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Abstract. A hybrid trapped field magnet lens (HTFML) can reliably generate a concentrated 

magnetic field, Bc, in the centre of the magnetic lens higher than the trapped field of the 

trapped field magnet (TFM) and the applied magnetic field, Bapp, even after the external 

magnetizing field decreased to zero. In this paper, the performance of HTFMLs consisting of 

EuBaCuO bulk TFM with various heights and a GdBaCuO bulk magnetic lens was 

investigated at 77 K using liquid nitrogen. A concentrated magnetic field of Bc = 0.80 T was 

achieved at the centre of the HTFML for the tallest TFM after removing an applied magnetic 

field of Bapp = 0.50 T. The influence of the height of the outer TFM cylinder on the final 

concentrated field was studied experimentally and discussed using numerical simulation. 

1.  Introduction 

REBaCuO (where RE is rare earth element or Y) bulk superconductors have a potential to trap 

magnetic fields much higher than that of a conventional Nd-Fe-B magnet. Thus, the magnetized 

REBaCuO bulk can be used as a promising compact, high-strength trapped field magnet (TFM) for 

many engineering applications. The world record magnetic field of 17.6 T at 26 K was achieved in a 

GdBaCuO disk pair reinforced by shrink-fit stainless steel [1]. Furthermore, the trapped field of 4.3 T 

was generated in a GdBaCuO disk pair even at 77 K [2]. An EuBaCuO ring-shaped bulk 

superconductor is suitable for practical applications such as a nuclear magnetic resonance (NMR) 

spectrometer and magnetic resonance imaging (MRI) equipment because of its low relative magnetic 

permeability (𝜇r = 1.0013), compared with that of GdBaCuO (𝜇r = 1.0194) [3–5]. 

In addition, a ‘magnetic lens’ using cone-shaped bulk superconductors has been investigated, in 

which a magnetic field is concentrated in the bore of the lens using the ‘diamagnetic shielding effect’ 

of superconducting materials and the magnetic field in the lens is higher than the applied field 

generated by an external magnetizing coil [6–11]. A higher concentrated field of Bc = 12.42 T has been 

achieved at 20 K for a background field of Bapp = 8 T using a bulk GdBaCuO lens [6]. Using an MgB2 

magnetic lens, Bc = 2.1 T was also achieved at 17 K for Bapp = 1 T [12].  

We proposed a new concept of a hybrid trapped field magnet lens (HTFML) in 2018, which 

consists of a TFM cylinder exploiting the ‘vortex pinning effect’, combined with a bulk magnetic lens 
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exploiting the ‘diamagnetic shielding effect’ [13]. The HTFML can reliably generate a concentrated 

magnetic field in the centre of the magnetic lens higher than the trapped field of the TFM and the 

applied magnetic field, even after the external magnetizing field decreases to zero. Very recently, we 

confirmed the experimental realization of the HTFML using a GdBaCuO magnetic lens and MgB2 

TFM cylinder [14], in which a maximum concentrated magnetic field of Bc = 3.55 T was achieved at 

the central bore of the HTFML device after removing the applied field of Bapp = 2.0 T at T = 20 K. 

It is better for the HTFML consisting of both REBaCuO magnetic lens and TFM cylinder to 

achieve higher HTFML effect. In this paper, the performance of HTFML consisting of a GdBaCuO 

bulk magnetic lens and EuBaCuO bulk TFM cylinder was investigated at 77 K using a liquid nitrogen. 

2.  Experimental Procedure 

Figure 1 shows the experimental setup for the HTFML device. As outer bulk cylinder, three ring-

shaped EuBaCuO bulks were stacked (TFM-A, B and C), which were fabricated by QMGTM method 

by Nippon Steel Corporation, Japan [15]. The dimension of the TFM-A and C is 60 mm in outer 

diameter (OD), 36 mm in inner diameter (ID) and 17 mm in height (H). The TFM-B is 60 mm in OD, 

36 mm in ID and 20 mm in H. Each EuBaCuO ring bulk was reinforced by an Al alloy ring 5 mm in 

thickness (70 mm in OD, 60 mm in ID) with the same height of each bulk, which is a suitable material 

for the reinforcement of the bulk applied to NMR apparatus because of non-magnetic and higher 

mechanical strength [3]. A GdBaCuO magnetic lens was prepared by the following process: stacked 

double GdBaCuO cylindrical bulks (OD = 36 mm, ID = 10 mm, H = 30 mm) fabricated by QMGTM 

method were machined into a cone-shaped lens (OD = 30 mm, ID = 10 mm, ID2 = 26 mm, outer 

height (OH) = 30 mm and inner height (IH) = 8 mm), as shown in Fig. 1(b). The dimensions of the 

bulk lens were optimized using numerical simulations [16]. Thin slits 200 μm in width were made to 

disrupt the circumferential flow of the shielding current during the zero-field-cooled magnetization 

(ZFCM) process. The GdBaCuO magnetic lens was encapsulated in a stainless steel (SS) holder to 

prevent mechanical fracture from the Lorentz force. The time evolution of the concentrated magnetic 

field, Bc, at the central bore of the HTFML was measured by an axial-type Hall sensor (F. W. Bell, 

BHA-921). The similar experiments were performed for the case of double TFMs (TFM-A and B) and 

single TFM (TFM-B).  

Since magnetic lens and TFM cylinder are made of the similar REBaCuO materials, an individual 

temperature control is necessary to realize the HTFML effect. Figure 2 shows the time sequence of the 

external magnetic field, Bex, and the temperatures, T, of the EuBaCuO TFM cylinders and GdBaCuO 

magnetic lens during the magnetizing procedure, which comprises the following five stages.  

(1) The long outer glass fibre reinforced plastic (GFRP) container (96 mm in OD, 80 mm in ID) was 

set in the room temperature bore (100 mm in diameter) of the cryocooled superconducting solenoid 

magnet (170 mm in OD, 120 mm in ID, 200 mm in H, JASTEC JMTD-10T100). The GdBaCuO 

magnetic lens encapsulated by SS holder was set in the inner GFRP container (35 mm in OD, 33 

mm in ID), and was placed at the centre of the outer GFRP container. The liquid nitrogen was 

poured into both GFRP containers. 

(2) The external magnetic field, Bex, was linearly ramped up to the maximum magnetic field of 

Bapp = 0.50 T at +0.222 Tmin−1. This process corresponds to ZFCM for the GdBaCuO lens, in 

which the magnetic field at the central position is higher than Bapp because of the shielding effect by 

the magnetic lens. 

(3) After Bex reached to Bapp = 0.50 T, the EuBaCuO TFMs in the plastic container were immersed 

slowly to the bottom of the outer GFRP container filled with liquid N2. 

(4) Bex was decreased linearly at −0.222 Tmin−1 down to zero. During this process, the outer EuBaCuO 

TFMs were magnetized by field-cooled magnetization (FCM) and magnetic flux was trapped. A 

magnetic field at the centre of the magnetic lens still remains due to the existence of the trapped 

field in the EuBaCuO TFMs.  

(5) As a result, the HTFML can reliably generate a magnetic field higher than the trapped field in the 

EuBaCuO TFMs and Bapp, even after Bex = 0. 
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Figure 1. (a) The schematic illustration of the experimental setup for the HTFML using liquid 

nitrogen, which corresponds to the magnetizing stage of (3) (see text). (b) Cross-sectional and top 

views of the GdBaCuO magnetic lens with slits. When a magnetic field is applied to the lens along the 

+z-direction, the shielding current flows like red arrows and the magnetic flux penetrates into the bore 

of the lens through the slits. As a result, the magnetic field along the +z-direction is amplified due to 

the shielding current. 

 

 

Figure 2. Time sequence of the external magnetic field, Bex, at the centre of the HTFML and the 

temperatures, T, of the EuBaCuO TFMs and GdBaCuO magnetic lens during the magnetizing 

procedure. 

3.  Numerical simulation 

Based on the experimental setup of the HTFML as shown in Fig. 1, a three-dimensional numerical 

simulation model was constructed, which consists of the bulk magnetic lens, bulk cylinders and a 

magnetizing solenoid coil. The magnetic lens and solenoid coil were assumed to be the same size as 

those used in the experiments. The magnetic lens has two slits with 5 deg. along the y-direction. All 

bulk TFMs were assumed to be the same size of 60 mm in OD, 36 mm in ID and 20 mm in H for 

simplicity. The numerical simulation was carried out using the commercial finite element method 

software package, Photo-Eddy (Photon Ltd., Japan), which helped us to understand electromagnetic 

phenomena of HTFML during the magnetization process. The details of fundamental equations for the 

simulations are described elsewhere [17–19]. The nonlinear relationship between the electric field, E, 

and current, J, of the superconducting bulk was given by the power–n law (n = 20). The magnetic field 

dependence of the critical current density, Jc(B), for the bulks used in this simulation was described 

using the following equation [20–22],  
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where Jc1, Jc2 are magnitudes of the central and secondary peaks, respectively: Bmax is the secondary 

peak position, BL and k are coefficients. These free fitting parameters, Jc1, BL, Jc2, Bmax and k in 

equation (1) for the EuBaCuO TFM cylinders and GdBaCuO magnetic lens are shown in table 1, 

which reproduced the experimental results of the time evolution of the measured magnetic field during 

FCM for the single EuBaCuO TFM (TFM-B) and ZFCM for the single GdBaCuO magnetic lens, 

respectively. 

 

Table 1. Fitting parameters of the Jc(B) characteristics for the EuBaCuO TFM cylinder and GdBaCuO 

magnetic lens, shown in eq. (1). 

 Jc1 (A m−2) BL (T) Jc2 (A m−2) Bmax (T) k 

EuBaCuO TFM cylinder 5.9 × 108 0.4 1.8 × 109 1.7 2.4 

GdBaCuO magnetic lens 7.2 × 108 0.4 2.2× 109 1.7 2.4 

 

4.  Results and discussion  

4.1.  FCM for single GdBaCuO cylinder and ZFCM for single GdBaCuO lens 

Figure 3(a) shows experimental and simulation results of the time dependence of the trapped field, 

Bc, at the centre of the single TFM (TFM-B) and the external field, Bex, during FCM, ramped down 

from 1.0 T at 77 K. The experimental Bc value of 0.82 T was trapped finally after the flux creep in the 

descending stage, which suggested the trapped field ability of the TFM-B at 77 K. The simulation 

curve of the field-dependent Bc reproduced the experimental one. 

Figure 3(b) shows the experimental and simulation results of the time dependence of the magnetic 

field, Bc, at the centre of the single GdBaCuO lens and the external field, Bex, during the magnetizing 

process of HTFML for Bapp = 0.50 T at 77 K. The effect of magnetic field concentration by the 

magnetic lens was confirmed experimentally. The negative magnetic field of Bc was observed after the 

magnetization, which resulted from the magnetic flux penetration into the bulk lens. Just after the 

ascending stage in the simulation, the concentrated magnetic field sharply increased, which is in clear 

contrast to the experimental result. This discrepancy originates from the width of slits gap. In the 

simulation, slit gap is 5 deg., which is wider than the actual slit gap. Therefore, more magnetic flux 

generated by the external magnetizing coil is intruded in the lens bore, compared to the situation. 

However, simulated Bc gradually decreased with time and was nearly the same as experimental one in 

the descending stage and after magnetization.  
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Figure 3. Experimental results of the time dependence of measured magnetic field, Bc, for (a) the 

single EuBaCuO bulk cylinder (TFM-B) during FCM from Bapp = 1.0 T at 77 K, and for (b) the single 

GdBaCuO magnetic lens during HTFML magnetizing process, shown in Fig. 1, for Bapp = 0.5 T at 

77 K. The simulation results of Bc are also shown in each figure. 

4.2.  Comparison of FCM for triple, double and single EuBaCuO TFMs 

Figures 4(a) - 4(c), respectively, show the time evolution of the measured magnetic field, Bc, at the 

centre of the triple, double and single EuBaCuO TFM and external field, Bex, during the HTFML 

magnetization process for Bapp = 0.50 T. In the ascending stage, the magnetic field, Bc, increased 

linearly with increasing Bex and the magnitude of Bc was the same as the external field because the 

EuBaCuO cylinders were in the normal state. In the descending stage, in which the bulk cylinders 

were cooled in liquid N2 and then FCM was performed, the final trapped field of the triple and double 

EuBaCuO TFMs was 0.50 and 0.49 T, respectively. For the single TFM (TFM-B), as shown in Fig. 

4(c), a small amount of flux flow was observed and the final trapped field was decreased to Bc = 

0.46 T.  

Figure 5 shows the numerical simulation results of magnetic field, Bc, at the centre of the triple, 

double and single EuBaCuO TFMs and external field, Bex, during the magnetizing process for 

Bapp = 0.50 T at 77 K. Final trapped field of these cases at 35 min (after approximately 15 min later 

from the ramp end) was 0.50, 0.50 and 0.46 T, respectively. For the single TFM, a small flux flow 

observed experimentally in the descending stage was reproduced in this simulation.  

 

 
Figure 4. Time evolution of the measured magnetic field, Bc, at the centre of the (a) triple, (b) double 

and (c) single EuBaCuO TFM at 77 K and external field, Bex, during the magnetization process for 

Bapp = 0.5 T.  
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Figure 5. The numerical simulation results of magnetic field, Bc, during the magnetizing process for 

Bapp = 0.5 T at the centre of the EuBaCuO cylinder using triple, double and single TFM.  

 

4.3.  HTFML effect using triple, double and single EuBaCuO TFM with GdBaCuO lens 

Figure 6 presents the confirmation of the HTFML effect consisting of GdBaCuO magnetic lens and 

EuBaCuO cylinder with triple, double and single TFM during the HTFML magnetization process for 

Bapp = 0.50 T. In the ascending stage using triple TFMs, as shown in Fig. 5(a), Bc was higher than Bex 

due to the diamagnetic shielding effect in the GdBaCuO magnetic lens and then finally Bc = 0.81 T 

was achieved. In the descending stage, after cooling process, Bc decreased slightly to 0.80 T. This 

result suggests that the HTFML effect at 77 K was confirmed. However, the final Bc value for the 

HTFML device using double and single EuBaCuO TFMs was decreased to 0.74 T and 0.56 T, 

respectively, as shown in Figs. 6(b) and 6(c). Although the trapped field ability for each TFM is almost 

the same (see Fig. 4), the HTFML effect decreased with decreasing height of the TFM cylinder. In 

particular, the HTFML effect with the single TFM was less than the other cases.  

Figure 7 shows the numerical simulation results of magnetic field, Bc, during the magnetizing 

process of HTFML for Bapp = 0.50 T at the centre of the HTFML using triple, double and single 

EuBaCuO TFMs. Just after the ascending stage, the concentrated magnetic field gradually decreased 

for all cases due to the gradual magnetic flux penetration into the bulk lens because of the lower Jc(B) 

characteristics at 77 K. For the use of triple and double EuBaCuO TFMs, in the descending stage, the 

time dependence of Bc was nearly the same and the final Bc values of 0.77 T were achieved. On the 

other hand, for the single EuBaCuO TFM case, as shown in Fig. 6(c), an abrupt decrease in Bc can be 

observed, which was similar to the experimental result, and the final Bc was 0.58 T. These numerical 

simulation results fairly reproduced the experimental ones as shown in Fig. 6. 

Finally, we consider the reason of the difference of the HTFML effect for EuBaCuO cylinder with 

different height. Figures 8(a) and 8(b) show the simulation results of the final trapped field and 

magnetic flux line distributions for the HTFML using triple and single TFMs, respectively. The final 

trapped field for the HTFML using single TFM was Bc = 0.46 T, which was slightly smaller than that 

using triple TFMs (Bc = 0.50 T), as shown in Fig. 5. The magnetic flux penetration can be confirmed 

in inner periphery of the bulk lens for each case. The difference of final Bc in the HTFML comes from 

the route of the magnetic flux concentration into the lens. For the HTFML using triple TFMs, 

magnetic flux line is along the +z-direction and trapped field generated from the TFMs is concentrated 

efficiently in the lens. On the other hand, for the HTFML using single TFM, magnetic flux cannot be 

collected to the lens effectively because the height of TFM (H = 20 mm) is shorter than that of the lens 

(H = 15 mm). From both simulation and experimental results, the HTFML device should be consisted 

of TFMs with at least higher than the lens for better HTFML performance. 
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Figure 6. Experimental results of measured magnetic field, Bc, during the magnetizing process for 

Bapp = 0.5 T at the centre of the HTFML using (a) triple, (b) double and (c) single EuBaCuO TFM. 

 

 
Figure 7. The numerical simulation results of magnetic field, Bc, during the magnetizing process for 

Bapp = 0.5 T at the centre of the HTFML using triple, double and single EuBaCuO TFM. 

  

 
Figure 8. Comparison of final distributions of the magnetic field and magnetic flux lines for the 

HTFML using (a) triple and (b) single TFM. Schematic view of the magnetic flux distribution is also 

shown in each case. 
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5.  Summary 

The performance of HTFML consisting of EuBaCuO bulk TFMs with various heights and a 

GdBaCuO bulk magnetic lens was experimentally investigated at 77 K using liquid nitrogen. A 

concentrated magnetic field, Bc = 0.80 T, at the centre of the HTFML was achieved for the longer TFM 

after removing an applied magnetic field of Bapp = 0.50 T. The experimental results were reproduced 

well by the numerical simulation. The HTFML effect was reduced with decreasing height of 

EuBaCuO TFM cylinder under the identical GdBaCuO bulk magnetic lens. To enhance the HTFML 

effect using both REBaCuO bulk TFMs and REBaCuO bulk magnetic lens, it is necessary to lowering 

the operating temperature.  
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