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Abstract
Aim: Existing phytogeographical frameworks for tropical Africa lack either spatial 
completeness, unit definitions smaller than the regional scale or a quantitative ap-
proach. We investigate whether physical environmental variables can be used to 
interpolate floristically defined vegetation units, presenting an interpolated, hierar-
chical, quantitative phytogeographical framework for tropical Africa, which is com-
pared to previously defined regions.
Location: Tropical mainland Africa 24°N to 24°S.
Taxon: 31,046 vascular plant species and infraspecific taxa.
Methods: We calculate a betasim dissimilarity matrix from a comprehensive whole-flora 
database of plant species distributions. We investigate environmental correlates of flo-
ristic turnover with local non-metric multidimensional scaling. We derive a hierarchical 
biogeographical framework by clustering the dissimilarity matrix. The framework is mod-
elled using a classification decision tree method and 12 physical environmental variables 
to interpolate and increase the resolution of the framework across the study region.
Results: Floristic turnover is related strongly to water availability and temperature, 
with smaller contributions from land cover, topographic ruggedness and lithology. 
Region can be predicted with 90% accuracy by the model. We define 19 regions and 
99 districts. We find a novel arrangement of the arid regions. Regional subdivision 
within the savanna biome is supported with minor variation to borders. Within the 
forests of west and central Africa, our whole-flora gridded regionalization supports 
the divisions identified by a previous analysis of trees only.
Main conclusions: Physical environmental variables can be used to predict floristi-
cally defined vegetation units with very high accuracy, and the approach could be 
pursued for other incompletely sampled taxa and areas outside of tropical Africa. 
Geographical coherence is higher than in previous quantitative phytoregional defi-
nitions. For most tropical African vascular plant species, we provide predictions of 
which species will occur within each mapped district and region of tropical Africa. The 
framework should be useful for future studies in ecology, evolution and conservation.
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1  | INTRODUC TION

By defining areas of relatively homogeneous species composition, 
biogeographical frameworks provide spatial units of analysis that 
are useful in macroecological, evolutionary and systematic studies 
of the processes which shaped or maintain species distributions 
(Morrone, 2018). We can use theory generated by such studies to 
improve the biogeographical framework itself, predicting where spe-
cies are likely to occur for areas which are incompletely collected, 
providing increasingly complete geographical and taxonomic cover-
age (Holt et al., 2013). By predicting which species occur in which 
place, biogeographical frameworks are useful tools in conserva-
tion and land management: the units are convenient for monitor-
ing trends in species abundance, range or habitat condition (Dauby 
et al., 2017), can provide shortlists of native species for restoration 
(Lillesø et al., 2011), and facilitate geographical searching of online 
identification resources (Brunken et al., 2008).

Africa has both a rich history and contemporary research front 
in plant biogeography. The most influential framework for African 
vegetation is that of White (White, 1979, 1983, 1993). Building 
on the work of others (Aubreville, 1962; Lebrun, 1960, 1961; 
Monod, 1957), White used species distributions of a subset of the 
flora to define a chorological framework at regional scale. Where 
others had used thresholds of endemism at successively finer tax-
onomic ranks to distinguish choria at different ranks (Engler, 1879; 
Good, 1947; Takhtajan, 1986), endemism thresholds were important 
to White only for distinguishing between types of region, and did 
not preclude the recognition of species poor or endemic poor cho-
ria at the rank of region. White overlaid on his regional chorology, a 
detailed map of vegetation units (1983), synthesizing many previous 
local vegetation maps. These mapping units are labelled with respect 
to their structure as well as the regional chorological situation (e.g. 
Congolian swamp forest). WWF’s African ecoregions were derived 
from White's physiognomic vegetation map, though the ecoregion 
borders were simplified and differ where they were redrawn to re-
spect animal distributions (Olson et al., 2001). More recently, the 
local vegetation maps that White synthesized have been resurrected 
and digitized for east Africa (Lillesø et al., 2011).

White's regional framework was produced from limited species 
distribution datasets and without the aid of multivariate statistics, 
prompting six quantitative assessments of tropical Africa's phyto-
geographical regions (Denys, 1980; Droissart et al., 2018; Fayolle 
et al., 2014, 2019; Linder et al., 2005, 2012). All have shown broad 
similarities to White's regions, but with discrepancies from each 
other and White. Most have analysed gridded distribution data 
of species and infraspecific taxa at one degree square resolution; 
Fayolle et al. analysed local checklists and plot data for trees (2014) 
or woody taxa (2019). For the gridded analyses, there has been a 
trend towards more taxonomically complete datasets: 494 taxa 
(Denys, 1980), 5,438 (Linder et al., 2005), 5,881 (Linder et al., 2012), 
24,719 (Droissart et al., 2018); the present dataset includes 31,046 
species and infraspecific taxa. Most have used ordination and cluster 
analysis to produce regionalizations, as in the present analysis, while 

Droissart et al. used bipartite network analysis (Edler, Guedes, Zizka, 
Rosvall, & Antonelli, 2017). These quantitative floristic frameworks 
have left much of the area of tropical Africa unassigned to a spa-
tial unit, due to the insufficiency of plant species distribution data 
from many parts of the continent, and because there is currently 
no comprehensive set of species distribution models for African 
plants. A lack of geographical completeness makes it difficult to use 
the quantitative phytoregionalizations as spatial frameworks in fur-
ther analyses, as they apply only to the idiosyncratic portion of the 
continent that was used to derive them. For tropical Africa, we also 
lack quantitatively defined floristic units similar in size to ecoregions. 
Using lower cluster solutions to define districts or provinces below 
regional level is precedented for African birds (De Klerk, Crowe, 
Fjeldså, & Burgess, 2002), and for plants a hierarchical system has 
been described as a useful and natural way to depict floristic rela-
tionships (McLaughlin, 1992).

Taxonomic information on biological composition must be de-
rived from field survey, and is more limited in spatial and temporal 
resolution, and geographical coverage, than physical environmental 
variables like climate, which have been interpolated at high resolu-
tion across the globe (Kriticos et al., 2012). Land cover maps derived 
from remotely sensed data, like GlobCover 2009 (Arino et al., 2012), 
have provided 90m resolution continuous characterizations of veg-
etation physiognomy, in terms of canopy height, openness, and de-
ciduousness, for the world. For Africa, there is also A New Map of 
Standardised Terrestrial Ecosystems (Sayre et al., 2013), presenting 
a predicted vegetation classification at 90 m resolution across the 
continent using a classification and regression tree (CART) method. 
The vegetation classification that was predicted was described as 
a draft. Training points were supplied by experts or derived from 
previous maps, and were reconciled into a hierarchical physiognomic 
framework following principles developed for the USA.

The prediction of vegetation physiognomy from physical en-
vironmental variables, especially climate, is a long established and 
current activity (Arino et al., 2012; Holdridge, 1947). Some African 
plant species distributions have been predicted with physical en-
vironmental variables via species distribution models (Deblauwe 
et al., 2016; McClean et al., 2005). Plant communities in Africa are 
typically ordinated and correlated with physical environmental vari-
ables, to reveal strong relationships with rainfall (Bongers, Poorter, 
& Hawthorne, 2004; Fayolle et al., 2014, 2019; Hall & Swaine, 1976), 
lithology (Fayolle et al., 2012), soil (Réjou-Méchain et al., 2008), or 
a combination of soil and rainfall (Swaine, 1996), temperature and 
altitude (Fayolle et al., 2014, 2019). Within climatic envelopes, fire, 
biotic interactions and feedback processes are important (Favier 
et al., 2012). The manner and extent to which floristically defined 
units can be predicted by physical environmental variables is of 
great interest (Tuomisto, Ruokolainen, & Yli-Halla, 2003). If the pre-
dictive relationship is strong, we could use the relationship to (a) 
‘complete’ our maps, filling holes left by patchy species distribution 
data; (b) increase the resolution of the mapped units; (c) interpret 
the relative importance of particular physical environmental vari-
ables for determining floristic turnover and (d) make the relationship 



     |  3MARSHALL et AL.

between physiognomy, environment and chorology more explicit 
and objective.

The aim of this study is to present a spatially complete quantita-
tive phytogeographical framework for tropical mainland continental 
Africa (24°N to 24°S) that can predict which plant species occur at 
regional to more local scale across the study area, useful for future 
studies in ecology, evolution and conservation, and to facilitate (on-
line) identification tools. We define a hierarchical phytogeograph-
ical framework via well-established multivariate methods from a 
comprehensive whole-flora assemblage of available plant species 
distribution data. We investigate the strength of the predictive rela-
tionship between physical environmental variables and these floris-
tically defined spatial units, seeking to use this relationship to render 
the framework geographically complete within its scope. We ask:

1. Can physical environmental variables be used to predict flo-
ristically defined vegetation units?

2. How do our phytogeographical regions compare with previously 
defined regions?

2  | MATERIAL S AND METHODS

2.1 | Species distribution data

We analyse 533,383 records of 31,046 tropical African species and 
infraspecific taxa in 1,197 degree squares of tropical mainland Africa 
between 24°N and 24°S. To prepare the dataset, the TRAFRICA 
dataset (Marshall, Wieringa, & Hawthorne, 2016) was supplemented 
with the FLOTROP dataset (Taugourdeau et al., 2019) and the 
RAINBIO dataset (Dauby et al., 2016), and is the largest yet com-
piled for tropical Africa. Species names and synonymy follow the 
taxonomic backbone of the TRAFRICA database, derived initially 
from the tropical African section of the African Plants Database 
(Conservatoire et Jardin botaniques de la Ville de Genève and South 
African National Biodiversity Institute, Pretoria, 2016). All distribu-
tion record identifications were updated against this framework for 
analysis. Records were checked and cleaned for geographical errors 
using custom Microsoft Visual FoxPro routines. Each record's sup-
plied coordinates, if any, were compared against supplied textual 
locality information, with contradictions resolved or the record ex-
cluded. Records with textual locality information and without coor-
dinates were parsed to the bounding boxes of the stated locality. We 
checked all records from centres of administrative areas, all records 
for any locality with > 25 records and suspiciously round coordinates. 
The geographical resolution of the record was respected via the use 
of bounding boxes: unlikely coordinates were removed in favour of 
administrative polygon geolocation, and records which straddled 
one degree squares were dropped. Distribution data were summa-
rized at the commonly used resolution of one degree square; the 
difference in area between the largest and smallest degree square is 
not large (8.8%). We excluded from analysis vague names, hybrids, 
cultivars and taxa we knew to be introduced or cultivated. Analyses 

are conducted at the lowest named taxonomic rank, the most com-
monly used rank used in phytogeographical studies in tropical Africa 
(Denys, 1980; Fayolle et al., 2014, 2019; Linder et al., 2005, 2012). 
Only 4.5% of informative records are resolved to infraspecific rank. 
We excluded from analysis degree squares with < 15 taxon records, 
and ≤ 5% of taxa sampled. These thresholds were set as low as pos-
sible to maximize floristic representation with respect to environ-
mental gradients, without analysing noise, and are slightly more 
stringent than the 5 species/100 km2 used by Kreft and Jetz (2010) 
and Linder et al. (2012). A description of data sources and cleaning 
is in Appendix S1. The geographical pattern of sampling is shown 
in Figure 1, and is included for each degree square in Appendix S2.

2.2 | Environmental data

Environmental data were summarized at one degree square and half 
degree square using QGIS 3.4.3. We summarized mean altitude from 
GMTED2010 at 30 arc second resolution (Danielson & Gesch, 2011). 
We derived topographic ruggedness from GMTED2010 using the 
GDAL Terrain Ruggedness Index tool via QGIS. Mean values for the 
climatic variables Bio1 to Bio35 at 30-min resolution for the years 
1961–1990 were downloaded from the CliMond database (Kriticos 
et al., 2012). We used the surficial lithology classification of Sayre 
et al. (2013). We consulted the Harmonized World Soil Database, 
but could not use its classification as there were too many classes for 
the Random Forest algorithm to handle. We summarized the major-
ity land cover class from GlobCover 2009 (Arino et al., 2012). We 

F I G U R E  1   Geographical distribution of 533,383 records 
of 31,046 vascular plant taxa across 1,197 degree squares of 
tropical Africa included in the analysed dataset. Degree squares 
are coloured by sampling completeness from ≥ 6% (lightest grey) 
to ≥ 100% (black) in equal intervals of 1%. Sampling completeness 
is calculated by comparing the number of species recorded as 
present with richness estimates of Barthlott et al., 2005. Map 
projection Africa Albers Equal Area Conic
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estimated completeness of taxon sampling for each degree square 
by comparing the number of species recorded as present with rich-
ness estimates of Barthlott, Mutke, Rafiqpoor, Kier, & Kreft, 2005. 
Environmental data summarized at half degree square resolution can 
be found in Appendix S3.

2.3 | Gradients in species composition

Analysis was conducted in R 3.6.3 (R Core Team, 2020), scripts are 
found in Appendix S9. Dissimilarity in taxon composition between 
degree cells was measured using the Simpson index of beta diversity 
(βsim) in the R package ‘vegan’ (Oksanen et al., 2019). βsim down-
weights dissimilarity between cells based on differences in species 
richness, making it appropriate for unevenly sampled datasets (Kreft 
& Jetz, 2010). The βsim dissimilarity matrix was ordinated using lo-
cally constrained NMDS with seven axes specified (stress = 0.094), 
in vegan. Local NMDS is recommended as a robust technique for 
indirect gradient analysis (Minchin, 1987). The first three axis scores 
were visualized in RGB colour space using the R package ‘plotrix’ 
(Lemon, 2006). Environmental variables were fitted to the ordina-
tion space as fitted vectors using vegan's envfit function.

2.4 | Deriving the biogeographical framework

We clustered the βsim matrix using Ward's algorithm in the R pack-
age ‘cluster’ (Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 2019). 
Ward's algorithm gave the highest agglomerative coefficient with this 
dataset (0.95). We inspected 2–30 cluster solutions, every fifth cluster 
solution thereafter up to 95, and the 99th cluster solution. The highest 
node was always selected and no degree squares were reassigned. To 
help us choose the number of clusters to present, we calculated the 
decay in four different evaluation metrics for each of the clustering 
levels from 2 to 99, identifying the position of the knee using a geo-
metric knee method: (a) dendrogram node height, where lower nodes 
are less informative than higher nodes; (b) ANOSIM R, a test statistic 
with the null that similarity between groups is greater than or equal 
to the similarity within the groups; (c) mean regional endemism, the 
average proportion of taxa restricted to each cluster and (d) total end-
emism, the percentage of all taxa that are restricted to any one cluster. 
The two endemism metrics were calculated from the tropical African 
dataset only, so regions particularly at the margins of the dataset will 
include some ‘endemics’ that are found elsewhere in the world.

2.5 | Modelling the framework

Random forest classification models were built using the environ-
mental data as predictors, using the R package randomForest (Liaw 
& Wiener, 2002). We trained one model on the 19 regions to predict 
the regional framework. We subsequently trained 19 models to pre-
dict the distribution of the 99 districts within each of the 19 regions, 

using the same selection of predictor variables. Continuous vari-
ables were rescaled between 0 and 1. Accuracy of the models was 
assessed using the out-of-bag error rate. Variable importance was 
assessed using the mean decrease in the Gini Index. Only half de-
gree squares absent from the training dataset were classified using 
the model (half degree squares in the training dataset retained their 
classification). To reduce multicollinearity, overfitting and increase 
interpretability, indirect predictor variables were excluded and bi-
oclim variables were restricted to the annual mean, minimum, and 
maximum values of temperature and precipitation, and annual mean 
value of the moisture index and radiation (Fig. S8.2 for correlations 
between variables). Including more bioclim variables decreased the 
OOB error rate by a negligible amount. Half degree squares were 
merged by region and district to produce two shapefiles (Appendix 
S4). The 19 regions were coloured and the 99 districts are cross-
hatched using code written in Microsoft Visual Foxpro 9 for SVG 
output (Figure 5).

2.6 | Characterizing and comparing the framework

Characteristics of each region are summarized in Table 2 & Appendix 
S5, and for each district in Appendix S6. Districts were named after 
their largest population centre using Natural Earth's populated 
places layer. Floristic data were summarized by the number of taxa, 
number of endemic taxa, per cent endemism, per cent sampling com-
pleteness, number of indicator species and number of significant in-
dicator species. Indicator species were identified in the R package 
‘indicspecies’ (De Cáceres, Legendre, & Moretti, 2010). Species at-
tributes, including occurrence by district and region, are in Appendix 
S7. Continuous environmental data used in the Random Forest 
model were summarized by their mean and standard deviation, 
minimum, median, maximum, interquartile range; lower and upper 
confidence intervals of the median are calculated using ± 1.58 IQR/
sqrt(n). Categorical data were summarized by their majority class. 
We tested for significant differences in MAT and MAP among re-
gions and districts with the multiple comparison Kruskal–Wallis test 
from package ‘pgirmess’ (Giraudoux, 2018). We used three of the 
evaluation metrics (mean endemism, total endemism, and ANOSIM 
R) to compare our framework floristically against the regional frame-
works of White (1983) and Droissart et al. (2018). We compared 
the spatial congruence of our regions with the White and Droissart 
et al. regionalizations, and the spatial congruence of our districts 
with WWF’s ecoregions, using the V-measure implemented by the R 
package ‘sabre’ (Nowosad & Stepinski, 2018).

3  | RESULTS

3.1 | Gradients in species composition

Floristic turnover at one degree square resolution is continuous, 
with no sharp disjunctions in ordination space (Figure 2). Floristic 
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turnover is well explained by both geographical and climatic vari-
ables while the estimated percentage of species sampled explains 
almost none of the one degree cells’ position in ordination space 
(r2 = 0.027) (Table 1). NMDS axis 1 represents the moisture gradient, 
and NMDS axis 2 the altitude/temperature gradient.

The soil moisture index (bio28) is the most strongly correlated 
variable with axis 1, and can explain a very large proportion of the 
one degree cells’ positions in ordination space (r2 = 0.86). The soil 
moisture index is a modelled environmental variable derived from 
precipitation, solar radiation (via pan evaporation) and water holding 
capacity of the soil; pan evaporation includes the effects of tem-
perature, humidity, drought dispersion and wind (Hutchinson, Xu, 
Nix, & McMahon, 2009). Precipitation makes the most important 
contribution to the moisture index: the moisture index is very well 
correlated with mean annual precipitation (MAP) (Fig. S8.2). MAP 
only explains slightly less of the one degree cells’ positions in ordi-
nation space than the soil moisture index (r2 = 0.83), and is also very 
strongly parallel with axis 1.

Altitude is the most strongly parallel variable with axis 2, and 
explains a large amount of variation in ordination space (r2 = 0.69). 
Altitude is well correlated with mean annual temperature (MAT) 
(Fig. S8.2), as is axis 2. Of the two variables, MAT explains more of 
the variation in ordination space than altitude (r2 = 0.76). The zero 
point of axis 2 separates the continent rather precisely into the two 
parts which White (1983) recognized as ‘high’ and ‘low’ Africa: a sep-
aration of cooler, higher altitude southern and eastern Africa from 
the hotter, lower altitude northern, western and central regions; the 
‘line’ is drawn from Angola in the southwest, around the Congo to 
western Ethiopia in the northeast (Figure 2b).

3.2 | Deriving the biogeographical framework

The continuous species turnover apparent in the ordination is also 
apparent in the cluster analysis. All four evaluation metrics have 

smooth curves, and the knee detection tests suggest different op-
timum cluster numbers from each other: between 9 and 20 clusters 
(Fig. S7.1). The decision about how many clusters to recognize at 
the regional level is necessarily arbitrary within the range of break-
points (Kreft & Jetz, 2010). No particular level is true or false, and 
so the results should be judged on the usefulness of the result (De 
Klerk et al., 2002). We chose to recognize the 19 cluster solution as 
regions. The 19th highest cluster is region 9 of Figure 3, a floristi-
cally distinct area which has previously been recognized at regional 
level (~ White's Karoo Namib). The 20th cluster is the division of the 
Sudanian region 2 into two latitudinal bands. The species distribution 
data through this area are relatively poor towards the east, weaken-
ing our confidence in the assignment of this cluster to regional level. 
We recognized the 99 cluster solution as districts: the choice of 99 
is arbitrary, but is informed by the popularity of WWF’s ecoregions 
(89 unique ecoregions in an equivalent area), and White's Vegetation 
Map's 100 cartographic units.

One degree squares in ordination space are coloured by the 19 
clusters in Figure 3a. Hierarchical relationships between the 19 re-
gions are visualized in Figure 3b and are mapped in Figure 3c. Three 
high level groups are apparent: (i) the rainforests of western and cen-
tral Africa (1, 7, 11); (ii) low altitude northern tropical Africa (2–6) and 
(iii) high altitude southern and eastern Africa, (8–10, 12–19). High 
altitude southern and eastern Africa is the most floristically het-
erogeneous of the three primary groups, and can be divided as (iiia) 
Zambezian forests and woodlands (8, 10,14, 13,16,17); (iiib) southern 
arid (9, 12) and (iiic) Horn of Africa (15, 18, 19).

3.3 | Modelling the framework

The regional Random Forest model has an out of bag error rate of 
10.4%, that is, region could be accurately predicted for c. 90% of 
half degree square cells during cross validation. The error rates by 
region range from 2.94% (Region 12) to 25.4% (Region 3), and are 
higher for regions where sampling rates are lower (confusion ma-
trix Table S8.2). Regional half degree square cell classifications are 
shown in Figure 4a. The relative importance of the model variables 
in the regional model is shown in Figure 4b. As in the ordination 
results, the most informative variables are those related to water 
availability (MAP, rad, soilMI and maxP), followed by temperature/
altitude (maxT, minT, alt and MAT), with lower contributions from li-
thology, landcover and topographic ruggedness. The out of bag error 
rates for the district models range from 4.7% (Region 3) to 23.6% 
(Region 16). Floristic districts, derived from the 99-cluster solution, 
are mapped within the regional framework in Figure 5.

3.4 | Characterizing and comparing the framework

The regions are different from each other with respect to their total taxa 
(921 to 10,555), and mean endemism rate (1%–22%) (Table 2, Appendix 
S5). We have not adopted endemism thresholds to distinguish between 

TA B L E  1   Squared correlation coefficient of the environmental 
vector fits for the 7 axis ordination of 31,046 vascular plant taxa 
across 1,197 degree squares of tropical Africa shown in Figure 2. 
All variables are significantly correlated with the ordination 
configuration (p < .001)

Variable name r2

Latitude 0.883

Soil moisture index (Bio28) 0.858

Mean annual precipitation (Bio12) 0.828

Mean annual temperature (Bio01) 0.763

Longitude 0.715

Altitude 0.691

Solar radiation (Bio20) 0.63

Terrain Ruggedness Index 0.442

Lithology 0.159

% sampled 0.027
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types of region. Such an approach is contingent upon a fair assessment 
of endemism rates across regions, and while the dataset is restricted 
to tropical Africa such assessments are imbalanced for internal versus 
external regions. The regions are distinct from each other climatically: 
a Kruskal–Wallis test of the difference in MAP across the 19 regions 
was significant overall (chi-square = 6,945, df = 18, p < 0.005). A mul-
tiple comparison Kruskal–Wallis test identified 13 statistically dif-
ferent groups of regions by median MAP (Figure S8.3). For example, 
MAP is not significantly different among the three rainforest regions. 
There are eight statistically different groups of regions by median MAT 
(Figure S8.4; chi-square = 5,179, df = 18, p < .005).

Our regions outperform White's regions by all evaluation metrics 
(mean endemism, total endemism, ANOSIM R; Table 3). Our regions 
outperform Droissart et al.’s bioregions by the ANOSIM R measure, 
that is, the ratio of similarity within groups to similarity between groups 
is higher in our regionalization. Mean regional and total endemism rates 
are higher in Droissart et al.’s bioregions because endemism thresholds 
were applied in that study, and because the number of degree squares 
we can use for the Droissart calculations is much less than the number 
of cells we can use to diagnose our own framework, as the Droissart 
framework covers a smaller area. Overall, our regions are slightly more 
congruent with Droissart et al.’s bioregions (V-measure = 0.67) than 
White's regions (V-measure = 0.63). We calculated taxon richness and 
endemism rates for White's tropical African Regions (Table S7.1). Our 
values are similar to previous reassessments (Droissart et al., 2018; 
Linder et al., 2005). White underestimated the number of ‘chorological 

transgressors’; his richness estimates for each chorion were too low, 
and his endemism rates too high.

The number of taxa per district varies between 100 and 8,579, 
and endemism rates between 0% and 25% (Appendix S6). The 99 
districts are supported environmentally: there are 90 different me-
dian MAP values among the 99 districts (Figure S8.5, Kruskal–Wallis 
test chi-square = 7,401, df = 98, p < 0.005), and 74 different median 
MAT values among the 99 districts (Figure S8.6, Kruskal–Wallis test 
chi-square = 6,387, df = 98, p < 0.005). Floristically, they are at least 
moderately well supported: 32% of species are significant indicator 
species for one of the districts, compared with 56% of species which 
are significant indictors for one of the regions. Our districts are as 
homogeneous with respect to WWF’s ecoregions as our regions are 
to White's regional framework (V-measure = 0.63, Figure 6c). At 
least in well-sampled areas, like our Guineo-Congolian (West) and 
Guineo-Congolian (West-Central), the districts would seem plausi-
ble based on field observation.

4  | DISCUSSION

4.1 | Can physical environmental variables be used 
to predict floristically defined vegetation units?

One of White's guiding principles in the assembly of his 1983 map 
was ‘Vegetation, in the first instance, should be classified without 

F I G U R E  2   (a) NMDS ordination scores for 1,197 degree squares of tropical Africa. A betasim dissimilarity matrix constructed from 
31,046 vascular plant records in each degree square was ordinated. Each degree square is represented in RGB, with red for axis 1, green for 
axis 2, and blue for axis 3 (third axis not shown). High axis 1 scores have maximum red values, low axis 2 scores have maximum green values 
and high axis 3 scores have maximum blue values. The third axis is also represented by size, with larger points having higher axis 3 scores. 
Environmental variables are fitted as vectors with length proportional to r2 (Table 1). MAT = mean annual temperature (bio1), MAP = mean 
annual precipitation (bio12), soilMI = soil moisture index (bio28), alt = altitude. (b) Schematic representation of the location of cells, coloured 
by the same scheme
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reference to the physical environment, including climate, or to ani-
mals. The extent to which environmental factors and the associated 
fauna can be used to diagnose vegetation types should be evaluated 
independently’ (White, 1993). Our results suggest overwhelmingly 
that floristic turnover is well correlated with environmental vari-
ables at one degree square resolution across the range of tropical 
Africa's vegetation, and that environmental variables can be used to 

predict floristically defined vegetation units empirically. At this scale 
and scope, we find that the principle variable to structure floristic 
turnover is water availability (explaining 86% of ordination position), 
followed by temperature, with smaller contributions from lithol-
ogy, topographic ruggedness and land cover. Floristically defined 
regions can be predicted with 90% accuracy using a decision tree 
model and 12 readily available physical environmental predictors. 

F I G U R E  3   The 19 highest clusters given by Ward clustering of the betasim dissimilarity matrix of 31,046 tropical African vascular plant 
taxa. No cells have been reassigned and no clusters have been collapsed. In panel (a) the NMDS ordination as in Figure 2 is coloured by the 
clusters shown in panel b. (b) Hierarchical relationship between the 19 clusters (Table 2 for region attributes). (c) Geographical location of the 
19 clusters. Grey polygon boundary lines delimit countries. Map projection Africa Albers Equal Area Conic

(a)

(b)

(c)
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Our model validation shows that cells whose region is known can be 
predicted with 90% accuracy. The ultimate test of the method can 
be conducted by collecting species occurrence data from currently 
unsampled parts of tropical Africa. As far as we are aware, the use of 
a decision tree (CART) method to interpolate a biotically derived bio-
geographical framework over a large spatial extent is novel, and the 
approach could be pursued for incompletely sampled taxa and areas 
outside of tropical Africa. The success of the CART approach is per-
haps unsurprising, given the predictive relationship shown between 
climate and individual plant species distributions in tropical Africa 
(Blach-Overgaard, Balslev, Dransfield, Normand, & Svenning, 2015; 
Deblauwe et al., 2016; Maharjan et al., 2011; McClean et al., 2005), 
between climate and vegetation physiognomy (Arino et al., 2012), 
between climate and local-scale species assemblages across west 
African forest (Bongers et al., 2004), and between climate and lo-
cal-scale species assemblages across savanna and forest biomes of 
tropical Africa (Fayolle et al., 2014, 2019). Our model is empirical 
(Guisan & Zimmermann, 2000), employed for the pragmatic purpose 
of rendering a biogeographical map spatially complete in a way that 
is plausible and useful. The model is not a formal test of association, 
and does not imply a causal or deterministic relationship between 
climate and floristic units, nor that the same relationships would be 

found outside of tropical Africa, at different scale or scope in Africa, 
or under climate change scenarios.

By predicting floristically defined spatial units from environmen-
tal variables, our method offers a way to render, objectively and 
explicitly, the (imperfect) correspondence between chorology, vege-
tation physiognomy and physical environment. The modelled regions 
have been characterized by these physical variables. Ecosystems are 
defined as assemblages of biotic communities interacting with each 
other and their physical environment (Tansley, 1935). This definition 
draws together two principle approaches that have been used to di-
vide the biosphere: the first using affinities and discontinuities in the 
distribution of taxa, the second using patterns of abiotic variation 
or direct measurement to classify the biosphere physiognomically 
(Mackey, Berry, & Brown, 2008). At finer spatial scales, it is rarely 
justified to separate the two approaches very distinctly, whereas in 
studies at larger spatial scales and scope the two disciplinary ap-
proaches have diverged. We have used a method popular in physiog-
nomic spatial classification and applied it to a floristic biogeographical 
framework, producing spatial unit definitions that are closer to that 
of an ecosystem. Our framework has the advantage over physiog-
nomic classifications (Arino et al., 2012; Sayre et al., 2013) that the 
units are diagnosed by, and fully characterized by, plant species dis-
tributions as currently represented by the plant biological record at 

F I G U R E  4   The 19 clusters derived from Ward clustering of the betasim dissimilarity matrix of 31,046 vascular plant taxa of tropical 
Africa (Figure 3) are modelled using Random Forest to yield the regional framework. The model has an out of bag error rate of 10.4%. (a) 
Cells with no border constitute the training data, predicted cell classifications with regional classification error rates of 10 > 25% are shown 
with a black border, predicted cell classifications with regional classification error rates of 3%–10% are shown with a grey border. Lakes are 
shown in white. (b) Variables included in the model are ranked by their importance. rad = radiation (bio20); MAP = mean annual precipitation 
(bio12); soilMI = annual mean moisture index (bio28); maxT = maximum temperature of the warmest month (bio5); maxP = precipitation 
of the wettest month (bio13); minT = minimum temperature of the coldest month (bio6); alt = mean altitude; MAT = mean annual 
temperature (bio1); lith = majority lithological category (Sayre et al., 2013); globcover = majority GlobCover category (Arino et al., 2012); 
minP = precipitation of the driest month (bio14); TRI = terrain ruggedness index. Map projection Africa Albers Equal Area Conic

(a) (b)
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one degree square resolution. It has the advantage over previous 
quantitative phytochorological classifications (Droissart et al., 2018; 
Fayolle et al., 2014, 2019; Linder et al., 2005, 2012) that it is spa-
tially complete across its scope. It has the advantage over qualita-
tively interpolated biogeographical frameworks (Olson et al., 2001; 
White, 1983) that our unit boundaries are drawn in an reproducible, 
objective and quantitative manner. Of course, the degree of advan-
tage presented by our framework is dependent on the intended use.

4.2 | How do our phytogeographical regions 
compare with previously defined regions?

Each region is interpreted with respect to previous region defini-
tions in Appendix S8. Overall, our regions are very geographically 
coherent before modelling (Figure 2, Figure 3): not a single cell was 
manually reassigned, and there are almost no cells which have a du-
bious cluster assignment. This is in contrast to previous quantitative 
gridded chorological studies, which showed more geographically 
fractured regions (Droissart et al., 2018; Linder et al., 2005; plants 
in Linder et al., 2012). More comprehensive species distribution 
data have helped to resolve the phytogeographical affinities across 

the tropical continent. The bipartite method (Edler et al., 2017) em-
ployed in the Droissart et al. (2018) analysis produced rather small 
bioregions in some areas, which we suggest are not easily reconciled 
to the regional scale. The bipartite method recognized the montane 
flora of southern Africa distinctly from surrounding vegetation, and 
the approach might be well suited to the definition or validation of 
the district level presented here. Our gridded, whole-flora regional-
istion for the forest biome is congruent with the tree-only plot data 
results of Fayolle et al. (2014), and divergent from White’s (1983) 
division of Guineo-Congolia into Upper Guinea, Lower Guinea and 
Congo at the Dahomey Gap and Sangha River. This finding con-
tradicts the conclusion of Droissart et al. (2018) that tree species 
cannot be used as a proxy of the whole flora for delimitating phyto-
geographical boundaries in tropical Africa, at least for the forests of 
west and central Africa. We recover no High/Low African disjunc-
tion in ordination space as in Fayolle et al. (2019) and our NMDS axis 
1 represents the moisture gradient, but our NMDS ordination axis 2 
very precisely divides the continent into High and Low Africa. Grid 
squares create assemblages of species which are found in distinct 
vegetation at finer scale (Kreft & Jetz, 2010), and the failure to re-
solve archipelago and mosaic regions with gridded data is a peren-
nial issue (Linder et al., 2005). Even White (1993), with the option 

F I G U R E  5   Final framework showing the 19 regions and 99 districts for tropical Africa, derived from cluster analysis of the betasim 
dissimilarity matrix calculated from 531,314 records of 31,046 vascular plant taxa across 1,197 degree squares and modelled with Random 
Forest. Regions are coloured and districts are crosshatched
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of drawing regions freehand, bemoaned the ‘special problems’ as-
sociated with mapping archipelago regions like the Afromontane 
representatively. Superimposing finer scale floristic units derived 
via quantitative analysis at variably finer resolutions where the 
data allow (Droissart et al., 2018; Fayolle et al., 2014, 2019) onto a 

regional map as White did (1983), but allowing the regional identity 
of the smaller cells to diverge from that of their enclosing larger cell, 
would be a solution.

Of note is our reinterpretation of the arid flora affinities in 
tropical Africa: our results divide White's Somali-Masai into two 

Name of region
No. 
taxa

ER 
(%) MAP (mm/yr) MAT (°C) alt (m)

1: Guineo-
Congolian (West)

6,027 8 1776 ± 71.89 26.05 ± 0.12 177.49 ± 29.99

2: Sudanian 5,893 4 1,005 ± 17.78 27.3 ± 0.06 377.16 ± 9.01

3: Sahel South 2,107 1 532 ± 18.19 28.44 ± 0.1 297.3 ± 13.65

4: Sahel North 1,475 1 218 ± 10.31 28.46 ± 0.11 344.61 ± 12.39

5: Sahara 921 11 27 ± 2.46 26.28 ± 0.16 445.14 ± 13.72

6: Tagant-Djibouti 2,930 4 92 ± 15.64 27.25 ± 0.12 430.65 ± 13.61

7: Guineo-
Congolian 
(West-Central)

9,194 22 1712 ± 22.6 24.72 ± 0.11 447.12 ± 21.64

8: Congolian 
Periphery

9,873 6 1,366 ± 21.62 23.82 ± 0.15 815.3 ± 31.58

9: Namib 1,495 5 102 ± 26.91 18.3 ± 0.58 570.57 ± 138.59

10: Zambezian 
(West)

4,678 15 1,093 ± 42.49 21.24 ± 0.16 1,157.36 ± 32.92

11: Guineo-
Congolian 
(Central)

6,199 7 1661 ± 13.98 24.82 ± 0.07 484.44 ± 14.84

12: Kalahari 5,111 17 416 ± 11.17 21.56 ± 0.13 1,095.73 ± 18.36

13: Zambezian 
(South)

4,978 5 755.5 ± 17.38 21.84 ± 0.15 1,068.03 ± 30.1

14: Zambezian 
(Central)

9,541 14 1,171 ± 18.3 21.62 ± 0.18 1,114.59 ± 28.62

15: Ethiopian 
Highlands

4,472 9 1,149 ± 82.96 19.39 ± 0.5 1737.69 ± 83.78

16: Zambezian 
(North)

4,267 2 787 ± 39.37 22 ± 0.24 1,206.42 ± 24.37

17: Zambezian 
(East Coast)

8,587 9 1,112 ± 32.2 24.2 ± 0.14 285.45 ± 37.27

18: Kenyan 10,555 12 716 ± 45.24 25.34 ± 0.51 669.6 ± 93.19

19: Somalian 4,135 21 363 ± 24.62 26.37 ± 0.26 535.15 ± 52.57

Abbreviations: alt, altitude; ER, endemism rate; MAP, mean annual precipitation; MAT, mean annual 
temperature.

TA B L E  2   Characterization of the 
19 tropical African regions derived 
from vascular plant taxa. Continuous 
variables are summarized as medians with 
confidence intervals calculated by ± 1.58 
IQR/sqrt(n)

TA B L E  3   Quantitative comparison between the tropical African regionalization derived from vascular plant taxa proposed here, 
White, 1983, and Droissart et al., 2018 frameworks. Rates have been calculated at the intraspecific level using the TRAFRICA dataset; rates 
published by the authors are given in brackets

Framework No. regions Mean endemism Total endemism rate Total endemic taxa Anosim R

This publication 19 9.10% 34.3% 10,635 0.79

Droissart et al., 2018 15a  10.1%
(13.5%)

37.5%
(32.1%)

10,844
(8,144)

0.69

White, 1983 13 8.31%
(c. 23%)

33.0% 10,238
(c. 15,808)

0.60

aCalculation from our dataset excludes São Tomé & Principe and transition regions 
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regions for the first time (18: Kenyan, 19: Somalian), and separate 
the arid flora of Djibouti, north-eastern Ethiopia and Eritrea away 
from this region. Instead, the Djibouti flora clusters with cells 
under the same aridity regime right across to Mauritania (Tagant 
plateau) in the west of the continent. The new region is named 6: 
Tagant-Djibouti. The arid flora of eastern Namibia (9: Namib) is sup-
ported at regional level for the first time in a floristic quantitative 
regionalization of tropical African plants. The ‘arid track’ – shared 
species of plants (de Winter, 1971) and animals (Balinsky, 1962) 
across the geographically disjunct arid floras of the south west 
(Namibia) and north east (Djibouti and environs) – can be seen in 
ordination space (Figure 2), though overall their strongest affinity 
is to their geographically adjacent regions (Figure 3c). In the forest 
biome, we define three regions. Our division of White's Guineo-
Congolian region is most congruent with Fayolle et al.’s subdivision 
of White's Guineo-Congolia (2014), with neither the Dahomey Gap 
nor the Sangha River interval recovered; floristic affinities instead 
follow climatic (physiognomic) patterns (before and after model-
ling). In the savanna biome north of the forest, the resolution of 
continuous floristic turnover along climatic gradients into useful 
regions is achieved (region 2: Sudanian, 3: Sahel South, 4: Sahel 
North). This is likely due to the inclusion of a large floristic data-
set from northern tropical Africa (Taugourdeau et al., 2019). Our 
very literal definition of tropical Africa as the area between the 
tropics of Cancer and Capricorn has probably helped by defining 
both ends of the moisture gradient. We recover four main regions 
within White's Zambezian region. Droissart et al. (2018) found 
that the Zambezian region of White can be divided, something 
White also suggested. A fifth region mixes Zambezian vegetation 
with coastal forests and does not include the Kenyan coast (17: 
Zambezian East Coast). The signal from small-scale enclaves of 
distinctive vegetation has been lost in the matrix of the broader 

grid cell (Hawthorne & Marshall, 2019). Our ‘Afromontane’ region 
(15: Ethiopian Highlands) is restricted to Ethiopia and the moun-
tains of western Sudan. Smaller sized Afromontane sites, such 
as Erkowit in northeastern Sudan (Vetaas, 1993; Vetaas, Salih, & 
Jurasinski, 2012), and other outposts further south and north are 
not recovered within the region.

4.3 | Future directions

We limited the scope of our analysis to continental tropical 
Africa. The floras of northern Africa, tropical Africa, southern 
extra-tropical Africa and Madagascar are large and distinct 
from each other floristically and environmentally. The analysis 
of herbarium datasets south and north of 24° alongside tropical 
African datasets would be an important step. Our regions and 
districts are defined by gross floristic patterns. Considering how 
emphasis may be placed on patterns of endemicity rather than 
gross floristic content, acknowledging that those patterns dif-
fer (De Klerk et al., 2002), would be an important development 
for biogeographically informed conservation, probably requiring 
separate map layers. Incorporating the evolutionary history of 
species into tropical African biogeographical frameworks is an 
exciting prospect (Daru et al., 2016; Slik et al., 2018), especially as 
vascular plant phylogenies improve (Janssens et al., 2020). Some 
areas of tropical Africa remain poorly represented by our data-
set, for example, Sudan and South Sudan, Somalia and Nigeria, 
and our regionalization is inevitably more speculative where 
training data are sparser. Notwithstanding, the biogeographical 
framework presented here should help with the interpretation of 
tropical Africa's floristic patterns from a historical and evolution-
ary perspective in future studies, a current research interest of 

F I G U R E  6   Spatial congruence of the tropical African vascular plant biogeographical framework derived here, with previous 
biogeographical frameworks for tropical Africa. Areas identified in the present analysis are coloured in proportion to the number of 
previously defined areas which they intersect or include. (a) Extent of inhomogeneity of the TRAFRICA 19 regions with respect to White’s, 
1983 regional classification, v-measure = 0.67; (b) Extent of inhomogeneity of TRAFRICA 19 regions with respect to Droissart et al.’s 
bioregions, v-measure = 0.63; (c) Extent of inhomogeneity of TRAFRICA 99 districts with respect to WWF Ecoregions, v-measure 0.63

(a) (b) (c)
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ours (Dagallier et al., 2020). For almost all vascular plant taxa of 
tropical Africa, species occurrences and predicted occurrences 
within regions and districts are made available, and should be 
useful for monitoring trends in habitat condition, providing 
shortlists of native species for restoration, or filtering possible 
species during plant identification.
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