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As a readily available feedstock, styrene with about 25 million tons of global annual production serves as an important building
block and organic synthon for the synthesis of fine chemicals, polystyrene plastics, and elastomers. Thus, in the past decades,
many direct transformations of this costless styrene feedstock were disclosed for the preparation of high-value chemicals, which
to date, generally performed on the functionalization of styrenes through the allylic C-H bond, C(sp®)-H bond, or the C=C
double bond cleavage. However, the dealkenylative functionalization of styrenes via the direct C-C single bond cleavage is so far
challenging and still unknown. Herein, we report the novel and efficient C-C amination and hydroxylation reactions of styrenes
for the synthesis of valuable aryl amines and phenols via the site-selective C(Ar)-C(alkenyl) single bond cleavage. This chemistry
unlocks the new transformation and application of the styrene feedstock and provides an efficient protocol for the late-stage

modification of substituted styrenes with the site-directed dealkenylative amination and hydroxylation.

1. Introduction

Styrenes are readily available bulk chemicals [1, 2] (produced
globally ~25 million tons per year) and widely used in syn-
thesis as a very common building blocks [3, 4]. In the past
decades, the development of new direct transformations of
styrenes has always been an attractive topic, because it repre-
sents the potential industrial application due to the readily
available and costless properties of the styrene feedstock.
Thus, some classical reactions including the traditional
wacker oxidation [5, 6], alkene difunctionalization [7-14],
oligomerization or polymerization [15], intramolecular
cyclization [16, 17], oxidative cleavage of alkene [18-20],
and Heck-type reactions [21, 22], as well as olefin metathesis
[23-25], have been well developed and widely applied in
chemical synthesis. Generally, these disclosed protocols rely
on the functionalization of the C=C double bond [26],
the C(spz)—H bond [27-30], and the allylic C(sp3)—H bond
[31-35] (Figure 1(a)). Although dealkenylative hydrogena-
tion and thiylation of C(sp’)-C(sp”) bonds were signifi-
cantly developed by Kwon and coworkers [36, 37], the
dealkenylative C-C single bond functionalization of styrene
is still unknown and remains an unmet challenging issue

due to its high thermodynamic stability (the BDE of the
C(Ar)-C(alkenyl) single bond is 116.9kcal/mol [38])
(Figure 1(b)). Thereby, the exploration of a new type of
C-C bond activation [39-46] mode and strategy of
styrene is undoubtedly very attractive, which may provide
an alternative advance in the chemical synthesis and open
new avenues for future research of alkene chemistry.

To address the above unsolved dealkenylative C-C single
bond functionalization, we proposed a cascade activation
strategy via the initial C=C double bond preactivation to
break the conjugate structure of styrene and generate the
active intermediate for the subsequent C(Ar)-C, bond cleav-
age. However, the intrinsic C,-C, bond cleavage reactivity in
styrene chemistry would be a challenging competitive path-
way [18-20] (Figure 1(c)). The key point of this strategy is
to generate an intermediate with entropic or enthalpic driv-
ing force to promote the selective dealkenylative C-C bond
cleavage. Herein, we unlock a novel and efficient C-C nitro-
genation or hydroxylation reaction of styrenes for the prepa-
ration of high-value arylamines and phenols (Figure 1(d)).
The significance of this chemistry is trifold: (1) this chemistry
provides a new approach to arylamines or phenols under
metal-free and simple operation conditions, which are of
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F1GURE 1: Functionalization based on styrenes. (a) Typical representative transformation patterns of styrene derivatives: C(sp”)-H activation
(for example, Heck-type reaction), C(allylic)-H activation, and C=C double bond activation (for example, wacker oxidation,
difunctionalization, polymerization, and metathesis). However, other activation mode is still undeveloped yet very desired to synthetic
chemistry. (b) Long-standing unmet challenges in the field of carbon-carbon bond cleavage chemistry of styrenes: although the C=C bond
cleavage has been well studied, the dealkenylative C(Ar)-C(alkenyl) single bond cleavage is still unknown. (c) The proposed cascade
activation strategy whereby the initial C=C double bond preactivation and the consecutive C(Ar)-C, single bond cleavage sequence may
provide a chance to address the above unsolved dealkenylative transformation. However, the C,-C, single bond cleavage in conventional
styrene chemistry would be a challenging competitive path of the desired process. (d) This work: dealkenylative C-C bond amination and

hydroxylation. FG: functional group.

considerable interest as synthons for the preparation of fine
chemicals, pharmaceuticals, agrochemicals, and polymers
[47, 48]; (2) compared to the aromatic C-H functionalization
approach for the synthesis of arylamines and phenols which
suffers from limited substrate scope, harsh conditions, and
poor regioselectivity [49-53], the C(Ar)-C(alkenyl) single
bond cleavage of styrene contributes a novel site-specific
pathway for substituted arylamines and phenols synthesis;
and (3) to the best of our knowledge, this chemistry is the first
transformation of styrenes via the dealkenylative C-C single
bond cleavage, which may inspire further methodology
development based on olefins.

2. Results

Although the traditional C=C double bond cleavage leading
to the corresponding aldehyde or ketone derivatives [18] pro-

vides a great challenge for the desired dealkenylative carbon-
carbon functionalization, we investigated the hypothesis by a
nucleophilic addition process to initially break the conjugate
structure of the substrates. When 4-vinyl-1,1-biphenyl (1a)
was treated with azido nucleophile in the solvents such as
DCE and CH,CN, unfortunately, the substrate consumed
but we did not detect any obvious products except some
polymers (see Supplementary Table S1). To our delight, the
aniline product 2a was obtained in the solvent of n-Hexane
or CCl, under acidic conditions (see Supplementary
Table S1), which indicated that the two-phase reaction
condition generated by the combination of polar acid and
the nonpolar solvent was vital to this process. Under the
polar acidic conditions, the polymerization of the styrene is
a very challenging inherent side reaction, so the choice of
the nonpolar solvent such as CCl, is of importance for this
dealkenylative transformation due to the formation of the
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FIGURE 2: Substrate scope for the aniline synthesis from styrenes. *Standard conditions: reactions were performed with styrene (0.3 mmol),
TMSN; (0.75 mmol), and MeSO,H (6.0 mmol) in CCl, (1.0 mL) at 80°C for 4 h under atmosphere and isolated yields. ®The crude product was
acetylated by acetyl chloride. “The reaction was conducted at 40°C instead. “MeSO,H (1.5 mmol) was used as the acid. “TMSN, (1.5 mmol)

was used instead. CCl: tetrachloromethane.

two-phase reaction system with the polar acid to attenuate
the side reaction. After the further screening of the acid
additives, nitrogenation reagents, and other parameters (see
Supplementary Table S3-4), this C-C amination reaction
with the conditions of MeSO,H (6.0 mmol) and TMSN,
(0.75 mmol) in CCl, (1.0mL) afforded the desired aniline
2a in 86% yield (Figure 2). The subsequent control
experiment demonstrates that this chemistry is redox
neutral with the acid additive as an essential player.

With the developed optimal reaction conditions, we next
investigated the scope of this C-C amination with a series of
commercially available or readily prepared styrenes as sub-
strates (Figure 2). As expected, various para-substituted sty-
renes derivatives were compatible with this reaction system,
and the corresponding anilines with different electronic

properties could be efficiently synthesized. For example, the
styrenes bearing electron-donating groups (6, 8, 9, 11,
R=0OMe, tBu, MeS, NH,) underwent the amination process
successfully to produce the para-substituted anilines in high
efficiencies. Substrates containing halogen substituent (2, 3,
12) also performed well to give the corresponding products
in good yields, leaving halogens available for the subsequent
synthetic transformations. It is noteworthy that substrates
with a strong electron-withdrawing group (4, 5, 7, 10, R=F,
CN, NO,, CO,Me) could also deliver the corresponding ani-
lines efficiently using this newly developed method, which is
difficult to be prepared through the traditional nitration/re-
duction sequence or C-H amination pathway. The unpro-
tected amino group is tolerant under these conditions and
provides a novel pathway for the synthesis of aryl diamines
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(9) in moderate yields. The sulfide group which is relatively
sensitive to oxidative condition or harsh nitration conditions
was not destroyed in this protocol and afforded 4-
(methylthio)aniline 11 in 50% yield.

Compared with the traditional nitration/reduction
procedure in which the regioselectivity control is very chal-
lenging with the substituted arene substrates, the ortho-
substituted anilines could be synthesized efficiently and
selectively using the alkenyl group as a traceless site-
directed group, thus without the extra complex isolation of
the mixed ortho- and para-products (13-17). Notably, previ-
ously inaccessible meta-substituted anilines by the nitration/-
reduction process could also be prepared in good yields
through the present C-C amination process (18-20). In addi-
tion, naphthyl and quinoline heterocyclic rings were also
compatible, providing the expected product 21 and 22 in
85% and 44% yields, respectively.

To explore the effect of the alkenyl group on the styrenes,
1,1-disubstituted styrenes (24, 25 Figure 2) were first sur-
veyed which produced the aniline products in good yields
under the optimized conditions. Besides the terminal sty-
renes derivatives, the internal styrenes with bulky steric hin-
drance were also investigated. A natural bioactive molecule
1,2-disubstituted styrene (trans-anethole, 27) and (E-) stil-
bene (28) proceeded smoothly to form the target product.
Moreover, 1,1,2-trisubstituted styrene, which bears bulker
hindrance, was also tolerated affording the aniline in 68%
yield (26). To our delight, allylbenzene 29 could also furnish
this C-C single bond cleavage due to the isomerization of the
allyl group under acidic conditions. When styrene 30 bearing
two alkenyls groups was employed as the substrate, two alke-
nyl groups on the aryl ring were cleavaged simultaneously
affording benzene-1,4-diamine 9 in 78% yield.

Interestingly, this dealkenylative C-C bond nitrogenation
chemistry could also be successfully expanded to synthesize
alkyl-substituted arylamines with alkyl azides as the N-source

under the conditions when employed H,SO, (2.0 equiv) and
Ac,0 (1.5 equiv) as the additives in DCE (for the results in
different conditions, see Supplementary Table S5). During
the reaction screening and optimization for the arylamine
synthesis, many additives had been tried for the
transformation and found that the anhydride had
promoted the reaction, but it was not indispensable for the
process. Definitely, its actual role in this synthetic route was
still not completely clear yet. As shown in Figure 3, a
serious of styrenes containing substituents at the para-,
ortho-, and meta-positions of the aromatic ring worked well
and afforded the corresponding arylamines in moderate to
good yields. Moreover, other alkyl azide reagents were
tolerated in this transformation leading to various N-alkyl-
substituted aniline products (43-47).

Although the epoxidation of styrenes was a known and
favored process under oxidative conditions, inspired by the
dealkenylative C-C bond amination results, we further investi-
gated the C-C hydroxylation process with commercially avail-
able aqueous hydrogen peroxide as the oxygen source.
Through the careful screening (see Supplementary Table S6),
we optimized the conditions as MeSO,H (2.0 equiv) and
H,0, (30%, 5.0 equiv) in MeNO,/HFIP (4.5/1.5mL, 0.05 M)
stirring at 60°C. The reaction of styrenes under these
conditions could afford the designed phenols by the novel
dealkenylative C-C bond oxygenation process. The low
reaction concentrations, the type of solvent, and acid were
crucial to suppress the undesired by-products such as
polymerization and epoxidation. As shown in Figure 4, a
series of alkenyl groups on the styrenes (23-26, 28, 55, 56)
were successfully replaced by the hydroxyl group to give the
phenol products in moderate to good yields. Notably, the
very active chalcones (57, 58) and cinnamyl alcohol (59) also
worked albeit in low efficiency.

To further demonstrate the utility of this transformation,
we carried out gram-scale reactions with styrene (23) as the
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substrate which is a bulk chemical from natural sources and
coal/petroleum products. The reaction offered the aniline in
good yield, indicating its potential industrial application pos-
sibility (Figure 5(a)). In addition, the late-stage functionaliza-
tion of complex bioactive molecules was further evaluated.
Interestingly, 61 derived from (+)-8-tocopherol was proven
to be tolerated in this carbon-carbon amination process,
affording the corresponding 62 in 47% yield. Additionally,
the alkene-containing tyrosine derivative (63) and estrone
derivative (65) could also furnish this transformation in good
efficiency, giving 64 and 66 in 64% and 70% yield, respec-
tively (Figure 5(b)).

Moreover, in order to testify the intermediates of this
process and trace the alkenyl group, we first conducted an
in situ reduction reaction with regard to the carbon-carbon
amination procedure with NaBH, as the hydrogenative
reagent, and arylamine 67 and 69 were produced in 55%
and 41% yields, respectively, which indicates that the proton-
ated imine 68 and 70 might be the key intermediates of this
transformation. The result of the benzyl alcohol 71 under this
C-C hydroxylation conditions quantitatively yielding the
corresponding phenol (Figure 5(c)) suggests that the benzylic
cation is probably involved in this oxygenation process. To
explore the regiochemistry for the dealkenylative transfor-
mation, substrates of 73 and 74 have been conducted under
the standard conditions (Figure 5(d)). High regioselectivities
were obtained in these cases which was controlled by the sta-
bility of the generated benzylic carbon cation intermediate
during the hydroazidation of alkene.

On the basis of the above results and previous reports [46,
54-59], the mechanism of this transformation was described
in Figure 5(e). Initially, the acid-assisted hydroazidation of
the C=C double-bond of styrenes occurs to generate the
intermediate A with Markovnikov’s rule [54, 55], which
undergoes the subsequent Schmidt-type rearrangement pro-
cess to afford the imine intermediate B through the cleavage
of the C(Ar)-C(alkenyl) single bond [46, 56-59]. The final

hydrolysis of species B produces the desired anilines and
aldehyde side products. Alternatively, a similar process
occurs for the styrene substrate to generate the intermediate
C in situ, which undergoes the traditional Hock process
[60] to produce the phenol product.

3. Conclusions

This chemistry has described a novel carbon-carbon amina-
tion and hydroxylation of styrenes for the efficient and site-
specific synthesis of arylamines and phenols. Significantly,
this protocol provides a highly selective dealkenylative C-C
bond activation mode of styrenes under transition-metal free
and redox-neutral conditions with azide reagents as the
nitrogenaton reagents or aqueous hydrogen peroxide as the
oxygen source. Compared to the poor regioselectivity and
limited substrate scope in the typical aromatic C-H amina-
tion and hydroxylation process, this chemistry features site-
directed selectivity and broad substrate scope. The simple
and mild conditions make it applicable to the late-stage mod-
ification of some bioactive molecules. This strategy may open
new avenues for the development of other novel transforma-
tions of alkenes through the C-C bond cleavage.

4. Methods

4.1. General C-C Amination Procedure. The substrate alkenes
(0.3mmol, 1.0 euiv), TMSN; (0.75mmol, 2.5 equiv), and
CCl, (1.0mL), were added into a 20 mL vial equipped with
a stir bar. Then, MeSO;H (6.0 mmol, 20.0 equiv) was added.
The reaction was refluxed under air at 80°C for 4h. After
cooling down to room temperature, the reaction mixture
was quenched by 2M NaOH (5mlL) and extracted by EA
(5x2mL), and the combined organic phase was washed with
brine and dried over Na,SO,. Then, the mixture was concen-
trated and purified by flash chromatography on a short silica
gel (eluent: PE/EA =10/1) to afford the desired anilines.
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The substrate alkenes (0.2 mmol, 1.0 equiv), alkyl azide
(0.4 mmol, 2.0 equiv), acetic anhydride (0.3 mmol, 1.5 equiv),
and DCE (2.0 mL), were added into a 20 mL vial equipped
with a stir bar. The mixture was stirred at 25°C. Then, conc.
H,SO, (0.4 mmol, 2.0 equiv) was added to the mixture in 5
seconds. The mixture was stirred at 25°C overnight. The reac-
tion was quenched with 20% NaOH and was extracted with
EA, purified by flash chromatography on a short silica gel
(eluent: PE/EA =50/1) to afford the desired arylamines.

4.2. General C-C hydroxylation procedure. The substrate
alkenes (0.3mmol, 1.0 euiv), MeNO, (4.5mL)/HFIP
(1.5mL), were added into a 20 mL vial equipped with a stir
bar. Then, 30% aqueous hydrogen peroxide solution
(1.5mmol, 5.0 equiv) and MeSO;H (0.6 mmol, 2.0 equiv)
were added in order. The reaction was heated under Ar at
60°C for 12 h. After cooling down to room temperature, the
reaction mixture was quenched by sat. NaHCO, (5mL) and
extracted by EA (5 x 2 mL), and the combined organic phase
was washed with brine and dried over Na,SO,. Then, the
mixture was concentrated and purified by flash chromatogra-
phy on a short silica gel (eluent: PE/EA = 10/1) to afford the
desired phenols.
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