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Abstract
A holographic field theory on a fixed black hole background has a gravitational 
dual represented by a black funnel or a black droplet. These states are ‘detuned’
when the temperature of the field theory near the horizon does not match 
the temperature of the background black hole. In particular, the gravitational 
dual to the Boulware state must be a detuned solution. We construct detuned 
droplets and funnels dual to a Schwarzschild background and show that the 
Boulware phase is represented by a droplet. We also construct hairy black 
droplets associated to a low-temperature scalar condensation instability and 
show that they are thermodynamically preferred to their hairless counterparts.

Keywords: black holes, AdS/CFT, Hawking radiation, holographic CFT, 
black funnels/droplets, QFT in curved backgrounds

(Some figures may appear in colour only in the online journal)

1. Introduction

The AdS/CFT correspondence [1–3] provides a powerful means of studying strongly coupled
quantum field theories in curved spacetimes. Of particular interest are black hole backgrounds, 
as these enable the study Hawking radiation at strong coupling, a regime which would other-
wise be intractable via standard field-theoretic means. Moreover, since black holes act as heat 
sources and sinks, studying the behaviour of strongly-coupled field theories on black hole 
backgrounds can offer insight into heat transport in such theories.

Let us therefore consider holographic CFTs with a background metric that contains a black 
hole, a programme first initiated in [4] and continued in [5–17]. (See [18] for a review). In the
limit in which the bulk is described by classical general relativity, the gravitational duals are 
asymptotically locally AdS spacetimes (with AdS scale �) which can roughly be divided into 
two classes: ‘black funnels’ and ‘black droplets’. The distinction between these two classes is
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made based on the connectedness of the bulk horizon(s), as shown schematically in figure 1 
for an asymptotically flat boundary black hole.

Generically, a fixed boundary geometry admits a family of bulk duals consisting of both 
black funnels and black droplets, with each bulk solution corresponding to a different state of 
the boundary field theory. These states can be characterised by two dimensionless parameters3:

	 •	The ratio TH ≡ TH/TBH of the temperature TH of the field theory near the black hole 
horizon to the black hole temperature TBH; and

	 •	The ratio T∞ ≡ T∞/TBH of the temperature T∞ of the field theory in an asymptotic 
region (assuming one exists) to the black hole temperature.

The temperatures TH and T∞ determine the temperature of the bulk horizon(s) where they 
intersect the boundary and at an asymptotic region, respectively. In contrast, since the bound-
ary metric is nondynamical, the boundary black hole temperature TBH should instead be 
thought of as a geometrical scale. In particular, there is no need for TBH to match the bona fide 
thermodynamic field theory temperature TH. That is, it is permissible to take TH �= 1, in which 
case we call the resulting solution ‘detuned’.

From the perspective of the CFT dual to these detuned solutions, the Euclidean path int
egral has a period β = 1/TH, which means the Euclidean boundary geometry exhibits a coni-
cal singularity at the (boundary black hole) horizon. This singularity is a consequence of the 
fact that the CFT is not in equilibrium with the black hole, and can be thought of as arising 
from an infinitesimally thin heat bath at temperature TH just outside the horizon. As a result, 
the stress energy tensor will diverge there.

Our purpose in this paper is to explore the space of detuned states. We are particularly inter-
ested in the Boulware state, defined here as the lowest-energy state on a given boundary black 
hole4. We will work in four boundary dimensions, placing the field theory on a Schwarzschild 
black hole. It is reasonable to expect that the Boulware state should have TH = T∞ = 0, and 
indeed, we will construct a droplet with TH = T∞ = 0 and show that it has a lower energy 
than any other known solution on the same background5. Moreover, we also attempt to con-
struct a funnel with TH = T∞ = 0, but our results suggest that a finite-temperature funnel 

Figure 1.  Sketches of black droplets and black funnels for an asymptotically flat 
boundary black hole. From left to right, a black funnel, a black droplet with T∞ �= 0, 
and a black droplet with T∞ = 0. The T∞ = 0 droplet can be thought of as the limit 
T∞ → 0 in which the planar horizon becomes a Poincaré horizon.

3 We assume that a notion of local thermodynamic equilibrium exists at the black hole horizon and at infinity. We 
also assume that the boundary black hole is nonextremal so that TBH �= 0.
4 Other interesting states that are not detuned include the Hartle–Hawking state, characterized by TH = T∞ = 1 and 
constructed in [9], and the Unruh state, characterized by TH = 1 and T∞ = 0 and explored in [7].
5 We point out that droplets with extremal boundary black holes have been constructed [12, 13, 19]. The extremal 
case satisfies TBH = T∞ = TH = 0, which can be thought of as simultaneously all of the Hartle–Hawking, Unruh, 
and Boulware vacua.
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‘pinches off’ to a droplet before zero temperature can be reached, providing strong evidence 
that the bulk dual to the Boulware state is a droplet.

While most of the geometries presented in this paper are solutions to the vacuum Einstein 
equation (with negative cosmological constant), we note that droplet and funnel geometries 
exist even in the presence of matter. Moreover, at low temperatures, it is possible for such 
solutions to dominate the thermodynamic ensemble over the pure vacuum solutions. For 
instance, a scalar field of sufficiently low mass will condense to form scalar hair around a 
black hole with small enough temperature (the most well-known example of this phenomenon 
may be the holographic superconductor [20]). Because here we are primarily interested low 
temperatures, such solutions are relevant in our characterization.

To briefly review the mechanism by which this condensation occurs, consider introduc-
ing a scalar field of mass μ in the D-dimensional bulk. At low temperature, the near-horizon 
geometry of the bulk black hole approaches AdS2 × XD−2 for some transverse space X. Thus 
if the mass of the scalar is chosen such that µ2�2 < −1/4, so that it violates the Breitenlöhner-
Freedman (BF) [21] bound of the near-horizon AdS2

6, an instability develops causing the sca-
lar field to condense around the horizon. This hairy solution is thermodynamically preferred, 
and thus a theory containing such a bulk matter field will have a different Boulware state from 
one without it. To illustrate this phenomenon explicitly, we will therefore introduce a scalar 
field ϕ and construct black droplets which are solutions to the Einstein–Klein–Gordon system

Eab ≡ Rab +
4
�2 gab − 2

(
∇aϕ∇bϕ+

1
3
µ2ϕ2gab

)
= 0, (∇2 − µ2)ϕ = 0,

�

(1.1)

where we take the mass of the scalar field to be µ2 = −4/�2, which saturates the AdS5 BF 
bound. As expected, we will find that at sufficiently low temperature, the hairy black droplets 
have lower energy than their hairless counterparts.

This paper is organized as follows. In section  2, we outline the construction of our 
Boulware droplets (both with and without scalar hair), reviewing boundary conditions and 
numerical methods. In section  3, we outline the construction of (hairless) black funnels 
with TH = T∞ �= 1, and show evidence that as these temperatures are decreased, the funnels 
become singular and ‘pinch off’ before zero temperature is reached. In section 4 we examine 
the stress tensors of our droplet and funnel solutions, showing that the zero-temperature drop-
let has minimum energy. We conclude in section 5 with a discussion on negative energies and 
future directions.

2.  Constructing droplets

Let us outline the construction of a Boulware droplet. The methods used in this construction 
are commonly used in the literature, so we will relegate details to the Appendices.

2.1. The geometry of black droplets

The geometry of a droplet with T∞ = 0 is shown schematically in figure 1(c). The boundary 
metric of this solution is conformal to Schwarzschild,

ds2
Schw = −f (r)dt2 +

dr2

f (r)
+ r2dΩ2

2, where f (r) ≡ 1 − rs

r
� (2.1)

6 Note that the mass must still obey the BF bound µ2�2 � −(D − 1)2/4 imposed by the AdSD asymptotics.

S Fischetti et alClass. Quantum Grav. 34 (2017) 155001
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and rs is the Schwarzschild radius, which sets the boundary black hole temperature as 
TBH = 1/(4πrs). The SO(3) symmetry of the sphere extends into the bulk, which contains an 
axis corresponding to a fixed point of this symmetry. The bulk droplet horizon has temperature 
TH and extends from this axis to the boundary. Finally, the solution ends on a Poincaré hori-
zon, which we will write in the following way. Beginning with AdS5 in Poincaré coordinates,

ds2
AdS5

=
�2

z2

(
−dt2 + dz2 + dR2 + R2dΩ2

2

)
,� (2.2)

we convert to algebraic polar coordinates ρ = 1/
√

R2 + z2 and χ = R/
√

R2 + z2 , in which 
case the metric becomes

ds2
AdS5

=
�2

1 − χ2

(
−ρ2dt2 +

dρ2

ρ2 +
dχ2

1 − χ2 + χ2dΩ2
2

)
.� (2.3)

In these coordinates, the Poincaré horizon lies at ρ = 0 and its extremal nature is explicit.
The special case of the Unruh droplet (in which TH = 1) was constructed numerically in [7]. 

In such a case, the bulk horizon has the same temperature as the boundary black hole, and the 
coordinate ‘point’ where they join is well-behaved. This solution was found numerically by the 
Einstein equation on a rectangular domain whose four boundaries correspond to the conformal 
boundary, the bulk horizon, the axis of symmetry, and the Poincaré horizon; see figure 2(a).

However, if TH �= 1, this point will become a multi-valued coordinate singularity (the value 
of metric components there will depend on the direction from which it is approached), which 
must be more carefully resolved. Essentially, this is accomplished by following the approach 
described in detail in [8] and used again in [9], wherein a coordinate transformation is used to 
expand this ‘point’ into an additional asymptotic region which approaches a hyperbolic AdS-
Schwarzschild black hole of temperature TH �= TBH; see figure 2(b) for an illustration and 
appendix A for more details. After transforming this singular point to an asymptotic region, 
the domain now consists of five boundaries: the conformal boundary, a hyperbolic black hole, 
the bulk horizon, the axis of symmetry, and the Poincaré horizon.

Figure 2.  (a): The domain of integration for constructing the Unruh droplet. The four 
boundaries correspond to the conformal boundary ∂, the bulk horizon H, the axis of 
symmetry A, and the Poincaré horizon H. Because the bulk and boundary horizons 
have the same temperature (TH = 1), the coordinate ‘point’ where the bulk horizon 
meets the boundary is well-behaved. (b): For a non-Unruh droplet (TH �= 1), the metric 
is ill-behaved at this point. To resolve this singular behavior, the point can be blown up 
into an asymptotically hyperbolic region H, yielding a five-sided integration domain.

S Fischetti et alClass. Quantum Grav. 34 (2017) 155001
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2.2.  Ansatz

Let us now present our ansatz for detuned droplets. Because the computational domain is 
five-sided, it is convenient to introduce two separate coordinate systems, each of which is 
regular on four of the five boundaries. We will call one coordinate system (x, y), which is 
regular everywhere except at the Poincaré horizon, while we will call another (ρ,χ), regular 
everywhere except on the hyperbolic black hole. All of these coordinates range within in the 
unit interval, and they are related by the transformations

x = 1 −

√√√√−1 − α

2α
+

√(
1 − α

2α

)2

+
(1 − ρ2)2

α(1 − χ2ρ2)2 , y = χρ,� (2.4)

where α is a parameter that determines the detuning as

TH =
1 − α√
1 + α

.� (2.5)

See figure 3 for an illustration of these coordinate systems.
In the (x, y) coordinates, our ansatz then takes the form7

ds2 =
�2

x(2 − x)(1 + α)

[
−64(1 − x)2hF2G4Q1 dt2

r2
s H8 +

(1 + α)Q2 dx2

x(2 − x)h

+
4Q3

(2 − y2)(1 − y2)2

(
dy − y(1 − y2)(1 − x)Q5 dx

F

)2

+
y2(2 − y2)Q4dΩ2

2

(1 − y2)2

]
,

�

(2.6)

where

h = 1 − αx(2 − x),� (2.7a)

Figure 3.  The two coordinate systems used to construct detuned droplets. The 
left figure  shows the (x, y) coordinate square, within which we show the (distorted) 
(ρ,χ) coordinate grid. Likewise, the right figure  shows the (ρ,χ) coordinate square 
with the (x, y) coordinate grid drawn inside. We have labeled the five boundaries of 
the computational domain; it is clear that the (x, y) coordinates are regular everywhere 
except at the Poincaré horizon H, while the (ρ,χ) coordinates are regular everywhere 
except at the hyperbolic black hole H.

7 We do not have a straightforward way of motivating this particular ansatz. Its design is partially based on taking 
equation (2.14) in [7] which is a reference metric for the Unruh droplet that can be understood as written in polar 
coordinates, and performing a map to a bipolar coordinate system.

S Fischetti et alClass. Quantum Grav. 34 (2017) 155001
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F = 1 − h(1 − x)2(1 − y2)2,� (2.7b)

G = 1 +
√

h(1 − x)(1 − y2),� (2.7c)

H = G +
√

F,� (2.7d)

and the Qi are unknown functions of x and y.
The boundary conditions on the Qi are described in detail in appendix B.1. The case with 

the scalar field turned off (ϕ = 0) is simplest:

	 •	At the conformal boundary (x = 0, χ = 1), hyperbolic region (y = 1, 
ρ = χ = 1), and Poincaré horizon (ρ = 0, x = y = 0), we impose the Dirichlet condi-
tions Q1 = Q2 = Q3 = Q4 = 1 and Q5 = 0.

	 •	At the bulk horizon (x = 1, ρ = 1) we impose regularity, requiring ∂xQi = 0 and Q1 = Q2.
	 •	At the axis of symmetry (y = 0, χ = 0), we impose regularity, requiring ∂yQi = 0 and 

Q3 = Q4. In the (ρ,χ) coordinates, these become Q3 = Q4 and ∂χQi = 0.

With the scalar field turned on, the black hole acquires scalar hair, which in particular 
means that the hyperbolic black hole does as well. Thus the boundary condition at the asymp-
totically hyperbolic region becomes modified. To obtain it, we first obtain the hyperbolic hairy 
black hole in a gauge8 that is compatible with our ansatz (2.6). For that purpose, we look for 
hairy hyperbolic black holes of the form

ds2
H =

�2

x(2 − x)(1 + α)

[
− (1 − x)2(1 − αx(2 − x))QH1

4r2
s

dt2

+
(1 + α)QH2

x(2 − x)(1 − αx(2 − x))
dx2

+QH3

(
4y2 dy2

(1 − y2)2(1 + (1 − y2)2)
+

dΩ2
2

(1 − y2)2

)]
,

�

(2.8)

where now the QHi and the scalar field ϕH are functions of x only which must be obtained 
numerically. For boundary conditions, we have QHi = 1, ϕH = 0 on the boundary (x = 0), and 
∂xQHi = 0, ∂xϕH = 0 on the horizon (x = 1). The resulting Einstein equation (when written 
in De Turck form; see the following section) yields a set of ordinary differential equa-
tions (ODEs) for the QHi which we solve numerically. The solution of these ODEs reproduces 
the solution in [22], but in a different gauge. The critical temperature at which hairy hyper-
bolic black holes form corresponds to TH ≈ 0.0339.

To obtain the hairy droplet solution, we then continue to use the ansatz (2.6) with the same 
boundary conditions except for the hyperbolic region (y = 1, ρ = χ = 1), where we require 
that (2.6) approach (2.8): Q1 = QH1, Q2 = QH2, Q3 = Q4 = QH3, and Q5 = 0. Moreover, on 
the scalar field we impose ϕ = ϕH at the hyperbolic region, ϕ = 0 at the conformal boundary 
and Poincaré horizon, ∂yϕ = 0 on the axis, and ∂xϕ = 0 on the horizon.

2.3.  Numerical approach

Our numerical approach is the Einstein-de Turck method, which was first introduced in 
[23, 24], and reviewed in some detail in e.g. [25]. This approach requires a choice of refer-
ence metric g  which obeys the same boundary conditions as the desired solution g, but which 

8 Specifically, in the De Turck gauge, described in the following section.

S Fischetti et alClass. Quantum Grav. 34 (2017) 155001
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otherwise may be freely specified. Once such a reference metric is supplied, one solves the 
Einstein-de Turck equation, which modifies the Einstein equation in (1.1) to

Eab −∇(aξb) = 0, with ξa ≡ gbc(Γa
bc − Γ

a
bc),� (2.9)

where Γ and Γ define the Levi-Civita connections for the metric g and reference metric g , 
respectively. In order for a solution to the Einstein-de Turck equation to also be a solution to 
unmodified Einstein equation, one requires the so-called de Turck gauge condition ξa = 0. 
Solutions with ξa �= 0 have been shown not to exists if one demands stationarity and the so-
called t − φ reflection symmetry [7, 26], which are obeyed by both black funnels and droplets. 
We will therefore use ξ2 (which must vanish in the continuum limit) to monitor the conv
ergence of our solutions.

As a reference metric for both hairy and non-hairy droplets, we choose (2.6) with 
Q1 = Q2 = Q3 = Q4 = 1 and Q5 = 0. Since the equations of motion do not depend on � or rs, 
this is a one-parameter family of metrics parametrised by α. Similarly, as a reference metric 
for the hairy hyperbolic black holes, we choose (2.8) with QHi = 1.

Next, we must properly control the five boundaries in the computational domain. To that 
end, we employ patching, which was previously used to find black droplet solutions with bulk 
planar black holes [16]. The idea is to divide the integration domain into two non-overlapping 
patches, one in the (x, y) coordinates and one in the (ρ,χ) coordinates (see figure  3). We 
choose the patch boundary to extend from where where the horizon meets the axis to some-
where in the middle of the conformal boundary. Unlike the approach in [16], we do not define 
new metric functions in the (ρ,χ) coordinate system because this patch is mainly used to 
control the Poincaré horizon, which is a simple Dirichlet boundary condition. We additionally 
impose continuity of the metric functions and their first derivatives across the patch boundary.

We then solve the elliptic equation (2.9) (subject to the aforementioned boundary condi-
tions) using a standard Newton-Raphson algorithm. We find that the reference metric supplies 
a suitable seed for any of these solutions. The equations on the two patches are discretised 
by pseudo-spectral collocation methods using a tensor product of Chebyshev-Gauss-Lobotto 
nodes, which conform to the patches via transfinite interpolation. The resulting algebraic sys-
tem is solved using LU decomposition.

For any analytic function, pseudo-spectral collocation predicts exponential convergence 
with increasing grid size. Indeed, we see this behaviour for our nonzero temperature (α �= 1) 
solutions in figure 4. However, as described in appendix C, in the extremal (α = 1) case our 
solutions develop non-analytic behaviour at the hyperbolic black hole H. This non-analy-
ticity spoils the exponential convergence of the pseudo-spectral collocation, but it is never-
theless possible to determine the expected convergence given the particular non-analyticity. 
As we show in appendix C, for an (N + N)× N grid, this expected convergence goes like 
N−(

√
11−1) ≈ N−2.3, which is close to the  ∼N−2.5 behaviour we observe.

3.  Constructing black funnels

In the previous sections, we have constructed zero-temperature droplet solutions. However, 
in order to determine whether the bulk dual to the Boulware vacuum is a droplet or a funnel, 
we must see if zero-temperature funnels exist. If they do, we must find which solution is ther-
modynamically preferred. Thus in this section we construct black funnels with T ≡ T∞ = TH 
and try to push these temperatures to zero to obtain the desired Boulware vacuum.

Let us therefore briefly outline the construction of such funnels. As shown in figure 5(a), 
a natural sketch of a funnel has three boundaries: the conformal boundary, the horizon, 

S Fischetti et alClass. Quantum Grav. 34 (2017) 155001
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and a planar black hole. However, just as for the droplets, in the detuned case T �= 1 the 
coordinate ‘point’ where the horizon meets the boundary is singular, and thus must be 
regulated by expanding it into an asymptotically hyperbolic black hole. The resulting 
four-sided integration domain is shown in figure 5(b) (in fact, since this procedure yields 
a rectangular domain, it was used even in the Hartle–Hawking case T = 1 to simplify the 
numerics [9]).

We thus consider the following ansatz:

ds2 =
�2

xyH2

[
−x(1 − y)MQ1dt2 +

xQ2H2y2
+

4y(1 − y)M
dy2

+
Y2

0 Q4

x(1 − x)4

(
dx + x(1 − x)2Q3dy

)2
+

Y2
0 Q5

(1 − x)2 dΩ2
2

]
,

�

(3.1)

Figure 4.  (a): Convergence of ξ2 with increasing grid size of (N + N)× N for the 
TH = 0.5 (α ≈ 0.407) droplet. Note the log-linear scale; the convergence is close to 
exponential. (B): Convergence of ξ2 with increasing grid size of (N + N)× N for the 
Boulware TH = 0 (α = 1) droplet. The scale is now log-log; the convergence is power 
law with fitted power N−2.5, which within our uncertainty agrees with the predicted 
behavior N−(

√
11−1) ≈ N−2.3.

Figure 5.  (a): A sketch of a finite-temperature funnel. The domain has three boundaries: 
the conformal boundary ∂, the funnel horizon H, and a planar black hole. As for the 
droplets, if T �= 1, the coordinate ‘point’ where the bulk horizon meets the boundary 
is ill-behaved. (b): The ‘point’ where the horizon meets the boundary can be blown up 
into a hyperbolic black hole H. This transformation regulates the singular point, and as 
an added benefit yields a four-sided computational domain.

S Fischetti et alClass. Quantum Grav. 34 (2017) 155001
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where

G = y2
+ − y(1 − y2

+),� (3.2a)

H = 2y2
+ − 1 + x,� (3.2b)

M = G(1 − x) + y2
+x(1 + y),� (3.2c)

Y0 = y+

(
y2
+ − 1

2

)
,� (3.2d)

and the Qi are unknown functions of x and y (we also note that these (x, y) are obviously not 
the same as those used in the construction of the black droplets above). Here y+ is a parameter 
controlling T  via

T =
2y2

+ − 1
y+

;� (3.3)

thus the ansatz above reduces to the Hartle–Hawking ansatz used in [9] when y+ = 1.
The boundary conditions on (3.1) are detailed in appendix B.2. In short, they are:

	 •	At the conformal boundary (y = 0), the hyperbolic black hole (x = 0), and the planar 
black hole (x = 1), we impose the Dirichlet conditions Q1 = Q2 = Q4 = Q5 = 1 and 
Q3 = 0.

	 •	At the bulk horizon (y = 1), we impose regularity, requiring ∂yQi = 0 and Q1 = Q2.

For a reference metric to use with the de Turck method, we take (3.1) with 
Q1 = Q2 = Q4 = Q5 = 1 and Q3 = 0.

Thus to detune the black funnel, we look for solutions to the Einstein-de Turck equa-
tions with the ansatz (3.1), tuning T  from unity towards zero.

3.1.  Nonexistence of Boulware funnels

We now summarise our results. We study the structure of our solutions by keeping track of the 
minimal areal radius Rmin

H  of the funnel horizon. Starting with the Hartle–Hawking (T = 1) 
funnel, we may initially decrease T , and find that Rmin

H  also decreases. However, at T ≈ 0.785 
a minimum-temperature solution is reached. It is possible to continue to decrease Rmin

H  further, 
but only by increasing T , as shown in figure 6(a). Therefore, it is possible for two different 
black funnels to exist at the same temperature. We distinguish these funnels by their shape 
by calling them ‘thick funnels’ or ‘thin funnels’ (the top and bottom branches of figure 6(a), 
respectively). Crucially, extrapolation of the behavior shown in figure 6(a) appears to imply 
that the thin funnel branch should reach Rmin

H = 0, indicating a pinch-off transition towards a 
black droplet phase.

Indeed, as an additional check, in figure 6(b) we plot the Kretschmann scalar K evaluated 
on the funnel horizon H where the minimum radius Rmin

H  is attained; note that K appears to 
diverge as the thin funnels become narrower, consistent with the expectation that the funnel 
solutions become singular when Rmin

H = 0. Although our numerical methods cannot reach 
Rmin

H = 0, our results provide strong evidence that no funnel phase with TH = T∞ = 0 exists, 
and therefore that the Boulware vacuum is dual to a droplet phase.
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4.  Stress energy tensors

Let us now present the boundary stress tensors of the droplets and funnels described above, 
computed using standard holographic renormalization [27, 28]. In figure  7, we show the 
〈Tt

t〉 component of the stress tensor for the hairless (ϕ = 0) black droplets, with varying 
TH ∈ [0, 1.05]. For all of these solutions, 〈Tt

t〉 has an asymptotic falloff of r−5. Moreover, 
recall that 〈Tt

t〉 has the opposite sign from the (static) local energy density ρ = 〈Ttt〉. We thus 
immediately see from the figure that the TH = 0 droplet has the lowest pointwise energy den-
sity in this family. In fact, it also has lower pointwise energy density than the T∞ �= 0 droplets 
in [16], as well as the black funnels (to be presented shortly). As expected, in the universal sec-
tor of AdS/CFT (i.e. with no bulk matter fields), the TH = T∞ = 0 droplet is therefore likely 
dual to the Boulware state: that is, it is dual to the CFT state on Schwarzschild of lowest total 
energy. Note also that this energy density is everywhere negative, and in fact it can be shown 
that all of the classical energy conditions are violated everywhere.

Next, in figure 8 we compare the stress tensor of a hairy solution to that of the vacuum 
Boulware droplet by plotting

∆〈Tt
t〉 ≡ 〈Tt

t〉hairy − 〈Tt
t〉hairless Boulware.� (4.1)

The particular solution shown in figure 8 has TH = 0.025, which is the lowest temperature we 
have reached, though we note that extrapolation of our data implies that a hairy solution at 
TH = 0 should indeed exist. However, even without taking TH to zero, we observe that ∆〈Tt

t〉 
is positive, and thus even this finite-temperature hairy droplet has lower energy than the zero-
temperature hairless droplet (taking the hairy droplet all the way to zero temperature should 
just lower its energy further). This illustrates that the Boulware state is theory-dependent. 
Specifically, in the universal sector of AdS/CFT, the Boulware vacuum is just the hairless 
droplet described above. But by introducing a bulk scalar field (dual to a scalar CFT operator), 
the Boulware state becomes the zero-temperature limit of the hairy droplet shown in figure 8, 
which has a lower energy than its hairless counterpart.

Figure 6.  (a): The minimum areal radius Rmin
H  of the funnels as a function of temperature. 

Note that a minimum temperature of Tmin ≈ 0.785 is reached where the thick (upper) 
and thin (lower) funnel branches meet. We expect the minimum radius of the thin funnel 
branch to continue to decrease to zero, indicating a ‘pinch-off’ of the funnel horizon. 
(b): The Kretschmann scalar K ≡ RabcdRabcd of the detuned funnels evaluated where the 
bulk horizon attains its minimal areal radius. Note the logarithmic scale; K appears to 
diverge as the funnels pinch off.
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Finally, in figure 9 we show the stress tensor of the funnels; as for the detuned droplet, all 
the detuned funnels exhibit stress tensors that are singular at the horizon. Note that the energy 
density for the tuned funnel (T = 1), corresponding to the Hartle–Hawking vacuum, is every-
where positive, as would be expected in a state of global thermal equilibrium. However, like 
the droplets, all the detuned funnels exhibit a negative energy density near the horizon.

Figure 7.  The 〈Tt
t〉 component of the stress energy tensor dual to the hairless droplets 

as a function of r/rs. From bottom to top, the curves correspond to TH = 1.05, 1, 0.95, 
and 0. TH = 1 is the Unruh state and TH = 0 is the Boulware state. Note that the stress 
tensors of all detuned states diverge at the horizon.

Figure 8.  ∆〈Tt
t〉 for the TH = 0.025 hairy droplet as a function of r/rs. Here we show 

∆〈Tt
t〉 down to about the precision with which we are able to numerically extract 

it; at larger r, it becomes zero within the precision of our extraction. Note that it is 
everywhere non-negative, indicating that this solution has a lower local energy density 
(and thus total energy) than the hairless Boulware droplet.
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5.  Discussion

In this paper, our goal has been to construct the gravitational dual to the Boulware state of a 
holographic CFT on the Schwarzschild spacetime. We have argued that this dual is an extre-
mal black droplet, a zero-temperature black hole anchored to the AdS boundary. We empha-
sise that droplets with TH = T∞ = 0 and TBH �= 0 have never been constructed before, and 
thus the extremal droplet presented here provides the first exploration of Boulware states of 
strongly interacting field theories on black hole spacetimes.

To confirm that our droplet is the gravitational dual to the Boulware state, we must check that 
there exist no other lower-energy solutions with TH = T∞ = 0. To investigate this issue, we 
therefore also constructed detuned black funnels, that is, funnels with T ≡ TH = T∞ �= TBH. 
Our results suggest that as T  is decreased, the funnels ‘pinch off’ at nonzero T , which we 
interpret as evidence that a funnel with T = 0 does not exist. This implies that the bulk dual 
to the Boulware state is indeed the droplet9.

We should note, however, that the Boulware state is of course theory-dependent. For 
instance, we have shown that if we introduce a scalar field in the bulk, at sufficiently low 
temperature the scalar field condenses around the black droplet. The resulting hairy black 
droplet has a lower energy than the hairless Boulware droplet, so for a theory containing this 
bulk scalar field, the bulk dual to the Boulware state is the zero-temperature hairy black drop-
let. In particular, this implies that changing the theory allows us to obtain states with lower 
total energy than that of the hairless black droplet.

In fact, the presence of negative energies leads to an interesting observation. Note that 
much as in free field theory calculations on Schwarzschild spacetime, the (hairless) Boulware 

Figure 9.  The 〈Tt
t〉 component of the stress energy tensor of the detuned funnels as a 

function of r/rs. From bottom to to top, the curves show T ≈ 1, 0.956, 0.812, and 0.785, 
with corresponding minimal radii Rmin

H ≈ 0.605, 0.56, 0.178, and 0.277 (note therefore 
that the bottom two curves are on the thick funnel branch, while the second curve 
from the top lies on the thin funnel branch). Note that the T = 1 funnel corresponds 
to the Hartle–Hawking vacuum, and one can indeed check that 〈Tt

t〉 is negative on the 
lowermost curve (though it cannot obviously be inferred from the plot due to scaling).

9 In principle, more exotic solutions like ‘hovering’ black holes or deformed funnels may also exist. Such solutions 
are unlikely to correspond to the Boulware vacuum: additional horizons like ‘hovering’ black holes should have 
higher energy than the droplet found here, while nonuniform funnels should locally look like nonuniform black 
strings, which are known to be subdominant in five dimensions.
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state we have found here exhibits a negative energy density as measured by a static observer. 
It is straightforward to check that it violates the null energy condition

〈
Tabkakb〉 � 0 for all null ka,� (5.1)

and thus it must violate all the standard classical local positive-energy conditions as well. 
This violation is unsurprising, as it is a general property of QFTs [29]. What is more interest-
ing is that when compared to other static states (e.g. the Unruh and Hartle–Hawking states), 
the energy density of the Boulware state is more negative. This is reminiscent of so-called 
quantum energy inequalities (QEIs) [30–38], which in certain contexts constrain violations of 
classical energy conditions relative to some reference background state10. These ‘difference’ 
QEIs often take the form

〈Tab〉diff ≡ 〈Tab〉 − 〈Tab〉background � −B,� (5.2)

where 〈Tab〉background is the stress tensor for some background state and B is some non-negative 
quantity that is a function only of this background state. For constructing QEIs for free field 
theories on the Schwarzschild spacetime [30, 32], this background state is typically taken to 
be the Boulware state. It would therefore be interesting to use the Boulware state constructed 
here to examine whether or not the background-subtracted energy density obeys similar 
bounds. We emphasise that such bounds are only sensible when comparing states of the same 
theory. For instance, one might be tempted use the difference (4.1) between the hairy and hair-
less Boulware droplets to test or construct these QEIs. But this comparison is only allowed if 
one thinks of the hairless droplet as an excited state in a theory containing the bulk scalar ϕ. 
Then since the CFT dual of the hairless droplet has a positive energy density relative to that 
of the hairy droplet, one doesn’t obtain any interesting statements about energy negativity 
relative to the vacuum.

It would be interesting to study gravitational perturbations of the Boulware state to see if 
〈Tab〉diff  can become negative, thus providing some guidance towards developing nontrivial 
QEIs. While such an analysis is outside the scope of the present work, to our knowledge 
any such bounds would be the first for a strongly-interacting field theory in greater than two 
dimensions (two-dimensional CFTs were shown to obey a set of QEIs in [35]), though we 
note that a partial result in this direction will appear shortly [39]. We leave this as an avenue 
of future investigation.

We finish by summarising the state of affairs for the holographic Unruh, Hartle–Hawking, 
and Boulware states on a Schwarzschild background. Since droplets and funnels have dif-
ferent transport properties, it is desirable to know whether each of these states is dominated 
by a droplet or funnel solution. With our results, the Boulware state is likely represented by 
a droplet. Black funnels representing the Hartle–Hawking state were found in [9], and later 
results [16] suggest that the corresponding droplet solutions do not exist. Droplets for the 
Unruh state were found in [7] (and reproduced in [16]), but it remains unclear whether funnel 
solutions exist. One means of attempting to find such a solution would be to begin with the 
Hartle–Hawking funnel, and lower T∞ until it vanishes. Because these black funnels contain a 
connected horizon with different asymptotic temperatures, their horizon would be non-Killing 
like those in [10, 11, 15].

10 Though note that there also exist so-called ‘absolute QEIs’ which place bounds on the renormalized expectation 
value of the energy density [37].
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Appendix A.  Detuning boundary and bulk temperatures

Here let us briefly review the technique introduced in [8] for detuning TBH and TH. First, con-
sider a conformal transformation of the Schwarzschild metric (2.1), ds2

Schw → ds2
Schw/f (r), fol-

lowed by a coordinate transformation from r to z = 2rs
√

f/r. Near the horizon r = rs (z = 0), 
the metric becomes

ds2
Schw

f (r)
= −dt2 + 4r2

s

(
dz2

z2 +
dΩ2

2

z2

)
+O(z0).� (A.1)

Neglecting the subleading terms in z, the above geometry is Rt ×H3, where Hd is d-dimen-
sional Euclidean hyperbolic space. This hyperboloid H3 has a length scale �hyp = 2rs. Thus, in 
this conformal frame (often called the ultrastatic frame), the Schwarzschild horizon has been 
replaced by an asymptotically hyperbolic region. From this perspective, it is clear that one can 
place a thermal bath at any temperature TH at such an asymptotic region (and not just TBH).

Such a heat bath will be dual to a bulk black hole with hyperbolic symmetry: namely, the 
hyperbolic Schwarzschild-AdS black hole [40]:

ds2
H = −g(r)

�2

�2
hyp

dt2 +
dr2

g(r)
+ r2dΣ2

3, with g(r) =
r2

�2 − 1 − r2
0

r2

(
r2

0

�2 − 1
)

.

�

(A.2)

Here dΣ3 = dη2 + sinh2 η dΩ2
2 is the metric on the unit Euclidean hyperboloid and r0 is a free 

parameter that sets the bulk horizon temperature as

TH =

(
2r0

�
− �

r0

)
TBH.� (A.3)

Thus by requiring that the bulk metric approach (A.2) in an asymptotic region, we may choose 
the bulk horizon temperature TH arbitrarily, and in particular may take it to be different than 
the boundary black hole temperature TBH.

Note that in practice, we find it more convenient to work with the coordinates 

x = 1 −
√

1 − r2
0/r2 , y =

√
1 − csch η, in terms of which the metric becomes

ds2
H =

�2

x(2 − x)(1 + α)

[
− (1 − x)2(1 − αx(2 − x))

4r2
s

dt2

+
(1 + α)

x(2 − x)(1 − αx(2 − x))
dx2 +

4y2 dy2

(1 − y2)2(1 + (1 − y2)2)
+

dΩ2
2

(1 − y2)2

]
,

�

(A.4)

where we have defined α ≡ �2/r2
0 − 1 and we have substituted �hyp = 2rs. In these coordi-

nates, the asymptotically hyperbolic region is at y = 1 and the temperature can be expressed 
as (2.5) in the main text.
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Appendix B.  Boundary conditions

In this appendix, we provide additional details on the boundary conditions used to obtain the 
droplets and funnels presented in the main text.

B.1.  Droplet

Let us show that the Dirichlet boundary conditions on the Qi listed in section 2.2 give the cor-
rect boundary conditions on the metric. First, near the conformal boundary (x = 0), the ansatz 
(2.6) takes the form

ds2|x→0 =
�2

x

[
dx2

4x
+

2y4(2 − y2)2

r2
s (1 + α)(1 − y2)2(1 + y

√
2 − y2)2

ds2
Schw

]
,� (B.1)

where ds2
Schw is the Schwarzschild line element in the form

ds2
Schw = − (1 − y

√
2 − y2)2

(1 − y2)2 dt2 +
r2

0(1 + y
√

2 − y2)2

4y2(2 − y2)

(
4 dy2

y2(2 − y2)2 + dΩ2
2

)
.

�

(B.2)

This can be put into the more familiar form (2.1) by the coordinate transformation

y =

√
1 +

2r
√

1 − rs/r
rs − 2r

.� (B.3)

Next, near the hyperbolic black hole (y = 1), the ansatz (2.6) becomes

ds2|y→1 =
�2

x(2 − x)(1 + α)

[
− (1 − x)2(1 − αx(2 − x))

4r2
s

dt2

+
(1 + α) dx2

x(2 − x)(1 − αx(2 − x))
+

4 dy2

(1 − y2)2 +
dΩ2

2

(1 − y2)2

]
,

�

(B.4)

which is precisely the y → 1 asymptotic region of the hyperbolic black hole (A.4).
The Poincaré horizon lies at the coordinate point (x, y) = (0, 0), corresponding to the 

boundary ρ = 0 in the (ρ,χ) coordinates defined by (2.4). Re-expressing (2.6) in these coor-
dinates, we find that near ρ = 0, the ansatz becomes

ds2|ρ→0 =
�2

1 − χ2

(
−8ρ2 dt2

r2
s

+
dρ2

ρ2 +
dχ2

1 − χ2 + χ2dΩ2

)
,� (B.5)

which agrees with the Poincaré metric (2.3) up to a trivial rescaling of time.
Finally, regularity of the bulk horizon (x = 1) and the axis of symmetry (y = 0) follows 

from the Neumann and Dirichlet boundary conditions imposed there; see e.g. [25].

B.2.  Funnel

Let us show that the Dirichlet boundary conditions on the Qi listed in section 3 give the cor-
rect boundary conditions on the metric. First, near the conformal boundary (y = 0), the ansatz 
(3.1) approaches

ds2|y→0 =
�2

y

[
H
4y

dy2 +
Y2

0

r2
s xH

ds2
Schw

]
,� (B.6)
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where the Schwarzschild line element appears in the form

ds2
Schw = −x

r2
s y2

+

Y2
0

dt2 +
r2

s

x(1 − x)4 dx2 +
r2

s

(1 − x)2 dΩ2
2.� (B.7)

This can be reduced to the familiar form (2.1) via the coordinate redefinitions r = rs/(1 − x) 
and t → (rsY0/y+)t.

Next, near the hyperbolic black hole (x = 0), the ansatz (3.1) approaches

ds2|x→0 =
�2y2

+

4y

[
− (1 − y)G(y)

Y2
0

dt2 +
dy2

y(1 − y)G(y)
+

dx2

x2 +
1
x

dΩ2
2

]
,� (B.8)

which coincides with the large-η limit of (A.2) if we identify t = (�/�hyp)G(1)thyp, r = r0/
√

y, 
and r0 = y+�.

At the planar black hole (x = 1), the ansatz approaches

ds2|x→1 =
�2

y

[
− (1 − y2)

4y2
+

dt2 +
dy2

4y(1 − y2)
+

Y2
0 dx2

(1 − x)4 +
Y2

0

(1 − x)2 dΩ2
2

]
,

�

(B.9)

which takes the usual form of a planar Schwarzschild black brane if we transform to new 
coordinates y = z2, r = Y0/(1 − x) and t → 2y+t.

Finally, as for the droplet, regularity of the bulk horizon (y = 1) in ingoing Eddington-
Finkelstein coordinates follows from the Neumann and Dirichlet boundary conditions 
imposed there.

Appendix C.  Convergence of the Boulware droplet

As we have shown in figure 4, our non-extremal droplet solutions converge exponentially, 
while the extremal Boulware droplet only converges at a power law. In this appendix, we dem-
onstrate that this behaviour is in accordance with the expectations of pseudospectral methods.

In general, smooth functions are expected to exhibit exponential convergence. Indeed, non-
extremal droplets (with α �= 1) have finite-temperature Killing horizons, which can be shown 
to give rise to regular singular points (i.e. to analytic metric components). As a result the 
convergence of these solutions should have exponential convergence, as verified in figure 4(a).

However, non-smooth behaviour can arise in the Boulware droplet (α = 1) for which the 
bulk horizon is extremal. In general, if a function is Cp but not C p+1, pseudo-spectral methods 
on a Chebyshev grid with N points will converge to the continuum limit as N−p [41]. In order 
to obtain the expected convergence on the Boulware droplet, we therefore need to quantify the 
differentiability of its metric components (in the coordinates of section 2).

For the Boulware droplet, we have verified that it is consistent to impose Dirichlet condi-
tions directly on the extremal horizon H, which implies that it will exhibit the same analytic 
behaviour as the hyperbolic black hole H. We therefore expect the convergence of the method 
to be dictated by the behaviour of normalisable and static perturbations around the extremal 
hyperbolic black hole.

Let us therefore consider stationary and spherically symmetric perturbations of the extre-
mal hyperbolic black hole: we wish to perturb

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2(dτ 2 + sinh2 τdΩ2

2),� (C.1)

where
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f (r) =
r2

�2 − 1 − r2
0

r2

(
r2

0

�2 − 1
)

,� (C.2)

which at zero temperature is

f (r) =
�2

r2

(
r2

�2 − 1
2

)2

.� (C.3)

The most general perturbations respecting stationarity and SO(3) symmetry take the form

δds2 ≡ habdxadxb = −f (r)q1dt2 +
q2dr2

f (r)
+ r2(q3dτ 2 + q4 sinh

2 τdΩ2
2) + q5dτdr,

�

(C.4)

where q1, q2, q3, q4, and q5 depend on r and τ only. Since we have two degrees of freedom 
associated with independent infinitesimal coordinate transformations of τ and r, we can 
choose the so-called spherical gauge in which q5 = 0 and q4 = q3. This brings the metric 
perturbations to the following form:

δds2 ≡ habdxadxb = −f (r)q1dt2 +
q2dr2

f (r)
+ r2q3(dτ 2 + sinh2 τdΩ2

2).� (C.5)

To proceed further, we take advantage of the symmetry of the background solution (C.1). The 
isometry group of (C.1) is Rt × SO(1, 3), and thus we can decompose our static perturba-
tions according to how they transform under SO(1, 3). Specifically, gravitational perturbations 
about (C.1) will come in three classes, which transforms as tensors, vectors, and scalars in 
SO(1, 3). It can be shown that the requirement that SO(3) be preserved within the SO(1, 3) 
forbids the tensor and vector perturbations, and thus we are left with scalars.

These scalar gravitational perturbations are then constructed from scalar harmonics on H3 as

qi(r, τ) = q̂i(r)H(τ), for i ∈ {1, 2, 3},� (C.6)

where due to the assumption of SO(3) symmetry we only consider those harmonics H that 
depend only on τ. Such harmonics therefore obey

�H3 H + λH = 0 ⇒ 1
sinh2 τ

d
dτ

(
sinh2 τ

dH
dτ

)
+ λH = 0,� (C.7)

whose general solution is

H(τ) = − 1
2i sinh τ

(
e−

√
1−λ τC1 + e

√
1−λ τC2

)
.� (C.8)

Normalizability at τ = 0 requires C2 = −C1, while normalizability at large τ requires 
λ = 1 + Λ2 for Λ ∈ R; thus

H(τ) = C1
sin(Λτ)

sinh τ
.� (C.9)

Inserting the decomposition (C.6) into the Einstein equation allows us to express q̂1 and q̂2 
as a function of q̂3 and its first derivative:

q̂1 = −q̂2 − q̂3,� (C.10a)

q̂2 =

[
�2(λ+ 3)r2 + 6r2

0(�
2 − r2

0)
]

q̂3 − 3r
(
r4 + r4

0 − �2r2
0

)
q̂′3

λ�2r2 + 3(r2 − r2
0)(�

2 − r2 − r2
0)

,� (C.10b)
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where ̂q′
3 ≡ dq̂3/dr . We also find that ̂q3 obeys the following second order differential equation:

q̂′′3 +
1
r

[
2r2

(
1

r2 + r2
0 − �2

+
1

r2 − r2
0

)
+

6
(
r4 + r4

0 − �2r2
0

)

�2
[
(λ+ 3)r2 − 3r2

0

]
− 3r4 + 3r4

0
+ 1

]
q̂′

3

+
λ�2

(
r2 − r2

0

) (
r2 + r2

0 − �2
) �2

[
(λ+ 3)r2 + 3r2

0

]
− r4 − 3r4

0

3
(
r4 − r4

0

)
− �2

[
(λ+ 3)r2 − 3r2

0

] q̂3 = 0.

� (C.11)

Next, recall that we are only interested in the extremal limit r0/� = 1/
√

2. In order to under-
stand the behaviour close to the extremal horizon, we use Frobenius’s method and investigate 
solutions of the form

q3(r) =
(

r
r0

− 1
)s +∞∑

i=0

(
r
r0

− 1
)i

ai;� (C.12)

inserting this expansion into (C.11), we obtain the two allowed values of s:

s± =
1
2

(
±
√

9 + 2λ− 1
)

.� (C.13)

Normalisability then requires us to discard the negative square root, and thus we have

s =
1
2

(√
11 + 2Λ2 − 1

)
,� (C.14)

where we have also used the relation between λ and Λ. We thus find that with respect to the 
coordinate r, all perturbations are C

1
2 (
√

11−1) or higher (since Λ is real). To obtain the result 
quoted in the main text, we recall that near the horizon and exactly at extremality, the variable 
x that we used in our numerics relates to r

r − r0 ∼ (1 − x)2.� (C.15)

We thus find that the convergence to the continuum is limited to be N−(
√

11−1) ≈ N−2.32.
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