
Counterexample Guided Inductive Synthesis
Modulo Theories?

Alessandro Abate1, Cristina David2,3[0000−0002−9106−934X], Pascal Kesseli3,
Daniel Kroening1,3[0000−0002−6681−5283], and Elizabeth Polgreen1

1 University of Oxford, Oxford, UK
2 University of Cambridge, Cambridge, UK

3 Diffblue Ltd., Oxford, UK

Abstract. Program synthesis is the mechanised construction of software.
One of the main difficulties is the efficient exploration of the very large
solution space, and tools often require a user-provided syntactic restriction
of the search space. We propose a new approach to program synthesis that
combines the strengths of a counterexample-guided inductive synthesizer
with those of a theory solver, exploring the solution space more efficiently
without relying on user guidance. We call this approach CEGIS(T),
where T is a first-order theory. In this paper, we focus on one particular
challenge for program synthesizers, namely the generation of programs
that require non-trivial constants. This is a fundamentally difficult task
for state-of-the-art synthesizers. We present two exemplars, one based
on Fourier-Motzkin (FM) variable elimination and one based on first-
order satisfiability. We demonstrate the practical value of CEGIS(T) by
automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem,
and thus, the research community has explored pragmatic restrictions. One
particularly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2].
The key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many practical
applications. A very obvious exemplar of the limits of the syntax-guided approach
are programs that require non-trivial constants. In such a scenario, the syntax-
guided approach requires that the user provides the exact value of the constants
in the solution.
? Supported by ERC project 280053 (CPROVER) and the H2020 FET OPEN 712689

SC2. Cristina David is supported by the Royal Society University Research Fellowship
UF160079.

2 Abate, David, Kesseli, Kroening, Polgreen

For illustration, let’s consider a user who wants to synthesize a program that
rounds up a given 32-bit unsigned number x to the next highest power of two. If
we denote the function computed by the program by f(x), then the specification
can be written as x<231⇒f(x)&(−f(x))=f(x) ∧ f(x)≥x ∧ 2x≥f(x). The first
conjunct forces f(x) to be a power of two, the other requires it to be the next
highest. A possible solution for this is given by the following C program:

1 x=x-1;
2 x |= x >> 1;
3 x |= x >> 2;
4 x |= x >> 4;
5 x |= x >> 8;
6 x |= x >> 16;
7 x=x+1;

It is improbable that the user knows that the constants in the solution are
exactly 1, 2, 4, 8, 16, and thus, she will be unable to explicitly restrict the solution
space. As a result, synthesizers are very likely to enumerate possible combinations
of constants, which is highly inefficient.

In this paper we propose a new approach to program synthesis that combines
the strengths of a counterexample-guided inductive synthesizer with those of a
solver for a first-order theory in order to perform a more efficient exploration
of the solution space, without relying on user guidance. Our inspiration for this
proposal is DPLL(T), which has boosted the performance of solvers for many
fragments of quantifier-free first-order logic [17,24]. DPLL(T) combines reasoning
about the Boolean structure of a formula with reasoning about theory facts to
decide satisfiability of a given formula.

In an attempt to generate similar technological advancements in program syn-
thesis, we propose a new algorithm for program synthesis called CounterExample-
Guided Inductive Synthesis(T), where T is a given first-order theory for which
we have a specialised solver. Similar to its counterpart DPLL(T), the CEGIS(T)
architecture features communication between a synthesizer and a theory solver,
which results in a much more efficient exploration of the search space.

While standard CEGIS architectures [20,31] already make use of SMT solvers,
the typical role of such a solver is restricted to validating candidate solutions and
providing concrete counterexamples that direct subsequent search. By contrast,
CEGIS(T) allows the theory solver to communicate generalised constraints back
to the synthesizer, thus enabling more significant pruning of the search space.

There are instances of more sophisticated collaboration between a program
synthesizer and theory solvers. The most obvious such instance is the program
synthesizer inside the CVC4 SMT solver [28]. This approach features a very
tight coupling between the two components (i.e., the synthesizer and the theory
solvers) that takes advantage of the particular strengths of the SMT solver by
reformulating the synthesis problem as the problem of refuting a universally
quantified formula (SMT solvers are better at refuting universally quantified

Counterexample Guided Inductive Synthesis Modulo Theories 3

formulae than at proving them). Conversely, in our approach we maintain a
clear separation between the synthesizer and the theory solver while performing
comprehensive and well-defined communication between the two components.
This enables the flexible combination of CEGIS with a variety of theory solvers,
which excel at exploring different solution spaces.

Contributions

– We propose CEGIS(T), a program synthesis architecture that facilitates the
communication between an inductive synthesizer and a solver for a first-order
theory, resulting in an efficient exploration of the search space.

– We present two exemplars of this architecture, one based on Fourier-Motzkin
(FM) variable elimination [7] and one using an off-the-shelf SMT solver.

– We have implemented CEGIS(T) and compared it against state-of-the-art
program synthesizers on benchmarks that require intricate constants in the
solution.

2 Preliminaries

2.1 The Program Synthesis Problem

Program synthesis is the task of automatically generating programs that satisfy
a given logical specification. A program synthesizer can be viewed as a solver for
existential second-order logic. An existential second-order logic formula allows
quantification over functions as well as ground terms [29].

The input specification provided to a program synthesizer is of the form
∃P.∀x. σ(P,x), where P ranges over functions (where a function is represented
by the program computing it), x ranges over ground terms, and σ is a quantifier-
free formula.

2.2 CounterExample Guided Inductive Synthesis

CounterExample-Guided Inductive Synthesis (CEGIS) is a popular approach to
program synthesis, and is an iterative process. Each iteration performs inductive
generalisation based on counterexamples provided by a verification oracle. Es-
sentially, the inductive generalisation uses information about a limited number
of inputs to make claims about all the possible inputs in the form of candidate
solutions.

The CEGIS framework is illustrated in Figure 1 and consists of two phases:
the synthesis phase and the verification phase. Given the specification of the
desired program, σ, the inductive synthesis procedure generates a candidate
program P ∗ that satisfies σ(P ∗,x) for a subset xinputs of all possible inputs. The
candidate program P ∗ is passed to the verification phase, which checks whether it
satisfies the specification σ(P ∗,x) for all possible inputs. This is done by checking
whether ¬σ(P ∗,x) is unsatisfiable. If so, ∀x.¬σ(P ∗,x) is valid, and we have

4 Abate, David, Kesseli, Kroening, Polgreen

synthesize

verify

no solution

solution P ∗

UNSAT

UNSAT

c

S
A

TP ∗

S
A

T

Fig. 1. CEGIS block diagram

successfully synthesized a solution and the algorithm terminates. Otherwise, the
verifier produces a counterexample c from the satisfying assignment, which is
then added to the set of inputs passed to the synthesizer, and the loop repeats.

The method used in the synthesis and verification blocks varies in differ-
ent CEGIS implementations; our CEGIS implementation uses Bounded Model
Checking [8].

2.3 DPLL(T)

DPLL(T) is an extension of the DPLL algorithm, used by most propositional
SAT solvers, by a theory T . We give a brief overview of DPLL(T) and compare
DPLL(T) with CEGIS(T).

Given a formula F from a theory T , a propositional formula Fp is created from
F in which the theory atoms are replaced by Boolean variables (the “propositional
skeleton”). The standard DPLL algorithm, comprising Decide, Boolean Con-
straint Propagation (BCP), Analyze-Conflict and BackTrack, generates an
assignment to the Boolean variables in Fp, as illustrated in Figure 2. The theory
solver then checks whether this assignment is still consistent when the Boolean
variables are replaced by their original atoms. If so, a satisfying assignment for
F has been found. Otherwise, a constraint over the Boolean variables in Fp is
passed back to Decide, and the process repeats.

In the very first SMT solvers, a full assignment to the Boolean variables
was obtained, and then the theory solver returned only a single counterexample,
similar to the implementations of CEGIS that are standard now. Such SMT
solvers solvers are prone to enumerating all possible counterexamples, and so
the key improvement in DPLL(T) was the ability to pass back a more general
constraint over the variables in the formula as a counterexample [17]. Furthermore,
modern variants of DPLL(T) call the theory solver on partial assignments to the
variables in Fp. Our proposed, new synthesis algorithm offers equivalents of both
of these ideas that have improved DPLL(T).

3 Motivating Example

In each iteration of a standard CEGIS loop, the communication from the verifica-
tion phase back to the synthesis phase is restricted to concrete counterexamples.

Counterexample Guided Inductive Synthesis Modulo Theories 5

Decide

BCP

BackTrack

Analyze
Conflict

Deduction Add Clauses

SAT

UNSAT

all assigned

conflict

theory

propagation

n
o
th

in
g

to
p
ro

p
a
g
a
te

theory
solver

DPLL

Fig. 2. DPLL(T) with theory propagation

This is particularly detrimental when synthesizing programs that require non-
trivial constants. In such a setting, it is typical that a counterexample provided
by the verification phase only eliminates a single candidate solution and, conse-
quently, the synthesizer ends up enumerating possible constants.

For illustration, let’s consider the trivial problem of synthesizing a function
f(x) where f(x) < 0 if x < 334455 and f(x) = 0, otherwise. One possible solution
is f(x) = ite (x < 334455) −1 0, where ite stands for if then else.

In order to make the synthesis task even simpler, we are going to assume that
we know a part of this solution, namely we know that it must be of the form
f(x) = ite (x<?) −1 0, where “?” is a placeholder for the missing constant that
we must synthesize. A plausible scenario for a run of CEGIS is presented next:
the synthesis phase guesses f(x) = ite (x < 0) −1 0, for which the verification
phase returns x = 0 as a counterexample. In the next iteration of the CEGIS
loop, the synthesis phase guesses f(x) = ite (x < 1) −1 0 (which works for x = 0)
and the verifier produces x = 1 as a counterexample. Following the same pattern,
the synthesis phase will enumerate all the candidates

f(x) = ite (x < 2) −1 0

. . .

f(x) = ite (x < 334454) −1 0

before finding the solution. This is caused by the fact that each of the concrete
counterexamples 0, . . . , 334454 eliminate one candidate only from the solution
space. Consequently, we need to propagate more information from the verifier to
the synthesis phase in each iteration of the CEGIS loop.

Proving properties of programs Synthesis engines can be used as reasoning
engines in program analysers, and constants are important for this application.

6 Abate, David, Kesseli, Kroening, Polgreen

For illustration, let’s consider the very simple program below, which increments
a variable x from 0 to 100000 and asserts that its value is less than 100005 on
exit from the loop.

1 int x=0;
2 while (x <=100000) x++;
3 assert(x <100005);

Proving the safety of such a program, i.e., that the assertion at line 3 is not
violated in any execution of the program, is a task well-suited for synthesis (the
Syntax Guided Synthesis Competition [5] has a track dedicated to synthesizing
safety invariants). For this example, a safety invariant is x < 100002, which holds
on entrance to the loop, is inductive with respect to the loop’s body, and implies
the assertion on exit from the loop.

While it is very easy for a human to deduce this invariant, the need for a
non-trivial constant makes it surprisingly difficult for state-of-the-art synthesizers:
both CVC4 (version 1.5) [28] and EUSolver (version 2017-06-15) [3] fail to find a
solution in an hour.

4 CEGIS(T)

4.1 Overview

In this section, we describe the architecture of CEGIS(T), which is obtained by
augmenting the standard CEGIS loop with a theory solver. As we are particularly
interested in the synthesis of programs with constants, we present CEGIS(T)
from this particular perspective. In such a setting, CEGIS is responsible for
synthesizing program skeletons, whereas the theory solver generates constraints
over the literals that denote constants. These constraints are then propagated
back to the synthesizer.

In order to explain the main ideas behind CEGIS(T) in more detail, we
first differentiate between a candidate solution, a candidate solution skeleton,
a generalised candidate solution and a final solution.

Definition 1 (Candidate solution). Using the notation in Section 2.2, a
program P is a candidate solution if ∀xinputs .σ(P,xinputs) is true for some
subset xinputs of all possible x.

Definition 2 (Candidate solution skeleton). Given a candidate solution P ,
the skeleton of P , denoted by P [?], is obtained by replacing each constant in P
with a hole.

Definition 3 (Generalised candidate solution). Given a candidate solution
skeleton P [?], we obtain a generalised candidate P [v] by filling each hole in P [?]
with a distinct symbolic variable, i.e., variable vi will correspond to the i-th hole.
Then v = [v1, . . . , vn], where n denotes the number of holes in P [?].

Definition 4 (Final solution). A candidate solution P is a final solution if
the formula ∀x.σ(P,x) is valid.

Counterexample Guided Inductive Synthesis Modulo Theories 7

synthesize

verify

no solution

solution P ∗

Constant
Removal

Deduction

UNSAT

UNSAT

concrete
counterexample

S
A

T

P ∗

S
A

T
S
A

T

program has
constantsp

ro
p
a
g
a
te

co
n
st

ra
in

ts

theory
solver

CEGIS

Fig. 3. CEGIS(T)

Example 1 (Candidate solution, candidate solution skeleton, generalised candidate
solution, final solution). Given the example in Section 3, if xinputs = {0}, then
f(x) = −2 is a candidate solution. The corresponding candidate skeleton is
f [?](x) = ? and the generalised candidate is f [v1](x) = v1. A final solution for
this example is f(x) = ite (x < 334455) −1 0.

The communication between the synthesizer and the theory solver in CEGIS(T)
is illustrated in Figure 3 and can be described as follows:

– The CEGIS architecture (enclosed in a red rectangle) deduces the candidate
solution P ∗, which is provided to the theory solver.

– The theory solver (enclosed in a blue rectangle) obtains the skeleton P ∗[?]
of P ∗ and generalises it to P ∗[v] in the box marked constant removal.
Subsequently, Deduction attempts to find a constraint over v describing
those values for which P ∗[v] is a final solution. This constraint is propagated
back to CEGIS. Whenever there is no valuation of v for which P ∗[v] becomes
a final solution, the constraint needs to block the current skeleton P ∗[?].

The CEGIS(T) algorithm is given as Alg. 1 and proceeds as follows:

– CEGIS synthesis phase: checks the satisfiability of ∀xinputs . σ(P,xinputs)
where xinputs is a subset of all possible x and obtains a candidate solution P ∗.
If this formula is unsatisfiable, then the synthesis problem has no solution.

– CEGIS verification phase: checks whether there exists a concrete coun-
terexample for the current candidate solution by checking the satisfiability of
the formula ¬σ(P ∗,x). If the result is UNSAT, then P ∗ is a final solution to
the synthesis problem. If the result is SAT, a concrete counterexample cex
can be extracted from the satisfying assignment.

8 Abate, David, Kesseli, Kroening, Polgreen

– Theory solver: if P ∗ contains constants, then they are eliminated, resulting
in the P ∗[?] skeleton, which is afterwards generalised to P ∗[v]. The goal of
the theory solver is to find T -implied literals and communicate them back
to the CEGIS part in the form of a constraint, C(P, P ∗,v). In Alg. 1, this
is done by Deduction(σ, P ∗[v]). The result of Deduction(σ, P ∗[v]) is of the
following form: whenever there exists a valuation of v for which the current
skeleton P ∗[?] is a final solution, res=true and C(P, P ∗,v)=

∧
i=1·n vi=ci,

where ci are constants; otherwise, res=false and C(P, P ∗,v) needs to block
the current skeleton P ∗[?], i.e., C(P, P ∗,v)=P [?]6=P ∗[?].

– CEGIS learning phase: adds new information to the problem specification.
If we did not use the theory solver (i.e., the candidate P ∗ found by the
synthesizer did not contain constants or the problem specification was out
of the theory solver’s scope), then the learning would be limited to adding
the concrete counterexample cex obtained from the verification phase to the
set xinputs . However, if the theory solver is used and returns res=true, then
the second element in the tuple contains valuations for v such that P ∗[v]
is a final solution. If res=false, then the second element blocks the current
skeleton and needs to be added to σ.

4.2 CEGIS(T) with a theory solver based on FM elimination

In this section we describe a theory solver based on FM variable elimination.
Other techniques for eliminating existentially quantified variables can be used. For
instance, one might use cylindrical algebraic decomposition [9] for specifications
with non-linear arithmetic. In our case, whenever the specification σ does not
belong to linear arithmetic, the FM theory solver is not called.

As mentioned above, we need to produce a constraint over variables v describ-
ing the situation when P ∗[v] is a final solution. For this purpose, we consider the
formula ∃x.¬σ(P ∗[v],x), where v is a satisfiability witness if the specification
σ admits a counterexample x for P ∗. Let E(v) be the formula obtained by
eliminating x from ∃x.¬σ(P ∗[v],x). If ¬E(v) is satisfiable, any satisfiability
witness gives us the necessary valuation for v:

C(P, P ∗,v) =
∧

i=1·n
vi = ci.

If ¬E(v) is UNSAT, then the current skeleton P ∗[?] needs to be blocked. This
reasoning is supported by Lemma 1 and Corollary 1.

Lemma 1. Let E(v) be the formula that is obtained by eliminating x from
∃x.¬σ(P ∗[v],x). Then, any witness v# to the satisfiability of ¬E(v) gives us a
final solution P ∗[v#] to the synthesis problem.

Proof. From the fact that E(v) is obtained by eliminating x from ∃x.¬σ(P ∗[v],x),
we get that E(v) is equivalent with ∃x.¬σ(P ∗[v],x) (we use ≡ to denote equiv-
alence):

E(v) ≡ ∃x.¬σ(P ∗[v],x).

Counterexample Guided Inductive Synthesis Modulo Theories 9

Algorithm 1 CEGIS(T)

1: function CEGIS(T)(specification σ)
2: while true do
3: /* CEGIS synthesis phase */
4: if ∀xinputs .σ(P,xinputs) is UNSAT then return Failure;
5: else
6: P ∗ = satisfiability witness for ∀xinputs .σ(P,xinputs);
7: /* CEGIS verification phase */
8: if ¬(σ(P ∗,x)) is UNSAT then return Final solution P ∗;
9: else

10: cex = satisfiability witness for ¬(σ(P ∗,x));
11: /* Theory solver */
12: if P ∗ contains constants then
13: Obtain P ∗[?] from P ∗;
14: Generalise P ∗[?] to P ∗[v];
15: (res, C(P, P ∗,v)) = Deduction(σ, P ∗[v]);
16: end if
17: end if
18: end if
19: /* CEGIS learning phase */
20: if res then
21: C(P, P ∗,v) is of the form

∧
i=1·n vi = ci.

22: return Final solution P ∗[c];
23: else
24: σ(P,x) = σ(P,x) ∧ C(P, P ∗,v);
25: xinputs = xinputs ∪ {cex};
26: end if
27: end while
28: end function

Then:
¬E(v) ≡ ∀x. σ(P ∗[v],x).

Consequently, any v# satisfying ¬E(v) also satisfies ∀x. σ(P ∗[v],x). From
∀x. σ(P ∗[v#],x) and Definition 4 we get that P ∗[v#] is a final solution.

Corollary 1. Let E(v) be the formula that is obtained by eliminating x from
∃x.¬σ(P ∗[v],x). If ¬E(v) is unsatisfiable, then the corresponding synthesis
problem does not admit a solution for the skeleton P ∗[?].

Proof. Given that ¬E(v) ≡ ∀x. σ(P ∗[v],x), if ¬E(v) is unsatisfiable, so is
∀x. σ(P ∗[v],x), meaning that there is no valuation for v such that the specifica-
tion σ is obeyed for all inputs x.

For the current skeleton P ∗[?], the constraint E(v) generalises the con-
crete counterexample cex (found during the CEGIS verification phase) in
the sense that the instantiation v# of v for which cex failed the specifica-
tion, i.e., ¬σ(P ∗[v#], cex), is a satisfiability witness for E(v). This is true as

10 Abate, David, Kesseli, Kroening, Polgreen

E(v) ≡ ∃x.¬σ(P ∗[v],x), which means that the satisfiability witness (v#, cex)
for ¬σ(P ∗[v],x) projected on v is a satisfiability witness for E(v).

Disjunction The specification σ and the candidate solution may contain dis-
junctions. However, most theory solvers (and in particular the FM variable
elimination [7]) work on conjunctive fragments only. A näıve approach could use
case-splitting, i.e., transforming the formula into Disjunctive Normal Form (DNF)
and then solving each clause separately. This can result in a number of clauses
exponential in the size of the original formula. Instead, we handle disjunction
using the Boolean Fourier Motzkin procedure [22,33]. As a result, the constraints
we generate may be non-clausal.

Applying CEGIS(T) with FM to the motivational example We recall
the example in Section 3 and apply CEGIS(T). The problem is

∃f.∀x. x<334455→ f(x)<0 ∧ x≥334455→ f(x)=0

which gives us the following specification:

σ(f, x) = (x≥334455 ∨ f(x)<0) ∧ (x<334455 ∨ f(x)=0).

The first synthesis phase generates the candidate f∗(x)=0 for which the verifica-
tion phase returns the concrete counterexample x=0. As this candidate contains
the constant 0, we generalise it to f∗[v1](x)=v1, for which we get

σ(f∗[v1], x) = (x≥334455 ∨ v1<0) ∧ (x<334455 ∨ v1=0).

Next, we use FM to eliminate x from

∃x.¬(σ(f∗[v1], x)) = ∃x.(x<334455 ∧ v1≥0) ∨ (x≥334455 ∧ v1 6=0).

Note that, given that formula ¬σ(f∗[v1], x) is in DNF, for convenience we directly
apply FM to each disjunct and obtain E(v1) = v1≥0∨ v1 6=0, which characterises
all the values of v1 for which there exists a counterexample. When negating E(v1)
we get v1<0 ∧ v1=0, which is UNSAT. As there is no valuation of v1 for which
the current f∗ is a final solution, the result returned by the theory solver is
(false, f [?]6=f∗[?]), which is used to augment the specification. Subsequently, a new
CEGIS(T) iteration starts. The learning phase has changed the specification σ to

σ(f, x) = (x≥334455 ∨ f(x)<0) ∧ (x<334455 ∨ f(x)=0) ∧ f [?] 6=?.

This forces the synthesis phase to pick a new candidate solution with a different
skeleton. The new candidate solution we get is f∗(x) = ite (x<100) − 3 1, which
works for the previous counterexample x=0. However, the verification phase
returns the counterexample x=100. Again, this candidate contains constants
which we replace by symbolic variables, obtaining

f∗[v1, v2, v3](x) = ite (x<v1) v2 v3.

Counterexample Guided Inductive Synthesis Modulo Theories 11

Next, we use FM to eliminate x from

∃x.¬(σ(f∗[v1, v2, v3], x)) =

∃x.¬(x≥334455 ∨ (x<v1 → v2<0 ∧ x≥v1 → v3<0)∧
x<334455 ∨ (x<v1 → v2=0 ∧ x≥v1 → v3=0)) =

∃x.¬((x≥334455 ∨ x≥v1 ∨ v2<0) ∧ (x≥334455 ∨ x<v1 ∨ v3<0)∧
(x<334455 ∨ x≥v1 ∨ v2=0) ∧ (x<334455 ∨ x<v1 ∨ v3=0)) =

∃x.(x<334455 ∧ x<v1 ∧ v2≥0) ∨ (x<334455 ∧ x≥v1 ∧ v3≥0)∨
(x≥334455 ∧ x<v1 ∧ v2 6=0) ∨ (x≥334455 ∧ x≥v1 ∧ v3 6=0).

As we work with integers, we can rewrite x<334455 to x≤334454 and x<v1 to
x≤v1−1. Then, we obtain the following constraint E(v1, v2, v3) (as aforemen-
tioned, we applied FM to each disjunct in ¬σ(f∗[v1, v2, v3], x))

E(v1, v2, v3) = v2≥0 ∨ (v1≤334454 ∧ v3≥0) ∨ (v1≥334456 ∧ v2 6=0) ∨ v3 6=0

whose negation is

¬E(v1, v2, v3) = v2<0 ∧ (v1>334454 ∨ v3<0) ∧ (v1<334456 ∨ v2=0) ∧ v3=0

A satisfiability witness is v1=334455, v2=−1 and v3=0. Thus, the result returned
by the theory solver is (true, v1=334455 ∧ v2= − 1 ∧ v3=0), which is used by
CEGIS to obtain the final solution

f∗(x) = ite (x<334455) −1 0 .

4.3 CEGIS(T) with an SMT-based theory solver

For our second variant of a theory solver, we make use of an off-the-shelf SMT
solver that supports quantified first-order formulae. This approach is more generic
than the one described in Section 4.2, as there are solvers for a broad range of
theories.

Recall that our goal is to obtain a constraint C(P, P ∗,v) that either char-
acterises the valuations of v for which P ∗[v] is a final solution or blocks P ∗[?]
whenever no such valuation exists. Consequently, we use the SMT solver to check
the satisfiability of the formula

Φ = ∀x. σ(P ∗[v],x).

If Φ is satisfiable, then any satisfiability witness c gives us a valuation for
v such that P ∗ is a final solution: C(P, P ∗,v) =

∧
i=1·n vi = ci. Conversely,

if Φ is unsatisfiable then C(P, P ∗,v) must block the current skeleton P ∗[?]:
C(P, P ∗,v) = P [?] 6= P ∗[?].

12 Abate, David, Kesseli, Kroening, Polgreen

Applying SMT-based CEGIS(T) to the motivational example Again,
we recall the example in Section 3. We will solve it by using SMT-based CEGIS(T)
for the theory of linear arithmetic. For this purpose, we assume that the synthesis
phase finds the same sequence of candidate solutions as in Section 3. Namely,
the first candidate is f∗(x)=0, which gets generalised to f∗[v1](x)=v1. Then, the
first SMT call is for ∀x. σ(v1, x), where

σ(v1, x) = (x≥334455 ∨ v1<0) ∧ (x<334455 ∨ v1=0).

The SMT solver returns UNSAT, which means that C(f, f∗, v1) = f [?] 6=?.
The second candidate is f∗(x) = ite (x < 100) − 3 1, which generalises to
f∗[v1, v2, v3](x) = ite (x < v1) v2 v3. The corresponding call to the SMT
solver is for ∀x. σ((ite (x < v1) v2 v3), x), for which we obtain the satisfia-
bility witness v1 = 334455, v2 = −1 and v3 = 0. Then C(f, f∗, v1, v2, v3) =
v1=334455 ∧ v2=− 1 ∧ v3=0, which gives us the same final solution we obtained
when using FM in Section 3.

5 Experimental Evaluation

5.1 Implementation

Incremental Satisfiability Solving Our implementation of CEGIS may sometimes
perform hundreds of loop iterations before finding the correct solution. Recall
that the synthesis block of CEGIS is based on Bounded Model Checking (BMC).
Ultimately, this BMC module performs calls to a SAT solver. Consequently, we
may have hundreds of calls to this SAT solver, which are all very similar (the
same base specification with some extra constraints added in each iteration). This
makes CEGIS a prime candidate for incremental SAT solving. We implemented
incremental solving in the synthesis block of CEGIS.

5.2 Benchmarks

We have selected a set of bitvector benchmarks from the Syntax-Guided Synthesis
(SyGuS) competition [4] and a set of benchmarks synthesizing safety invariants
and danger invariants for C programs [10]. All benchmarks are written in SyGuS-
IF [27], a variant of SMT-LIB2.

Given that the syntactic restrictions (called the grammar or the template)
provided in the SyGuS benchmarks contain all the necessary non-trivial constants,
we removed them completely from these benchmarks. Removing just the non-
trivial constants and keeping the rest of the grammar (with the only constants
being 0 and 1) would have made the problem much more difficult, as the constants
would have had to be incrementally constructed by applying the operators
available to 0 and 1.

We group the benchmarks into three categories: invariant generation, which
covers danger invariants, safety invariants and the class of invariant generation

Counterexample Guided Inductive Synthesis Modulo Theories 13

benchmarks from the SyGuS competition; hackers/crypto, which includes bench-
marks from hackers-delight and cryptographic circuits; and comparisons, composed
of benchmarks that require synthesizing longer programs with comparisons, e.g.,
finding the maximum value of 10 variables.

5.3 Experimental Setup

We conduct the experimental evaluation on a 12-core 2.40 GHz Intel Xeon E5-
2440 with 96 GB of RAM and Linux OS. We use the Linux times command to
measure CPU time used for each benchmark. The runtime is limited to 600 s per
benchmark. We use MiniSat [13] as the SAT solver, and Z3 v4.5.1 [12] as the
SMT-solver in CEGIS(T) with SMT-based theory solver. The SAT solver could,
in principle, be replaced with Z3 to solve benchmarks over a broader range of
theories.

We present results for four different configurations of CEGIS:

– CEGIS(T)-FM: CEGIS(T) with Fourier Motzkin as the theory solver;
– CEGIS(T)-SMT: CEGIS(T) with Z3 as the theory solver;
– CEGIS: basic CEGIS as described in Section 2.2;
– CEGIS-Inc: basic CEGIS with incremental SAT solving

We compare our results against the latest release of CVC4, version 1.5. As
we are interested in running our benchmarks without any syntactic template,
the first reason for choosing CVC4 [6] as our comparison point is the fact that it
performs well when no such templates are provided. This is illustrated by the
fact that it won the Conditional Linear Integer Arithmetic track of the SyGuS
competition 2017 [4], one of two tracks where a syntactic template was not used.
The other track without syntactic templates is the invariant generation track, in
which CVC4 was close second to LoopInvGen [25]. A second reason for picking
CVC4 is its overall good performance on all benchmarks, whereas LoopInvGen
is a solver specialised to invariant generation.

We also give a row of results for a hypothetical 4-core implementation,
as would be allowed in the SyGuS Competition, running 4 configurations in
parallel: CEGIS(T)-FM, CEGIS(T)-SMT, CEGIS, and CEGIS-Inc. A link to
the full experimental environment, including scripts to reproduce the results,
all benchmarks and the tool, is provided in the footnote as an Open Virtual
Appliance (OVA)4.

5.4 Results

The results are given in Table 1. In combination, our CEGIS combination (i.e.,
CEGIS multi-core) solves 27 more benchmarks than CVC4, but the average time
per benchmark is significantly higher.

As expected, both CEGIS(T)-SMT and CEGIS(T)-FM solve more of the
invariant generation benchmarks which require synthesizing arbitrary constants

4 www.cprover.org/synthesis

14 Abate, David, Kesseli, Kroening, Polgreen

Configuration
inv hackers comparisons other total

s # s # s # s # s

CEGIS(T)-SMT 33 33.1 4 2.5 3 195.5 16 14.0 56 34.1
CEGIS(T)-FM 16 93.1 4 52.8 1 0.06 12 0.7 33 51.8
CEGIS 16 31.3 4 52.0 1 0.03 14 5.3 35 22.4
CEGIS-Inc 16 39.4 5 167.4 1 0.03 14 4.2 36 42.4
Multi-core 33 32.5 5 92.2 3 194.7 16 3.8 57 38.3
CVC4 6 6.5 6 0.002 7 0.006 11 0.003 30 1.3

benchmarks 48 6 7 19 80

CVC4 4 45.8 0 0 6 2.4 10 19.8
with grammar

benchmarks 8 3 7 16 34
with grammar

Table 1. Experimental results – for every set of benchmarks, we give the number of
benchmarks solved by each configuration within the timeout and the average time taken
per solved benchmark

than CVC4. Conversely, CVC4 performs better on benchmarks that require
synthesizing long programs with many comparison operations, e.g., finding the
maximum value in a series of numbers. CVC4 solves more of the hackers-delight
and cryptographic circuit benchmarks, none of which require constants.

Our implementation of basic CEGIS (and consequently of all configurations
built on top of this) only increases the length of the synthesized program when no
program of a shorter length exists. Thus, it is expensive to synthesize longer pro-
grams. However, a benefit of this architecture is that the programs we synthesize
are the minimum possible length. Many of the expressions synthesized by CVC4
are very large. This has been noted previously in the Syntax-Guided Synthesis
Competition [5], and synthesizing without the syntactic template causes the
expressions synthesized to be even longer.

Although CEGIS-Inc is quicker per iteration of the CEGIS loop than basic
CEGIS, the average time per benchmark is not significantly better because of the
variation in times produced by CEGIS. We hypothesise that the use of incremental
solving makes CEGIS-Inc more prone to getting stuck exploring “bad” areas of
the solution space than basic CEGIS, and so it requires more iterations than basic
CEGIS for some benchmarks. The incremental solving preserves clauses learnt
from any conflicts in previous iterations, which means that each SAT solving
iteration will begin from exactly the same state as the previous one. The basic
implementation doesn’t preserve these clauses and so is free to start exploring a
new part of the search space each iteration. These effects could be mitigated by
running multiple incremental solving instances in parallel.

In order to validate the assumption that CVC4 works better without a
template than with one where the non-trivial constants were removed (see

Counterexample Guided Inductive Synthesis Modulo Theories 15

Section 5.2), we also ran CVC4 on a subset of the benchmarks with a syntactic
template comprising the full instruction set we give to CEGIS, plus the constants
0 and 1. Note for some benchmarks it is not possible to add a grammar because
the SYGUS-IF language does not allow syntactic templates for benchmarks
that use the loop invariant syntax. With a grammar, CVC4 solves fewer of the
benchmarks, and takes longer per benchmark. The syntactic template is helpful
only in cases where non-trivial constants are needed and the non-trivial constants
are contained within the template.

We ran EUSolver on the benchmarks with the syntactic templates, but the
bitvector support is incomplete and missing some key operations. As a result
EUSolver was unable to solve any benchmarks in the set, and so we have not
included the results in the table.

Benefit of literal constants We have investigated how useful the constants in the
problem specification are, and have tried a configuration that seeds all constants
in the problem specification as hints into the synthesis engine. This proved helpful
for basic CEGIS only but not for the CEGIS(T) configurations. Our hypothesis
is that the latter do not benefit from this because they already have good support
for computing constants. We dropped this option in the results presented in this
section.

5.5 Threats to validity

Benchmark selection: We report an assessment of our approach on a diverse
selection of benchmarks. Nevertheless, the set of benchmarks is limited within the
scope of this paper, and the performance may not generalise to other benchmarks.
Comparison with state of the art: CVC4 has not, as far as we are aware, been
used for synthesis of bitvector functions without syntactic templates, and so this
unanticipated use case may not have been fully tested. We are unable to compare
all results to other solvers from the SyGuS Competition because EUSolver and
EUPhony do not support synthesizing bitvector programs without a syntactic
template, EUSolver’s support for bitvectors is incomplete even when used with a
template, LoopInvGen and DryadSynth do not support bitvectors, and E3Solver
tackles only Programming By Example benchmarks [5].
Choice of theories: We evaluated the benefits of CEGIS(T) in the context of
two specific theory instances. While the improvements in our experiments are
significant, it is uncertain whether this will generalise to other theories.

6 Related Work

The traditional view of program synthesis is that of synthesis from complete
specifications [23]. Such specifications are often unavailable, difficult to write,
or expensive to check against using automated verification techniques. This has
led to the proposal of inductive synthesis and, more recently, of oracle-based

16 Abate, David, Kesseli, Kroening, Polgreen

inductive synthesis, in which the complete specification is not available and
oracles are queried to choose programs [20].

A well-known application of CEGIS is program sketching [30,32], where the
programmer uses a partial program, called a sketch, to describe the desired
implementation strategy, and leaves the low-level details of the implementation to
an automated synthesis procedure. Inspired by sketching, Syntax-Guided Program
Synthesis (SyGuS) [2] requires the user to supplement the logical specification
provided to the program synthesizer with a syntactic template that constrains
the space of solutions. In contrast to SyGuS, our aim is to improve the efficiency
of the exploration to the point that user guidance is no longer required.

Another very active area of program synthesis is denoted by component-
based approaches [1, 14–16, 18, 19, 26]. Such approaches are concerned with
assembling programs from a database of existing components and make use of
various techniques, from counterexample-guided synthesis [18] to type-directed
search with lightweight SMT-based deduction and partial evaluation [15] and
Petri-nets [16]. The techniques developed in the current paper are applicable to
any component-based synthesis approach that relies on counterexample-guided
inductive synthesis.

Heuristics for constant synthesis are presented in [11], where the solution
language is parameterised, inducing a lattice of progressively more expressive
languages. One of the parameters is word width, which allows synthesizing
programs with constants that satisfy the specification for smaller word widths.
Subsequently, heuristics extend the program (including the constants) to the
required word width. As opposed to this work, CEGIS(T) denotes a systematic
approach that does not rely on ad-hoc heuristics.

Regarding the use of SMT solvers in program synthesis, they are frequently
employed as oracles. By contrast, Reynolds et al. [28] present an efficient encoding
able to solve program synthesis constraints directly within an SMT solver. Their
approach relies on rephrasing the synthesis constraint as the problem of refuting
a universally quantified formula, which can be solved using first-order quantifier
instantiation. Conversely, in our approach we maintain a clear separation between
the synthesizer and the theory solver, which communicate in a well-defined
manner. In Section 5, we provide a comprehensive experimental comparison with
the synthesizer described in [28].

7 Conclusion

We proposed CEGIS(T), a new approach to program synthesis that combines
the strengths of a counterexample-guided inductive synthesizer with those of a
theory solver to provide a more efficient exploration of the solution space. We
discussed two options for the theory solver, one based on FM variable elimination
and one relying on an off-the-shelf SMT solver. Our experiments results showed
that, although slower than CVC4, CEGIS(T) can solve more benchmarks within
a reasonable time that require synthesizing arbitrary constants, where CVC4
fails.

Counterexample Guided Inductive Synthesis Modulo Theories 17

References

1. A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive program synthesis. In
CAV, volume 8044 of LNCS, pages 934–950. Springer, 2013.

2. R. Alur, R. Bod́ık, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
FMCAD, pages 1–8. IEEE, 2013.

3. R. Alur, P. Cerný, and A. Radhakrishna. Synthesis through unification. In CAV,
volume 9207 of LNCS, pages 163–179. Springer, 2015.

4. R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama. SyGuS-Comp 2017: Results
and analysis. CoRR, abs/1711.11438, 2017.

5. R. Alur, D. Fisman, R. Singh, and A. Udupa. Syntax guided synthesis competition.
http://sygus.seas.upenn.edu/SyGuS-COMP2017.html, 2017.

6. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In CAV, volume 6806 of LNCS, pages
171–177. Springer, 2011.

7. A. J. C. Bik and H. A. G. Wijshoff. Implementation of Fourier-Motzkin elimination.
Technical report, Rijksuniversiteit Leiden, 1994.

8. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In TACAS, volume 2988 of LNCS, pages 168–176. Springer, 2004.

9. G. E. Collins. Hauptvortrag: Quantifier elimination for real closed fields by cylindri-
cal algebraic decomposition. In Automata Theory and Formal Languages, volume 33
of LNCS, pages 134–183. Springer, 1975.

10. C. David, P. Kesseli, D. Kroening, and M. Lewis. Danger invariants. In Formal
Methods (FM), volume 9995 of LNCS, pages 182–198. Springer, 2016.

11. C. David, D. Kroening, and M. Lewis. Using program synthesis for program analysis.
In LPAR, volume 9450 of LNCS, pages 483–498. Springer, 2015.

12. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

13. N. Eén and N. Sörensson. An extensible SAT-solver. In SAT, volume 2919 of LNCS,
pages 502–518. Springer, 2003.

14. Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand. Automated synthesis of
semantic malware signatures using maximum satisfiability. In NDSS. The Internet
Society, 2017.

15. Y. Feng, R. Martins, J. V. Geffen, I. Dillig, and S. Chaudhuri. Component-based
synthesis of table consolidation and transformation tasks from examples. In PLDI,
pages 422–436. ACM, 2017.

16. Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps. Component-based
synthesis for complex APIs. In POPL, pages 599–612. ACM, 2017.

17. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):
fast decision procedures. In CAV, volume 3114 of LNCS, pages 175–188. Springer,
2004.

18. S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs.
In PLDI, pages 62–73. ACM, 2011.

19. S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing geometry constructions.
In PLDI, pages 50–61. ACM, 2011.

20. S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based
program synthesis. In ICSE (1), pages 215–224. ACM, 2010.

21. E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter. Synthesis modulo recursive functions.
In OOPSLA, pages 407–426. ACM, 2013.

18 Abate, David, Kesseli, Kroening, Polgreen

22. D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of
View. Springer, 1st edition, 2008.

23. Z. Manna and R. Waldinger. A deductive approach to program synthesis. In IJCAI,
pages 542–551. William Kaufmann, 1979.

24. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM, 53(6):937–977, 2006.

25. S. Padhi and T. D. Millstein. Data-driven loop invariant inference with automatic
feature synthesis. CoRR, abs/1707.02029, 2017.

26. D. Perelman, S. Gulwani, D. Grossman, and P. Provost. Test-driven synthesis. In
PLDI, pages 408–418. ACM, 2014.

27. M. Raghothaman and A. Udupa. Language to specify syntax-guided synthesis
problems. CoRR, abs/1405.5590, 2014.

28. A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett. Counterexample-
guided quantifier instantiation for synthesis in SMT. In CAV (2), volume 9207 of
LNCS, pages 198–216. Springer, 2015.

29. E. Rosen. An existential fragment of second order logic. Arch. Math. Log., 38(4-
5):217–234, 1999.

30. A. Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.
31. A. Solar-Lezama, R. M. Rabbah, R. Bod́ık, and K. Ebcioglu. Programming by

sketching for bit-streaming programs. In PLDI, pages 281–294. ACM, 2005.
32. A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A. Saraswat. Combi-

natorial sketching for finite programs. In ASPLOS, pages 404–415. ACM, 2006.
33. O. Strichman. On solving Presburger and linear arithmetic with SAT. In FMCAD,

volume 2517 of LNCS, pages 160–170. Springer, 2002.

