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We present a stochastic method for solving the time-dependent Schrödinger equation, generalizing
a ground state full configuration interaction Quantum Monte Carlo method. By performing the time-
integration in the complex plane close to the real time axis, the numerical effort is kept manageable
and the analytic continuation to real frequencies is efficient. This allows us to perform ab initio
calculation of electron spectra for strongly correlated systems. The method can be used as cluster
solver for embedding schemes.
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Introduction. The time evolution of a closed interact-
ing electronic system, having been prepared in a well-
defined but entangled non-stationary state, is of consid-
erable interest to a broad range of fields. This includes
many types of electronic spectroscopy such as photoe-
mission (PE) and inverse photoemission (IPE) [1–3] ,
core-level [4, 5] and optical spectroscopies, as well as the
field of non-equilibrium dynamics [6], including dynamics
in driven, time-dependent, external fields. In solid-state
physics, such electronic spectroscopies play a leading role
in providing information on the electronic structure of
the material. In weakly-correlated materials, the GW-
approximation provides a viable theoretical tool for cal-
culating excitation energies [1, 7]. In strongly-correlated
materials, however, theoretical studies are often limited
to model systems such as the Hubbard [8] or Anderson
[9] models. Efficient methods have been developed for
studying such models.[10, 11] However, it is not clear
how these methods can be generalized to ab initio calcu-
lations. Here we show how this can be achieved using a
time evolution method stochastically applied to ab initio
Hamiltonians.

Time evolution of quantum systems is a notoriously
difficult problem owing to the existence of a severe dy-
namical sign problem. For electronic systems there is an-
other difficult sign-problem due to its fermionic nature.
Fundamentally, we are required to integrate the time-
dependent Schrödinger equation for a many-electron sys-
tem for long times. Methods based on deterministic
wavefunction propagation, such as the Crank-Nicolson
method [12], or Lanczos recursion [13, 14], suffer from
severe memory requirements. Quantum Monte Carlo
methods (especially quantum lattice methods) typically
work in imaginary frequency space [10, 11], followed by
analytic continuation to to real frequencies. The ana-
lytic continuation is numerically highly ill-conditioned,
and maximum entropy (MaxEnt) methods [15, 16] are
usually employed. Although spectral features close to
the Fermi energy can be obtained rather accurately, fea-
tures further away, e.g., satellites, are smeared out (see
appendix [17]). Such satellites, however, can contain a
wealth of information about the dynamics of the system.

In ab initio models these problems are further exacer-
bated by the large range of energies spanned by the basis
set (over numerous Hartrees) and the huge Hilbert spaces
owing to the large number of virtual orbitals.

In this letter we present an approach to this prob-
lem. We present a real-time generalization of an al-
gorithm for calculating fermionic ground states using
imaginary-time propagation. This involves the introduc-
tion of a second-order time propagator, which is imple-
mented in a stochastic manner. This approach yields
accurate time-correlation functions, but the computa-
tional cost increases exponentially, as the undamped
time-evolving wave functions explores the available (ex-
ponentially large) Hilbert space. To ameliorate this prob-
lem, we introduce an adaptive variable-phase time-step
into the propagator, which leads to a propagation in
the complex plane close to the real time axis. This re-
sults in a slow damping, which keeps the computational
cost essentially fixed (similar to a ground state calcula-
tion). Nevertheless, this gives phase information about
the wave function and yields oscillatory time-correlation
functions. We have developed a MaxEnt scheme, which
performs analytic continuation from an arbitrary path in
complex time space to real frequencies. This provides
spectral functions over a broad energy range. We apply
the method to benchmark systems for which numerically
exact results are available, and show that these are repro-
duced to high accuracy at a fraction of the cost. Then we
apply the algorithm to ab initio (atomic and molecular)
systems, where comparison is made with experiment.

In ab initio calculations for solids, this method could
be used as a cluster solver in embedding schemes like
dynamical cluster approximation[10].

Real-time evolution. Given a Hamiltonian Ĥ and an
initial wave function |Ψ(0)〉, we wish to solve the time-
dependent Schrödinger equation:

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 (1)

|Ψ(t)〉 gives information about various spectroscopic
properties. We can see this by considering the inverse
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photoemission spectrum Aii(ω)

Aii(ω) =
∑
n

|〈ΨN+1
n |c†iσ|Ψ

N
0 〉|2δ(ω − EN+1

n + EN0 + µ),

(2)

where c†iσ adds an electron with spin σ to orbital i in
the ground state |ΨN

0 〉 with N electrons. Here |ΨN+1
n 〉

is the nth excited state of the (N + 1)-electron system.
EN0 and EN+1

n are the corresponding energies and µ is
the chemical potential. The formal solution of Eq. (1) is
|Ψ(t)〉 = exp(−iĤt)|Ψ(0)〉 ≡ Û(t)|Ψ(0)〉. The spectrum
is then given by

Aii(ω) =
1

π
Im

[
−i

∫ ∞
0

dtei[ω+i0++E0(N)+µ]t〈Ψ(0)|Ψ(t)〉
]
,

(3)
where we have used the initial condition |Ψ(0)〉 =

c†iσ|ΨN
0 〉 and 0+ is a positive infinitesimal quantity

and the calculated object is the Green’s function
〈Ψ(0) |Ψ(t)〉. In a similar way the photoemission spec-
trum can be calculated. These formulas are discussed in
detail in the appendix [17].

Methods. To compute |Ψ(t)〉 accurately for long propa-
gation times, we have adapted the Full Configuration In-
teraction Quantum Monte Carlo (FCIQMC) method [18–
21]. This method was originally designed to stochasti-
cally project the wave function, expressed in a full Slater
determinant basis {|Di〉}, towards the ground state. The
ground state algorithm uses a stochastic representation
of the full CI wave function Ψ =

∑
i Ci |Di〉 using signed

walkers, Ci, together with the repeated stochastic appli-
cation of a short-time propagator P̂ (∆τ) = 1−∆τĤ to
the population of walkers, followed by walker annihila-
tion at the end of each iteration. More details are given
in the appendix [17].

Generalizing to the time dependent problem, the wave
function Ψ(t) =

∑
i Ci(t) |Di〉 is represented by a collec-

tion of complex walkers, the time evolution of which is
realized through the successive application of a second-
order propagator:

Û2(∆t) = 1− i∆tĤ − 1

2
(∆t)

2
Ĥ2 . (4)

where ∆t is a small time-step. Thus Ψ(t + ∆t) =
Û2(∆t)Ψ(t). This approach preserves the norm of the
wave function to order O(∆t4) per step and O(∆t3) in
total, which is found to be sufficient to allow for stable
propagation for a long time, without significant norm-
conservation errors. In contrast, propagation using a
first-order propagator only leads to norm-conservation of
order ∆t, which leads to a severe violation of unitar-
ity over relevant time-scales. The time evolution is im-
plemented using a second-order Runge-Kutta algorithm.
Numerical examples are provided in the appendix [17].

Although this method remains unitary to a good ap-
proximation, stochastic errors lead to a growth of the

norm over time (see appendix [17]), which becomes un-
manageable for large Hilbert spaces. We therefore allow
the time step ∆t to acquire a phase α

∆t 7→ e−iα∆t , (5)

thereby introducing a damping in the propagator. The
phase is varied dynamically to keep the number of walk-
ers approximately constant. A small number of walkers
requires a large α, and increasing the number of walkers
reduces α. The pure real-time propagation (α = 0) is
achieved in the large walker limit. Since α 6= 0 results
in complex-time Green’s functions, we have generalized
the (imaginary time) MaxEnt method [15, 16] to com-
pute A(ω) (see appendix [17]). The analytic continua-
tion is more accurate for small α, and robustness of the
calculated spectra can be checked by comparing results
for different numbers of walkers. To obtain the statistics
needed for the MaxEnt method, we run several indepen-
dent calculations.

Compared with the finite temperature Matsubara
(imaginary time) formalism, this leads to three advan-
tages. i) The MaxEnt method gives a more detailed spec-
trum, since the time path is rather close to the real axis,
rather than along the imaginary axis. ii) In each spectral
calculation we shift µ so that the peak closest to µ is
located at µ. Since MaxEnt is most accurate close to µ,
this improves the accuracy. iii) For a given k, the weight
of the PE and IPE spectra may be very different. By
performing the PE and IPE calculations separately, we
obtain a comparable relative standard deviation in both
cases, in contrast to the Matsubara formulation. These
aspects are discussed in the appendix [17] and illustrated
in Fig. 1c below.
Application to the Hubbard model. As a first exam-

ple, we consider the fermionic Hubbard model [8]. It

is defined by the Hamiltonian H = −t
∑
〈i,j〉σ c

†
iσcjσ +

U
∑
i ni↑ni↓ . We consider a two-dimensional square-

lattice with periodic boundary conditions.
We apply the method to an 18-site cluster (18A in

Betts’ notation[23]) at half-filling, which is among the
largest Hubbard systems whose Green’s function can be
calculated numerically exactly using Lanczos recursion
[13, 24] (with a Hilbert space consisting of ∼ 2.4 × 109

determinants). To compute the Green’s function, we
first converge the ground state using imaginary-time
FCIQMC, and then perform a complex time calculation
with a k = (0, 0) electron removed from the ground state.
A plane waves basis set is used here.

Three calculations are shown in Fig. 1 for U/t = 2,
employing 70000, 1.6 × 106 and 17 × 106 walkers, with
the corresponding time contours in the complex plane
shown in the inset. Even though the resulting spectrum
forthe smallest walker number is qualitatively correct, it
is broadened and shifted versus the Lanczos spectrum.
Increasing the walker number to 1.6 × 106 gives less se-
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FIG. 1. (a) Time evolution of Re 〈Ψ(0)|Ψ(t)〉 and con-
tour in complex time and (b) corresponding photoe-
mission spectra (for µ = 0) for the time-evolution using
70000, 1.6 × 106 and 1.7 × 107 walkers for the 18-site
Hubbard model at U/t = 2, k = (0, 0) and half-filling.
All calculations start from the same initial state with
350000 walkers, and three different time contours were
used leading to 70000, 1.6 × 106 and 1.7 × 107 walk-
ers for longer times. The utilized time-step is 10−3.
Both the Lanczos and FCIQMC spectra were convo-
luted with a Lorentzian of full width at half maximum
(FWHM) of 0.02 to simplify visual comparison of the
FCIQMC spectrum to the discrete eigenvalues obtained
in the Lanczos method. The integrated weights of the
peaks of the FCIQMC spectra are indicated and agree
well with the weights of the discrete Lanczos spectrum,
which are given in the first graph of b). The brack-
eted numbers indicate the weights of not fully resolved
peaks. (c) Photoemission and inverse photoemission
spectra for a 24-site cluster with lattice vectors (3,3)
and (-5,3) with 22 electrons at U/t = 4 for k = (0, 0)
obtained using ∼ 1.5×108 and ∼ 3×107 walkers respec-
tively. The inverse photoemission part carries very low
weight and is also shown in the inset. For comparison,
the same spectrum computed by means of the Hirsch-
Fye[22] auxiliary-field quantum Monte Carlo (AFQMC)
is displayed.

vere damping. The peaks are still slightly displaced com-
pared to the exact result. For 17 × 106 walkers, α is
small (≈ 0.12) and the spectrum is fully resolved with
the peaks in their correct positions. The agreement in
the weight distribution also serves as an indicator of the
impact of the walker number. The memory used here is
270 Mb per processor. This already involves significant
performance-memory tradeoffs, such that a single replica
of this calculation can be run with less than 800 Mb total
memory, more than a factor of 70 smaller than for the
exact diagonalization.

Fig. 1c) shows the PE and IPE spectra for a 24-site
cluster with 22 electrons (24E in Betts’ notation[23]).
This illustrates that calculations can be performed for
doped systems and for much larger Hilbert spaces (∼
6 × 1012) than exact diagonalization. For the IPE spec-
trum, the main quasi-particle peak and the main satellite
peak at higher energies are well-resolved. This spectrum
is highly difficult to compute since the initial wave func-

tion is highly multiconfigurational, as it is obtained by
eliminating the Hartree-Fock determinant keeping a very
high number of leading determinants with similar weight.
For the PE spectrum, both the main quasi-particle peak
as well as two satellite peaks can be clearly identified.
As a comparison, we show results using the Hirsch-Fye
(HF) method,[22] based on the Matsubara formalism for
T = 0.2t. The HF PE spectrum is consistent with the
FCIQMC spectrum, but the peaks are not resolved. This
is due factors i) and ii) above (performing analytical con-
tinuation from imaginary times and not being able to
shift the peak at -2.5t to 0). The weight of the IPE spec-
trum is only 0.035 and the relative standard deviation
about a factor of 25 larger for the part of the Green’s
function relevant for IPE than for the PE relevant part
[iii) above].

Application to ab-initio systems. We employ the
scheme for ab-initio systems, namely the carbon atom
and the carbon dimer at equilibrium distance. Here, the
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FIG. 2. Atomic multiplet of the carbon atom, obtained from
two distinct initial states created by adding a 2p electron to
the cation ground state. One of the states is prepared as a
singlet (red), the second state (blue) is a mixture of singlet
and triplet but with Lz 6= 0. The time-evolution is carried out
for 1600 a.u. of time and the zero of the frequency axis cor-
responds to −37.3706 H which is the ground state energy of
the cation computed using the projective FCIQMC algorithm.
The VTZ basis is used in this example. The experimental val-
ues are according to [25]. The frequency resolution is 3.9 mH.
The inset shows a portion of the computed Green’s function
in real time.

FIG. 3. Photoabsorption spectra for the carbon dimer for
a single excitation from the 2σu to the 3σg (blue) and from
the 1πu to the 3σg (red) orbital using VXZ basis sets. Also
shown is spectral decomposition of the FCIQMC ground state
(green) as a reference . The spectra are not normalized for
better display. For the VTZ basis set, we also computed Σu-
photoemission (PE) and inverse photoemission (IPE) spectra
for the C−2 and C+

2 respectively. All energies and spectra
are obtained with MaxEnt analytic continuation from 44-48
independent calculations. The experimental values are taken
from[26], these are also used to attribute singlet and triplet
states and the ±-symmetry of the Σ-states. The zero of the
frequency axis is set to −75.649 H. The time-step used is
∆t = 10−3 for the VTZ basis set, and ∆t = 10−3 (green) and
∆t = 5× 10−4 (red,blue) for the VQZ basis set.

Hamiltonian is the molecular Hamiltonian in the Born-
Oppenheimer approximation

H =
∑
p,q,σ

hpqc
†
pσcqσ +

∑
p,q,r,s,στ

V rsqp c
†
rσc
†
sτ cpτ cqσ , (6)

where hpq contains the one-body integrals of the
Schrödinger Hamiltonian, and V rspq the two-body
Coulomb integrals of the electron-electron interaction.
We used the cc-pVXZ basis sets withX=T,Q (referred to
as VXZ in the following), containing 28 and 54 functions
per atom respectively, in the frozen-core approximation.
The required Hamiltonian integrals were computed over
restricted Hartree-Fock orbitals using MOLPRO [29].

For the carbon atom, we show the multiplet structure
of the ground state in Fig. 2, obtained over a trajectory
of 1600 a.u. of time.

Due to the small system size, we performed the prop-
agation in pure real-time, with a time-step of ∆t = 5 ×
10−3. A small constant damping with a decay constant
of 3 mH is applied that has negligible influence on the
spectral function, but reduces the growth of walkers and
allows for longer propagation times. The cation ground
state energy from the ground state computation for the
preparation of the initial state is EN−1

0 = −37.3706 H,
which gives an ionization energy of 420 mH, agreeing rea-
sonably well with the experimental finding of 413.8 mH
[25]. The inset of Fig. 2 shows the oscillations of the over-
lap 〈Ψ(0) |Ψ(t)〉 and corresponding spectra. The result-
ing excitation energies agree fairly well with experiment.

Next, we consider spectral functions of a prototypical
strongly correlated molecule, the carbon dimer at equi-
librium distance. To target specific states, we simulate
photoabsorption (PA) spectroscopy. To do so, the initial
1Σ+

g state is prepared by performing a ground state calcu-
lation on the neutral carbon dimer using FCIQMC, and
then applying the single excitation operator c†i cj on the
resulting walker population. Specifically, we consider the
excitations from 1πu to the 3σg and the excitation from
2σu to 3σg. The former couple to Πu states, whilst the
latter couple to Σ+

u states. Since the excitations generate
open-shell determinants, the resulting spectra couple to
both singlet and triplet states.

The resulting spectra for the two basis sets are shown
in Fig. 3, we additionally compare to projector QMC val-
ues computed using the excited-state i-FCIQMC method
[27] and using the ground state energies calculated in [28]
as references. The involved Hilbert spaces contain respec-
tively 1010, 1012 Slater determinants. Sharply resolved
peaks which correspond to 3Πu,

3 Σ+
u ,

1 Πu,
1 Σ+

u could be
identified. We also performed photoemission and inverse
photoemission calculations for the C−2 and C+

2 respec-
tively, the resulting energies for the excited states of the
neutral C2 are listed in Fig. 3. We find that the inverse
photoemission spectra feature the lowest stochastic error
while the photoemission results have a higher error. A
rotation of time in the complex plane by an angle of α
in the range [0.1,0.2] is applied. The dependence of the
spectra on the basis set is in line with the known basis-set
dependence of relative energies in molecular systems, for
example ionisation energies and electron affinities from
FCIQMC quantum chemical studies [19, 30, 31]. The
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vertical transition energies obtained here are larger than
the experimentally observed values. A previous analysis
by Holmes et al. [32] of the excited state potential energy
curves shows a significant effect of bond-length variation
for the states considered here, indicating the likely non-
vertical character of the experimental transitions.

Conclusions. We have presented an efficient method
for solving the time-dependent Schrödinger equation.
We generalize a full configuration interaction Quantum
Monte Carlo method to calculations for complex times
close to the real axis. We then develop a maximum
entropy method for analytic continuation from complex
times to real frequency. The method can be used to
calculate electron spectra. The imaginary component
of time strongly limits the numerical effort without a
strong negative impact on the analytic continuation. We
demonstrated that spectra of the Hubbard model can be
obtained in good agreement with exact Lanczos calcu-
lations. We then applied the method to ab initio sys-
tems, the C atom and the C2 molecule, and obtained
good agreement with experiment for excitation energies.
The method can be used as cluster solver in embedding
schemes for solids. It can also be used to study small sys-
tems in strong external fields without any assumptions
about linear response.
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APPENDIX

Recap of the FCIQMC method

The FCIQMC method [18–20] is a projector quan-
tum Monte Carlo method based on the imaginary-time
Schrödinger equation. It has the stationary form

∂

∂τ
|Ψ〉 = −(Ĥ − E0)|Ψ〉 = 0, (7)

with formal solution:

|Ψ(τ)〉 = e−τ(Ĥ−E0)|Ψ(0)〉 (8)

which converges (up to a normalization constant) to the
ground state |Ψ0〉 of Ĥ in the large τ limit. We define a
first-order propagator P̂ as

P̂ = 1−∆τ(Ĥ − S1), (9)

where ∆τ is a time-step and S an energy shift to control
the walker number. If Ĥ has a finite spectral width W ,
repeated application leads to the ground-state

|Ψ(n∆τ)〉 = P̂n|Ψ(0)〉 (10)

lim
n→∞

|Ψ(n∆τ)〉 ∝ |Ψ0〉,

without a time-step error, if ∆τ is smaller than 2
W .

|Ψ(τ)〉 is expressed as a linear combination of a complete
set of basis states |Di〉

|Ψ(τ)〉 =
∑
i

Ci(τ)|Di〉 (11)

In FCIQMC, the coefficients Ci are replaced by an en-
semble of positive and negative walkers:

Ci ∝ Ni =

Nw∑
w

swδ(i− iw) (12)

where sw = ±1 is the sign of the walker w, residing on
Slater determinant iw. Nw is the number of walkers. The
walkers evolve according to stochastic rules

• A spawning step: a given walker, on |Di〉, ran-
domly selects another connected determinant, |Dj〉
with probability pgen(j|i). It then attempts to
spawn a new walker on |Dj〉 with probability ps =
−∆τHij/pgen(j|i).

• A death/cloning step: A walker on Di attempts to
die with probability pd = ∆τ(Hii − S).

In a following step, walkers with opposite signs can-
cel each other, which is essential for addressing the
sign-problem. In the initiator version of the algorithm
[20, 28, 30] the spawning is restricted. If the target deter-
minant is not occupied by another walker, the spawning

is aborted if |Ni| ≤ na, where na is the initiator param-
eter. This condition is crucial for obtaining a smooth
convergence without too many walkers.

For the calculation of reduced density matrices (RDM),
we use the replica method [37], in which two independent
simulations of walkers are propagated and elements of the
RDMs are being calculated by taking products involving
the two replicas.

The main advantage of the FCIQMC algorithm com-
pared to conventional exact diagonalization is that the
number of walkers needed for convergence is much
smaller than the dimension of the Hilbert space, thereby
requiring drastically less memory. Using this tech-
nique, molecular and condensed-matter systems involv-
ing Hilbert spaces of over 1020 Slater determinants have
been computed [33, 34].

Norm conservation

Compared to the pure imaginary time evolution, the
complex exponential in the real-time formulation does
not cause an exponential decay of contributions from ex-
cited states, but instead gives a complex phase to the
walkers, which requires the use of both real and imagi-
nary walkers for each determinant. Here, real and imag-
inary populations are only coupled via the stochastic ap-
plication of the first-order expanded propagator

Û1(t) = 1− iĤt . (13)

The annihilation step is performed separately for each of
the populations.

The direct use of Û1 in the time propagation leads to
an exponentially increasing wave function, and therefore
severely violates norm-conservation of unitary dynamics.
This can be seen by considering the time evolution of a
wave function Ψ = Ψ0 that is already an eigenstate of
the Hamiltonian with energy E. The exact solution is

|Ψ(t)〉 = e−iEt|Ψ0〉 (14)

According to the first-order propagator, after n applica-
tion of Û1 we obtain:

|Ψ(tn)〉 = (1− iE∆t)n|Ψ0〉 , (15)

with tn = n∆t, we obtain:

ln
Ψ(tn)

Ψ0
= nln(1− iE∆t) ≈− iEtn + E2tn∆t

2 (16)

so that:

|Ψ(tn)〉 = e−iEtneE
2tn∆t/2|Ψ0〉 (17)

which is exponentially growing in time, with an exponent
O(∆t). This is a direct consequence of working with real
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time, which introduces a growing exponential factor in
Eq. (17).

This problem can be greatly suppressed using a second-
order short-time propagator. Defining:

Û2(∆t) = 1− i∆tĤ − 1

2
(∆t)2H2 (18)

The time evolution is implemented using a second-
order Runge-Kutta algorithm, which decomposes Û2 into
two steps:

Û2(∆t) = 1+
(
Û1(∆t)− 1

)
Û1

(
∆t

2

)
. (19)

The second order propagator is applied by first apply-
ing Û1

(
∆t
2

)
to the wavefunction, followed by applying(

Û1(∆t)− 1
)

to the result and finally adding the result-

ing wavefunction to the original one. In this way, Ĥ2 is
not explicitly applied, which is highly advantageous for
the efficiency of the method.

We now have after n repetitions of Û2:

|Ψ(tn)〉 = [1− iE∆t− (E∆t)2

2
]n|Ψ0〉 (20)

resulting in:

ln
Ψ(tn)

Ψ0
= n ln[1− iE∆t− (E∆t)2

2
] (21)

≈ −iEtn − i
E3tn(∆t)2

6
+
E4tn(∆t)3

8

|Ψ(tn)〉 = e−iEtne−iE3tn(∆t)2/6eE
4tn(∆)3/8|Ψ0〉

i.e. in this formulation the norm-violating factor grows
only as O(∆t3). It is possible to reduce further the scal-
ing of norm-violation by employing a 4-th order prop-
agator, but we found that improvements are typically
masked by much larger stochastic errors.

Fig. 4 compares the first and second order expansions
in the Rung-Kutta method. The figure illustrates how
the number of walkers and the norm rapidly increase
in the first order expansion. The first order overlap
〈Ψ±i (0)|Ψ±i (t)〉 is substantially more accurate than the
norm, but still not satisfactory.

Fig. 5 (right part) compares deterministic[36? ] and
stochastic calculations of time evolutions of the norm
〈Ψ(t)|Ψ(t)〉 to second order. The deterministic calcula-
tion only contains the errors of the second order Runge-
Kutta, and it is very accurate over this time scale. The
stochastic calculation introduces substantial errors in the
norm, e.g., due to excitations to high-lying states. In
the overlap 〈Ψ±j (0)|Ψ±i (t)〉 these stochastic errors tend
to cancel (see left part of Fig. 5) for two reasons. Many
of the stochastically excited states have little or no weight
in the initial state and therefore give little or no contri-
bution to the overlap. Furthermore, the stochastic errors
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FIG. 4. Number of walkers NW , norm of the wave function,
and Green’s function for the 10-site Hubbard model, k =
(0, 0) and U/t = 1, using the stochastic algorithm and the
first and second order Runge-Kutta methods.

due to the time evolution enter linearly in 〈Ψ±j (0)|Ψ±i (t)〉
and therefore tend to cancel. This is crucial for the accu-
racy of the method. We could alternatively have calcu-
lated 〈Ψ±j (t/2)|Ψ±i (t/2)〉, but in this case the stochastic
errors are much larger, since the the two arguments above
do not apply.

Even though a symplectic integrator such as the Verlet
method [38] could in principle yield smaller discretization
errors, we find that stochastic errors play a much larger
role, making it unfeasible compared to the Runge-Kutta
integrator.

Computation of Green’s functions and optical
absorption

Here, we provide some more details about the calcula-
tion of the Green’s function.

We assume that the ground-state |ΨN
0 〉 for N elec-

trons has been calculated. We then want to calculate
the Green’s function

Gij(t) = −i〈ΨN
0 |T{ci(t)c

†
j}|Ψ

N
0 〉, (22)

where T is the time-ordering operator, ci is the annihi-
lation operator for an electron with quantum numbers i
(including spin) and ci(t) = exp(iĤt)ciexp(−iĤt). For
t < 0 (t > 0) this corresponds to (inverse) photoemis-
sion. For photoemission we make a variable substitu-
tion t→ −t. Then both photoemission and inverse pho-
toemission correspond to positive time propagation, but
there is now an extra minus sign in the Schrödinger equa-
tion for photoemission. We then consider the initial state

|Ψ±i (0)〉 = c±i |Ψ
N
0 〉, (23)
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FIG. 5. Green’s function (left) and norm (right) of the wave function over time using the second-order algorithm for the
two-dimensional 10-site Hubbard model, k = (0, 0) and U/t = 1. Both were calculated using both stochastic and deterministic
algorithms.

where lower (upper) sign indicates (inverse) photoemis-

sion and c+i = c†i and c−i = ci. We solve the Schrödinger
equation

i
d

dt
|Ψ±i (t)〉 = ±[e∓iα(t)(Ĥ − EN0 ∓ µ)]|Ψ±i (t)〉, (24)

Here α(t) defines the path through the complex time
plane. α(t) ≡ 0 (π/2)) corresponds to integration along
the real (imaginary) time axis. The formal solution can
be written as

|Ψ±i (t)〉 (25)

= exp[∓i
∫ t

0

dt′e∓iα(t′)(Ĥ − EN0 ∓ µ)]|Ψ±i (0)〉

We take the overlap to the state 〈Ψ±j (0)| and expand this

in a complete set of states |ΨN±1
n 〉.

〈Ψ±j (0)|Ψ±i (t)〉 (26)

=
∑
n

〈ΨN
0 |c∓j |Ψ

N±1
n 〉〈ΨN±1

n |c±i |Ψ
N
0 〉

×exp{∓i
∫ t

0

dt′exp[∓iα(t′)][EN±1
n − EN0 ∓ µ]}

=

∫
dωA±ji(ω)exp{−i

∫ t

0

dt′exp[∓iα(t′)]ω}

Here we have introduced the spectral functions

A±ji =
∑
n

〈ΨN
0 |c∓j |Ψ

N±1
n 〉 (27)

×〈ΨN±1
n |c±i |Ψ

N
0 〉δ[ω ∓ EN±1

n ± EN0 + µ]

We finally introduce the spectral function

Aij(ω) = A+
ij(ω) +A−ij(ω), (28)

where we have used conventions that negative (positive)
frequencies correspond to (inverse) photoemission. Large
(small) values of |ω| correspond to excited states with
large (small) excitation energy. In a similar way we can
calculate optical conductivity, by applying a current op-
erator to the N -particle state and propagating this in
time.

The targeted spectral function then dictates the struc-
ture of the initial wavefunction, and thereby also the level
of correlation present in the initial state. As ΨN

0 is taken
from a previous FCIQMC calculation, the initial state is
obtained from a stochastic sample of the true ground-
state. Therefore, multiple independent samples of ΨN

0

are taken, and the Green’s function is computed from the
overlap of the initial state of one sample with the time-
evolution of another, since a Green’s function from only a
single sample is quadratic in the initial state and is hence
potentially biased. We find that such a bias is problem-
atic only for the most correlated initial states, like the
inverse photoemission for the 24-site Hubbard model as
in Fig. 6, but using a Green’s function obtained from a
single sample should be avoided nevertheless.

Complex time contour

We use a time-dependent angle α(t), which is adjusted
so that the number of walkers do not appreciably exceed
a preset value. This is done in a similar way as the walker
number control in the projective algorithm. We prescribe
an initial value α(t = 0) = α0, typically α0 = 0. Once
the walker number exceeds a threshold value Ntarget, we
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IPE

PE

FIG. 6. Energy levels of the non-interacting 24-site Hubbard model with lattice vectors (3,3) and (-5,3). The (inverse)
photoemission spectrum for k = (0, 0) is obtained by removing (adding) the electron marked in red. While removing an
electron with k = (0, 0) keeps the determinant with highest weight and therefore creates an initial state with a unique high-
weight leading determinant, this is not the case for the inverse photoemission. As k = (0, 0) is doubly occupied in the reference
determinant of the ground state, the latter does not appear in the initial state and we start from a enormously correlated state
with a high number of determinants with comparable weight.

start to adjust α every B steps as

α(t+B∆t) = α(t) + ξ arctan

(
NW (t+B∆t)

NW (t)
− 1

)
.

(29)
Here, Nw(t) is the number of walkers at time t and
ξ ∼ 0.1 − 1.0 is a damping parameter. Using this heuris-
tic approach, the value of alpha is iteratively updated to
counter changes in the walker number. We use the arctan
function to map changes in walker number to changes
in an angle, but for sufficiently small B ≈ 10, we do
not expect the exact choice of the function used for this
mapping to have an impact. Using this technique, the
value of α is increased during the time evolution as the
walker number increases, which in turn damps the walker
number growth, eventually leading to an equilibration of
both the value of α and the number of walkers. How-
ever, depending on the chosen parameters ξ and B, even
in equilibrium, the value of α can be subject to rapid
fluctuations around the average value due to short-time
fluctuations in the number of walkers. This has no no-
table impact on the contour, however. The equilibrium
value of α is then typically ∼ 0.05 − 0.25 for the stud-
ied systems, except for the 24-site Hubbard model with
an equilibrium value of α ∼ 0.45. Increasing the walker
threshold value Ntarget tends to decrease α.

Walker number dependence

The walker number impacts the time-evolution in two
ways. The first is the influence on the adaptation of α,
as increasing the walker number for a fixed initial num-

ber of walkers lowers the required values of α for a stable
calculation with a constant walker number. The con-
trol mechanisms for adjusting the walker number here
are setting the initial value α0 and/or a minimum walker
number which has to be reached before the value of α
is changed. In particular only adjusting α once a given
number of walkers is reached allows for targeting specific
walker numbers, similar to the variable shift mode in the
projected algorithm, although the walker number equili-
bration is typically slower. The values α obtains in this
procedure decrease as the targeted walker number is in-
creased, while increasing α0 unsurprisingly decreases the
number of walkers used.

The second effect is a bias in the Green’s function itself
as shown in figure 7.

Chemical potential shift

Typically we are particularly interested in the spec-
trum relatively close to the chemical potential (within
several eV). We can emphasize these states by using the
flexibility of the present method. Thus we study the spec-
tra for each k at a time and photoemission and inverse
photoemission separately. We then have the freedom to
choose the chemical potential as EN0 − EN−1

0 (k) ≤ µ ≤
EN+1

0 (k)−EN0 in the spectral calculation, where EM0 (k)
is the lowest M -electron state with the wave vector k.
Lowering (increasing) µ for (inverse) photoemission leads
to a slower decay of the Green’s function for a given α(t).
The shift increases the weight of all states. To keep the
number of walkers fixed, α(t) is then increased. This
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FIG. 7. Photoemission Green’s function for k = (0, 0) for the Hubbard model with an 18-site cluster at U/t = 2 obtained with
FCIQMC and Lanczos with a) 70000 and b) 17 million walkers, showing a bias in the Green’s function due to under-sampling
for the smaller walker number.

suppresses high-lying states (far from µ) more than low-
lying states, enhancing the relative weight of low-lying
states, as the suppression scales with energy. The result
is that low-lying states contribute to the Green’s func-
tion over a longer time, and it then becomes easier to
extract the information about these states. This should
then also improve the signal to noise ratio for low-lying
states. Fig. 10 (e.g., for α0 = π/4 or 0.2) illustrates how
structures close to µ are described more accurately.

We can use

µ =

{
EN+1

0 (k)− EN0 inverse photoemission

EN0 − EN−1
0 (k) photoemission

(30)

In this way the contribution to the spectrum from
|ΨN±1

0 (k)〉 is not damped by α(t), and its contribution
to the spectrum is therefore well described.

Sometimes the lowest states of the (N±1)-system with
a given k have little or no weight in the spectrum of in-
terest and it may then be favorable to reduce (increase) µ
even more for (inverse) photoemission. Eventually, how-
ever, these states obtain weight due to statistical noise
and then grow exponentially. The shift of µ should there-
fore not be too large.

The Matsubara formalism has often been used to study
the Mott metal-insulator transition or the formation of a
pseudo gap. Then the (angular integrated) spectrum at
µ is of particular interest, and the Matsubara formalism
provides very useful information. However, we are often
also interested in angular resolved spectra, where for a
given k the leading peak may be located well away from
µ. Then the separate treatment of each k in the present
formalism, and the related possibility to shift the spec-
trum, becomes particularly important. Satellites are also
often of interest, and then the use of a relatively small
α(t) in the FCIQMC is of great advantage.

In the Matsubara formalism the photoemission and in-
verse photoemission spectra are treated simultaneously.

In the k-resolved case the relative weights, and thereby
the relative standard deviations, may be very different.
The present separate treatment of the two spectra then
becomes an important advantage, since the relative stan-
dard deviations are comparable for the two spectra.

The initiator approximation

We make use of the initiator version of FCIQMC
[20, 30] which is commonly used in the projective algo-
rithm. This limits the possibilities for walkers to spawn
to unoccupied determinants and thereby prevents sign
errors from proliferating. The adaptation made is, that
spawns onto unoccupied determinants are only accepted
if they either came from a determinant exceeding a cer-
tain threshold occupation or if another spawn onto the
same determinant occurred in the same iteration.

In contrast to the projective algorithm, the thresh-
old value itself is not very significant for the purpose of
Green’s function calculation, as the initial wave function
already has a high number of determinants populated,
and only their population will enter the Green’s func-
tion. Also, the event of two spawns occurring onto the
same determinant is common, limiting the influence of
the threshold further.

It can then be highly beneficial to either pick a high
threshold, or entirely disable the possibility to spawn
onto unoccupied determinants by single spawns and re-
quire two spawns to populate a new determinant. Fig. 8
shows the effect of the threshold onto the Green’s func-
tion and the spectral function for exemplary cases. The
effect on the Green’s function is minor. For the C2

molecule, the high-energy part of the spectrum exhibits
some sensitivity, whereas the low-energy part notices only
a constant shift which does not enter energy differences.



11

0 2 4 6 8 10
t [a.u.]

0.5

0.0

0.5

1.0
R

e( 〈 Ψ
(0

)|Ψ
(t

)〉)
Lanczos

15

30

70

∞

1.0 0.8 0.6 0.4 0.2 0.0 0.2
ω/t

0
10
20
30
40
50
60
70
80
90

A
(ω
/t

)

10

20

∞

2.5 3.0 3.5 4.0

t [a.u.]

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

R
e( 〈 Ψ

(0
)|Ψ

(t
)〉)

FIG. 8. (a) Green’s function of the U/t = 2 18-site Hubbard model for fixed α = 0.2 for different initiator thresholds and
without any initiators (∞), allowing only double spawns to populate new determinants, and as obtained using Lanczos. (b)
Photo absorption spectra of C2 in the cc-pVTZ basis set for different thresholds and without initiators. Large values of α were
used for the smaller thresholds, leading to broader spectra.

Maximum entropy

The maximum entropy method [15, 16] for calculat-
ing spectral functions is often applied together with the
finite temperature Matsubara formalism, where the spec-
tral data are then analytically continued from the imag-
inary to the real axis. Here we develop a formalism for
analytic continuation from an arbitrary path in the com-
plex plane to the real axis, using the (inverse) photoe-
mission spectrum as an example. The spectrum Aij(ω)
is related to the solution of the Schrödinger equation via

gk =
∑
l

Kklal, (31)

where gk = 〈Ψ±i (0)|Ψ±j (tk)〉, al = A±ij(ωl) and

Kkl = exp{−i
∫ tk

0

dte∓iα(t)ωl}fl, (32)

where fl is a weight factor for the ω integration and the
lower (upper) sign refers to (inverse) photoemission. The
indices i and j have been dropped for simplicity. We
introduce the average ḡk over many samples of g and
define the deviation χ of a spectral function a giving g
from ḡ as

χ2 =

L∑
k=1

L∑
k=1

(ḡk − gk)∗[C−1]kl(ḡl − gl). (33)

where the sums run over the L values of gk and C is the
covariance matrix [15, 16] of the samples of g. To ob-
tain a regular expression for χ2, it is important to have
a non-singular covariance matrix C, as the inverse C−1

is required to calculate χ2. If few samples are used, C

may be ill-behaved. We have then imposed a minimum
value, σmin ≈ 10−4 . . . 10−6, on the diagonal entries of C.
While this allows for regularizing C, it also assumes the
data to be more noisy than it actually is and hence can
affect the details of the spectra as illustrated in Fig. 9.
Alternatively, we have split the data in batches and as-
sumed a diagonal C for each batch. This assumption can
overemphasize noise, which tends to be compensated by
averaging over batches.

We also introduce the entropy S

S =

L∑
i=1

[ai −mi − ailn(ai/mi)]fi, (34)

where mi is default function providing a guess for A(ω).
We minimize χ−γS, where γ determines the importance
of the entropy. The most probable value of γ is chosen
[15, 16]. This leads to a system of nonlinear equations.
This system is solved iteratively, by linearizing the equa-

tions around successive approximations a
(m)
i . We intro-

duce a
(m+1)
i = a

(m)
i + δa

(m+1)
i and solve∑

j

Re[K†C−1]kj ḡj −
∑
jl

Re[K†C−1K]kla
(m)
l

−γln
a

(m)
k

mk
=
∑
l

Λkl(a
(m)
k )δa

(m+1)
l . (35)

where

Λkl(a
(m)
k ) = { fkγ

a
(m)
k

δkl + Re[K†C−1K]kl} (36)

Fig. 10 show results for the Hubbard model with four
different α(t) ≡ α0. The spectrum was obtained from ex-
act diagonalization, transformed to complex t and Gaus-
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FIG. 9. Spectra obtained using maximum entropy obtained using different values of the cutoff σmin for the photoemission
(left) and the inverse photoemission of the 22-electron 24-site (right) Hubbard model at U/t = 4. While the photoemission
spectrum shows sensitivity to the cutoff, the inverse photoemission spectrum does not as long as the covariance matrix is
non-singular. For σmin = 10−9, this is no longer the case here and the analytic continuation is ill-defined, leading to deviations
in the spectrum. For comparison, the spectrum obtained by partitioning the data in 6 batches, assuming a diagonal C and
averaging over the spectra obtained from each batch is also shown.

sian noise was added. The spectrum was then trans-
formed back to real frequencies using maximum entropy
and compared with the exact result. For data on the
imaginary axis (α0 = π/2), the ω = 0 peak is accurately
described, while the other structures are approximated
by two peaks. For data close to the real axis (α0 = 0.1)
almost all structures are reproduced.

To understand what accuracy can be obtained, we ex-
panded the work in Ref. 39 and introduce the eigenvec-
tors |ν〉 and eigenvalues εν of Λ. We expand the differ-
ences δa = a−aexact, δm = m−aexact and the stochastic
error in ḡ in the eigenvectors |ν〉 and obtain coefficient
δaν , δmν and δgν , satisfying

δaν =
1

εν
(δgν + δmν). (37)

Typically there are several very large εν . The correspond-
ing components of a are then very accurately described.
Other eigenvalues are approximately unity, and the cor-
responding δaν cannot be trusted.

The bottom of Fig. 10 shows the eigenvectors for
α0 = π/2 and π/4. The eigenvalues for α0 = 1 are

2 × 106, 3 × 104, 5 × 103, 73, 5. The components of
A(ω) corresponding to the first four or five eigenvectors
are then described very well. These eigenvectors do not
have enough nodes to describe details away from ω = 0.
As α0 is reduced the number of eigenvalues larger than 5
increases from 10 (α0 = π/4) or 20 (α0 = 0.2) to about
40 (α0 = 0.1). Correspondingly, more and more details
of the spectrum can be described. The |ν〉 and εν help us
judge which details of A(ω) can be described and which
cannot.

Additional Data

In addition to the study on the half-filled 18-site Hub-
bard model with U/t = 2, calculations on the same sys-
tem with U/t = 4 have been performed, of which the
resulting spectra are displayed in Fig. 11.

For completeness, we also consider the Carbon dimer
in a minimal cc-pVDZ basis set consisting of 14 orbitals
per atom in the frozen core approximation. The Hilbert
space size here is ∼ 108, and photo absorption spectra
can be obtained analogously to the basis sets described
in the main text, which are shown in Fig. 12.
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FIG. 10. Photoemission spectrum for the Hubbard model
with 18 sites, U/t = 8 for different functions α(t) ≡ α0 (top
four figures). The bottom two figure shows the basis functions
|ν〉 with εν > 5 for α0 = π/2 and π/4. The chemical poten-
tial is chosen so that one peak is at ω = 0. The data have
Gaussian noise with a relative standard deviation of about
10−2. The spectra have been given a Lorentzian broadening
with FWHM=0.1.
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(0.264)

0.271
(0.142)

0.153

(0.681)

0.571

FIG. 11. Spectrum for the 18-site half-filled model at U/t = 4
obtained with 1.4 × 108 walkers for k = (0, 0). Both the
integrated weights of the peaks of the FCIQMC spectrum
as well as the corresponding integrated weights of the Lanc-
zos spectrum (bracketed) are displayed, showing reasonable
agreement.

FIG. 12. Photo absorption spectra for the Carbon dimer
in a cc-pVDZ basis set for a single excitation from the
2σu(blue)/1πu(red) to the 3σg orbital. Next to the real-
time FCIQMC estimates of the excitation energies we also list
the corresponding energies as obtained using excited-state i-
FCIQMC method [27] and the FCIQMC ground state energy
from [28]. The time step used is ∆t = 5×10−3. Again, a rota-
tion of time in the complex plane is performed, with an angle
of α ∼ 0.33, which is higher than for the larger basis sets due
to the larger time-step, leading to an increased broadening.
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