ · (ρuΦeff)− Φeff∇ · (ρu), (2.23)
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and, finally, using the continuity equation to rewrite the second term on

the right-hand-side as −Φeff∇ · (ρu) = ∂t(ρΦeff) (note that Φeff is time-

independent) we obtain the following equation for the time-evolution of the

total energy density Ẽ

∂

∂t

∫
V

ẼdV = qΩ0Lx

∫
X

[
ρuxδuy −

1

µ0

BxBy

]
dydz, (2.24)

where the total energy density Ẽ ≡ E+ρΦeff now includes contributions due

to the effective gravitational potential and the gravitational energy no longer

appears as a source term in the equation.

2.3 Numerical Algorithms

2.3.1 Finite-volume methods

In order to solve the compressible MHD equations in the shearing box ap-

proximation numerically, we employ finite-volume methods. The basic idea

behind this algorithm (strictly speaking a set of algorithms) is to discretize

the governing equations in conservative form (see Sections 2.3.2 and 2.3.3)

such that we evolve volume-averaged quantities (integral equations) rather

than cell-centered quantities (i.e. partial differential equations, as in finite-

difference methods). Details can be found in the monographs by Laney

(1998); LeVeque (2002) and Toro (2013). Therefore each discrete point cor-

responds to a volume-average over a cell.

There are several advantages of using finite-volume methods (FVM) over

finite difference methods (FDM). As we shall demonstrate shortly, one advan-

tage is that no truncation errors are introduced in discretizing the governing

equations. Second, because FVM evolve integrals rather than PDEs, they

overcome the problem of having to calculate the derivative of a discontinuous

quantity, and therefore they are much more suitable for capturing discrete

jumps in fluid variables (i.e. shocks) compared to FDM. Finally because

FVM inherently work with the conservative form of the equations, conser-

vation of mass, momentum, and total energy is automatically guaranteed
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Figure 2.2: Top: schematic of the numerical grid in one dimension. Bottom:

schematic of the reconstruct-solve-average strategy. Note that some RSA

methods, including that employed by our code (see Section 2.4), perform re-

construction in primitive variables V = (ρ,u, P,B)T rather than conservative

variables U = (ρ, ρu, E,B)T .

unless there are explicit source terms (note, however, that conservative finite

difference methods also exist, see, for example, Hirose et al. (2006)).

Most finite-volume methods employ a three-step reconstruct-solve-average

(RSA) strategy to update the solution array in each cell (see, for example,

(Mignone et al., 2007) and Figure 2.2). First (step 1), cell-centered volume-

averages are interpolated to obtain the value of each fluid variable at each

cell interface. This results in two discrete states of initial data on either side

of each cell interface, known as a Riemann problem. The total flux through

each interface is then obtained by solving this Riemann problem (step 2).

Finally (step 3), the fluxes are used together with a time-stepping algorithm

to update the solution in each cell. We will discuss each of these three steps

in greater detail in Sections 2.3.4, 2.3.5, and 2.3.6, respectively.
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2.3.2 Conservative form of the equations

Finite volume-methods solve the governing equations not in the form given by

Equations 2.1-2.4 (known as primitive form, where the primitive variables are

given by V = (ρ,u, P,B)T ), but in conservative form in which the equations

are rewritten as a set of conservation laws given by

∂U

∂t
+∇ · F(U) = S(U), (2.25)

where U = (ρ, ρU, E,B)T is a vector of conservative variables (i.e. mass

density, momentum density, total energy density, and magnetic field, respec-

tively). Here F(U) is an 8 × 1 matrix, the rows of which correspond to the

fluxes of each conservative variable. Written out in full

F(U) =


ρu

ρuu− 1
µ0

BB + 1Pt−T

(E + Pt)u− 1
µ0

B(u ·B)−u ·T− κ∇T + η
µ0

(∇×B)×B

uB−Bu−η∇B


(2.26)

The terms in black in Equation 2.26 are known as hyperbolic terms, and

correspond to the transport (or advection) of mass, momentum, and total

energy flux. These terms are associated with wave propagation at finite

speed. The terms in red in Equation 2.26 are known as parabolic terms, and

correspond to diffusive processes, such as viscosity, thermal diffusivity, and

resistivity. Thus the equations of MHD are of mixed hyperbolic/parabolic

type.

Finally source terms are embodied in the vector S(U) which is given by

S(U) =


0

ρgeff − 2Ω0ẑ× ρu
ρu · geff + Λ

0

 . (2.27)

These comprise terms due to external body forces (such as the effective grav-

itational force), the Coriolis force (due to rotation), and radiative processes

(such as the cooling term Λ).
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2.3.3 Discretization of governing equations

For simplicity, consider the set of conservation laws given in Equation 2.25

in one dimension and without source terms, i.e.

∂U

∂t
+
∂F

∂x
= 0. (2.28)

As mentioned in Section 2.3.1, finite volume methods evolve volume-averages

of fluid quantities over discrete domains known as cells. In 1D, a cell is defined

as occupying the spatial extent x ∈ {xi− 1
2
, xi+ 1

2
} with xi being the cell-center

and xi± 1
2

the right- and left-hand cell-interfaces, respectively. Likewise we

discretize time into distinct time-levels with tn denoting the nth time-level,

tn+1 denoting the (n+ 1)th time-level, and so on. The time interval between

two subsequent time-levels is denoted ∆t ≡ tn+1 − tn and defines a single

time-step.

Integrating the differential form of the equations over space and time we

obtain

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

(
∂U

∂t
+
∂F

∂x

)
dxdt = 0, (2.29)

where the time-integral is taken over a time-interval tn to tn+1 and the spatial

integral is taken over the width of the cell. Integrating over space

∫ x
i+1

2

x
i− 1

2

(
∂U

∂t
+
∂F

∂x

)
dx =

∂

∂t

∫ x
i+1

2

x
i− 1

2

Udx+

∫ x
i+1

2

x
i− 1

2

∂F

∂x
dx (2.30)

= ∆x
∂〈U〉i
∂t

+
(
Fi+ 1

2
− Fi− 1

2

)
, (2.31)

where 〈U〉i is the spatial-average of the state vector U over the cell centered

at xi

〈U〉i ≡
1

∆x

∫ x
i+1

2

x
i− 1

2

U(x, t)dx. (2.32)

Finally, integrating Equation 2.31 over time we obtain
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∫ tn+1

tn

[
∆x

∂〈U〉i
∂t

+
(
Fi+ 1

2
− Fi+ 1

2

)]
dt = (2.33)

∆x
(
〈U〉n+1

i − 〈U〉ni
)

+ ∆t
(
F̃
n+ 1

2

i+ 1
2

− F̃
n+ 1

2

i− 1
2

)
, (2.34)

where 〈U〉ni ≡ 〈U〉i(tn), and F̃
n+ 1

2

i± 1
2

is the time-averaged flux vector at the left

(right) cell-interfaces

F̃
n+ 1

2

i± 1
2

≡ 1

∆t

∫ tn+1

tn
Fi± 1

2
dt, (2.35)

where Fi± 1
2
≡ Fi± 1

2

(
U(xi± 1

2
)
)

.

Finally the volume-averaged solution vector at the cell center xi at the

(n+ 1)th time-step is given in terms of the solution at the nth time-step and

the fluxes through the right- and left-interfaces by

〈U〉n+1
i = 〈U〉ni −

∆t

∆x

(
F̃
n+ 1

2

i+ 1
2

− F̃
n+ 1

2

i− 1
2

)
. (2.36)

An important advantage of finite-volume methods over finite-difference

methods is that no truncation errors have been introduced, i.e. Equation

2.36 is an exact relation (though, as we shall see, an approximation is usually

introduced in evaluating the fluxes). As can be seen from Equation 2.36, an

update of the solution in the ith cell (time-stepping) requires knowledge of

the fluxes at the left and right cell-interfaces (solving a Riemann problem),

which in turn require knowledge of the solution at the current step at those

interfaces (reconstruction). The methods for obtaining these quantities are

discussed, in reverse order, in the following three sections.

2.3.4 Reconstruction and interpolation methods

The first step of the reconstruct-solve-average strategy involves converting

the cell-centered solution 〈U〉ni to a solution at the left- and right-interfaces

given by Un
i− 1

2

and Un
i+ 1

2

, respectively. Various interpolation methods can

be used to achieve this. For simplicity we restrict our discussion to one-

dimension.
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The simplest and most computationally inexpensive case is that of flat

reconstruction (1st order accurate in space) in which the solution is simply

taken to be piecewise constant inside each cell

Un(x) = 〈U〉ni (2.37)

A more sophisticated approach which is still fairly computationally inex-

pensive (and which we frequently employ in our MHD simulations) approxi-

mates the solution as being piecewise linear inside each cell. This is known as

linear reconstruction. Here the slope of the piecewise linear function is com-

puted using the gradient of the function at the cell center. The interpolated

solution is given by

Un,(k)(x) = 〈Un
i 〉+ ∆U

n,(k)
i (x− xi), (2.38)

where the slope of the linear equation is denoted by ∆U
n,(k)
i and k ∈ {F,B}.

This can be approximated either as a forward (k = F ) or backward difference

(k = B), i.e.

∆U
n,(F )
i ≡

〈U〉ni+1 − 〈U〉ni
∆x

, ∆U
n,(B)
i ≡

〈U〉ni − 〈U〉ni−1

∆x
. (2.39)

A major drawback of this scheme, however, is that if the solution varies very

rapidly between cells, such as at a discontinuity, the straight line given by

Equation 2.38 will over- or underestimate the solution at the interfaces. This

introduces new maxima or minima which result in unphysical oscillations

(manifested as a Gibbs-type overshoot at the discontinuity). To rectify this,

linear reconstruction methods replace the forward and backward differences

given by Equation 2.39 by a non-linear function of the two known as a slope

limiter φ(r)

Un(x) = 〈Un
i 〉+ φ(r)

x− xi
∆x

, (2.40)

where r ≡ ∆U
n,(B)
i /∆U

n,(F )
i . Although we omit the details here for brevity,

a detailed discussion of many different slope limiters can be found in Mignone

(2014).
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Finally a third reconstruction scheme is the second-order accurate weighted-

essentially-non-oscillatory (WENO3) scheme (Yamaleev & Carpenter, 2009;

Mignone, 2014). This is more computationally expensive than linear recon-

struction, and therefore we restrict its use to our hydrodynamic simulations.

However WENO3 has higher order spatial accuracy in general than slope-

limited linear reconstruction methods, and it retains its accuracy near ex-

trema whereas slope-limiters reduce the accuracy at extrema to first-order

(Harten et al., 1986; Shu, 1997). In this scheme reconstruction is carried out

by assigning weights to a linear superposition of the right- and left-linearly re-

constructed values (i.e. to Un,(F )(x) and Un,(B)(x), respectively). Explicitly,

the reconstructed solution is given by

Un(x) = ωi,0U
n,(F )(x) + ωi,1U

n,(B)(x). (2.41)

The weights ωi,k (with k ∈ {0, 1}) are non-linear functions of the forward

and backward differences (see Equation 2.39) that measure the smoothness

of the numerical solution on the right- and left-hand stencils {i, i + 1} and

{i− 1, i}, respectively (see Mignone (2014) for further details).

2.3.5 Riemann solvers

Following the interpolation step, the solution is known at either side of each

cell-interface. For example, at the right-hand interface of the cell centered at

xi this results in a set of initial data given by

〈U〉n
i+ 1

2
=

〈U〉nL, (x < xi+ 1
2
),

〈U〉nR, (x > xi+ 1
2
),

(2.42)

where 〈U〉L is the solution at the interface xi+ 1
2

obtained by interpolating

from the cell center at xi and 〈U〉R is the solution at the same interface

obtained by interpolating from the neighboring cell center at xi+1. This set

of discontinuous initial data together with the conservation laws (Equation

2.28) constitutes a Riemann problem. Specific algorithms for solving the

Riemann problem are known as Riemann solvers.
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The solution to the Riemann problem formulated in the previous para-

graph consists (in MHD) of seven waves separating eight constant states. To

see this it is best to rewrite the set of governing equations (Equation 2.28)

in quasi-linear form as

∂U

∂t
+ A · ∂U

∂x
= 0, (2.43)

where A ≡ ∂F/∂U is a Jacobian matrix. From the theory of partial differ-

ential equations, we know that the solution is constant along integral curves

in the space of independent variables (t, x), known as characteristics (see,

for example, Riley et al. (2006)). Information (i.e. initial data) propagates

along characteristics, and the characteristics separate regions within which

the solution is constant.

Physically the characteristics correspond to various waves separating con-

stant states. Information about the waves can be determined by calculating

the left- and right-eigenvectors of A (denoted L(k) and R(k), respectively),

and the associated eigenvalues λ(k). In particular the speed at which informa-

tion propagates along characteristics is given by the eigenvalues of A, while

the eigenvectors of A indicate how the solution changes across characteris-

tics.3

We illustrate the solution (in MHD) in the space of independent variables

(t, x) in Figure 2.3, which shows the seven wave families, separating eight

constant states (known as a Riemann fan). Proceeding from the outside-in,

the outermost wave family consists of fast magnetosonic waves, followed by

Alfvén waves, and finally slow magnetosonic waves. The magnetosonic waves

are manifested as two types of non-linear wave: shocks or rarefactions. The

middle wave is always a linear wave known as a contact wave (or entropy

wave), across which only the density is discontinuous.

The two regions on each side of any given characteristic are related

through a non-linear set of algebraic equations known as jump conditions.

3Strictly speaking the eigenvalues of A are equivalent to the wave speeds only for a

linear system of equations (Toro, 2019). This is no longer true for a non-linear system of

equations such as the HD or MHD equations, although we omit the distinction here for

brevity.
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Figure 2.3: Solution of the Riemann problem in MHD at the xi+ 1
2

interface.

The solution of consists of seven waves, represented by the colored straight-

lines (characteristics), separating eight constant states. The left-hand-most

and right-hand-most states are given by the initial data UL and UR, respec-

tively.

These relate jumps in the fluxes and in the solution across the discontinuity,

and the speed of the discontinuity. In particular the jump condition across

the kth discontinuity is given by

λ(k)(Uk+1 −Uk) = F(Uk+1)− F(Uk) (2.44)

where in MHD k ∈ {1, 7} and U1 ≡ UL and U8 ≡ UR.

An exact Riemann solver would involve solving the set of jump condi-

tions given by Equation 2.44 at each cell interface, which in turn determines

the solution, and therefore the flux, at that interface. This is generally pro-

hibitively computationally expensive. Therefore various techniques are used

to approximate the total flux Fi+ 1
2

through the interface. Below we discuss

four approximate Riemann solvers that we use in our simulations: the first

three (Lax-Friedrichs-Rusanov, HLL, and HLLD) approximate the flux by

averaging over the Riemann fan, while the fourth (Roe) approximates the

flux by linearizing the jump conditions about some average state.
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Lax-Friedrichs-Rusanov solver

The simplest (and most diffusive) approximate Riemann solver estimates the

flux by taking the arithmetic mean of the right- and left-hand fluxes and

states. No jump conditions are used, and the solver makes no use of the

intermediate state(s) except the maximum wave speed λmax. This is known

as the Lax-Friedrichs-Rusanov (LFR) solver, and the flux is given by

FLFR
i+ 1

2
=

1

2
(F(UR) + F(UL))− 1

2
|λmax| (UR −UL) (2.45)

See, for example, Tóth & Odstrčil (1996).

HLL solver

An improvement over the Lax-Friedrich-Rusanov solver is given by the Harten-

Lax-van Leer (HLL) solver, which is an approximate Riemann solver in

which the middle (contact) discontinuity is omitted (Harten et al., 1983;

Toro, 2013). Thus the solution in hydrodynamics is approximated by a left-

propagating wave with speed λL and a right-propagating wave with speed

λR, separating three regions: the known left- and right-hand states UL and

UR, respectively, and an intermediate region with unknown state U∗. The

flux is given by

FHLL
i+ 1

2
=


FL (λL > 0)

F∗ (λL ≤ 0 ≤ λR)

FR (λR < 0)

(2.46)

where FL ≡ F(UL) and FR ≡ F(UR). The intermediate state flux F∗ is

obtained by using the jump conditions and is given by

F∗ =
λRFL − λLFR + λRλL(UR −UL

λR − λL
). (2.47)

Note that various estimates are possible for the left- and right-wavespeeds

λL and λR, respectively. A commonly used estimate is that given by Einfeldt

(1988), in which case the solver is referred to as the HLLE solver. Here

the speeds of the left and right non-linear waves are each estimated using

80



density-weighted averages of the left and right advection and sound speeds

(the reader may wish to refer to Equations 10.39-10.41 of Toro (2013) for the

explicit expressions).

The key simplifying feature of the HLL solver is also its major drawback,

i.e. the omission of the middle wave. Unsurprisingly this results in poor

numerical resolution of both contact waves (and therefore of jumps in density

and entropy) as well as shear waves (associated with jumps in the tangential

components of the velocity).

HLLC solver

The HLLC solver is a refinement of the HLL solver which restores the middle

(contact) discontinuity (the ‘C’ stands for contact) (Toro et al., 1994; Toro,

2019). In hydrodynamics the Riemann fan is now approximated by three

waves separating four states. The flux is given by

FHLLC
i+ 1

2
=



FL (λL ≥ 0)

F∗L = FL + λL(U∗L −UL) (λL ≤ 0 ≤ λ∗)

F∗R = FR + λR(U∗R −UR) (λ∗ ≤ 0 ≤ λR)

FR (λR ≤ 0)

(2.48)

where the left- and right-intermediate state solutions U∗L and U∗R are given

by Equation 10.33 in Toro (2013). A generalization of the HLLC solver to

MHD is known as the HLLD solver. Here the solution consists of five waves

separating six constant states. Further details may be found in Miyoshi &

Kusano (2005) and Li (2005).

Roe solver

Finally we discuss the Riemann solver of Roe (Roe (1981); Toro (2013); see

Cargo & Gallice (1997) for the MHD implementation). This is different in

flavor to the previous HLL-family of Riemann solvers, which involved solving

an exact Riemann problem (given by Equations 2.42-2.43) approximately

(the approximation being introduced by averaging over intermediate states).
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The Roe solver, on the other hand, solves an approximate Riemann problem

exactly. Explicitly, Roe’s method solves the Riemann problem given by

∂U

∂t
+ Ã · ∂U

∂x
= 0, (2.49)

U =

UL, (x < xi+ 1
2
),

UR, (x ≥ xi+ 1
2
),

(2.50)

where the Jacobian matrix A(U), whose elements are functions of the fluid

variables, has been replaced with a constant Jacobian matrix Ã = Ã(UL,UR)

known as the Roe matrix. Various methods exist for constructing the Roe

matrix subject to the constraints that it satisfy hyperbolicity (has real eigen-

values), self-consistency [i.e. that Ã(U,U) = A(U)], and the jump condi-

tions (Roe & Pike, 1984; Toro, 2013).

Ultimately the approximation of replacing the Jacobian with a matrix

containing constant elements reduces the problem to one of solving a linear

system of conservation laws, for which it can be shown that the flux through

the interface at xi+ 1
2

is given by

FRoe
i+ 1

2
=

1

2
(Fi+1 + Fi)−

1

2

∑
k

|λ̃(k)| L̃(k) · (Ui+1 −Ui) R̃(k), (2.51)

where λ̃(k) is the eigenvalue of Ã associated with the kth discontinuity in the

Riemann fan, and L̃(k) and R̃(k) the corresponding left- and right-eigenvectors,

respectively (see, for example, Toro (2013)).

2.3.6 Time-stepping algorithms

The final stage of the reconstruct-solve-average strategy involves updating

the solution from that at the nth time-level to the (n + 1)th time-level.

Generalizing Equation 2.36 to include source terms (see Equation 2.27) and

working in one spatial dimension for simplicity we have

〈U〉n+1
i = 〈U〉ni + ∆tHn

i , (2.52)
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where

Hn
i ≡ −

1

∆x

(
F̃
n+ 1

2

i+ 1
2

− F̃
n+ 1

2

i− 1
2

)
+ 〈S〉ni . (2.53)

There are various time-stepping algorithms that are available in the codes

we use, but the scheme we employ in most of our simulations is the Runge-

Kutta algorithm (see, for example, Press et al. (1988)). This introduces an

intermediate step to the update process (known a predictor step) given by

〈U〉∗i = 〈U〉ni + ∆tHn
i . (2.54)

The full update is then obtained by taking the arithmetic mean of the solution

at the nth time-level 〈U〉ni and the solution at the intermediate time-level

〈U〉∗i , resulting in

〈U〉n+1
i =

1

2
(〈U〉ni + 〈U〉∗i + ∆tH∗i ) , (2.55)

where H∗i ≡ H(U∗i ) is evaluated using the solution at the intermediate time-

step. The global error after N steps is second-order accurate, thus the time-

stepping algorithm presented in Equations 2.54 and 2.55 is known as the

2nd-order Runge-Kutta algorithm. We also employ a third-order accurate

Runge-Kutta algorithm, which involves an extra predictor step, but we will

not discuss it here for brevity (see, for example, Mignone et al. (2007)).

In order to determine the time-step ∆t itself (and ensure numerical stabil-

ity) we require that the fastest wave cannot propagate over a distance greater

than the width of a cell between the nth and (n+ 1)th time-level (known as

the Courant-Friedrichs-Lewy (CFL) condition; Courant et al. (1928)). This

is formally given by

∆t = Camin

(
∆x

|λmax|

)
, (2.56)

where the minimum is taken over all active cells in the computational domain,

λmax is the maximum signal (or wave) speed in the domain, and Ca is the

Courant number, which (by rearranging Equation 2.56) can be interpreted

as the ratio of the fastest wave speed in the computational domain to the
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grid speed ∆x/∆t. We take to be Ca = 0.3 in all our simulations. Note that

if explicit diffusion coefficients or cooling prescriptions are used these will

introduce their own time-step constraints.

2.4 Codes

Most of our simulations are run with the conservative, finite-volume code

PLUTO (Mignone et al., 2007). Unless stated otherwise, for our hydrody-

namic simulations we employ the Roe Riemann-solver (see Section 2.3.5),

3rd order in space WENO interpolation (Section 2.3.4), and the 3rd order

in time Runge-Kutta algorithm. Other configurations are explored in Sec-

tion 3.3.3. For our MHD simulations we use the HLLD Riemann solver (see

Section 2.3.5), 2nd order in space linear interpolation, and the 2nd order in

time Runge-Kutta algorithm (Section 2.3.6). Note that due to the code’s

conservative form kinetic energy is not lost to the grid but converted directly

into thermal energy. Ghost zones are used to implement the boundary con-

ditions. All of our simulations are parallelized using the message passing

interface (MPI) library, thus significantly reducing computational time.

To allow for longer time-steps, we employ the FARGO (fast advection

in rotating gaseous objects) scheme in all our simulations (Mignone et al.,

2012). Thin accretion disks are supersonic in the azimuthal direction. This

supersonic motion in turn significantly reduces the time-step when the orbital

speed is greater than any other wave speeds in the domain, because the flow

is required to satisfy the CFL condition for numerical stability (cf. Equa-

tion 2.56). In order to work around this restriction, the FARGO scheme

decomposes the total velocity into an azimuthally averaged background term

(corresponding to the supersonic azimuthal flow) and a residual term (corre-

sponding to fluctuations). Only the residual term is required to satisfy the

CFL condition, leading to longer time-steps. The FARGO scheme works

provided there is a supersonic dominant background orbital motion that is

aligned with the grid (as is the case in the shearing box approximation).

In addition, the scheme conserves total angular momentum and energy to
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machine precision, and is known to be less dissipative than the standard

numerical implementation (Mignone et al., 2012).

When explicit viscosity ν, thermal diffusivity χ, or resistivity η are in-

cluded, we further reduce the computational time by using the Super-Time-

Stepping (STS) scheme (Alexiades et al., 1996). When this scheme is used,

parabolic (i.e. diffusive) terms are solved separately from hyperbolic (i.e. ad-

vective) terms using operator splitting. The solution vector for the parabolic

terms is solved over a ‘super time-step’ ∆T , which in turn consists of N

unequal sub-steps ∆t. The CFL condition is enforced only at the end of this

super time-step rather than after each sub-step. The super time-step itself

depends on the number of sub-steps, the diffusion coefficient, the grid-size,

and a free parameter ν (not to be confused with the kinematic viscosity) that

depends on the minimum and maximum wavespeeds and which is adjusted

to allow ∆t to be as large as possible while guaranteeing stability (see Equa-

tion 2.10 of (Alexiades et al., 1996)). In the limit that the free parameter ν

tends to zero, a single super-time-step consisting of N sub-steps advances the

solution in time by an increment that is N times longer than that achieved

in the same number of steps using an explicit scheme. The greatest speed-up

is obtained in problems where the diffusion or resolution are sufficiently high

that the parabolic time-step falls below the advection time-step (Mignone

et al., 2007). Another example in which speed-up can be obtained using

STS is in problems involving anisotropic thermal conductivity (Vaidya et al.,

2017).

We use the built-in shearing box module in PLUTO (Mignone et al.,

2012). As explained in Section 2.3.2, rather than solving Equations 2.1-

2.4 (primitive form), PLUTO solves the governing equations in conser-

vative form, evolving the total energy equation rather than the thermal

energy equation, where the total energy density of the fluid is given by

E = (1/2)ρu2 +(1/2µ0)B2 +ρe (kinetic + magnetic + internal). In PLUTO

the cooling term Λ is not implemented directly in the total energy equation.

Instead, it is included on the right-hand-side of the thermal energy equation,

which is then integrated (in time) analytically.

Finally, we have verified the results of our fiducial hydrodynamic simu-
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lation (presented in Section 3.3.2) with the conservative finite-volume code

ATHENA (Stone et al., 2008).

2.5 Diagnostics

Averaged quantities

We follow the time-evolution of various volume-averaged quantities (e.g.

kinetic energy density, thermal energy density, magnetic energy density,

Reynolds and Maxwell stress, α, mass density, thermal pressure, and tem-

perature). For a quantity X the volume-average of that quantity is denoted

〈X〉 and is defined as

〈X〉(t) ≡ 1

V

∫
V

X(x, y, z, t)dV (2.57)

where V is the volume of the box.

We are also interested in averaging certain quantities (e.g. the Reynolds

stress) over time. The temporal average of a quantity X is denoted 〈X〉t and

is defined as

〈X〉t(x, y, z) ≡ 1

∆t

∫ tf

ti

X(x, y, z, t)dt, (2.58)

where we integrate from some initial time ti to some final time tf and ∆t ≡
tf − ti.

If we are interested only in the vertical structure of a quantity X then

we average over the x- and y-directions, only. The horizontal average of that

quantity is denoted 〈X〉xy and is defined as

〈X〉xy(z, t) ≡
1

A

∫
A

X(x, y, z, t)dA, (2.59)

where A is the horizontal area of the box. Horizontal averages over different

coordinate directions (e.g. over the y- and z-directions) are defined in a

similar manner.

We track the vertical profiles of horizontally averaged pressure, density,

temperature, Reynolds stress, magnetic stress, and plasma beta. Of special
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interest is the buoyancy frequency, which is calculated from the pressure and

density data by finite differencing the formula〈
N2
B

Ω2

〉
xy

=

〈
z

[
1

γ

d lnP

dz
− d ln ρ

dz

]〉
xy

. (2.60)

Note we calculate horizontal (and time) averages after calculating N2
B. To

check the effects of the order of operations (i.e. averaging N2
B compared to

averaging P and ρ and then calculating N2
B) we have also calculated the

buoyancy frequency by finite differencing the formula〈
N2
B

Ω2

〉
xy

= z

[
1

γ

d ln 〈P 〉xy
dz

− d ln 〈ρ〉xy
dz

]
. (2.61)

We measured the percentage difference between Equations 2.60 and 2.61 in

our fiducial stratified MHD simulation (see Section 4.2) and found it to be

less than 1% within z = ±2H0.

We also calculate the (horizontally averaged) vertical profiles of mass and

heat flux. We define the mass flux as

Fmass = 〈ρuz〉xy, (2.62)

and the heat flux as

Fheat = 〈ρuzT 〉xy. (2.63)

Reynolds and magnetic stresses, and alpha

In accretion discs, the radial transport of angular momentum is related to

the xy-component of the total stress

Πxy ≡ Rxy +Mxy. (2.64)

Πxy > 0 corresponds to positive (i.e. radially outward) angular momentum

transport, while Πxy < 0 corresponds to negative (i.e. radially inward) an-

gular momentum transport. In Equation 2.64, Rxy is the Reynolds stress,

defined as

Rxy ≡ ρuxδuy (2.65)
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where δuy ≡ uy + qΩx is the fluctuating part of the y-component of the total

velocity uy. The magnetic stress Mxy is defined as

Mxy ≡ −BxBy, (2.66)

whereBx andBy are the magnetic field components in the x- and y-directions,

respectively. Note that here (and for the remainder of this thesis) we have

chosen our units such that the constant µ0 disappears.

Finally, the total stress is related to the classic dimensionless parameter

α by

α ≡ 〈Πxy〉
q〈P 〉

, (2.67)

where q ≡ − d ln Ω/d ln r|r=r0 is the dimensionless shear parameter and q =

3/2 for a Keplerian disk. It is customary for many authors to drop the factor

q in Equation 2.67. To compare our results more easily with the literature we

too drop the factor of q in our measurements of α in our MHD simulations.

In our hydrodynamic simulations, however, the factor of q has been retained

(this is because we retained this factor when we published our hydrodynamic

results, see Held & Latter (2018)).

Energy densities

The kinetic energy density of a fluid element is defined as

Ekin ≡
1

2
ρu2, (2.68)

where u is the magnitude of the total velocity of a fluid element. Often we

will plot the vertical kinetic energy density Ekin,z = 1
2
ρu2

z, in which case u in

the above equation is replaced by uz.

The magnetic energy density (equivalently the magnetic pressure) of a

fluid element is defined as

Emag ≡
1

2
B2, (2.69)

where B is the magnitude of the total magnetic field of a fluid element.

The thermal energy density of a fluid element is defined as

Eth ≡ ρe =
P

γ − 1
. (2.70)
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Finally, the total energy density is given by

Etotal =
1

2
ρu2 +

1

2
B2 + ρΦ + ρe, (2.71)

where the terms on the right-hand side correspond to the kinetic, magnetic,

gravitational potential, and thermal energy densities, respectively. Here Φ =
1
2
Ω2

0z
2 − 3

2
Ω2

0x
2 is the effective gravitational potential in the shearing box

approximation for a Keplerian disk.

Because we employ open boundaries in the vertical direction, energy is

lost through advection of fluid across the vertical boundaries. It is important

to determine the extent to which this energy loss (which we refer to as box-

cooling) influences the total energy budget. The integrated flux of total

energy across the vertical boundaries is given by

Fz ≡
1

V

[∫∫
(uzEtot + uzPt −Bz(u ·B)) dxdy

]z=+Lz/2

z=−Lz/2

, (2.72)

where the Pt = P +B2/2, and the uzP term corresponds to the contribution

due to the ram pressure.

The integrated flux of total energy across the vertical boundaries (normal-

ized by the volume-averaged thermal energy density) can be used to estimate

the rate at which energy is lost through the vertical boundaries, known as

the wind cooling timescale τw (see Riols & Latter (2018)), and this is defined

by

1

τw(t)
≡ Fz
〈Eth〉

. (2.73)

2D Power Spectra

In order to distinguish convection from the MRI in a quantitative manner

we use the 2D power spectrum of the specific vertical kinetic energy. To

calculate this, we first extract the (y-averaged) vertical component of the

velocity w ≡ 〈uz〉y from z = 0 and z = +H0 (as most of the activity in

the disk lies within a scale height of the mid-plane). Because we use open
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boundary conditions (in z) and shear periodic boundary conditions (in x)

this data is not periodic in either direction. To make it periodic we reflect

the extracted data in x and z to create a doubly-periodic array spanning

z = −H0 to z = +H0 and x = −4H0 to x = +4H0. The klth component of

the 2D discrete Fourier transform of this data is then defined as

ŵkl =
Ñx−1∑
n=0

Ñz−1∑
m=0

wmn exp

{
−2πi

(
mk

Ñx

+
nl

Ñz

)}
, (2.74)

where k = 0, . . . , Ñx − 1, l = 0, . . . , Ñz − 1, and wmn denotes the mnth

component of the 2D array w ≡ 〈uz〉y. Note that Ñx (and Ñz) are the

number of radial (vertical) cells in the extended periodic partition of the

disk; in general they are not equal to the total number of radial (vertical)

cells in the domain Nx (and Nz).

The power in the specific vertical kinetic energy can then be obtained

from

Êkin,z =
1

2

∣∣ŵ∣∣2, (2.75)

where
∣∣ŵ∣∣2 ≡ ŵŵ∗. Finally we plot Equation 2.75 in the (kx, kz)-plane to

obtain the 2D power spectrum of the specific vertical kinetic energy, where

kx and kz are the radial and vertical wavenumber, respectively.

Diagnostics for detecting convection

In general it is difficult to detect convection agains the backdrop of MRI

turbulence. To aid us in determining whether convection is present in our

simulations or not, we employ various diagnostics. Our first diagnostic is the

sign of the buoyancy frequency N2
B (Equation 2.60), though as discussed in

Section 4.1.2 this is a necessary but not a sufficient criterion in turbulent

flows. Thus where N2
B > 0 we can definitely rule out the presence of convec-

tion, but where N2
B < 0 further diagnostics are needed to determine whether

convection is present or not.

As a second diagnostic, we employ visual inspection of the flow field in

the xz-plane (i.e. that the vertical velocity uz exhibit hot updrafts and cool

downdrafts). To try to quantify any vertical ‘structure’ that we pick up
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visually, we use a third diagnostic, namely 2D power spectra (cf. Section

2.5). From linear theory, convective cells are arranged such as to minimize

radial fluid motion (i.e. kx/kz >> 1), whereas the MRI tends to maximize

radial fluid motions (i.e. kx/kz << 1). Thus each instability conveniently

inhabits different regions of wavenumber space.

Finally we also use the horizontal- and time-averaged values of the ver-

tical heat and mass flux. In particular, we have found in our hydrodynamic

simulations that convection exhibits not just a heat flux away from the mid-

plane (as does, to a lesser extent, the MRI) but - surprisingly - a small mass

flux towards the mid-plane (see Figure 3.12 of Chapter 3). Thus convection

is rearranging the vertical disk structure (by changing the temperature and

density profiles) so that the disk is closer to a state of marginal stability. A

caveat, however, is that the inward mass flux appears to decrease over very

long timescales, and is thus probably a slow transient effect. Nevertheless

over the timescales of interest (c. 100 orbits) we have found it to be a reliable

diagnostic for convection.4

4The unforced hydro simulations in question did not include a mass source term, thus

we are confident that the inward mass flux observed when convection is present is not an

artifact of our mass source term.
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Chapter 3

Hydrodynamic convection in

disks

Our aim in this chapter is to explore the competing results and claims con-

cerning hydrodynamic convection in accretion discs, in particular to deter-

mine the sign and magnitude of angular momentum transport. We also

isolate and characterize other generic features of convection that should be

shared by multiple disk classes (dwarf novae, protoplanetary disks, etc) and

by different driving mechanisms (MRI turbulence, spiral shock heating, etc).

We do so both analytically and through numerical simulations, working in

the fully compressible, vertically stratified shearing box approximation. We

restrict ourselves to an idealized hydrodynamic set-up, omitting magnetic

fields and complicated opacity transitions, and in so doing ensure our results

are as general as possible.

The structure of this chapter is as follows: first, in Section 3.1 we pro-

vide a brief overview of the numerical parameters and set-up. In Section

3.2 we investigate the linear behavior of the convective instability, employing

both analytical WKBJ and semi-analytical spectral methods to calculate the

growth rates and the eigenfunctions. In Section 3.3 we explore the non-linear

regime through unforced simulations, in which the convection is not sustained

and is permitted to decay after non-linear saturation. Because this unforced

convection is a transient phenomenon which might depend on the initial con-
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ditions, in Section 3.4 we explore the non-linear regime through simulations

of forced convection, in which the internal energy is relaxed to its initial, con-

vectively unstable, state to mimic, possibly, the action of background MRI

turbulent dissipation and optically thick radiative cooling. Finally, Section

3.5 summarizes and discusses the results.

3.1 Numerical set-up

3.1.1 Initial conditions and units

Time units are selected so that Ω0 = 1. From now the subscript on the

angular frequency is dropped if it appears. The length unit is chosen so that

the initial mid-plane isothermal sound speed cs0 = 1, which in turn defines

a constant reference scale height H ≡ cs0/Ω = 1. Note, however, that the

sound speed is generally a function of both space and time.

We use two different convectively unstable profiles to initialize our simu-

lations. Nearly all employ an equilibrium exhibiting a Gaussian temperature

profile

T = T0exp

[
− z2

βH2

]
, (3.1)

where T0 is mid-plane temperature and β is a dimensionless tuning param-

eter. See Figure 3.2 for all associated thermal profiles. For comparison we

also use the profile introduced by SB96 in which the temperature follows a

power law

T = T0 − Azp, (3.2)

where A and p are parameters, with p = 3/2 usually (see Figure 3.1). Further

details of both profiles are given later in this section. The equilibria are

convectively unstable within a confined region (of size Lc) about the disk

mid-plane, and convectively stable outside this region. We have checked that

these vertical profiles satisfy vertical hydrostatic equilibrium in our numerical

set-up by running a series of simulations without perturbations; these show

that after 55 orbits the initial profiles are unchanged with velocity fluctuation

93



amplitudes typically less than 10−3 cs0 at the vertical boundaries and less than

10−7 cs0 at the mid-plane.

The background velocity is given by u = −(3/2)Ω0x ey. At initialization

we usually perturb all the velocity components with random noise exhibit-

ing a flat power spectrum. The perturbations δu have maximum relative

amplitude of about 5 × 10−5 cs0 and can be either positive or negative. In

order to investigate specifically the nature of linear axisymmetric convective

modes, we initialize several PLUTO simulations with linear axisymmetric

modes calculated semi-analytically rather than with random noise (see Sec-

tion 3.2.5).

Convectively unstable vertical disk profiles

We describe the two convectively unstable vertical profiles that are used to

initialize our simulations. The reader should note that these profiles may or

may not correspond to those in real astrophysical disks, which will be de-

termined by several sources of heating and cooling, none considered in this

chapter. Here we simply present convectively unstable disk profiles that sat-

isfy hydrostatic equilibrium, are convectively unstable, and can conveniently

initialize simulations.

Stone and Balbus (1996) profile The SB96 profile employs a power law

profile in temperature, see Eq. 3.2. For p = 3/2, the density can be obtained

analytically

ρ = ρ0(1− s3)−(1+g/3)(1− s)g exp

{
2g

[
s− 1√

3
tan−1

( √
3s

s+ 2)

)]}

where ρ0 is the mid-plane density, s = (z/H)1/2f 1/3, and g = f−4/3, in which

f = H3/2A/T0, and H = cs/Ω is the mid-plane scale height. The pressure is

obtained from the ideal gas equation of state. Note that for |z| > (T0/A)1/p

we must have vacuum, which ties the maximum numerical domain to the

ratio T0/A.
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(a) (b)

Figure 3.1: Vertical disk structure of Stone and Balbus (1996) in a disk of

height 2H about the mid-plane. Left : vertical profiles for density ρ, pressure

P , and temperature T . Right : vertical profile of the buoyancy frequency

N2
B/Ω2. For clarity, only half of the vertical domain is shown. The profile

parameters are {T0 = 1.0, ρ0 = 1.0, g = 5.0} and the adiabatic index is

γ = 5/3.

The buoyancy frequency for p = 3/2 is given by

N2
B

Ω2
=

1

1−
(
z
H

)3/2
f

[(
1− 1

γ

)( z
H

)2

− 3

2

( z
H

)3/2

f

]
(3.3)

which corresponds to a profile that is negative (convectively unstable) within

some region |Lc| < 0 about the mid-plane and positive (convectively unsta-

ble) outside of this region. The width of the convectively unstable region is

given by

|Lc| =

[
3

2

(
1− 1

γ

)−1

H2 A

T0

]2

. (3.4)

Although convenient within a limited choice of parameters, the SB96

profile suffers from the drawback that the width of the convectively unstable

region is sensitive to the size of the box through the ratio T0/A. Increasing

the vertical box size necessarily decreases the size of the convectively unstable

region.
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Figure 3.2: Vertical disk structure for Gaussian temperature profile in a

disk of height 2H about the mid-plane. Left : vertical profiles for density

ρ, pressure P , and temperature T . Right : vertical profile of the buoyancy

frequency N2
B/Ω2. For clarity, only half of the vertical domain is shown. The

profile parameters are {T0 = 1.0, ρ0 = 1.0, β = 3.0} and the adiabatic index

is γ = 5/3.

Gaussian temperature profile The drawbacks of the SB96 profile mo-

tivated us to search for a more convenient unstable profile, one that would

leave the size and depth of the convectively unstable region independent of

the vertical extent of the box. Setting the temperature to a Gaussian, cf.

Eq. 3.1, provided such a profile.

The associated density is

ρ = ρ0e
z2/βH2

exp

(
−βH

2Ω2µ

2T0R
ez

2/βH2

)
, (3.5)

where ρ0 is mid-plane density and H the mid-plane scale height. Note that

the factor −βH2Ω2µ
2T0R is dimensionless.1 Pressure is obtained from the ideal gas

equation of state, as above.

1In this subsection, for completeness, the equations are dimensional. In our codes,

however we work with dimensionless variables, in which the scales are chosen such that the

factor R/µ disappears. In addition the (dimensionless) scale height and angular frequency

are set to one such that the factor −βH
2Ω2µ

2T0R reduces to −β/2T0 where T0 is now the

dimensionless mid-plane temperature.
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Figure 3.3: Horizontally-averaged vertical profiles of temperature (green),

density (red) and pressure (blue) in a PLUTO simulation initialized with-

out perturbations to test hydrostatic equilibrium. The solid curves are the

profiles at initialization; the dots are data from the simulation after 55 orbital

time-scales.

The buoyancy frequency is given by

N2
B

Ω2
=

2

βH2
z2

[(
(1− 1

γ

)
βH2Ω2µ

2T0R
ez

2/βH2 − 1

]
. (3.6)

The boundary of the convectively unstable region is hence given by

|Lc| ≡

√√√√βH2 ln

[(
1− 1

γ

)−1
2T0R

βµH2Ω2

]
. (3.7)

Hydrostatic equilibrium tests

Here we briefly present checks that the convectively unstable vertical profile

used to initialize our simulations (see Section 3.1.1) as well as the vertical

boundary conditions both satisfy hydrostatic equilibrium in the vertical di-

rection.
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Figure 3.4: Vertical profile of root-mean-square of horizontally-averaged ver-

tical velocity component after 55 orbits in a PLUTO simulation initialized

without perturbations.

We initialize a PLUTO simulation at a resolution of 64×64×64 in a box

of size 4H×4H×4H with the vertical density profile given by Equation 3.5.

The parameters characterizing our profile are given by {T0 = 1.0, ρ0 = 1.0

and β = 3.0}. The ratio of specific heats is taken to be γ = 5/3. This

profile is convectively unstable within a region |z| < Lc ∼ 1.2H about the

mid-plane, but should satisfy hydrostatic equilibrium throughout the entire

vertical domain. In the vertical direction we use outflow boundary conditions

on the velocity, while the ghost cells are kept in hydrostatic equilibrium.

In Figure 3.3 we plot the horizontally averaged vertical profiles of tem-

perature, density and pressure after 55 orbits. The profiles taken from the

simulations data after 55 orbits are almost indistinguishable from those at

initialization. In Figure 3.4 we plot the vertical profile of the root-mean-

square vertical component of the velocity at orbit 55. The fluctuations are

typically less than 10−3 even after 55 orbits indicating that there is very little

excitation due to the vertical boundaries and that the code is maintaining
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hydrostatic equilibrium very well.

3.1.2 Box size and resolution

We measure box size in units of scale height H, defined above. We employ

resolutions of 643, 1283, 2563 and 5123 in boxes of size 4H × 4H × 4H, which

correspond to resolutions of 16, 32, 64 and 128 grid cells per scale height H

in all directions. However, in simulations in which we force convection we

employ a ‘wide-box’ (6H × 6H × 4H) with a resolution of 256 × 256 × 256

which corresponds to about 43 grid cells per H in the horizontal directions,

and 64 grid cells per H in the vertical direction.

3.1.3 Boundary conditions

We use shear-periodic boundary conditions in the x-direction (see Hawley

et al. (1995a)) and periodic boundary conditions in the y-direction. In the

vertical direction, we keep the ghost zones associated with the thermal vari-

ables in isothermal hydrostatic equilibrium (the temperature of the ghost

zones being kept equal to the temperature of the vertical boundaries at ini-

tialization) in the manner described in Zingale et al. (2002). For the velocity

components we use mostly standard outflow boundary conditions in the ver-

tical direction, whereby the vertical gradients of all velocity components are

zero, and variables in the ghost zones are set equal to those in the active

cells bordering the ghost zones. In a handful of our simulations we also

use free-slip and periodic boundary conditions to test the robustness of our

results.

3.1.4 Important parameters and instability criteria

The onset of thermal convection is controlled by the local buoyancy frequency,

defined as

N2
B = z

[
1

γ

∂ lnP

∂z
− ∂ ln ρ

∂z

]
Ω2

0. (3.8)

But convection is opposed by the effects of viscosity and thermal diffusivity,

with the ratio of destabilizing and stabilizing processes quantified by the
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Rayleigh number

Ra ≡ |N
2
B|H4

νχ
, (3.9)

On the other hand, the ratio of buoyancy to shear is expressed through the

Richardson number

Ri ≡ |N
2
B|

q2Ω2
0

. (3.10)

But for convection perpendicular to the plane of an accretion disk, the buoy-

ancy force is perpendicular to the direction of the background shear. Thus

the Richardson number in our set-up is more an expression for the scaled in-

tensity of N2
B. Finally, the Prandtl number is defined as the ratio of kinematic

viscosity to thermal diffusivity

Pr ≡ ν

χ
. (3.11)

When the explicit diffusion coefficients are neglected (ν, χ = 0), con-

vective instability occurs when the buoyancy frequency is negative (i.e. in

regions where N2
B < 0). When explicit viscosity and thermal diffusivity are

included, however, convective instability requires both that N2
B < 0, and

that the Rayleigh number exceed some critical value Rac. Though in real

astrophysical disks the microscopic viscosity is negligible, the inclusion of

magnetic fields complicates the stability criterion, as does the presence of

pre-existing turbulence (as might be supplied by the MRI) which itself may

diffuse momentum and heat. In the latter case it may be possible to define

a turbulent ‘Rayleigh number’, which must be sufficiently large so that con-

vection resists the disordered background flow. In any case, the sign of N2
B is

certainly insufficient to assign convection to MRI-turbulent flows, as is often

done in recent work (Hirose et al., 2014; Scepi et al., 2018a).

3.2 Linear theory

In this section we investigate the linear phase of the axisymmetric convective

instability both semi-analytically by solving a 1D boundary value / eigen-

value problem using spectral methods, and also analytically using WKBJ

methods.
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Our aim is to determine the eigenvalues (growth rates) and eigenfunctions

(density, velocity, and pressure perturbations) of the axisymmetric convective

instability in the shearing box as a function of radial wavenumber kx. The

convectively unstable background vertical profile used in all calculations is

shown in Figure 3.2, and the profile is discussed in detail in Section 3.1.1.

All calculations were carried out with profile parameters T0 = 1.0, ρ0 =

1.0, β = 3.0 and an adiabatic index of γ = 5/3. For our chosen background

equilibrium, this corresponds to a Richardson number of Ri ∼ 0.05.

We proceed as follows: first, we produce linearized equations for the

perturbed variables; second, these are Fourier analyzed so that X ′(x, z, t) =

eσteikxxX ′(z) for each of the perturbed fluid variables ρ′,u′ and p′. Here σ

can be complex (if σ is real and positive it is referred to as a growth rate).

The linearized equations are given by

σρ′ = −ikxρ0u
′
x − ∂z(ρ0u

′
z), (3.12)

σu′x = 2Ωu′y −
ikx
ρ0

P ′, (3.13)

σu′y = (q − 2)Ωu′x, (3.14)

σu′z = − 1

ρ0

∂zP
′ +

ρ′

ρ2
0

∂zP0, (3.15)

σP ′ = −u′z∂zP0 − γP0(ikxu
′
x + ∂zu

′
z). (3.16)

Background fluid quantities are denoted X0 = X0(z). For equilibrium ρ0 and

P0 see Section 3.1.1.

3.2.1 Spectral methods

We discretize the fluid variables on a vertical grid containing Nz points by

expanding each eigenfunction as a linear superposition of Whittaker cardinal

(sinc) functions (see below for more detail). These are appropriate as all

perturbations should decay to zero far from the convectively unstable region.

This choice also saves us from explicitly imposing boundary conditions. The

discretized equations are next gathered up into a single algebraic eigenvalue
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problem (Boyd, 2001). Finally, we solve this matrix equation numerically

using the QR algorithm to obtain the growth rates σ and eigenfunctions

for a given radial wavenumber kx. The methodology is discussed in detail

below. The reader interested only in the solutions should skip directly to

Section 3.2.3.

Whittaker cardinal basis

Consider the one-dimensional eigenvalue problem

LG(z) = λG(z) (3.17)

where L is a differential operator with corresponding eigenvalue λ and eigen-

function G(z). To solve Equation 3.17 using spectral methods, we approx-

imate the eigenfunction G(z) as a truncated series of N + 1 terms of the

form

G(z) ≈ GN(z) =

N/2∑
j=−N/2

ajCj(z). (3.18)

Note that the truncated series GN(z) given by Equation 3.18 has not yet

been discretized on a grid, i.e. it is a continuous function of the independent

variable z. The form of the basis functions Cj(z) depends on the type of

problem, specifically on how the eigenfunctions behave at the boundaries. For

our problem a set of appropriate basis functions are the so-called Whittaker

cardinal functions defined as

Cj(z) ≡ sinc

(
z − jh
h

)
, (3.19)

where h is the grid spacing (i.e. the distance between neighboring interpola-

tion points), and the normalized sinc function is defined as

sinc(z) ≡ sin(πz)

πz
. (3.20)

The motivation for choosing Whittaker cardinal functions as our basis

is because these enable spectral methods to be employed in calculations on
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a doubly infinite domain, i.e. z ∈ [−∞,∞], provided that the eigenfunc-

tions decay exponentially at infinity. The eigenfunctions in our problem

correspond physically to perturbations to the density, pressure and the three

velocity components: in other words, they describe the structure of the con-

vective cells ‘sitting’ on top of the background equilibrium. Our domain is,

of course, not infinite, but bounded in the vertical direction. Nevertheless,

outside the convectively unstable region there is no buoyancy force for the

perturbations to feed off. The fluid is convectively stable in these regions so

we expect the perturbations to decay rapidly outside the convectively un-

stable region. Thus as long as we locate the vertical boundaries a sufficient

distance from the boundaries of the convectively unstable region, the pertur-

bations should decay to zero before reaching the edge of the vertical domain.2

Therefore Whittaker cardinal functions should be suitable as a basis to de-

scribe convection vertical to the plane of the disk. The vertical structure and

physical interpretation of the eigenfunctions are discussed in greater detail

in Section 3.2.4, where we find that all the eigenfunctions do indeed decay

to zero near the vertical boundaries, as required.

Note from Equation 3.19 that the Whittaker cardinal functions have the

property that Cj(zi = ih) = δij. In other words, if we discretize the indepen-

dent variable z on a grid such that zi ≡ ih, i = −N/2, · · · , N/2 with grid

spacing h, the Whittaker cardinal functions will have non-zero values only

at the grid points (where they are equal to unity). Evaluating the truncated

expansion given by Equation 3.18 we obtain

GN(zi) =

N/2∑
j=−N/2

ajCj(zi) =

N/2∑
j=−N/2

ajδij = ai, (3.21)

thus we see that the coefficient ai in the ith term of the truncated expansion of

the eigenfunction G(z) is identical to the value of the eigenfunction evaluated

at the ith grid point.

2We have confirmed this by running the eigensolver in a box of size ±H about the mid-

plane, so that the vertical boundaries are well within the boundaries of the convectively

unstable region. The resulting eigenfunctions have a sawtooth pattern, which is clearly

unphysical.
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Now consider again Equation 3.17 but evaluated at the point z = zi

(LG)i = λGi, (3.22)

where Gi ≡ G(zi) = ai, and

(LG)i ≡ LG(z)|z=zi ≈
N/2∑

j=−N/2

aj[LCj(z)]z=zi , (3.23)

where the approximation arises from truncation of the series. Thus, defining

Lij ≡ [LCj(z)]z=zi , we may write the eigenvalue problem given by Equation

3.17 as

N/2∑
j=−N/2

Lijaj = λai, i = −N
2
, · · · , N

2
. (3.24)

Equation 3.24 corresponds to a system of N +1 equations for the coefficients

ai, which, the reader will recall, are equivalent to the values of the eigen-

function G(z) at the grid points zi (see Equation 3.21). Expressing Equation

3.24 in matrix form we have

LG(k) = λ(k)G(k) (3.25)

where the superscript k refers to the kth eigenvector (or eigenvalue) of the

matrix L.

We may also write out Equation 3.24 in full matrix form as


[LC−N

2
(z)]z=−N

2
· · · [LC−N

2
(z)]z=N

2
...

. . .
...

[LCN
2

(z)]z=−N
2
· · · [LCN

2
(z)]z=N

2



a

(k)

−N
2

...

a
(k)
N
2

 = λ(k)


a

(k)

−N
2

...

a
(k)
N
2

 . (3.26)

To summarize, we may employ spectral methods with a Whittaker cardi-

nal basis to solve eigenvalue problems involving a linear differential operator.

Beginning with a differential equation of the form LG(z) = λG(z), we first

express the eigenfunctions G(z) as a truncated series of N + 1 terms, with
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Whittaker cardinal functions acting as the basis functions. By discretiz-

ing the differential equation LG(z) = λG(z), we then obtain a system of

N + 1 equations given in matrix form by LG(k) = λ(k)G(k). Here L is an

(N + 1)× (N + 1) matrix whose elements correspond to derivatives of Whit-

taker cardinal functions evaluated at the N +1 vertical grid points, and G(k)

denotes a vector containing N+1 elements, each of which corresponds to the

kth eigenfunction G(k) evaluated at one of the N + 1 grid points.

To see how the aforementioned method applies to our specific problem,

let us gather up Equations 3.12-3.16 into matrix form to obtain

σ


ρ′

u′x

u′y

u′z

P ′

 =



0 −ikxρ0 0 −∂zρ0 − ρ0∂z 0

0 0 2Ω 0 − ikx
ρ0

0 −Ω/2 0 0 0
1
ρ20

(∂zP0) 0 0 0 − 1
ρ0
∂z

0 −γP0ikx 0 −∂zP0 − γP0∂z 0




ρ′

u′x

u′y

u′z

P ′

 .

(3.27)

Now, to use spectral methods to solve the system of equations given by

Equation 3.27, we approximate each fluid variable X ′(z) as a truncated series

with Whittaker cardinal functions as the basis

X ′(z) ≈ X ′N(z) =

N/2∑
j=−N/2

ajCj(z), (3.28)

where X ′ ∈ {ρ′, u′x, u′y, u′z, P ′} and Cj(z) are the Whittaker cardinal (sinc)

functions. We can then construct an operator matrix A consisting of block

matrices for the linearized equations of gasdynamics. Finally, we solve the

eigenvalue problem σU = AU for the eigenvalues σ and eigenvectors U =

(ρ′,u′x,u
′
y,u

′
z,P

′)T numerically using a code we have written in Python.

(We refer to this code as our spectral eigensolver.)

3.2.2 WKBJ approach

We caution the reader that in this subsection only we employee the opposite

sign convention to that employed in Section 3.1.1 (and in the remainder of this
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thesis), a choice that was made in order to check our calculations more easily

against those of Ruden et al. (1988) who carried out a similar calculation

using a polytropic equilibrium. Thus in this subsection N2
B(z) < 0 denotes

convective stability whereas N2
B(z) > 0 denotes convective instability.

Equations 3.12-3.16 can be combined into a second-order ODE of the

form
d2U

dz2
+ k2

z(z)U = 0, (3.29)

where

U =

(
γP0

σ2 + κ2 + k2
xc

2
s

)1/2

u′z, (3.30)

in which cs(z) is the adiabatic sound speed, and the ‘vertical wavenumber’

of the perturbations is given by

k2
z(z) ≈ k2

x

N2
B(z)− σ2

κ2 + σ2
, (3.31)

where kx = 2π/λx is the radial wavenumber of the perturbations (Ruden

et al., 1988), and κ2 = 2Ω(2Ω − S) is the square of epicyclic frequency. In

our calculations we assume a Keplerian disk, for which S = (3/2)Ω and thus

κ = Ω.

We obtain approximate solutions to Equation 3.29 analytically using

WKBJ methods in the limit where kxH >> 1. Equation 3.31 has two turn-

ing points at k2
z(z) = 0, which occur when N2

B(z) − σ2 = 0. Physically, one

turning point occurs at the disk mid-plane (z = 0), while the other turning

point occurs at the boundary of the convectively unstable region z = Lc.

When N2
B(z) − σ2 > 0 then k2

z(z) > 0 so the solutions of Equation 3.29 are

spatially oscillatory, otherwise they are evanescent. The unstable modes, in

which we are interested, are confined and oscillatory within the convectively

unstable region, and spatially decay exponentially outside.

The standard WKBJ solution is given by

U(z) ∼ c1 exp

(
+i

∫ z

kz(z
′)dz′

)
+ c2 exp

(
−i

∫ z

kz(z
′)dz′

)
,

where c1 and c2 are constants. By matching the interior (oscillatory) solution

onto the exterior (exponentially decaying) solution, we obtain the eigenvalue
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equation (dispersion relation):∫ z1

z0

kz(z)dz =

(
n+

1

2

)
π n = 0, 1, 2, 3, · · · , (3.32)

where lower and upper bounds of integration z0 and z1, respectively, are

related by the implicit equation N2
B(z0) = N2

B(z1) = σ2, and n is the mode

number. Substituting for k2
z(z) using Equation 3.31, we obtain an implicit

equation relating the radial wavenumber kx and the growth rate σ which we

solve numerically via a root-finding algorithm.

Substituting Equation 3.31 into the left hand side of the dispersion rela-

tion Equation 3.32 obtains

LHS =
kx√

κ2 + σ2

∫ z1

z0

√
N2
B(z)− σ2 dz. (3.33)

In order to place the integral in Equation 3.33 in dimensionless form, we

make the substitution z = yLc to obtain

LHS =
kx Lc√
κ2 + σ2

∫ z1/Lc

z0/Lc

√
N2
B(yLc)− σ2 dy. (3.34)

The buoyancy frequency N2
B(z) for our Gaussian temperature vertical

profile (see Section 3.1.1) is given by

N2
B

Ω2
=

2

βH2
z2

[
1−

(
1− 1

γ

)
βH2Ω2

2T0

ez
2/βH2

]
, (3.35)

Here T0, β and the ratio of specific heats γ are parameters with which we

can control the width and depth of the buoyancy frequency profile.

Rescaling the vertical coordinate such that z → z/Lc we obtain

N2
B

Ω2
=

2

βH2

(
z

Lc

)2 [
1−

(
1− 1

γ

)
βH2Ω2

2T0

ez
2/βH2L2

c

]
. (3.36)

Finally, substituting Equation 3.36 into Equation 3.34 we obtain

LHS =
kx Lc√
κ2 + σ2

I(α̃), (3.37)

where the dimensionless integral I(α̃) is given by

I(α̃) ≡
∫ β̃(α̃)

α̃

√
N2
B(yLc)− σ2 dy, (3.38)

107



Figure 3.5: Numerical solution of the dimensionless integral given by Equa-

tion 3.38. Here α̃ ≡ z0/Lc is defined as the lower turning point z0 rescaled

by the width of the convective region Lc. The vertical profile parameters

are given by {T0 = 1.0, ρ0 = 1.0, β = 3.0}. The adiabatic index is set to

γ = 5/3.

and the (rescaled) lower and upper limits have been denoted as α̃ ≡ z0/Lc and

β̃ ≡ z1/Lc, respectively. The limits of integration are related to each other,

and to the growth rate, through the implicit equation N2
B(z0) = N2

B(z1) = σ2.

In order to calculate the dimensionless integral I(α̃) we first solve the implicit

equation N2
B(β̃) = N2

B(α̃) to obtain the upper limit of integration β̃. The

dimensionless integral can then be solved numerically, and the solution is

shown in Figure 3.5.

Finally, we solve

kx Lc√
κ2 + σ2

I(α̃) =

(
n+

1

2

)
π, (3.39)

in order to obtain, for a given mode number n, the growth rate σ as a function

of the radial wavenumber kx. The solutions are discussed in Section 3.2.3,

and solutions for the first three modes (n = 0, 1, and 2) are indicated by the

solid curves in Figure 3.6.
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3.2.3 Eigenvalues

For a given radial wavenumber kx, the eigenvalues calculated with the spec-

tral eigensolver come in pairs that lie close together in the complex plane.

These correspond physically to the even and odd modes of the convective

instability. As described in Section 3.2.4, even modes are defined as those for

which u′z(z) is symmetric about the mid-plane, whereas the odd modes are

defined as those for which u′z(z) is antisymmetric about the mid-plane. In

Fig. 3.6 we plot as black dashed curves the first few eigenvalue branches as

functions of kx, these corresponding to vertical quantum numbers n = 0, 1,

and 2.3 Note that in the figure kx has been normalized by the width of the

convectively unstable region Lc (given by Equation 3.7 in Section 3.1.1).

As the radial wavenumber kx is increased, the difference between the

growth rates of the even and odd modes vanishes, and the growth rates tend

asymptotically to the maximum absolute value of the buoyancy frequency

(indicated by a horizontal dot-dashed line). In other words, the maximum

growth rate is limited by the depth of the buoyancy-frequency profile. The

fastest growing modes are at arbitrarily large kx (small radial wavenumber

λx), and thus manifest as thin elongated structures. Thicker structures are

not favored as they comprise greater radial displacements that are resisted

by the radial angular momentum gradient.

Superimposed on the spectrally computed values are the WKBJ growth

rates (solid lines). WKBJ methods cannot distinguish between even or odd

modes, nonetheless we find very close agreement between the WKBJ and

semi-analytical results for all radial wavenumbers, even at low kx where the

WKBJ approximation is, strictly speaking, invalid. As the radial wavenum-

ber increases, the semi-analytical and WKBJ results converge. Note that

associated with each mode branch is a minimum radial wavenumber kx,min

below which both the numerical and WKBJ growth rates are zero. This

3Note that the designations ‘n = 0 (even)’ and ‘n = 0 (odd)’ are due to how we decided

to label the modes. In our calculation of the growth rates we observe pairs of modes with

very similar growth rates. The first pair are labeled ‘n = 0 (even)’ and ‘n = 0 (odd)’

rather than n = 0 and n = 1, respectively, the next pair are labeled ‘n = 1 (even)’ and

‘n = 1 (odd)’ rather than n = 2 and n = 3, respectively, and so on.
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Figure 3.6: Growth rates as a function of radial wavenumber kx (scaled by the

width of the convectively unstable region Lc). The solid lines were calculated

analytically using WKBJ methods, and the dashed lines were calculated

semi-analytically using pseudo-spectral methods. The squares correspond to

measurements taken from PLUTO simulations run at a vertical resolution

of Nz = 128. The blue circle was taken from a PLUTO simulation run at

Nz = 256.

feature is just visible in the bottom left-hand side of Figure 3.6.

We must stress that, because the fastest growing modes are on the short-

est possible scales, inviscid simulations of convection are problematic, at least

in the early (linear) phase of the evolution. It is here that the simulated be-

havior may depend on the varying ways that different numerical schemes deal

with grid diffusion, something we explore in Section 3.3.3. Only with resolved

physical viscosity can this problem be overcome. However, in the fully de-

veloped nonlinear phase of convection the short scale linear axisymmetric

modes may be subordinate and this is less of an issue.
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Figure 3.7: Vertical profiles of the perturbations Re{ρ′(z)}, Re{u′z(z)},
Re{P ′(z)}, and of Im{u′x(z)} and Im{u′y(z)} in the upper half plane z ∈
[0, 2]H, for the n = 0 odd mode at kx = 20.0. The imaginary and real parts

not shown are effectively zero. The black dot marks the upper extent of

the convectively unstable region Lc, while the red dot marks the most con-

vectively unstable points (see Equation 3.7). The eigenfunctions have been

rescaled so that the maximum of each eigenfunction is unity.

3.2.4 Vertical structure of the eigenfunctions

The reader is reminded that here we have an unstably stratified fluid in a

medium in which the gravitational field smoothly changes sign. This con-

trasts to the more commonly studied situation of convection at the surface

of the Earth (or within the solar interior). It hence is of interest to study

the structure of the convective cells in some detail. We consider first the

fundamental (n = 0) odd mode with radial wavenumber kx = 20.

In Figure 3.7 we plot the vertical profiles of the nonzero components of

the eigenfunction. To provide greater visual clarity, we have rescaled the
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Figure 3.8: Two-dimensional profiles in the xz-plane of the real parts of the

selected components of odd and even eigenfunctions for n = 0 and kx = 20.0.
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perturbations so that the maximum amplitude of each perturbation is unity:

thus we can more easily observe the vertical structure of the perturbations,

but not deduce their relative amplitudes. In Figure 3.8 we plot their real

parts in the xz-plane with the correct amplitudes. We find that |u′z|/cs0 >
|u′y|/cs0 ∼ |u′x|/cs0 � |ρ′|/ρ0 � |P ′|/P0, where cs0 = 1, ρ0 = 1, and P0 = 1

are the background sound speed, density, and pressure at the mid-plane.

Thus vertical velocity perturbations are greatest in magnitude, while pressure

perturbations are smaller than vertical velocity perturbations by two-orders

of magnitude, indicating that the convective cells are roughly in pressure

balance with the surroundings.

In Figure 3.7, u′z (solid black curve) is antisymmetric about the mid-plane,

whereas the remaining perturbations are symmetric about the mid-plane.

Figures 3.7 and 3.8 clearly show that both odd and even modes consist of a

chain of convective cells above and below the mid-plane and localized near

the most convectively unstable point (denoted by the large red dot in the

former Figure). The peak in the amplitude of u′z that occurs near the this

point tells us that the fluid elements reach their maximum acceleration where

the buoyancy force is greatest. As the fluid perturbations move subsonically,

they adjust their pressure to maintain a balance with the background pres-

sure: thus where cool elements begin to rise (higher background pressure),

the pressure perturbations (solid blue line) increase (i.e. P ′ > 0), and where

hot elements begin to sink (lower background pressure), the pressure per-

turbations decrease (i.e. P ′ < 0). The vertical velocity perturbation (black

solid line) is out of phase with the radial and azimuthal velocity perturbations

(dashed lines), since vertical motion is converted into radial motion where

the convective cells turn over (picture fluid motion at the top of a fountain).

The even modes possess a nonzero, but relatively small, u′z at the mid-

plane, and thus weakly couple the two sides of the disk. Such modes may

permit some exchange of mass, momentum and thermal energy across the

mid-plane when reaching large amplitudes.

As the radial wavenumber is increased from kx = 20.0 to kx = 200.0

(very small radial wavelengths), the perturbations become increasingly lo-

calized about the most convectively unstable point(s) (see Figure 3.9). The
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Figure 3.9: Vertical profiles of the perturbations Re{ρ′(z)}, Re{u′z(z)},
Re{P ′(z)}, and of Im{u′x(z)} and Im{u′y(z)} in the full plane z ∈ [−2, 2]H,

for the n = 0 odd mode at kx = 400.0, showing localization of fast growing,

short wavelength modes to the upper disk half-plane.

localization in z however is not as narrow as the radial wavelength. For larger

kx, in fact, each pair of even and odd modes change their character and be-

come entirely localized to either the upper or lower disk. Activity in the two

halves of the disk are hence completely decoupled for such small-scale (but

fast growing) disturbances.

3.2.5 Comparison of theory with simulations

In this section we compare the growth rates previously calculated with those

measured from PLUTO simulations initialized with the exact linear modes

taken from the spectral eigensolver. 4

Each PLUTO simulation is run in a box of size λx × 0.625H × 4H. We

4To estimate the numerical growth rates we first plotted (on a semi-log plot) the vertical

kinetic energy density against time, and then used a least squares fit to measure the slope

of the kinetic energy during the linear phase.
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Table 3.1: Comparison of eigensolver growth rates with growth rates measured in PLUTO

simulations. The simulations were initialized with the eigenfunctions corresponding to each

mode n and radial wavenumber kx. All simulations except the one marked with a footnote

were run at a resolution of 64 × 10 × 128. The standard deviation on the growth rates

σPLUTO measured in the simulations is typically in the range ±0.0002 to ±0.0004.

Mode Parity kx σEIG σPLUTO % error

n = 0 even 20.0 0.2727 0.2719 0.3

odd 20.0 0.2724 0.2715 0.3

even 40.0 0.3076 0.3059 0.6

even 60.0 0.3186 0.3160 0.8

even 100.0 0.3273 0.3223 1.6

n = 1 even 25.0 0.1694 0.1678 0.9

odd 25.0 0.1643 0.1624 0.9

even 40.0 0.2392 0.2343 1.1

even 60.0 0.2747 0.2655 3.3

even 100.0 0.3016 0.2840 5.8

0.2974 1.4∗

n = 2 even 40.0 0.1593 0.1525 4.2

odd 40.0 0.1580 0.1517 3.9

even 60.0 0.2272 0.2251 0.9

even 100.0 0.2749 0.2637 4

* Simulation run with a resolution of Nz = 256 grid

points in the vertical direction.

maintain a fixed number of 32 grid cells per scale height in the z-direction,

16 grid cells per scale height in the y-direction and 64 grid cells per radial

wavelength in the x-direction. Thus the radial wavelength of the modes is

always well resolved in our simulations. No explicit diffusion coefficients (i.e.

viscosity or thermal diffusivity) are used.

The results are plotted in Figure 3.6 as squares (and one circle). Nu-

merical values appear in Table 3.1. We find excellent agreement between

simulation and theory: the relative error is < 1% for the fundamental mode

in the interval kx ∈ [20.0, 60.0] and for the first harmonic at kx = 25.0.

As the radial wavenumber is increased the simulation growth rates begin to

deviate from the theoretical curves, although the percentage error remains

less than 6% even at large wavenumbers. This behavior is expected due to
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the effects of numerical diffusion which acts to decrease the growth rates as

the radial wavelength approaches the size of the vertical grid. Although the

radial wavenumber λx is always well resolved in the simulations, the vertical

wavelength becomes increasingly less well resolved.

The numerical diffusion could be reduced by increasing the vertical resolu-

tion of the simulations. To check this we have rerun the PLUTO simulation

initialized with eigenfunctions corresponding to the first harmonic (n = 1)

even mode with kx = 100 at twice the vertical resolution, i.e. Nz = 256

instead of Nz = 128. At a resolution of Nz = 128 we measured a growth

rate of σPLUTO = 0.2840 Ω, corresponding to a percentage error of 5.8%

with the growth rate calculated semi-analytically (σEIG = 0.3016 Ω). At

a vertical resolution of Nz = 256, however, we measured a growth rate of

σPLUTO = 0.2974 Ω, corresponding to a percentage error of just 1.4%. Thus,

the growth rates measured in the simulations appear to converge to those cal-

culated analytically and semi-analytically as the resolution of the simulations

is increased.

Finally, in all simulations of the axisymmetric modes we observed in-

ward angular momentum transport. This is in agreement with the analytical

argument presented in (Stone & Balbus, 1996) regarding axisymmetric flow.

3.3 Simulations of unforced compressible con-

vection

In this section we describe fully compressible, three-dimensional simulations

of hydrodynamic convection in the shearing box carried out with PLUTO.

These simulations are ‘unforced’ in that they are initialized with a convec-

tively unstable profile, but this unstable profile is not maintained by a sep-

arate process (e.g. turbulent heating via the magnetorotational instability).

Thus convection rearranges the profile, shifting it to a marginally stable state,

and thus ultimately hydrodynamical activity dies out. While the unforced

convection studied in this section is essentially a transient phenomenon that

depends on initial conditions, and is sensitive to the numerical scheme (as
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we discuss in Sections 3.3.2 and 3.3.3), it serves as a good starting point for

investigating the problem and illuminates a number of interesting features.

The key result of this section is that, even without the inclusion of ex-

plicit viscosity, we observe that hydrodynamic convection in the shearing

box generally produces a positive Reynolds stress, and thus can drive out-

ward transport of angular momentum. This is in direct contradiction to

simulations carried out in ZEUS by SB96. In Section 3.3.1 we describe

our fiducial simulations, and in Section 3.3.2 we compare ATHENA and

PLUTO simulations. In Section 3.3.3 we describe the sensitivity of the sign

of angular momentum transport to the numerical scheme. Finally, in Section

3.3.4 we investigate the effects of including explicit diffusion coefficients in

our simulations, thus connecting to the Boussinesq simulations of Lesur &

Ogilvie (2010).

3.3.1 Fiducial simulations

Set-up and initialization of fiducial simulations

The simulations described in this section were run at resolutions of 643, 1283

and 2563 in boxes of size 4H×4H×4H, where H is the scale height.5 All the

simulations were initialized with the convectively unstable vertical profiles

for density and pressure described in Section 3.1.1 with profile parameters

T0 = 1.0, ρ0 = 1.0, β = 3.0 and an adiabatic index of γ = 5/3 (see Figure

3.2). The Stone and Balbus vertical profile SB96 was also trialed yielding very

similar results, but we have omitted most of these in the interests of space.

Vertical outflow conditions were employed for our fiducial simulations but

periodic and free-slip boundary conditions in the vertical direction produced

the same behaviour. Random perturbations to the velocity components were

seeded at initialization, with a maximum amplitude |δu| ∼ 10−5 cs0. Finally,

we adopt a very small but finite thermal diffusivity of χ = 2 × 10−6 to

facilitate conduction of thermal energy through the vertical boundaries and

to aid code stability. No explicit non-adiabatic heating, cooling, or thermal

5A simulation run at a resolution 5123 is included in the list of fiducial simulations in

Table B.1 (see Appendix B) but is not described in this section for brevity.
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Figure 3.10: Left: semi-log plot of the time-evolution of the volume-averaged

vertical kinetic energy density in PLUTO simulations at resolutions of 643

(blue line), 1283 (red line) and 2563 (black line). Right: time-evolution of

volume-averaged xy-component of the Reynolds stress tensor.

relaxation are included in the simulations described in this section: therefore

convection gradual dies away after non-linear saturation.

Time-evolution of averaged quantities

In the left panel of Figure 3.10 we track the time-evolution of the volume-

averaged kinetic energy density associated with the vertical velocity for sim-

ulations run at resolutions of 643, 1283 and 2563, respectively.

Initially all simulations exhibit small-amplitude oscillations due to inter-

nal gravity waves excited in the convectively stable region at initialization.

After some three orbits, the linear phase of the convective instability begins

in earnest, characterised by exponential growth of the perturbation ampli-

tudes. During this phase, internal energy is converted into the kinetic energy

of the rising and sinking fluid motion that comprises the convective cells. As

the resolution is increased, shorter scale modes are permitted to grow. Be-

cause they are the most vigorous the growth rate (proportional to the slope

of the kinetic energy density) is slightly larger at better resolution.

The linear phase ends some 10 orbits into the simulation, and the flow be-

comes especially disordered. The peak in the vertical kinetic energy density

occurs at this point, but this peak decreases with resolution, something we
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discuss in Section 3.3.1. After non-linear saturation, the kinetic energy de-

creases gradually: the convective cells redistribute thermal energy and mass,

thus shifting the thermal profile from a convectively unstable to a marginal

state, and ultimately the convective motions die out. After about 38 orbits,

the kinetic energy density has dropped to about one hundredth of its value

at non-linear saturation in the lower resolution runs. The level of numerical

diffusivity has an appreciable effect in damping activity after non-linear sat-

uration, with the decrease in vertical kinetic energy successively smaller over

the same period of time in the 643, 1283 and 2563 simulations, respectively.

The behavior of the kinetic energy aligns relatively well with our expec-

tations. The Reynolds stress, on the other hand, is more interesting. The

evolution of the xy-component of the Reynolds stress is plotted in the right

panel of Fig. 3.10. The stress is small, but perhaps its most striking feature

is its positivity over the entire duration of all three simulations.

Perhaps most surprising is the positivity of the stress during the lin-

ear phase of the instability. We might expect that the axisymmetric modes

(which send angular momentum inwards) dominate this period of the evolu-

tion, as non-axisymmetric disturbances only have a finite window of growth

(about an orbit) before they are sheared out and dissipated by the grid. But

the positivity of the stress suggests that instead it is the shearing waves that

are the dominant players in the linear phase. Visual inspection of the velocity

fields confirms that the flow is significantly non-axisymmetric, and we find

several examples of strong shearing waves ‘shearing through’ kx = 0 during

this phase. It would appear these waves transport angular momentum pri-

marily outward as they evolve from leading to trailing, behavior that is in

fact consistent with Ryu & Goodman (1992), who find that inward trans-

port only occurs at sufficiently long times when the waves are strongly trail-

ing and hence effectively axisymmetric. (Even then the stress is extremely

oscillatory.)

Why do the shearing waves dominate over the axisymmetric modes? One

hypothesis is that 3D white noise seeds fast growing shearing waves that can

outcompete the axisymmetric convective instability over their permitted win-

dow of growth. If this were to be true then the simulated nonlinear regime
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is achieved before the dominant shearing waves become strongly trailing and

begin to send angular momentum inward. Given that the typical timescale

for shearing out is roughly a few orbits at best, this is marginal but not

impossible. An alternative, more plausible, and more troubling hypothesis is

that our inviscid numerical code misrepresents trailing shearing waves: more

specifically, the code is artifically reseeding fresh leading waves from strongly

trailing waves (‘aliasing’; Geoffroy Lesur, private communication). As a con-

sequence, shearing waves outcompete the axisymmetric modes because they

can shear through several times. If true, this is certainly concerning. But we

hasten to add that this phenomenon should only be problematic in the low

amplitude linear phase; once the perturbations achieve large amplitudes the

aliasing will be subsumed under physical mode-mode interactions.

The linear phase ends in a spike in the stress. Time-averages of the

volume-averaged value of Rxy from orbit 5 to orbit 15, a period spanning non-

linear saturation, show that the Reynolds stress decreases as the resolution

increases (see Table B.1 in Appendix B). The time- and volume-averaged

value of Rxy over a period spanning non-linear saturation (orbits 5 to 15) is

+4.8×10−6, +2.7×10−6 and +1.7×10−6 in the 643, 1283 and 2563 simulations,

respectively. In terms of the turbulent alpha-viscosity this corresponds (from

Equation 2.67, but including the shear parameter q in the definition) to

α ∼ +2.3× 10−5, +1.5× 10−5 and 9.6× 10−6, respectively. The dependence

on the numerical viscosity can be explained by appealing to secondary shear

instabilities (see next subsection).

The volume-averaged density remains roughly constant during the linear

phase of the instability, followed by a drop after non-linear saturation as mass

is lost through the lower and upper boundaries. Although the convectively

unstable region at initialization is confined to the region |z| < Lc ∼ 1.11H,

and is therefore well within the box, convective overshoot deposits mass

(and heat) outside the convectively unstable region. The overall decrease in

density over the duration of the simulation is small, but appears to increase

with greater resolution. The overall percentage change in the density is

−1.4%, −3.4% and −8.8% in the 643, 1283 and 2563 simulations, respectively.
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Figure 3.11: From left to right: snapshots of uz in the xz-plane taken at

non-linear saturation (just after the linear phase) at resolutions of 643, 1283

and 2563, respectively. Blue denotes uz < 0 (sinking fluid) and red denotes

uz > 0 (rising fluid).

Structure of the flow

The development of convective instability and the associated convective cells

are best observed through snapshots of the vertical component of the velocity

in the xz-plane, shown at resolutions of 643, 1283 and 2563 just after non-

linear saturation in Figure 3.11. A full set of convective cells is clearly visible

at all resolutions. They are thin, filamentary structures several grid cells

wide comprising alternating negative and positive velocities (updrafts and

downdrafts).

The maximum vertical Mach number of the flow around non-linear sat-

uration in the 2563 run is about Mz ∼ 0.15, with the largest vertical Mach

numbers generally being measured near the vertical boundaries (where the

temperature – and therefore the sound speed – is lowest).

The higher resolution simulations indicate that the plumes develop a wavy

or buckling structure as they rise or sink, indicating the onset of a secondary

shear instability. It is likely that the buckling of the convective plumes by

these ‘parasitic modes’ limits the amplitudes of the linear modes, and ul-

timately leads to their breakdown. At lower resolution numerical diffusion

smooths out the secondary shear modes, and so the convective plumes reach
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large amplitudes before breaking down (blue curve in right panel of Fig. 3.10).

At high resolution the shear modes are not so impeded and make short work

of these structures (black curve in the same figure).

Vertical heat and mass flux

Figure 3.12 (a) shows the vertical profiles of horizontally-averaged heat and

mass fluxes taken from snapshots just after non-linear saturation from the

simulation with resolution 2563. For clarity, we have time-averaged the

horizontally-averaged vertical mass and heat flux profiles between orbits 5

and 10, a period spanning non-linear saturation (see Figure 3.10).

Negative (positive) values for the fluxes for z < 0 and positive (negative)

values for the fluxes for z > 0 correspond to transport of heat and mass

away from (towards) the mid-plane. Overall, the heat flux is away from the

mid-plane, peaking in the vicinity of the most convectively unstable points

at initialization (indicated by the vertical dashed red lines in Figure 3.12).

In addition, there is some mass flux towards the mid-plane within −H <

z < H. Thus, convection is transporting mass and heat such as to erase

the convectively unstable stratification, as expected. Note that the positive

peaks in the heat flux near the most convectively unstable points are similar

to those observed by Hirose et al. (2014) in the thermally dominated region

of the disk (i.e. Pthermal > Pmagnetic; cf. the middle-panel of Figure 5 in their

paper).

Beyond |z| > H, the mass flux is directed away from the mid-plane,

peaking just beyond the point which marks the boundary of the convectively

unstable region. This outward mass flux might be due to convective over-

shoot, although we expect this effect to vanish if averaged over a suitable

time interval. Alternatively, it is possible that heat transported towards the

corona by the convective cells causes matter in the corona to heat up and

become buoyant, or else that this heat generates a weak thermal wind.

Finally, in Figure 3.12 (b) we show the vertical profile of the horizontally-

averaged Rxy taken from the 2563 simulation and time-averaged between or-

bits 5 and 10. The Reynolds stress is clearly positive over all of the vertical
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(a) (b)

Figure 3.12: (a) Vertical profiles of the vertical heat flux (solid red line) and

mass flux (solid black line). The vertical dashed blue line marks the boundary

of the convectively unstable region at initialization, while the vertical dashed

red line marks the most convectively unstable point at initialization. (b)

Vertical profile of the xy-component of the Reynolds stress tensor Rxy. In all

cases, the results have been time-averaged between orbits 5 and 10, spanning

non-linear saturation.

domain, peaking just beyond the most convectively unstable points.6 Thus

the bulk of outward angular momentum transport occurs where the convec-

tive cells begin to turn-over, resulting in radial mixing of the gas. Note,

however, that we also observe rather large positive stresses near the vertical

boundaries, with the stress at the vertical boundaries about 1.5 times the

peak stress in the remainder of the domain.

3.3.2 Simulation of hydro convection in ATHENA

In the previous section we found that hydrodynamic convection in a verti-

cally stratified shearing box in PLUTO (without explicit viscosity) can drive

outward angular momentum transport. Here we verify this result using the

finite-volume code ATHENA (Stone et al., 2008; Stone & Gardiner, 2010).

To facilitate as close a comparison as possible between the two codes and

6Note however that at any given instant in time, we generally do observe regions where

the Reynolds stress is negative.
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also to the ZEUS runs of SB96, we initialize both codes with Stone and

Balbus’s convectively unstable profile (see Section 3.3.1). Explicit diffusion

coefficients were omitted and vertical periodic boundary conditions imple-

mented. Both simulations were run in a shearing box of size 4H × 4H × 4H

and at a resolution of 64×64×64. PLUTO and ATHENA offer somewhat

different suites of numerical schemes: here we settle on a combination that

is slightly more diffusive than that employed in our fiducial simulations be-

cause this combination allows for as close a match as possible. Specifically,

the numerical scheme employed in ATHENA is (second-order) piecewise

linear interpolation on primitive variables, the HLLC Riemann solver and

MUSCL-Hancock integration. In PLUTO we use (second-order) piecewise

linear interpolation on primitive variables together with a Van Leer limiter

function, the HLLC Riemann solver and MUSCL-Hancock integration. The

angular frequency, and the sound speed at initialization, in both simulations

were set to Ω = 10−3 and cs = 10−3, respectively.7

We find that angular momentum transport is directed outwards in both

codes, demonstrating that the outward transport of angular momentum

by hydrodynamic convection in the non-linear phase is robust to a change

of code. Figure 3.13 compares the time-evolution of the volume-averaged

Reynolds stress taken from the ATHENA simulation with that taken from

the PLUTO simulation. Both simulations exhibit exponential growth fol-

lowed by non-linear saturation, together with the development of convective

cells (not shown). These results also contrast with the SB96 runs with ZEUS

and thus demonstrate that the positive transport reported in previous sec-

tions is not special to the Gaussian temperature profile.

Although for this particular combination of schemes the overall result is

the same, we noticed that different schemes resulted in qualitative differences

between the two codes. For example, when we use the HLLC solver, piecewise

parabolic reconstruction (PPM) and Corner-Transport-Upwind (CTU) inte-

7Note that the units differ from the values of Ω = 1 and cs = 1 employed elsewhere in

this thesis. This is because we were unable to get ATHENA to work with units of Ω = 1

and cs = 1. Therefore in this section only we have used units of Ω = 10−3 and cs = 10−3

in both the PLUTO and ATHENA simulation.
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Figure 3.13: Comparison of time-evolution of volume-averaged Reynolds

stress taken from a simulation run in ATHENA (black) with the same quan-

tity taken from a simulation run in PLUTO (red). Note that in these two

simulations only we have employed units of Ω = 10−3 and cs = 10−3.

gration, ATHENA exhibits delayed onset of instability, a more gradual drop

in kinetic energy density following non-linear saturation, and a slower drop

in angular momentum transport compared to PLUTO. When we use the

Roe solver, PPM reconstruction and CTU integration, the Reynolds stress

is highly oscillatory in time in both codes, indicative, perhaps, of numerical

instability. The different behavior (in both codes) based on which combi-

nation of numerical schemes is chosen is worrying, although we emphasize

that the differences are probably accentuated by the transient nature of the

evolution and its sensitivity to the initial conditions, and the fact that the

linear phase is partially controlled by grid diffusion. The robustness of the

results to changes is numerical scheme is investigated in more detail in the

following section.
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Figure 3.14: Left: time-evolution of volume-averaged Reynolds stress taken

from a PLUTO simulation run with the less diffusive HLLC solver. Right:

the same, but taken from a simulation run with the more diffusive HLL solver.

The change in the sign of the stress tensor provides compelling evidence that

whether convection can transport angular momentum inwards or outwards

depends on the diffusivity of the underlying numerical scheme.

3.3.3 Sensitivity of sign of angular momentum trans-

port to numerical scheme

An important result of Sections 3.3.1-3.3.2 is that purely hydrodynamic con-

vection in PLUTO and in ATHENA resulted in Rxy > 0, i.e. outward

angular momentum transport. This is in disagreement with the ZEUS re-

sults of SB96, who reported a Reynolds stress of Rxy < 0. Given that ZEUS

is a non-conservative, finite-difference code, our hypothesis for explaining the

discrepancy is that ZEUS run at comparatively low resolution (as in SB96)

is sufficiently diffusive that it imposes an artificial near-axisymmetry on the

flow (which will send angular momentum inward). In this section we report

our attempts to assess the numerical diffusivity of various algorithms and

their impact on convection.

First we reran the fiducial simulations described in Section 3.3.1 but with

different combinations of numerical schemes. We found that the sign of angu-

lar momentum transport is indeed sensitive to our choice of scheme. This is

best illustrated in Figure 3.14: the left-hand panel shows the time-evolution

of the volume-averaged Rxy taken from a simulation run with the HLLC Rie-
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mann solver (simulation NSTR22e11a in Table B.2), while the right-hand

panel shows the same quantity but taken from a simulation run with the

(more diffusive) HLL solver (simulation NSTR22e12a in Table B.2). Both

simulations exhibit similar exponential growth in the vertical kinetic energy

during the linear phase of the instability, and the velocity field shows the

development of convective cells in both cases, but the sign of the Reynolds

stress is radically different. The HLL run is also far more laminar and ax-

isymmetric. We next repeated the HLL runs with higher resolutions, up to

2563, but with no change in the sign of Rxy during the linear phase. It must

be stressed that going to higher resolutions does not necessarily help in the

problem of convection; this is because the fastest growing linear modes are

always near the grid scale and hence it is impossible (in the linear phase at

least) to escape grid effects. Following non-linear saturation, however, we do

briefly observe outward transport (Rxy > 0) in our 2563 HLL run, though we

observe this only for a few orbits before the entropy gradient is erased and

convection ceases (after which Rxy drops and fluctuates around zero).

The results of different combinations of schemes is summarized in Table

B.2 in Appendix B. They indicate that the sign of Rxy appears to be robust

to changes in the interpolation and time-stepping schemes, but sensitive to

the Riemann solver. In particular, the less diffusive Riemann solvers (Roe

and HLLC) gave Rxy > 0, while the more diffusive Riemann solvers (HLL

and a simple Lax-Friedrichs solver) gave Rxy < 0. Altogether we explored

twelve different configurations of Riemann solver, interpolation scheme, and

time-stepping method. These ranged from the most accurate (least diffusive)

set-up which was identical to that employed in the simulations described in

the previous section (a Roe Riemann solver, third-order-in-space WENO in-

terpolation and third-order-in-time Runge-Kutta time-stepping), to the least

accurate (most diffusive) set-up (a simple Lax-Friedrichs Riemann solver,

second-order-in-space linear interpolation and second-order-in-time Runge-

Kutta time-stepping).

Thus we have compelling evidence that, as suspected, angular momen-

tum transport due to convection can be sensitive to the diffusivity of the

underlying numerical scheme. It appears that over-smoothing of the flow
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by diffusive Riemann solvers, such as HLL, or by codes such as ZEUS that

employ artificial viscosity and finite-differencing of the pressure terms, im-

pose a spurious axisymmetry on the flow. This axisymmetry picks out the

axisymmetric convective modes, which in turn transport angular momentum

inwards.

3.3.4 Viscous simulations

Given the concerns raised in the last section regarding numerical schemes, as

well as the fact that the fastest growing inviscid modes are on the shortest

scales, we expand our study to include explicit viscosity (and thermal dif-

fusivity). A properly resolved viscous simulation should exhibit none of the

numerical problems encountered above, and the fastest growing mode occurs

on a well defined scale above the (resolved) viscous scale. Our main aim in

this section is to test whether the results of our fiducial simulations are solid:

mainly, if angular momentum transport can be positive in the presence of

viscosity. Additionally, the inclusion of explicit diffusion coefficients enables

us to investigate the Rayleigh number dependence of fully compressible hy-

drodynamic convection in the shearing box, and thus connect to previous

work by Lesur & Ogilvie (2010).

We carry out a suite of simulations at a resolution mainly of 2563 in-

vestigating the effects on hydrodynamic convection when the Rayleigh num-

ber Ra is increased, but the Prandtl number Pr is fixed at 2.5.8 Thus we

decrease both the viscosity and thermal diffusivity in order to increase the

Rayleigh number, but keep their ratio fixed at 2.5. Note however, that within

any individual simulation we keep the viscosity and thermal diffusivity con-

stant in both space and time. The Rayleigh numbers of the simulations

are Ra = 105, 106, 107, 108, 109, and 1010. (Note that the simulations under-

taken at the two highest Ra are probably underresolved, as explored later.)

The Richardson number at initialization is fixed by the initial vertical pro-

file, which is described in detail in Section 3.1.1 (and shown in Figure 3.2).

8We have also repeated some of the simulations at a Prandtl number of unity. The

differences with the Pr = 2.5 simulations are nominal.
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For the profile parameters chosen, the Richardson number at initialization

is Ri ∼ 0.05. Further details of the simulations are given in Table B.3 in

Appendix B.

Rayleigh number dependence

As the Rayleigh number is increased from low to high values the system pro-

ceeds through the same sequence of states found by Lesur & Ogilvie (2010).

We observe no instability for Ra = 105. At Ra = 106 instability occurs

but the flow appears relatively laminar and axisymmetric; in particular the

Reynolds stress is negative througout the linear and nonlinear phases. We

conclude that the critical Rayleigh number for the onset of convection lies

in the range 105 < Rac < 106. At Ra = 107 the instability is more vig-

orous and the flow field significantly more chaotic and non-axisymmetric in

the nonlinear phase, at which point the Reynolds stress has become posi-

tive. We conclude that the critical Ra at which the sign of Rxy flips lies

between 106 and 107. At higher Ra the flow appears even more turbulent

and non-axisymmetric. It is a relief that in the nonlinear phase of the insta-

bility we find agreement with the inviscid simulations of previous sections at

sufficiently high Ra.

Our critical Rayleigh number for the onset of convection is considerably

higher than in Lesur & Ogilvie (2010), who report a value of Rac = 6900,

but this is perhaps explained by their much larger Richardson number =

0.2 which remains constant throughout their box. On the other hand, the

critical Ra at which Rxy changes sign is much closer to ours, which suggests

that the breakdown into non-axisymmetry may be controlled by secondary

shear instabilities that are more sensitive to the viscosity than the convective

driving.

While the transport of angular momentum is unambigously outward af-

ter nonlinear saturation when Ra ≥ 107, it is almost always inwards during

the linear phase, as is illustrated by the red curve in Fig. 3.15. Moreover,

during this early stage, the simulation is dominated by the axisymmetric

modes of Section 3.2. This disagrees with our inviscid fiducial simulations
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Figure 3.15: Time-evolution of volume-averaged xy-component of Reynolds

stress tensor from two simulations run at resolutions of 2563 (black curve)

and 5123 (red) curve at a Rayleigh number of Ra = 109. The vertical dashed

lines mark the end of the linear phase in the 2563 (black) and 5123 (red)

simulations, respectively.

(see discussion in Section 3.3.1), which are non-axisymmetric from the out-

set. We confess that our viscous simulations are more in tune with our

physical intuition: (a) in the linear phase growing axisymmetric modes out-

compete shearing waves, (b) at sufficiently large amplitudes the modes are

subject to secondary shear instabilities in the xz-plane that buckle the ris-

ing and falling plumes, (c) perhaps concurrently or on a short time later

(and viscosity permitting), secondary non-axisymmetric instabilities also at-

tack the plumes because they exhibit significant shear in the xy-plane as

well, (d) at this point, the flow degenerates into something more disordered,

and importantly, non-axisymmetric and the Reynolds stress flips sign. We

conclude that viscosity preferentially damps shearing waves vis-a-vis axisym-

metric modes, or effectively kills off the artificial aliasing of shearing waves

in inviscid simulations (if this is present).

130



Convergence with resolution

A final issue is whether our viscous simulations are adequately resolved. More

specifically: above what critical Ra is a grid of 2563 points inadequate? We

conducted simulations at Ra= 108 with 2563 and 5123 grid points and found

generally good agreement between the two. The linear growth rates were

almost identical and the ultimate nonlinear state statistically similar. The

only noticeable difference was in the peak Reynolds stress, which was some-

what larger in the higher resolution run. Overall, we conclude that 2563 grid

points are adequate to resolve a simulation with Ra= 108.

Things start to deteriorate at a Rayleigh number of Ra = 109. In Figure

3.15 we plot the time-evolution of the xy-component of the volume-averaged

Reynolds stress for two simulations run at 2563 (black) and 5123 (red). The

lower resolution run possesses no extended period of negative Rxy, in contrast

to the runs at Ra= 108. We speculate that at this resolution physical viscosity

is subdominant to the grid and non-axisymmetric disturbances are artificially

enhanced, probably via aliasing. At 5123, the stress is definitely negative

in the linear phase and there is a strong negative peak shortly afterward.

The physical viscosity is now permitted to work properly and appears to

prohibit artificial non-axisymmetric disturbances. As a consequence, the

axisymmetric modes preserve their control of the simulation for significantly

longer and the simulation is in accord with those at lower Ra. More reassuring

is the nonlinear phase a little later in which the two flows closely resemble

each other. We conclude that in the linear phase 2563 is insufficient to

describe a simulation of Ra = 109, but in the later nonlinear phase it is

probably adequate.

3.4 Structures in forced compressible convec-

tion

In Section 3.3 we initialized our simulations with a convectively unstable

vertical profile, but otherwise did not include any source of heating or cooling.
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Convection (and to a much lesser extent, conduction) transferred heat and

mass vertically so as to zero the buoyancy frequency and send the box into

a convectively stable equilibrium. As a result, we were only able to probe

non-linear convection for a short period of time. Now we aim to continually

sustain convection in order to explore this phase in greater depth. In the

absence of self-sustaining convection, this means we have to maintain the

convectively unstable profile artificially.

3.4.1 Set-up

SB96 perpetuated convection by forcing the temperature at the mid-plane to

adjust to its value at initialization. This strategy, however, raises problems

in conservative codes, such as PLUTO and ATHENA, because the energy

injection at the mid-plane has no way to leave the box, except through the

distant vertical boundaries (in ZEUS numerical losses on the grid supplied

a turbulence-dependent ‘cooling’). In practice, we found that the disk heats

up to an inordinate level and, more importantly, it settles into a marginally

unstable state, rather than a driven convective state.

Rather than forcing the code in this way, we mimic the effects of both

heating and cooling through thermal relaxation. The idea is to add a source

term to the energy equation such that the vertical internal energy profile

relaxes to its value at equilibrium on a timescale τrelax. Although this tech-

nique is artificial, it serves as a very basic tool for approximating the effects

of realistic heating and cooling, as might be supplied by MRI turbulence and

radiative transfer. The timescale τrelax then would be the characteristic time

that the radiative MRI system achieves thermodynamical quasi-equilibrium.

In our simulations, however, we take the relaxation timescale to be equal to

the linear growth time of convection.

In addition, to mitigate the effects of mass outflows, we incorporate a

mass source term to the simulations. At the end of the nth time-step we

calculated the total vertical mass loss through the upper and lower vertical

boundaries. We then added this mass back into the box in the (n+1)th time-

step with the same vertical profile used to initialize the density (cf. Equation
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3.5).

We implement the thermal relaxation term by making slight modifica-

tions to PLUTO’s built-in optically thin cooling module. The thermal en-

ergy equation is updated during a substep to take into account user-defined

sources of heating and cooling. The resolution employed in the simulation

described in this section is 256×256×256 in a box of size 6H×6H×4H, cor-

responding to about 43 grid cells per scale height in the x- and y-directions

and 64 grid cells per scale height in the vertical direction. The numerical

set-up, boundary conditions and initial conditions are the same as those de-

scribe in Section 3.1.1. The thermal relaxation time is taken to be equal to

the inverse of the growth rate of the convective instability which we measured

to be σ = 0.2404 Ω. Thus the thermal relaxation time is τrelax = 4.2 Ω−1, i.e.

the internal energy is relaxed back to its equilibrium profile on about 0.7

orbits. We have also included an explicit viscosity and thermal diffusivity of

ν = χ = 1.075× 10−5 corresponding to a Rayleigh number of Ra = 109 and

a Prandtl number of Pr = 1.

Finally, we have repeated the simulations in a cube of resolution 643 and

size 4H×4H×4H, as well as at a resolution of 128×128×64 in a box of size

6H × 6H × 4H, and also with periodic boundary conditions in the vertical

direction, and observed similar results. We have also run a simulation with

the HLL solver to partially explore any code dependence.

In the left-hand panel of Figure 3.16 we show the time-evolution of the

volume-averaged kinetic energy density associated with the vertical veloc-

ity. As in Section 3.3, exponential growth in the linear phase is followed

by non-linear saturation. The forced simulations, however, do not subse-

quently decay. Instead the vertical kinetic energy increases at a slower rate

until about orbit 20, at which point oscillations in the kinetic energy den-

sity begin to develop. The cycles increase in frequency and amplitude until

about orbit 41 at which point the system settles into a quasi-equilibrium,

with the volume-averaged vertical kinetic energy density oscillating about

〈Ekin,z〉 ∼ 2× 10−3 and the period remaining steady at ∆t = 0.88 orbits.
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Figure 3.16: Left: semi-log plot of time-evolution of volume-averaged vertical

kinetic energy density in a simulation with thermal relaxation. Right: time-

evolution of volume-averaged xy-component of the Reynolds stress tensor.

The thermal relaxation time was set to τrelax = 4.2 Ω−1.

3.4.2 Large-scale oscillatory cells

Associated with the oscillations are large fluctuations in the xy-component

of the Reynolds stress tensor (shown in the right-hand panel of Figure 3.16).

Instantaneous fluctuations in 〈Rxy〉 and in 〈α〉 may be either positive or

negative, but the time-averaged values over this cyclical phase (orbit 20 to

the end of the simulation) are Rxy ∼ +9.9 × 10−6 and α ∼ +3.9 × 10−5,

respectively. Furthermore, comparing the oscillations in the vertical kinetic

energy density to the fluctuations in 〈Rxy〉 and also to the volume-averaged

gas pressure 〈P 〉 (not shown here) it is apparent that peaks in the kinetic

energy density are correlated with both 〈Rxy〉 < 0 and troughs in 〈P 〉, while

troughs in the kinetic energy density are correlated with 〈Rxy〉 > 0 and peaks

in 〈P 〉.
A clearer picture of the behaviour of the system emerges when we study

the structure of the flow during the cyclical phase. Figure 3.17 shows snap-

shots of the z-component of the velocity in the xz-plane. The first panel

is taken just after the end of the linear phase (orbit 7.4); the subsequent

panels are taken at five successive peaks and troughs in the kinetic energy.

As the kinetic energy rises in the non-linear phase, the thin convective cells
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Snapshots at different times of the z-component of the velocity

in the xz-plane taken from a simulation in which convection was sustained

using thermal relaxation. Narrow convective cells shown in (a) just after non-

linear saturation merge to form large scale structures shown in (b), which

are destroyed (c) and recreated (d) in a cyclical manner with the opposite

rotation.

with radial wavelengths λx ∼ 5 ∆x ∼ 0.177H, where ∆x is the size of grid a

cell in the x-direction, slowly begin to merge into larger coherent structures

which couple the two halves of the disk together. By orbit 20 (start of the

cyclical phase), the radial wavelength of the convective cells has increased

to λx ∼ H, and by the time the quasi-steady equilibrium state sets in (at

around orbit 40) the radial wavelength of the convective cells is λx ∼ 3.4H.

Comparing the snapshots of uz to the peaks and troughs in the kinetic en-

ergy, it becomes apparent that peaks in the convective energy are associated

with the large-scale axisymmetric convective cells, hence α < 0. Troughs in

the kinetic energy are associated with destruction of those convective cells
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and with positive stress (outward angular momentum transport). Thus we

are observing large-scale convective eddies that appear to be created and

destroyed cyclically. Furthermore, it is evident from Figure 3.17 that after

the eddies are destroyed, they are re-formed with the opposite rotation.

The reader may be alarmed that the large eddies extend all the way to

the vertical boundaries of the domain, and indeed there is an uncomfortable

level of mass loss during this phase. To check that the flows are not an arte-

fact of our box size, we ran additional simulations with a vertical domain

of ±3H. A density floor had to be activated in such runs, which unfortu-

nately compromised our thermal equilibrium and complicated the onset of

convection early in the simulation. However, they ultimately settled onto

the cyclical state described above, but now the large-scale eddies peter out

before reaching the vertical boundaries. As a result, the mass loss drops to

negligible amounts. This confirms that these flows are physical and robust,

though only marginally contained within our smaller boxes.

Next, to explore any code dependence of this final outcome, we have rerun

the simulation with the more diffusive HLL solver. We observe a negative

Reynolds stress during the linear phase and well into the non-linear phase.

Associated with this is a remarkably axisymmetric flow field, as confirmed

by viewing slices of the pressure perturbation δP in the xy-plane at different

times. The simulation, nonetheless, enters the cyclical phase during which

this axisymmetry is broken. As expected there is a flip in the sign of the

Reynolds stress from negative to positive. The behavior thereafter mirrors

that of the simulation of forced compressible convection run with the Roe

solver: the cyclical creation and destruction of large scale convective cells

and an oscillatory Reynolds stress. We conclude that for forced runs, the

ultimate quasi-steady state depends negligibly on the algorithm.

3.4.3 Zonal Flows

In Figure 3.18 we plot space-time diagrams in the xt-plane of the yz-averaged

pressure perturbation δP (x, t) ≡ (〈P 〉yz − 〈P 〉)/〈P 〉 and of the yz-averaged

perturbation to the y-component of the velocity 〈δuy〉yz(x, t) ≡ 〈uy+(3/2) Ωx〉yz.
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(a)

(b)

Figure 3.18: Space-time diagrams of yz-averaged y-component of the per-

turbed velocity δuy (left) and of the pressure perturbation δP (right). (The

perturbed pressure is defined in the first paragraph of Section 3.4.3).

It is immediately evident from Figure 3.18 that around the onset of the cycli-

cal phase (orbit 20) alternating streaks in δP and δuy begin to develop. Re-

spectively, these mark alternating bands (in x) of high (δP > 0) and low

(δP < 0) pressure, and of super-Keplerian (δuy > 0) and sub-Keplerian

(δuy < 0) flow.

From Figure 3.18 it is clear that the pressure and velocity perturbations

are 90 degrees out of phase, which is characteristic of zonal flows. We hesi-

tate, however, to claim that these structures are in geostrophic balance (i.e.

that ∂xP
′ ∼ ρ0 Ω δuy) because, as is evident from the space-time diagrams,
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the flows are not stationary in time but appear to fluctuate over about one

orbit – the same timescale over which the large convective cells are created

and destroyed. Indeed the creation and destruction of the zonal flows tracks

precisely that of the large-scale convective cells, showing clearly that the two

phenomena are connected. The axisymmetry observed during the formation

of large-scale convective cells and zonal flows is consistent with the inward

transport of angular momentum observed while these structures remain co-

herent: axisymmetric convective modes dominate during the lifetime of these

structures and transport angular momentum inwards.

In Figure 3.19 (right-hand panels) we plot snapshots in the xy-plane taken

during the cyclical phase of the perturbation of the y-component of the veloc-

ity δuy and of the perturbed pressure δP . The axisymmetric structure of the

zonal flows is clearly visible in panels (b) and (d), as is the π/2 phase differ-

ence between the pressure perturbation δP and the perturbed y-component

of the velocity δuy.

3.4.4 Vortices

Because the zonal flows consist of alternating bands of sub- and super-

Keplerian motion – with strong shear between the bands – we expect that

they could give rise to vortices via the Kelvin-Helmholtz instability (modi-

fied by rotation and stratification). In Figure 3.20 we plot a snapshot in the

xy-plane taken during the cyclical phase of the z-component of the vertical

component of vorticity ωz. Small but coherent anti-cyclonic blobs of vortic-

ity are observed during the cyclical phase (shown in blue in Figure 3.20),

and these occur precisely where the flow transitions from sub-Keplerian to

super-Keplerian (i.e. at the edges of the zonal flows). We observe both

anti-cyclonic and cyclonic vortices, though the anti-cyclonic vortices greatly

outnumber the cyclonic ones, which is consistent with the fact that cyclonic

vortices tend to be more unstable in Keplerian shear flows.

The vortices tend to be elongated at the start of the cyclical phase (around

orbit 20), with an aspect ratio of about 0.4, and grow increasingly circular

with time; in fact, once quasi-steady equilibrium has been reached at around
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(a) (b)

(c) (d)

Figure 3.19: Two-dimensional slices in the xy-plane of the perturbation to the

y-component of the velocity δuy, and of the fractional pressure perturbation

δP from a simulation of forced compressible convection at z ≈ 0.5H. Left

column: slices taken from a snapshot just after non-linear saturation (orbit

7.4). Right column: slices taken from snapshot generated during the cyclical

phase (orbit 41.6).
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Figure 3.20: Two-dimensional slice in the xy-plane of the z-component of

the vorticity ωz taken from snapshot generated at the start of the cyclical

phase (orbit 20) and at z ≈ 0.5H. For clarity we have zoomed in on the

upper-right quadrant of the xy-plane.

orbit 41, many of the vortices have aspect ratios approaching unity. In princi-

ple various instabilities could influence the evolution of the vortices (Lesur &

Papaloizou, 2009), but sufficiently high grid (or explicit) diffusion will inhibit

these instabilities. Thus it is likely that the evolution of the vortices in our

simulation is governed by other factors, such as the surrounding turbulent

flow field or possibly viscosity. Finally, the vortices appear to have limited

three-dimensional extent, and we did not observe any vortices that remained

coherent for depths exceeding half a scale height.

3.4.5 Discussion

It is tempting to link our results to the large-scale emergent structures in

recent simulations of rotating hydrodynamic convection with uniform (rather

than Keplerian) rotation and in the Boussinesq (rather than compressible)

regime (Julien et al., 2012; Rubio et al., 2014; Favier et al., 2014; Guervilly
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et al., 2014). Both Favier et al. (2014) and Guervilly et al. (2014) observe

growth in the vertical component of the kinetic energy at high Rayleigh

numbers (Ra ∼ 107 − 109), as we do. In addition, Favier et al. (2014) and

Guervilly et al. (2014) notice the formation of depth-invariant large-scale

vortices in the xy-plane of their simulations (i.e. in the plane perpendicular

to the rotation axis).

There are both qualitative and quantitative differences between our re-

sults and those of Favier et al. (2014) and Guervilly et al. (2014). Although

the Rayleigh number of our simulation with thermal relaxation was Ra = 109,

which is consistent with the Rayleigh numbers at which large-scale vortices

were observed in the simulations of Favier et al. (2014) and Guervilly et al.

(2014), we observe large-scale convective cells (in the xz-plane) rather than

large-scale vortices (in the xy-plane). We, too, observe anti-cyclonic vortices

in the xy-plane, but these are small and do not appear to have any three-

dimensional extent compared to the depth invariant vortices observed in the

Boussinesq simulations with uniform rotation. It is possible that they are

prevented from merging and thus growing in size because of the turbulence

associated with repeated destruction of the large-scale convective cells. The

strong shear might also inhibit their growth.

Due to the cyclical nature of the large-scale convective cells, it is tempt-

ing to link our results to the intermittent convection reported in the MRI

shearing box simulations of Hirose et al. (2014) and Coleman et al. (2018)).

In our runs the forcing is due to explicit thermal relaxation, whereas in the

runs of Hirose et al. (2014) the forcing is self-consistently provided by MRI

heating and radiative cooling. Thus the forcing, and in particular the time-

scales associated with the forcing are rather different. However, both thermal

relaxation and the MRI limit cycles are similar in that they lead to a cycli-

cal build up of heat and its subsequent purge through vertical convective

transport, with the role of opacity in the simulations of Hirose et al. (2014)

being simply to modulate this cycle. Thus our results demonstrate that

strongly non-linear hydrodynamic turbulent convection has a cyclical nature

that might be generic, and that might therefore be robust to the inclusion of

more realistic thermodynamics.
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3.5 Conclusions

Motivated by recent radiation magnetohydrodynamic shearing box simula-

tions that indicate that an interaction between convection and the mag-

netorotational instability in dwarf novae can enhance angular momentum

transport, we have studied the simpler case of purely hydrodynamic con-

vection, both analytically and through three-dimensional, fully-compressible

simulations in PLUTO.

For the linear phase of the instability, we find agreement between the

growth rates of axisymmetric modes calculated theoretically and those mea-

sured in the simulations to within a percentage error of < 1%, thus providing

a useful check on our PLUTO code. The linear eigenmodes are worth ex-

amining not only to help understand the physical nature of convection in

disks, but also because they may appear in some form during the nonlinear

phase of the evolution, especially on large-scales, and during intermittent or

cyclical convection.

We then explored the nonlinear saturation of the instability, both when

convection is continually forced and when it is allowed to reshape the back-

ground gradients so that it ultimately dies out. We focussed especially on

the old problem of whether hydrodynamic convection in a disk leads to in-

ward (α < 0) or outward (α > 0) angular momentum transport. In both

forced and unforced convection we found α > 0 in general in the nonlin-

ear phase. These results were confirmed by a separate run using the code

ATHENA, but contradict the classical simulations of SB96 who reported

inward transport in both cases using the code ZEUS.

This discrepancy reveals a set of unfortunate numerical difficulties that

complicate the simulation of convection in disks. These, in large part, issue

from the fact that the inviscid linear modes of convection grow fastest on

the shortest possible scales. Thus, no matter the resolution, the nature of

the code’s grid dissipation will always impact on the system’s evolution,

certainly in the linear phase and possibly afterwards. We argue that a more

diffusive numerical set-up, such as supplied by ZEUS at low resolution or

Riemann solvers such as HLL, imposes an axisymmetry on the flow which
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leads to generally inward transport of angular momentum. But, on the other

hand, we suspect that less diffusive solvers such as Roe and HLLC artifically

alias shearing waves in the linear phase of the evolution, leading to spurious

non-axisymmetric flow early in a simulation. Though concerning, we believe

this is only a problem in the low amplitude linear phase because physical

mode-mode interactions will dominate once the perturbations achieve larger

amplitudes. Nonetheless, shearing wave aliasing certainly deserves a separate

study.

To properly dispense with these numerical issues one must add explicit

viscosisty (and thermal diffusivity), as this regularizes the linear problem.

We find that at a Richardson number of Ri ∼ 0.05, onset of convection is

observed for a critical Rayleigh number 105 < Rac ≤ 106. Just above this

value convection is largely axisymmetric and α < 0. At a larger second

critical Ra between 106 and 107, the sign of α switches and the flow becomes

more turbulent and nonaxisymmetric. This sequence of states mirrors that

simulated by Lesur & Ogilvie (2010). At large (resolved) Rayleigh numbers,

viscous simulations are initially controlled by the axisymmetric modes; these

are then attacked by secondary shear instabilities in both the xz and xy-

planes, which break the axisymmetry and order of these structures, leading to

a more chaotic state. At lower Ra, viscosity suppresses the non-axisymmetric

shear instabilities and axisymmetry is never broken. (At even lower Ra,

convection never begins, of course.)

In forced convective runs, rather than maintaining the convection by a

fixed heating source at the mid-plane, we instead allowed the vertical equi-

librium to relax to its initial, convectively unstable, state. Our thermal

relaxation is artificially imposed, but its overall effect is to mimic the heat-

ing of the mid-plane and cooling of the corona due to physical mechanisms

that maintain the convectively unstable entropy profile, such as the MRI

and radiative losses present in the simulations of Hirose et al. (2014). We

observed in the non-linear stage now the formation of large-scale convective

cells (similar in some respects to elevator flow) that emerge and break down

cyclically, in addition to zonal flows and vortices.

Despite our demonstration that hydrodynamic convection can lead to
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positive stress and outward transport of angular momentum, the fact remains

that the time-averaged stresses are small (typically we measured α ∼ 10−6−
10−5). Having said that, the magnitude of α is sensitive to the depth of the

buoyancy frequency profile, and a deeper profile could increase α by an order

of magnitude or more.

Finally we have not observed self-sustaining hydrodynamic convection

in any of our unforced simulations. By self-sustaining convection we mean

that (when α > 0) energy extracted from the shear by convection might

itself cause convective motions, which in turn extract energy energy from the

shear, closing the loop. It is more likely that if convection is to occur in disks

it will be as a byproduct of other processes, such as heating by density waves,

emitted in the presence of a planet, or by dissipation of magnetorotational

turbulence. We will investigate the latter mechanism and its instigation of

convection in Chapter 4, and we intend to investigate the former mechanism

in future work.
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Chapter 4

MHD convection in disks

In this chapter we explore the interaction between convection and the MRI

in accretion disks. In particular our aim is to isolate the generic features of

the interplay between the two instabilities in a controlled manner. We do so

through numerical simulations, working in the fully compressible, vertically

stratified shearing box approximation. We include both ideal and non-ideal

(via an explicit resistivity) magnetohydrodynamics, and employ a perfect gas

equation of state and optically thin cooling. We omit much of the compli-

cated physics that has been included in recent work on the subject such as

radiative transfer, radiation pressure, and an equation of state that takes into

consideration the ionization state of the gas, thus ensuring that our results

are as general as possible.

The structure of the chapter is as follows: first, in Section 4.1 we provide a

brief overview of the numerical set-up, including initial conditions, boundary

conditions, and mass source term (the diagnostics we use throughout this

chapter have already been discussed in Section 2.5). We also discuss in more

detail the criteria for the onset of convection in a turbulent fluid, and how

we expect convection and the MRI to interact. In order to investigate the

effect of the MRI alone on the vertical structure of the disk, we first explore

the non-linear regime of the MRI (without convection) in vertically stratified

simulations without explicit cooling in Section 4.2. Then, in Section 4.3, we

investigate the interplay between convection and the MRI in simulations with
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a simple cooling prescription. Finally, we discuss our results and conclusions

in Sections 4.4 and 4.5, respectively.

4.1 Parameters and set-up

4.1.1 Numerical set-up

Initial conditions and units

All our simulations are initialized from an equilibrium exhibiting a Gaussian

density profile

ρ = ρ0exp

[
− z2

H2
0

]
, (4.1)

where ρ0 is mid-plane density, and H0 is the scale height at the mid-plane

at initialization (formally defined below). The equilibrium is isothermal

and convectively stable. Note that although the initialization equilibrium

is isothermal, the simulations themselves are run with a perfect gas equation

of state.

The background velocity is given by u = −(3/2)Ω0x ey. At initialization

we usually perturb all the velocity components with random noise exhibit-

ing a flat power spectrum. The perturbations δu have maximum relative

amplitude of about 5× 10−3 cs0 and can be either positive or negative.

All simulations are initialized with a zero-net-flux (ZNF) magnetic field

configuration (more specifically, at initialization we employ a sinusoid in the

vertical component of the magnetic field Bz with the other two components

being zero).1 The field strength at initialization is controlled through the

ratio of gas pressure to magnetic pressure at the mid-plane β0 ≡ P/(B2/2).

1The primary motivation for choosing a ZNF configuration as opposed to a net vertical

flux (NVF) configuration was to compare our results more easily with the ZNF simulations

of Bodo et al. (2012) and Hirose et al. (2014). In actual dwarf novae it is possible that

the magnetic field of the primary threads the disk (though the actual field configuration is

unknown), in which case a NVF configuration is more appropriate. Such NVF simulations

have been carried out by Scepi et al. (2018a).
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(Note that here and in the remainder of the chapter we have chosen units

such that the factor µ0 disappears.) In our simulations we set β0 ≡ 1000.

Note however, that the onset of MRI turbulence should erase the initial

conditions after some period of time. Thus we could also have employed a

lower or higher plasma beta at initialization and obtained the same result in

the non-linear phase.

As in our hydrodynamic simulations, units are selected so that Ω = 1.

The length unit is chosen so that the initial mid-plane isothermal sound speed

cs0 = 1, which in turn defines a reference scale height H0 ≡ cs0/Ω = 1. Note,

however, that the sound speed (and the scale height) is generally a function

of both space and time.

Box size and resolution

We measure box size in units of initial mid-plane scale height H0, defined

above. For our fiducial simulations we employ a resolution of 128×128×196

in boxes of size 4H0 × 4H0 × 6H0, which corresponds to a resolution of 32

grid cells per H0 in all directions.

In order to test the convergence of some of our results with resolution

we employ resolutions of 64 × 64 × 96 and 256 × 256 × 392, corresponding

to 16 and 64 grid-cells per scale height in each direction, respectively. To

investigate the effect on our results of narrower boxes, we employ a radial

extent Lx = H0 and Lx = 2H0, respectively (keeping the number of grid-cells

per scale height fixed at 32/H0).

Boundary conditions

We use shear-periodic boundary conditions in the x-direction (see Hawley

et al. (1995a)) and periodic boundary conditions in the y-direction. In the

vertical direction, we keep the ghost zones associated with the thermal vari-

ables in isothermal hydrostatic equilibrium, in the manner described in Zin-

gale et al. (2002) (in addition, the temperature of the vertical ghost zones is

updated at each time-step to match the temperature in the active cells bor-

dering the ghost cells). For the velocity components we use mostly standard
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outflow boundary conditions in the vertical direction, whereby the vertical

gradients of all velocity components are zero (i.e. ∂ux/∂z = 0, ∂uy/∂z =

0, ∂uz/∂z = 0) and variables in the ghost zones are set equal to those in

the active cells bordering the ghost zones. For the magnetic field we employ

‘vertical field’ boundary conditions, i.e. Bx = 0, By = 0, ∂Bz/∂z = 0 (see,

for example, Riols & Latter (2018)).

Mass source term

As our simulations employ open boundary conditions in the vertical direction

(see Section 4.1.1), mass can escape from the domain leading to a gradual

depletion of mass in the box. To mitigate this we incorporate a simple mass

source term. At the end of the nth step, we subtract the total mass in the

box at the end of that step Mn from the total mass in the box at initialization

M0. This mass difference ∆Mn ≡M0 −Mn is added back into the box with

the same profile used to initialize the density (cf. Equation 4.1).

For our fiducial MRI only simulation (see Section 4.2.2, we compared

∆Mn to the actual mass flux through the vertical boundaries at the end of

each step. The results generally agree to within about 1%. The cumulative

mass lost (and added back into box) over 200 orbits is about 6M0.

4.1.2 Criteria for convective instability in a viscid fluid

As we have discussed at the end of Section 1.3.3, in a viscid fluid convection

is mitigated by the effects of viscosity ν and thermal diffusivity χ, with the

ratio of destabilizing and stabilizing processes quantified by the Rayleigh

number. Thus in a viscid fluid, the criterion that the square of the buoyancy

frequency is negative, i.e. N2
B < 0, is a necessary condition but not a sufficient

one. When explicit viscosity and thermal diffusivity are included, convective

instability requires both that N2
B < 0, and that the Rayleigh number exceed

some critical value Rac.

There remains a subtlety in the interpretation of the Rayleigh number,

however, in particular as to the origin of the diffusion coefficients for vis-

cosity ν and thermal diffusivity χ. The onset of convection on top of a
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laminar background is determined by the microscopic Rayleigh number (i.e.

the viscosity ν and thermal diffusivity χ are microscopic in nature). The

existence of a turbulent background, however (such as might be supplied

by MRI turbulence) may result in an effective (or turbulent) viscosity and

thermal diffusivity due to turbulent transport of momentum and of heat,

respectively. The idea that disk turbulence, and the MRI in particular, can

transport momentum has been long established, but the ability of turbu-

lence to transfer heat has only been discussed sporadically (e.g. Rudiger

(1987); Heinrich (1994); D’Alessio et al. (1998); Gu et al. (2000); Blaes et al.

(2011b); the last suggesting flows associated with rising flux tubes can trans-

port heat). Thus for a given entropy gradient, or, equivalently, a fixed N2
B,

the enhanced effective viscosity and thermal diffusivity due to MRI turbu-

lence act to lower the effective Rayleigh number, which might then impede

the onset of convection. Thus in our investigations of the interplay between

convection and the magnetorotational instability the fluid should be char-

acterized by a turbulent Rayleigh number Raeff, which must be sufficiently

large so that convection resists the disordered background flow. In any case,

the sign of N2
B (as defined in Equation 1.21) is certainly insufficient to assign

convection to MRI-turbulent flows, as is often done in recent work.

We caution, however, that effective diffusion coefficients are just a model

for the actual turbulent transport, and not necessarily always a good one:

in particular turbulent fluxes may not always behave in a diffusive manner,

especially on short length or timescales. A complementary way of think-

ing about how the MRI might inhibit convection, then, is to consider the

timescales involved: the turn-over time of the most vigorous MRI eddies will

be of the order τMRI ∼ 1/Ω, i.e. on a dynamical timescale, whereas the fastest

growing convective modes grow on timescales of the order τconv ∼ 1/|NB| (see

Figure 3.6). Unless τconv ∼ τMRI, the convective modes will get disrupted by

the MRI turbulence before they can grow and form coherent plumes. In

addition to sharing similar timescales, the MRI and convective eddies also

share similar length scales. Thus there is no separation of scales between the

two phenomena, suggesting that they must interact. Note that some of these

ideas regarding turbulent heat transport and turbulent damping of convec-

149



tion were foreshadowed in Gu et al. (2000), a somewhat neglected work.

It must also be said that the existence of magnetic fields will also impact

on the onset and development of convection (e.g. Weiss & Proctor (2014)

and references therein). The magnetic tension associated with a large-scale

magnetic field will impede nascent convective motions in a relatively straight-

forward way, but the small-scale magnetic fluctuations associated with the

zero-net flux MRI may have an effect that can be packaged away in the

effective viscosity discussed above.

Finally we wish to discuss a very important point about how the two

instabilities interact. The reader might be tempted at this stage to think

of convection occurring ‘on top of’, or simultaneously with, MRI turbulence

if the effective Rayleigh number is sufficiently large. Indeed several authors

who have investigated the interplay between the MRI and convection in disks

imply that the two instabilities simply interact in an ‘additive’ manner, in

other words that convection and the MRI are operating together at the same

time (Bodo et al., 2012; Hirose et al., 2014). As we find in controlled numeri-

cal experiments set up to sustain both convection and the MRI, however, the

two instabilities do not appear to operate simultaneously, though they can

interact in non-trivial ways (see Section 4.3.2). Thus it is not the case that

once the effective Rayleigh number exceeds some critical value convection

will start on top of MRI turbulence: rather the magnitude of the effective

Rayleigh number should be interpreted as a condition on whether the flow

will be dominated by convection or by the MRI.

In addition to the physical issues discussed above, there is, of course, the

practical problem of identifying the two instabilities diagnostically in the first

place, which is no easy task. As we have already mentioned N2
B > 0 can rule

out convection, but N2
B < 0 is only a necessary, not a sufficient, criterion

for establishing whether there is convection. Another common diagnostic

for identifying convection that has been used in the literature is the vertical

heat flux, or some measure thereof. However, this too is problematic, because

(as we find in Section 4.2), the MRI itself is quite efficient at transporting

heat vertically. Physically this can be understood by thinking in terms of an

effective thermal diffusivity due to MRI, though as we pointed out earlier,
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it is not exactly clear whether heat transport by MRI turbulence acts in a

diffusive manner.

4.2 Stratified MRI simulations without ex-

plicit cooling

4.2.1 Motivation

In this section we describe the results of our fiducial vertically stratified ZNF

MRI simulation. We employ open vertical boundaries (see Section 4.1.1) but

do not include explicit cooling: thus cooling is facilitated by advection of

thermal energy across the vertical boundaries only. We we refer to simula-

tions like this as box-cooled simulations. In order to isolate the behavior of

the MRI in vertically stratified boxes with a perfect gas equation of state, we

omit explicit cooling and diffusion coefficients. Key questions that we wish

to address in this section include include: ‘What is magnitude and behavior

of α and how does it compare to previous work?’; ‘What vertical equilib-

rium structure does the disk settle into in the MRI turbulent state?’, and

‘Is this vertical structure convectively unstable?’. The aim is for our fiducial

simulation to serve as a benchmark against which we can compare both sim-

ulations that include spatially uniform explicit cooling, as well as simulations

with piecewise (i.e. height-dependent) cooling (see Section 4.3). For the sake

of brevity, we restrict our discussion in this section to a single simulation. A

more comprehensive investigation of the effects of resolution and radial box

size on the ZNF vertically stratified MRI is deferred to Appendix A.2.

In addition to acting as a bench-mark against which to compare later

results, the simulations presented in this section (and in the appendices) are

intended to fill a gap in the literature. Most 3D MHD vertically stratified

shearing box simulations of the MRI have included thermodynamics in ei-

ther a very simple or in a very complicated manner. On the simple end of

the spectrum, there is a large body of work that is restricted to an isother-

mal equation of state (e.g. Davis et al. (2010); Bai & Stone (2013); Bodo
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et al. (2014); Salvesen et al. (2016); Ryan et al. (2017)), thus precluding

the existence of convection. On the more complicated end of the spectrum,

several authors employed a perfect gas equation of state together with radia-

tive transfer and thus radiation pressure (through flux-limited diffusion, e.g.

Turner et al. (2002)), while others have employed both radiative transfer and

an equation of state that takes into consideration the ionization state of the

gas (e.g. Hirose et al. (2006); Blaes et al. (2011a); Hirose et al. (2014)). Flaig

et al. (2010) investigated protoplanetary disks using flux limited diffusion ra-

diative transfer and opacities suitable for temperatures between 1000 K and

2000 K. In a follow-up paper they added explicit resistivity as well (Flaig

et al., 2012). Perhaps somewhat surprisingly, only a handful of vertically

stratified ZNF simulations have been carried out with a perfect gas equation

of state (Stone et al., 1996; Bodo et al., 2012; Gressel, 2013; Bodo et al.,

2013a, 2015; Riols & Latter, 2018). Of these Stone et al. (1996) and Bodo

et al. (2012, 2013a, 2015) employed closed boundary conditions in the ver-

tical direction, Gressel (2013) used very narrow boxes (with Lx = H0), and

Riols & Latter (2018) included self-gravity in most of their simulations.

In Section 4.2.2, we describe our fiducial box-cooled simulation. In Ap-

pendix A.1 we discuss some robustness issues related to the non-linear MRI

in stratified shearing boxes. In particular we find that a diffusive implemen-

tation of the ∇·B = 0 condition using Constrained Transport can weaken or

even switch off the non-linear MRI. Finally, brief convergence studies (both

in resolution, and in radial box size) are presented in Appendix A.2.

4.2.2 Fiducial simulation

Set-up and initialization

The simulation described in this section was run at a resolution of 128 ×
128 × 196 in a box of size 4H0 × 4H0 × 6H0, where H0 is the scale height

at the mid-plane at initialization. Thus the resolution is about 32/H0 in

all directions. The simulation was initialized from the isothermal, vertically

stratified equilibrium described in Section 4.1.1, with zero-net magnetic flux,

and an initial mid-plane plasma beta of β0 = 1000. The simulation was run
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for 200 orbits (1257 Ω−1).

A crucial element of this simulation concerns the vertical boundaries.

Bodo et al. (2012) employed closed vertical boundaries (and no explicit cool-

ing) in their vertically stratified MRI simulations, which resulted in the box

heating up, until the disk eventually filled the entire box. This resulted in

a distinct tent-like vertical profile for temperature and a flat vertical profile

for the density throughout their box (see Figures 4 and 5, respectively, in

their paper). More seriously, Gressel (2013) demonstrated that the enhance-

ment in α that Bodo et al. (2012) observed was greatly reduced when open

boundary conditions were employed. Thus to mitigate uncontrolled heating

of our box, we employ open boundary conditions (as described in Section

4.1.1), enabling advection of mass and energy (thermal, kinetic, and mag-

netic) across the vertical boundaries. One disadvantage of this approach is

that the thermal equilibrium will be influenced by the size of the box and the

vertical boundary conditions. To check the extent to which this affects the

results we have rerun this simulation with uniform (i.e. height-independent)

cooling (see Section 4.3.1), and found that the results (i.e. the time-evolution

of volume-averaged quantities, the flow field, and convective stability) are the

same.

Time evolution of averaged quantities

In Figure 4.1 we show the time-evolution of the z-component of the volume-

averaged vertical kinetic energy density (top) and the total magnetic energy

density (bottom). We look at the vertical component of the kinetic energy

rather than the total kinetic energy because we are primarily interested in

how the MRI moves fluid vertically and rearranges the vertical structure of

the disk (which we can later compare to how convection affects the vertical

disk structure). After initialization, there is exponential growth (correspond-

ing to the linear phase of the MRI) over the first few orbits, followed by

non-linear saturation when 〈Ekin,z〉 ∼ 10−2. The system then settles into a

quasi-steady state with fluctuations around an average vertical kinetic energy

of about 10−3. The time-evolution of the magnetic energy density 〈Emag〉 is
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Figure 4.1: Semi-log plot of the time-evolution of volume-averaged vertical

kinetic energy density (red curve) and volume-averaged total magnetic energy

(black curve) from the fiducial inviscid, box-cooled, vertically stratified MRI

simulation without explicit cooling.

very closely correlated with the vertical kinetic energy. It peaks at around

〈Emag〉 ∼ 5 × 10−2 at non-linear saturation, and subsequently fluctuates

around an average value of around 1.5× 10−2.

The thermal energy density exhibits similar behavior to the kinetic and

magnetic energies. After initialization 〈Eth〉 increases rapidly as the MRI dis-

sipates heat, eventually settling into a quasi-steady state in which it fluctu-

ates around a mean value of 〈Eth〉 ∼ 0.82. The thermal energy balance is de-

termined by turbulent dissipation of heat due to the MRI and cooling due to

advection of thermal energy across the vertical boundaries. The horizontally-

averaged mid-plane scale height 〈H〉xy(z = 0, t) ≡
√
γ〈T (z = 0, t)〉xy/Ω is

a good preliminary diagnostic of the variation in ‘disk thickness’ over the

course of the simulation. After initialization 〈H〉xy increases rapidly from
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Figure 4.2: Plot of time-evolution of volume-averaged Reynolds stress (blue),

magnetic stress (red), and α (black) from the fiducial inviscid box-cooled

vertically stratified MRI simulation without explicit cooling. The volume-

averaged thermal pressure (divided by 30) is also plotted (green) in order to

track the phase relationship between stress and pressure.

〈H〉xy = H0 reaching 〈H〉xy ∼ 1.5H0 at non-linear saturation, before leveling

out and fluctuating just under 1.5H0 for the remainder of the simulation,

thus reaching half the vertical box semi-size of Lz/2 = 3H0. We interpret

this behavior as evidence that the disk rapidly heats up and expands due to

the dissipation of heat by MRI turbulence, with the expansion being halted

once turbulent heating is balanced by cooling due to advection of disk fluid

across the vertical boundaries. For a more quantitative estimate of the effect

of box cooling we also calculated the wind cooling time (cf. Equation 2.73)

and find this to be τw ∼ 112 Ω−1 compared to the value of τw ∼ 150 Ω−1 mea-

sured in the box-cooled simulation MRI-S1 of Riols & Latter (2018) (though

their simulation was run in a box half the radial size of ours).

In Figure 4.2 we plot the time-evolution of the volume-averaged Reynolds

stress 〈Rxy〉, magnetic stress 〈Mxy〉, and of 〈α〉. The time-averaged values
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(from orbit 40 to orbit 200) are: 〈〈α〉〉t ∼ 0.0141, 〈〈Mxy〉〉t ∼ 6.2× 10−3, and

〈〈Rxy〉〉t ∼ 1.4×10−3. The ratio of magnetic stress to Reynolds stress is∼ 4.5,

demonstrating that most of the stress in the non-linear phase is due to the

magnetic field. The stresses measured in our simulations are somewhat larger

than those measured in the ‘small box’ simulation (MRI-S1) of Riols & Latter

(2018) (RL2018): they reported 〈〈α〉〉t ∼ 0.0076, 〈〈Mxy〉〉t ∼ 2.5 × 10−3,

and 〈〈Rxy〉〉t ∼ 7.5 × 10−4, with the time-average in their simulation being

taken over 238 orbits. We are not certain as to the exact nature of the

discrepancy between the stresses measured in our simulation and those of

RL2018. The simulation of RL2018 employed a box of half the radial size

compared to ours, but as we discuss in more detail in Appendix A.2 we

expect the stresses to be higher in that case, which we’ve confirmed through

a Lx = 2H0 simulation of our own. Because RL2018 used the same code as

we did, it is possible that the lower stresses they report are due to numerical

issues with the implementation of ∇ · B = 0, which we discuss in greater

detail in Appendix A.1.

Vertical structure of the disk

In Figure 4.3 we plot the horizontal- and time-averaged vertical profiles of

various quantities. The top panel shows the vertical heat flux (in red) and

mass flux (in black). Both the mass and heat flux are directed away from

the mid-plane. The heat flux peaks at a value of around Fheat ∼ ± 5× 10−3

at around ± 2H0 on either side of the mid-plane. The vertical temperature

profile (not shown) is fairly constant (i.e. isothermal) within around 1.5H0

of the mid-plane, but drops rapidly outside of this region. The buoyancy

frequency 〈〈N2
B〉xy〉t (bottom panel of Figure 4.3) is positive everywhere,

except exactly at the mid-plane where the disk is marginally stable. The

positivity of N2
B precludes convection, and indeed the flow field (i.e. uz in

the xz-plane) appears to be dominated by MRI turbulence: we do not observe

any noticeable vertical structure or plumes characteristic of convection. Thus

the combination of MRI heating (which occurs predominantly at the mid-

plane) and the weak implicit cooling facilitated through advection of fluid
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(a)

(b)

Figure 4.3: Horizontal-and-time-averaged vertical disk profiles from the fidu-

cial inviscid box-cooled vertically stratified MRI simulation without explicit

cooling. Top: vertical mass (in black) and heat (in red) fluxes. Bottom:

(square) of the buoyancy frequency. The time-averages are taken from orbit

50 to orbit 196. 157



across the boundaries is insufficient to set up a convectively unstable entropy

gradient.

The vertical stress profiles for the time- and horizontally-averaged Reynolds

stress 〈〈Rxy〉xy〉t and magnetic stress 〈〈Mxy〉xy〉t (not shown) are relatively

constant within ±1.5H0 of the mid-plane. Both profiles drop off rapidly be-

yond around 1.5H0 and are only about one tenth of their peak values at the

boundaries. Note that in our preliminary analysis, in which we time-averaged

our results over just 60 orbits, we observed that the stresses displayed a

slightly double-peaked profile across the mid-plane, with the magnetic stress

reaching peak values of just under 0.01 at around ±1.2H0, compared to val-

ues just under 0.008 around the mid-plane, and the Reynolds stress peaking

at 0.02 around ±1.2H0 compared to around 0.0016 near z = 0. This dou-

ble peaked nature vanished, however, when we took the time-averages over

longer intervals (orbit 50 to orbit 200).

Given that the critical wavelength of the linear MRI is a function of

the Alfvén speed vA = B/
√
ρ (which depends on density and therefore on

height in vertically stratified simulations), we have also checked whether we

are resolving the MRI at the mid-plane. The critical, or fastest growing,

linear MRI modes are related to the Alfvén speed by λc = 2π
√

16/15 vA/Ω,

which can be more conveniently written in terms of the plasma beta as λc ∼
9.18/

√
β in units of the initial mid-plane scale height (Hawley et al., 1995a).

In the literature a diagnostic that is commonly used to test whether this

wavelength is resolved is to calculate the Q-parameter, or ratio of critical

MRI wavelength to the grid size, i.e. Q ≡ λc/∆z in the vertical direction

(Riols & Latter, 2018). The plasma beta decreases with height and thus the

critical MRI wavelength is generally smallest at the mid-plane in vertically

stratified simulations. In our run, however, we find that the horizontally-

averaged mid-plane plasma beta during the non-linear phase (i.e. averaged

from orbit 50 to orbit 196) is 〈〈β(z = 0)〉xy〉t ∼ 58, dropping monotonically

to a value of around 〈〈β(|z| = Lz/2)〉xy〉t ∼ 10 near the vertical boundaries.

This corresponds to a Q-parameter of around Q ∼ 39, and so the MRI should

be well resolved at the mid-plane in our simulations run at a resolution of

32/H0. Thus the double peaked nature of the profiles is more likely to be a
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physical effect rather than a numerical one, and, as we found when we took

longer time-averages, a transient one at that.

Finally, the vertical profile of α shows 〈〈α〉xy〉t peaking strongly near

the vertical boundaries with 〈〈α〉xy〉t ∼ 0.06 at the boundaries compared to

〈〈α〉xy〉t ∼ 0.01 at the mid-plane. This is, however, entirely an artifact of the

vertical stratification and not an indication of enhanced MRI turbulence near

the vertical boundaries. The pressure in our vertically stratified simulation

decreases for z > 0 and, provided that the pressure decreases faster than the

stresses do, this causes 〈〈α〉xy〉t to appear to peak at the boundaries. Thus α

makes more sense as a volume-averaged quantity rather than a horizontally-

averaged quantity.

4.3 Stratified MRI simulations with cooling

4.3.1 Inviscid simulation with uniform cooling

The inviscid simulations discussed in Section 4.2 (and in Appendix A.2) are

box-cooled, in the sense that cooling is facilitated by advection of thermal

energy across the vertical boundaries only. Thus the balance of heating

and cooling is set by the vertical extent of the box. It is not clear a priori

whether these simulations can be compared in any meaningful way to the

simulations in this section which employ an explicit cooling prescription.

To test whether the box cooling significantly alters the results compared

to explicit cooling, we have run a simulation (NSTRMC47) with identical

resolution (128 × 128 × 196 or 32/H0), box size size (4H0 × 4H0 × 6H0),

and initial conditions to our fiducial box-cooled simulation, but including

explicit cooling via a linear cooling prescription (see Section 2.1). The cooling

timescale is τc = 10 orbits. In contrast to the simulations discussed in Section

4.3.2, cooling is employed uniformly everywhere in the box in this simulation,

and no explicit diffusion coefficients are used. The simulation was run for

100 orbits (629 Ω−1).

In our uniformly cooled simulation, it is not clear from the outset whether

the explicit cooling term or advection of energy across the vertical boundaries
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Figure 4.4: Top: semi-log plot of the time-evolution of volume-averaged

vertical kinetic energy density for inviscid simulations with (a) an explicit

cooling prescription implemented uniformly in the z-direction with a cool-

ing timescale of τc = 10 orbits (blue curve), and (b) no explicit cooling

(red curve). Bottom: time-evolution of the volume-averaged total stress

Txy ≡ Rxy +Mxy normalized by initial mid-plane pressure P0 = 1 in the two

simulations. The blue vertical dashed line denotes the time at which cooling

was switched on in the simulation with explicit cooling.
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dominates the cooling. The primary diagnostic we use to estimate the effects

of cooling due to advection of energy across the vertical boundaries on the

energy budget is the wind cooling timescale τw (see Equation 2.73 in Chapter

1). In our box-cooled simulation we measured this to be τw = 112.4 Ω−1,

compared to the value of τw = 156.3 Ω−1 that we measure in our uniformly

cooled simulation. Thus the wind cooling timescale is significantly longer

than the explicit cooling timescale of τc = 62.8 Ω−1, which reassures us that

the explicit cooling rather than the box-cooling dominates the cooling budget

in our uniformly cooled simulation. However, a further difficulty is that for

thermal equilibrium to be maintained in the non-linear phase, the explicit

cooling needs to be fine-tuned so that the total cooling balances the viscous

heating, while simultaneously ensuring that the explicit cooling exceeds the

wind cooling. As we have already discussed, if the heating exceeds the total

cooling the disk will heat up and expand until box cooling establishes thermal

equilibrium.2 But the opposite can also occur: if the cooling is too strong the

disk will cool and collapse, thus extinguishing the MRI (because the critical

wavelength of the MRI will exceed the disk scale height). Because we wish to

compare this simulation to those discussed in the next section we have opted

to use the same cooling timescale employed in those simulations (τc = 10

orbits), rather than adjust the cooling to maintain thermal equilibrium. This

results in a slight imbalance between cooling and heating in this simulation,

however, and we find that the disk is contracting to the mid-plane as it cools,

though the contraction is slow enough that the MRI does not appear to be

affected.

In Figure 4.4 we compare the time-evolution of the volume-averaged verti-

cal kinetic energy density (upper panel) and total stress (lower panel) between

the uniformly cooled simulation (blue curve), and the box-cooled simulation

(red curve). The thermal energy density (not shown) in the explicitly cooled

2The relation between α and τc that should hold in thermal equilibrium is explicitly

given by α(γ− 1)S = 1/τc + 1/τw, where the right-hand-side corresponds to contributions

due to viscous heating and the left-hand-side corresponds to contributions due to explicit

cooling and cooling due to advection of thermal energy across the vertical boundaries. See

(Riols & Latter, 2018).
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simulation is, as expected, lower than in the box-cooled simulation, with

〈Eth〉 ∼ 0.5 in the explicitly cooled simulation compared to 〈Eth〉 ∼ 0.8 in

the box-cooled run. Otherwise the results of the box-cooled and explicitly

cooled simulations look very similar. In particular we find that 〈〈N2
B〉xy〉t > 0

everywhere in our explicitly cooled run (the time-average was taken between

orbit 40 and orbit 100), and thus the disk is convectively stable everywhere

in the explicitly cooled simulation (as it is in the box-cooled simulation).

Thus the box-cooled simulations, despite their obvious drawback that the

thermal equilibrium is controlled by the size of the box, nevertheless appear

to exhibit behavior that is qualitatively and even quantitatively similar to a

run in which the equilibrium is controlled by the cooling timescale.

Finally, for completeness we have also carried out an inviscid simulation

with height-dependent cooling (i.e. the cooling is activated only above z =

±0.75H0) and a cooling timescale of τc = 10 orbits. The buoyancy frequency

is negative within around ±H0 in this simulation, but we cannot detect any

other signs of convection. Otherwise the results are very similar to those just

discussed for the uniformly cooled simulation.

4.3.2 Resistive simulations with cooling above |z| >
0.75H0

Motivation

In this section we explore the interplay between the MRI and convection.

In our fiducial simulation (see Section 4.2.2) we investigated the MRI in

stratified shearing boxes without any explicit cooling, and found that the

disk was convectively stable. Since neither MRI heating together with box

cooling, nor MRI heating together with explicit cooling that is uniform space,

can set up an unstable entropy gradient, in this section we include height-

dependent explicit cooling using a linear cooling prescription (see Section

2.1). Thus we aim to imitate the vertical structure of dwarf novae disks in

the high-state, in which an optically thick disk (in which accretion is driven

by MRI turbulence, and, possibly, enhanced by convection) is surrounded by
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an optically thin corona.

The MRI is a local instability. As discussed in Section 4.1.2, the onset

of convection on top of the background MRI turbulence likely depends not

just on the sign of the entropy gradient (or, equivalently, on the sign of N2
B),

but also on the effective Rayleigh number Raeff = |NB|2H4/(νeffχeff). This

provides us with an avenue for controlling whether we can get convection

or not in our simulations: at a sufficiently large Raeff we expect the onset

of convection to occur. Increasing Raeff beyond that point should result in

an increased vertical heat flux relative to the MRI, and thus provides a way

of controlling the ‘strength’ or intensity of convection relative to the MRI.

One approach is to increase Raeff by decreasing the effective viscosity νeff. In

order to reduce the extent to which the MRI impedes the onset of convection,

we mitigate the MRI by employing a small but finite explicit resistivity η.

This decreases the effective viscosity thus increasing the effective Rayleigh

number.

A second approach is to increase the effective Rayleigh number by in-

creasing the magnitude of N2
B. We achieve this by decreasing the cooling

timescale τc. This increases the temperature difference between the corona

and the mid-plane which in turn increases the unstable entropy gradient in

that region. Thus by specifying both the cooling timescale τc and an explicit

resistivity η in our simulations, we can effectively control the strength of con-

vection and of the MRI, respectively, allowing us to explore their interaction

in different regimes of parameter space.

A key result is that we cannot find evidence that convection and the MRI

occur additively and continuously in time, as has been claimed in recent works

(Bodo et al., 2012; Hirose et al., 2014). At best the two instabilities seem to

feed off of one another, existing as alternating and relatively well-separated

MRI-dominated and convective-dominated cycles (see Section 4.3.3) in which

convection appears to seed the MRI while dissipation of MRI turbulence

provides residual heating that subsequently triggers convection (see Section

4.3.3 for a more detailed discussion). Otherwise we observe straight MRI (see

Section 4.3.4), exhibiting only the occasional convective burst, though these

outbursts do occur more frequently as the minimum value of the buoyancy
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frequency is decreased (i.e. as the cooling timescale is lowered). We discuss

two runs that clearly exhibit one or the other behavior in Sections 4.3.3

and 4.3.4, respectively. More marginal cases are discussed in Section 4.3.5

where we conduct a parameter survey (in the space of (τc, η) to determine

the separation between the different regimes.

Set-up

In the simulations described in Sections 4.3.3-4.3.5, we employ an explicit

resistivity η (which is kept constant in space and time in any individual

simulation). In our inviscid simulation in which cooling was implemented

uniformly in the domain (see Section 4.3.1) we found that the disk was con-

vectively stable everywhere. Here we implement piecewise cooling in space,

i.e. cooling is turned on only within a region |z| > 0.75H0 above the mid-

plane. This allows for an unstable entropy gradient to develop in the vicinity

of the mid-plane.

We initialize all simulations from around orbit 5 of the non-linear MRI

turbulent state of our fiducial simulation (see Section 4.2). This is sufficiently

close to non-linear saturation of the linear MRI that the disk has not had

time to heat up sufficiently to fill the box. At initialization the mid-plane

scale height is H ∼ 1.55H0. Each simulation was run for 100-200 orbits

(628− 1257 Ω−1).

4.3.3 MRI/convective cycles

Time-evolution of volume-averaged quantities

For a cooling timescale of τc = 10 orbits and resistivities η ≥ 5 × 10−4 we

observe a state characterized by cyclical outbursts in which the flow appears

to switch between convection and the MRI. As our fiducial example of a

run exhibiting this behavior, we have chosen simulation NSTRMC44e1b.

This simulation was run with a cooling timescale of τc = 10 orbits and an

explicit resistivity of η = 5×10−3. Although the resistivity is relatively large,

this simulation exhibits the clearest behavior of MRI/convective cycles. In
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Figure 4.5: Top: semi-log plot of the time-evolution of volume-averaged

vertical kinetic energy density (in black) and ratio of vertical to radial ki-

netic energy (in red) from a simulation exhibiting MRI/convective cycles

(NSTRMC44e1). Bottom: time-evolution of volume-averaged magnetic en-

ergy density (black). The thermal pressure (divided by 10) is superimposed

in green. The simulation employed a constant cooling timescale of τrelax = 10

orbits above |z| = 0.75H0, and a uniform explicit resistivity of η = 5× 10−3.
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(a)

Figure 4.6: Time-evolution of volume-averaged α parameter (black), mag-

netic stress (red), and Reynolds stress (blue) from a simulation exhibiting

convective/MRI cycles (NSTRMC44e1). The simulation employed a con-

stant cooling timescale of τrelax = 10 orbits above |z| = 0.75H0, and a uniform

explicit resistivity of η = 5× 10−3.

Section 4.3.5 we carry out a parameter survey in which we find MRI/cycles

for smaller resistivities and at lower cooling timescales, though these cycles

can have different properties to the ones discussed here.

In Figure 4.5 we plot the time evolution of the vertical kinetic energy

density (top) and magnetic energy density (bottom). Compared to the be-

havior of the kinetic energy in our box-cooled simulation (see Figure 4.1) in

which 〈Ekin,z〉 fluctuated around 10−3 in the non-linear phase, in this simu-

lation we instead observe bursts in the kinetic energy density during which

〈Ekin,z〉 can reach as high as 10−2. Between the outbursts, the kinetic en-

ergy density is found to be highly oscillatory, reminiscent of the behavior

of the kinetic energy observed in simulations of forced compressible (hydro)

convection in Section 3.4. To more clearly track the changes in the ver-

tical kinetic energy, we have also plotted the time evolution of the ratio
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of vertical to radial kinetic energy. This is anti-correlated with magnetic

and vertical kinetic energies. The vertical kinetic exceeds the radial kinetic

energy during convection dominated periods (see below), while during MRI-

dominated 〈Ekin,z〉 ∼ 0.7〈Ekin,x〉. Note that this is large than the ratio of

〈Ekin,z〉 ∼ 0.3〈Ekin,x〉 reported in the vertically stratified ZNF shearing box

simulation IZ1 of Stone et al. (1996) (see Table 2 of their paper), although

their simulation was isothermal (and thus stably stratified), and therefore

likely impeded vertical motions. An important point here, however, is that

the MRI itself naturally gives rise to stronger vertical flows than convection

(as evidenced by the peaks in the vertical kinetic energy during the MRI-

dominated bursts in α).

In Figure 4.6 we plot the time evolution of the stresses and of alpha.

The initial spike in α around orbit 2 is due to the linear MRI, followed by

non-linear saturation. The vertical dashed line indicates the time at which

resistivity was turned on. The stress abruptly drops as resistivity appears to

quench the non-linear MRI. However this quenching is followed by alternating

periods of low stress (‘quiescence’) and high stress (‘outbursts’). During

outburst α can reach as high as 0.08 (we have observed values up to 0.1 in

some of our preliminary simulations), though typical values of α in outburst

are around 〈〈α〉〉 ∼ 0.04− 0.06.

Structure of the flow

The periods of quiescence and outburst observed in the time-evolution of

volume-averaged quantities (see Figure 4.6) correspond to convection-domina-

ted and MRI -dominated phases, respectively. This can be seen most clearly

in Figure 4.7 were we plot the z-component of the velocity in the xz-plane.

In the left-most panel, taken from a snapshot during the first quiescent phase

(around orbit 15), the onset of convective instability is clearly visible within

about ±H0 of the mid-plane through thin convective cells consisting of hot

rising fluid (in red) and cool sinking fluid (in blue). These thin convective

cells are reminiscent of linear convective instability observed in our hydro

simulations (see Figure 3.11). Although at this point in the simulation the
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(a) (b) (c)

Figure 4.7: Snapshots of the vertical component of the velocity in the xz-

plane taken at different times from a simulation exhibiting MRI/convective

cycles (NSTRMC44e1). (a) convection-dominated phase, (b) MRI-

dominated phase, (c) convection-dominated phase with large-scale convec-

tive cells. The simulation employed a constant cooling timescale of τc = 10

orbits above |z| = 0.75H0, and a uniform explicit resistivity of η = 5× 10−3.

MRI has been quenched by the explicit resistivity, the combination of cool-

ing from above and residual heating from before the MRI was quenched has

triggered what appears to be the linear phase of the convective instabil-

ity. Conversely, during outbursts (middle-panel of Figure 4.7 taken at orbit

35) the flow is dominated by MRI turbulence. No convective cells are vis-

ible in the flow field during outbursts, though the buoyancy frequency is

still negative during these phases. Finally, during subsequent quiescent (i.e.

convection-dominated) phases we see the emergence of large scale convective

cells (right-most panel of Figure 4.7, taken from a snapshot at orbit 49).

These are reminiscent of the large-scale cyclical convective cells reported in

hydrodynamic simulations of non-linear forced compressible convection (see

Figure 3.17). The cells are cyclically created and reformed with the opposite

orientation, and their manifestation in the flow field coincides with short term

oscillations (with periods of order 1 orbit) in the vertical kinetic energy and
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Figure 4.8: 2D y-averaged power spectra of specific vertical kinetic en-

ergy from a simulation exhibiting MRI/convective cycles (NSTRMC44e1).

The colorbars are logarithmic. Left: spectrum taken from snapshots time-

averaged over a convection-dominated phase. Right: same but time-averaged

over an MRI-dominated phase. The simulation employed a constant cooling

timescale of τrelax = 10 orbits above |z| = 0.75H0, and a uniform explicit re-

sistivity of η = 5× 10−3. For each spectrum the data has been taken within

±H0 of the mid-plane and averaged in time over several tens of orbits.

in the stresses. However here the heating is supplied self-consistently through

the dissipation of MRI turbulence from the preceding MRI outburst.

The difference in flow structure between the MRI and convection-dominated

phases is also seen in a more quantitative manner in 2D power spectra of the

specific vertical kinetic energy (see Figure 4.8). During convection-dominated

phases (a time-average over one of which is shown in the left-hand panel),

the kinetic energy is clearly contained in a narrow band along the kx axis,

representative of the updrafts and downdrafts that dominate the flow struc-

ture within ∼ 2H0 during the convection dominated phase. During MRI-

dominated phases on the other hand, the energy is distributed more evenly

in the (kx, kz) plane.

Vertical structure of the disk

In Figure 4.9 we show the vertical profiles (averaged over the x- and y-

directions and over time) of the vertical mass and heat fluxes (top row)

and buoyancy frequency squared (bottom row). The left-hand column con-

sists of profiles time-averaged over snapshots from an MRI-dominated phase
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(orbits 30 to 37), whereas the right-hand column consists of profiles time-

averaged over snapshots from a convection-dominated phase (orbits 144 to

153). There are both qualitative and quantitative differences in the vertical

profiles compared to those measured in our box-cooled MRI simulation (see

Figure 4.3), indicating that the MRI/convective cycles can rearrange the

background structure of the disk, though as we explain below, the results

should be interpreted with caution.

170



Figure 4.9: Vertical disk structure from a simulation exhibiting

MRI/convective cycles (NSTRMC44e1). Left column: horizontal- and time-

averaged vertical mass and heat fluxes (top panel) and buoyancy frequency

squared (bottom panel) taken from an MRI-dominated phase (orbits 30 to

37). Right column: the same diagnostics but taken from a convection-

dominated phase (orbits 144 to 153). The simulation was run with a constant

cooling timescale of τc = 10 orbits above |z| = 0.75H0, and a uniform explicit

resistivity of η = 5× 10−3.
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During the MRI-dominated phase (left-hand column of Figure 4.9) the

heat and mass flux are both directed outwards, consistent with the transport

properties of MRI turbulence (see the top panel of Figure 4.3 taken from

our box-cooled simulation). Unlike in our box-cooled simulation, however,

in which MRI heating and box-cooling alone could not set-up an unstable

entropy gradient, the buoyancy frequency during the MRI-dominated phase

in the simulation with explicit cooling is negative within ∼ 1.2H0 of the mid-

plane, reaching a minimum value of around min(〈〈N2
B〉xy〉t) ∼ −0.07 around

|z| ∼ 0.75H0. As we have already emphasized, however, N2
B < 0 does not

automatically imply convection, and thus the negativity of the buoyancy fre-

quency during the MRI-dominated phase does not mean that there is convec-

tion occurring in tandem with the MRI. In the convection-dominated phase

(right-hand column) on the other hand, the vertical heat flux is also directed

away from the mid-plane but the vertical mass flux is directed towards the

mid-plane, which we have often found to be a reliable, if transient, sign of

the onset of convection. The buoyancy frequency is negative within ∼ 1.2H0,

but its minimum value is twice what it is in the MRI-dominated phase with

min(〈〈N2
B〉xy〉t) ∼ −0.12 around |z| ∼ 0.75H0. Finally, the temperature pro-

file time-averaged over the duration of the simulation (orbit 50 to orbit 200;

not shown), drops monotonically from the mid-plane compared to the flat

topped, isothermal profile observed within around 2H0 of the mid-plane in

our box-cooled simulation.

An interesting feature is that the vertical heat flux during the convective-

dominated phase actually appears to be less than that during the MRI-

dominated phase, suggesting that turbulent convection is not so efficient

at transporting heat as to completely remove the residual heat left over

from the previous MRI-dominated phase. For example during the third MRI

burst (orbits 89 to 95) the maximum vertical heat flux is max(〈〈Fz〉xy〉t) ∼
0.0033, whereas during the following convection-dominated phase the max-

imum heat flux is just max(〈〈Fz〉xy〉t) ∼ 0.0009 (orbits 103 to 115). Con-

versely, the buoyancy frequency is consistently higher when averaged over the

convection-dominated phases than when averaged over the MRI-dominated

phases: min(〈〈N2
B〉xy〉t) ∼ −0.13 during the convection-dominated phase (or-
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bits 103 to 115), compared to min(〈〈N2
B〉xy〉t) ∼ −0.04 during the preceding

MRI dominated phase (orbits 89 to 95). This pattern, of large (minimum,

i.e. most negative) N2
B but small heat flux when convection is dominant

and small (minimum) N2
B but large heat flux when the MRI is dominant,

is one that we find consistently in our simulations, including those run at

shorter cooling timescales (see Section 4.3.5). We caution, however, that

taking meaningful time-averages is difficult here, first due to the relatively

short-intervals over which the time-averages have been taken (because the

phases themselves only last several tens of orbits at best), and second be-

cause the disk is not in thermal equilibrium in either phase. During the

MRI bursts heat is being built up due to the dissipation of MRI turbulence,

whereas during the convective-dominated phase heat is no longer being built

up but redistributed. Thus the buoyancy frequency is changing during both

phases, something which might explain the asymmetry in N2
B in Figure 4.3.

4.3.4 MRI-dominated

For lower (η < 5×10−4) resistivities (but at the same cooling time of τc = 10

orbits), we do not observe MRI/convective cycles reported in the previous

section. More importantly we also fail to find evidence that the MRI and

convection ‘coexist’, in the sense that they are continuously present at the

same time. Rather we simply find MRI turbulence, though we do occasionally

observe what appear to be convective bursts in the flow field, and these

become more frequent in our more marginal simulations (e.g. at η = 2.5 ×
10−4).

An example of an MRI-dominated run is given by simulation NSTRMC44f1

(with parameters τc = 10 orbits and η = 10−5).3 The time-evolution of the

kinetic and magnetic energy densities, and of the stresses, in the non-linear

phase are similar to those measured in our box-cooled and uniformly cooled

simulations with Ekinz,z ∼ 10−3 and Emag ∼ 10−2, respectively. While these

quantities fluctuate with time in the non-linear phase, we observe no dis-

3We have rerun this simulation with double the resolution (i.e. 64 cells per H0) to

ensure that the resistive scales were resolved; see NSTRMC44f1HR in Table C.3.
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cernible bursts in the stresses as we do in simulations with larger explicit

resistivity (see Section 4.3.3). The time- and volume-averaged value of alpha

is 〈〈α〉〉 ∼ 0.015 (compared to 〈〈α〉〉 ∼ 0.014 in our box-cooled simulation).

NSTRMC44f1 is an important example of the limitations of relying solely

on the sign of the buoyancy frequency as a diagnostic for convection. The

horizontal- and time-averaged vertical buoyancy frequency profile is neg-

ative within around H0 of the mid-plane, reaching a minimum value of

min(〈〈N2
B〉xy〉t) ∼ −0.14. As we have already alluded to, however, this does

not imply convection. The motion of any one fluid element is governed by the

net force on the fluid element. This will be due to a combination of turbulent

stresses due to the MRI and the buoyancy force due to the unstable entropy

gradient. In the limit of small resistivity (i.e. large turbulent stresses due

to the MRI) and a long cooling timescale (i.e. a small entropy gradient),

the forces on the fluid element due to the MRI will greatly exceed whatever

buoyancy force there is on the element due to the unstable entropy gradient.

Thus it does not make much sense on physical grounds to argue that the MRI

and convection are present at the same time. Indeed despite the negativity

of the buoyancy frequency we cannot find any evidence for convection in the

flow field.

To investigate the effects of cooling prescription on vertical structure more

quantitatively, in Figure 4.10 we plot the 2D power spectrum of the specific

kinetic energy for our box-cooled simulation (top row), uniformly cooled sim-

ulation (second row), and height-dependent cooling simulation with explicit

resistivity η = 10−5 (third row). We have also included the spectrum from the

MRI-dominated phase of the height-dependent cooling simulations exhibit-

ing MRI/convective cycles which was run with a resistivity of η = 5 × 10−3

(bottom row). The colorbars are logarithmic, and each row corresponds to a

separate simulation. The left-hand column shows the spectra calculated by

taking a y-average over the domain, whereas the right-hand column shows

the spectra from a single y-slice (we will discuss the latter below). For each

spectrum the data has been taken within ±H0 of the mid-plane and averaged

in time over several tens of orbits.
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Figure 4.10: Comparison of 2D specific kinetic energy spectra from simula-

tions with different cooling prescriptions. See text for further details.
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The y-averaged spectra for the box-cooled and uniformly cooled simu-

lations are practically indistinguishable, and power is distributed more or

less evenly along both the kx and kz directions. The y-averaged spectrum

in the height-dependent cooling simulation (third row) is slightly, but visi-

bly, flatter than the other two simulations (first and second rows), however,

the flatness is far less pronounced than in the spectrum captured during the

convection-dominated phase of the MRI/convective cycles simulation we dis-

cussed in the last section (see the left-hand panel of Figure 4.8). We have

also plotted the spectrum from the MRI-dominated phase of the simula-

tion NSTRMC44e1 exhibiting MRI/convective cycles (fourth row). This too

has power slightly more distributed along the kx direction compared to the

box-cooled and uniformly cooled simulations, but is less elongated than the

spectrum from the η = 10−5 simulation. The slightly elongated spectrum in

η = 10−5 simulation (third row) is somewhat surprising result given that we

cannot find evidence of coherent vertical structure (e.g. convective plumes)

in the flow field in this simulation. It is possible that because the height-

dependent simulation is unstably stratified around the mid-plane, vertical

motions are less suppressed than they are in the stably stratified box-cooled

and uniformly-cooled simulations, hence accounting for the more elongated

profile. In any case, the key point is that the difference between the spectra

is very marginal in all four cases, suggesting that the vertical structure in

the simulations with height-dependent cooling is very similar to that in the

convectively stable box-cooled and uniformly cooled runs.

Next we compare our height-dependent cooling simulations. We find sim-

ilar results for simulations with resistivities 10−5 ≤ η . 2.5 × 10−4. The

left-hand column of Figure 4.11 compares the y-averaged 2D spectra from

three simulations all run with a cooling timescale of τc = 10 orbits, but with

resistivities of η = 10−5, 10−4, and 2.5× 10−4, respectively (thus as we move

down a column in Figure 4.11 we are moving along a horizontal skewer in

the (τc, η) parameter space; see Figure 4.13). There is very little difference

between the spectra for the η = 10−5 and η = 10−4 runs, and both appear

significantly more isotropic compared to the spectrum that we observed dur-

ing the convective-phase of the simulation exhibiting MRI/convective cycles

176



(see the left-hand panel of Figure 4.8), though still slightly more elongated

in the kx direction than the box-cooled and uniformly cooled runs. To detect

vertical structure associated with convection we have also tried looking at

the 2D spectra of different quantities (vertical mass flux, vertical heat flux,

density, and pressure) but we cannot detect any appreciable difference be-

tween the η = 10−5 and η = 10−4 simulations, nor enhanced structure in the

vertical direction, for any of these quantities either.
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Figure 4.11: 2D power spectra of specific vertical kinetic energy from a sim-

ulations with cooling implemented above |z| = 0.75H0. The colorbars are

logarithmic. Each row corresponds to a separate simulation with height-

dependent cooling, with the resistivity increasing from top to bottom, and

all simulations employed a cooling timescale of τc = 10 orbits. The left-

hand column shows y-averaged spectra, while the right-hand column shows

the spectra calculated from an individual y-slice. For each spectrum the

data has been taken within ±H0 of the mid-plane and averaged in time over

several tens of orbits.
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One drawback of using y-averaged spectra, is that these only pick up ax-

isymmetric structures. Thus in the right-hand column of Figure 4.11 we plot

data taken from a fixed y-slice in each simulation (though we still average the

same y-slice over many successive snapshots to form a time-average). These

spectra appear to have power noticeably more distributed in the ky direc-

tion compared to the y-averaged spectra, revealing that non-axisymmetric

structures have more pronounced vertical structure than axisymmetric ones,

and that the former have a different kx/kz profile. However, as was the case

for the y-averaged spectra, there is little difference between the η = 10−5

and η = 10−4 simulations when comparing the spectra taken from individual

y-slices. Furthermore the extra structure in kz observed in the y-slices (com-

pared to y-averaged data) is also apparent in the box-cooled and uniformly

cooled simulations which are convectively stable (see Figure 4.10). Thus it

is unlikely that the extra vertical structure we observe in the y-sliced data

compared to the y-averaged data is due to the presence of convective cells.

For the most marginal case (the η = 2.5 × 10−4 run), we do observe

what looks like the occasional convective burst in the flow field, and the

spectrum appears flatter than in the previous two examples, but only very

marginally so. It is somewhat difficult to classify this run, but from the

time-evolution of α we do not observe bursts as distinct as we do in the

η = 5 × 10−4 simulation (which we classified as exhibiting MRI/convective

cycles). In particular the reader should compare the blue curve (showing

the time-evolution of the volume-average of α) in Figure 4.12, corresponding

to the η = 2.5 × 10−4 run, to the blue curve in Figure 4.16, which is for a

run at η = 5 × 10−4. There is not much resemblance between the two. On

the other hand, we find significant overlap between time-evolution of α in

the runs with η = 10−5, 10−4, and 2.5 × 10−4, respectively (see the black,

red, and blue curves, respectively, in Figure 4.12). This suggests that in the

marginal case, it is still MRI turbulence that dominates the flow rather than

than convection.
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Figure 4.12: Time-evolution of volume-averaged alpha viscosity from simula-

tions run with height-dependent cooling and explicit resistivity. The cooling

timescale is the same at τc = 10 orbits in all three simulations, but the resis-

tivity is different. There is significant overlap in the time variable behavior

of 〈α〉 between all three simulations.

4.3.5 Parameter survey

In Sections 4.3.3-4.3.4 we found that for a fixed cooling timescale of τc = 10

orbits we could achieve two distinct outcomes for the interaction between

the MRI and convection by varying the resistivity (interpreted as ‘MRI

strength’). At high resistivities (η ≥ 5 × 10−4) we found MRI/convective

cycles. At lower resistivities (η ≤ 2.5× 10−4) we found the MRI, essentially

recovering the results of our inviscid simulations, though we emphasize that

marginal cases (η ∼ 2.5× 10−4 in particular) are difficult to classify, because

on the one hand they do not exhibit bursts in the volume-average of α char-

acteristic of MRI/convective cycles, on the other hand we do sporadically see

some vertical structure in the flow and also in the 2D spectra. According to

the argument presented in Section 4.3.2, each simulation should be charac-
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Figure 4.13: Parameter space of simulations run with beta cooling (plotted

on the ordinate as the inverse of the cooling timescale τc) and explicit resis-

tivity η. Blue dots correspond to simulations that exhibited MRI only (see

Section 4.3.4), and red triangles correspond to simulations that exhibited

MRI/convective cycles (see Section 4.3.3). The black diamond indicates a

simulation in which the disk was disrupted (see text for further details).

terized by an effective Rayleigh number, whose value can be controlled by

changing either the explicit resistivity as in Section 4.3.2 (thus controlling the

‘MRI strength’), or by changing the cooling timescale (thus controlling the

‘convective strength’, at least once the Rayleigh number is large enough for

convection to begin in the first place). Thus in the regime of low resistivity

but short cooling timescales we expect to recover the MRI/convective cycles

observed at high resistivity and long (τc ∼ 10 orbits) cooling timescales. To

investigate this, and to determine the parameter-space boundary between the

different outcomes of MRI and convection, we present in this section a pa-

rameter survey in the space of cooling timescale τc against explicit resistivity

η.

The results of our parameter survey are plotted in Figure 4.13 which
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shows simulations in the space of inverse cooling timescale 1/τc against ex-

plicit resistivity η. For a fixed resistivity, we run a series of simulations at

successively lower cooling timescales, with each simulation being restarted

from the end state of the previous simulation (thus for each resistivity we

move upwards along a vertical skewer in Figure 4.13). For example, the

simulation with (η = 10−4, τc = 5 orbits) was restarted from the end of the

simulation with (η = 10−4, τc = 10 orbits).

An example of the typical behavior we observe as the cooling timescale

is lowered (keeping the resistivity fixed) is given by the vertical skewer at

η = 10−4 (simulations NSTRMC44c1 through NSTRMC44c7 in Table C.3).

As expected, as we decrease the cooling timescale, we move from a regime

in which the simulations exhibit only MRI at τc = 10 orbits (e.g. simulation

NSTRMC44c1) to a regime characterized by MRI/convective cycles at τc = 1

orbit (simulation NSTRMC44c6). In the latter regime, we observe outbursts

in the vertical kinetic energy density and in α (see Figure 4.14) as well as

large-scale convective cells in the flow field (see Figure 4.15), both of which

are characteristic of the MRI/convective cycles observed in our most resistive

run (see Figure 4.5). The pressure (green curve) increases during outbursts

as the disk heats up due to the dissipation of MRI turbulence, and drops

during the convection-dominated phases. We also plot (in red) the ratio

of vertical to radial kinetic energy (for clarity we have a plotted a rolling

average over 2.5 × 104 time-steps or about 8 orbits). This is generally anti-

correlated with with the vertical kinetic energy and α (notice, in particular,

the peaks in the ratio of vertical to radial KE around orbit 695, 725, 810, and

875, which coincide with troughs in the vertical KE). This anti-correlation

mirrors that observed in our most extreme MRI/convective cycles simulations

(see Figure 4.5).4 The behavior is consistent with what we expect from

having a convection-dominated phase (during which the ratio of vertical KE

4During troughs in the ratio of vertical to radial KE (MRI-dominated phases)

Ekin,z/Ekin,x ∼ 0.7, which is consistent with the value of Ekin,z/Ekin,x ∼ 0.7 mea-

sured during the troughs in simulation NSTRMC44e1 (see Figure 4.5). During the

peaks (convection-dominated phases) Ekin,z/Ekin,x ∼ 0.8-0.9, smaller than the value of

Ekin,z/Ekin,x ∼ 1.2 measured in NSTRMC44e1.

182



Figure 4.14: Top: time-evolution of volume-averaged α (in black) and pres-

sure (in green) from simulation NSTRMC44c6 (τ = 1 orbit, η = 10−4),

exhibiting the outbursts characteristic of MRI/convective cycles. Bottom:

time-evolution of vertical kinetic energy density (black) and a rolling average

of the ratio of vertical to radial kinetic energy (red); the red curve is plotted

on a semi-log plot. The red dashed line indicates where the cooling timescale

was lowered to τc = 1 orbit from τc = 2 orbits. The blue dashed lines indicate

restart positions.
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(a) (b)

Figure 4.15: Colorplots of the vertical component of the velocity in

the xz-plane taken from snapshots at different times from a simulation

with a very low cooling timescale, which exhibited MRI/convective cy-

cles (NSTRMC44c6). (a) convection-dominated phase, (b) MRI-dominated

phase. The simulation employed a constant cooling timescale of τc = 1 orbit

above |z| = 0.75H0, and a uniform explicit resistivity of η = 10−4.

to radial KE should be enhanced), and an MRI-dominated phase (where we

expect radial KE to dominate). The flow in NSTRMC44c6 is quite turbulent,

however, and the phase shift between the two curves is not easy to see for

the first 100 orbits after the cooling timescale was lowered (i.e. up to 700).

Therefore, rather than having two distinct MRI-dominated and convective

dominated phases (as in our most resistive simulation), we think it is more

likely that the two processes (MRI and convection) are competing with one

another in this case, with convection periodically overtaking the MRI.

Although we have classified both NSTRMC44c6 (Figure 4.14) and NSTR-

MC44e1 (Figure 4.6) as simulations exhibiting MRI/convective cycles, it is

clear just from the time-evolution of α that the cycles are of different nature
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in each simulation. In NSTRMC44e1 the resistivity is large enough to kill

the MRI entirely during the ‘quiescent’ periods. Residual heat left over from

the MRI-dominated phase then leads to the onset of convection, which can

exist because there is no longer any MRI to disrupt the convective updrafts.

Convection itself then appears to reseed the MRI, and so on (we discuss

this in more detail in Section 4.4.1). In simulations with η < 10−3, on the

other hand, the MRI is never quite killed off for lengthy periods of time by

the resistivity alone. This means that in this case it is harder to get con-

vection compared to the highly resistive run, because the resistivity doesn’t

inhibit the MRI to same degree, and the latter continues to redistribute heat

vertically (via an effective thermal diffusivity), thus impeding the onset of

convection. At small resistivities, but low cooling timescales, the unstable

entropy gradient is sufficiently large to enable the onset of convection for

short periods of time, resulting in intermittent bursts of convection. These

might then potentially reseed the MRI again, in a manner similar to what is

occurring in the NSTRMC44e1, which leads to the bursts in α. During the

burst the MRI becomes dominant again and thus convection ceases, and so

on.

For the simulation with the lowest cooling timescale (NSTRMC44c7 with

τc = 0.5 orbits) the disk is disrupted: specifically, the disk appears to collapse

towards the mid-plane near the radial center of the box at x = 0, leaving

two large clumps in density either side of x = 0 with very little material

in between. We observe no outbursts for the duration of the simulation,

although there remain occasional signs of large-scale convective cells in the

flow field. Finally, we observe a similar transition, i.e. from a run exhibiting

behavior similar to that of the MRI-only runs at long cooling timescales

(τc = 10 orbits) but transitioning to MRI/convective cycles at short (τc = 1-

2 orbits), along the vertical skewer at η = 2.5 × 10−4. In this case the

transition occurs at a slightly longer cooling timescale (τc = 2 orbits) than

it did along the η = 10−4 skewer, which is not surprising given that the

(η = 2.5× 10−4, τc = 10 orbits) run was already quite marginal.
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4.4 Discussion

We found that vertically stratified simulations of the MRI with a perfect gas

equation of state, a height-dependent explicit cooling prescription, and uni-

form explicit resistivity can lead to convective/MRI cycles. Several questions

naturally arise. To what extent are the MRI bursts (i.e. enhancements in α)

actually related to convection? Furthermore, if the outbursts are related to

convection, to what extent can we find support for the hypothesis presented

in Hirose et al. (2014) that convection can ‘seed’ net-vertical flux MRI? Can

narrow boxes (in radius) mitigate the large-scale convective cells (which typi-

cally have a width ∼ H0) observed in the convective/MRI cycles simulations?

Finally, what are the applications to dwarf novae and to previous work on

MHD convection in disks? These questions are discussed in the following

subsections.

4.4.1 Effect of explicit resistivity

Simon et al. (2011) (SHB2011) carried out vertically stratified isothermal

MRI simulations with explicit resistivity and viscosity, and found that at

certain magnetic Prandtl numbers Pm (where Pm≡ ν/η) accumulation of

toroidal field could switch the MRI back on again after it was initially killed

by the resistivity. To what extent are the results of our MRI/convective

cycles simulation a manifestation of this phenomenon? To investigate this, we

reran the simulation described in Section 4.3.3 without any explicit cooling,

but otherwise with exactly the same set-up, including an explicit uniform

resistivity of η = 5 × 10−3 (see simulation NSTRMC44e1NoCool in Table

C.5). Note that since there is no explicit cooling in this simulation, any

heating present (e.g. viscous heating due to MRI turbulence) will cause

the disk to expand until thermal equilibrium is established between viscous

heating and cooling due to advection across the vertical boundaries (i.e. ‘box

cooling’).

We find that vertical kinetic energy density drops by an order of magni-

tude immediately after initialization (from ∼ 5 × 10−3 to ∼ 10−4), as does
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the magnetic energy density (from ∼ 3 × 10−2 to ∼ 4 × 10−3). Thereafter

the kinetic energy continues to decrease steadily (though fluctuating) over

the duration of the simulation (100 orbits). There is a gradual increase in

the magnetic energy, which saturates at around 10−2 by the end of the sim-

ulation. There is a steep drop in both the Reynolds and Maxwell stresses

after initialization and both remain of order 10−5 for the duration of the

simulation. In addition the flow field appears laminar and there are neither

visible signs of convection, nor of MRI turbulence. We conclude that in the

absence of convection the explicit resistivity kills the MRI which is not re-

seeded by some other process for the duration of the simulation. Thus we can

confirm that, at least for the largest resistivity we investigate, the outbursts

and MRI/convective cycles are not being driven by resistivity.

At lower resistivities the picture is somewhat more complicated. In

Figure 4.16 we plot the time-evolution of α (in blue) from a simulation

(NSTRMC44b1) with both height-dependent cooling (with τc = 10 orbits)

an explicit resistivity of η = 5×10−4, which is an order of magnitude smaller

than that used in NSTRMC44e1. This simulation also exhibits clear bursts

in α, though the peaks are smaller (α ∼ 0.015-0.025, about half the size of

the peaks in α observed in the η = 5×10−3 run), and spaced closer together.

Other than that the results are broadly similar to those in NSTRMC44e1,

and we observe both large scale convective cells between the bursts in α

and MRI turbulence during the bursts. One major difference however, is

the behavior of this simulation when the cooling is turned off. We have

rerun NSTRMC44b1 with exactly the same set-up, but without cooling

(NSTRMC44b1NoCool in Table C.5), and plotted the time-evolution of α

from this run as a black curve in Figure 4.16. The buoyancy frequency is

positive everywhere in this run, and thus there is no convection. Unlike at a

resistivity of 5× 10−3, where turning the cooling off killed the MRI for good,

in this simulation we find bursts in α, though these are smaller in magnitude

than those in the simulation with cooling.

It is tempting to draw parallels between this (resistive only) simula-

tion and some of the vertically stratified isothermal resistive simulations of

SHB2011 (in particular see the red curve on the right-hand panel of their
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Figure 4.16: Time-evolution of volume-averaged alpha viscosity from a simu-

lation run with height-dependent cooling and explicit resistivity with (τc = 10

orbits, η = 5× 10−4) (blue curve), and from a simulation run with the same

explicit resistivity but no cooling (black curve).

Figure 10). Thus NSTRMC44b1 without cooling might be the perfect gas

analogue of what SHB2011 found in their isothermal simulations, where ac-

cumulation of toroidal magnetic field, rather than convection, was reseeding

the MRI. This comparison should be made with caution, however, as the

magnetic Reynolds number is smaller in our simulation (Rm = 2000) than in

the aforementioned simulation of SHB2011 (where Rm = 3200). In addition

SHB2011 varied the explicit viscosity (and thus the magnetic Prandtl num-

ber) in their simulations rather than the resistivity. Finally the time scales

of the bursts are very different between the two simulations. In the simula-

tions of SHB2011 the stress builds up and then decreases again over several

hundred orbits, whereas the bursts observed in our resistive-only simulation

recur much more rapidly, on timescales of just 10-15 orbits. In any case, while

it appears that resistivity is contributing to the bursty behavior in this simu-

lation, the fact that the bursts are consistently larger when height-dependent
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cooling is added seems to suggest that convection can enhance this behavior.

4.4.2 Is convection seeding net-vertical-flux MRI?

This brings us to our second question: is convection potentially reseeding

net-vertical-flux MRI leading to an enhancement in alpha as claimed by Hi-

rose et al. (2014)? Hirose et al. (2014) hypothesize that vertical convective

motions drag magnetic field lines upwards, thus creating net vertical field

that seeds the (powerful) net-vertical field MRI (see (Hawley et al., 1995b)).

Note that the addition of an explicit resistivity in our simulation complicates

this scenario because it breaks the approximation of ideal MHD, and thus

mitigates fluid-field line coupling. The net-vertical flux MRI is characterized

by radial channel flows during its linear phase. It is unlikely, however, that

channel flows are being seeded in this simulation given the short radial wave-

length of the Bz fluctuations, and indeed visual inspection of the flow field

(i.e. Bx and By in the xz-plane) reveals no streaky motions (in x) character-

istic of these channel flows. In addition we find no noticeable difference in Bx

and By at the onset of an outburst compared to the middle of an outburst.

More revealing however, is the time-evolution of the root-mean-square verti-

cal magnetic field component 〈
√
B2
z 〉 (see Figure 4.17). This exhibits a clear

phase shift compared to the time-evolution of 〈α〉: the vertical magnetic field

appears to increase just before 〈α〉 does, which might be indicative that con-

vection is building up vertical field just before an outburst. The lag between

the rms vertical magnetic field and the stress is approximately a few orbits,

which is comparable to the MRI growth time. Note that having stronger

vertical magnetic field, even if it varies with x, still aids in seeding the MRI,

even if doesn’t quite seed the channel modes associated with net vertical flux

MRI.

It should also be mentioned that, quite aside from the generation of a

mean Bz, it has long been established that convection can itself work as a

turbulent dynamo, producing disordered magnetic field up to equipartition

strengths (see review by Rincon (2019) and references therein). The zero net

flux MRI might be able to use this dynamo field as a seed, though we don’t
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Figure 4.17: Time-evolution of volume-averaged alpha viscosity (black), root-

mean-square vertical component of the magnetic field (red), and pressure

divided by 10 (green) from a simulation exhibiting MRI/convective cycles

(NSTRMC44e1) with (τc = 10 orbits, η = 5× 10−3).

pursue this angle explicitly, concentrating on the more straightforward and

probably more dominant effect of the large-scale Bz generated.

Another difference between our simulation and that of Hirose et al. (2014)

is the relationship between the time-evolution of 〈α〉 and the time-evolution

of the pressure 〈P 〉. Hirose et al. (2014) find that in one of their upper branch

simulations (where convective/radiative outbursts were reported), 〈α〉 is anti -

correlated with thermal pressure. When heat builds up at the mid-plane in

their simulations the pressure increases, which, in the absence of an increase

in stress, leads to a drop in alpha. Conversely, when heat is removed from the

mid-plane the pressure drops, and in the absence of a decrease in stress, this

contributes to the burst in 〈α〉 (see Figure 7 of their paper). In our simulation

the opposite is true: 〈α〉 is well correlated with the stresses (see Figure 4.6).

Thus it is the rise in stress that is enhancing 〈α〉 in our simulation rather

than a drop in pressure.
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4.4.3 Dependence on box size

All the flux-limited-diffusion simulations exhibiting convective/radiative cy-

cles in Hirose et al. (2014) were carried out in very narrow boxes (H0 in the

radial direction). The disadvantage of narrower boxes is that there exists the

possibility that the radial box size can preclude the turn-over of convective

cells. This might particularly be true in the case of the large-scale convective

cells observed in NSTRMC44e1: the typical size of the large-scale convective

eddies in this run was found to be ∼ 1.3H0. Thus we briefly investigate the

dependence of the results of this simulation on the radial box size by compar-

ing the results of NSTRMC44e1 (Lx = 4H0) with NSTRMC46 (Lx = 2H0)

and NSTRMC45a3 (Lx = H0), keeping all other parameters the same.

As the box size is reduced, we find that the number of outbursts is re-

duced. We observed 3 outbursts during the first 100 orbits in the Lx = 4H0

simulation, 2 outbursts in the Lx = 2H0 simulation, and just one outburst

in the Lx = H0 simulation. The onset of the first outburst is also delayed

as the radial box size is reduced: from around orbit 25 (at Lx = 4H0) to

around orbit 40 (at Lx = 2H0) up to orbit 60 (at Lx = H0). The magnitude

of the outbursts (measured in terms of the maximum value of 〈α〉 measured

during the outbursts) is about the same at all three radial box sizes. Cru-

cially large-scale convective cells are observed in the flow field only in the

4H0 simulation: the 2H0 and H0 simulations exhibit only narrow convective

cells during their quiescent phases. Thus it appears that radial box sizes of

2H0 and H0 are insufficient to observe the large-scale convective cells.

4.4.4 Applications to dwarf novae

The convective/radiative cycles observed in the radiative transfer simulations

of Hirose et al. (2014) (HBK2014) have outbursts that recur on timescales

similar to those in our MRI/convective cycles runs. However, besides the

more complicated radiative transfer physics, which we mock up using a sim-

ple height-dependent cooling prescription, there are appreciable differences

between our results and those of HBK2014. One major difference is that the

cycles in HBK2014 are driven by opacity changes (which we do not include
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in our models), specifically the dependence of opacity on temperature and

pressure. In brief, first a drop in pressure and temperature leads to an in-

crease in opacity. Heat is trapped at the mid-plane as a result, setting up an

unstable entropy gradient. Convection ensues (at least according to the diag-

nostics HBK2014 use to detect convection, mainly the sign of the buoyancy

frequency and the ratio of advective to total [i.e. radiative + advective] heat

flux), and the convective plumes seed vertical magnetic fields. This leads

to enhanced MRI turbulence and an enhancement in stress. The dissipative

heating increases as the stress does, causing the temperature and pressure

to increase. This now results in a decrease in opacity which eventually sup-

presses convection. The dissipation rate then drops (because convection is

no longer seeding net vertical flux MRI), the temperature and pressure drop

accordingly, and the cycle is repeated. In fact, stress and pressure are nearly

out of phase in their simulations, such that the pressure decreases during an

outburst, whereas in our simulations the thermal pressure increases during

outbursts (see Figure 4.17). Furthermore, convection appears to be present

during the outbursts in their simulations, whereas we find the opposite in

our runs, i.e. that convection is suppressed during outbursts (when MRI

turbulence is dominant), but dominant during quiescence.

Another difference between the cycles observed in HBK2014 and those in

our simulations, is that the heat transport in their simulations is alternately

dominated by advection (or convection, according to their criteria) and radi-

ation, whereas in our simulations we have not included radiative transport so

the heat flux is necessarily always advective (which can be due to convection,

or due to the MRI, which we have shown is quite efficient at transporting

heat vertically on its own). Coleman et al. (2018) carried out local, radiative

MHD simulations very similar to those of HBK2014, but employed opacity

and equation of state tables relevant to the helium-rich AM CVn disks. A

key difference in most of their simulations compared to those of HBK2014 is

that the heat transport is persistently dominated by advection (or convec-

tion, according to their criteria), which they attribute to the system lying

between the two opacity maxima resulting from the two ionizations of helium

at ∼ 3 × 104 K and ∼ 7 × 104 K, respectively. Thus these results are inde-
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pendent of changes in opacity, and might therefore provide a better point of

comparison to ours.

Three different outcomes (each corresponding to a different initial sur-

face density) are shown in Figure 7 of Coleman et al. (2018), which we have

reproduced in Figure 4.18 for convenience. The top panel shows ‘persistent

convection’, the middle panel shows ‘mostly persistent convection’, and the

bottom panel shows ‘intermittent convection’ (i.e. convective/radiative cy-

cles as see in HBK2014). Both the top and and the middle cases have a ratio

of advective to total heat flux close to unity for the duration of the simula-

tions, and are thus similar in that respect to our simulations. In particular

note that in the middle panel (the ‘mostly persistent convection’ case), the

advective Mach number is mostly anti-correlated with α, and that α is quite

bursty. This behavior is reminiscent of the simulation NSTRMC44c6 dis-

cussed in Section 4.3.5 in which α was very bursty, the ratio of vertical to

radial KE was largely out of phase with α, and in which we observed fre-

quent bursts of convection. Indeed the opacity in their run is mostly clustered

around the second Helium ionization maximum (see Figure 6 of their paper).

The large opacity likely leads to a steeper entropy gradient which is more

favorable for convection to dominate over the MRI. The top panel of their

Figure 7, on the other hand, exhibits less bursty behavior and the advective

Mach number is largely in phase with α. This is similar to the behavior of our

resistive simulations with long (τc ∼ 10 orbits) cooling timescales, in which

we found the flow was dominated by MRI turbulence rather than convection.

Indeed in their run the opacity is largely concentrated in the trough between

the two opacity maxima, and the lower opacity likely leads to a shallower

entropy gradient, which is less favorable to convection. Thus what Coleman

et al. (2018) refer to as ‘convection’ in this run might really just be MRI

turbulence.

Apart from the time variable behavior just described, note that Coleman

et al. (2018) find that α & 0.1 for the duration of their simulations (in all

three cases). As they point out, this calls into question the role of the cycles

observed in HBK2014 in enhancing α, but it is also significantly higher than

the values we find in our simulations (we have seen α ∼ 0.08−0.1 only during

193



Figure 4.18: Time-evolution of α × 10 (green curve), ratio of vertical ad-

vective to radiative flux (blue curve), and vertical advective Mach number

(orange curve) from local radiative MHD simulations modelling AM CVn

disks. Taken from Coleman et al. (2018).
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the very peaks of the MRI bursts in our most resistive simulations.

A further difference between our simulations and those of HBK2014 (and

of Coleman et al. (2018)) is that their simulations are ideal, whereas we

employ an explicit resistivity. Scepi et al. (2018a), however, did carry out

radiative MHD simulations with explicit resistivity. In a run in which the

magnetic Reynolds number within the mid-plane was around Rm∼ 2× 104,

they did not observe radiative/convective cycles. This is consistent with

our run NSTRMC44c1 (with Rm∼ 104) in which we also do not find any

cycles. At lower magnetic Reynolds numbers (Rm < 104), however, Scepi

et al. (2018a) found that the MRI died, whereas we observe convection which

reseeds the MRI, leading to the aforementioned MRI/convective cycles.

Finally, we wish to comment on the relevance of our results to dwarf

novae. With respect to the resistivity, Gammie & Menou (1998) have esti-

mated that the magnetic Reynolds number in the U Gem type dwarf nova

SS Cyg in quiescence is around Rm ∼ 103. This falls squarely within the

regime in which we observe MRI/convective cycles and powerful MRI out-

bursts: for example, our run NSTRMC44b1 had Rm = 2 × 103 (see Figure

4.16). An interesting corollary of our results is that we have found that

convection appears to prolong MRI activity to lower Rm than the critical

value of Rm∼ 104 quoted by Gammie & Menou (1998) and found in previ-

ous ZNF simulations (Fleming et al., 2000; Scepi et al., 2018a).5 Resistivity

is not the entire picture, however, and during the quiescent phase of dwarf

novae other non-ideal MHD effects, such the Hall effect, might also play a

role (Coleman et al., 2016), though they are likely subdominant compared to

Ohmic resistivity (Scepi et al. (2018a); see also Coleman et al. (2018) for a

brief discussion). Finally, in our MRI/convective cycle runs we have referred

to the convection-dominated phase as the ‘quiescent’ phase, and the MRI-

dominated phase as the ‘outburst’ phase, because the stresses are low during

the convection-dominated phase and high during the outburst phase. The

shortest recurrence time between dwarf novae outbursts is around 7 days (see

Section 1.2.3), whereas the interval between successive MRI-dominated out-

5Note that the simulations of Fleming et al. (2000) were unstratified.
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bursts in our most resistive simulations is around 50 dynamical timescales.

For a disk of size 5× 10−3 AU around a white dwarf of mass 1M� the outer-

most annulus will execute 50 orbits in about 6.4 days. Interestingly, this is

comparable to the recurrence time. While it is tempting to link these cycles

with the outburst cycles observed in dwarf novae, however, the two phe-

nomena generally share very different timescales, at least in the parameter

regimes we explored.

4.5 Conclusions

Motivated by our findings in Chapter 3 that hydrodynamic convection can

transport angular momentum outward in disks, that the MRI can act as a

heat source for convection, and by claims from radiation MHD simulations

that angular momentum transport can be enhanced when the two instabilities

interact in dwarf novae (Bodo et al., 2012; Hirose et al., 2014), we have

undertaken a study of the interplay between convection and the MRI through

controlled, three-dimensional, vertically stratified, zero-net-flux (ZNF), fully-

compressible MHD simulations in PLUTO.

Previous work on the topic has used the negativity of the buoyancy fre-

quency to determine whether convection is present or not (Hirose et al.,

2014). We have discussed how in a turbulent fluid this is only a necessary

condition, not a sufficient one, because the turbulent transfer of heat and

momentum by the MRI leads to an effective thermal diffusivity and vis-

cosity, and therefore an effective Rayleigh number. MRI turbulence might

limit the onset of convection by lowering the effective Rayleigh number below

some critical value at which the unstable entropy gradient can overcome the

diffusive effects of the turbulent diffusivities (though this does assume that

turbulent transport coefficients behave in a diffusive manner). Furthermore

we have argued on physical grounds that the two instabilities are unlikely to

be additive, or to coexist simultaneously, and that we expect either one or

the other to dominate the flow at any given time. The two can certainly in-

teract in non-trivial ways, however, since the MRI provides residual heating
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that can, given sufficient cooling, set up the unstable entropy gradient that

is necessary for convection. Conversely we find in some of our simulations

that convection itself can reseed the MRI.

To isolate the effects of the MRI alone on vertical disk structure and heat

transport we carried out inviscid numerical simulations without any explicit

cooling, though we still allowed for advection of mass and energy across the

vertical boundaries in order to prevent the disk from heating up and ex-

panding until it filled the box, as was the case in the simulations of Bodo

et al. (2012). We find that MRI heating and box cooling alone are unable to

set up an unstable entropy gradient, and the buoyancy frequency is positive

everywhere in the disk, thus ruling out the possibility of convection under

these conditions. Surprisingly, however, we find that the MRI itself is rather

efficient at transporting heat in the vertical direction, which calls into ques-

tion the use of the vertical heat flux as a diagnostic for convection, as was

done in Bodo et al. (2012) and Hirose et al. (2014). Our measurements of the

time-averaged values of α (and of the stresses) are broadly consistent with

previous vertically stratified ZNF MRI simulations with 〈〈α〉〉 ∼ 0.015. In

narrower boxes of size Lx = 2H0 and Lx = H0, respectively, we find that

the time-averaged stresses increase as the radial box size is decreased. Fur-

thermore the stresses becomes significantly more bursty, which might have

important implications for the narrow box radiative transfer MHD simula-

tions of Hirose et al. (2014) and Scepi et al. (2018a), and is something that

should be investigated in future work.

To obtain a negative entropy gradient in MRI simulations, and therefore

assure that at least a necessary condition for convection is satisfied, necessi-

tates the use of an explicit cooling prescription. We carried out simulations

with a height-dependent cooling prescription and explicit resistivity, which

enabled us to control both the unstable entropy gradient (by controlling the

cooling timescale) and the strength of the MRI (by controlling the resistiv-

ity). As anticipated by our physical arguments, we find that convection and

the MRI tend not to coexist, or at least do not interact in an additive man-

ner. At low resistivities (η < 2.5× 10−4) the MRI is too strong and disrupts

any convective modes before they can become coherent plumes. Despite the
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negativity of the buoyancy frequency, the results look similar to those of our

convectively stable box-cooled and uniformly cooled simulations. In marginal

cases (e.g. η ∼ 2.5×10−4), however, we do see intermittent convective bursts

in the flow field, though these are not sustained for any appreciable length

of time, nor do they lead to any enhancements in the stress.

At higher resistivities (η ≥ 5× 10−4), however, the picture is more com-

plicated. We have observed convective/MRI cycles in which there are al-

ternating convection-dominated and MRI-dominated phases. At the highest

resistivities, the resistivity kills the MRI but the combination of residual MRI

heating and height-dependent cooling leads to convection. Furthermore, we

observed the same cyclical large-scale convective cells that we found in our

hydrodynamic simulations (see Section 3.4), demonstrating that these struc-

tures are robust when the heat source is implemented in a self-consistent

manner by residual heating from the MRI, rather than through a heat source

that was put in by hand, as in our hydro simulations. Furthermore convec-

tion appears to reseed the MRI, leading to very strong MRI bursts in which

α can reach as high as α ∼ 0.08. While we cannot find any evidence of the

strong radial ‘channel modes’ associated with the net vertical flux MRI prior

to these outbursts, we do see a clear increase in the rms vertical magnetic

field prior to each outburst, suggesting perhaps that the large scale convective

cells can create vertical field lines as suggested by (Hirose et al., 2014).
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Chapter 5

The stress-pressure relationship

In this chapter we investigate the stress-pressure relationship. We present

some of our key preliminary results here, but plan on expanding on these

in the near future, and thus we regard this chapter as a work in a progress.

The stresses accompanying MRI turbulence are related to the pressure in the

disk, and have been shown to increase and decrease with pressure. We exam-

ine the time-lag associated with this dependence and discuss its implications

for thermal instability. In order to motivate our investigations we briefly

review various applications of the stress-pressure lag in Section 5.1, focusing

in particular on thermal stability. In Section 5.2 we discuss our set-up, initial

conditions, and time-dependent cooling prescription. Finally in Section 5.3

we present our results, first in simulations without any explicit cooling (Sec-

tion 5.3.1), and then in simulations where we use our cooling prescription to

vary the mean pressure and study resultant stress response (Section 5.3.2).

We discuss our results and planned future work in Section 5.4.

5.1 Applications

One of the main assumptions of the alpha disk model of accretion disks is a

closure scheme (commonly referred to as the ‘alpha disk prescription’) for the

effective viscosity which posits that the total stress is linearly proportional

to the pressure, i.e. Πxy ∼ P q with q = 1 (Shakura & Sunyaev, 1973;
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Pringle, 1981). Various local unstratified MHD numerical simulations have

been carried out to test this assumption, with many finding only a weak

scaling between stress and pressure (Hawley et al., 1995a; Sano et al., 2004;

Simon et al., 2008; Minoshima et al., 2015). These results were called into

question by Ross et al. (2016), who showed that the weak scaling reported

in the aforementioned simulations was in fact a numerical artifact due to

insufficiently large box size. As the box heated up (due to thermalization of

MRI turbulence) the pressure scale height H = cs/Ω would increase until it

exceeded the vertical box size Lz. Thus the largest eddies (which contribute

most to the stress) were confined to the box, so the stress would plateau

while the pressure continued to increase. Ross et al. (2016) employed larger

boxes (such that Lz > H for long enough for a clear scaling relationship

to be established) and explicit diffusion coefficients, and found a near linear

relationship between stress and pressure with q ∼ 0.9. Inviscid simulations

and strong net vertical or toroidal magnetic fields were found to weaken this

relationship, however.

Embedded in the alpha disk prescription is not only an algebraic assump-

tion about the relationship between the stress and the pressure, but also the

causal assumption that the stress responds instantly to the pressure. Math-

ematically this means that there is no separate evolution equation for the

stress. The stress-pressure relationship, and the existence of a lag between

the stress and the pressure in particular, has important consequences for

thermal stability. Shakura & Sunyaev (1976) and Piran (1978) showed that

the alpha disk model is thermally unstable in radiation pressure dominated,

geometrically thin, optically thick disks (such as the inner radii of LMXBs in

certain phases of their outburst) if stress scales linearly with the total pressure

(gas + radiation) and the cooling is due to electron scattering. Physically

this occurs when the heating and cooling rates have different dependencies

on the mid-plane temperature. If the heating rate is sufficiently sensitive to

the temperature that a small increase in the temperature leads to a large

increase in the heating rate, the resultant viscous heating will overwhelm

the cooling leading to thermal runaway. The heating rate is linked to the

stress, and so according to the classical theory of radiation dominated disks,
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a change in pressure should lead to a change in stress.

However early local MHD simulations of radiation-dominated disks failed

to observe thermal runaway (Hirose et al., 2009). Furthermore they found

that the stress was leading the pressure rather than vice versa, which Hirose

et al. (2009) (incorrectly) ascribed as the reason for the lack of thermal insta-

bility in their simulations. Jiang et al. (2013), however, did observe thermal

instability in their vertically stratified MHD simulations, and determined

the real reason for the suppression of thermal instability in the simulations

of Hirose et al. (2009) was the use of small box sizes. Note that the radial

wavenumber of the fastest growing mode of the thermal instability is kx = 0,

and thus the instability has no radial length scale associated with it. Rather

small boxes prevent the stress from responding to the pressure, which in turn

inhibits thermal instability, as discussed in more detail below. Setting these

numerical issues aside, however, the linear theory of the alpha disk model

with a time-delayed response of stress to pressure does indicate that a lag

of 1-10 orbits reduces the growth rate of the instability (Lin et al., 2011;

Ciesielski et al., 2012).

In addition, there is a second, physically motivated, subtlety to the re-

sponse between the stress and pressure. Ross et al. (2017) also carried out

unstratified local simulations (in boxes that were sufficiently large to mitigate

the aforementioned numerical effects) with an optically thin, power law cool-

ing prescription (but without radiation pressure). By tuning the cooling they

could set up states that were thermally stable or unstable (at least according

to linear theory). In their stable equilibrium runs, Ross et al. (2017) found

that when there was very little variation in the mean pressure, fluctuations

in the stress could react back on the pressure through thermalization of tur-

bulent energy (cf. Figure 4 of their paper), thus causing the pressure to act

like a function of the stress, as observed by Hirose et al. (2009). Conversely

thermally unstable runs underwent runaway heating or cooling, indicating

that on longer timescales the stress was responding to the pressure, as re-

quired for thermal instability. A key point here is that there are two separate

regimes of stress-pressure behavior: on shorter timescales fluctuations in the

stress thermalize orbital energy and result in fluctuations in the pressure,
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while on longer timescales it is the stress that tracks variations in the mean

pressure.

Though in this chapter we restrict our attention to the response of the

stress to variations in pressure, a lag between stress and pressure might be

indicative that the stress lags behind other quantities, such as strain and

density, too. Thus a second application of our investigations is to the viscous

overstability. The instability arises when a component of the viscous stress

tensor is in phase with the longitudinal oscillations of a density wave (or

f-mode), enabling the wave to tap into the free energy of the orbital shear

(Kato, 1978). A dynamical interpretation is that the viscous stress acts as an

overcompensating restoring force on a fluid element that has been displaced

from its orbit, causing the fluid element to overshoot its equilibrium position

(Latter & Ogilvie, 2008). In this case wavecrests correspond to regions of

enhanced viscous stress, which extracts orbital energy from the background

shear and transfers this to the wave, enabling the wave to grow in amplitude.

The net result is that density waves grow rather than being dampened. This

can affect density waves in eccentric accretion disks (Ogilvie, 2001), in plane-

tary rings (Borderies et al., 1985; Papaloizou & Lin, 1988; Schmit & Tschar-

nuter, 1995) and in the ‘decretion’ disks around rapidly rotating Be stars

(Okazaki, 2000). The instability can be quenched, however, when the stress

behaves in a more complicated manner than that prescribed by an alpha

viscosity, or, more generally, when the stress response is more complicated

than that prescribed by a Navier-Stokes model, in which the stress is linearly

proportional to (and responds instantly to) the strain. Indeed Ogilvie (2001)

has shown semi-analytically that overstability of non-axisymmetric waves is

suppressed when the stress responds to the strain over a (prescribed) relax-

ation timescale rather than instantaneously. Thus if there is a lag between

the stress and strain, the synchronization between the viscous stress and the

density oscillations is lost and the mechanism enabling viscous overstability

fails.
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5.2 Set-up

All the results described in this chapter were obtained using 3D MHD un-

stratified PLUTO simulations (see Sections 2.4 and 2.5 for a more general

discussion of the code and diagnostics). Most of our simulations are run with-

out explicit diffusion coefficients (which we refer to as our ideal runs) and

employ a resolution of 1283 in a box of size 4H0× 4H0× 4H0 (corresponding

to 32 cells per scale height). To check that our results are converged we also

run simulations with explicit viscosity and resistivity; for these we employ a

higher resolution of 2563 in a box of size 4H0 × 4H0 × 4H0 (i.e. 64 cells per

scale height).

In our 2563 simulations we employ both an explicit resistivity of η =

2 × 10−4 and an explicit viscosity of ν = 8 × 10−4, which we refer to as our

non-ideal runs. For an initial sound speed of cs0 = 1 and scale height of

H0 = 1, this corresponds to a Reynolds number of Re = cs0H0/ν = 1250,

a magnetic Reynolds number of Rm = cs0H0/η = 5000, and a magnetic

Prandtl number of Pm = ν/η = 4. These values are the same as those

employed in the 2563 simulations with explicit diffusion coefficients of Ross

et al. (2016).

Finally we use periodic boundary conditions in the vertical direction (in

addition to the usual shear-periodic and periodic boundary conditions in the

x- and y-directions, respectively). Thus mass should not escape the box, and

we expect the total mass to be conserved in these runs. However we have

found that periodic boundary conditions in PLUTO paired together with

the FARGO algorithm for orbital advection (see Section 2.4) does lead to

some small mass loss. Although the reasons for this are unclear,1 the mass

loss is small over the runtimes that we use. For example, we measured a

percentage change in mass of around 0.3% in a 1283 simulation run for 500

orbits, too small to warrant the implementation of a mass source term.

1We have confirmed that the total mass is conserved when FARGO is turned off, so

the bug is probably due to the implementation of the FARGO algorithm.
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5.2.1 Cooling Prescription

In order to investigate the lag between MRI turbulent stresses and pressure,

we employ an explicit cooling prescription using the built-in optically thin

cooling module in PLUTO. Our aim is to control the mean pressure so that

it executes quasi-periodic variations over long timescales. We expect the

stress to be very bursty on short timescales, but over many cycles of the

mean pressure it should be possible to extract a meaningful lag in the stress.

Note that this approach differs both from that employed in Ross et al. (2016)

(in which the box heated up uncontrollably), and from Ross et al. (2017) who

used explicit cooling in their runs, but who did not vary the mean pressure

over long timescales.

To vary the volume-averaged pressure we use a piecewise time-dependent

linear cooling function of the form

Λ =

−P/τH , (‘long’ timescale)

−P/τC , (‘short’ timescale)
(5.1)

where τH and τC are two different cooling time-scales (with τH > τC). When

the ‘long’ cooling timescale τH is activated, heating by viscous dissipation

(due to the MRI turbulence) overwhelms the cooling and the mean pressure

tends to rise (the ‘heating phase’). Once the volume-averaged pressure ex-

ceeds some maximum critical value 〈P 〉 = 〈P 〉+ the cooling is switched to the

‘short’ cooling timescale τC . Now the cooling rate exceeds the heating rate

due to viscous dissipation and the mean pressure drops (the ‘cooling phase’).

Once the mean pressure falls below some minimum critical value 〈P 〉 = 〈P 〉−
the cooling is switched back to the ‘long’ cooling timescale and the cycle is

repeated. Using this simple time-dependent cooling module we can control

the volume-averaged pressure on timescales comparable to τH and τC , and

force it to oscillate between a minimum and maximum value of 〈P 〉+ and

〈P 〉−, respectively, and then investigate the subsequent stress response to

the mean pressure variation.
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5.3 Results

5.3.1 Heating runs

Before we implement our explicit cooling prescription to investigate the time-

lag between stress and pressure, we carry out several runs with heating only.

In these runs we expect the pressure to increase monotonically (due to the

dissipation of MRI turbulence), and our aim is to measure the power law

dependence of stress on pressure, i.e. Πxy ∝ P q.

Our fiducial simulation (NSTRMC10h12) was run with explicit resistivity

and viscosity (such that Re = 1250,Rm = 5000, and Pm = 4), and was

initialized with a radial wavenumber for the vertical magnetic field of kx =

4(2π/Lx) = 2π and velocity perturbations of size δu < 0.1cs0. Note that this

simulation has the same dimensionless parameters (i.e. Re, Rm, and Pr),

box size, resolution, and initial conditions as Ross et al. (2016). We found

that choosing the right initial conditions was very important. For example

with a radial wavenumber of kx = 2π/Lx = 0.5π our box would heat up too

quickly after initialization, reaching a volume-averaged pressure of around

〈P 〉 ∼ 3 after just 10 orbits, compared to 〈P 〉 ∼ 1.4 after the same amount

of time when initialized with a vertical magnetic field of radial wavenumber

kx = 8π/Lx = 2π. Similarly if the initial velocity perturbations δu were too

small (we tried δu < 0.04cs0) non-linear saturation would set in later and at

a higher peak stress, resulting in the box heating up significantly before the

end of the linear phase.

We have also investigated the effects of different initial conditions for kx

and δu. Several runs were carried out without explicit diffusion coefficients

to investigate the effects of grid diffusion. All simulations described in this

section were run at a resolution of 2563 (64 grid cells per scale height).

In the left- and right-hand panels of Figure 5.1 we show the time-evolution

of the volume-averaged pressure 〈P 〉 and of the total stress 〈Πxy〉, respec-

tively, from our fiducial simulations. The pressure increases monotonically

by a factor of around 7 over 40 orbits. The stress exhibits more complicated

behavior: it fluctuates over short timescales (< 0.1 orbit), but over the du-
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(a) (b)

Figure 5.1: Left: time-evolution of pressure from our 2563 simulation without

cooling and with explicit diffusion coefficients. Right: time-evolution of the

total stress (Reynolds + magnetic) from the same simulation, normalized by

the pressure at initialization P0 = 1.

ration of the simulation the stress exhibits three distinct kinds of behavior,

similar to what was reported in Ross et al. (2016). During the first phase,

corresponding to the linear MRI, the stress increases exponentially, reach-

ing a peak value at non-linear saturation of around 0.015. The stress drops

briefly after non-linear saturation, but begins to increase fairly rapidly from

about orbit 6 onwards. Between orbits 6 and 33 we record a five-fold in-

crease in the stress, which is consistent with the increase in stress over the 60

orbits following non-linear saturation reported by Ross et al. (2016). After

orbit 33 we record a large jump in the stress (from about 0.05 to 0.065), after

which the stress remains quasi-steady in time, though undergoing fairly large

fluctuations of around 0.01 in magnitude. We interpret this as the simula-

tion having reached the box-dominated regime. The pressure just before the

simulation entered the box-dominated regime was 〈P 〉 ∼ 4.8.

In Figure 5.2 we plot the volume-averaged total stress as a function of

the pressure. This plot should be compared to the red curve in Figure 6

of Ross et al. (2016) which shows the equivalent plot from their 2563 with

explicit diffusion coefficients. Between the initial spike in stress and the

box-dominated regime where the stress plateaus as the pressure continues
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Figure 5.2: Log-log plot of total stress against pressure from our 2563 sim-

ulation without cooling and with explicit diffusion coefficients. From left to

right, the dashed lines have slopes of q ≈ 2.4 and q ≈ 1.45, respectively.

to increase, we find two phases where the pressure has a distinct power law

dependence on the pressure. The stress rises more steeply with pressure

during the first phase (which lasts from around orbit 5 to orbit 15) and we

measure a power law index of q ≈ 2.4. During the second phase (lasting

from around orbit 15 to orbit 33) the stress rises less steeply with pressure

compared to the first phase and we measure a power law index of q ≈ 1.45.

Ross et al. (2016) also observe two different scaling laws before the simulation

enters the box-dominated regime, though the first is very steep and short and

was not fitted. For the second, gentler, rise in stress they measure a slope of

q ≈ 0.9 in their simulation with explicit diffusivities. In any case we caution

that not too much weight should should be conferred on the exact value of

the slope measured either by us or by Ross et al. (2016). In both cases the

slope was measured from a single run in which strong random fluctuations

are bound to obscure clean power law behavior.
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Figure 5.3: Time-evolution of total stress multiplied by 100 (in black) and to-

tal pressure (in blue) from a 1283 ideal simulation with ‘intermediate’ cooling

timescales for the heating and cooling phases of τH = 30 orbits and τC = 7.5

orbits, respectively. A rolling average of the total stress is shown in red. The

horizontal dashed black lines indicate the maximum and minimum values

that volume-averaged pressure is allowed to reach before the cooling pre-

scription switches to a shorter (or longer) timescale. The vertical dashed red

line indicates the restart position. Note the clear lag in stress compared to

the pressure starting from around orbit 75.

5.3.2 Runs with cooling

In the previous section we investigated the relationship between stress and

pressure by allowing the box to heat-up without any cooling. Thus in those

runs, thermalization of MRI turbulence resulted in a monotonic pressure

increase which the stress then tracked, until the simulation reached the box-

dominated regime. In this section we wish to investigate how the stress

responds to variations in the mean pressure in greater detail. To do so we

run our simulations with the explicit cooling prescription described in Section

5.2.1. By adjusting the two cooling timescales τH and τC we can control
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Figure 5.4: Same as Figure 5.3 but for a 2563 simulation with explicit diffu-

sion coefficients. The heating phase and and cooling phase cooling timescales

were set to τH = 30 orbits and τC = 4.5 orbits, respectively.

the behavior of the mean pressure, allowing it to increase when the cooling

timescale τH is sufficiently long so that heating is greater than cooling (the

‘heating phase’), and forcing the pressure to decrease when τC is sufficiently

short so that cooling overwhelms heating (the ‘cooling phase’). We discuss

three different cases: a simulation in which the mean pressure variation is

‘fast’ such that the stress cannot keep up with the changes in the pressure,

a simulation in which the mean pressure variation is ‘slow’ and in which the

stress very closely tracks the pressure, and an ‘intermediate’ case in which

the stress lags behind the pressure.

In Figure 5.3 we show in black the time-evolution of the stress normalized

by the mid-plane pressure at initialization (where P0 = 1) and pressure

(in blue) from our intermediate case simulation. The total stress has been

multiplied by 100 to compare more easily to the pressure. The long and

short cooling timescales were set to τH = 30 orbits and τC = 7.5 orbits,

respectively, and the pressure was permitted to vary between 〈P 〉− = 1 and
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〈P 〉+ = 2, thus ensuring that the box never heated up to the box-dominated

regime. To better track the dips and increases in the stress we also carry

out a rolling-average of the total stress using a width of 104 steps, or about

7 orbits. This simulation was restarted from an MRI turbulent state shortly

after non-linear saturation from a simulation that had previously been run

without any cooling. At the start of the simulation (orbit 4.7) the pressure

continues to increase, though at a slower rate than before due to the explicit

cooling. At orbit 19.3 the pressure reaches its maximum permitted value at

which point the cooling timescale is switched to the shorter timescale τC and

the pressure begins to drop. The decrease is not monotonic however, and

shortly before orbit 50 the pressure plateaus before reaching its minimum

value, and even begins to increase again due to the increasing stress. In fact

until orbit 75 the stress does not appear to be responding very strongly to

the pressure at all. After the first pressure cycle is completed, however, the

stress begins to respond much more sensitively to the pressure, and for the

remainder of the simulation the stress can be seen to track the mean pressure,

albeit with a lag of several orbits.

In Figure 5.4 we show the time-evolution of stress and pressure from a 2563

simulation with explicit diffusion coefficients. This was restarted with cooling

turned on from shortly after non-linear saturation of the 2563 run (which did

not employ cooling) discussed in Section 5.3.1. The long cooling time is the

same as in the 1283 ‘intermediate’ run discussed in the last paragraph. When

we attempted to run this simulation using the same short cooling timescale

as was employed in the 1283 simulation (τC = 7.5 orbits), however, we found

that the cooling was frequently overwhelmed by the turbulent heating, so

that the mean pressure would never quite drop to its minimum value when

the short cooling timescale was used, but would instead flatten out and begin

to respond to bursts in the stress rather than vice versa. Thus we were forced

to lower the short cooling timescale to τC = 4.5 orbits in our 2563 run in order

to get the mean pressure to decrease more or less monotonically during the

cooling phases. As in the 1283 case over the first 60 orbits or so there is

very little correlation between the stress and the pressure, and again after

orbit 190, with the volume-averaged stress plateauing over the next cycle-
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Figure 5.5: Cross-correlation coefficient between stress and pressure from a

1283 inviscid simulation with ‘intermediate’ cooling timescales of τH = 30

orbits and τC = 7.5 orbits. To the right of the black vertical dashed line (at

0 orbits on the x-axis) is the correlation for a lag (in orbits) in which the

stress follows the pressure, while to the left of the line the correlation is for

the stress leading the pressure. The peak correlation (red vertical dashed

line) occurs when the stress lags behind the pressure by about 3.34 orbits.

and-a-half of the mean pressure variation. Between orbit 60 and orbit 190,

however, the stress does begin to respond to the pressure and we observe a

clear correlation between the two with the stress lagging behind the pressure.

In our heating-only run we found that the simulation entered the box-

dominated regime once the stress reached around 0.05-0.065 (cf. the right-

hand panel of Figure 5.1) after which the stress plateaued. Note that in

both our 1283 and 2563 cooling runs the total stress is generally below this

range, reaching values above Πxy ∼ 0.05 only at the very tips of some of the

outbursts in stress. Thus we are confident that our results in these cooling

runs are not being affected by the box size.
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Figure 5.6: Same as Figure 5.5 but for a 2563 simulation with explicit diffu-

sion coefficients. The peak correlation (red vertical dashed line) occurs when

the stress lags behind the pressure by about 5.61 orbits.

To quantify the lag between the stress and the pressure we calculated the

cross correlation between the two, which is shown in Figure 5.5 for our 1283

simulation. The correlation was calculated using data between orbits 56 and

400 in order to omit residual and transient behavior following initialization.

We measure a peak correlation coefficient of r = 0.45. This peak occurs when

the stress lags behind the pressure by around 3.3 orbits. For comparison, the

cross correlation for the 2563 simulation is shown in Figure 5.6 (in this run

the data used to calculate the cross correlation was taken between orbits 66

and 193). In this case we measure a peak correlation coefficient of r = 0.55,

with the peak occuring when the stress lags behind the pressure by around

5.6 orbits. Note that in both simulations the correlation coefficient curve is

quite wide, and there is significant overlap between the two curves.

Next we investigate how the stress tracks the pressure when the latter
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Figure 5.7: Time-evolution of total stress multiplied by 100 (in black), rolling

average of total stress (in red), and total pressure (in blue) from a 1283 ideal

simulation with ‘fast’ cooling timescales of τH = 30 orbits and τC = 4 orbits.

The simulation was restarted (blue vertical dashed line) at orbit 80 from the

solution of our ‘intermediate run’ (where we had used τC = 7.5 orbits). Note

that after the restart the stress is unable to keep up with the rapid variation

in the mean pressure.

changes over timescales that are much shorter and much longer than those

discussed in the ‘intermediate’ case; we remind the reader that we refer to

these simulations as our ‘fast’ and ‘slow’ runs, respectively. To do this we

again vary the cooling timescale parameters τH and τC . To instigate rapid

variations in the pressure we require that the pressure increase quickly dur-

ing the heating-dominated phase (during which the cooling timescale is set

by τH), and that the pressure decrease quickly during the cooling-dominated

phase (during which the cooling timescale is set by τC). This can be facili-

tated by increasing τH and decreasing τC compared to the intermediate case.

Thus in our ‘fast’ simulation we set the cooling timescales to τH = 30 orbits
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Figure 5.8: Time-evolution of total stress multiplied by 100 (in black), rolling

average of total stress (in red), and total pressure (in blue) from a 1283

inviscid simulation with ‘slow’ cooling timescales of τH = 20 orbits and τC =

10 orbits. The simulation was restarted (blue vertical dashed line) at orbit

80 from the solution of our ‘intermediate run’ (were we had used τC = 7.5

orbits). Note that after the restart the stress closely tracks the gradual

variation in the mean pressure.

and τC = 4 orbits. This simulation is restarted from orbit 80 of our ‘interme-

diate’ simulation in order to avoid the initial phase in which the stress does

not track the pressure, and was run until orbit 200.

In Figure 5.7 we show the time-evolution of the total stress multiplied by

100, the rolling-averaged total stress, and the pressure from this ‘fast’ run.

After the restart position (orbit 80) the mean pressure varies rapidly due to

the shorter cooling timescale τC . The stress struggles to keep up with the

pressure and for the first 2.5 cycles of the pressure there is no correlation at

all between the two quantities. After this initial phase, the total stress does

occasionally respond weakly to the behavior of the pressure, e.g. there is a
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Figure 5.9: Cross-correlation coefficient between stress and pressure from a

1283 inviscid simulation with ‘slow’ cooling timescales of τH = 20 orbits and

τC = 10 orbits. The peak correlation (red vertical dashed line) occurs when

the pressure lags behind the stress by about 0.87 orbits.

rise in the total stress at around orbit 125 that coincides closely with the

pressure, but overall the lag is much less evident than in the intermediate

cooling timescales case (see Figure 5.3 for comparison).

Finally in our ‘slow’ simulation we look at the other extreme: when the

variation in the mean pressure is sufficiently slow that the stress tracks the

pressure almost instantly with respect to the timescale of the oscillation (see

Figure 5.8). This was achieved by lowering the ‘long’ cooling timescale to

τH = 20 orbits (resulting in longer rise times of 〈P 〉 during the heating-

dominated phase) and increasing the ‘short’ cooling timescale to τC = 10

orbits (thus prolonging the decrease of 〈P 〉 during the cooling-dominated

phase). In order to obtain a clearer picture of the slowly varying mean

pressure we have run this simulation for 420 orbits. We find that the stress

closely tracks the pressure after initialization (orbit 80). On short timescales
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(< 1 orbit) the stress can even react back on the pressure, and thus appears

to lead the pressure slightly. This is confirmed in Figure 5.9 where we plot

the cross correlation of stress and pressure, and find that the pressure lags

behind the stress by around 0.87 orbits.

5.4 Discussion and Conclusions

We have carried out unstratified MHD shearing box simulations in PLUTO

both with and without explicit cooling in order to investigate the relationship

between total stress and pressure, with an eye towards applying these results

to investigating thermal instability and viscous overstability in future work.

In 2563 simulations with explicit diffusion coefficients but without cool-

ing, in which the box heats up due to the dissipation of MRI turbulence, we

observe two separate power law scaling regimes between stress and pressure,

i.e. Πxy ∼ P q. Shortly after non-linear saturation the stress increases rela-

tively steeply with respect to pressure with q ≈ 2.4, though we suspect this

might be related to transient behavior following the end of the linear phase.

More significantly, on longer timescales we find a separate, shallower, depen-

dence of q ≈ 1.45. This power law behavior continues until the total stress

reaches a value of Πxy ≈ 0.05−0.07 at which point it plateaus even while the

pressure continues to increase, and the simulation enters a box-dominated

regime in which the characteristic length scale of turbulent eddies exceeds

the vertical box size. These results are broadly consistent with those ob-

tained in similar simulations by Ross et al. (2016), though the exact scaling

relationship is likely to change between individual runs as a result of random

fluctuations. Ideally we would run several of these simulations and average

the results, which we expect would result in a cleaner scaling relation. We

plan on doing so in future work.

In our cooling runs we implemented a time-dependent cooling prescription

which enabled us to control the mean pressure, and thus measure the resul-

tant response of the stress. Depending on the cooling timescales we chose

we found three possible outcomes. For runs in which the cooling timescales

216



switched between ‘intermediate’ values of τC = 30 and τC = 7.5 orbits we

found a clear lag in stress in both 1283 ideal and 2563 non-ideal runs. We

quantified this lag by calculating the cross correlation between the volume-

averaged stress and the pressure, and found that the peak correlation oc-

curred for a lag of around 3 orbits in the 1283 run. This is slightly shorter

than the lag of around 5 orbits measured in our 2563 run, although the

peaks in correlation are broad in both cases and overlap significantly. For

shorter cooling timescales (τC = 4 orbits) the stress is unable to keep up with

variations in the mean pressure and evolves more or less independently; con-

versely in a run in which the mean pressure varied only gradually (τC = 20

and τC = 10 orbits, respectively) the stress was observed to closely track the

pressure. In the latter case, fluctuations in the stress were found to react

back on the pressure (via dissipative heating). Thus on very short timescales

(< 1 orbit) it is the pressure that responds to the stress rather than vice

versa.

The main application of these results is to thermal instability, particularly

in LMXBs. Earlier work on the linear theory of thermal instability has found

that the growth rate of the instability is significantly decreased when there is

a lag between the stress and the pressure (Lin et al., 2011). However in those

calculations the lag was included as a free parameter, while in our simulations

we have varied only the mean pressure in a quasi-periodic manner. Our main

result is that, for variations on reasonable timescales, the stress lags behind

the pressure by 3-5 orbits. An important caveat to this, however, is that

LMXBs are radiation-dominated (at least in their inner regions), whereas

our simulations were run with gas pressure only. Nevertheless, our results

are indicative that, at least for variations of the mean pressure on timescales

over several tens of orbits, thermal instability should be weakened, though

perhaps not suppressed entirely.

Finally we note that the response of the stress to the pressure is only

one aspect of the turbulent dynamics. More generally, we wish to investi-

gate the dependence of the turbulent stress on the strain. If, as we suspect

given the results of this chapter, the former were to depend non-linearly and

non-instantaneously on the latter, this would indicate that turbulent stresses
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behave in a non-Newtonian fashion as has already been investigated analyt-

ically by Ogilvie (2003). Furthermore it would be interesting to determine

if there is a time-lag between stress and strain, something that would be

particularly applicable to the viscous overstability. If the time-lag between

stress and strain is similar to the lag between stress and pressure of a few or-

bits that we’ve found in our simulations, we expect the viscous overstability,

which has an oscillation period of one orbit, will be suppressed. We plan on

exploring these avenues in future work.
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Chapter 6

Conclusions

In this thesis we have studied convection in accretion disks, in particular the

interaction between convection and the magnetorotational instability, with

an emphasis on its consequences for vertical disk structure and angular mo-

mentum transport. More generally we have investigated the dynamics of

turbulent flows in disks, including how turbulent stresses respond to modu-

lations of the mean pressure.

Convection has been discussed in the context of accretion disks for many

years, almost to the beginning of the ‘modern’ era of accretion disk theory

(cf. Shakura & Sunyaev (1973); Lynden-Bell & Pringle (1974), and refer-

ences therein). Identifying the source of the effective viscosity needed to

drive accretion in disks was recognized as an outstanding problem early on.

Paczynski (1976) and others, almost certainly taking inspiration from the

more established theory on the structure of stars, in which convection was

thought to play an important role in transporting heat, suggested that con-

vective turbulence might be the source of this viscosity. Since then there has

been significant, if intermittent, debate on the role of convection in disks. The

discussion has included the relevance of convection to the hysteresis behavior

of dwarf novae, whether convection in disks is self-sustaining (in the sense

that the viscous dissipation of orbital energy due to turbulent convection is

itself is sufficient to drive convection), whether convection leads to inward or

outward angular momentum transport, and, more recently, whether its in-

219



teractions with the magnetorotational instability can enhance the transport

of angular momentum.

To isolate the generic features of convection in disks, in Chapter 3 we have

first undertaken its study in purely hydrodynamic models, first by probing

the linear regime both analytically and semi-analytically, and then in fully

compressible numerical simulations carried out with the finite-volume code

PLUTO. Our key result is that we find that hydrodynamic convection can,

in general, transport angular momentum outwards in disks, in other words

α > 0. We have verified this result using ATHENA, an alternative finite vol-

ume code. This is in agreement with the findings of Lesur & Ogilvie (2010),

who found in their Boussinesq simulations that hydrodynamic convection

could transport angular momentum outwards at sufficiently high Rayleigh

numbers, but is in disagreement with the fully compressible hydro calcula-

tions (nearly identical to ours but run with the finite difference code ZEUS)

carried out by Stone & Balbus (1996) (SB96). Crucial to understanding this

discrepancy is that SB96 reported seeing nearly axisymmetric convection in

their simulations, which, as they showed analytically, must lead to inward

transport. We showed that the diffusivity of the numerical scheme, in partic-

ular the use of diffusive Riemann solvers such as HLL, can impose an artificial

axisymmetry on the flow field that in turn leads to inward transport.

This issue is likely independent of resolution. In our linear stability analy-

sis of convection we showed that inviscid linear convective modes grow fastest

on the shortest possible scales, and will thus lie on the grid in inviscid sim-

ulations regardless of the resolution. We ran a suite of simulations with

explicit viscosity and thermal diffusivity, which, in addition to mitigating

the effects of the grid, allowed us to control the Rayleigh number. We found

that the onset of convection occurred above some critical Rayleigh number

105 < Rac ≤ 106. For Rayleigh numbers just above this critical value we ob-

served inward transport and the flow was largely axisymmetric. For higher

Rayleigh numbers (106 < Ra < 109), we first observed inward transport dur-

ing the linear phase (during which axisymmetric modes were growing most

quickly), but these were eventually attacked by secondary instabilities and

a non-axisymmetric flow field, resulting in an outward transport of angular
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momentum during the non-linear phase. Finally we have also carried out

simulations in which we maintained convection by imposing an artificial heat

source. In the non-linear phase convection is manifested as large-scale (∼ H0

in width) cells (perpendicular to the plane of the disk) that are cyclically cre-

ated and destroyed. These are associated with other coherent structures (in

the plane of the disk) such as zonal flows and small-scale (∼ 0.1H0) vortices.

Another important result is that we have not observed self-sustaining

convection in any of our simulations, indicating that to drive convection self-

consistently in disks the heat source has to come from other processes, such as

the dissipation of MRI turbulence. This motivated us to study the interplay

between the two instabilities through fully compressible MHD simulations

in Chapter 4. To determine the effects of the MRI alone on vertical disk

structure and convective instability, we first carried out ideal MHD simula-

tions with open boundaries in the vertical direction, thus enabling the box

to cool by advection of thermal energy across the vertical boundaries, but

otherwise without an explicit cooling prescription. Here our main result was

that MRI heating and box-cooling alone results in the disk settling into a

convectively stable equilibrium. Furthermore, MRI turbulence itself is rather

adept at moving heat vertically, thus hampering the build-up of heat at the

mid-plane. When an explicit cooling prescription was used (with the cooling

timescale uniform in space), we recovered the main results of the box-cooled

simulation.

Thus in our box-cooled and uniformly cooled simulations we found that

the square of the buoyancy frequency was positive everywhere, which rules

out the possibility of convection. The onset of convection in a laminar fluid

with a microscopic viscosity and thermal diffusivity will occur only if both

the squared buoyancy frequency is negative and the Rayleigh number exceeds

some critical value. Likewise, in a turbulent fluid, such as one stirred up by

the MRI, there will be a turbulent transport of heat and momentum, which,

assuming these behave in a diffusive manner, will result in the fluid being

characterized by an effective Rayleigh number. Thus in our MHD simulations

the sign of the squared buoyancy frequency is only a necessary, not a sufficient

condition, for determining the onset of convection. The latter requires both
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a negative squared buoyancy frequency (i.e. an unstable entropy gradient)

as well as that the effective Rayleigh number exceed some critical value.

This is an important point, which has not been elucidated by previous work

investigating convection and the MRI in disks. A corollary of this statement

is that the two instabilities might actually not coexist, or at least do not

interact in an additive manner, as has been implied in previous work. If the

effective Rayleigh number is too low, the MRI is bound to disrupt convective

modes before they grow.

The two instabilities can interact in a non-trivial manner, however. We

have investigated this by running fully compressible MHD simulations with

both height-dependent cooling and explicit resistivity. Controlling the cool-

ing timescale enabled us to control the entropy gradient, and by controlling

the resistivity we could control the strength of the MRI (relative to ideal

MHD simulations) and thus the effective viscosity and thermal diffusivity.

We found that at higher magnetic Reynolds numbers (Rm ≥ 4 × 103) the

MRI dominated the flow field, with very few signs of convection despite the

negativity of the buoyancy frequency. At lower magnetic Reynolds numbers

(Rm . 2×103), on the other hand, we found convective/MRI cycles, in which

resistivity would first quench the MRI, residual MRI heating would drive con-

vection, and convection could then reseed the MRI. The stresses, pressure,

and alpha during the convection-dominated phases were low, but during the

MRI outbursts we found that alpha could reach as high as α ∼ 0.08. Further-

more, during the convection-dominated phases we recovered the large-scale

cyclical convective cells that we had observed in our forced hydro simula-

tions, demonstrating that these structures are robust when the heat source

for convection is provided in a self-consistent manner, in this case by residual

heat from the previous MRI burst.

At the lowest magnetic Reynolds number we investigated (Rm ∼ 200) we

find that resistivity can quench the MRI entirely in the absence of convec-

tion. At lower resistivities (higher Rm) the MRI is dampened, rather than

quenched, by the resistivity, and in fact we found (in a simulation without

explicit cooling) low amplitude cycles even in the absence of convection. Con-

vection, however, can enhance the amplitude of these cycles. It is tempting
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to link our results in these more marginal cases to the resistivity driven state

changes reported in the isothermal simulations of Simon et al. (2011), but

the timescales on which they observed cycles (at similar magnetic Reynolds

numbers) are of the order hundreds of orbits, much longer than the tens

of orbits or so over which we observe cycles, thus indicating that the two

phenomena are likely of different origin.

Finally in Chapter 5 we have investigated the relationship between stress

and pressure in unstratified MHD simulations. By implementing a piecewise-

in-time linear cooling prescription we were able to control the variation in

the mean pressure and thus follow the response of the stress. We found

three different outcomes, depending on how rapid the variations in the mean

pressure were. Our key result in this chapter is that, for moderate cooling

timescales (i.e. such that the mean pressure oscillated with a period of 25-30

orbits), we found that the stress exhibited a clear lag behind the pressure. We

quantified this result by calculating the cross-correlation between total stress

and pressure. The peak correlation occurs when the stress lags the pressure

by around 3 orbits. At double the resolution (2563 compared to 1283), the lag

is somewhat longer (about 5 orbits), but the peaks of the cross correlation are

broad at both resolutions, and there is significant overlap between the two

runs. We also investigated the effect of varying the pressure on much shorter

timescales (∼ 10 orbits). In this case the stress could not keep up with

variations in the pressure at all, and the two evolved independently. Finally

we explored the opposite regime, i.e. in which the pressure varied only very

slowly (i.e. on timescales of around 150 orbits). In this regime the stress not

only tracks the pressure very closely (with almost no discernible lag), but it

can even react back on the pressure (via dissipative heating). Thus we have

found that while stress appears to lag behind pressure on longer timescales,

on short timescales (. 1 orbit) it is the pressure that follows the stress. These

results are bound to have an impact on thermal instability in LMXBs, and

on the viscous overstability, potentially dampening or even mitigating each

instability entirely. We plan on exploring these applications in future work.
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6.1 Future work

Although we have investigated many aspects of the problem of hydrodynamic

convection (linear/non-linear, viscid/inviscid, different numerical schemes,

forced and unforced), there remain several avenues for future work. A key

result was that, given a sufficiently non-dissipative numerical scheme (in

inviscid simulations) or a large enough Rayleigh number (in viscid simula-

tions), hydro convection can transport angular momentum outwards. We

interpreted this as meaning that, during the non-linear phase in particular,

non-axisymmetric convective modes dominated the flow. Given that our in-

vestigations were restricted to the local approximation, it is difficult to get

a scope of the global structure of these modes. Thus a natural extension of

our work would be to carry out global three-dimensional hydrodynamic sim-

ulations. Such simulations have actually been carried out long ago by Klahr

et al. (1999), who reported observing non-axisymmetric convective cells in

their runs. However, their simulations included an explicit alpha, and thus

the turbulent transport by convection was not modeled in a self-consistent

manner. Furthermore, they employed unrealistic reflective boundary condi-

tions at the inner and outer radial disk boundaries. Therefore it would be

fruitful to carry out similar global simulations but with a more modern code,

more realistic boundary conditions, and employing, for example, the relax-

ation cooling prescription that we used in our simulations of forced convection

in order to sustain convection.

In our forced hydrodynamic simulations we put in the heat source by

hand, i.e. by relaxing the thermal equilibrium back to a convectively un-

stable equilibrium. As we have discussed in Section 1.4.3 there are several

realistic heat sources that could drive convection in disks. One of them, the

MRI, was investigated in Chapter 4, but there are also purely hydrodynamic

heat sources that could drive convection in disks, such as the dissipation of

density waves launched by a high mass planet. Previous work on this topic

by Lyra et al. (2016) could be extended to include (i) more realistic thermo-

dynamics, (ii) irradiation from the central star, and (iii) dust, with the aim

of investigating the interaction of dust and convection and its impact on dust

224



settling. Details of shock heating and convection could also be investigated

using high-resolution simulations in a wide shearing box with an embedded

planet, extending previous local simulations (which did not include dust)

by Zhu et al. (2016). Finally another potential heat source whose effect on

vertical disk structure has not been investigated in great detail is Joule dis-

sipation in mid-plane current sheets, the latter of which have been reported

in global simulations of protoplanetary disks by Béthune et al. (2017).

With regards to our work on the MRI and convection, we have found that

narrow boxes (Lx = H0) have several limitations and numerical artifacts,

leading to bursty behavior, and also suppressing large scale convective cells.

It would certainly be worth carrying out radiative transfer MHD simulations

similar to those of Hirose et al. (2014) and Scepi et al. (2018a) in wider

boxes. Given adequate numerical resources, these runs should be relatively

straightforward to carry out.

Another aspect of the problem that we have not touched on in this thesis

would be to investigate the effect of our results on the MRI dynamo, which

would allow for closer comparison between our work and that of Coleman

et al. (2016) and Coleman et al. (2018), who investigated the effect of inter-

mittent and persistent convection on the MRI dynamo in dwarf novae and

AM CVn disks, respectively. We already have the spacetime data for the

evolution of the magnetic field from our simulations, but the complexity of

the problem warrants its own separate investigation to the one we have car-

ried out Chapter 4, where our focus was on understanding how the interplay

of convection and the MRI affected the dynamics of the flow rather than the

dynamo in particular.

Finally, another aspect of convection in dwarf novae that has not been

explored yet is the role of unstable compositional gradients. Although in

the introduction we discussed the linear theory of convection driven by both

entropy and compositional gradients, ultimately all our results were obtained

assuming a constant mean molecular weight. In actual dwarf novae, however,

there is a transition from a fully ionized mid-plane to a partially ionized at-

mosphere, and thus we expect the mean molecular weight to increase with

vertical distance from the mid-plane. This could potentially set up an un-
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stable compositional gradient, in addition to the unstable entropy gradient

which is maintained by dissipation of MRI turbulence and radiative cooling.

Indeed there is some preliminary evidence in the data from the radiative

transfer simulations of Scepi et al. (2018a) that this is the case (Nicolas

Scepi; private communication). Thus it would be worth while investigating

the role of both entropy and compositional gradients in dwarf novae disks,

something that we plan on doing over the course of the next few years.
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Appendix A

Numerical issues and

convergence studies for MHD

A.1 Numerical issues with∇·B = 0 in PLUTO

In this section we briefly report a subtle numerical issue in which a particular

numerical algorithm related to the implementation of ∇ ·B = 0 in PLUTO

can severely mitigate the MRI. This has important implications for studying

the interplay between the MRI and another instability (such as convection or

gravitational instability), because it is crucial to ascertain whether any en-

hancement (or mitigation) of MRI turbulence is due to physical or numerical

effects.

The Constrained Transport (CT) algorithm is commonly used to enforce

∇ · B = 0 to machine accuracy. Finite-volume codes (such as PLUTO)

update cell centered fluid variables (which are taken to be volume-averages

over the cell). The CT algorithm, on the other hand, works by calculating

the electromotive force (emf) at cell edges, and then updating the magnetic

field (by integrating the induction equation) at cell faces (referred to as a

‘staggered’ magnetic field). Cancellation of terms then guarantees ∇·B = 0.

Various averaging procedures are available in PLUTO for calculating the

emf at the zone edges, among them UCT-HLL, which employs the HLL

Riemann solver. We have discovered that more diffusive averaging procedures
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Figure A.1: Time-evolution of volume-averaged magnetic energy (left), and

stresses (right) from PLUTO simulations with different algorithms for en-

forcing ∇ · B = 0: UCT-Contact (solid lines), UCT-HLL (dashed lines).

Top row: simulations run with a non-isothermal equation of state (box size:

H0 × 4H0 × 6H0, resolution: 32 cells per H0). Bottom row: simulations run

with an isothermal equation of state (box size: 2H0× 4H0× 6H0: resolution

32 cells / H0). In all cases, the MRI is mitigated when the UCT-HLL solver

is used. The vertical dashed lines indicate the times at we switched from

using UCT-Contact to UCT-HLL.

such as UCT-HLL can severely mitigate the MRI.1 Less diffusive averaging

procedures such as UCT-Contact (which restores the contact wave removed

by the HLL solver) do not exhibit this effect.2

1Constrained Transport is also available in Athena++ (which is also a finite volume

code), but the procedure for calculating the electric field is different to that employed in

PLUTO, and does not seem to exhibit the problems the UCT-HLL algorithm does (Jim

Stone; private communication).
2The reader should take care to distinguish between the overall Riemann solver used in

the code (in our case we always use an HLLD solver), and the Riemann solver employed

only in calculating the emf at cell edges during the implementation of the Constrained

Transport algorithm (in this section either UCT-HLL or UCT-Contact).
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We have investigated the dependence of the solution on the averaging-

procedure used in the CT algorithm for runs with both an isothermal and

a non-isothermal perfect gas equation of state (see Figure A.1).3 The non-

isothermal simulations (top row) were run in boxes of size H0 × 4H0 × 6H0

and at a resolution of 32 cells/H0 for a duration of 100 orbits (629 Ω−1). The

adiabatic index was set to γ = 5/3. The isothermal simulations (bottom

row) were run in wider boxes size of 2H0× 4H0× 6H0 and a resolution of 32

cells/H0 for a longer duration of 200 orbits (1257 Ω−1). All simulations were

run with a zero net magnetic flux configuration at initialization, included the

vertical component of gravity, and employed outflow boundary conditions in

the vertical direction (see Section 4.1.1), as well as a mass source term.

Explicit cooling was not employed in any of the simulations, i.e. cooling

was facilitated only by advection of material across the vertical boundaries.

Finally, the UCT-HLL simulations were restarted from the MRI turbulent

state of the UCT-Contact simulations from orbit 54 (in the non-isothermal

case) and orbit 140 (in the isothermal case).

In Figure A.1, solutions obtained using UCT-Contact are shown with

a solid line, and the solutions obtained using UCT-HLL are shown with a

dashed line. For both an isothermal and non-isothermal gas equation of state

the switch from UCT-Contact to UCT-HLL is followed by a rapid drop in the

kinetic and magnetic densities (left-hand panels), and in the stresses (right-

hand panels). Furthermore the flow field (not shown) is mostly laminar,

i.e. absent of any MRI turbulence, once the UCT-HLL algorithm is used.

We conclude that the UCT-HLL algorithm severely mitigates (or even kills)

the MRI. Therefore we employ the UCT-Contact algorithm for Constrained

Transport in all simulations discussed in the main part of our paper.
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Figure A.2: Plot of time-evolution of volume-averaged α for vertically strat-

ified MRI simulations (without explicit cooling or diffusion coefficients) at

three different resolutions: 64/H0 (blue), 32/H0 (red), and 16/H0 (black).

All three simulations were run in a box of size 4H0 × 4H0 × 6H0.

A.2 MHD convergence studies

A.2.1 Dependence on resolution

Ryan et al. (2017) carried out a convergence study of the inviscid ZNF verti-

cally stratified MRI in isothermal shearing box simulations, and determined

that these were not converged with resolution, in agreement with earlier

work done on the convergence of the unstratified ZNF MRI (Fromang & Pa-

paloizou, 2007). It is not clear, however, whether the non-convergence of the

MRI carries over to simulations with more realistic thermodynamics. Hirose

et al. (2014), Coleman et al. (2018), and Scepi et al. (2018a) did not perform

convergence studies in their vertically stratified MRI simulations with radia-

tive transfer and opacity tables, presUMably due to the large computational

3The equation of state in the isothermal runs was given by P = c2sρ (with cs = 1),

while in the non-isothermal simulations the equation of state was given by P = (γ− 1)ρe.
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cost of running these simulations. To test the convergence with resolution of

the vertically stratified MRI in inviscid simulations with a perfect gas equa-

tion of state, we have run our fiducial box-cooled simulation (see Section 4.2)

at 64, 32, and 16 cells per initial scale height H0 (all three simulations were

run in a box of size 4H0× 4H0× 6H0). The simulations, together with time-

averaged values for various diagnostics are listed in Table C.1 in Appendix

C.

We plot the time-evolution of 〈α〉 over 100 orbits (629 Ω−1) from the three

simulations in Figure A.2. The results are generally very similar between the

64/H0 and 32/H0 simulations, not just in the time-evolution of α but across

all volume-averaged quantities (vertical kinetic energy density, magnetic en-

ergy density, stresses, etc.). Nor could we detect any appreciable difference

in the vertical structure of the disk between the two simulations: the mass

and heat fluxes are directed outwards and are of comparable magnitude,

and the temperature profile is flat-topped around the mid-plane, dropping

rapidly beyond z ∼ ± 2H0. The 16/H0 simulation, on the other hand, is

noticeably unconverged, with 〈〈α〉〉 ∼ 0.005 in this simulation compared to

〈〈α〉〉 ∼ 0.014 and 〈〈α〉〉 ∼ 0.013 in the 32/H0 and 64/H0 simulations, re-

spectively.

A.2.2 Dependence on radial box size

In Section 4.2.2 we compared the results of our fiducial box-cooled simulation

(run in a box of radial size Lx = 4H0) with those of simulation MRI-S1 in

Riols & Latter (2018) which was run with a narrower box of size Lx = 2H0.

We commented on the fact that the stresses in MRI-S1 appeared significantly

more bursty compared to those measured in our fiducial simulation. In this

section we investigate the behavior of the MRI in ZNF vertically stratified

boxes (without explicit cooling or explicit dissipation coefficients) as a func-

tion of the radial box size. In Table C.2 in Appendix C we list the results of

three simulations, differing in radial box size, but otherwise identical. Out-

flow boundary conditions were employed in the vertical direction in all three

simulations (see Section 4.1.1). The number of cells per scale height is the
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Figure A.3: Plot of time-evolution of volume-averaged α for vertically strat-

ified MRI simulations (without explicit cooling or diffusion coefficients) at

three different radial box sizes: Lx = H0 (blue), Lx = 2H0 (red), and

Lx = 4H0 (black). All three simulations were run with a resolution of 32

cells / H0 in each direction.

same in all three simulations at 32/H0.

In Figure A.3 we plot the time-evolution over 200 orbits (1257Ω−1) of

〈α〉 for the three different radial box sizes. The time-averaged value of α

increases as the box radial box size decreases : 〈〈α〉〉 ∼ 0.014, 0.016, and

0.026 in the Lx = 4H0, 2H0, and H0 simulations, respectively. In addition

visual inspection of the solutions in Figure A.3 shows that fluctuations in

〈α〉 also increase markedly as the radial box size is decreased. The differ-

ence is particularly noticeable when comparing the Lx = H0 simulation with

the other two simulations. This simulation undergoes an outburst between

around orbits 80 and 140 in which 〈α〉 reaches as high as ∼ 0.06, a factor

of three larger than the maximum values of 〈α〉 ∼ 0.03 and 〈α〉 ∼ 0.02

measured over the course of the Lx = 2H0 and Lx = 4H0 simulations, re-

spectively. This appears to confirm our suspicion that narrower boxes are
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more ‘bursty’, though the difference is more apparent when comparing the

narrowest box size (Lx = H0) to the wider boxes than when comparing the

Lx = 2H0 and Lx = 4H0 runs. These results are consistent with those of

Simon et al. (2012) who carried out vertically stratified shearing box simu-

lations initialized with a twisted azimuthal magnetic flux tube in boxes of

radial size between Lx = 0.5H0 and Lx = 16H0. They reported that turbu-

lent properties such as the volume-averaged α viscosity where only converged

for radial box sizes Lx & 2H0. Note, however, that our Lx = 2H0 simula-

tion appears significantly less bursty than the Lx = 2H0 simulation MRI-S1

simulation of Riols & Latter (2018) (see Figure 1 in their paper).

The vertical structure of the disk (not shown) also changes with box size,

though we find that the buoyancy frequency 〈〈N2
B〉xy〉t is positive everywhere

in all three simulations. Both the vertical heat and mass fluxes increase as

the radial box size is reduced, which is unsurprising given that fluid elements

are increasingly constrained to move in the vertical direction as the radial

box size is reduced. The narrowest box is much more magnetized than the

Lx = 2H0 and Lx = 4H0 boxes with 〈〈β〉xy〉t ∼ 32 at the mid-plane compared

to 〈〈β〉xy〉t ∼ 55 in the wider boxes. We conclude that the non-linear MRI

is almost certainly not converged in boxes of radial size Lx = H0 (at least

for the thermodynamics facilitated by the simple perfect gas equation of

state that we have employed in our simulations). In particular narrow boxes

seem to give rise to large outbursts that are not observed in wider boxes.

Therefore it would be illuminating to investigate whether the MRI/radiative

cycles observed in the simulations of Hirose et al. (2014) (which were carried

out in boxes of radial size Lx = H0) are less pronounced or even absent in

wider boxes.
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Appendix B

Tables of hydro simulations
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Béthune W., Latter H., 2020, Monthly Notices of the Royal Astronomical

Society, 494, 6103

Béthune W., Lesur G., Ferreira J., 2017, Astronomy and Astrophysics, 600,

A75

Bisnovatyi-Kogan G., Blinnikov S., 1977, Astronomy and Astrophysics, 59,

111

242

http://dx.doi.org/10.1088/0004-637X/767/1/30
https://ui.adsabs.harvard.edu/abs/2013ApJ...767...30B
http://dx.doi.org/10.1086/170270
http://adsabs.harvard.edu/abs/1991ApJ...376..214B
http://dx.doi.org/10.1051/0004-6361/201630056
https://ui.adsabs.harvard.edu/abs/2017A&A...600A..75B
https://ui.adsabs.harvard.edu/abs/2017A&A...600A..75B


Blaes O., Krolik J. H., Hirose S., Shabaltas N., 2011a, The Astrophysical

Journal, 733, 110

Blaes O., Krolik J. H., Hirose S., Shabaltas N., 2011b, The Astrophysical

Journal, 733, 110

Blandford R. D., Begelman M. C., 1999, Monthly Notices of the Royal As-

tronomical Society, 303, L1

Block M. J., 1956, Nature, 178, 650

Bodo G., Cattaneo F., Mignone A., Rossi P., 2012, The Astrophysical Jour-

nal, 761, 116

Bodo G., Cattaneo F., Mignone A., Rossi P., 2013a, The Astrophysical Jour-

nal, 771, L23

Bodo G., Cattaneo F., Mignone A., Rossi P., 2013b, The Astrophysical Jour-

nal Letters, 771, L23

Bodo G., Cattaneo F., Mignone A., Rossi P., 2014, The Astrophysical Journal

Letters, 787, L13

Bodo G., Cattaneo F., Mignone A., Rossi P., 2015, The Astrophysical Jour-

nal, 799, 20

Boley A. C., Durisen R., 2006, The Astrophysical Journal, 641, 534

Borderies N., Goldreich P., Tremaine S., 1985, Icarus, 63, 406

Boubnov B., Golitsyn G., 1995, Convection in rotating fluids. Springer Sci-

ence & Business Media, Berlin

Boyd J. P., 2001, Chebyshev and Fourier spectral methods. Dover, New York

Breuer M., Manglik A., Wicht J., Trümper T., Harder H., Hansen U., 2010,
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