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Abstract COVID-19 has disrupted healthcare opera-

tions and resulted in large-scale cancellations of elec-

tive surgery. Hospitals throughout the world made life-

altering resource allocation decisions and prioritised the

care of COVID-19 patients. Without effective models

to evaluate resource allocation strategies encompassing

COVID-19 and non-COVID-19 care, hospitals face the

risk of making sub-optimal local resource allocation de-

cisions. A discrete-event-simulation model is proposed

in this paper to describe COVID-19, elective surgery,

and emergency surgery patient flows. COVID-19-specific

patient flows and a surgical patient flow network were

constructed based on data of 475 COVID-19 patients

and 28,831 non-COVID-19 patients in Addenbrooke’s

hospital in the UK. The model enabled the evaluation of

three resource allocation strategies, for two COVID-19
wave scenarios: proactive cancellation of elective surgery,

reactive cancellation of elective surgery, and ring-fencing

operating theatre capacity. The results suggest that a

ring-fencing strategy outperforms the other strategies,

regardless of the COVID-19 scenario, in terms of total

direct deaths and the number of surgeries performed.

However, this does come at the cost of 50% more crit-

ical care rejections. In terms of aggregate hospital per-

formance, a reactive cancellation strategy prioritising

COVID-19 is no longer favourable if more than 7.3% of

elective surgeries can be considered life-saving. Addi-

tionally, the model demonstrates the impact of timely

hospital preparation and staff availability, on the ability
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to treat patients during a pandemic. The model can aid

hospitals worldwide during pandemics and disasters, to

evaluate their resource allocation strategies and identify

the effect of redefining the prioritisation of patients.

Keywords Resource Allocation · COVID-19 ·
Simulation · Capacity Management · Intensive Care

Mathematics Subject Classification (2010) 00A72 ·
37M05 · 65C99

Highlights

– Bridges the gap between pandemic and non-pandemic

capacity management models by holistically evalu-

ating both patient groups

– Provides an open-source and modifiable simulation

model to capture COVID-19 and non-COVID-19

patient flows

– Enables hospitals to visualise and quantify effect of

resource allocation and patient prioritisation deci-

sions

– Demonstrates the importance for hospitals to proac-

tively train the surgical workforce to work on critical

care

1 Introduction

Across the globe, healthcare systems have been rapidly

transformed by the COVID-19 (SARS-CoV-2) pandemic.

The virus has impacted people directly infected by the

virus, and those indirectly affected by the consequences

of the virus. Healthcare systems are under immense

pressure, and governments introduced public health mea-

sures to ‘suppress’ the wave of infections and alleviate
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the subsequent pressure on hospitals. In order to pre-

pare for and respond to this disaster, hospitals engaged

in two efforts to cope with this influx, by i) predicting

COVID-19 hospital admissions and resource require-

ments, and ii) building the capacity to treat COVID-19

patients optimally. This response suggests that the fo-

cus is solely on COVID-19 patients. However, the need

for non-COVID-19 care did not disappear, and patients

still need their urgently required healthcare. For the

United Kingdom (UK) alone, it is expected that 1-3

million people will be awaiting surgery by 2021 [20].

Therefore, it is essential from an ethical and strate-

gic point-of-view to focus on both COVID-19 and non-

COVID-19 care by allocating the scarce resources to

both patient groups. This paper uses a discrete-event

simulation model to evaluate the impact of hospital re-

source allocation decisions on both patient groups. This

study was carried out as part of hospital’s operational

response to the pandemic. We now provide a brief re-

view of the literature on predicting resources during a

pandemic and allocating scarce resources.

1.1 Pandemic Resource Prediction Modelling

COVID-19 places a substantial burden on a range of

resources, including oxygen, general ward (GW) beds,

intensive care (ICU) beds, ventilators, anaesthetists, in-

tensivists, nursing staff (RN), mortuary, consumables,

and personal protection equipment (PPE). Combined

with the push over the last decades to increase resource

utilisation and minimise safety stock levels through just-

in-time principles, hospitals now face extreme resource

scarcity [36]. In order to understand the magnitude of

the resource requirements, resource prediction models

were developed [2]. These data-driven approaches are

increasingly more popular for decision-makers to make

informed decisions on resource allocations affecting mil-

lions of people.

Predominantly, epidemiological models were used to

predict the spread of the virus on a national and re-

gional level. The models predicted the number of COVID-

19 infections and hospital admissions, subsequently trans-

lated into bed requirements and deaths [28, 22, 10,

31, 24]. Additionally, epidemiological models were ex-

tended by incorporating lock-down measures and other

non-pharmaceutical interventions to inform public pol-

icy [19]. Despite the benefits of the vast number of

pandemic resource prediction models, three drawbacks

limit the usefulness of these models for hospitals.

Firstly, prediction models lack the ability to inte-

grate multiple patient flows and stochastic parameters

(e.g. assumes fixed Length-of-Stay (LoS) for every pa-

tient). This reduces the accuracy and validity of the

model in representing reality. However, Costa et al. [12]

stated that “Using [...], average length of stay, [...] to

calculate the number of critical care beds needed is

mathematically incorrect because of nonlinearity and

variability in the factors that control length of stay”

(p.320). Additionally, Weissman et al. [45] stated that

there is a need to inform the model with local data

and local parameters, and to include multiple patient

flows to predict resource requirements more accurately.

In response, Zhang et al. [50] did model different patient

flows, but failed to incorporate stochastic parameters.

A systematic review of LoS parameters concluded that

there is a need for stochastic LoS distributions, fitted

to local and patient flow-dependent data [32].

Secondly, the prediction models concentrate on mod-

elling a limited set of resources: (ICU) beds, ventilators

and deaths. Woodul et al. [49] summarised the com-

mon strategy adopted in literature to decrease mod-

elling complexity: “Hospital beds, [...] is used as a proxy

for space, resources and providers” (p.4). Nevertheless,

this approach is too simplistic and does not accurately

reflect the resource scarcity in hospitals during the first

wave: there were hundreds of empty beds, but there

is a lack of PPE, staff, oxygen and mortuary capacity

[46, 6]. Some models [38, 37] included more resources,

such as PPE and staff. However, these models did not

account for different patient flows (e.g. a complicated

patient flow: general ward → ICU → general ward).

Finally, the overwhelming majority of the resource

prediction models discussed do not predict non-COVID-

19 care, whilst these activities were significantly cut

down during the pandemic. This was recognised as a

significant shortcoming, requiring further research [30,

27].

1.2 Resource Allocation Modelling

Scarcity of hospital resources calls for effective resource

allocation strategies [44], regardless of COVID-19: “Ef-

ficient functioning of a hospital depends on how it al-

locates its resources, particularly allocating beds to pa-

tients, a problem fraught with complexities and uncer-

tainties” (p.298) [5]. Models were developed to evaluate

resource allocation decisions, such as bed-plan expan-

sions [11], and specific events, such as the annual winter

bed crisis [43].

Literature proposed several methods to allocate scarce

resources. Hospital resources can be allocated based on

i) patient flows or demand intensity [44, 8], ii) priority

of patient groups (e.g. by ‘ring-fencing’ capacity [1, 14]),

and iii) the likelihood of favourable outcome (i.e. triage

of patients [39]). In this section, we describe the limita-

tions of models evaluating resource allocation decisions.
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Firstly, disaster resource allocation models fail to

provide a holistic view on health care during a dis-

aster. Apart from resource scarcity in regular times,

there is an increased scarcity of healthcare resources

during disasters (incl. pandemics). However, the liter-

ature has only analysed resource allocation within the

disaster [4, 42]. This implies that a fixed set of resources

is shared between the patients affected by the disas-

ter, rather than balanced between all patients requiring

care.

Secondly, allocation models fail to acknowledge that

non-pandemic care cannot be modelled as a constant

baseload during a pandemic. The impact of surging

pandemic care on non-pandemic care is often not eval-

uated in prediction or allocation models. For example,

Wood et al. [48] stated that the act of balancing re-

sources and evaluating the opportunity cost of surging

capacity is left as an exercise for decision-makers. Zhang

et al. [50] included regular care as a baseload factor to

the model. Nevertheless, this baseload is independent of

lock-down policies, the availability of resources, or the

intensity of the virus-spread. The application of such a

baseload is found both in models studying pandemics

in general [29, 49] and COVID-19 specifically [26]. This

method fails to account for essential characteristics of

hospital operations during a pandemic.

1.3 Literature Gap and Relevance

Based on the limitations outlined, there is a need for

resource allocation models to include and balance both

pandemic care and regular care [30, 17, 27]. Balanc-

ing the two types of care requires an integrated predic-

tion of both types of care, to subsequently determine

the overall impact of different allocation strategies. Sec-

ondly, there is a need to model a more comprehensive

set of resources, such as staff. Thirdly, there is a need

for stochastic and locally-informed parameters and pro-

cesses to resemble local healthcare practises and clinical

variability more closely. Subsequently, this paper aims

to answer the question: What is the impact of scarce

resource allocation strategies on the ability to treat pa-

tients during a pandemic?

1.4 Structure of the Paper

This paper is structured as follows. First, the modelling

of patient flows and scarce resources is presented in

Sect. 2, alongside an identification and analysis of the

required input data. Following the methodology, Sect.

3 presents the main results of the model, tailored to

a large regional hospital in England. Finally, Sect. 4

discusses the key findings, its implications, and limita-

tions. Directions for further research on scarce resource

allocation modelling were provided.

2 Materials and methods

This study aims to quantitatively measure the impact

of resource allocation strategies on the ability to treat

patients. This study evaluates the specific setting of

Addenbrooke’s Hospital, a major regional hospital in

Cambridge (United Kingdom). However, the study is

set-up to be generalisable for hospitals worldwide.

2.1 Identification of Scarce Resources

The resource scarcity that hospitals face is time and

context-dependent. Scarce resources were defined as:

resources which i) are in greater demand than supply

now or in the future, ii) are shared between COVID-19

and non-COVID-19 patients, and iii) are predictable

in both supply and demand. From a long-list of eight

hospital resources (i.e., beds, equipment, staff, PPE,

consumables, oxygen, medication, mortuary), two sets

of scarce resources were identified based on the defi-

nition provided. The definition and choice of scarce re-

sources were co-constructed and validated by managers,

planners and clinician leads in Addenbrooke’s hospital.

Resources which were scarce but not shared between

COVID-19 and non-COVID-19 patients were excluded,

as this study aimed to explore the inter-group balancing

effects.

First, critical care (CC) beds are used by both COVID-

19 and non-COVID-19 patients and are extremely scarce

and resource-intensive. CC is defined as the combina-

tion of the intensive care unit (ICU) and the high-

dependency unit (HDU).

Secondly, the pandemic places extraordinary pres-

sure on CC staff, requiring other staff groups to fulfill

the role of CC staff, especially operating theatre staff.

Hence, CC and operating theatre staff collectively form

a pool of shared and scarce resources, illustrated in Fig-

ure 11. This study focused on operating theatre staff in

contrast to nursing staff from other specialties, as op-

erating theatre staff proved to form the outer flexible

deployment layer for CC at Addenbrooke’s hospital. It

was assumed that all available nursing staff from other

1 RN(CC): Registered Nurse - Critical Care; RN(Scrub):
Registered Scrub Nurse; RN(Recovery): Registered Recovery
Nurse; RN(ODP/AP): Registered Nurse - Operating Depart-
ment Practitioner/Anaesthetic Practitioner; RN(In-Charge):
Registered Nurse-In-Charge
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wards was already transferred to CC. Although essen-

tial to the care of patients, the other resources were

assumed to have sufficient capacity.

Fig. 1 Staff Pool for Critical Care

2.2 Mapping Patient Flows

This study aimed to integrate COVID-19 with forms of

non-COVID-19 care. Whereas emergency department

(ED) services continued throughout the pandemic, sur-

gical care saw an inverse relationship with the COVID-

19 wave: many surgeries were cancelled to enable in-

creased capacity on CC. Hence, this study focuses on

the relationship between COVID-19 and surgical pa-

tient streams.

Hospital patient flows are highly variable and unique.

Despite the high variation, the majority of COVID-19

patients seem to follow one of two categories of pa-

tient flows (see Figure 2): complicated stay (requiring

GW and ICU stay) and uncomplicated stay (requiring

GW stay only), based on experiences in Addenbrooke’s

Hospital and available literature [51]. Figure 2 displays

the patient flows identified by Addenbrooke’s lead in-

fectious disease consultant, based on observed patient

flows of 475 COVID-19+ patients. For simplicity, un-

observed or unlikely patient flows were excluded.

Fig. 2 Identification of COVID-19 patient flows.

In parallel, a flow of elective (EL) and emergency

(NEL) surgical patients move through the hospital after

Fig. 3 Identification of surgical patient flows

leaving the operating theatre (OR). Whereas COVID-

19 patient flows were modelled using a set of sequential-

processes, surgical patient flows were described by a

process-network accounting for the variability in clin-

ical needs. Figure 3 presents the network structure of

levels-of-care, according to the process-network approach

suggested by Devapriya et al. [16]. The network includes

additional levels-of-care besides GW, HDU and ICU:

the overnight-intensive recovery (OIR) and intermediate-

dependency area (IDA). The modelling approach ac-

commodates for all possible flows between all nodes,

whilst allowing the transfer probability between certain

nodes to be zero. To acknowledge the clinical differences

between elective and emergency surgical patients, the

network was modelled separately to facilitate different

transfer probabilities and LoS.

2.3 Resource Allocation Strategies

Three resource allocation strategies were co-constructed

with directors of Addenbrooke’s Hospital: i) a proactive

cancellation strategy of non-COVID-19 care, ii) a reac-

tive cancellation strategy of non-COVID-19 care, and

iii) a ring-fencing strategy of elective surgical care. The

strategies reflect different ways of preparation for an un-

certain wave, and vary the prioritisation of COVID-19

and elective surgical patients, which hospitals -including

Addenbrooke’s Hospital- consider to deploy for a second

wave (see Table 1). The first two strategies prioritise

COVID-19 over elective surgery but assume different

forms of preparation; the pro-active cancellation strat-

egy enables staff training for CC whereas the reactive

cancellation assumes staff training is no longer required.

The ring-fencing strategy prioritises elective surgical

care over COVID-19 care up to a certain threshold to

enable life-saving surgery.
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Table 1 Resource Allocation Strategies

1. Pro-active
Cancellation

2. Reactive
Cancellation

3. Ring-fencing
Theatres

Priority
1. NEL
2. COVID-19
3. EL

1. NEL
2. COVID-19
3. EL

1. NEL
2. EL
3. COVID-19

Close
The-
atres

At the start
of the wave

When neces-
sary

When neces-
sary, up to a
threshold.

Open
The-
atres

After peak
when possible

When possi-
ble

When possible

Source [23] [41] [14]

NEL: non-elective surgery, EL: elective surgery

2.4 Key Performance Indicators

The resource allocation policies were analysed using

a balanced set of key performance indicators (KPIs),

based on hospital operations literature [52, 16]. The

KPIs evaluated the core concepts: i) how many pa-

tients can be admitted to the hospital, ii) how many

patients can be provided full treatment, and iii) what

was the outcome of these treatments (see Table 2).

‘KPI-3 CC Rejections’ was defined as: the number of

patients not being able to capture the appropriate bed

or staff required for their level of care on CC [52] within

a given time-frame. Rejections were documented sepa-

rately from direct deaths, as rejections are the result

of hospital operations rather than the patient’s clinical

characteristics.

Table 2 Key Performance Indicators to evaluate Resource
Allocation Strategies

KPI Focus Goal

1 Elective Surgeries Performed Patient arrival Maximise
2 COVID-19 Admissions Patient arrival Maximise

3 CC Rejections
Patients deferred
required bed-level

Minimise

4 Deaths
Effectiveness of
treatment

Minimise

While acknowledging that weighting these KPIs re-

quires ethical considerations, the Aggregated Hospital

Performance measure (AHP) was introduced to com-

pare the strategies using a single metric, by making the

following assumptions:

– A proportion of elective surgery can be considered

life-saving, avoid an -otherwise inevitable- death;

– Waiting for more than 24h for CC (i.e. CC Rejec-

tion) will result in death;

– Not admitting a COVID-19 patient will result in

death.

Subsequently, the AHP is calculated using Equation 1.

The ‘life-saving proportion’ was introduced based on

validation of the AHP by clinicians, to account for the

fact that not all surgery can be considered life-saving.

A sensitivity analysis of the AHP measure is performed

on the proportion of life-saving surgeries in Section 3.4.

The AHP measure enables a comparison of strategies

for a specific situation but should not be used as stand-

alone metric to compare different hospitals or situa-

tions.

AHP = EL Surgeries Performed ∗% Life Saving +

COV ID 19Admissions−
Total Deaths−
CC Rejections

(1)

2.5 Stochastic Modelling

Analysing hospital patient flows and evaluating the con-

sumption of resources requires an approach accounting

for different patient flows and variability [12]. This sec-

tion describes the modelling approach and assumptions.

2.5.1 Selection of Modelling Methodology

A stochastic modelling methodology is required to ac-

count for the operational and clinical variability inher-

ent to COVID-19. The most common method to model

COVID-19, epidemiological models, are used to predict

the demand for hospital resources [10, 28, 19], but failed

to model COVID-19 and non-COVID-19 care. On the

other hand, analytical models are powerful to derive
mathematically optimal allocation strategies for a given

resource set [7]. Despite providing optimal results, fun-

damental assumptions limit the validity of the results in

practice [7]. Finally, simulation models are applied for

both COVID-19 and non-COVID-19 purposes [40, 34,

35, 37] by modelling patients, processes and resources

[9], but have not been integrated as of yet. Seeing that

COVID-19 and non-COVID-19 patients have high re-

source inter-dependency and diverse patient flows [3],

simulation is deemed most suitable.

2.5.2 Selection of Simulation Paradigm

Different simulation tools have been applied to model

pandemics: system dynamics (SD), agent-based mod-

elling (ABM) and discrete event simulation (DES) [15,

18]. For this study, DES is the most suitable simula-

tion tool. DES recognises the hospital unit-of-analysis,

stochastic patient flows [21], and has the ability to anal-

yse resource allocation policies.
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6 GM et al.

2.5.3 Simulation Model

The patient flows, KPIs and resource allocation strate-

gies were implemented in Arena software, version 16

(2019, Rockwell Automation Technologies). The model

is open source and modifiable but requires a commercial

Arena software license. The number of replications was

determined using the Monte-Carlo sampling method

[47]. The model was run for 85 replications to account

for a desired error margin of 1 CC bed at a 95% con-

fidence level. The output was analysed and visualised

using Python, version 3.7 (2020, Python Software Foun-

dation). The results were supplemented with 5% and

95% percentile bands to represent the degree of uncer-

tainty.

2.5.4 Modelling Logic

The model encompasses three main capacity decision-

making heuristics derived from hospital operational pro-

cesses, co-constructed and validated by hospital direc-

tors and clinicians. Firstly, ICU capacity surging is

potentially required if too many (COVID-19) patients

require an ICU bed. When and how much to expand is

detailed in the ICU capacity surge logic, presented in

Figure 4.

Fig. 4 Capacity Surge Modelling Intensive Care Unit (ICU)

Secondly, Figure 5 illustrates the process of open-

ing/closing theatres to account for additional staff

needs on CC during a pandemic wave. Opening/closing

theatres is evaluated weekly, to account for the prepara-

tion of theatres, equipment, staff and patients for these

major operational changes.

Thirdly, there may be insufficient beds or staff avail-

able for patients requiring ICU/HDU, resulting in CC

rejections, illustrated in Figure 6. Following the defi-

nition of KPIs in Sect. 2.4, rejections and deaths were

documented separately to enable in-depth analysis.

2.6 Data Collection and Processing

The collection and processing of the input data is dis-

cussed in the subsequent sections, following the pa-

Fig. 5 Modelling of Opening and Closing of Operating The-
atres. OR: operating theatre/room, ICU: intensive care unit.

Fig. 6 Intensive Care Unit (ICU) and High Dependency Unit
(HDU) Patient Rejection Modelling

tient’s journey: arrival scenarios, hospital patient flows,

LoS and resource consumption.

2.6.1 Patient Arrivals & Scenarios

The simulation model evaluates the resource allocation

strategies for two COVID-19-positive hospital admis-

sion scenarios, depicted in Figure 7. First, the base

case scenario describes hospital admissions to Adden-

brooke’s hospital similar to what was observed during

the first wave. Second, the worst case scenario describes

an alternative scenario to the base case scenario, with

a peak number of admissions more than twice as high.

Fig. 7 COVID-19 Daily Admission Scenarios; Base Case
(left) and Worst Case (right)

The arrival of elective and emergency surgical pa-

tients is determined separately. Figure 8 illustrates the

capacity of emergency theatres required by Addenbrooke’s
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Fig. 8 Emergency Theatre Capacity Addenbrooke’s

hospital to treat all emergency surgical patients within

appropriate time-frames. The number of daily elective

surgeries is based on the number of elective theatres

open, and assumed to have ample demand, seeing the

insurmountable backlog [13, 20].

2.6.2 Transition Probabilities

After COVID-19 patients enter the hospital according

to the arrival schedule, they follow one of the patient

flows depicted in Figure 2, with the transition probabil-

ities presented in Table 3, based on anonymised patient

flow data of 475 COVID-19 patients.

Table 3 COVID-19 Transfer Probabilities based on Patient
Data March-June 2020, Addenbrooke’s Hospital

Transfer Probability Value

1 Survival Rate ICU 61.1%
2 Survival Rate GW 71.8%
3 ICU Required 22.4%
4 GW (Pre-ICU) Required 28.3%
5 Transfer-out Probability 7.4%

GW: general ward, ICU: intensive care unit

In parallel, surgical patients are released from the

operating theatre and enter the hospital patient-flow

network (Figure 3). The patient-flow network is ac-

companied by a transfer-probability matrix, which was

constructed separately for elective and emergency sur-

gical patients (Table 4 and 5, respectively). The ma-

trices are derived based on 28,831 patients receiving

surgery in 2019, by analysing their 128,811 anonymised

and unique one-step ward transitions at Addenbrooke’s

hospital, using a three-step methodology:

1. Every patient’s individual sequence of ward loca-

tions is transformed into a patient flow of ‘level-of-

cares’ (e.g. GW → OR → OIR → ICU → GW).

2. Each individual patient flow is split into a set of

one-step transitions (e.g. GW → OR; OR → GW).

3. Based on all one-step ward transitions, the proba-

bility of transitioning to another ward is calculated,

conditioned on the current location.

It is important to note that this approach does take

into account a patient’s previous level-of-care when de-

termining the probability of transferring, but is limited

by not considering all previous levels-of-care of a pa-

tients journey. This reduces the accuracy of predicting

patient flows for the surgical patients.

2.6.3 Length-of-Stay

Demand for resources by COVID-19 patients is signifi-

cantly influenced by the LoS of patients, and hence the

accuracy of resource demand-prediction models are sen-

sitive to the parameters used to model the LoS distribu-

tion [32]. LoS distributions were fitted for each level-of-

care (e.g. ICU) on anonymised patient flow data. More

specifically, the stage in the patient flow is incorporated.

For example, the average time on a general ward before

going to ICU is significantly shorter than the time spent

on a general ward after being discharged from ICU [51].

The distribution fitting was performed using @RISK

software, version 8 (2005, Palisade USA), using the pa-

tient data of 475 COVID-19+ adult patients admitted

to Addenbrooke’s hospital between March-June, 2020.

The best fit was determined based on a combination of

the Chi-Squared and Kolmogorov-Smirnov (KS) test.

For surgical patients, the LoS was constructed based

on analysing the anonymised patient flows of 28,831 pa-

tients receiving surgery in 2019 at Addenbrooke’s hospi-

tal. To account for LoS differences based on improving

and deteriorating health-conditions, the LoS was based

on both the level-of-care of interest and the preceding

level-of-care [16], similar to the methodology described

in Sect. 2.6.2. To enable the health condition-based LoS,

the simplifying assumption was made that the LoS can

be modelled in a deterministic manner for surgical pa-

tients, using the average LoS.

2.6.4 Resource Consumption

A patient requires both a bed and staff. Staff as a re-

source is expressed in whole time equivalent (WTE),

which enables a capacity management on a weekly level.

Figure 9 presents the estimated staffing ratios in Ad-

denbrooke’s hospital during a pandemic. Additionally,

the model captures the ability to work together with the

Independent Sector (IS). IS theatres only require a hos-

pital’s anaesthetist consultant, but no theatre nurses.

Finally, 25% of staff capacity was reserved for annual

leave, sickness, shielding and training.
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Also non-surgical patients occupy CC resources, usu-

ally through direct referral from the ED. This addi-

tional patient flow to CC is accounted for by including a

baseload-factor, derived from historical CC occupancy.

Data analysis suggests on average 15 patients in ICU

and 10 in HDU, are non-surgical patients.

Fig. 9 Staffing Ratios for each Department in Addenbrooke’s

2.7 Model Validation

Model validation is performed to evaluate the degree to

which the model accurately represents reality [25].

Firstly, black-box testing is the validation of the

model output with the actual numbers observed in re-

ality. Black-box testing was performed by comparing

the predicted and actual bed occupancy for COVID-19

during the first wave, and by comparing the predicted

number of theatres open and the actual number of the-

atres open.

Secondly, structure-verification testing was ap-

plied [25] to validate the structure and processes in

the model [52]. More specifically, patient flows, deci-

sion nodes and main decision-making heuristics were

validated by operational managers and clinicians.

3 Results

The impact of resource allocation strategies on hospi-

tal performance was evaluated using the proposed sim-

ulation model. This chapter highlights the results from

data-gathering and processing, and the results from the

simulation model.

3.1 Data Analysis Results

3.1.1 Patient Flow Transition Probabilities

A COVID-19 patient follows one of a set of structured

flows (see Figure 2), for which the probability of fol-

lowing an arbitrary route was presented in Table 3,

based on anonymised patient flow data. On the other

hand, a surgical patient’s journey is driven by their

health condition. The transition matrices for elective

and emergency surgery (Table 4 and Table 5, respec-

tively) present the chance of transferring to a specific

location (i.e. destination), given the previous location

(i.e. origin), after completing the LoS of the previous

location. It is also possible for a patient to transition

to a destination with the same level-of-care as the ori-

gin, e.g. a patient moving from a specialised colorectal

post-surgical recovery ward (GW) to a general oncol-

ogy ward (GW). Hence, P (Destination = Y |Origin =

Y ) ≥ 0, where Y represents any level-of-care.

The results show that a patient will always have the

highest chance to move to a general ward or to get dis-

charged from a general ward. Also, the chance of tran-

sitioning from operating theatres to CC is significantly

higher for emergency (16.4%) than for elective (0.74%)

surgical patients.

Fig. 10 Length of Stay (LoS) Distribution Fitting COVID-
19 Patient Flows. GW: General Ward, ICU: Intensive Care
Unit.

3.1.2 Length-of-Stay

COVID-19 Length-of-Stay. Table 6 presents the best-

fitted distribution to capture the variability in LoS of

COVID-19 patients. The null-hypothesis (i.e. the theo-

retical distribution accurately reflects the empirical dis-

tribution) was accepted at 5% significance-levels (i.e. p-

value > 0.05) for each of the fitted distributions. Figure
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Table 4 Transition Probability Matrix for Elective Surgical Patients

ELECTIVE Destination
Transition Prob. (in %) OR ICU OIR HDU IDA GW Death Discharge Other

Origin

OR 0.10 0.69 3.82 0.05 0.30 91.3 0.00 0.04 3.66
ICU 16.8 3.29 0.00 0.41 19.7 50.2 2.47 4.94 2.06
OIR 1.84 1.84 0.00 0.25 29.2 56.9 0.00 2.82 6.99
HDU 0.00 0.00 0.00 0.00 0.00 81.8 0.00 18.1 0.00
IDA 4.38 2.84 0.00 0.26 0.00 88.4 0.00 1.80 2.32
GW 1.21 0.40 0.48 0.04 0.23 4.21 0.04 92.7 0.64

Table 5 Transition Probability Matrix for Emergency Surgical Patients

EMERGENCY Destination
Transition Prob. (in %) OR ICU OIR HDU IDA GW Death Discharge Other

Origin

OR 0.78 15.0 0.40 1.37 1.77 75.5 0.22 0.02 4.91
ICU 23.3 2.95 0.00 10.19 9.39 42.8 6.69 3.03 1.59
OIR 1.89 3.77 0.00 1.89 15.0 71.7 0.00 1.89 3.77
HDU 9.88 6.48 0.00 0.00 0.00 82.4 0.62 0.62 0.00
IDA 9.12 7.06 0.00 0.29 0.00 78.5 1.76 2.65 0.59
GW 9.24 2.88 0.33 1.38 1.32 29.7 0.86 53.3 0.94

Table 6 Length of Stay (LoS) Distribution Fitting COVID-19 Patients. GW: General Ward, ICU: Intensive Care Unit.

Parameter n
Mean
(days)

SD Distribution Chi-Sq. KS p-value

GW (Pre-ICU) 28 2.65 3.13 Gamma(α=0.81, β=3.23) χ2(27)=4.14 0.19 0.313
ICU 99 18.4 17.9 Weibull(α=1.02, β=18.6) χ2(98)=12.8 10.0 0.131
GW (Post-ICU) 52 13.6 11.2 Erlang(m=2, β=6.80) χ2(51)=13.0 3.00 0.054
GW (Uncompl.) 346 10.3 9.61 Weibull(α=1.03, β=5.41) χ2(345)=12.2 18.0 0.662

10 illustrates the high variability in LoS and the visual

fit of the fitted theoretical distributions.

Post-Surgical Length-of-Stay. Tables 7 and 8 present

the average LoS for each origin-destination combination

for elective and emergency patients, respectively. The

results reiterated the need for origin-dependent LoS pa-

rameters: e.g. the mean LoS for elective patients on GW

and ICU ranged between 0.9-8.1 and 3.3-5.4 days, re-

spectively.

Table 7 Average LoS for Elective Surgical Patients

ELECTIVE Destination
LoS (in days) ICU OIR HDU IDA GW

Origin

OR 4.46 1.13 1.54 2.39 0.85
ICU 3.30 0.00 0.94 3.34 7.55
OIR 4.05 0.00 3.43 3.15 5.46
HDU 0.00 0.00 0.00 0.00 1.95
IDA 5.43 0.00 1.05 0.00 8.10
GW 3.29 1.08 4.22 3.16 2.68

Table 8 Average LoS for Emergency Surgical Patients

EMERGENCY Destination
LoS (in days) ICU OIR HDU IDA GW

Origin

OR 5.81 1.16 3.46 2.19 4.78
ICU 3.28 0.00 6.07 2.99 9.32
OIR 2.67 0.00 2.68 4.00 4.01
HDU 4.37 0.00 0.00 0.00 6.93
IDA 4.66 0.00 0.47 0.00 8.75
GW 3.54 0.91 2.74 2.57 5.55

3.2 Model Validation

Black-box testing was performed to evaluate the accu-

racy of model predictions with the actual observations

in the hospital. First, black-box testing for COVID-19

bed occupancy was performed over the period March -

June 2020, based on actual admissions. Figure 11 illus-

trates the high accuracy of the model in terms of GW

bed occupancy and ICU bed occupancy.

Fig. 11 Black-box Testing of COVID-19 General Ward
(GW) (left) and Intensive Care Unit (ICU) (right) Bed Oc-
cupancy

On the other hand, Figure 12 shows that the model

underestimates the total number of operating theatres

which can be opened during an in-between-waves con-

text (i.e. June 2020) by 20%. Two assumptions concern-

ing staff requirements explain the discrepancy. Firstly,

‘COVID-19 staffing ratios’ were assumed for all operat-
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ing theatres (i.e. increased staffing ratios) to account for

infection-control regulation. However, in June 2020 sev-

eral ‘normally-staffed’ theatres were in operation, due

to the low prevalence of COVID-19 in the hospital and

community. Secondly, the model assumed a COVID-

19 consultants rota, requiring more consultants to be

present in the hospital during the night, reducing the

available capacity for elective theatres.

Fig. 12 Black-box testing of Operating Theatre Capacity.
CUH: Cambridge University Hospitals, IS: Independent Sec-
tor

3.3 Resource Allocation Strategy Results

The simulation model enabled an analysis of the re-

source allocations strategies. This section presents the

in-depth results for the individual strategies, followed

by an overall comparison.

3.3.1 Resource Allocation Strategies

Strategy 1 - Proactive Cancellation of Elective Surgery.

The first strategy dictates that from the onset of a

COVID-19 wave, all elective surgery is cancelled, such

to allow for CC training for theatre staff. Figure 13 il-

lustrates the evolvement of open elective theatres over

time, showing a significant drop in capacity under both

the base case and worst case COVID-19 scenarios. In a

worst case scenario, the process of opening theatres is

more gradual and takes an additional month to achieve

the same level, compared to a base case scenario. No-

tably, Figure 13 refutes the idea that the end of the

admissions peak inherently marks the start of opening

theatre capacity. Firstly, the evaluation of opening ca-

pacity occurs weekly and takes a subsequent period to

transition. Secondly, the CC occupancy graph does not

necessarily match the COVID-19 admissions graph.

Strategy 2 - Reactive Cancellation of Elective Surgery.

The second strategy is similar to the proactive can-

cellation strategy, but elective theatres are opened or

Fig. 13 Development of Elective Theatres Open under
Proactive Cancellation Policy for COVID-19 Base Case (top)
and Worst Case (bottom).

closed in a more agile way. Figure 14 illustrates that

60% more theatres need to be closed during a worst

case scenario than in a base case scenario. The results

suggest that Addenbrooke’s hospital can always main-

tain some level of elective surgery throughout the pan-

demic. Finally, the recovery period for both scenarios

takes approximately 4-5 months, affecting elective ca-

pacity until April 2021.

Strategy 3 - Ring-Fencing Elective Surgery. The ring-

fencing strategy limits the process of closing theatres

to a certain level to facilitate elective surgery. Figure

15 shows that for a base case scenario, ring-fencing re-

sulted in relatively minor differences compared to a re-

active cancellation strategy. However, in a worst case

scenario, significantly more theatres remain open. The

secondary effects were analysed in subsequent sections.

3.3.2 Comparative Analysis

The previous section presented the impact of resource

allocation policies on the ability to open elective the-

atres. A comparative analysis of strategies aids the dis-

cussion to determine the ‘optimal’ resource allocation

strategy.

Hospital Front-End. Hospitals aim to admit any pa-

tient requiring care without delay. Figure 16 presents
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Fig. 14 Development of Elective Theatres Open under Re-
active Cancellation Policy for COVID-19 Base Case (top) and
Worst Case (bottom).

Fig. 15 Development of Elective Theatres Open under Ring-
Fencing Policy for COVID-19 Base Case (top) and Worst
Case (bottom).

the number of admitted COVID-19 patients and Figure

17 presents the number of elective surgeries performed,

for each strategy, grouped by COVID-19 scenario. The

negligible effect of the strategies on COVID-19 admis-

sions is explained by the assumption that every patient

requires a GW stay before potentially requiring CC. It

was further assumed that GW beds are not scarce in a

hospital during a pandemic, in line with Addenbrooke’s

hospital’s experience during the first wave.

Fig. 16 KPI - COVID-19 Admissions

The ability to perform surgery is significantly de-

pendent on the strategy. Firstly, proactive cancellation

results in 11% fewer surgeries compared to reactive can-

cellation, as an effect of proactively closing theatres.

Secondly, a ring-fencing strategy translated in signifi-

cantly (i.e. 10%) more surgeries compared to a reactive

strategy in a worst case scenario, but only performs

marginally better (i.e. 2.5%) in a base case scenario.

Fig. 17 KPI - Elective Surgeries Performed

Patient Outcomes. Even though hospitals aim to max-

imise the number of people it can admit, it simulta-

neously aims to maximise patient treatment and out-

comes. Figure 18 presents the number of rejections for

each strategy and scenario. The most important con-

clusion is that the ability to treat patients is greater

under a base case scenario; a worst-case scenario results

in at least 20 times more CC rejections. Moreover, the

ring-fencing strategy results in 10% more surgeries but
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50% more rejections. These results expose the multi-

objective optimisation context: maximising the number

of surgeries performed whilst minimising the number of

rejections.

Fig. 18 KPI - ICU & HDU Rejections. ICU: intensive care
unit, HDU: high dependency unit.

Minimising the total number of deaths is often a

core objective during pandemics. This study defined

deaths more holistically by including non-COVID-19

deaths; specifically surgical patients not surviving their

hospital stay. Figure 19 shows that the total direct

deaths are twice as high in the worst case scenario.

While there is no significant difference in a base case

scenario, a ring-fencing strategy results in slightly fewer

direct deaths in a worst case scenario. This effect is

predominantly explained by the increased rejection of

COVID-19 patients under a ring-fencing strategy, which

results in fewer direct deaths in the hospital.

Fig. 19 KPI - Total Direct Deaths (excl. CC Rejections and
Surgeries Performed)

Aggregated Hospital Performance. The four KPIs were

aggregated by the AHP-measure into a single-currency

metric by using the assumptions stated in Sect. 2.4. In

addition, for this preliminary analysis, we assume that

100% of the elective surgeries are life-saving, e.g., the

unavailability of surgery will result in the death of the

patient. Figure 20 presents the AHP results, suggest-

ing that a ring-fencing strategy is superior over both

the proactive and the reactive cancellation strategy, re-

sulting in a 2-20% performance improvement. A proac-

tive cancellation strategy -potentially unnecessarily- re-

duces the number of surgeries performed, where the

reactive cancellation policy prioritises resources to a

group of resource-intensive patients with a relatively

low likelihood of a favourable outcome. Both the order

of magnitude of average AHP and the ranking of strate-

gies are consistent and independent of the COVID-19

scenarios. Hence, the AHP-measure is robust in differ-

ent contexts.

Fig. 20 KPI - Aggregated Hospital Performance (AHP)

3.4 Sensitivity Analysis

A sensitivity analysis was performed to evaluate the ro-
bustness of the model and results. More specifically, the

underlying assumptions of the proposed AHP-measure

were evaluated. The proportion of elective surgeries which

can be considered ‘life-saving’ was stretched between 0-

100%. Figure 21 shows the sensitivity analysis of per-

formance of the resource allocation strategies in terms

of AHP. The null-hypothesis that a ring-fencing strat-

egy outperforms a reactive cancellation strategy was

rejected if only less than 7.3% of the elective surgeries

can be considered ‘life-saving’ (α = 5%). Otherwise, the

ring-fencing strategy prioritising elective surgical care

seems superior.

4 Discussion

4.1 Key Findings

This study evaluated the impact of resource allocation

strategies on the ability to treat patients. First of all,
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Fig. 21 Sensitivity Analysis of Aggregate Hospital Perfor-
mance (AHP)-measure on Proportion of Surgeries classified
as Life-Saving.

it can be concluded that a single COVID-19 wave sig-

nificantly impairs the hospital’s ability to treat patients

for 4-5 months. COVID-19 patients have a higher prob-

ability of requiring CC (20% vs <1%), a significantly

longer LoS (19 vs 4 days), and a significantly higher

probability of dying on CC (36% vs 2.75%) compared

to elective surgical patients.

Secondly, a proactive cancellation strategy enables

staff training for CC and allows hospitals to prepare

for the ‘unknown’ influx of COVID-19 patients. How-

ever, this does come at the cost of 11% fewer surgeries

compared to a reactive cancellation strategy, while not

resulting in fewer death or CC rejections.

Under a reactive cancellation strategy where a staff

training period is not required, significantly more surg-

eries can be performed. As a result, this strategy en-

ables more surgery without seeing increased CC rejec-

tions or deaths.

Thirdly, a ring-fencing strategy for operating the-

atres enables surgical capacity regardless of COVID-

19, translating in 2.5-10% more surgeries compared to

a reactive strategy for a base case and worst case sce-

nario, respectively. However, CC will be unable to cope

with the influx of COVID-19 patients, especially un-

der a worst case scenario; resulting in 50% more CC

rejections.

Overall, no strategy outperforms on all aspects. To

consolidate the different KPIs, the AHP-measure was

introduced. The measure is dependent on the assump-

tions that all surgery is life-saving surgery during a pan-

demic, and that not admitting a COVID-19 patient re-

sults in death. According to the AHP-measure, a ring-

fencing strategy achieves an average AHP improvement

of 12% over the other strategies, potentially saving more

lives. The increased number of CC rejections under a

ring-fencing strategy is outweighed by the vast amount

of additional surgeries performed. Such finding impor-

tantly goes against the strategy adapted by hospitals

worldwide: prioritising COVID-19 patients. The domi-

nance of the ring-fencing strategy in terms of AHP is ex-

plained by the fact that COVID-19 is a resource-intense

disease; occupying resources for a significant amount of

time with a relatively low likelihood of favourable pa-

tient outcomes.

Finally, the sensitivity analyses on the AHP-measure

showed that only a small proportion of surgeries (>7.3%)

have to be considered ‘life-saving’ to achieve a signifi-

cant difference between reactive cancellation and ring-

fencing strategies in favour of ring-fencing non-COVID-

19 surgical care over COVID-19. Further work is re-

quired on the life-saving nature of elective surgeries

before any conclusive remarks can be made. Further-

more it could be argued that a truly life-saving situa-

tion would be treated under emergency surgery, which

was outside the remit of this study.

4.2 Implications

The key findings lead to several implications for hospi-

tals on the modelling of resource utilisation, the prepa-

ration for a second wave, and on the allocation of re-

sources during a pandemic. Firstly, the results confirm

the need for stochastic and integrated modelling of COVID-

19 and non-COVID-19 care. Secondly, resource predic-

tion models should provide predictions on a wider range

of resources, including CC nurses and consultants, to

enable capacity management on the actual bottlenecks.

Besides the implications for modelling, this study

also has implications on the prioritisation of COVID-19

patients. COVID-19 is a resource-intense disease with a
relatively low likelihood of a favourable outcome. A sig-

nificant trade-off exists between COVID-19 and surgical

patients. A ring fencing strategy seems to outperform

the other strategies as long as more than 7.3% of surg-

eries are life-saving. In conclusion, this evaluation aids

an ethical discussion on the prioritisation of patients

and its effects.

Finally, this evaluation demonstrated the need for

hospitals to engage in preparation by training staff for

CC and improving organisational flexibility. Also, hos-

pitals can engage in resolving bottlenecks, e.g. by re-

cruitment efforts. This will enable hospitals to max-

imise the number of patients, both COVID-19 and non-

COVID-19, they can treat during the pandemic.

4.3 Limitations

This study made several assumptions limiting the ac-

curacy of the model. Firstly, the LoS for surgical pa-
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tients was not stochastically modelled using probability

distributions. Additionally, a patient’s journey was not

modelled on an individual’s clinical data and surgical

procedure (i.e. patient waiting list database) but based

on historical data for every origin-destination combina-

tion.

Secondly, even though this evaluation made a first

attempt in modelling COVID-19 and non-COVID-19

patients, several patient streams were still approximated

using a baseload. Moreover, this study evaluated re-

sources beyond beds, but assumed sufficient capacity

for other essential resources, such as ventilators and

PPE. Resources such as PPE were extremely scarce

during the first wave, and it should be evaluated if these

resources will again form a bottleneck.

Finally, the AHP-measure enables a single-currency

comparison of strategies but makes fundamental as-

sumptions limiting the validity of the aggregate mea-

sure. First of all, even though all surgeries classified as

‘P2’ according to the Royal College of Surgeons of Eng-

land clinical prioritisation rubric should be performed

within 30 days to prevent life altering/threatening con-

sequences [33], those patients do not necessarily die if

surgery is postponed. Therefore, this medical classifica-

tion does not necessarily accurately reflect the ‘propor-

tion of life-saving surgery’. Secondly, not admitting a

COVID-19 patient does not necessarily result in death.

Hence, it is important that the AHP-measure is consid-

ered with some degree of reservations, and that the in-

depth KPIs are consulted to evaluate the performance

of a strategy comprehensively.

4.4 Future Research

This study is the first in modelling the effect of allo-

cating resources between pandemic and non-pandemic

patients. In order to overcome the limitations and con-

tinue to explore how patient outcomes can be max-

imised, several recommendations for future research are

proposed.

First of all, new treatments for COVID-19, like remde-

vesir, have an impact on the patient flow, LoS and pa-

tient outcomes. Therefore, research is recommended to

evaluate how these treatments will result in reduced

resource requirements and increased capacity to treat

non-COVID-19 patients. It is expected that new treat-

ments for COVID-19 will reduce the strain on resources

and increase the favourability of prioritising COVID-19

care.

Secondly, this study recognised the interdependency

of hospital services, such as CC and operating theatres.

However, CC and operating theatres are only two areas

affected by COVID-19. General wards are similarly im-

pacted and potentially require additional staff during

a second wave. Hence, further research is suggested i)

to evaluate which areas are most significantly affected

and ii) to include these areas in the model, to more com-

prehensively analyse the impact of resource allocation

strategies.

Thirdly, the results of the AHP-measure suggest

that COVID-19 is a resource-intensive disease with a

relatively low likelihood of a positive outcome, advo-

cating for more life-saving surgery. The AHP-measure

requires an ethical evaluation to determine how deaths,

rejections, admissions and surgeries can be combined

while accounting for factors, such as i) likelihood of pos-

itive treatment outcome, ii) resource intensity of treat-

ment, iii) potential harm of postponing treatment.

5 Conclusion

As part of Addenbrooke’s Hospital operational response

to the pandemic, this evaluation aimed to answer the

question: What is the impact of scarce resource alloca-

tion strategies on the ability to treat patients during

a pandemic? The main findings show that a proactive

cancellation strategy enables staff training, but reduces

a hospital’s ability to perform surgery by 11% while

not significantly reducing deaths or rejections compared

to a reactive cancellation strategy. Moreover, a ring-

fencing strategy outperforms all other strategies in terms

of surgeries performed and total deaths, but at the cost

of 50% more CC rejections.

When evaluating the performance of the strategies

using the AHP-measure, this study suggests that pri-
oritising elective surgery over COVID-19 if a hospital

sees a high proportion of life-saving surgeries could lead

to better outcomes overall even though it might lead to

some patients infected with COVID-19 being rejected

for CC.

Finally, the open-source model proposed is general-

isable for hospitals worldwide and potentially for other

pandemics. Even though each pandemic inherently ex-

hibits clinical variability, pandemics will always signifi-

cantly draw from a vast range of hospital resources, in-

cluding CC. While acknowledging that the model was

tailored to Addenbrooke’s hospital, any hospital which

reallocated theatre staff to CC can make use of the

model and its findings. It can aid hospitals to inform

a strategic discussion on resource allocation and pri-

oritisation; a hospital’s individual characteristics, such

as different triage, treatments, or resource capacity, can

be captured by adjusting the input parameters. Finally,

this model could benefit tactical purposes by support-

ing i) decision-making on opening/closing theatres, ii)
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active management of shared resources, and iii) pan-

demic preparation in terms of staff training and recruit-

ment.
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