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On the moments of the characteristic polynomial
of a Ginibre random matrix

Christian Webb and Mo Dick Wong

Abstract

In this article, we study the large N asymptotics of complex moments of the absolute value of the
characteristic polynomial of an N ×N complex Ginibre random matrix with the characteristic
polynomial evaluated at a point in the unit disk. More precisely, we calculate the large N
asymptotics of E| det(GN − z)|γ , where GN is an N ×N matrix whose entries are i.i.d. and

distributed as N−1/2Z, Z being a standard complex Gaussian, Re(γ) > −2, and |z| < 1. This
expectation is proportional to the determinant of a complex moment matrix with a symbol
which is supported in the whole complex plane and has a Fisher–Hartwig type of singularity:

det(
∫
C
wiwj |w − z|γe−N|w|2d2w)N−1

i,j=0. We study the asymptotics of this determinant using recent
results due to Lee and Yang concerning the asymptotics of orthogonal polynomials with respect

to the weight |w − z|γe−N|w|2d2w along with differential identities familiar from the study of
asymptotics of Toeplitz and Hankel determinants with Fisher–Hartwig singularities. To our
knowledge, even in the case of one singularity, the asymptotics of the determinant of such
a moment matrix whose symbol has support in a two-dimensional set and a Fisher–Hartwig
singularity have been previously unknown.

1. Introduction and main result

The goal of this article is to study the large N asymptotics of moments of the absolute
value of the characteristic polynomial of an N ×N complex Ginibre random matrix, with
the characteristic polynomial evaluated at a fixed point in the unit disk. More precisely, we
prove the following result:

Theorem 1.1. Let GN be an N ×N complex Ginibre random matrix (that is, its entries
are i.i.d. and distributed as N−1/2Z, where Z is a standard complex Gaussian), Re(γ) > −2,
and z ∈ C with |z| < 1. Then as N → ∞

E|det(GN − z)|γ = (1 + o(1))N
γ2

8 e
γ
2 N(|z|2−1) (2π)

γ
4

G(1 + γ
2 )

,

where G is the Barnes G-function, and the error is uniform in γ when restricted to a compact
subset of {γ ∈ C : Re(γ) > −2} and uniform in z ∈ {w ∈ C : r � |w| � R} with fixed 0 < r �
R < 1.

In the remainder of this introduction, we will briefly discuss some motivation and
interpretations of this result as well as give an outline of the rest of the article.
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1.1. Motivation — moment matrices with Fisher–Hartwig singularities and random geometry

In addition to the direct application of giving information about the spectrum of the matrix GN ,
understanding moments of the form E

∏k
j=1 |det(GN − zj)|γj is interesting due to connections

to problems in various areas of mathematics. Let us first point out that if one were considering
the case where GN was replaced by a Haar-distributed unitary matrix (the circular unitary
ensemble), such moments can be expressed as Toeplitz determinants whose symbol has so-
called Fisher–Hartwig singularities. The large N asymptotics of such determinants has a rather
long and interesting history — see, for example, [11–13] for background and recent results
concerning the problem. In the case where the matrix GN is replaced by a random Hermitian
matrix such as one sampled from the Gaussian unitary ensemble, such asymptotics have again
been successfully studied through a connection to the asymptotics of Hankel determinants with
Fisher–Hartwig singularities — see, for example, [6, 27].

As we will recall in Section 2, also moments of the form E
∏k

j=1 |det(GN − zj)|γj

can be expressed in terms of determinants of moment matrices, but now of the form
det(

∫
C
wiwj

∏k
l=1 |w − zl|γle−N |w|2d2w)N−1

i,j=0. Despite the success in the case of Haar-
distributed unitary matrices and random Hermitian matrices, to our knowledge, there are
virtually no results concerning the asymptotics of determinants of such ‘fully complex’ moment
matrices with Fisher–Hartwig singularities (though we refer to [20, Corollary 2], where a
representation of even integer moments of the characteristic polynomial in terms of matrix
hypergeometric functions is obtained, as well as [21], where a slightly different approach is
taken for studying even integer moments of characteristic polynomials of complex random
matrices). From this point of view, Theorem 1.1 can be seen as a first step in the direction of
a Fisher–Hartwig formula for such two-dimensional symbols.

Further motivation for Theorem 1.1 comes from random geometry. In [35], Rider and
Virág proved a central limit theorem for linear statistics of the Ginibre ensemble (that is,
for Tr(f(GN )) for suitable functions f) and pointed out that this is roughly equivalent to
log |det(GN − z)| − E log |det(GN − z)| converging to a variant of the Gaussian free field in a
suitable sense. The limiting object here can be understood as a random generalized function
which is formally a Gaussian process whose correlation kernel is − 1

2 log |z − w| for z, w in the
unit disk. Such random generalized functions have recently been discovered to be closely related
to conformally invariant Schramm-Loewner evolution-type random curves as well as the scaling
limits of random planar maps — see, for example, [2, 5, 9, 31, 36].

In this connection between the Gaussian free field and random geometry, an important role
is played by the so-called Liouville measure. This is a random measure which can formally
be written as the exponential of the Gaussian free field. While the Gaussian free field is
a random generalized function and exponentiating it is an operation one cannot naively
perform, there is a framework for making rigorous sense of such objects. This framework
is known as Gaussian multiplicative chaos and is a type of renormalization procedure to
define this exponential. The original ideas of the theory go back to Kahane [24], but we
also refer the interested reader to the extensive review of Rhodes and Vargas [34] as well as
the concise and elegant approach of Berestycki [4] for proving existence and uniqueness of the
measure.

Thus, motivated by the central limit theorem of Rider and Virág, a natural question is
whether multiplicative chaos measures can be constructed from the characteristic polynomials
of the Ginibre ensemble and can the limiting measure be connected to these objects appearing
in random geometry. Recently, multiplicative chaos measures have been constructed from
characteristic polynomials of random matrices in the setting of random unitary and random
Hermitian matrices — see [6, 29, 37]. What one would expect from these results is that

|det(GN − z)|γ
E|det(GN − z)|γ d

2z
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converges in law to a multiplicative chaos measure as N → ∞. Moreover, a central
question in [6, 29, 37] is to have precise asymptotics for quantities corresponding to
E
∏k

j=1 |det(GN − zj)|γj , so Theorem 1.1 is a first step in this direction as well.

1.2. Interpretation and speculation about Theorem 1.1

In this section, we offer some interpretation and speculation about our main result. We begin
with a central limit theorem for the logarithm of the absolute value of the characteristic
polynomial.

Corollary 1.2. For any fixed z ∈ C with |z| < 1,

1
1
2

√
logN

[
log |det(GN − z)| − 1

2
N(|z|2 − 1)

]
d→ N(0, 1),

as N → ∞. Here, N(0, 1) denotes the standard Gaussian distribution.

Proof. To see this, note that if we write

XN (z) =
1

1
2

√
logN

[
log |det(GN − z)| − 1

2
N(|z|2 − 1)

]
,

then Theorem 1.1 applied to the case γ = 2it/
√

logN (uniformity in γ plays an important role
here) can be written as

EeitXN (z) = (1 + o(1))e−
t2
2

for each t ∈ R. This, of course, implies the claim. �

Such results are typical in many random matrix models (see, for example, [25]), and may
well be known for the Ginibre ensemble through other methods, but we are not aware of a
suitable reference. In Section 6, we discuss various improvements of this corollary that were
suggested to us by an anonymous reviewer.

From our point of view, the reason to restrict to |z| < 1 is that this is a more interesting case
than |z| > 1: one should expect from [35] that for each z ∈ C for which |z| > 1, log |det(GN −
z)| − E log |det(GN − z)| converges in law to a real-valued Gaussian random variable — there
should be no Nγ2/8 appearing in this case. We expect that this could be proven using a similar
approach as the one we take here (using the results of [30] with |z| > 1), but we do not explore
this further. Note that another reason to distinguish between |z| < 1 and |z| > 1 is that in our
normalization, the unit disk is the support of the equilibrium measure for the Ginibre ensemble,
so it is the set where the eigenvalues should accumulate in the large N limit.

We also point out that Theorem 1.1 is easy to justify on a heuristic level. Indeed, proving
this result for z = 0 is very simple, as the relevant orthogonal polynomials can be calculated
explicitly (see Lemma 2.2 for the definition and importance of the orthogonal polynomials).
To heuristically justify our result for z �= 0, we point out that from [35], one might expect
that log |det(GN − z)| − E log |det(GN − z)| is a stationary stochastic process inside the unit
disk (recall that formally this converged to a Gaussian process with translation invariant
covariance), which would suggest that in Theorem 1.1, the only z-dependent contribution can
come from E log |det(GN − z)|. Using, for example, [1, Theorem 2.1], one would expect that

E log |det(GN − z)| = N

∫
|w|<1

log |w − z|d
2w

π
+

1
8π

∫
|w|<1

Δw log |w − z|d2w + o(1)

=
N

2
(|z|2 − 1) +

1
4

+ o(1),
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which suggests that E|det(GN − z)|γ = E|det(GN )|γe γ
2 N |z|2(1 + o(1)). This is indeed true by

Theorem 1.1.
Finally, based on the analogy with the case of random Hermitian matrices from [6, 27] as well

as the central limit theorem of Rider and Virág [35] (and that from [1]), it would be natural
to expect that a more general Fisher–Hartwig formula exists also for the Ginibre ensemble. We
expect that the correct formulation would be the following: let zj be distinct fixed points in
the unit disk, Re(γj) > −2 for all j = 1, . . . , k, and f : C → R smooth enough with compact
support in the unit disk (for simplicity), then

EeTrf(GN )
k∏

j=1

|det(GN − zj)|γj = (1 + o(1))eN
∫
|z|<1 f(z) d2z

π + 1
8π

∫
|z|<1 |∇f(z)|2d2z−∑k

j=1
γj
2 f(zj)

×
k∏

j=1

N
γ2
j
8 e

N
2 γj(|zj |2−1) (2π)

γj
4

G(1 + γj

2 )

∏
i<j

|zi − zj |−
γiγj

2 .

In fact, it is natural to expect that a related formula exists for more general ensembles with
a regular enough confining potential. Unfortunately, we suspect that this kind of results with
several singularities or non-zero f is out of reach with current tools.

1.3. Outline of the article

The outline of this article is the following. In Section 2, we recall how orthogonal polynomials,
which are orthogonal with respect to the weight F (w) = |w − z|γe−N |w|2 (supported on the
whole complex plane), are related to expectations of the form relevant to Theorem 1.1. We also
recall a result of Balogh, Bertola, Lee, and McLaughlin, which lets us transform orthogonality
with respect to F into orthogonality with respect to a weight which is supported on a contour
in C. In Section 3, we recall how to encode these orthogonal polynomials associated to a
contour into a Riemann–Hilbert problem (RHP), as well as generalize differential identities from
[11, 13, 27] to facilitate efficient asymptotic analysis of the determinant of the moment matrix.
Then in Section 4, we use results from [30] to solve our RHP asymptotically. In Section 5, we
use our asymptotic solution of the RHP to study the asymptotics of our differential identity,
and prove Theorem 1.1 by integrating the differential identity. Finally, in Section 6, we discuss
various probabilistic limit theorems extending Corollary 1.2. For completeness, we also recall
some basic facts about orthogonal polynomials and RHPs as well as some of the results of [30]
in appendices.

2. The Ginibre ensemble and orthogonal polynomials

In this section, we recall some basic facts about the complex Ginibre ensemble, such as the
distribution of the eigenvalues, how expectations of suitable functions of eigenvalues of Ginibre
random matrices can be expressed in terms of determinants of complex moment matrices, as
well as how such questions relate to orthogonal polynomials. We also recall results from [3, 30],
which show that the orthogonal polynomials associated to the expectation E|det(GN − z)|γ
also satisfy suitable orthogonality conditions on certain contours in the complex plane. Then in
Section 3, we apply these results to transform the analysis of E|det(GN − z)|γ into a question
of the asymptotic analysis of a suitable RHP. For the convenience of the reader, we sketch
proofs of some of the statements of this section in Appendix A.
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As stated in Theorem 1.1, GN is a random N ×N matrix whose entries are i.i.d. and
distributed as N−1/2Z, where Z is a standard complex Gaussian. We recall that the law of the
eigenvalues of GN can then be expressed in the following form [22]:

P(d2z1, . . . , d
2zN ) =

1
ZN

∏
1�i<j�N

|zi − zj |2
N∏
j=1

e−N |zj |2d2zj (2.1)

on C
N . Here, the normalizing constant ZN is

ZN = πN

∏N
k=1 k!

N
N(N+1)

2

.

We will denote integration with respect to P(d2z1, . . . , d
2zN ) by E — so we suppress the

dependence on N in our notation.
We now recall a Heine–Szegő-type identity which connects the Ginibre ensemble to

determinants of complex moment matrices.

Lemma 2.1. Let F : C → C be regular enough (so that
∫
C
|w|k|F (w)|e−N |w|2d2w < ∞ for

all k � 0), then

E

N∏
j=1

F (zj) =
N !
ZN

DN−1(F ) :=
N !
ZN

det
(∫

C

wiwjF (w)e−N |w|2d2w

)N−1

i,j=0

.

This is a straightforward generalization of a corresponding identity for random Hermitian
and random unitary matrices and relies on noticing that

∏
i<j |zi − zj |2 in (2.1) can be written

in terms of the Vandermonde determinant which then allows this determinantal representation.
We omit further details.

The next fact we need is the connection between DN−1(F ) defined in Lemma 2.1 and suitable
orthogonal polynomials. To do this, let us introduce the notation

D
(N)
k (F ) = det

(∫
C

sisjF (s)e−N |s|2ds
)k

i,j=0

and if D(N)
j−1(F ), D(N)

j (F ) �= 0, write

pj(w) =
1√

D
(N)
j−1(F )D(N)

j (F )

∣∣∣∣∣∣∣∣∣

∫
C
F (s)e−N |s|2d2s · · · ∫

C
sjF (s)e−N |s|2d2s

...
...∫

C
sj−1F (s)e−N |s|2d2s · · · ∫

C
sj−1sjF (s)e−N |s|2d2s

1 · · · wj

∣∣∣∣∣∣∣∣∣, (2.2)

where the branch of the square root is the principal one and the interpretation is that
D

(N)
−1 (F ) = 1 and for j = 0, the determinant is replaced by 1.
The following (standard) lemma demonstrates some basic orthogonality properties of the

polynomials pj along with the connection between DN−1(F ) and the leading order coefficients
of pj .

Lemma 2.2. Let F : C → C be regular enough (so that
∫
C
|w|k|F (w)|e−N |w|2d2w < ∞ for

all k � 0) and assume D
(N)
j−1(F ), D(N)

j (F ) �= 0. Let us also write χj for the coefficient of wj in
pj(w) (note that under our assumptions, this is non-zero). Then for any 0 � k � j,∫

C

pj(w)wkF (w)e−N |w|2d2w =
δj,k
χj

. (2.3)
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Moreover, if D
(N)
j (F ) �= 0 for 0 � j � N − 1, then

DN−1(F ) =
N−1∏
j=0

χ−2
j . (2.4)

The orthogonality condition (2.3) follows easily from noticing that by linearity of the
determinant, if k < j, the determinantal expression of

∫
C
pj(w)wkF (w)e−N |w|2d2w will have

two identical rows and thus vanish. For j = k, (2.3) follows from comparing with (2.2).
Equation (2.4) follows from our definition of D(N)

−1 (F ) = 1 and the telescopic structure of the
product (in particular, χ−2

j = D
(N)
j (F )/D(N)

j−1(F )). We omit further details.
The next ingredient we shall need for our RHP is a fact noticed in [3], namely that in

the special case when F (w) = |w − z|γ , the polynomials pj from Lemma 2.2 satisfy certain
orthogonality relations on suitable contours in the complex plane as well. To simplify notation
slightly, we shall first note that the law of (zi)Ni=1 is invariant under rotations: it follows easily
from (2.1) that for fixed θ ∈ R, (eiθzj)Nj=1 has the same law as (zj)Nj=1. From this, it follows
that E|det(GN − z)|γ = E|det(GN − |z|)|γ . We thus see that for Theorem 1.1, it is enough
to understand the asymptotics of E|det(GN − x)|γ for x ∈ (0, 1). To emphasize this, we now
restrict our attention to weights F that are relevant to this expectation: we fix our notation in
the following definition.

Definition 1. For x ∈ (0, 1) and Re(γ) > −2, let F : C → C, F (w) = |w − x|γ . Moreover,
when they exist (that is, when D

(N)
j−1(F ), D(N)

j (F ) �= 0), let (pj)∞j=0 be the polynomials from
Lemma 2.2 associated to this F and let χj be the coefficient of wj in pj(w) — in our notation,
we omit the dependence on N , γ, and x.

The statement about orthogonality on suitable contours discovered in [3, Lemma 3.1] is the
following.

Lemma 2.3 (Balogh, Bertola, Lee, and McLaughlin). Let Σ be a simple, smooth, and closed
contour in the complex plane, and let it encircle [0, x], possibly passing through x, but not other
points of [0, x], and let it be oriented in the counter-clockwise direction. Let

f(w) = w− γ
2 (w − x)

γ
2 e−Nxw, (2.5)

where the roots are according to the principal branch (so the branch cut of f is [0, x]). If

D
(N)
j−1(F ), D(N)

j (F ) �= 0, then for 0 � k � j,∮
Σ

pj(w)w−kf(w)
dw

2πiw
=

⎧⎨⎩
0, k < j

1
π

N1+ γ
2 +k

Γ(1+ γ
2 +k)

1
χj
, k = j

. (2.6)

As the situation considered in [3] is slightly different — for them γ is proportional to N
(and real), and their result is stated for contours avoiding x, we sketch a proof in Appendix A.
We also point out that if Σ were the unit circle, (2.6) would look like a basic orthogonality
condition for polynomials on the unit circle. Thus (as in [3, 30]), it is fruitful to define a dual
family of polynomials which are orthogonal to the polynomials pj with respect to the pairing
coming from (2.6). We now recall how these dual orthogonal polynomials are constructed and
how their leading order coefficient is related to χj .

Lemma 2.4. Let Σ and f be as in Lemma 2.3.
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(i) Let us define for any j � 0

D̂j = det
(∮

Σ

w−(r−s)f(w)
dw

2πiw

)j

r,s=0

.

Then

D̂j = D
(N)
j (F )

j∏
k=0

1
π

N1+ γ
2 +k

Γ(1 + γ
2 + k)

. (2.7)

(ii) Assume D
(N)
j−1(F ), D(N)

j (F ) �= 0 and define for w �= 0

qj(w−1) =

∏j
k=0

πΓ( γ
2 +k+1)

N
γ
2 +k+1√

D
(N)
j−1(F )D(N)

j (F )

∣∣∣∣∣∣∣
∮
Σ
f(s) ds

2πis · · · ∮
Σ
sj−1f(s) ds

2πis 1
...

...
...∮

Σ
s−jf(s) ds

2πis · · · ∮
Σ
s−1f(s) ds

2πis w−j

∣∣∣∣∣∣∣, (2.8)

where the branch of the root is the principal one. Then for 0 � k � j∮
Σ

wkqj(w−1)f(w)
dw

2πiw
=

δj,k
χk

, (2.9)

and if we write χ̂j for the coefficient of w−j in qj(w−1), then

χ̂j = χj

πΓ(1 + γ
2 + j)

N1+ γ
2 +j

. (2.10)

Again, we offer a sketch of a proof in Appendix A, as such a result is not formulated precisely in
this form in [3, 30]. We now turn to the RHP and the differential identity related to DN−1(F ).

3. The Riemann–Hilbert problem and the differential identity

We are now in a position to encode our polynomials into a RHP in a similar way as in [3, 30]
as well as state our differential identity. The proof of the differential identity is a modification
of those appearing in [11, 13, 27], but as the differential identity in our case is slightly more
complicated, we offer details for the proof in Appendix B.

We begin by defining the object that will satisfy a RHP.

Definition 2. Let Σ be as in Lemma 2.3 and assume D
(N)
j−2(F ), D(N)

j−1(F ), D(N)
j (F ) �= 0. For

w /∈ Σ and j � 1, let

Y (w) = Yj(w) =

⎛⎜⎝ 1
χj
pj(w) 1

χj

∮
Σ

s−(j−1)pj(s)f(s)
s−w

ds
2πis

−χj−1w
j−1qj−1(w−1) −χj−1

∮
Σ

qj−1(s
−1)f(s)

s−w
ds

2πis

⎞⎟⎠. (3.1)

Note that for each j, Yj also depends on N , x, γ, as well as the contour Σ we have not yet
fixed, but we suppress this in our notation.

As originally noted by Fokas, Its, and Kitaev [19], such an object indeed satisfies a RHP:

Lemma 3.1. Let D
(N)
j−2(F ), D(N)

j−1(F ), D(N)
j (F ) �= 0. Then Y = Yj is the unique solution to

the following RHP.
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• Y : C \ Σ → C
2×2 is analytic.

• Y has continuous boundary values on Σ \ {x} (denote by Y+ the limit from the side of
the origin and by Y− the limit from the side of infinity) and they satisfy the following jump
relation: for w ∈ Σ \ {x}

Y+(w) = Y−(w)
(

1 w−jf(w)
0 1

)
. (3.2)

• As w → ∞,

Y (w) = (I + O(w−1))wjσ3 = (I + O(w−1))
(
wj 0
0 w−j

)
, (3.3)

where I is the 2 × 2 identity matrix and O(w−1) denotes a 2 × 2 matrix whose entries are
bounded by |w|−1 as w → ∞.
• As w → x,

Y (w) =
(O(1) O(1) + O (|w − x|Re(γ/2)

)
O(1) O(1) + O (|w − x|Re(γ/2)

)). (3.4)

Remark 1. As we will see later, actually Y (w) converges to a finite limit as w → x from
Int(Σ). This is important for our differential identity. Nevertheless, as w → x from Ext(Σ),
Y (w) remains unbounded if Re(γ) < 0.

The proof is essentially standard — uniqueness of a solution follows from Liouville’s theorem
(along with some standard arguments about a possible singularity at x not being strong enough
to be a pole due to the condition Re(γ) > −2), the jump conditions from the Sokhotski–
Plemelj theorem, and the asymptotic behavior at infinity from the orthogonality conditions
(2.6) and (2.9). The continuity of the boundary values along with the asymptotic behavior at
x follows from basic properties of boundary values of the Cauchy transform — see, for example,
[32, § 19 and § 33]. We omit further details of the proof and refer to, for example, [10, 28].

As we have seen in Lemma 2.2, if D(N)
j (F ) �= 0 for j � N − 1, one way to obtain asymptotics

for DN−1(F ) would be to obtain good asymptotics for χj for all j � N − 1 (or Yj for all
j � N − 1), which would suggest that one would need to solve the above Riemann–Hilbert
problem (RHP) for all j � N − 1. Due to a differential identity we now describe, it is enough
for us to only solve the problem for YN and YN+1.

Lemma 3.2. Let us write DN−1(F ; γ) = DN−1(F ) (where again F (w) = |w − x|γ) and

assume D
(N)
j (F ) �= 0 for j � N + 1. Let us also write κj for the coefficient of wj−1 in pj(w).

Then for Re(γ) > −2

∂γ logDN−1(F ; γ)

= −
(
N +

γ

2

) ∂γχ̂N

χ̂N
+

γ

2
xN ∂qN (x−1)

∂γ
lim
z→x

∮
Σ

pN (w)w−N+1 f(w)
w − z

dw

2πiw

−Nx
pN+1(0)
χN+1

∂γqN (0)
χ̂N

−N
∂γχN

χN
− γ

2
∂pN (x)

∂γ
x lim

z→x

∮
Σ

qN (w−1)f(w)
w − z

dw

2πiw

+ Nx

(
∂γκN

χN
− ∂γχN

χN

κN+1

χN+1

)
+ ∂γ

N−1∑
j=0

log
Γ
(
γ
2 + j + 1

)
N

γ
2

,

where all the limits on the right-hand side should be interpreted as being taken along any
sequence in Int(Σ) \ [0, x] tending to x.
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Note that as Y has no singularities on (0, x), it would be natural to expect that one could take
the sequence to be on this interval as well. Our proof does involve objects with branch cuts on
[0, x] and the proof would become slightly more involved if we wished to allow points on [0, x]
as well. For simplicity, we thus focus on sequences in Int(Σ) \ [0, x].

We give a proof of this differential identity in Appendix B. One can easily check that all
of the quantities here can be expressed in terms of YN and YN+1 — for example, χN χ̂N =
−YN+1,21(0), from which one can solve χN . See Section 5 for further details. We now move
onto the asymptotic analysis of YN and YN+1 by solving their RHPs.

4. Solving the Riemann–Hilbert problem for YN asymptotically

In this section, we recall from [30] the asymptotic solution of the RHP for YN . In fact, we will
consider a minor generalization of their situation where we study the asymptotics of YN+k,
where k is a fixed integer — for our differential identity, we only need k = 0 and k = 1. Again,
we offer details of the argument in Appendix C since the question is slightly different from
that in [30]. For intuition and further discussion concerning the approach, we refer to [30] and
references therein.

As typical in this type of RHPs, using approximate problems which can be solved
explicitly, we will transform this problem into a ‘small-norm’ problem which can be solved
asymptotically in terms of a Neumann series. The solutions to the approximate problems are
called parametrices, and we will need two of them: one close to the point x, and one far
away from it. The one close to x is called the local parametrix and the one far from it is the
global parametrix. We begin with a transformation that normalizes our problem at infinity and
enables ‘opening lenses’, then we recall from [30] the global and local parametrices relevant to
us. Finally, we will consider the solution of the small norm problem. Throughout this section,
we will implicitly be assuming that the RHP for Y is solvable, or that the relevant orthogonal
polynomials exist, unless otherwise stated.

4.1. Transforming the problem

The goal of the transformation procedure is to have an RHP which is normalized at infinity (the
sought function converges to the identity matrix as w → ∞) and for which the jump matrix
is close to the identity as N → ∞. This allows formulating the problem in terms of a certain
singular integral equation which can be solved in terms of a suitable Neumann series. We begin
by normalizing the function at infinity. To do this, let us write Ext(Σ) for the unbounded
component of C \ Σ and Int(Σ) for the bounded one (recall that we still have not fixed Σ, but
we will do this shortly), and define

	 = log x− x2 and g(w) =

{
logw, w ∈ Ext(Σ)

	 + xw, w ∈ Int(Σ)
. (4.1)

As we are only giving a brief overview of the approach of [30], we refer to [3, 30] for a discussion
of why 	 and g are chosen so. Throughout this section, we will be working with Y = YN+k and
we will drop for now the index N + k from our notation. We then define

T (w) = e−(N+k) �
2σ3Y (w)e−(N+k)g(w)σ3e(N+k) �

2σ3 . (4.2)

Note that from the asymptotic behavior of Y at infinity, namely (3.3), and our choice of g in
Ext(Σ), we see that T (w) = I + O(w−1) as w → ∞.
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Figure 1. S-RHP and the opening of lenses.

Let us next fix the contour Σ. Let

Σ = {w ∈ C : Re(xw + 	− logw) = 0,Re(w) � x}
= {u + iv ∈ C : u2 + v2 = x2e2x(u−x), u � x}.

(4.3)

The point of choosing our jump contour to be this one will be evident shortly as we will perform
another transformation which will result in a jump matrix close to the identity when off of
Σ ∪ [0, x]. Before going into our next transformation, we point out the following fact (see also
[30, Lemma 4]).

Lemma 4.1. For each x ∈ (0, 1), Σ is a smooth, simple closed loop inside the unit disk. It
encircles [0, x] (passing through x, but not other points), and

Re(xw + 	− logw)

{
> 0, w ∈ Int(Σ)

< 0, w ∈ {s ∈ Ext(Σ) : |s| � 1} ,

moreover sup|w|=1 Re(xw + 	− logw) < 0 for all x ∈ (0, 1).

Note that, in particular, Σ satisfies the conditions of Lemma 2.3. The proof is given in
Appendix C.

Our next transformation allows us to perform a Deift–Zhou non-linear steepest descent-type
argument by opening lenses. Our lens will now essentially be the unit circle combined with the
interval [0, x]. We define

S(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (w), |w| > 1

T (w)

(
1 0

w
γ
2 (w − x)−

γ
2 e−kxwe(N+k)(xw+�−logw) 1

)
, w ∈ {s ∈ Ext(Σ) : |s| < 1}

T (w)

(
1 0

−w
γ
2 (w − x)−

γ
2 e−kxwe−(N+k)(xw+�−logw) 1

)
, w ∈ Int(Σ) \ [0, x],

,

(4.4)

where as before, the roots are according to the principal branch.
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We now describe the RHP satisfied by this function.

Lemma 4.2. Let C = [0, x] ∪ Σ ∪ {w ∈ C : |w| = 1}. Orient [0, x] from 0 to x so that the
positive side of the interval is the upper half plane. Orient the unit circle so that the inside of
the circle is the positive side of the contour, and orient Σ in the counter-clockwise direction
(that is, we let the positive side of the contour be the side of the origin and the negative side
of the contour be the side of infinity; see Figure 1). Then S satisfies the following RHP.

• S : C \ C → C
2×2 is analytic.

• S has continuous boundary values on C \ {x, 0}, and these satisfy the following jump
conditions:

S+(w) = S−(w)
(

1 0
w

γ
2 (w − x)−

γ
2 e−kxwe(N+k)(xw+�−logw) 1

)
, |w| = 1, (4.5)

S+(w) = S−(w)
(

0 ekxw(w − x)
γ
2 w− γ

2

−e−kxw(w − x)−
γ
2 w

γ
2 0

)
, w ∈ Σ \ {x}, (4.6)

and

S+(w) = S−(w)
(

1 0
2i sin πγ

2 |w|γ/2|w − x|− γ
2 e−kxwe−(N+k)(xw+�−logw) 1

)
, w ∈ (0, x).

(4.7)

• As w → 0, S(w) is bounded (actually S(0) exists) and as w → x (off of C),

S(w) =

⎛⎜⎝O(1) + O
(
|w − x|−Re(γ)

2

)
O(1) + O

(
|w − x|Re(γ)

2

)
O(1) + O

(
|w − x|−Re(γ)

2

)
O(1) + O

(
|w − x|Re(γ)

2

)
⎞⎟⎠. (4.8)

• As w → ∞, S(w) = I + O(w−1).

The proof is in Appendix C.
Our next task is to find the approximate solutions. The first one corresponds to focusing

on a problem where we only consider the jump condition (4.6) (the global parametrix), while
the second one approximates the RHP close to the point x (the local parametrix) as well as
approximately matches the global solution on the boundary of a small neighborhood of the
point x.

4.2. The global parametrix

Here, we first look for a function P (∞) : C \ Σ → C
2×2 which satisfies the jump condition (4.6)

and is normalized at infinity. We simply mention that one can easily check that the function

P (∞)(w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
w

γ
2 (w − x)−

γ
2 0

0 w− γ
2 (w − x)

γ
2

)
, w ∈ Ext(Σ)(

0 ekxw

−e−kxw 0

)
, w ∈ Int(Σ)

(4.9)

satisfies these conditions.
If we were to take this as our global parametrix, we would obtain a small norm problem

for Re(γ) < 2 and it could be solved as an expansion in N
Re(γ)

2 −1, which would be sufficient
for small enough γ, but as we are interested also in larger Re(γ), this parametrix is not good
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enough for us. It turns out that for our differential identity, we will need to adjust the global
parametrix depending on the size of γ, and, in fact, we need to define a sequence of global
parametrices. The way we will shortly define this sequence is as

P̂ (∞,r)(w) =
(

1 hr(w; γ)
0 1

)
P (∞)(w),

where hr is a Laurent polynomial of the form
∑r

j=0 hj,r(γ)(w − x)−j−1, with hj,r being some
suitable coefficients that need to be chosen to ensure that the local parametrix we construct
in the next section has the correct behavior at x. This will eventually result in a small norm
problem which will yield an expansion in N

γ
2 −r−1. Note that for any Laurent polynomial hr,

P̂ (∞,r) will have the same jump structure as P (∞) — namely it satisfies (4.6), though the
behavior at x will be different.

We will now introduce some notation to be able to make the relevant definition of hr and
in the following section, where we discuss the local parametrix, it will hopefully become more
apparent why such a definition is required.

Consider ζ : C \ (−∞, 0] → C,

ζ(w) = −(N + k)(xw − logw + 	), (4.10)

where the branch is the principal one. We can now define our functions hr.

Definition 3. For r � 0 define hr(w; γ) =
∑r

j=0 hj,r(γ)(w − x)−j−1 to be the unique
function of such form that

w �→ hr(w; γ) − ekxwwγ/2(w − x)−γ/2ζ(w)γ/2
r∑

j=0

1
Γ(γ2 − j)

ζ(w)−j−1 (4.11)

is analytic in some (N -independent) neighborhood of x. Above, the branch of the root is again
the principal one. Also define for w /∈ Σ,

P̂ (∞,r)(w) =
(

1 hr(w; γ)
0 1

)
P (∞)(w). (4.12)

Note that this definition of hr makes sense: as ζ has an order one zero at x, w �→ wγ/2(w −
x)−γ/2ζ(w)γ/2 is analytic in some (N -independent) neighborhood of x, so

ekxwwγ/2(w − x)−γ/2ζ(w)γ/2
r∑

j=0

1
Γ(γ2 − j)

ζ(w)−j−1

is a sum of a degree (at most) r + 1 Laurent polynomial and an analytic function, so by
subtracting the poles, one is left with an analytic function.

We will also need some simple properties of the function hr and we record them in the
following lemma.

Lemma 4.3. The functions γ �→ hr(0, γ) and

γ �→ lim
w→x

⎡⎣hr(w, γ) − ekxwwγ/2(w − x)−γ/2ζ(w)γ/2
r∑

j=0

1
Γ(γ2 − j)

ζ(w)−j−1

⎤⎦
are analytic functions of γ in {γ ∈ C : Re(γ) > −2}. Moreover, we have the bounds

hr(0, γ) = O
(
N

Re(γ)
2 −1

)
, (4.13)

∂γhr(0, γ) = O
(
logNN

Re(γ)
2 −1

)
, (4.14)
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lim
w→x

⎡⎣hr(w, γ) − ekxwwγ/2(w − x)−γ/2ζ(w)γ/2
r∑

j=0

1
Γ(γ2 − j)

ζ(w)−j−1

⎤⎦ = O
(
N

Re(γ)
2 −1

)
,

(4.15)

∂γ lim
w→x

⎡⎣hr(w, γ) − ekxwwγ/2(w − x)−γ/2ζ(w)γ/2
r∑

j=0

1
Γ(γ2 − j)

ζ(w)−j−1

⎤⎦
= O

(
logNN

Re(γ)
2 −1

)
, (4.16)

where the implied constants in the errors are uniform in γ in compact subsets of {γ ∈ C :
Re(γ) > −2} as well as uniform in x in compact subsets of (0,1).

Proof. Consider first the series expansion of ζ(w) around w = x:

ζ(w) = −(N + k)
(
x(w − x) − log

(
1 +

w − x

x

))
(4.17)

= −(N + k)

⎛⎝x(w − x) +
∞∑
j=1

(−1)j

j

(
w − x

x

)j
⎞⎠

= (N + k)(w − x)
1 − x2

x

⎛⎝1 +
∞∑
j=1

(−1)j

j + 1
1

1 − x2

(
w − x

x

)j
⎞⎠ .

From this, we note that the Taylor coefficients (when expanding around w = x) of

w �→ ekxwwγ/2(w − x)−γ/2ζ(w)γ/2

can be written explicitly (for example, in terms of Bell polynomials) and they are of the form

(1 − x2)γ/2ekx
2
(N + k)γ/2c(γ, x),

where c is independent of N and for each x, c(γ, x) is a polynomial in γ (this is just from
the fact that the Taylor coefficients of x �→ (1 + x)γ are generalized binomial coefficients —
polynomials in γ) and for each γ, c(γ, x) is a rational function in x with possible poles at x = 0
or x = ±1). With similar reasoning, the Laurent coefficients of ζ(w)−j−1 are of the form

(N + k)−j−1ρ(x),

where ρ is a rational function independent of N and γ and its possible poles are at x = 0
and x = ±1. So, combining these two representations, we see that the Laurent coefficients of
ekxwwγ/2(w − x)−γ/2ζ(w)γ/2

∑r
j=0

1
Γ( γ

2 −j)ζ(w)−j−1 (and in particular hj,r which are just the
negative Laurent coefficients) can be written in the form

(1 − x2)γ/2ekx
2

r∑
j=0

(N + k)
γ
2 −j−1cj(γ, x)

1
Γ(γ2 − j)

,

where all we need to know about the functions cj(γ, x) is that they are independent of N
(though they do depend on k), polynomials in γ and rational functions in x with the only
possible poles being at x = 0 or x = ±1. Note that in our notation, we hide the fact that the
function cj will depend on which Laurent coefficient we are looking at.
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Now hr(0, γ) =
∑r

j=0 hj,r(−x)−j−1 and

lim
w→x

⎡⎣hr(w, γ) − ekxwwγ/2(w − x)−γ/2ζ(w)γ/2
r∑

j=0

1
Γ(γ2 − j)

ζ(w)−j−1

⎤⎦ ,

which is simply minus the order zero Laurent coefficient of the function w �→
ekxwwγ/2(w − x)−γ/2ζ(w)γ/2

∑r
j=0

1
Γ( γ

2 −j)ζ(w)−j−1, can both be written in the form

(1 − x2)γ/2ekx
2 ∑r

j=0(N + k)
γ
2 −j−1cj(γ, x) 1

Γ( γ
2 −j) (now with a different cj as before and

different in both cases) where cj is again independent of N , polynomial in γ, rational in
x, and its only possible poles are at x = 0 or x = ±1. From this representation, the analyticity
claim along with all the different claims about the bounds is immediate — we omit further
details. �

We now turn to the local parametrix.

4.3. The local parametrix

Here, we look for a function which has the same jump conditions as S in a small enough
neighborhood of x and (in the notation of Definition 3) up to a term of order O(N

Re(γ)
2 −r−2),

agrees with P̂ (∞,r) on the boundary of this neighborhood†. To do this, let U be a small but
fixed circular neighborhood of x. We assume that the neighborhood is small enough so that
0, 1 /∈ U . We will also think of ζ (from (4.10)) as a coordinate change of this neighborhood —
for this reason, we will also want U to be small enough that ζ is one-to-one on it. ζ blows up U
conformally into a large neighborhood of the origin. From the definition of Σ, it follows that ζ
maps U ∩ Σ into a segment of the imaginary axis. We then define our local parametrix in the
following way. For w ∈ U , let

P (x,r)(w) =
(

1 Qr(w)
0 1

)
P̂ (∞,r)(w), (4.18)

where

Qr(w) = w
γ
2 (w − x)−

γ
2 ζ(w)

γ
2 ekxw

⎡⎣ζ(w)−
γ
2 eζ(w) Γ

(
γ
2 , ζ(w)

)
Γ(γ2 )

−
r∑

j=0

1
Γ(γ2 − j)

ζ(w)−j−1

⎤⎦ ,

(4.19)

and Γ(ν, ζ) is the upper incomplete gamma function:

Γ(ν, ζ) = Γ(ν) (1 − ζνγ∗(ν, ζ)) , (4.20)

where γ∗(ν, ζ) = e−ζ
∑∞

j=0
ζj

Γ(j+ν+1) is an entire function of ζ, and the branch of the root is
the principal one.

Remark 2. We will try to clarify the definition of P (x,r) and P̂ (∞,r) now. Note that in the
definition of P (x,r), by our discussion in the previous section,

w �→ w
γ
2 (w − x)−

γ
2 ζ(w)

γ
2 ekxw

r∑
j=0

1
Γ(γ2 − j)

ζ(w)−j−1

†Note that typically one considers matching conditions up to a term of order N−1, but as in our differential

identity, there are essentially terms proportional to N
γ
2 +1, we need our error terms to be of order N− γ

2 −2.
Moreover, as we vary γ, in our differential identity, we have added this extra parameter r to ensure that
throughout the values of γ we integrate over, the error stays small.
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is a sum of an analytic function and a Laurent polynomial in (w − x) in U (if we choose it
small enough). Thus, it does not affect the jump structure of P (x,r). The role of the incomplete
gamma function is to produce the desired jump structure. The

∑r
j=0

1
Γ( γ

2 −j)ζ
−j−1-term is

required for the matching condition to hold. Indeed (see (C.1)), this is the beginning of the
asymptotic expansion of ζ−γ/2eζ

Γ( γ
2 ,ζ)

Γ( γ
2 ) and is valid for large |ζ|. This yields an error of size

N
Re(γ)

2 −r−2 in the matching condition. But in addition to having the correct jump and matching
conditions, we also need P (x,r) to have the correct type of singularity at x to end up with a
small norm problem. For this, we need to counter the singularities at w = x coming from the
sum

∑r
j=0

1
Γ( γ

2 −j)ζ(w)−j−1. This is done by the function hr and is where the condition (4.11)
comes from.

To construct a small norm problem, we will need to know what kind of RHP P (x,r) satisfies.

Lemma 4.4. P (x,r) satisfies the following RHP.

• P (x,r) : U \ ([0, x] ∪ Σ) → C
2×2 is analytic.

• P (x,r) has continuous boundary values on U ∩ ([0, x] ∪ Σ) \ {x} and they satisfy the
following jump conditions:

P
(x,r)
+ (w) = P

(x,r)
− (w)

(
0 (w − x)

γ
2 w− γ

2 ekxw

−(w − x)−
γ
2 w

γ
2 e−kxw 0

)
, w ∈ Σ \ {x}

(4.21)

and

P
(x,r)
+ (w) = P

(x,r)
− (w)

(
1 0

2i sin πγ
2 |w| γ2 |w − x|− γ

2 e−kxwe−(N+k)(xw+�−logw) 1

)
, w ∈ (0, x).

(4.22)

• As w → x from Int(Σ) \ [0, x],

S(w)P (x,r)(w)−1 = O(1) + O(|w − x|Re(γ)
2 ) (4.23)

and as w → x from Ext(Σ),

P (x,r)(w) = O(|w − x|− | Re(γ)|
2 ), (4.24)

where the notation means that each entry satisfies the claimed bound.
• We have for each fixed k ∈ Z

P (x,r)(w)
[
P̂ (∞,r)(w)

]−1

= I + O(N
Re(γ)

2 −r−2), (4.25)

uniformly in w ∈ ∂U , γ in compact subsets of {γ ∈ C : Re(γ) > −2}, and x in compact subsets
of (0,1).

Again, for the proof, see Appendix C.
We are now in a position to perform our final transformation and complete our asymptotic

analysis of YN+k.
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4.4. The final transformation and asymptotic analysis

Our final transformation of the problem is the following one (we drop the r dependence from
R):

R(w) =

⎧⎨⎩S(w)
[
P (x,r)(w)

]−1
, w ∈ U

S(w)
[
P̂ (∞,r)(w)

]−1

, w ∈ C \ U
. (4.26)

We now describe the RHP R solves (still assuming that Y and hence R exists).

Lemma 4.5. R is the unique solution to the following RHP:

• R : C \ (∂U ∪ {|w| = 1}) → C
2×2 is analytic.

• R has continuous boundary values on ∂U ∪ {|w| = 1} and these satisfy

R+(w) = R−(w)P (x,r)(w)
[
P̂ (∞,r)(w)

]−1

, w ∈ ∂U (4.27)

and

R+(w) = R−(w)P̂ (∞,r)(w)

×
(

1 0
w

γ
2 (w − x)−

γ
2 e−kxwe(N+k)(xw+�−logw) 1

)[
P̂ (∞,r)(w)

]−1

, |w| = 1.

(4.28)

• As w → ∞, R(w) = I + O(w−1).

Moreover, if we write I + ΔR for the jump matrix of R, then for each fixed k ∈ Z, as

N → ∞, supw∈∂U |ΔR(w)| = O(N
Re(γ)

2 −r−2) and sup|w|=1 |ΔR(w)| = O(e−cN ) for some
c > 0. The implied constants in these estimates are uniform in γ in compact subsets of
{γ ∈ C : Re(γ) > −2} and for x in a compact subset of (0, 1).

Again, the proof is in Appendix C.
Now this RHP is one that is normalized at infinity and whose jump matrix is close to the

identity when N → ∞. Thus, it can be solved asymptotically through the standard machinery.
In particular, if we take N large enough (possibly depending on γ), then a solution exists.
Then reversing the transformations, this implies that Y exists for large enough N . In addition
to existence, the standard machinery yields the following estimate.

Lemma 4.6. Let K be a compact subset of {γ ∈ C : Re(γ) > −2} and let
r > supγ∈K Re(γ/2) − 2. Then there exists a N0 = N0(K) such that for N � N0, a unique
solution to the RHP of Lemma 4.5 exists. Let ΓR = ∂U ∪ {|w| = 1} be the jump contour of R.
Then as N → ∞,

R(w) = I + O(N
Re(γ)

2 −r−2), lim
w→∞w[R(w) − I] = O(N

Re(γ)
2 −r−2) (4.29)

uniformly in w ∈ C \ ΓR, γ ∈ K and for x in a compact subset of (0,1). Moreover, for any fixed
ε > 0

∂γR(w) = O(N
Re(γ)

2 −r−2+ε) ∂γ

[
lim

w→∞w(R(w) − I)
]

= O(N
Re(γ)

2 −r−2+ε), (4.30)

uniformly in w ∈ C \ ΓR, γ ∈ K, as well as uniformly in x when restricted to a compact subset
of (0,1).
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Remark 3. Note that when integrating our differential identity, we can choose K to be the
integration and by choosing r large enough, our error term will be uniformly small throughout
the integration contour — ensuring that we can essentially ignore R when evaluating our
differential identity.

Armed with these estimates, we now turn to studying the asymptotic behavior of the
differential identity and proving Theorem 1.1.

5. Proof of Theorem 1.1: integrating the differential identity

We summarize the asymptotics of our differential identity in the following lemma.

Lemma 5.1. Let Re(γ) > −2 and let γ be such that D
(N)
j (F ; γ) �= 0 for all j � N + 1. Then

as N → ∞,

∂γ logDN−1(F ; γ) =
Nx2

2
+ ∂γ

N−1∑
j=0

log
Γ(γ2 + j + 1)

N
γ
2

+ o(1). (5.1)

Moreover, if K is a compact subset of {γ ∈ C : Re(γ) > −2}, then the o(1) error is uniform in

{γ ∈ K : D(N)
j (F ; γ) �= 0 for all j � N + 1}, and x in compact subsets of (0,1).

Proof. Let γ be such that Re(γ) > −2 and D
(N)
j (F ; γ) �= 0 for all j � N + 1. If Re(γ) > 0

choose a non-negative integer r such that Re(γ) − r � 1
2 , otherwise set r = 0. Such a choice of

r satisfies the following inequality:

max
(

Re(γ) − r − 2,
Re(γ)

2
− r − 2

)
� −3

2
.

Fix ε > 0 small. We start with the terms that require the evaluation of Y (w) at w = 0 ∈
Int(Σ). In particular, we will first consider the logarithmic derivatives of χ and χ̂. We begin
by noting that g(0) = 	 and the global parametrix is given by (see (4.13))

P̂
(∞,r)
N+k (0) =

(−hr(0; γ) 1
−1 0

)
=
(
O(N

Re(γ)
2 −1) 1

−1 0

)
.

Let us look at the leading coefficients of our orthogonal polynomials: for each k ∈ N, we have

χN+kχ̂N+k = −YN+k+1,21(0), χ̂N+k = χN+k

πΓ
(
1 + γ

2 + N + k
)

N1+ γ
2 +N+k

.

With the error control (4.29) for the R, we have

YN+k,21(0) = TN+k,21(0) =
[
RN+k(0)P̂ (∞,r)

N+k (0)
]
21

= −1 + O
(
N− 3

2

)
.

Therefore,

χN+k =

(
πΓ
(
1 + γ

2 + N + k
)

N1+ γ
2 +N+k

)− 1
2 (

1 + O
(
N− 3

2

))
(5.2)

and

χ̂N+k =

(
πΓ
(
1 + γ

2 + N + k
)

N1+ γ
2 +N+k

) 1
2 (

1 + O
(
N− 3

2

))
. (5.3)
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For the logarithmic derivatives, we see from (4.14) and (4.30) that for any ε > 0,

∂γYN+k,21(0) = ∂γ

[
RN+k(0)P̂ (∞,r)

N+k (0)
]
21

= O
(
N− 3

2+ε
)
.

Recalling the standard asymptotics of the digamma function (which follow from Binet’s second
formula for the log-Gamma function, see, for example, [38, Section 12.32])

Γ′(u)
Γ(u)

= log u− 1
2u

+ O(u−2), u → ∞,

we obtain

∂γχN

χN
= −1

2
∂γ log

Γ
(
1 + γ

2 + N
)

N
γ
2

+
1
2
∂γYN+1,21(0)
YN+1,21(0)

(5.4)

= −γ + 1
8N

+ O
(
N− 3

2+ε
)

and
∂γχ̂N

χ̂N
=

γ + 1
8N

+ O
(
N− 3

2+ε
)
. (5.5)

In particular,

−
(
N +

γ

2

) ∂γχ̂N

χ̂N
−N

∂γχN

χN
= O

(
N− 1

2+ε
)
. (5.6)

Note that these estimates are all uniform in compact subsets of {γ ∈ C : Re(γ) > −2} (as long
as the relevant polynomials exist) and if we choose ε small enough, O(N− 1

2+ε) = o(1) uniformly
in everything relevant.

We now consider the pN+1(0)∂γqN (0)-term. Using (4.13), we first get

pN+1(0)
χN+1

= YN+1,11(0) (5.7)

= e(N+1)�
[
RN+1(0)P̂ (∞,r)

N+1 (0)
]
11

= −e(N+1)�
[
hr(0; γ)

(
1 + O

(
N

Re(γ)
2 −r−2

))
+ O

(
N

Re(γ)
2 −r−2

)]
= e(N+1)�

[
O(N

Re(γ)
2 −1) + O(N− 3

2 )
]
.

Next, we need to evaluate Y at ∞, which requires the global parametrix for w ∈ Ext(Σ):

P̂
(∞,r)
N+k (w) =

(
w

γ
2 (w − x)−

γ
2 w− γ

2 (w − x)
γ
2 hr(w; γ)

0 w− γ
2 (w − x)

γ
2

)
.

Using the asymptotics of R, namely (4.29), one has

qN (0) = − 1
χN

lim
w→∞w−NYN+1,21(w)

= − 1
χN

e−(N+1)� lim
w→∞w

[
RN+1(w)P̂ (∞,r)

N+1 (w)
]
21

= − 1
χN

e−(N+1)� lim
w→∞wRN+1,21(w)

= − 1
χN

e−(N+1)�O
(
N

Re(γ)
2 −r−2

)
.
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Similarly, for the derivative term, we find from (4.30)

∂γqN (0) = −∂γχN

χN
qN (0) − 1

χN
e−(N+1)�∂γ lim

w→∞wRN+1,21(w)

= − 1
χN

e−(N+1)�O
(
N

Re(γ)
2 −r−2+ε

)
.

Finally, combining this with (5.7), (5.2), and (5.3) yields the asymptotics of the relevant term:

−Nx
pN+1(0)
χN+1

∂γqN (0)
χ̂N

= O
(
N− 3

2+ε
)
, (5.8)

which again under our assumptions is o(1) uniformly in everything relevant.
We now move onto the κ-terms: we find by the definition of κ and Y (along with (4.29))

that
κN+k

χN+k
= lim

w→∞w−N−k+1(YN+k,11(w) − wN+k)

= lim
w→∞w (TN+k,11(w) − 1)

= lim
w→∞w

([
RN+k(w)P̂ (∞,r)

N+k (w)
]
11

− 1
)

=
γ

2
x + O

(
N

Re(γ)
2 −r−2

)
.

Similarly, from (4.30), we see that

∂γκN+k

χN+k
= ∂γ

κN+k

χN+k
+

κN+k

χN+k

∂γχN+k

χN+k

= ∂γ lim
w→∞w

([
RN+k(w)P̂ (∞,r)

N+k (w)
]
11

− 1
)

+
κN+k

χN+k

∂γχN+k

χN+k

=
1
2
x +

κN+k

χN+k

∂γχN+k

χN+k
+ O

(
N

Re(γ)
2 −r−2+ε

)
.

Therefore, we have

Nx

(
∂γκN

χN
− ∂γχN

χN

κN+1

χN+1

)
= Nx

(
x

2
+

∂γχN

χN

(
κN

χN
− κN+1

χN+1

)
+ O

(
N

Re(γ)
2 −r−2+ε

))

=
Nx2

2
+ O

(
N− 1

2+ε
)
. (5.9)

The remaining terms in the differential identity (those involving the Cauchy-transforms)
require Y near the singularity w = x and hence the local parametrix. For w ∈ Int(Σ) \ [0, x],

YN+k(w) = e(N+k) �
2σ3RN+k(w)P (x,r)

N+k (w)
(

1 0
w

γ
2 (w − x)−

γ
2 e−kxwe−(N+k)(xw+�−logw) 1

)
× e(N+k)xwσ3e(N+k) �

2σ3 .

A straightforward computation shows that

P
(x,r)
N+k (w)

(
1 0

w
γ
2 (w − x)−

γ
2 e−kxwe−(N+k)(xw+�−logw) 1

)
=
(
P̃N+k(w) ekxw

−e−kxw 0

)
,
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where

P̃N+k(w) = −e−kxw[hr(w; γ) + Qr(w)] + w
γ
2 (w − x)−

γ
2 eζ(w)

= w
γ
2 (w − x)−

γ
2 eζ(w)

(
1 − Γ(γ2 , ζ(w))

Γ(γ2 )

)

− e−kxw

⎡⎣hr(w; γ) − ekxww
γ
2 (w − x)−

γ
2 ζ(w)

γ
2

r∑
j=0

1
Γ(γ2 − j)

ζ(w)−j−1

⎤⎦
w→x−−−→ (N + k)

γ
2 (1 − x2)

γ
2

Γ(1 + γ
2 )

+ O
(
N

Re(γ)
2 −1

)
= O

(
N

Re(γ)
2

)
,

where we used (4.15) and (4.17). Taking the limit w → x inside the set Int(Σ) \ [0, x], we get
(from the above bound on P̃ as well as (4.29)):

lim
w→x

YN+k(w)

=

⎛⎜⎝ xN+k
[
RN+k,11(x) limw→x P̃N+k(w) −RN+k,12(x)e−kx2

]
e−Nx2

RN+k,11(x)

e(N+k)x2
[
RN+k,21(x) limw→x P̃N+k(x) −RN+k,22(x)e−kx2

]
x−(N+k)RN+k,21(x)ekx

2

⎞⎟⎠

=

⎛⎜⎝ O
(
N

Re(γ)
2

)
e−Nx2

(
1 + O

(
N

Re(γ)
2 −r−2

))
−eNx2

[
1 + O(N

Re(γ)
2 −r−2) + O (NRe(γ)−r−2

)]
x−(N+k)ekx

2O
(
N

Re(γ)
2 −r−2

)
⎞⎟⎠.

We immediately see that

lim
z→x

∮
Σ

pN (w)w−N+1 f(w)
w − z

dw

2πiw
= χN lim

z→x
YN,12(z) = χNe−Nx2

(
1 + O

(
N− 3

2

))
. (5.10)

A similar argument (using (4.30), using Lemma 4.3 for the asymptotics of ∂γP̃ , and (5.4))
shows that

xN ∂qN (x−1)
∂γ

= − ∂

∂γ

[
1
χN

YN+1,21(x)
]

= − 1
χN

∂γYN+1,21(x) +
∂γχN

χN

1
χN

YN+1,21(x)

=
eNx2

χN
O(N− 3

2+ε). (5.11)

Combining with (5.10), we find (again with the required uniformity)

γ

2
xN ∂qN (x−1)

∂γ
lim
z→x

∮
Σ

pN (w)w−N+1 f(w)
w − z

dw

2πiw
= O(N− 3

2+ε). (5.12)

Similarly, we have (again for z ∈ Int(Σ) \ [0, x])

lim
z→x

∮
Σ

qN (w−1)f(w)
w − z

dw

2πiw
= − 1

χN
lim
z→x

YN+1,22(z) = − 1
χN

x−(N+1)O(N
Re(γ)

2 −r−2),

∂pN (x)
∂γ

=
∂

∂γ
[χNYN,11(x)] = χN∂γYN,11(x) +

∂χN

χN
χNYN,11(x) = χNxN+1O(N

Re(γ)
2 +ε),
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which implies

−γ

2
∂pN (x)

∂γ

∮
Σ

qN (w−1)f(w)
w − x

dw

2πiw
= O(N

Re(γ)
2 −r−2+ε) = O(N− 3

2+ε). (5.13)

Finally, our lemma follows by substituting (5.6), (5.8), (5.9), (5.12), and (5.13) into the
differential identity in Lemma 3.2. As mentioned, the o(1) error is uniform in compact subsets
of Re(γ) > −2 if we take ε small enough. The uniformity in x follows from the corresponding
uniformity in x in our asymptotic estimates for R. �

Proof of Theorem 1.1. Consider now some γ ∈ C, which may depend on N but is
within a fixed compact subset of {γ ∈ C : Re(γ) > −2}. We wish to write logDN−1(F ; γ) =
logDN−1(F ; 0) +

∫ γ

0
∂sDN−1(F ; s)ds along some suitable integration contour in the complex

plane, and use Lemma 5.1 to estimate this integral. The issue being that we need to be able
to ensure the condition D

(N)
j (F ; γ) �= 0 for j � N + 1 throughout the whole contour (or say

apart from a finite number of points of it). To ensure this, note that from the determinantal
representation

D
(N)
j (F ; γ) = det

(∫
C

wkwl|w − x|γe−N |w|2d2w

)j

k,l=0

.

γ �→ D
(N)
j (F ; γ) is analytic for each j and from, for example, a variant of Lemma 2.1, one

can see that this is a non-trivial analytic function. Thus, in any compact subset of {γ ∈ C :
Re(γ) > −2}, γ �→ D

(N)
j (F ; γ) has only finitely many zeroes and in any such compact set, there

are only finitely many points γ at which even one of the D(N)
j (F ; γ) (for j � N + 1) vanishes. In

particular, for any γ ∈ C which is within some fixed compact subset of {γ ∈ C : Re(γ) > −2},
we have for any smooth simple contour from 0 to γ such that we have D

(N)
j (F ; s) �= 0 for all

j � N + 1 for all but finitely many points on the contour.
Let us assume further that γ is such that D

(N)
j (F ; γ) �= 0 for all j � N + 1. Then from

Lemma 5.1, we see that when integrating along the straight line from 0 to γ,

logDN−1(F ; γ) = logDN−1(F ; 0) +
∫ γ

0

⎛⎝Nx2

2
+ ∂s

N−1∑
j=0

log
Γ( s2 + j + 1)

Ns/2
+ o(1)

⎞⎠ ds

= logDN−1(F ; 0) + Nγ
x2

2
+

N−1∑
j=0

(
log

Γ(γ2 + j + 1)
Nγ/2

− log Γ(j + 1)
)

+ o(1),

(5.14)

where we have made critical use of the uniformity in Lemma 5.1. Now given that G(u + 1) =
Γ(u)G(u) and G(1) = 1, we see that

N−1∑
j=0

log
Γ(γ2 + j + 1)
N

γ
2 Γ(j + 1)

= log
G(γ2 + N + 1)

G(1 + γ
2 )G(N + 1)

− Nγ

2
logN.

Let us recall the asymptotics for the logarithm of Barnes G-function (see, for example,
[18, Theorems 1 and 2]):

logG(u + 1) =
1
12

− logA +
u

2
log 2π +

(
u2

2
− 1

12

)
log u− 3u2

4
+ O(u−2),
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where A is the Glaisher–Kinkelin constant. In particular,

log
G(γ2 + N + 1)
G(N + 1)

=
γ

4
log 2π +

(
(N + γ

2 )2

2
− N2

2

)
logN

+
[
(N + γ

2 )2

2
− 1

12

]
log
(
1 +

γ

2N

)
− 3

4

[(
N +

γ

2

)2

−N2

]
+ O(N−2)

=
γ

4
log 2π +

[
Nγ

2
+

γ2

8

]
logN − Nγ

2
+ o(1).

Therefore,

log
DN−1(F ; γ)
DN−1(F ; 0)

=
Nγ

2
(x2 − 1) +

γ

4
log 2π +

γ2

8
logN − logG

(
1 +

γ

2

)
+ o(1),

where the error is still uniform in γ in compact subsets {γ ∈ C : Re(γ) > −2}, assuming that
D

(N)
j (F, γ) �= 0 for all j � N + 1. Now by this uniformity, if γ0 is such that D

(N)
j (F ; γ0) = 0

for some j � N + 1, and the fact (that we already noted) that by analyticity, the zeroes of
γ �→ D

(N)
j (F ; γ) are isolated so by continuity of γ �→ DN−1(F ; γ), we can simply let γ → γ0 in

the above formula, and we see that the above formula is true (with uniform error bounds) for
all γ in a compact subset of {γ : Re(γ) > −2}.

To conclude, recall that we already argued that by rotation invariance of the law of the
eigenvalues, E|det(GN − z)|γ = E|det(GN − x)|γ for |z| = x, so by Lemma 2.1 (applied to the
function F (z) = 1 which corresponds to γ = 0), we arrive at

E|det(GN − z)|γ =
N !
ZN

DN−1(F ; 0)
DN−1(F ; γ)
DN−1(F ; 0)

= N
γ2

8 e
Nγ
2 (|z|2−1) (2π)

γ
4

G(1 + γ
2 )

(1 + o(1)) (5.15)

with the required uniformity. �

6. Probabilistic limit theorems — corollaries of Theorem 1.1

In this section, we record some corollaries of Theorem 1.1. More precisely, as pointed out
to us by an anonymous referee, various improvements of Corollary 1.2, such as an extended
central limit theorem, precise deviations, a rate of convergence, and a local limit theorem can
be deduced from our Theorem 1.1. Our reasoning in this section will be very similar to that
of [15], where asymptotics of moments of determinants of different types of random matrices
were studied, and using these asymptotics, various probabilistic limit theorems were deduced.
See also [7] for a related study.

As in [15], the type of limit theorems we shall now discuss follows quite directly from
Theorem 1.1 and formulating such questions in terms of so-called mod-Gaussian (or more
generally mod-φ) convergence. To keep our presentation as accessible as possible to readers
unfamiliar with mod-Gaussian convergence, we will state corollaries without further reference
to this notion, but for the interested reader, we point out that it follows from Theorem 1.1 that
for each z ∈ C with |z| < 1, log |det(GN − z)| − N

2 (|z|2 − 1) converges mod-Gaussian on the
strip {−2 < Re(γ) < ∞} with parameters ( logN

4 )N�1 and limit function (2π)γ/4/G(1 + γ
2 ).

The results concerning probabilistic limit theorems and mod-Gaussian convergence that we
will make use of are in [8, 16, 17]. We refer readers with further interest in mod-Gaussian
convergence to these works, though for a brief review of definitions and the results we make
use of, we direct the reader to [15, Section 3].
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The first extension of Corollary 1.2 we discuss is a so-called extended central limit theorem.
We omit its proof as it follows immediately from results in [16, Section 4.4] (in particular, see
[16, Proposition 4.4.1]).

Corollary 6.1. For any fixed z ∈ C with |z| < 1 and any x > 0 with x = o(
√

logN),

P

[
log |det(GN − z)| − N

2 (|z|2 − 1) � 1
2

√
logNx

]
= (1 + o(1))

∫ ∞

x

e−y2/2 dy√
2π

as N → ∞. Moreover, under the same assumptions,

P

[
log |det(GN − z)| − N

2 (|z|2 − 1) � − 1
2

√
logNx

]
= (1 + o(1))

∫ −x

−∞
e−y2/2 dy√

2π

as N → ∞.

The next result we discuss is a precise deviation result, or what happens in Corollary 6.1 when
we let x ∼ √

logN . Again, we omit the proof as it is a direct application of [16, Theorem 4.2.1].

Corollary 6.2. For any fixed z ∈ C with |z| < 1 and u > 0,

P

[
log |det(GN − z)| − N

2
(|z|2 − 1) � logN

4
u

]
=

e−
log N

4
u2
2

u
√

2π logN
4

(2π)u/4

G(1 + u
2 )

(1 + o(1)),

as N → ∞, and for fixed v ∈ (−2, 0)

P

[
log |det(GN − z)| − N

2
(|z|2 − 1) � logN

4
v

]
=

e−
log N

4
v2
2

|v|
√

2π logN
4

(2π)v/4

G(1 + v
2 )

(1 + o(1)),

as N → ∞.

Note the relationship of the above result to a large deviation principle with speed 1
4 logN

and rate function x2

2 . We expect that large deviation principles with speeds of greater order
than logN should exist, as in say [23, Section 3], but access to such a result would require a
variant of Theorem 1.1 with γ = γN → ∞ as N → ∞, which is a situation we do not discuss
in this article.

We now turn to a rate of convergence in Corollary 1.2. Before stating the result, we remind
the reader that the Kolmogorov distance between two probability measures μ, ν on R is
given by dK(μ, ν) = supx∈R |μ((−∞, x]) − ν((−∞, x])|. The proof now is not quite as direct an
application of Theorem 1.1 — in particular, it is more a corollary of our proof of Theorem 1.1
combined with some known results — so we offer a sketch of a proof for the interested reader.

Corollary 6.3. For any z ∈ C with |z| < 1, there exists a C = C(z) > 0 such that

dK

(
log |det(GN − z)| − N

2 (|z|2 − 1)
1
2

√
logN

,N(0, 1)

)
� C(logN)−1/2,

where by the notation we mean the Kolmogorov distance of the law of the (normalized) log of
the absolute value of the characteristic polynomial and the standard normal distribution.
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Proof. The main tool we need here is [17, Theorem 20]. It ensures such a result (in fact,
with an explicit constant C) as soon as we know a bound, for example, of the form∣∣∣∣e log N

4
γ2

2 Eeiγ(log | det(GN−z)|−N
2 (|z|2−1)) − 1

∣∣∣∣ � K1|γ| (6.1)

for all γ ∈ [−K2,K2], where K1 and K2 are constants independent of N and γ. In the mod-
Gaussian jargon, this corresponds to [−K2,K2] being a zone of control with index (1, 3) —
though 3 being arbitrary here since our zone is of a fixed size — see [17, Section 2] for further
details about such conditions and their consequences.

To obtain such a bound, we note that from the proof of Theorem 1.1, or more precisely from
(5.14) and the discussion leading to it, we find that as N → ∞

E|det(GN − z)|iγ = e
iγ N

2 |z|2+∑N−1
j=0 log

Γ( iγ
2 +j+1)

Niγ/2Γ(j+1)
+|γ|×o(1)

= eiγ
N
2 |z|2− iγ

2 N logN−logG(1+ iγ
2 )+log

G( iγ
2 +N+1)

G(N+1) +|γ|×o(1),

where the implied constant is independent of γ. We now employ [26, Proposition 17], which
states that in our setting of bounded γ

log
G( iγ2 + N + 1)

G(N + 1)
=

iγ

4
log(2π) −N

iγ

2
− γ2

8
logN + N

iγ

2
logN + O(|γ|N−1),

with the implied constant being independent of γ or N . We thus find the following, slight
improvement of Theorem 1.1:

e
log N

4
γ2

2 Eeiγ(log | det(GN−z)|−N
2 (|z|2−1)) = e

iγ
4 log(2π)−logG(1+ iγ

2 )+|γ|×o(1),

from which (6.1) follows. Thus, using [17, Theorem 20], we find the claim of the corollary. �

The final probabilistic limit theorem we discuss here is a local limit theorem. Its proof is a
direct application of [8, Theorem 9] and the estimate (6.1) obtained in the proof of Corollary 6.3,
so we omit further details of the proof.

Corollary 6.4. Let x ∈ R and z ∈ C with |z| < 1 be fixed and B ⊂ R be a fixed Jordan
measurable set whose Lebesgue measure m(B) is positive. Then for every δ ∈ (0, 1

2 ),

lim
N→∞

(
1
2

√
logN

)δ

P

[
log |det(GN − z)| − N

2 (|z|2 − 1)
1
2

√
logN

− x ∈
(

1
1
2

√
logN

)δ

B

]

= m(B)
1√
2π

e−
x2
2 .

Appendix A. Orthogonal polynomials — Proofs for the results in Section 2

In this appendix, we prove Lemma 2.3 and Lemma 2.4. We begin with our proof of Lemma 2.3,
which is essentially that of [3, the proof of Lemma 3.1].

Proof of Lemma 2.3. For w ∈ C \ (−∞, x], let

h(w) = (w − x)
γ
2

∫ w

x

(s− x)
γ
2 +ke−Nwsds,
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where the roots are according to the principal branch, and the integration contour does not
intersect (−∞, x). One has

∂

∂w
h(w) = |w − x|γ(w − x)ke−N |w|2 ,

so we see by (2.3) (under our assumption of D(N)
j−1(F ), D(N)

j (F ) �= 0 which implies the existence
of pj) and Green’s theorem† that for k � j

1
χj

δj,k =
∫
C

pj(w)wk|w − x|γe−N |w|2d2w

=
∫
C

pj(w)(w − x)k|w − x|γe−N |w|2d2w

= lim
r→∞

∫
|w|�r

∂

∂w
[pj(w)h(w)] d2w

= lim
r→∞

1
2i

∮
|w|=r

pj(w)h(w)dw.

We now wish to deform the {|w| = r} contour into Σ. To do this, we note that for |w| = r

h(w) = (w − x)
γ
2

(∫ w×∞

x

(s− x)
γ
2 +ke−Nwsds−

∫ w×∞

w

(s− x)
γ
2 +ke−Nwsds

)
,

where again we take the contours to not intersect (−∞, x). The second integral is easily seen
to be O(e−

1
2 |r|2N ) uniformly on {|w| = r}. For the first integral, we note that

(w − x)
γ
2

∫ w×∞

x

(s− x)
γ
2 +ke−Nwsds = N− γ

2 −k−1w−k−1w− γ
2 (w − x)

γ
2 e−NxwΓ

(γ
2

+ k + 1
)

=
πΓ
(
γ
2 + k + 1

)
N

γ
2 +k+1

w−k f(w)
πw

,

which is an analytic function of w in C \ [0, x]. We thus see by contour deformation and our
bound on the second integral that if Σ is a simple closed contour encircling [0, x] (not passing
through any point of the interval)

1
χj

δj,k =
πΓ
(
γ
2 + k + 1

)
N

γ
2 +k+1

∮
Σ

pj(w)w−kf(w)
dw

2πiw
,

which was precisely the claim. The only remaining issue is to consider the case where Σ passes
through x. Let ε > 0 and let Σε be an indentation of Σ at x such that Σε does not pass through
x nor any other point of [0, x]. We then have∮

Σ

pj(w)w−kf(w)
dw

2πiw
=
∮

Σε

pj(w)w−kf(w)
dw

2πiw
+
∮
Cε

pj(w)w−kf(w)
dw

2πiw
,

where Cε = (Σ \ Σε) ∪ (Σε \ Σ) with a suitable orientation. The first integral here is precisely
what we want the left-hand side to be for each ε > 0 and since the possible singularity of
f at x is integrable, we see that as ε → 0, the second integral vanishes. This concludes the
proof. �

†One can check that in the definition of h (and similarly its derivatives), the jumps along (−∞, x), coming
from the roots, cancel so that the partial derivatives of h are continuous apart from possibly at w = x. Here,
the possible singularity of ∂wh is still integrable in the plane (as we assume Re(γ) > −2) so that one can justify
the use of Green’s theorem with a simple limiting argument.
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We now turn to the proof of Lemma 2.4.

Proof of Lemma 2.4. We begin by noting that with a simple modification of the argument
of the proof of Lemma 2.3, one finds that∫

C

wjwkF (w)e−N |w|2d2w =
k∑

l=0

(
k

l

)
xk−l πΓ(1 + γ

2 + l)
N1+ γ

2 +l

∮
Σ

w−(l−j)f(w)
dw

2πiw
. (A.1)

Now if we write M for the moment matrix Mjk =
∫
C
wjwkF (w)e−N |w|2d2w, M ′ for the

moment matrix M ′
lj =

∮
Σ
w−(l−j)f(w) dw

2πiw and T for the upper triangular matrix

Tlk =
(
k

l

)
xk−l πΓ(1 + γ

2 + l)
N1+ γ

2 +l
1{l � k},

then (A.1) can be written as M = TM ′. Taking the determinant of this identity and using the
fact that detT is the product of the diagonal elements of T yields (2.7).

To prove (2.9), let us first note that from (2.7), qj exists under our assumptions. For k < j,
we note that (2.9) again follows from noting that the linearity of the determinant implies that
the determinantal representation of

∮
Σ
wkqj(w−1)f(w) dw

2πiw has two identical columns and thus
vanishes. For k = j, we see again by linearity of the determinant and (2.7) that∮

Σ

wjqj(w−1)f(w)
dw

2πiw
=

∏j
k=0

πΓ( γ
2 +k+1)

N
γ
2 +k+1√

D
(N)
j−1(F )D(N)

j (F )
D̂j =

D
(N)
j (F )√

D
(N)
j−1(F )D(N)

j (F )
=

1
χj

.

Finally, for (2.10), we note that from (2.8) and (2.7)

χ̂j =

∏j
k=0

πΓ( γ
2 +k+1)

N
γ
2 +k+1√

D
(N)
j−1(F )D(N)

j (F )
D̂j−1 =

πΓ(γ2 + j + 1)
N

γ
2 +j+1

D
(N)
j−1(F )√

D
(N)
j−1(F )D(N)

j (F )
=

πΓ(γ2 + j + 1)
N

γ
2 +j+1

χj .

�

Appendix B. Proof of the differential identity

In this appendix, we prove our differential identity — Lemma 3.2. To prove it, we need to recall
suitable recursion relations for the polynomials as well as the Christoffel–Darboux identity for
the polynomials p and q. While these are standard results and the proofs we present below
are trivial modifications of those in [11, Section 2], there are some cosmetic differences due to
the fact that χj �= χ̂j , so we choose to present a proof here. We start with some recurrence
relations for the polynomials — this is very similar to [11, Lemma 2.2].

Lemma B.1. Fix a positive integer n and assume D
(N)
j (F ) �= 0 for all j � n + 1 (so that

(pj)n+1
j=0 and (qj)n+1

j=0 exist and each form a basis for the space of polynomials of degree at most
n + 1). Then the following identities hold:

χ̂nwpn(w) = χ̂n+1pn+1(w) − pn+1(0)wn+1qn+1(w−1), (B.1)

χnw
−1qn(w−1) = χn+1qn+1(w−1) − qn+1(0)w−n−1pn+1(w), (B.2)

χ̂n+1w
−1qn(w−1) = χ̂nqn+1(w−1) − qn+1(0)

χ̂n

χn
w−npn(w), (B.3)

χnχ̂n = χn+1χ̂n+1 − pn+1(0)qn+1(0). (B.4)
Proof. Let

g(w) := pn(w) − aw−1pn+1(w) − bwnqn+1(w−1).
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We want to choose a and b so that g vanishes. We first show that with a good choice of b, g
is actually a polynomial in w so that we can express it in terms of the polynomials pk (with
k � n). We then show that by choosing a the correct way, the coefficients of pk vanish for all
k � n.

We thus begin by making sure that the term of order w−1 vanishes (there are no lower order
terms in g). For this, we note that the coefficient of w−1 in g(w) is −apn+1(0) − bχ̂n+1, so we
choose b = −apn+1(0)/χ̂n+1. Thus, g is a polynomial in w and its degree is at most n. To expand
it in the basis (pk), we know from (2.9) that is enough to evaluate

∮
Σ
g(w)ql(w−1)f(w) dw

2πiw
for l � n. We have from (2.9)

• ∮
Σ
pn(w)ql(w−1)f(w) dw

2πiw = δl,n;

• ∮
Σ
w−1pn+1(w)ql(w−1)f(w) dw

2πiw = δl,n
χ̂n

χ̂n+1
;

• ∮
Σ
wnqn+1(w−1)ql(w−1)f(w) dw

2πiw = 0.

Therefore, if we choose a = χ̂n+1/χ̂n, we see that for all l � n,
∮
Σ
g(w)ql(w−1)f(w) dw

2πiw = 0,
implying that g(w) = 0 for all w. This gives (B.1). The proof of (B.2) is similar, and one can
obtain (B.3) by combining the first two recurrence relations. To obtain (B.4), one inspects the
coefficient of wn+1 in (B.1). �

This lets us prove the Christoffel–Darboux identity.

Lemma B.2 (Christoffel–Darboux). Let n be a positive integer and assume D
(N)
j (F ) �= 0

for all j � n. For any w, u �= 0, we have

(1 − u−1w)
n−1∑
k=0

pk(w)qk(u−1) = u−npn(u)wnqn(w−1) − pn(w)qn(u−1). (B.5)

In particular, for any w �= 0 and n ∈ N,

n−1∑
k=0

pk(w)qk(w−1) = −npn(w)qn(w−1) + w
(
qn(w−1)∂wpn(w) − pn(w)∂wqn(w−1)

)
. (B.6)

Proof. Using (B.1) and (B.3), we have

u−1wpk(w)qk(u−1) = (wpk(w))
(
u−1qk(u−1)

)
=
[
χ̂k+1

χ̂k
pk+1(w) − pk+1(0)

χ̂k
wk+1qk+1(w−1)

]

×
[

χ̂k

χ̂k+1
qk+1(u−1) − qk+1(0)

χ̂k+1

χ̂k

χk
u−kpk(u)

]
,

and hence

(1 − u−1w)pk(w)qk(u−1) = pk(w)qk(u−1) − pk+1(w)qk+1(u−1)

+
(w
u

)k+1
[
qk+1(w−1)

χ̂k+1
pk+1(0)uk+1qk+1(u−1)

+
upk(u)
χk

qk+1(0)w−k−1pk(w) − pk+1(0)qk+1(0)
χkχ̂k+1

upk(u)qk+1(w−1)
]
.
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But from (B.1), (B.2), and (B.4), we see that

qk+1(w−1)
χ̂k+1

pk+1(0)uk+1qk+1(u−1) = qk+1(w−1)
[
pk+1(u) − χ̂k

χ̂k+1
upk(u)

]
upk(u)
χk

qk+1(0)w−k−1pk(w) = upk(u)
[
χk+1

χk
qk+1(w−1) − w−1qk(w−1)

]

−pk+1(0)qk+1(0)
χkχ̂k+1

upk(u)qk+1(w−1) =
(

χ̂k

χ̂k+1
− χk+1

χk

)
upk(u)qk+1(w−1),

and therefore

(1 − u−1w)pk(w)qk(u−1) = pk(w)qk(u−1) − pk+1(w)qk+1(u−1)

+
(w
u

)k+1

pk+1(u)qk+1(w−1) −
(w
u

)k
pk(u)qk(w−1).

(B.5) now follows by taking the sum from k = 0 to k = n− 1. (B.6) follows from dividing (B.5)
by (1 − u−1w) and letting u → w. �

We can finally turn to our differential identity. This is very similar to corresponding proofs
in [11, 13, 27].

Proof of Lemma 3.2. We begin by noting that from Lemma 2.2

∂γ logDN−1(F ; γ) = −2
N−1∑
j=0

∂γχj

χj
, (B.7)

where the smoothness of χj and DN−1 as functions of γ follows, for example, from the
determinantal representation (2.2). It follows from (2.9) that∮

Σ

[∂γpj(w)] qj(w−1)f(w)
dw

2πiw
=

∂γχj

χj
and

∮
Σ

pj(w)
[
∂γqj(w−1)

]
f(w)

dw

2πiw
=

∂γχ̂j

χ̂j
.

Moreover, we see from (2.10) that

∂γχ̂j

χ̂j
=

∂γχj

χj
+ ∂γ log Γ

(γ
2

+ j + 1
)
− 1

2
logN. (B.8)

We can thus rewrite (B.7) as

∂γ logDN−1(F ; γ) = −
N−1∑
j=0

∮
Σ

∂γ
(
pj(w)qj−1(w−1)

)
f(w)

dw

2πiw
(B.9)

+ ∂γ

N−1∑
j=0

log
Γ
(
γ
2 + j + 1

)
N

γ
2

.

Applying the Christoffel–Darboux identity (B.6) and the orthogonality relations (2.9), we
have∮

Σ

[
∂γ

N−1∑
n=0

pn(w)qn(w−1)

]
f(w)

dw

2πiw

=
∮

Σ

∂γ
[−NpN (w)qN (w−1) + w(qN (w−1)∂wpN (w) − pN (w)∂wqN (w−1))

]
f(w)

dw

2πiw
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= −N

[
∂γχN

χN
+

∂γχ̂N

χ̂N

]
+
∮

Σ

[
∂γ
(
qN (w−1)∂wpN (w) − pN (w)∂wqN (w−1)

)]
wf(w)

dw

2πiw

=
∮

Σ

∂qN (w−1)
∂γ

∂pN (w)
∂w

f(w)
dw

2πi︸ ︷︷ ︸
=:I1

−
∮

Σ

∂qN (w−1)
∂w

∂pN (w)
∂γ

f(w)
dw

2πi︸ ︷︷ ︸
=:I2

. (B.10)

Let us first evaluate I1. For ε > 0, let us write Σε for a circular, radius ε, indentation of Σ
at x such that Σε does not pass through any point of the interval [0, x]. We write Aε = Σε \ Σ
and x±

ε = x + εe±iθε to be the end points of Aε in the upper and lower half plane, respectively.
Since

lim
ε→0

∫
Aε

∂qN (w−1)
∂γ

∂pN (w)
∂w

f(w)
dw

2πi
= 0

(as the singularity is integrable) and

∂wf(w) = f(w)
[
γ

2
1

w − x
− γ

2
1
w

−Nx

]
= −Nxf(w) +

γ

2
xf(w)
w − x

1
w
,

integration by parts gives

I1 = lim
ε→0

∫
Σε\Aε

∂qN (w−1)
∂γ

∂pN (w)
∂w

f(w)
dw

2πi

= Nx

∮
Σ

wpN (w)
∂qN (w−1)

∂γ
f(w)

dw

2πiw
−
∮

Σ

pN (w)w∂w

[
∂qN (w−1)

∂γ

]
f(w)

dw

2πiw

− lim
ε→0

[
γ

2

∫
Σε\Aε

pN (w)
∂qN (w−1)

∂γ

xf(w)
w − x

dw

2πiw
− pN (w)

∂qN (w−1)
∂γ

f(w)
2πi

∣∣∣∣x
−
ε

x+
ε

]
. (B.11)

Given that wpN (w) = χ̂N+1
χ̂N

pN+1(w) − pN+1(0)
χ̂N

wN+1qN+1(w−1) from (B.1), we obtain by
orthogonality, namely (2.6) and (2.9), that∮

Σ

wpN (w)
∂qN (w−1)

∂γ
f(w)

dw

2πiw
= −pN+1(0)

χ̂N

∂γqN (0)
χN+1

. (B.12)

It is also not difficult to verify (from (2.9)) that

−
∮

Σ

pN (w)w∂w

[
∂qN (w−1)

∂γ

]
f(w)

dw

2πiw
= N

∂γχ̂N

χ̂N
. (B.13)

Next, we study

−γ

2

∫
Σε\Aε

pN (w)
∂qN (w−1)

∂γ

xf(w)
w − x

dw

2πiw

= −γ

2
xN ∂qN (x−1)

∂γ

∫
Σε\Aε

pN (w)w−N+1 f(w)
w − x

dw

2πiw

− γ

2

∫
Σε\Aε

pN (w)w−N+1 ∂γ(wN−1qN (w−1) − xN−1qN (x−1))
w − x

xf(w)
dw

2πiw
.

As

w−N+1 ∂γ(wN−1qN (w−1) − xN−1qN (x−1))
w − x

x = −∂γχ̂Nw−N + PN−1(w−1),
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Figure B.1 (colour online). Integration contour.

for some polynomial PN−1 of degree at most N − 1, (2.6) implies that

−γ

2
lim
ε→0

∫
Σε\Aε

pN (w)w−N+1 ∂γ(wN−1qN (w−1) − xN−1qN (x−1))
w − x

xf(w)
dw

2πiw
=

γ

2
∂γχ̂N

χ̂N
.

(B.14)

Our next goal is to understand the asymptotics of∫
Σε\Aε

pN (w)w−N+1f(w)
[

1
w − z

− 1
w − x

]
dw

2πiw

= (z − x)
∫

Σε\Aε

pN (w)w−N+1w− γ
2 e−Nxw

2πiw︸ ︷︷ ︸
=:f̃(w)

(w − x)
γ
2

(w − z)(w − x)
dw

in the limit where we first let ε → 0 and then z → x, in Int(Σ) ∩ {w ∈ C : Imw > 0}. Let
us write Σ±

ε to be the part of Σε \Aε in the upper and lower half planes, respectively, and
deform Σ±

ε into two parts l±ε and L±
ε , where l±ε ⊂ {x + κe±iθε : κ > 0} (see the left diagram in

Figure B.1).
In order to evaluate ∫

l+ε

f̃(w)(w − x)
γ
2

(w − z)(w − x)
dw,

we shall consider the contour C+ := l+1 ∪ l+2 ∪B+ ∪ C+
ε (see the right diagram in Figure B.1).

Let (w − x)
γ
2
1 be such that the branch cut is given by {x + κeiθε : κ > 0}. Then, by the residue

theorem, we have

∫
C+

f̃(w)(w − x)
γ
2
1

(w − z)(w − x)
dw = 2πif̃(z)(z − x)

γ
2 −1
1 = 2πif̃(z)e−iπγ(z − x)

γ
2 −1 (B.15)
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since (z − x)
γ
2
1 = e−iπγ(z − x)

γ
2 for our choice of z. On the other hand,∫

C+

f̃(w)(w − x)
γ
2
1

(w − z)(w − x)
dw

=
∫
l+1 ∪l+2

f̃(w)(w − x)
γ
2
1

(w − z)(w − x)
dw +

∫
B+

f̃(w)(w − x)
γ
2
1

(w − z)(w − x)
dw︸ ︷︷ ︸

=:F1(z)

+
∫
C+

ε

f̃(w)(w − x)
γ
2
1

(w − z)(w − x)
dw

= (e−iπγ − 1)
∫
l+ε

f̃(w)(w − x)
γ
2

(w − z)(w − x)
dw + F1(z) +

f̃(x)
x− z

ε
γ
2

γ/2
eiθεγ/2(e−iπγ − 1) +

O(ε
γ
2 +1)

z − x
.

(B.16)

Comparing (B.15) and (B.16), we obtain∫
l+ε

f̃(w)(w − x)
γ
2

(w − z)(w − x)
dw

=
2πie−iπγ

(e−iπγ − 1)
f̃(z)(z − x)

γ
2 −1 − f̃(x)

x− z

ε
γ
2

γ/2
eiθεγ/2 − F1(z) + O(ε

γ
2 +1)/(z − x)

e−iπγ − 1
. (B.17)

By choosing a different branch cut and a similar contour integral, we can deduce that∫
l−ε

f̃(w)(w − x)
γ
2

(w − z)(w − x)
dw

=
2πi

(eiπγ − 1)
f̃(z)(z − x)

γ
2 −1 +

f̃(x)
x− z

ε
γ
2

γ/2
e−iθεγ/2 − F2(z) + O(ε

γ
2 +1)/(z − x)

eiπγ − 1
(B.18)

for some F2(z). Note that as z → x, both F1 and F2 are bounded and f̃(z)(z − x)
γ
2 −1 =

f̃(x)(z − x)
γ
2 −1 + O((z − x)

Re γ
2 ). Collecting everything, we find∫

Σε\Aε

pN (w)w−N+1f(w)
[

1
w − z

− 1
w − x

]
dw

2πiw

=
2
γ
f̃(x)εγ/2

(
eiθεγ/2 − e−iθεγ/2

)
+ O(z − x) + O(ε

γ
2 +1),

for z ∈ Int(Σ) and Im(z) > 0. Moreover, O(z − x) is uniform in ε > 0 (recall that we take ε → 0
first). Letting ε → 0 and then z → x, we conclude that

lim
z→x

∫
Σ

pN (w)w−N+1 f(w)
w − z

dw

2πiw

= lim
ε→0

[∫
Σε\Aε

pN (w)w−N+1 f(w)
w − x

dw

2πiw
+ f̃(x)

ε
γ
2

γ/2
2i sin

θεγ

2

]
. (B.19)

The same contours may be used to study the case where Im(z) < 0. One can carry out the
same procedure, though with minor differences, for example, in the analogue of (B.15), since
(z − x)

γ
2 −1
1 = (z − x)

γ
2 −1 when Im(z) < 0. Nevertheless, one still ends up with (B.19) when the

limit of the Cauchy transform is taken along any sequence z ∈ Int(Σ) \ [0, x] with Im(z) < 0.
Therefore, (B.19) remains valid whenever the limit z → x is taken inside the set Int(Σ) \ [0, x].
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Finally, using the fact that pN (w), qN (w−1) and w− γ
2 e−Nxw are analytic near w = x,

pN (w)
∂qN (w−1)

∂γ

f(w)
2πi

∣∣∣∣x
−
ε

x+
ε

= pN (x)
∂qN (x−1)

∂γ
x− γ

2 e−Nx2
ε

γ
2 (e−i θεγ

2 − ei
θεγ
2 ) + O(ε

Re γ
2 +1)

= −γ

2
xN ∂qN (x−1)

∂γ
f̃(x)

ε
γ
2

γ/2
2i sin

θεγ

2
+ o(1), (B.20)

and therefore,

I1 =
(
N +

γ

2

) ∂γχ̂N

χ̂N
−Nx

pN+1(0)
χ̂N

∂γqN (0)
χN+1

− γ

2
xN ∂qN (x−1)

∂γ
lim
z→x

∫
Σ

pN (w)w−N+1 f(w)
w − z

dw

2πiw
. (B.21)

As for I2, the identity

w∂γpN (w) =
∂γχN

χN+1
pN+1(w) +

(
∂γκN

χN
− ∂γχN

χN+1

κN+1

χN

)
pN (w) + O(wN−1)

combined with the arguments above leads to

I2 = −N
∂γχN

χN
+ Nx

(
∂γκN

χN
− ∂γχN

χN

κN+1

χN+1

)
− γ

2
∂pN (x)

∂γ
x lim

z→x

∮
Σ

qN (w−1)f(w)
w − z

dw

2πiw
,

(B.22)

where again the limit is taken along any sequence z ∈ Int(Σ) \ [0, x]. Gathering all terms, we
conclude that

∂γ logDN−1(F ; γ)

= −
(
N +

γ

2

) ∂γχ̂N

χ̂N
+

γ

2
xN ∂qN (x−1)

∂γ
lim
z→x

∮
Σ

pN (w)w−N+1 f(w)
w − z

dw

2πiw

−Nx
pN+1(0)
χN+1

∂γqN (0)
χ̂N

−N
∂γχN

χN
− γ

2
∂pN (x)

∂γ
x lim

z→x

∮
Σ

qN (w−1)f(w)
w − z

dw

2πiw

+ Nx

(
∂γκN

χN
− ∂γχN

χN

κN+1

χN+1

)
+ ∂γ

N−1∑
j=0

log
Γ
(
γ
2 + j + 1

)
N

γ
2

,

which is the claim. �

Appendix C. Asymptotic analysis of the Riemann–Hilbert problem — Proofs for Section 4

In this appendix, we give proofs related to the asymptotic analysis of our RHP. We begin with
Lemma 4.1.

Proof of Lemma 4.1. The fact that Σ is a smooth, simple closed loop, encircling [0, x] and
passing only through x follows, for example, from writing

Σ =
{(

u,
√

x2e2x(u−x) − u2
)

: u0 � u � x
}
∪
{(

u,−
√

x2e2x(u−x) − u2
)

: u0 � u � x
}
,



CHARACTERISTIC POLYNOMIAL OF GINIBRE MATRIX 1049

where u0 is the unique negative solution to the equation x(u− x) + log x− log |u| (one can
easily check that this equation has only one negative solution and for u ∈ (0, x], the only
solution is u = x). The fact that Σ is inside the unit circle is obvious from (4.3) — the definition
of Σ.

The fact that Re(xw + 	− logw) is positive in Int(Σ) follows from the definition of Σ and
evaluating Re(xw + 	− logw) at w = 0 (recall that Σ encircles [0, x]). To see that Re(xw + 	−
logw) is negative in Ext(Σ) ∩ {|w| � 1}, note first that on the unit circle, Re(xw + 	− logw) =
xRe(w) + 	 � x + log x− x2 < 0 for x < 1 (this also proves the claim of the uniform negative
bound on the unit circle). Then we note that as Re(xw + 	− logw) is zero on Σ and its only
critical point is w = 1/x > 1, there cannot be any points in Ext(Σ) ∩ {|w| � 1} where it is
positive (one of them would have to be a critical point). �

Let us then move on to the RHP that S satisfies.

Proof of Lemma 4.2. Analyticity and continuity of boundary values is clear from the
corresponding properties for Y and the definition of S. The jump condition across {|w| = 1}
is also immediate from the definitions. Consider then the jump across Σ. From the definition
of S and T , we have for w ∈ Σ \ {x}

S+(w) = S−(w)

(
1 0

−w
γ
2 (w − x)−

γ
2 e−kxwe(N+k)(xw+�−logw) 1

)

×
(
e−(N+k)(xw+�−logw) (w − x)

γ
2 w− γ

2 ekxw

0 e(N+k)(xw+�−logw)

)

×
(

1 0

−w
γ
2 (w − x)−

γ
2 e−kxwe−(N+k)(xw+�−logw) 1

)

= S−(w)

(
0 (w − x)

γ
2 w− γ

2 ekxw

−(w − x)−
γ
2 w

γ
2 e−kxw 0

)
.

For the jump across (0, x), note that the only term contributing to the branch cut is (w −
x)−

γ
2 . The claimed jump is easily obtained by looking at the jump of this function.

For the behavior near zero, we note that (as N + k + γ
2 � 1 + γ

2 > 0)

w
γ
2 (w − x)−

γ
2 e−kxwe−(N+k)(xw+�−logw) → 0

as w → 0 so since Y (0) exists, one sees that T (0) and thus S(0) exist as well. For the behavior
at x, note first that as w → x, T (w) has the same asymptotic behavior as Y : namely (3.4).
Thus, as w → x (off of C),

S(w) =

(O(1) O(1) + O (|w − x|Re(γ/2)
)

O(1) O(1) + O (|w − x|Re(γ/2)
)
)(

1 0
O
(
|w − x|−Re(γ)

2

)
1

)
,

from which the claim follows.
The normalization at infinity is a consequence of the corresponding property for T . �
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Our next task is to prove that P (x,r) satisfies the RHP we claimed.

Proof of Lemma 4.4. Let us begin by noting that we can write

P (x,r)(w) =

⎛⎝1 w
γ
2 (w − x)−

γ
2 ekxweζ(w) Γ( γ

2 ,ζ(w))
Γ( γ

2 )

0 1

⎞⎠

×
⎛⎝1 hr(w; γ) − ekxwwγ/2(w − x)−γ/2ζ(w)γ/2

∑r
j=0

1
Γ( γ

2 −j)ζ(w)−j−1

0 1

⎞⎠P (∞)(w).

By the definition of the incomplete gamma function (see (4.20)), the first matrix here has a
branch cut along (−∞, x), but no other singularities. By the definition of hr (Definition 3),
the second matrix is analytic in U . From this, we conclude that indeed P (x,r) is analytic in
U \ (Σ ∪ [0, x]). Continuity of the boundary values is immediate from the definitions. For the
jump conditions, we note we just argued that on Σ \ {x}, the only jump comes from P (∞), and
as mentioned in Section 4.2, one can check easily that it satisfies (4.6).

For the jump across (0, x), we see that the only contribution to the jump comes from the
incomplete gamma function term, and we simply need the following calculation (which is easy
to check from (4.20)):(

w
γ
2 (w − x)−

γ
2 ekxw

Γ(γ2 , ζ(w))eζ(w)

Γ(γ2 )

)
+

−
(
w

γ
2 (w − x)−

γ
2 ekxw

Γ(γ2 , ζ(w))eζ(w)

Γ(γ2 )

)
−

= w
γ
2 eζ(w)ekxw

[
(w − x)−

γ
2

+ − (w − x)−
γ
2−
]

= −2i sin
πγ

2
|w| γ2 |w − x|− γ

2 ekxweζ(w)

from which we find that for w ∈ (0, x) ∩ U

[
P

(x,r)
− (w)

]−1

P
(x,r)
+ (w) =

(
0 −ekxw

e−kxw 0

)(
1 −2i sin πγ

2 |w| γ2 |w − x|− γ
2 ekxweζ(w)

0 1

)

×
(

0 ekxw

−e−kxw 0

)

=
(

1 0
2i sin πγ

2 |w| γ2 |w − x|− γ
2 e−kxweζ(w) 1

)
,

which is (4.22).
Let us then move onto the behavior at x. We begin with (4.23). Simply using the definition

of S, ζ, P̂ (∞,r), and P (x,r), we see that for w ∈ Int(Σ) \ [0, x]

S(w)P (x,r)(w)−1 = T (w)

(
1 0

−w
γ
2 (w − x)−

γ
2 e−kxwe−(N+k)(xw+�−logw) 1

)(
0 −ekxw

e−kxw 0

)

×
(

1 −hr(w; γ) −Qr(w)

0 1

)
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= T (w)

(
0 −ekxw

e−kxw w
γ
2 (w − x)−

γ
2 eζ(w)

)(
1 −hr(w; γ) −Qr(w)

0 1

)

= T (w)

(
0 −ekxw

e−kxw α1(w) + α2(w)

)
,

where

α1(w) = wγ/2(w − x)−γ/2eζ(w)

[
Γ(γ2 , ζ(w))

Γ(γ2 )
− 1
]

and

α2(w) = wγ/2(w − x)−γ/2ζ(w)γ/2
r∑

j=0

1
Γ(γ2 − j)

ζ(w)−1−j − e−kxwhr(w; γ).

From the definition of hr, α2 is analytic, while from the definition of the incomplete gamma
function, we see that

α1(w) = −wγ/2(w − x)−γ/2eζ(w)ζ(w)γ/2γ∗
(γ

2
, ζ(w)

)
.

Again, as ζ(w) has a simple zero at x, this is also analytic, so we have

S(w) = T (w)

(
0 O(1)

O(1) O(1)

)
from which the claim follows once one notes that the definition of T implies that it has the
same asymptotic behavior as Y at x. For (4.24), we note that for w ∈ Ext(Σ),

P (x.r)(w) =

(
1 Qr(w) + hr(w)

0 1

)(
wγ/2(w − x)−γ/2 0

0 w−γ/2(w − x)γ/2

)

=

(
wγ/2(w − x)−γ/2 (Qr(w) + hr(w))w−γ/2(w − x)γ/2

0 w−γ/2(w − x)γ/2

)
.

Again,

Qr(w) + hr(w) = hr(w) − ekxwwγ/2(w − x)−γ/2ζ(w)γ/2
r∑

j=0

1
Γ(γ2 − j)

ζ(w)−j−1

+ ekxwwγ/2(w − x)−γ/2eζ(w) Γ(γ2 , ζ(w))
Γ(γ2 )

,

where by the definition of hr (Definition 3), the first row of this equation is bounded at x and
by the definition of the incomplete gamma function — namely (4.20), the second row of this
equation is O(1) + O(|w − x|−Re(γ)

2 ). Putting everything together, we find (a stronger claim
than) (4.24).

Finally, we need to check the matching condition (4.25). By the definition of P (x,r), we find
immediately that for any w ∈ U \ (Σ ∪ [0, x]),

P (x,r)(w)P̂ (∞,r)(w)−1 = I +
(

0 Qr(w)
0 0

)
.

Now for w ∈ ∂U , |ζ(w)| � N uniformly in w ∈ ∂U (a � b meaning a = O(b) and b = O(a)),
so we need to find the large |ζ| asymptotics of Q. For this, we use the following asymptotic
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expansion of the incomplete gamma function (see, for example, [33, Section 4.2], where the
proof is for real γ, but it works with obvious modifications also for complex γ): for any p ∈ Z+,

Γ(γ2 , ζ)
Γ
(
γ
2

) eζ = ζ
γ
2 −1

(
p∑

k=0

1
Γ(γ2 − k)

ζ−k + O(ζ−p−1)

)
, (C.1)

where the error is uniform in γ in compact subsets of {γ ∈ C : Re(γ) > −2}. This yields
immediately that uniformly in w ∈ ∂U (and uniformly in the relevant γ and x)

Qr(w) = O(|ζ(w)| γ2 −r−2) = O(N
γ
2 −r−2),

which implies (4.21) and concludes the proof. �

We now turn to proving that R is a solution to the RHP we claimed.

Proof of Lemma 4.5. The proof is largely standard. Uniqueness is the standard argument.
We note that by construction, the branch cuts of the parametrices cancel with those of S,
and the only jumps are across ∂U and the unit circle. For analyticity, one still needs to check
that there is no isolated singularity at x. Using (4.8), (4.23), and (4.24), one sees that any
possible singularity of R at x is of bounded degree and cannot thus be essential. Note that if
there were a pole, then independently from the direction w approaches x from, one would have
that for some positive integer m, (w − x)mR(w) would converge to a finite non-zero matrix as
w → x. Now if we approach from Int(Σ) \ [0, x], then by (4.23) (and the fact that Re(γ) > −2),
(w − x)R(w) → 0 so we cannot have a pole — R is analytic in the claimed region.

Continuity of the boundary values and the structure of the jump matrices follow directly
from the relevant definitions and from (4.5). The normalization at infinity also follows from the
asymptotic behavior of S and P̂ (∞,r) at infinity. The estimates for the jump matrices follow
from (4.25) and Lemma 4.1. �

We conclude with the proof of the asymptotic behavior of R.

Proof of Lemma 4.6. Again, most of the proof is standard and surely obvious for experts,
but for the convenience of the reader, we offer a sketch of a proof here. We follow reasoning
from [11, 13, 27]. We now recall how one sees that a unique solution exists for this RHP. Again,
uniqueness can be proven the standard way. To see existence, we introduce some (standard)
notation: for w ∈ C \ ΓR, let

C(f) :=
∫

ΓR

f(s)
s− w

ds

2πi
,

and let CΔR
(f) = C−(fΔR), where C−(f)(w) = limz→w C(f)(z) as z approaches w ∈ ΓR

from the negative side of ΓR. Since C− : L2(ΓR) → L2(ΓR) is a bounded operator (see [14,
Appendix A] and the references therein), our estimate on the jump matrix of R, namely
||ΔR||L∞(ΓR) = O(N

1
2 Re(γ)−r−2) implies that the operator norm of CΔR

is O(N
Re(γ)

2 −r−2),
and therefore for large enough N and choosing r suitably (‘large enough’ and r depending only
on the compact set K that γ is in and the compact subset of (0,1) that x is in), I − CΔR

is
invertible. Arguing as in [14, the proof of Theorem 7.8] (though in a slightly inverted order
since we do not know the existence of a solution), one can check that

R = I + C[ΔR + (I − CΔR
)−1(CΔR

(I))ΔR] (C.2)
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is a solution to the problem. Moreover, one can check that this implies that R can also be
represented in terms of its boundary values:

R(w) = I + (CΔR
R−)(w) = I +

∫
ΓR

R−(s)ΔR(s)
s− w

ds

2πi
. (C.3)

To get a hold of the asymptotic behavior of R, we note one consequence of the definition (C.2)
is that R− − I = (1 − CΔR

)−1CΔR
(I). Since the norm of CΔR

is of order N
1
2 Re(γ)−r−2, we see

from this that

||R− − I||L2(ΓR) � ||(I − CΔR
)−1||L2(ΓR)→L2(ΓR)||CΔR

(I)||L2(ΓR) = O
(
N

1
2 Re(γ)−r−2

)
.

(C.4)

Let us now fix δ > 0 and let w be at distance at least δ from ΓR. Then applying (C.4) to (C.3)
and using Cauchy–Schwarz, we see that

|R(w) − I| � |(CΔR
I)(w)| + |(CΔR

[R− − I])(w)|
= O (||ΔR||L∞(ΓR)

)
+ O (||R− − I||L2(ΓR)||ΔR||L2(ΓR)

)
= O

(
N

1
2 Re(γ)−r−2

)
,

where the implied constants depend on δ, but are uniform in γ (when restricted to a compact
set). This bound can be extended to points w close to ΓR with the standard contour deformation
argument — see [14, Corollary 7.9]. To conclude the proof of (4.29), note that we have from
(C.3) that limw→∞ w(R(w) − I) = − ∫

ΓR
R−(s)ΔR(s) ds

2πi , for which repeating our previous
argument shows the claim.

We now move onto the proof of (4.30). Here, our goal is to show that R(w) is an analytic in
γ on the set {γ ∈ C : Re(γ) > −2}. Then Cauchy’s integral formula combined with (4.29) will
give (4.30). We note that going back in our chain of transformations, the existence of R lets
us define the matrix Y in terms of R, the parametrices, and our transformations. Moreover,
the RHP for R induces an RHP for Y as well and this RHP is precisely the one appearing in
Lemma 3.1, though checking the asymptotic behavior at x is not completely obvious. For this,
we note first that reversing our transformations, T and Y have the same behavior at x, so it
is enough to study asymptotics of T . For this, we note that if w → x and w ∈ Int(Σ), a direct
calculation (using the definitions of our transformation, the definition of hr, the definition of
Qr, and the definition of the incomplete gamma function) shows that we have

T (w) = R(w)

(
wγ/2(w − x)−γ/2eζ(w) − e−kxw(hr(w; γ) + Qr(w)) ekxw

−e−kxw 0

)

=

(O(1) O(1)

O(1) O(1)

)⎛⎝O(1) + wγ/2(w − x)−γ/2eζ(w)
(
1 − Γ( γ

2 ,ζ(w))

Γ( γ
2 )

)
O(1)

O(1) 0

⎞⎠
= O(1),

so we see that as w → x from Int(Σ), Y (w) = O(1). On the other hand, a similar argument
shows that as w → x from Ext(Σ), we have

T (w) = R(w)

⎛⎝wγ/2(w − x)−γ/2 − Qr(w)+hr(w)
ekxweζ(w) w−γ/2(w − x)γ/2(Qr(w) + hr(w))

−e−kxwe−ζ(w) w−γ/2(w − x)γ/2

⎞⎠
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=

(O(1) O(1)

O(1) O(1)

)⎛⎝O(1) O(1) + O(|w − x|Re(γ)
2 )

O(1) O(|w − x|Re(γ)
2 )

⎞⎠

=

⎛⎝O(1) O(1) + O(|w − x|Re(γ)
2 )

O(1) O(1) + O(|w − x|Re(γ)
2 )

⎞⎠.

We conclude that Y defined from R satisfies the asymptotic behavior (3.4).
It is then another standard argument (using the jump condition of Y , its asymptotic behavior,

Liouville’s theorem, and some regularity properties of the Cauchy transform — we omit the
details) that the polynomials pN+k(w) and qN+k−1(w−1) must exist and YN+k is given by (3.1)
in terms of these polynomials. More precisely, one has

1
χN+k

pN+k(w) =
1

D̂N+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∮
Σ
f(s) ds

2πis · · · ∮
Σ
sN+kf(s) ds

2πis∮
Σ
s−1f(s) ds

2πis · · · ∮
Σ
sN+k−1f(s) ds

2πis

...
...∮

Σ
s−N−k+1f(s) ds

2πis · · · ∮
Σ
s1f(s) ds

2πis

1 · · · wN+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where D̂N+k−1 = det(
∮
Σ
si−jf(s) ds

2πis )
N+k−1
i,j=0 (as in Lemma 2.4) and a similar expression exists

for Y21(w), namely it equals the polynomial −χN+k−1w
N+k−1qN+k−1(w−1). In particular, the

uniqueness of the solution to the R-RHP, which then implies the uniqueness of the solution to
Y -RHP guarantees that DN+k−1 �= 0. Now all of the entries appearing in this determinant as
well as DN+k−1 are analytic functions of γ, so we conclude that Y11 (and similarly other entries
of Y ) are analytic functions of γ. Then, going back to R, we conclude that R is an analytic
function of γ.

Now to obtain (4.30), we write for a fixed γ with Re(γ) > −2, Lγ for a square of side length
ε centered at γ (epsilon less than the distance to the boundary of the set). Let us write also
R(w, γ) to highlight the dependence on γ. We note that by analyticity (Cauchy’s integral
formula), we have

∂γR(w, γ) =
1

2πi

∮
Lγ

R(w, μ)
(μ− γ)2

dμ

2πi
=

1
2πi

∮
Lγ

R(w, μ) − I

(μ− γ)2
dμ

2πi
.

The first estimate in (4.30) then follows from the first estimate in (4.29). The second claim is
similar and uses again the expression limw→∞(w(R(w, γ) − I)) = − ∮

ΓR
R−(s, γ)ΔR(s, γ) ds

2πi .
For this, we also need an estimate for ∂γΔR(s, γ). This can also be estimated with a similar
Cauchy integral formula argument due to the analyticity in γ, and the claim follows from our
bounds on ΔR(s, γ). This concludes the proof. �
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