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Abstract
Spatial models where growth is limited to the population edge have been instrumental to
understanding the population dynamics and the clone size distribution in growing cellular
populations, such as microbial colonies and avascular tumours. A complete characterization of
the coalescence process generated by spatial growth is still lacking, limiting our ability to
apply classic population genetics inference to spatially growing populations. Here, we start
filling this gap by investigating the statistical properties of the cell lineages generated by the
two dimensional Eden model, leveraging their physical analogy with directed polymers. Our
analysis provides quantitative estimates for population measurements that can easily be
assessed via sequencing, such as the average number of segregating sites and the clone size
distribution of a subsample of the population. Our results not only reveal remarkable features
of the genealogies generated during growth, but also highlight new properties that can be
misinterpreted as signs of selection if non-spatial models are inappropriately applied.

Keywords: spatial growth, population genetics, branching process, KPZ universality class,
site frequency spectrum, spatial coalescence

(Some figures may appear in colour only in the online journal)

1. Introduction

Spatial range expansions [1, 2] are ubiquitous in nature,
from microbial biofilms [3, 4], developing tissues [5] avascu-
lar tumors [6–9] to invading species and infectious diseases
[10, 11]. Many of these scenarios share the feature of being
resources-limited [12–19], so that population growth occurs
mainly as invasion of surrounding virgin territory [20–26].
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When dispersal is local, these range expansions lead to a phe-
nomenon called gene surfing, whereby pioneering individuals
at the edge of the expansion have a higher chance to contribute
to the next generation [27, 28]. As a result, an individual’s
location can become a more important factor to reproductive
success than its growth rate [29–32].

It has recently been shown that gene surfing leaves a charac-
teristic signature in the mutational spectrum of the population,
identified by an excess of high frequency mutations compared
to the well-mixed expectation [4]. This observation becomes
crucial when analyzing population sequencing results, as the
same signature can be mistakenly interpreted as being a result
of positive selection and lead to a mis-identification of driver
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mutations (e.g., in cancer or drug resistance). Modeling the
effects of spatial structure on genealogies in growing popula-
tions, and consequently on the diagnostic outputs of genome
sequencing, could point to protocols that discern the two
scenarios.

In prior efforts to link spatial growth with population
structure, connections to non-equilibrium statistical mechanics
have proven fruitful. Spatial population growth is a fundamen-
tally out-of-equilibrium process driven by stochastic division
and migration events at small scales that leave collective sig-
natures at the scale of the population as a whole. Models of
spatial populations harbor nonequilibrium statistical phenom-
ena such as fixation into absorbing states [33], dynamic phase
transitions and critical phenomena [34, 35], and manifestations
of directed percolation [36]. As a result, statistical properties
of the population patterns generated by the range expansion
can be quantitatively linked to robust universal features of the
corresponding nonequilibrium growth models [37]. A prime
example is the connection between range expansions and the
Kardar–Parisi–Zhang (KPZ) model of interface growth [38],
which established scaling exponents for the shapes of clonal
domains [20, 39, 40] and lineages [41–43] in expanding micro-
bial populations. Such scaling rules provide a theoretical basis
for predicting or interpreting population genetics quantities
that can be measured using genome sequencing studies.

In the following, we systematically analyse the statisti-
cal properties of the genealogical tree generated by the Eden
model, a lattice model that has successfully been used to inves-
tigate microbial colonies and tumour growth [4, 6, 44, 45], to
determine the effects of spatial growth on three classic popu-
lation genetics quantities: (i) time to the most recent common
ancestor (MRCA), (ii) number of segregating sites in a sam-
ple and (iii) clone size distribution of a sample. We find that
these quantities are completely determined by the growth prop-
erties of the populations, and that their key features can be
captured by a deterministic tree structure defined completely
by the exponents of the KPZ universality class. We finally dis-
cuss how recent advances in lineage tracing [14, 17, 46–50], as
well as single cell sequencing can be combined with our model
to reveal the presence of surface-limited growth and interpret
the data accordingly.

2. Simulating spatial growth: the Eden model

The Eden model, first introduced in the seminal paper by Eden
in 1961 [51], is widely used to mimic spatial growth processes
where replication is limited to the front of the expansion, for
example microbial colonies on rich media. Starting from an
initial set of cells, placed at fixed points on a lattice, one cell
with at least one empty neighbour is randomly chosen and
replicated into one of the empty neighboring sites. This new
cell can be seen as the descendant of the initially chosen cell
and the process repeated to reach a final population size.

The growth process simulated by the model can be
tracked to generate a genealogical tree that identifies the
mother–daughter relationship of each individual (lattice site).
The statistical properties of the emerging lineages have

recently been investigated [43] and found to fall within the
KPZ universality class.

This underlying growth process and the resulting lineages
are sufficient to completely characterise the neutral genetic
diversity of the population, since neutral mutations do not
affect growth. The occurrence of neutral distinct mutations
can be modeled as a Poisson stochastic process occurring on
top of the identified lineages (infinite site model [52]). Using
the statistical properties of the lineages, we can then char-
acterise the corresponding coalescence process and estimate
classic population genetics quantities. In what follows, we con-
sider two scenarios: a linear front of constant width, which
we compare to a Wright–Fisher model of constant popula-
tion size; and a 2D radial expansion, which mimics colony
growth. Details of the Eden model simulations are provided in
appendix A.

3. Statistical properties of Eden model in a linear
geometry

We will start our analysis with a linear front scenario (corridor)
so that the front of the population exhibits a constant width. In
what follows, we will always sample individuals from the very
front of the population.

3.1. Number of segregating sites between two individuals

Single-cell sequencing enables genomic comparison (either
whole-genome or targeted regions) among individual cells
sampled from different locations in the population. The num-
ber of differences between the two (or more) genomes is a
well-studied summary statistics in population genetics called
number of segregating sites, S, whose distribution is known
for well-mixed populations and even for simple models of
structured populations (island model) [52].

In contrast to the well-mixed scenario, the spatial structure
of our model naturally raises the question of how the number
of segregating sites S depends on the relative location of the
sampled individuals. Starting with two individuals sampled at
a distance d from each other, then the probability P2(S|d) of
observing S segregating sites is

P2(S|d) = 2
∫

P1(S|T)P(T|d)dT, (1)

where P1(S|T) is the conditional probability of observing S
segregating sites given that the time to the MRCA between
the two individuals is T, P(T|d) is the conditional probabil-
ity of observing a time to the MRCA equal to T given that
the two individuals are sampled a distance d apart. The fac-
tor 2 takes into account that mutations distinguishing the two
individuals can occur on either branch leading to the MRCA.
If we make the standard assumption that mutations follow a
Poisson process, then P1(S|T) = exp(−μT)(μT)S/S!, where μ
is the mutation rate per replication and T is in units of replica-
tion events. In the Eden model (see appendix A), a replication
event corresponds to the colonization of a neighboring lattice
site, consequently both distances and times can be expressed
in units of lattice sites.

2



J. Phys.: Condens. Matter 34 (2022) 294008 A Eghdami et al

Figure 1. Left, probability distribution of time T to the most recent common ancestor for individuals sampled a distance d apart, for
simulations in a linear corridor. Right, dependence of the most probable value ̂T of the distribution on the separation d. Inset shows the data
on left, rescaled by the measured dependence of the peak of the distribution ̂T ∼ d3/2. The shown plots were each generated by averaging
over the results of 600.000 simulation runs.

The distribution P(T|d) from linear simulations is shown
in figure 1, with a power-law decay at large distances follow-
ing P(T|d) ∼ T−1.64. The exponent is connected to one of the
characteristic exponents describing the statistics of directed
polymers in random media (DPRM) [43]. As d increases, sim-
ulations deviate from the power-law expectation at large times
due to the finite size of the simulations.

Because of the heavy tail of the distribution, the average
time to the MRCA is often not of practical use, and the typ-
ical time to the MRCA, T̂ , is better suited as a metric of the
characteristic behavior. This characteristic time has a scal-
ing determined by the DPRM wandering exponent, T̂ ∼ d3/2

(figure 1(b)) [43].
Since the probability function P(T|d) decays quickly upon

moving away from the characteristic value T̂, a simplified
model of the tree structure can be built by replacing the
distribution with a δ-function peaked at T̂ . In addition, for
large μT, we can also approximate P1(S|T) to a δ-function
peaked at the mean value μT, so the distribution of seg-
regating sites scales similarly to P(T|d), rescaled by a fac-
tor 2μ. In particular, the most likely number of segregating
sites observed Ŝ ≈ 2μT̂ ∝ d3/2, following the KPZ expecta-
tion (figure 1). For comparison, in a Wright–Fisher model
of constant population size N, the typical time to the MRCA
would be N, independently on the physical distance between
the two sampled individuals [52]. If we equate the popula-
tion size N to approximately the width w of the corridor, this
leads to a critical distance d∗ = N2/3 < w, so that if individu-
als are sampled at distance larger than this, they should show
more segregating sites than the well-mixed expectation, and
viceversa.

3.2. Number of segregating sites in a subsample

If we consider a connected subsample n < N at the front
of the population, the total number of segregating sites is
related to the total length of all the branches in the genealog-
ical tree Ttot(n). In the Wright–Fisher model this leads to the

well-known average result

Ttot =

n∑
i=2

iTi = 2N log(n − 1), (2)

for an haploid population, where Ti = N/
( i

2

)
represents

the average time for the first coalescent event between two
lineages of the possible i [53]. Because after each coalescence
event the number of lineages decreases by one, the total length
of the tree is just given by the sum of the number of surviving
lineages between subsequent coalescent events. Note that the
time to the MRCA across n individuals in a well-mixed popu-
lation of size N is TMRCA(n) =

∑n
i=2 Ti = 2N[1 − 1/(n − 1)].

For the Eden model, the expression depends on the relative
position of the n individuals. If we assume that they are posi-
tioned contiguously along the front, then Ttot is the total length
of the branches that lead to a corridor of width n starting from
the MRCA of the n individuals (as in the inset of figure 2).
Then

Ttot =

∫ TMRCA(n)

1
l(t)dt, (3)

where l(t) is the number of lineages at time t measured back-
wards from the subsample and TMRCA(n) is the time to the
MRCA of the whole sample. Because of the spatial constraints
on the lineages, we have that TMRCA(n) ∝ n3/2, since the n indi-
viduals will be at most n lattice sites apart (in reality there are
more than n individuals in a width n since the front is rough,
but we use this as first approximation).

The scaling of the typical time to the MRCA implies a par-
ticular scaling for the number of lineages with reverse time.
We assume that all coalescence events happen exactly at the
typical time T̂(d) ∼ d3/2 associated with the separation d of
two individuals on the front. Upon advancing backwards in
time from the front by an interval t, each contiguous segment
of the boundary of size ∼ t2/3 will have coalesced to a sin-
gle ancestor. As a result, the number of surviving lineages l(t)
falls as t−2/3 with reverse time t, as long as the number of
surviving lineages is large. To test this relation, we measured
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Figure 2. Number of surviving lineages in the genealogy of n
individuals at the edge of the colony, traced backwards as a function
of the distance s from the edge of the colony. Inset shows an example
of a genealogy from an Eden model simulation. The shown plot was
generated by averaging over the results of 120.000 simulation runs.

the number of lineages as a function of distance s ∝ t from
the edge of the colony in Eden simulations within a linear cor-
ridor (see figure 2). Although the true genealogies display a
more complex structure compared to our idealized model, we
find that the observed behaviour in l is consistent with a power-
law decay l ∼ s−2/3 ∼ t−2/3 until only a few lineages survive
(l � 1).

Since the number of lineages is l(t) ∼ n/t2/3, then

Ttot ∼ nT1/3
MRCA(n) ∝ n3/2. (4)

A remarkable byproduct of this is that the total tree size is pro-
portional to the TMRCA(n) of the sample, unlike the case for
well-mixed populations, and it does not depend on the total
population size. This reflects the fact that the dominant con-
tribution to the tree is given by the significantly longer oldest
branches. Another interesting feature arising from the compar-
ison with the Wright–Fisher model is that the total number
of segregating sites increases much more quickly with sample
size for the spatial model than for the well-mixed one.

3.3. Site frequency spectrum of subsamples

The statistical properties of the number of segregating sites in
a sample n of the edge of the population also determine the
mutational spectrum, a commonly used genomic metric of the
population structure. In the case of the Wright–Fisher infinite
site model, the mutational spectrum, i.e., the number of muta-
tions m( j) carried by j < N individuals, is given, on average,
by m( j) = 2 μN/ j [52].

The hierarchical length structure of the genealogical tree
generated by the Eden model generates a very different
mutational spectrum, since mutations can accumulate for a
long time on long lineages before any later branching event
occurs. Importantly, to understand the origin of this muta-
tional spectrum, the topology of the tree (which branches
coalesce with each other) is crucial, as identical l(t) can
generate very different mutational spectra. Furthermore, the

Figure 3. Site frequency spectrum, i.e. probability of a mutation
attaining a frequency x, for individuals sampled from the edge of a
population generated using Eden model simulations in a corridor
geometry. The shown plot was generated by averaging over the
results of 24.000 simulation runs.

measured spectrum will depend strongly upon the spatial dis-
tribution of the population samples—different sampling proto-
cols might be sensitive to different features of the genealogical
structure.

If samples are taken uniformly across the entire popula-
tion, the site frequency spectrum is expected to follow a trend
m( j) ∝ j−7/5 [4]. However, in many situations the outer edge
of the population is more accessible for sampling. An analo-
gous theoretical argument to the one used in [4] can be made if
we restrict sampling to the edge of the population. Then, muta-
tions carried by at least j individuals have to occur before the
coalescence time TMRCA( j) or, in other words, somewhere on
the subtree between the ancestor among all N individuals and
the ancestor of the subsampled j individuals. We will call this
portion of the total tree T∗( j). The topology of the tree then
determines the expression for the site frequency spectrum.

For instance, if the tree is well-balanced so that coalescence
events happen almost at the same time between pairs of lin-
eages that are the same distance apart, then the number of
mutations m( j) carried by at least j individuals is proportional
to

T∗( j) = Ttot(N) − Ttot( j)
N
j

, (5)

as there would be N/ j identical subtrees emerging from the
corresponding N/ j lineages, each with j leaves on average.
This leads to

T∗( j) ≈ N3/2 − j 3/2 N
j
= N3/2(1 − x1/2), (6)

where x = j/N is the frequency of the mutation. This expres-
sion leads to a clone size distribution Π′(x) (probability that a
mutation is carried by a proportion x of the population) to be
proportional to x−1/2.

Eden model simulations show that, at least for small x
when finite size effects are limited, the scaling is Π′(x) ∝
x−2/3 (figure 3), clearly indicating that the tree, in this case,
is not balanced, and the tail of the TMRCA distribution plays
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Figure 4. Fraction of lineages which survive when the genealogy of
all individuals at the edge of the colony is traced inward, as a
function of the distance s from the edge of the colony. Solid lines
show data from radial Eden simulations grown to different final radii
R. Dashed line shows expected decay based on lineage fluctuations
in the KPZ class. Inset shows an example of a genealogy for a radial
Eden simulation. The shown plots were each generated by averaging
over the results of 48.000 simulation runs.

a crucial role. Importantly, the resulting clone size distribu-
tion is less steep than the well-mixed scenario, which corre-
sponds to a higher likelihood of finding mutations carried by
a large proportion of the sample, compared to a well-mixed
population.

4. Radial expansion

While linear expansions are useful to understand the properties
of the tree structure generated by the spatial growth process,
radial expansions are more relevant to several real case scenar-
ios (e.g., microbial colonies, avascular tumors). In this case,
the population expands initially very rapidly due to an infla-
tion effect related to curvature, which slows down as the radius
grows [33].

From radial Eden model simulations, we find that the num-
ber of lineages as a function of the distance s from the edge of
the colony follows the same s−2/3 power-law as in the corridor
case, with a sharp drop close to the centre of the colony where
the lineages spread star-like due to the rapid inflation process
(figure 4).

To account for the inflation process, we normalize the num-
ber of lineages present at radius r by the circumference of
the colony at the same radius to obtain a lineage density, and
rescale the radius r by the final colony radius R (figure 5). We
observe that consistently across colony sizes, the lineage den-
sity undergoes a transition at exactly a radius R/2, where R
is the radius of the final colony, so that the density of sur-
viving lineages initially decreases and then increases with r.
This non-monotonic behaviour reflects the tradeoff between
the process of inflation, which pushes lineages apart prevent-
ing them from coalescing, and the stochastic wandering of the
lineages, which over time makes them coalesce.

Figure 5. Lineage density as a function of distance from the colony
center, rescaled by the final colony radius. The horizontal axis is a
logit scale which reveals the power-law divergences in the lineage
density as r/R → 0 and r/R → 1. Solid lines are measured from
Eden simulations at different final sizes R; symbols are from the
universal tree model with p = 4; dashed line is a phenomenological
master curve (equation (11) with ε = 1). The shown plots were each
generated by averaging over the results of 48.000 simulation runs.

The collapse of the lineage density on a master curve inde-
pendently of colony size suggests the presence of a universal
tree that can describe the behaviour of genealogies generated
in these two-dimensional spatial growth models. We propose
it below.

4.1. Universal tree model

Our proposed model incorporates the statistics of lineage fluc-
tuations imposed by the KPZ universality class, which the
Eden model is known to belong to, as well as the spatial con-
straints on coalescence arising from the radial structure of the
expansion (figure 6).

Building on our results for the corridor case, we hypothe-
size that the lineages of two cells which lie a spatial arc dis-
tance d apart at a radius r � d from the center of the colony
will most likely coalesce at a certain distance h towards the
center of the colony, so that

h ∼ d3/2. (7)

We will now neglect rare stochastic events in the coales-
cence process of the colony’s lineages and devise a determin-
istic model where coalescence is controlled only by the typical
coalescence height. The model is based on a binary tree with
its branches’ lengths following the above relation (7). We will
also assume that always exactly two lineages coalesce into
one and that all lineages in the tree that are a distance d apart
coalesce at the same time (perfectly balanced tree, figure 6).

An important difference between the corridor and the radial
case is that in the radial case the MRCA of the whole popula-
tion is always clearly identifiable. The symmetry relation in
lineage densities highlighted in figure 5 then allows to build
our tree forward in time from the centre of the colony as a
branching process (rather than backwards as we did for the
corridor).
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Figure 6. Sketch of the deterministic tree model that captures that
average lineage properties during radial growth.

We start with an arbitrary number b of starting branches,
growing star-like towards the outside, splitting at determinis-
tic distances away from the center based on the distance for
which the branches have already been running, according to
equation (7). Since we are in a radial setting with an inflation
term, the distances between the lineages is dictated by both the
angle between them, as well as the current distance away from
the center.

After each splitting step, the angles are halved, leading to

αi =
αstart

2i
for i ∈ {0, 1, 2, . . .} , with αstart =

2π
b
. (8)

For the very first step (i = 0), where b branches start from the
center, the height to splitting h0 is calculated as

h0 ∼ (α0h0)3/2

⇒ h2
0 ∼ α3

0h3
0

⇒ h0 ∼
1
α3

0

,

(9)

where we used relation (7) together with the fact that in the
very first step, the distance until the next splitting point is the
same as the distance away from the center used for calculating

the arc length distance between the lineages. For all following
steps, the splitting heights are given via the equation

hi ∼

⎛
⎝αi

⎛
⎝ i−1∑

j=0

h j + hi

⎞
⎠
⎞
⎠

3/2

for i ∈ {1, 2, 3, . . .}. (10)

For all i > 1, equation (10) can be solved numerically. One
finds that the equation always gives two positive solutions. As
i increases, the next hi is always dependant on the result of the
previous heights h0, . . . , hi−1, requiring some considerations
on the choice of solution. We find that choosing the bigger
solution leads to increasing values of hi until they diverge.
Reciprocally, choosing the smaller solution leads to decreas-
ing hi that converge towards 0. It is important to point out here
that, while we use the scaling in equation (7) to determine the
location of the branching events, the relationship is expected to
hold only when the distance between lineages is much smaller
than the radius of the branching event (d � r). For the first few
steps this assumption is likely to break. However, since lin-
eages double at every step while the time between steps grows
at best as a power-law, the condition becomes true relatively
quickly in the expansion process (i > 2).

The simulation results for lineage density suggest that
the distance between branching events becomes increasingly
longer in the first half of the colony growth (up to R/2) after
which it then becomes shorter and shorter with each subse-
quent step. As a result, for our model, we will choose the
larger solution for the first p steps, and subsequently always
choose the smaller solution. In the abstract model, the branch-
ing process can continue indefinitely, creating ever-shorter
branches spaced closer and closer together as the tree grows
outward. However, the successive values of hi when i > p
decline so rapidly that the sum

∑∞
i=0 hi converges to a finite

value which corresponds to the radius R of the colony. Upon
assembling deterministic trees with different values of p, we
observe that

∑p
i=0 hi ≈

∑∞
i=p+1 hi ≈ R/2 independently of

the value of p. The geometry dictated by the solutions to
equation (10) ensures that the transition from choosing the
larger to the smaller solution always happens at approximately
half of the colony radius, which coincides with the lineage
density minimum in the Eden simulations (figure 5).

The universal tree model provides a deterministic predic-
tion for the lineage density. As figure 6 shows, the number of
lineages doubles at discrete values of the distance from the
central node. By recording these values and the correspond-
ing number of branches, we obtain a rescaled lineage den-
sity (symbols in figure 5) which reproduces the curves mea-
sured from Eden simulations. The behavior as x = r/R → 1
is dictated by the power law l(s) ∼ s−2/3 expected from the
corridor geometry and confirmed in figure 4: upon using
the relation s = R(1 − x), we have l(r)/(2πr) ∼ l(r)/(2πR) ∼
[R(1 − x)]−2/3. The universal tree recovers this scaling at large
x, but also reveals the behavior of the lineage density for r �
R/2, where inflation and branching play opposite roles (infla-
tion creates space for lineages and branching events quickly fill
it up). We find that the number of branches in the universal tree
grows as l(r) ∼ r1/3, leading to a divergence l(r)/(2πr) ∼ r−2/3

6
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in the lineage density as r → 0. These two asymptotic behav-
iors are well-captured by a phenomenological master curve

l(r)
2πr

=
1

ε1/3R2/3
[x(1 − x)]−2/3, (11)

where ε is a small-distance cutoff equal to the lattice spacing
in the Eden model simulations (see appendix B for details).
Equation (11) (dashed line in figure 5) successfully reproduces
the lineage densities measured in Eden model simulations as
well as the deterministic geometry generated by the universal
tree model.

4.2. MRCA position of contiguous subsamples

The proposed master curve for the lineage density,
equation (11), combines the effects of inflation and stochastic
coalescence in a succinct form which explicitly captures
the distinct tree structures for center distances below and
above the value r = R/2. As an application of our results to a
quantity of relevance to typical biological measurements, we
now use this master curve to determine a general relationship
for the radial distance RMRCA of a contiguous sample of size
n taken at the outer boundary of a colony that has reached a
final radius R.

We measure distances and sample sizes in units of the lat-
tice spacing, and correspondingly set ε = 1 in equation (11).
If we assume a uniform angular distribution of lineages, then
the number of surviving lineages for a contiguous sample of
size n (covering an angle n/R) varies with distance r from the
colony centre as

l(n, r) = l(r)
n

2πR
. (12)

Then the MRCA corresponds to the radius at which we are
left with only one lineage l(n, RMRCA) = 1, leading to the
following equation

x1/3(1 − x)−2/3 = R2/3n−1, (13)

which can be solved exactly. Because 0 < x = RMRCA/R < 1,
the acceptable solution to this equation is always unique and
corresponds to

xMRCA =
1 + 2R2n−3 −

√
1 + 4R2n−3

2R2n−3
. (14)

For large n, RMRCA < R/2 and the scaling with sample size
is such that RMRCA ∼ n−3. Conversely, if n is small, the MRCA
is close to the edge on average, and its position follows the scal-
ing 1 − RMRCA/R ∼ n3/2, which is analogous to the corridor
case.

The transition between the two regimes corresponds to
when RMRCA ≈ R/2. Using the equation above, we find that
this corresponds to a critical angle (and critical sample size)
αc = nc/R ≈ R−1/3. This scaling has been previously identi-
fied as the threshold frequency between bubbles and sectors in
neutral mutations in two dimensional colonies [4].

4.3. Number of segregating sites

Analogously to the corridor case, the number of segregating
sites S in a sample of size n is proportional to the total tree size

that leads to the n surviving leaves, so that

Ttot(n) =
∫ R

RMRCA

l(n, r)dr (15)

∝ nR1/3
∫ 1

RMRCA/R
x1/3(1 − x)−2/3dx (16)

= nR1/3

[
B
(

4
3

,
1
3

)
− B

(
xMRCA(n),

4
3

,
1
3

)]

(17)

where l(n, r) are the number of lineages as a function of the dis-
tance from the center r that lead to the sample and B indicates
the corresponding beta function.

4.4. Site frequency spectrum

Our tree model assumes a perfectly balanced tree with b initial
branches that set the largest possible frequency of a mutation
in the front population (1/b). Similarly to the argument for
the corridor case, a mutation that is carried by at least n indi-
viduals at the edge has to occur somewhere in the tree before
RMRCA(n). Then, the number of mutations m(n) carried by at
least n individuals at the edge is proportional to

T∗(n) ∝
∫ RMRCA(n)

0
l(r)dr (18)

∝ R4/3B
(

xMRCA(n),
4
3

,
1
3

)
. (19)

Figure 7 shows that the theoretical expectation of the cumu-
lative site frequency spectrum (1 −Π(x), i.e., probability that
at a mutation is carried by at least a fraction x = n/(2πR) of the
population), without any additional fitting parameter, agrees
remarkably well with the simulation. We observe a slight devi-
ation at the point of inflection due to the discretized nature of
the lattice in the simulations (the edge is only approximately
one site thick). Interestingly, the agreement between theory
and simulations suggests that in the radial case the tree is much
more balanced then in the corridor case. The power-law tail,
corresponding to an exponent of −4, is consistent with the site
frequency spectrum of the full colony as we expect the large
frequency mutations at the periphery to be stemming from sec-
tors. The low frequency component of the site frequency spec-
trum is, in contrast, almost flat reflecting the fact that the later
portion of the tree contributes negligibly to the total tree size.

In practice, often, only a subsample (or subsamples) of the
colony periphery may be sequenced, as for instance in tumour
biopsies [45, 54, 55]. Because of the spatial correlation of the
genealogies, these subsamples can exhibit unusual signatures
in the site frequency spectrum. We have found above that if
two individuals (or samples) are picked farther than αc apart,
their MRCA will very quickly converge to the centre of the
colony. This implies the presence of long independent lineages
that lead to the different samples over which several muta-
tions can accumulate. Because these lineages do not branch
for a long time, they will lead to a large number of mutations
carried by a very specific frequency in the sample, showing
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Figure 7. Comparison in the cumulative site frequency spectrum
from simulations sampling from the whole edge (solid blue line),
equally spaced subsamples of different size and number
(dash-dotted lines) and the theoretical expectation from
equation (19) (black dashed line). No fitting parameters are
necessary. The shown subsampling plots were each generated by
averaging over the results of 18.000 simulation runs, while the
whole edge plot averaged over 48.000 runs.

up as sudden drops in the cumulative site frequency spectrum
(figure 7, dash-dotted lines). The position and size of these
drops depends on the geometry of the sampling scheme.

If we have N samples of size n (each covering an angle α =
n/R), the RMRCA(n) of each sample is given by equation (15).
From this point to the edge, we expect, on average, the N trees
to be similar and thus no mutation drop should be observed
for frequencies below 1/N. The topology of the tree for r <
RMRCA(n) determines the position and size of the drops we
observe in simulations. Since the number of leading lineages
is N, in principle we can expect to see drops at any frequencies
i/N with i ∈ {1, . . . , N − 1}, each corresponding to the length
of tree lineages shared by i of the N samples. The length of
such lineages depend on the separation between samples. As
the sample size n or the sample number N increases, we expect
the site frequency spectrum to converge to the full edge.

5. Discussion and conclusions

In this work we have analyzed the coalescence process gen-
erated by two-dimensional spatial growth models to provide
quantitative expectations for some typical genetic observables
that can easily be determined from population sequencing,
such as the number of segregating sites and site frequency
spectrum. Our analysis extends previous work on the topic
first, by introducing an infinite site model on top of the growth
process and thus going beyond the typical assumption of low
mutation rate and second, by considering practical situations
in which only a subset of the population is sampled. While
here we focus on the 2D Eden model as a specific example
of spatial growth that has been shown to well capture the sta-
tistical properties of microbial colonies, our analysis can be
easily applied to three dimensional growth and to other types
of random-walk models outside the KPZ universality class. In
particular, 3D Eden model simulations have been shown to also

display bubbles and sectors [4] analogously to the 2D case. We
thus expect that a non-monotonic lineage density profile quali-
tatively similar to the one showed in figure 5, but characterised
by different exponents, could be found also in this case, which
is relevant to tumor growth.

Our results show, in agreement with previous work [43],
that the lineages generated by an Eden model behave like
directed polymers and can thus be modeled as random curves
with super-diffusive statistics (mean-square transverse dis-
placements grow faster than linearly with lineage length). The
coalescence process (backwards in time) is then dictated by the
annihilation of pairs of lineages as they collide. This analogy
allows us to find a mathematical formulation for the average
number of lineages as a function of time that lead to a final pop-
ulation at the edge of the expansion, which then can be used to
provide estimates for the time to the MRCA and the number
of segregating sites. Estimates for the site frequency spectrum
require knowledge of the tree topology. Interestingly, here we
find that the radial expansion is consistent with a balanced
topology. By contrast, a linear front generates a site frequency
spectrum inconsistent with a balanced topology, suggesting
that rare long branches which coalesce well past the typical
coalescence time play a crucial role.

While in this work we use the Eden model to describe the
growth dynamics of two-dimensional populations building on
previous studies [4, 20], this is by no means the only possible
choice. The Eden model and the underlying KPZ universality
class are relevant when the expanding front increases its rough-
ness as it advances, due to a geometric feedback between local
deviations from smoothness and the addition of new material
at the front [38]. In some populations, however, front rough-
ness might be suppressed and growth models that maintain a
locally flat front are more appropriate. Alternative lattice mod-
els which maintain flat fronts, such as the Domany–Kinzel
model [35] or flat-front stepping stone model [56] have been
used to study clone dynamics in range expansions where front
roughening is absent. The main difference compared with
KPZ-type models is that the transverse wandering of lineages
follows diffusive statistics (wandering exponent of 1/2) [43],
and can be described by a Langevin equation with multiplica-
tive noise [33, 35]. Our approach, with appropriately modified
exponents, could be used to construct simplified genealogies
for flat-front models of colony growth.

Recent studies have used both deep sequencing and lineage
tracing techniques to generate a vast amount of data to disenta-
gle tumour growth dynamics and selection [17, 19, 45, 54, 55].
In many cases, sector-like patterns are clearly observable sug-
gesting that spatial growth and competition at the edge of the
expansion play a crucial role. Because the cellular popula-
tion is not well-mixed, results obtained from local sampling
need to be carefully interpreted to infer the dynamics at play.
For instance, the accumulation of mutations at specific fre-
quencies, which in a well-mixed scenario would be interpreted
a signature of selection, can be a sole consequence of the
geometry of the sampling scheme, making evolutionary infer-
ence particularly challenging [45]. In this context, our analy-
sis provides guidelines to design sampling schemes that can
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test whether a neutral spatial model is sufficient to reproduce
the observed site frequency spectrum. Similarly, quantification
of clone density as a function of time [17] and spatial loca-
tion [19, 54, 55], and number of segregating sites [57] can
provide orthogonal measurements to reveal whether selection
or cell mobility is at play. Recent work has shown that these
quantities can be more informative then the clone size distri-
bution to identify selection in boundary-growing tumors [57],
and our work provides analytical predictions for the neutral
expectation, which can be compared with the experimental
data.
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Appendix A. Computational methods

The computational data was obtained via simulations based
on the Eden model [51]. The growth process in our simula-
tions worked as follows: starting from a beginning set of cells,
placed at fixed points on a lattice, we randomly select one cell,
which still has at least one free, neighbouring lattice site. We
then randomly choose one of these free neighbouring sites and
place a new cell there. This new cell can be seen as the descen-
dant of the initially chosen cell. We then repeat the process of
randomly choosing a cell and placing a new cell at a neighbour-
ing site, until we reach the desired colony size. An example of
how an Eden growth process might look like, can be seen in
figure 8. By tracking the information about each cell’s parent
cell, we are able to trace back each cell’s lineage and obtain
the location of the MRCA of two specific cells. The process
for this is shown in figure 9.

Figure 8 shows how radial growth was initialized, where
we started our simulation from a single cell. In contrast to this,
the periodic corridor simulations start with a certain number
of cells lying next to each other in a straight line. We then
restrict the space that the cells can inhabit to a corridor of a
width equal to the number of cells we start with, after which
we start the Eden growth process as described above. The cor-
ridor boundaries are implemented to be periodical. In other
words, the corridor could also be thought of as the outside

surface of a cylinder, wrapping around and connecting to itself
again. Therefore, a cell which is located at the edge of the cor-
ridor can give birth to a new cell at a free spot on the exact
opposite side of the corridor. A visualization of this, as well
as the growth process in a corridor in general, can be seen in
figure 10.

In order to successfully sample MRCA data from random
pairs of cells at the end of the corridor, all of these cells should
be descendant of one single ancestor. In contrast to the radial
colony, this is not automatically the cause though, since we
start our corridor simulation with a column of unrelated cells
(whereas in the radial case we start with only a single cell). Due
to this, we have to let the colony grow for a significant amount
of time until one lineage has pushed out all the others and the
cells at the end of the colony are all descendant of one sin-
gle cell from the very beginning of the corridor. The grid size
required to handle corridors with sufficient length for this to
happen greatly exceeds the computational memory limitations,
even for small corridor widths. Due to this, we implemented
a special method for simulating the corridor growth: in order
to keep memory requirements low, we should only keep cells
in memory which are part of the lineage of the cells at the
very front, while deleting all other cells from the memory. At
the same time we need to keep track of the spatial structure
between the cells at the front, which is necessary for letting
new cells grow using the Eden algorithm. To achieve this, we
start with a small grid of pointers of the same width as our
desired corridor, but a fixed length. Each of the starting cells in
our first column has a distinct marker, which all of its descen-
dants will also carry. When growing the grid, we do not save
the cells’ information on the grid, but rather on an arbitrary
data structure (e.g. a list) without any special spatial structure
to it. The spatial structure for growing our colony is obtained
through the small grid which points to the places in the
memory where our cells’ information is kept (see figure 11).
In figure 12 we sketched each step of the process for a better
understanding. We start with a full column of cells, each with
its own marker (see figure 12.1). The colony then grows until
the first cells hits the right wall, at which point we stop the
growth process. We then locate the most right column which
is completely filled (marked with a black frame in figure 12.2)
and check what markers are still present in that column. All
cells with markers not present anymore can then be deleted
from the data structure on the right (these cells have been cir-
cled in figure 12.2). After the unnecessary cells have been
deleted, we can shift the corridor back to only include columns
including and to the right of the column we just investigated
for the remaining markers (see figure 12.3). From here, the
process is repeated again, growing, sampling markers, delet-
ing, until the sampled column only has markers of one kind.
At this point we can delete the remaining other cells from our
data structure. The colony has now successfully grown to the
point that its front only includes cells which are descendant
of one single common ancestor (see figures 12.4–7). At this
point, we can stop growing our colony and start with analyzing
its MRCA information.
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Figure 8. Sketch of how a grid sequentially gets populated via the Eden model. The black dots indicate all possible spots where the new
individual could be placed in the next step. The white arrows always point from parent to child.

Figure 9. Sketch of how lineages can be traced back to the MRCA.
The lineages are traced back for two different cell pairs, one at the
top of the colony and one at the bottom, indicated by the red dots.
The lineages of the two cells in each pair are traced back, indicated
by the red colouring of the lineage lines, until they intersect at the
MRCA. The two MRCAs are indicated by the large red squares.

Figure 10. Sketch of an Eden model growth process in a corridor.
From the upper left to the upper right picture the corridor gets
populated, initially starting from a straight line of individuals filling
the whole width of the corridor. The lower picture indicates how a
cell at one edge of the corridor can have a descendant at the opposite
side, due to the periodic boundary conditions of the corridor.

Appendix B. Lineage density from the universal
tree model

Our considerations of the stochastic coalescences with statis-
tics dictated by the KPZ wandering exponent (section 3),

Figure 11. Sketch of the way that information is handled when
growing large corridors. The square grid carries pointers to the
actual data, which is kept in a data structure (marked in blue)
without any spatial relationship between the individual data cells.
The grid keeps track of the information about the spatial relationship
between the individuals, while the other data structure carries the
actual information of the individuals, like the information about
their ancestor and children.

together with the incorporation of the inflation effect in the uni-
versal tree model (section 4.1), motivated the following scaling
form for the lineage density of radial Eden clusters:

l(r)
2πr

= C[x(1 − x)]−2/3, (B1)

where x = r/R and C is an as-yet undetermined prefactor. The
power-law divergences as x → 0 and x → 1 in equation (B1)
are imposed by the KPZ scaling, but other considerations are
needed to fix the value of C.

The value of the prefactor C is determined by noting that
the above scaling form is not valid out to x = 1, but only up to
some cutoff distance away from the outer limit of the colony
whose value is set by the microscopic details of the growth
process. Although the branching process of the universal tree
model can be carried out to infinitely many steps, generating
ever-finer leaves which approach the outer limit, the true coa-
lescence process is limited by two microscopic length scales
in any real biological system or realistic simulation thereof.
First, genetic differences do not persist down to infinite res-
olution but instead are restricted to some finite spacing. In a
microbial colony, for example, the smallest possible spacing
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Figure 12. Sketch of the growth process for large corridors, with the spatial data structure carrying the pointers on the left and the data
structure carrying the actual cell information on the right.

between distinct genetic samples is the size of an individual
cell; the lineages that are sampled are typically spaced even far-
ther apart. Second, the KPZ wandering statistics arises within a
coarse-grained description of the interface between the colony
and its environment, which is only valid for roughness features
that are larger than some microscopic length scale. This rough-
ness scale is also of the order of a few cells for a microbial
expansion.

To fix the value of the prefactor C, we impose these length
cutoffs at the outer boundary of the colony. We denote the
smallest spacing between distinct lineages by the variable δ,
and the smallest scale of roughness features by the quantity ε.
Therefore, the number of distinct samples at the outer bound-
ary is 2πR/δ. Our proposed scaling form, equation (B1), is
only valid out to distances within ε of the outer boundary
and we do not expect any more mergers of lineages to occur
between r = R − ε and r = R. To match the proposed master
curve to the number of lineages at the outer boundary, we need

l(R − ε) = C
[(

1 − ε

R

) ε

R

]−2/3
× 2π(R − ε) =

2πR
δ

. (B2)

Our scaling arguments are only valid provided ε/R � 1. Keep-
ing only terms to leading order in ε/R in the above equation,

we find

2πRC
( ε

R

)−2/3
=

2πR
δ

(B3)

⇒ C =
ε2/3

R2/3δ
. (B4)

Equation (B4) specifies the prefactor by requiring the pro-
posed master curve to match the lineage density at the edge
of the colony. In the Eden simulations used in our work, both
length scales ε and δ are given by the lattice spacing, hence we
can set δ = ε which gives

C = (R2ε)−1/3

up to some O(1) constant which we assume to be one. This
value of the prefactor gives rise to the complete expression in
equation (11). We find that the expression gives a reasonable
match to the rescaled lineage density measurements from Eden
simulations (compare dashed line to solid lines in figure 5)
without any fits being performed. The agreement could be
slightly improved by treating the O(1) numerical constant as
a free parameter whose value is determined by fitting the pro-
posed master curve to the data. If we were to analyze genealog-
ical tree data from a biological population, we would not have
microscopic information about the quantities ε and δ. In that
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case, it would be appropriate to use equation (B4) and fix the
combination ε2/3/δ as a fitting parameter.
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