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Summary

Cancer development is driven by somatic genome alterations, ranging from

single point mutations to larger structural variants (sv) affecting kilobases to

megabases of one or more chromosomes. Studies of somatic rearrangement have

previously been limited by a paucity of whole genome sequencing data, and a

lack of methods for comprehensive structural classification and downstream

analysis. The icgc project on the Pan-Cancer Analysis of Whole Genomes

provides an unprecedented opportunity to analyse somatic svs at base-pair

resolution in more than 2500 samples from 30 common cancer types.

In this thesis, I build on a recently developed sv classification pipeline to

present a census of rearrangement across the pan-cancer cohort, including

chromoplexy, replicative two-jumps, and templated insertions connecting as

many as eight distant loci. By identifying the precise structure of individual

breakpoint junctions and separating out complex clusters, the classification

scheme empowers detailed exploration of all simple sv properties and signatures.

After illustrating the various sv classes and their frequency across cancer types

and samples, Chapter 2 focuses on structural properties including event size and

breakpoint homology. Then, in Chapter 3, I consider the sv distribution across

the genome, and show patterns of association with various genome properties.

Upon examination of rearrangement hotspot loci, I describe tissue-specific

fragile site deletion patterns, and a variety of sv profiles around known cancer

genes, including recurrent templated insertion cycles affecting TERT and RB1.

Turning to co-occurring alteration patterns, Chapter 4 introduces the Hier-

archical Dirichlet Process as a non-parametric Bayesian model of mutational

signatures. After developing methods for consensus signature extraction, I

detour to the domain of single nucleotide variants to test the hdp method on

real and simulated data, and to illustrate its utility for simultaneous signature

discovery and matching. Finally, I return to the pcawg sv dataset, and extract

sv signatures delineated by structural class, size, and replication timing.

In Chapter 5, I move on to the complex sv clusters (largely set aside throughout

Chapters 2–4), and develop an improved breakpoint clustering method to

subdivide the complex rearrangement landscape. I propose a raft of summary

metrics for groups of five or more breakpoint junctions, and explore their utility

for preliminary classification of chromothripsis and other complex phenomena.

This comprehensive study of somatic genome rearrangement provides detailed

insight into sv patterns and properties across event classes, genome regions,

samples, and cancer types. To extrapolate from the progress made in this thesis,

Chapter 6 suggests future strategies for addressing unanswered questions about

complex sv mechanisms, annotation of functional consequences, and selection

analysis to discover novel drivers of the cancer phenotype.
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Chapter 1

Introduction to the cancer

genome

The journey of an individual human genome begins with its formation in the

fertilised egg—a chance meeting between maternal and paternal chromosomes in

a totally unique combination, never to be repeated. After the normal germline

genome is first established in the zygote, it faces the immediate prospect of

copying itself into two daughter cells as faithfully as possible. Indeed, in each

mitotic cell division through embryogenesis, infancy, and adulthood, a volley

of biochemical activity operates to replicate and disseminate the six gigabases

of inherited genome many millions of times over. Inevitably, occasional errors

in dna repair, replication, and segregation accrue with each cell division,

and somatic genomes gradually diverge from their common ancestor in the

zygote. A subset of these somatic mutations confer a selective advantage to

the cell lineage, sometimes culminating in pathological unchecked cell growth

broadly classified as cancer. With advances in whole genome dna sequencing

technology, somatic mutation in cancer samples can now be identified at base-

pair resolution on any scale from single base substitution to rearrangement of

kilobases, megabases, and whole chromosomes. In this thesis I analyse somatic

rearrangement observed in more than 2500 cancer genomes from common cancer

types all over the human body. The diverse structural patterns which emerge

are testament to the complex bio-molecular challenges a genome may encounter

in the course of its somatic evolution. By charting the landscape of possible

genome configurations in the soma, we begin to understand the repertoire

of genetic manoeuvres available to a cancer, and can better appreciate the

underlying reasons for cancer’s heterogeneous clinical presentation.

1
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1.1 The somatic genome in mitosis and cancer

Throughout the mitotic cell cycle, the information content and structural

integrity of the nuclear genome must be preserved and carefully promulgated to

maintain regulated programs of cell behaviour and function. To this end, breaks

or lesions in the dna are repaired where possible, or may trigger cell death.

The dna content is replicated in S phase to produce sister chromatid pairs,

which then condense and separate into opposite daughter cells during M phase.

Errors in the dynamic orchestration of genome state generate mutations which

transmit through the descendent cell lineage. Such genome alterations include

single nucleotide variants (snv), small insertions or deletions (indels), and a

diverse range of larger structural variation (sv). Although most mutations

have negligible fitness effects, some may confer a selective advantage driving

clonal expansion into oncogenesis. (Stratton et al., 2009; Martincorena and

Campbell, 2015; Tubbs and Nussenzweig, 2017)

1.1.1 DNA damage response

Dna lesions arise from endogenous and exogenous sources, including uv ra-

diation, ionizing radiation, reactive oxygen species, chemical mutagens, and

the inherent instability of biochemical molecules in a reactive environment.

Different lesion types signal specialised dna damage response pathways. For

example, abasic sites and spontaneous deamination of 5-methylcytosine are

repaired by base excision repair; pyrimidine dimers and bulky adducts by

nucleotide excision repair; and incorrect dna base-pairing by mismatch repair.

Double-stranded dna breaks may signal a variety of repair pathways, including

non-homologous end-joining and homologous recombination, discussed further

in Section 1.4. If the dna injury is beyond repair, then the p53 pathway may

trigger senescence or apoptosis to remove the cell from the population. When

a dna lesion is replicated without repair, or repaired incorrectly, mutations fix

into the cell lineage. Some cancers have loss-of-function mutations in the genes

controlling dna repair, and develop a hypermutator phenotype as a result of

compromised repair capacity. (Jackson and Bartek, 2009; Helleday et al., 2014;

Tubbs and Nussenzweig, 2017)
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1.1.2 DNA replication

Dna replication begins at many thousands of licensed originsa, which ‘fire’

at different time points during S phase to recruit the replisome complex at

two bi-directional replication forks. The replisome includes: helicase for sep-

arating parental duplex dna into single stranded templates; topoisomerase

for cutting the dna backbone to release super-coil tension ahead of the fork

and precatenaneb structures behind the fork; polymerases for synthesising new

dna strands; and the dna clamp PCNA for tethering the polymerase to the

template strand. Different dna polymerases have specialised roles in prim-

ing dna synthesis and elongating nascent dna along the leading and lagging

strandsc. The polymerases completing the bulk of replication have an inbuilt

proof-reading domain and an estimated error rate of 10−7 mismatches per base.

In contrast, the specialised translesion polymerases for replicating past dna

damage have lower fidelity, and are prone to incorporating small indels and

snvs. (Loeb and Monnat, 2008; Branzei and Foiani, 2010; Gaillard et al., 2015)

In addition to the small mutations caused by polymerase error, dna replication

can also generate larger structural variation through aberrant origin licensing,

topoisomerase errors, and replication fork stalling and collapse. For example,

inefficient origin licensing leads to incomplete replication and breaks in late-

replicating regions, whereas unscheduled origin firing can lead to re-replication

and fork collisions. Fork progression is also impeded by nucleotide pool depletion

or physical obstacles such as dna lesions or breaks, non-B dna structures, or

transcription bubbles. S phase checkpoint pathways respond to stalled forks

and try to complete replication via translesion polymerases, template switching

to the sister chromatid, or licensing of dormant origins. Failure to do so gives

rise to double-stranded dna breaks and subsequent error-prone repair. (Branzei

and Foiani, 2010; Gaillard et al., 2015; Cortez, 2015)

aA ‘licensed’ replication origin is bound by helicases and the origin recognition complex
during G1 phase, in preparation for active replication ‘firing’ during S phase.

bA precatenane is formed by sister dna duplexes intertwining after synthesis.
cAs dna polymerases add new nucleotides to the free 3’ hydroxyl group on the sugar-

phosphate backbone, synthesis must proceed in a 5’ to 3’ direction. At the replication fork,
leading strand synthesis is able to proceed continuously as it travels in the same direction
as the opening fork. On the lagging strand, dna is synthesised in discontinuous fragments
building away from the replication fork and later joined through ligation.
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1.1.3 Chromosome segregation

During interphase, the nuclear dna spreads out to occupy large chromosomal

territories with looping domain structures to regulate gene expression (Gibcus

and Dekker, 2013). In preparation for mitotic cell division, the nuclear mem-

brane breaks down as the chromosomes condense into their compact form, with

sister chromatids initially still linked together via cohesin complexes (prophase).

To achieve equal chromosome segregation, each chromatid in a sister pair must

attach to kinetochore microtubules emanating from opposite spindle poles

(metaphase). As the mitotic checkpoint proteins decay to signal successful

spindle attachments, the cohesin disbands and sister chromatids are pulled

to opposite poles (anaphase). In the final stages of telophase and cytokinesis,

nuclear membranes reform around the two separated dna masses, and the

cellular membrane cleaves the cytoplasm to produce two daughter cells with

equal chromosome content. (Hirano, 2015; Funk et al., 2016)

Errors in mitotic division can change the overall ploidy, and even be a root

cause of dna breaks and rearrangement. If cytokinesis fails to divide the repli-

cated dna into separate daughter cells, then the doubled genome content can

persist in tetraploid state. If successful cytokinesis follows uneven chromosome

segregation, then the abnormal chromosome count can persist in aneuploid

state. Causes of chromosome missegregation include: mitotic checkpoint fail-

ure permitting premature entry into anaphase; cohesin defects causing sister

chromatids to prematurely decouple or remain linked during anaphase; and

aberrant kinetochore attachments (syntelic or merotelic) or centromere content

(dicentric or acentric). These errors may pull both sister chromatids into the

same daughter cell, or may result in dna being caught between poles (either

an entire lagging chromosome, or a smaller dna section caught in a ‘bridge’).

Lagging or bridge dna can be a substrate for large-scale rearrangement, as

discussed further in Section 1.4. (Orr et al., 2015; Funk et al., 2016)

1.1.4 Genome and chromosome instability

In some cancers, the normal programs of dna repair, replication, and mitotic

segregation become so disordered that the cells develop persistent genomic

and/or chromosomal instability. Genomic instability (gin) refers to the con-

tinual generation of structural rearrangements within chromosomes, whereas

chromosomal instability (cin) refers specifically to unstable aneuploidy and a

consistently high rate of chromosome missegregation.
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Both instability phenotypes are associated with ongoing replication stress as a

result of excessive dna damage, excessive oncogenic transcriptional programs, or

loss-of-function mutations in relevant genes (Burrell et al., 2013; Macheret and

Halazonetis, 2015). Under these stress conditions, slow, stalled, or collapsed

replication forks give rise to svs and missegregating acentric or dicentric

chromosomes. Cin is also possible in a competent replication background

with compromised mitotic function. Although high rates of cin are associated

with cell death and tumour suppression, low rates of cin are thought to be

weakly tumour promoting, and provide a gradually diversifying genetic pool

to facilitate adaptation. In the Mitelman cytogenetic database, 44% of solid

tumours and 14% of blood cancers show evidence of cin, while a further 42%

(solid) and 58% (blood) have stable aneuploidies. (Zasadil et al., 2013; Funk

et al., 2016)

1.1.5 Somatic mutations give rise to cancer

The hallmark properties of cancer include: sustained proliferative signalling

and replicative immortality; evasion of growth suppression and cell death;

and acquisition of invasive and metastatic abilities. These abnormal cellular

properties are acquired via driver genome alterations, and thus somatic genome

instability and mutation are considered an ‘enabling’ cancer hallmark (Hanahan

and Weinberg, 2011).

Oncogenesis requires a small accumulation of driver events, with between

two and ten currently identifiable in most cancer genomes (Vogelstein et al.,

2013; Tomasetti et al., 2015; Martincorena et al., 2017; Sabarinathan et al.,

2017). In general, oncogenes promoting cell growth are up-regulated by gain-of-

function mutations, and tumour suppressor genes providing normal control and

repair functions are down-regulated by loss-of-function mutations. Although

most driver mutations are acquired in the soma, some may be inherited in the

germline and increase the lifetime cancer risk (for example, BRCA1 and BRCA2

polymorphisms). Active mutagenic processes also generate a vast number of

‘passenger’ somatic alterations with no fitness benefit, thus confounding the

search for genuine drivers in cancer genome sequencing studies (Pon and Marra,

2015).
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1.2 Cancer genome sequencing projects

In a prescient opinion piece, Dulbecco (1986) predicted that an undertaking to

sequence the human genome would yield invaluable insight into cancer biology.

Despite being a stretch of blue-sky thinking at the time, his initial vision—to

interrogate any gene of interest with probes designed off the reference—has long

since been surpassed. The advent of affordable high-throughput dna sequencing

technologies ushered in a new field of cancer genomics research, with the first

samples sequenced in their entirety by Ley et al. (2008) and Pleasance et al.

(2010). Following this success, large collaborations within the International

Cancer Genome Consortium (icgc), The Cancer Genome Atlas (tcga), and

other local projects, set out to systematically catalogue genetic mutations in

most common cancer types (International Cancer Genome Consortium et al.,

2010; Cancer Genome Atlas Research Network et al., 2013; Wheeler and Wang,

2013). To date, research publications have summarised the genome landscape

in dozens of patient cohorts, from the earliest reports characterising hundreds

of exomes in ovarian and colorectal cancer (Cancer Genome Atlas Research

Network, 2011; Cancer Genome Atlas Research Network, 2012) to more recent

work analysing hundreds of whole genomes in breast cancer (Nik-Zainal et al.,

2016) and medulloblastoma (Northcott et al., 2017), to cite just a few examples.

1.2.1 Study design

The classical study design for a cancer genome project is to sequence the bulk

dna of matched cancer–normal samples from a cohort of donors with the

same or similar disease pathology (Mwenifumbo and Marra, 2013). Matching

each cancer sample with normal dna from the same individuald is critical for

distinguishing somatic mutations specific to the cancer lineage from germline

polymorphisms present in all tissues of the body.

To date, the vast majority of cancer genome projects have used the Illumina

dna sequencing platform. This technology sequences the last 100–150 bases of

billions of dna fragments by detecting the stepwise addition of fluorescently-

labelled, reversibly-terminating nucleotides (Reuter et al., 2015). Sophisticated

bioinformatics pipelines map these short reads (usually paired ends from a

dNormal dna is usually taken from blood, or nearby non-cancerous tissue surgically
extracted at the same time as the tumour. For blood cancers, the normal sample must be
taken from an isolate of non-cancerous cell type/s (or another tissue if available).
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fragment < 1 kb long) to their most likely origin in the reference genome, and

identify variants which differ from the reference sequence.

So far, tcga studies have primarily focussed on whole exome capture sequencing

(wes), limiting high resolution findings to protein-coding regions covering less

than 2% of the total genome. Studies by the icgc and other groups are

now turning to the more expensive whole genome sequencing (wgs) methods,

which allow variation to be detected in non-coding regions and in the form

of structural rearrangement. In addition to dna sequencing, most cancer

genome projects include complementary assays such as snp arrays to detect

copy number variation (cnv) and rna-seq to quantify gene expression levels.

(Mwenifumbo and Marra, 2013)

Moving beyond this traditional template of bulk dna sequencing in matched

cancer–normal pairs, other approaches to cancer genome interrogation include

multi-sample, multi-region, and single-cell designs, combined with a burgeoning

variety of new long-read and single-molecule sequencing technologies.

1.2.2 Insight from somatic SNVs

As a core output of both wes and wgs data with relatively simple properties

to identify and analyse, the snv has been the most intensively studied class of

somatic genome alteration in the modern sequencing era. Analysis of somatic

snvs has yielded substantial insight into their underlying generative mechanisms

(Alexandrov et al., 2013b; Helleday et al., 2014) and functional implications as

driver events within genes (Kandoth et al., 2013; Lawrence et al., 2014) and, to

a lesser extent, non-coding regions (Khurana et al., 2016). Patterns of snv allele

fraction have shed light on the sub-clonal phylogenetic evolution of tumours,

and the relationships between primary and metastatic sites (Macintyre et al.,

2016a; Schwartz and Schäffer, 2017). In concert with other -omics assays, snv

data has also been instrumental in describing the molecular subtypes of different

cancer histologies (Hoadley et al., 2014; Bailey et al., 2016). Comprehensive

studies of structural variation have been slower to emerge, partly because of

the paucity of wgs relative to exome data, and partly because the complexity

and variety of rearrangement events pose considerable analytical challenges.

Section 1.4 outlines our current understanding of the somatic rearrangement

landscape in human cancer.
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1.2.3 Clinical translation

Efforts to characterise cancer genomes are motivated partly by the insight

into molecular biology, and partly by the promise of clinical translation and

improved patient outcomes. Findings from cancer genome studies are already

proving their clinical worth, with at least eleven genetic alterations specifically

targeted by fda-approved therapies in ten different cancer types (as of early

2017), and dozens more genes on track for targeted drug development (Hyman

et al., 2017). As diagnosis moves to incorporate molecular and genetic markers,

new ‘basket’ clinical trials are beginning to test therapies by gene target in

addition—or even in preference—to histology and tissue of origin. For example,

drugs approved to target BRAF V600 mutations in melanoma may be used to

treat other cancers with the same driver mutation (Hyman et al., 2015). Beyond

precision therapies, detailed genomic profiling also improves prognostic accuracy

(Ng et al., 2016; Gerstung et al., 2017), and has led to novel technologies for

personalised medicine such as relapse monitoring of circulating cell-free dna

(Wan et al., 2017; Siravegna et al., 2017). Personalised, genome-driven oncology

may soon be a routine addition to patient care, with the Genomics England

initiative currently in progress to sequence whole genomes of 25,000 cancer

patients in a clinical setting (Peplow, 2016; Genomics England, 2017).

1.3 Discovering rearrangements in the cancer

genome

In addition to snvs and small indels, somatic genomes also develop larger

structural variants wherein kilobases, megabases, or whole chromosomes are

deleted, amplified, or otherwise rearranged from the germline state. In this

thesis I use the terms genome rearrangement and structural variation (sv)

interchangeably. With the first deluge of cancer sequencing data over 2010–2015,

publication of snv analyses far outpaced those on svs. However, long before

high-throughput dna sequencing and the focus on point mutations, cancer

genomes were historically described in terms of large cytogenetic aberrations.

As the cancer genomics field matures and the task of gleaning new insight

from snvs becomes harder, the time is right to refocus attention on somatic

rearrangements, capitalising on the improved power and resolution afforded by

wgs technology.
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1.3.1 History of SV discovery in cancer

Advances in biotechnology have revealed several types of genome rearrangement.

In the late 19th and early 20th centuries, David Paul von Hansemann and

Theodor Boveri proposed the first chromosomal theories on the origins of

cancer after observing abnormal chromosome content and asymmetric mitoses

in tumour cells (contributions reviewed by Bignold et al. (2006)). As cytogenetic

techniques improved, researchers visualised whole chromosome gains and losses

(Spriggs et al., 1962), double minutes (Cox et al., 1965), translocations (Rowley,

1973), breakage-fusion-bridge cycles (Gisselsson et al., 2000), and megabase-

scale deletions, insertions, and inversions (Sandberg, 1991).

One of the earliest successes from the cytogenetic era was the characterisation

of the chr9;chr22 translocation causing the BCR–ABL oncogenic fusion gene in

chronic myeloid leukaemia (Rowley, 1973) (Nowell (2007) recounts the history

of its discovery). With the consequent development of targeted tyrosine kinase

inhibitors, the life expectancy of cml patients is now comparable to the general

population (Bower et al., 2016).

Moving beyond cytogenetic visualisation of M-phase chromosomes, the detection

resolution for copy number alterations (cna) was refined to a sub-megabase

scale with the development of aCGH (Pinkel et al., 1998) and snp arrays (Zhao

et al., 2004; Bignell et al., 2004). Cn array methods quantify the degree of copy

loss or gain along the reference genome to a resolution of several kilobases, and

are still commonly used to supplement wes studies (Zack et al., 2013). However,

array technology cannot pinpoint the underlying events actually causing copy

number change, and are powerless to detect copy-neutral rearrangement (with

the exception of loss-of-heterozygosity (loh) detectable by snp array).

1.3.2 Somatic SVs in WGS data

Whole genome sequencing allows all rearrangement classes at any sizee to be

identified at base-pair breakpoint resolution (Korbel et al., 2007; Campbell

et al., 2008). In addition to the many chromosome abnormalities identified in

the cytogenetic era, sequencing data has revealed novel rearrangement patterns

including chromothripsis (Stephens et al., 2011), chromoplexy (Berger et al.,

2011; Baca et al., 2013), and chromoanasynthesis (Liu et al., 2011), described

further in Section 1.4.2.

eSv detection below ∼ 1 kb is poor if the read-group orientation is normal (deletion-type).
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First generation sv calling algorithms (reviewed by Liu et al. (2015)) use

reference-mapped paired-end reads to find groups of splitf and/or discordantly

mappingg read pairs which demarcate breakpoint junction positions. The

range of possible sv detection methods continues to expand, with more than

20 published algorithms for short-read wgs data available as of late 2017. Some

of the more recent contributions concentrate on:

• incorporating depth of coverage (copy number) (for example, SV-Bay

finds likely breakpoints under a Bayesian model linking discordant read

positions with concordant read depth (Iakovishina et al., 2016); COSMOS

prioritises sv calls using strand-specific coverage (Yamagata et al., 2016));

• local assembly around purported breakpoints (for example, novoBreak

assembles reads containing the same cancer-specific k-mers (Chong et al.,

2016); SvABA assembles abnormal reads mapping to the same reference

loci (Wala et al., 2017b)); and

• different ways of comparing matched cancer-normal samples to account for

the germline sv background (for example, SMUFIN performs reference-

free raw read comparison (Moncunill et al., 2014); PSSV estimates the

joint probability of specific hidden genotype states (Chen et al., 2016)).

Regardless of the method, all algorithms are bound by the intrinsic limitation

of read lengths being shorter than some repeat sequences, and have low power

to detect svs in ambiguous regions around telomeres and centromeres.

The core output from a standard sv caller is a set of breakpoint junctions (bpj),

each identifying two reference positions juxtaposed in a specified orientation.

In addition, the nucleotide sequence detail can detect microhomology or small

non-templated base insertions at each junction. Wgs data also facilitates

genome-wide cn estimation by segmentation of normalised read depth (reviewed

by Liu et al. (2013)).

Ideally, a bioinformatics pipeline would also classify sv events by their broader

structural context to distinguish simple events of one or two bpj from medium

complexity events of ∼3–9 bpj or highly complex clusters of ∼10–1000 bpj. So

far, systematic sv classification in cancer wgs data has been largely confined

to the basic orientation pattern of individual junctions (Yang et al., 2013;

Zhuang and Weng, 2015; Alaei-Mahabadi et al., 2016). Some studies have

fA split read has a portion mapping to the reference location, with the remaining portion
soft-clipped.

gA discordantly mapping read pair has non-standard orientations and/or a mapping
distance inconsistent with the library insert size.
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augmented this with one or two additional caveats by copy number, cluster

separation, and/or broad classification of chromothriptic patterns (Patch et al.,

2015; Nik-Zainal et al., 2016; Fraser et al., 2017).

1.4 Patterns of structural variation

The breadth of rearrangement observed in cancer sequencing data reflects

the diverse range of dna alteration that is not only possible, but evidently

both consistent with and beneficial to cellular survival, even to the point of

continuous pathological growth. Somatic sv catalogues are a window into the

dynamics of genome upkeep, and hint at where and when different structural

changes arise, whether in specific genome loci, cell types, genotype background,

stage of tumour evolution and so on. However, the underlying mechanisms

actually generating these rearrangements are not always obvious, and we rely

on characteristic fingerprints such as microhomology and copy number profile

to implicate known and undiscovered pathways of dna damage and repair.

1.4.1 Mechanisms of repair and rearrangement at a DNA

break

Genome rearrangements are generated by a variety of mechanisms, with many

details still unknown. In general, they form during repair of double-strand

breaks (dsb) caused by dna damage, replication fork collapse, telomere attri-

tion, or enzymatic activity. Free dna ends are substrates for several possible

processes, including resection, annealing, ligation, strand invasion, polymeri-

sation, and telomere capture (Kasparek and Humphrey, 2011). Dna repair

pathways employ these steps in varying combinations to secure ongoing genome

integrity, even at the expense of some local rearrangement.

Dsb repair pathways fall into two broad camps: ‘break and ligate’ mechanisms

where two free dna ends are pasted together; and ‘template and replicate’

mechanisms where one free end is extended through dna polymerisation against

a template sequence. For detailed reviews, see Willis et al. (2015), Ceccaldi

et al. (2016), and Rodgers and McVey (2016).

In brief, the classic ‘break and ligate’ pathway of non-homologous end-joining

(nhej) operates throughout the cell cycle (especially in G0/G1) to ligate

blunt dna ends. An alternative mechanism termed microhomology-mediated
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end-joining (mmej) ligates slightly resected dna endsh with a few bases of

overlapping microhomology (mh). If heavily resected dna ends share long

(> 20 bp) homology, then single-stranded annealing (ssa) can stabilise their

connection in new duplex dna, and ligate the backbones after 3’ flap digestion

and dna synthesis to fill in the gaps.

The classic ‘template and replicate’ pathway of homologous recombination (hr)

operates during S and G2 phases of the cell cycle, and starts with strand

invasion of a 3’ single strand overhang to a template sequence with shared

homology—preferably finding the sister chromatid for exact sequence preser-

vation. Following strand invasion, dna synthesis extends the nascent strand

along the template, leaving the other strand displaced in a ‘D-loop’. Somatic

cells primarily resolve hr with synthesis-dependent strand annealing, in which

the nascent strand is free to anneal to homologous sequence as it detaches

from the template, and ideally finds its duplex partner on the opposing side

of the original dsb to mediate error-free repair. An alternative form termed

break-induced replication (bir) continues synthesis of the invading strand in a

migrating D-loop for many kilobases, proceeding until the D-loop destabilises

or encounters the next obstacle (e.g. replication fork, transcription bubble,

chromosome end). The stretch of newly synthesised single stranded dna trail-

ing from the D-loop is vulnerable to mutation, and is a probable substrate

for APOBEC-mediated kataegis clustersi. In contrast to the established bir

model which relies on RAD51 homology search to initiate strand invasion, a

RAD51-independent pathway termed microhomology-mediated break-induced

replication (mmbir)j appears to act in similar fashion, with the relaxed re-

quirement of short mh between the invading and template strands. Indeed, the

low-fidelity action of translesion polymerases may even facilitate mmbir strand

invasion in the absence of any pre-existing mh (Sakofsky et al., 2015).

Dna break repair mechanisms have a propensity to generate rearrangement

structures through ligation of non-contiguous sequences, or inappropriate tem-

plate choice and template switching. For example, stalled replication forks

may trigger tandem duplication, either by end-joining of staggered breaks in

two sister chromatids or re-replication bubble (break and ligate), or by strand

invasion to the sister behind the original break locus (template and replicate)

hEnzymatic resection at the dsb leaves 3’ overhanging single stranded dna.
iKataegis is a dense hypermutation cluster of ∼5–100 snv. APOBEC is a family of

cytidine deaminases which act on single stranded nucleic acid, with an important role in
mutational disarmament of invading viral sequence.

jThe mmbir mechanism is also described in the literature as fork-stalling and template
switching (fostes, Lee et al. (2007)).
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(Finn and Li, 2013; Costantino et al., 2014; Willis et al., 2015). Likewise,

deletions and translocations may be caused by aberrant end-joining of two dsb

positions, or by strand invasion to a distant locus (Roukos and Misteli, 2014;

Sakofsky and Malkova, 2017).

The repercussions of structural dna repair and remodelling extend well beyond

one or two break positions, and occasional bursts of genomic upheaval generate

complex sv spanning tens or hundreds of breakpoint junctions.

1.4.2 Complex rearrangements

Sv clusters arise from special cases of dna breakage, and are not typically the

mere overlap of simple events independently acquired.

Stephens et al. (2011) first described chromothripsis, characterised by dozens of

bpj shuffled together over one or more reference chromosomes with an oscillating

copy number profile (Korbel and Campbell, 2013). This complex configuration

results from a catastrophic shattering event, such as befalls lagging dna caught

in a micronucleus (Zhang et al., 2015) or chromatin bridge (Maciejowski et al.,

2015) after aberrant mitosis. Subsequent ligation of a random combination of

disjoint fragments generates a highly disordered derivative chromosome, with

several fragments lost altogether.

Another ‘break and ligate’ pattern termed chromoplexy was first described

in prostate cancer as a largely copy-neutral cycle of reciprocal exchange at

multiple loci (Berger et al., 2011; Baca et al., 2013). The observed balancing

of translocation partners across many chromosomes is hypothesised to result

from correlated dsbs in spatio-temporal proximity, presumably mediated by

androgen receptor activity in prostate.

Extrachromosomal dna fragments generated by chromothripsis-type shattering

events (or other means) often circularise to form double minutes (dm). These

acentric dna circles are free to segregate asymmetrically during mitosis, and

are an efficient vehicle for oncogene amplification. Dm copies can also re-

integrate into the linear chromosome complement, forming intrachromosomal

amplicon structures (also known as homogeneously staining regions). Internal

dm composition may combine non-templated sequence insertions with small and

large segments from several reference chromosomes, evolving through multiple

rounds of integration and recombination. (Sanborn et al., 2013; L’Abbate et al.,

2014; Vogt et al., 2014; Turner et al., 2017)
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A different route to intrachromosomal sequence amplification is through suc-

cessive breakage-fusion-bridge (bfb) cycles. In the classic model proposed by

McClintock (1941), fusion of two atelomeric sister chromatids forms a dicentric

chromosome which gets pulled apart during anaphase, passing a foldback sv

(one-sided inversion) to one daughter cell. If multiple cell divisions repeat

this cycle before the derivative is stabilised via telomere acquisition, then bfb

imparts a characteristic foldback sv cluster with a step-like cn profile (Kinsella

and Bafna, 2012; Greenman et al., 2016).

Break and ligate events—such as bfb, dm formation and chromothripsis—

sometimes overlap to generate highly convoluted derivatives with little resem-

blance to their germline chromosome antecedents (Garsed et al., 2014; Li et al.,

2014; Notta et al., 2016). Presumably, the inherent instability of some aber-

rant structures means that one large rearrangement may beget another, thus

accounting for the prevalence of complex overlap observed in several cancers.

Replication mechanisms also generate complex sv via serial template switching,

with distinctive patterns of copy gain, mh enrichment, and small, locally-

templated insertions in the junctions between more distal bpj (Lee et al.,

2007; Zhang et al., 2009). These events have primarily been described in

germline developmental disorders, and range from medium complexity sv like

the duplication–inverted triplication–duplication (Carvalho et al., 2011), to high

complexity events involving five or more bpj termed chromoanasynthesis (Liu

et al., 2011), possibly triggered by interstrand crosslinks or other persistent dna

lesions (Meier et al., 2014). Experimental studies support a mmbir mechanism

(Sakofsky et al., 2015; Hartlerode et al., 2016) with low-fidelity polymerases

also generating nearby snvs and indels (Carvalho et al., 2013).

1.4.3 Prevalence and distribution across the genome

The character and extent of somatic rearrangement is highly variable, depending

on the fidelity of replication, rate of dna breakage, choice of repair pathway,

and subsequent effectiveness of that repair. Wgs data indicate that most cancer

samples have tens to hundreds of detectable bpj, with the burden varying

by an order of magnitude both across and within cancer types, from highly

rearranged breast and ovarian genomes, to relatively stable genomes in kidney

and thyroid cancer (Yang et al., 2013; Alaei-Mahabadi et al., 2016). Some

cancers present with a strong tandem duplicator phenotype, especially those

breast and ovarian cancers with both BRCA1 and TP53 mutations (Menghi
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et al., 2016). Moreover, bone and soft-tissue cancers are particularly prone to

chromothripsis (Stephens et al., 2011; Cai et al., 2014), while prostate cancer is

notable for the prevalence of chromoplexy (Baca et al., 2013). The observation

that most somatic bpj have no or micro (1–5 bp) junction homology suggests

that nhej, mmej, and mmbir are the major pathways to cancer rearrangement,

while non-allelic hr is largely confined to germline disorders (Drier et al., 2013;

Malhotra et al., 2013; Yang et al., 2013; Carvalho and Lupski, 2016).

The variable forces of dna breakage and repair not only dictate the number of

bpj per sample, but also their location in the genome. In B cells, deliberate

enzymatic dsb generation renders immune loci particularly prone to transloca-

tion, often contributing to oncogenic fusions (Vaandrager et al., 2000; Alt et al.,

2013). In prostate, androgen receptor signalling leads to topoisomerase dsbs

in specific regulatory locations, often triggering the TMPRSS2–ERG fusion

driver (Lin et al., 2009; Haffner et al., 2010). Retrotransposons are another

source of recurrent sv, with particular L1 hotspots generating dozens of somatic

insertion/transduction events in some cancers (Lee et al., 2012; Tubio et al.,

2014; Helman et al., 2014). Common fragile sites are recurrent foci of deletion

in many cancer types, associated with low density of replication forks, late

replication time, large genes, and active transcription (Ozeri-Galai et al., 2012;

Sarni and Kerem, 2016; Glover et al., 2017). Aside from these rearrangement

hotspots, bpj also correlate more generally with: spatial proximity inside the

nucleus (Fudenberg et al., 2011; Hakim et al., 2012; Zhang et al., 2012); repli-

cation timingk (De and Michor, 2011; Pedersen and De, 2013); simple repeats

(Bacolla et al., 2016); chromatin modifications (Black et al., 2013; Burman

et al., 2015); and show sample-specific association patterns (Drier et al., 2013).

1.5 Functional consequences of rearrangement

Rearrangement landscapes observed in clinically-detectable cancer samples

reflect the distribution of events at generation, moulded by selection on the

functional consequences. Events which substantially reduce cell fitness are sub-

ject to purifying selection, and are not typically observed. Conventional theories

posit that most somatic mutations are passenger events with negligible fitness

effect, and that only a handful of positively-selected drivers are responsible for

clonal expansion of the cancer lineage. A high passenger-to-driver ratio is well

substantiated for point mutations (Tomasetti et al., 2015; Martincorena et al.,

kReplication timing tends to be late for copy loss, and early for both copy gain and loh.
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2017; Sabarinathan et al., 2017), and presumably extends to most sv classes

as well. As a probable exception to this general paradigm, those complex sv

events that restructure hundreds of megabases effect such a drastic departure

from the normal diploid genome that passenger status seems unlikely.

Rearrangements drive the cancer phenotype through various means, including

production of oncogenic fusion genes, amplification of oncogenes, deletion or

disruption of tumour suppressors, and repurposing of regulatory regions. These

alterations play a major role in cancer development, with cosmic curating

73% of 547 census cancer genes as being affected by translocation or cna

(v71, (Forbes et al., 2015)). Even with the additional insight provided by

rna-seq data, it remains extremely challenging to distinguish the driver svs

from the passengers, and to discern which of the many changes to genes and/or

regulatory elements meaningfully contribute to oncogenesis.

1.5.1 Fusion genes

Some rearrangements create fusion genes by placing one gene (or part thereof)

downstream of a different promoter region (with or without the 5’ end of

the promoter’s native open reading frame). Fusion genes drive cancer by

placing a proto-oncogene under the control of a highly active promoter, or by

the translation of a chimeric protein product with novel oncogenic properties.

(Mertens et al., 2015)

Any sv class is capable of generating a fusion gene via the juxtaposition of

non-contiguous sequences. For example, the BCR–ABL fusion driving chronic

myeloid leukaemia is generated by translocation (Salesse and Verfaillie, 2002;

Nowell, 2007); KIAA1549–BRAF in pilocytic astrocytoma is generated by

tandem duplication (Jones et al., 2008); whereas TMPRSS2–ERG in prostate

cancer is fused through deletion or chromoplexy (St John et al., 2012; Baca

et al., 2013).

1.5.2 Gene dosage

A gene’s transcriptional output is roughly correlated with its copy number in the

genome (Fehrmann et al., 2015), and thus sv events generating regions of copy

gain or loss may drive cancer by oncogene over-expression or tumour suppressor

haploinsufficiency or two-hit loss. Roughly 40 peak regions of recurrent cna

span a known cancer gene (Beroukhim et al., 2010; Zack et al., 2013), such as
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the MYC oncogene amplified in 13–17% of all breast and ovarian cancers and

the CDKN2A tumour suppressor lost in 33% of brain cancersl.

Regions of copy alteration often span multiple genes, and may drive cancer

through the combined fitness effect of their synchronous dosage change. In

the maximal case, whole chromosome or arm-level aneuploidy simultaneously

alters the copy level for hundreds of genes. Some arms are strongly biased

towards gain (e.g. 7p, 8q, 20q) or loss (e.g. 9p, 13q, 17p), reflecting the uneven

distribution of tumour promoting or suppressing regions (Beroukhim et al.,

2010; Kim et al., 2013; Davoli et al., 2013). Considering a smaller scale of

several megabases, Liu et al. (2016) reported that the selective advantage of

TP53 tumour suppressor loss is boosted by co-deletion of neighbouring genes.

Likewise, Hagerstrand et al. (2013) described the joint amplification in 3q26

of two oncogenes promoting cell growth and invasion. Beyond the single-copy

gains proffered by aneuploidy or tandem duplication, the most efficient route to

high-magnitude amplification is via extrachromosomal dms, frequently boosting

oncogenes like MYC and EGFR to cn levels above ten (Turner et al., 2017).

Amplifying enhancerm dosage is another route to oncogene over-expression,

without necessarily changing the copy level of the gene itself (Zhang et al.,

2016; Glodzik et al., 2017).

1.5.3 Altered regulation

Interphase chromosomes are organised in a looping architecture of topologically

associating domains (tad) which divide the linear sequence into self-interacting

blocks (typically hundreds of kilobases) with coordinated gene expression and

replication timing. Tads are physically separated from their neighbours by

insulating boundary regions held together by CTCF and cohesin. Within a tad,

dna looping allows enhancer elements to recruit transcription factors for genes

up to a megabase away. Dna looping also ensures that enhancers are typically

restricted from accessing and regulating genes in any separate tad. Although

tad boundaries are conserved across cell types (and even species), the tads

themselves are dynamic units, localising in either active or repressive nuclear

compartments to regulate tissue-specific gene expression programs. (Pombo

and Dillon, 2015; Ruiz-Velasco and Zaugg, 2017)

lCna statistics from the cosmic database (Forbes et al., 2015); other cancer types not
specified are also commonly affected by cna at MYC and CDKN2A.

mEnhancer elements are cis-acting regulatory regions which recruit transcription factors
to promote expression of genes brought in to proximity by dna looping.
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Mouse models show that sv events which duplicate or delete tad boundaries

result in merged or neo-tad structures. Such alterations place genes in a novel

regulatory context, drastically changing their expression levels with potentially

serious phenotypic consequences. (Lupiáñez et al., 2015; Franke et al., 2016)

Chromatin topology remodelling and ectopic enhancer activity has also been

observed in cancer, with the capacity to activate oncogenes and down-regulate

tumour suppressors (Valton and Dekker, 2016). Early findings highlighted recur-

rent ‘enhancer-hijacking’ rearrangements up-regulating EVI1 (alias MECOM )

in acute myeloid leukaemia (Gröschel et al., 2014) and GFI1A/B in medulloblas-

toma (Northcott et al., 2014). Weischenfeldt et al. (2017) surveyed over 7000

cancer samples to find more than a dozen oncogenes likely to be activated in this

manner, including the IGF2 gene recurrently involved in a boundary-spanning

tandem duplication in colorectal cancer. This simple sv event generates a

neo-tad structure linking IGF2 with an active super-enhancer from the neigh-

bouring region (usually insulated from each other by the boundary), causing

an oncogene expression increase of more than 250-fold.

Given the immense influence of enhancer contact on gene regulation, tad-

disrupting sv events can drastically affect genes as far as a megabase from

the breakpoint, irrespective of any fusion or dosage changes. The ability of

rearrangements to transmute the chromatin organisation domains so faithfully

preserved across tissues and species is now emerging as an under-appreciated

pathway to the cancer phenotype.

1.6 Overview of this work

In this thesis I analyse somatic genome rearrangements within 2559 samples

from the icgc Pan-Cancer Analysis of Whole Genomes dataset, focussing on

structural classes and properties (Chapter 2), the genome-wide distribution

pattern (Chapter 3), co-occurrence signatures of underlying process (Chapter 4),

and complex sv intractable to simple classification (Chapter 5).



Chapter 2

Census of the rearrangement

landscape in 2500 human cancer

genomes

Over the last century, the fundamental connection between cancer and chromoso-

mal aberration has been described in increasingly forensic detail as technologies

evolved from crude cytogenetic visualisation to copy number arrays and whole

genome sequencing. These studies have established that the vast majority of

cancer genomes carry some degree of somatic rearrangement, with massive

variation in form and frequency across cancer types and samples. Efforts to

provide a truly comprehensive survey of the rearrangement landscape accessible

by wgs have so far been limited to simplistic classification schemes of four to

eight structural categories in a few hundred samples (Yang et al., 2013; Alaei-

Mahabadi et al., 2016). In an unprecedented opportunity to extend the breadth

and depth of structural cancer genome analysis, the icgc pcawg consortium

now presents a uniform callset of somatic svs in more than 2500 samples from

30 common cancer types.

In this chapter, I describe the sv dataset assembled by various pcawg working

groups (Section 2.1), and explain the output of my colleague’s sv classification

algorithm using illustrations from my own novel plotting method (Section 2.2).

By identifying the precise structure of individual rearrangements and separating

out complex clusters, this classification scheme allows for detailed feature

exploration of all simple rearrangements. After first presenting an overall sv

census (Section 2.3), I focus on the structural properties of size (Section 2.4),

breakpoint homology (Section 2.5), and accompanying kataegis (Section 2.6).

19
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2.1 Pan-Cancer Analysis of Whole Genomes

structural variation dataset

The icgc project on the Pan-Cancer Analysis of Whole Genomes (pcawg) was

a coordinated international endeavour over 2013–2017 to analyse more than

2500 matched cancer-normal samples with a uniform bioinformatics pipeline

for read mapping, variant calling, and quality control (Campbell et al., 2017b).

Including more than 30 common cancer types, the pcawg dataset is by far the

largest single collection of cancer whole genomes yet analysed.

2.1.1 Sample set

All matched cancer-normal samples were originally sequenced as part of tissue-

specific tcga or icgc studies using the Illumina Hi-Seq platform to ≥ 30×
whole genome coverage (≥ 25× in normal) using paired-end 100–150 bp reads

with insert sizes of 200–1000 bp. To ensure comparable results across cancer

types, the pcawg technical working group re-aligned all raw sequencing reads

to the hg19 reference genome using BWA-MEM (Yung et al., 2017).

After extensive quality control to remove unreliable samples and, where neces-

sary, to identify just one representative sample per donor, the pcawg consor-

tium agreed upon a high quality ‘white-list’ of 2583 samples (Whalley et al.,

2017). Twenty-four failed to complete sv calling, and so the dataset presented

in this thesis consists of 2559 samples from 37 histology groups, as tallied in Ta-

ble 2.1. Six histology groups had fewer than 15 samples, and are not considered

in histology-specific analyses. The largest histology classes are liver hepatocel-

lular carcinoma (312 samples), pancreatic adenocarcinoma (230 samples) and

prostate adenocarcinoma (199 samples).

For one prostate cancer donor with multiple samples (DO52513), the consortium-

selected representative sample did not pass sv calling and was missing from the

sv dataset. To represent this donor, I instead selected sample SA541762 because

it had the highest purity as estimated by the working group on evolution and

heterogeneity (Dentro et al., 2017).
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Table 2.1: Sample counts by histology group in the pcawg dataset. The
geographic origin of samples is denoted by standard icgc abbreviations. The
values shown for donor age and mean sequencing coverage in the tumour (T)
and normal (N) samples are the median, minimum, and maximum.

Histology Samp Origin Age T SeqCov N SeqCov

Biliary-AdenoCA 33 SG, JP 63 (37-84) 46 (31-72) 36 (28-76)

Bladder-TCC 23 US 65 (34-84) 37 (31-60) 37 (32-45)

Bone-Benign 16 UK unknown 44 (39-49) 32 (30-38)

Bone-Epith 10 UK unknown 44 (42-51) 34 (28-69)

Bone-Osteosarc 34 UK unknown 43 (39-74) 34 (29-55)

Breast-AdenoCA 192 EU,UK,US 56 (30-89) 51 (29-76) 38 (28-124)

Breast-DCIS 3 EU, UK 55 (40-61) 53 (38-54) 36 (34-36)

Breast-LobularCA 13 EU,UK,US 52 (40-76) 50 (32-84) 35 (30-39)

Cervix-AdenoCA 2 US 39 (32-46) 58 (56-59) 34 (33-34)

Cervix-SCC 18 US 39 (21-58) 58 (38-63) 35 (27-38)

CNS-GBM 38 US 59 (21-76) 41 (34-76) 40 (28-65)

CNS-Medullo 141 DE 9 (1-49) 38 (29-61) 37 (28-58)

CNS-Oligo 18 US 40 (17-62) 37 (31-68) 36 (31-57)

CNS-PiloAstro 89 DE 8 (1-50) 39 (31-51) 36 (28-54)

ColoRect-AdenoCA 52 US 68 (31-89) 47 (29-78) 35 (29-44)

Eso-AdenoCA 87 UK 70 (47-87) 67 (52-91) 40 (31-74)

Head-SCC 56 US, IN 53 (19-76) 64 (35-82) 38 (30-50)

Kidney-ChRCC 43 US 47 (17-86) 64 (54-78) 37 (30-43)

Kidney-RCC 143 US, EU 60 (38-84) 58 (29-92) 46 (23-116)

Liver-HCC 312 FR,US,JP 67 (23-89) 39 (27-126) 34 (24-108)

Lung-AdenoCA 37 US 66 (41-81) 44 (33-87) 42 (35-73)

Lung-SCC 47 US 68 (47-83) 65 (40-92) 43 (31-81)

Lymph-BNHL 107 US, DE 57 (4-85) 37 (30-77) 36 (27-58)

Lymph-CLL 90 ES 61 (40-86) 33 (24-79) 32 (25-47)

Myeloid-AML 13 UK, KR 50 (35-75) 35 (29-48) 31 (24-42)

Myeloid-MDS 2 UK 76 (74-77) 40 (40-40) 33 (32-34)

Myeloid-MPN 23 UK 54 (27-85) 44 (39-49) 34 (30-43)

Ovary-AdenoCA 109 AU, US 60 (39-81) 55 (34-78) 40 (26-77)

Panc-AdenoCA 230 AU, CA 67 (34-90) 66 (36-122) 45 (27-178)

Panc-Endocrine 81 AU, IT 59 (17-81) 66 (40-82) 41 (27-54)

Prost-AdenoCA 199 DE,CA,UK,US 59 (38-80) 62 (30-107) 41 (28-85)

Skin-Melanoma 106 AU, US 58 (16-87) 59 (33-145) 40 (21-138)

SoftTissue-Leiomyo 15 US unknown 53 (46-60) 33 (31-37)

SoftTissue-Liposarc 19 US unknown 54 (49-64) 33 (30-37)

Continued on next page
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Table 2.1 – continued from previous page

Histology Samp Origin Age T SeqCov N SeqCov

Stomach-AdenoCA 68 CN, US 65 (36-90) 40 (30-83) 37 (30-78)

Thy-AdenoCA 48 US 50 (17-85) 71 (32-87) 42 (30-57)

Uterus-AdenoCA 42 US 70 (38-90) 58 (35-63) 36 (26-40)

2.1.2 Calling breakpoint junctions and copy number

Consensus SV breakpoint junctions

The technical working group called sv breakpoint junctions in 2559 samples

using four algorithms (Yung et al., 2017; Wala et al., 2017a). They were:

BRASS from the Wellcome Trust Sanger Institute (Cancer Genome Project,

2017); DELLY from DKFZ (Rausch et al., 2012); and SvABA (Wala et al.,

2017b) and dRanger (Drier et al., 2013) both from the Broad Institute.

Bpj calls consist of two genomic base locations (the breakpoint positions), each

with one of two possible orientations: + for a read group leading into the break

5’ to 3’ on the reference strand; and − for a read group leading into the break

3’ to 5’ on the reference, as illustrated in Figure 2.1. Sv calling algorithms also

estimate the extent of possible microhomology (mh), where a run of homologous

bases obscures the specific break position within the junction.

The pcawg structural variation working group, in this task led by Joachim

Weischenfeldt, defined a final consensus sv dataset after matching up estimated

breakpoint positions and retaining all bpj calls returned by two or more

algorithms (autosomes and chrX only) (Wala et al., 2017a). Consensus mh

was taken to be the longest estimate reported. Any bpj attributed to somatic

retrotransposition was excluded from this dataset and analysed separately

by Rodriguez-Martin et al. (2017). In this thesis, I use breakpoint positions

adjusted for soft-clipping evidence as described in Li et al. (2017); these adjusted

positions deviate as much as 200 bp from the original consensus breakpoints.

The consensus sv call set contains 275,936 bpj (551,872 breakpoints) in

2429 samples, with 130 samples containing no identifiable bpj. Figure 2.2

shows the overlap between each calling algorithm in the consensus dataset,

with 46% of consensus bpj agreed upon by all four callers, and a further 34%

agreed upon by three.
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Figure 2.1: (A) Breakpoints of structural variation may have either a + or
− orientation, yielding (B) four possible orientations for (intra-chromosomal)
breakpoint junctions connecting two non-contiguous sequence fragments in the
sv event, and (C) four possible motifs between adjacent breakpoints belonging
to different junctions.
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CN segmentation

Sv events are nearly always accompanied by some degree of copy number (cn)

change, as even so-called “balanced” rearrangements often lose a small segment

between adjacent breakpoints.

Unless stated otherwise (as in parts of Chapter 5), the cn segmentation

estimates in this thesis were generated by Yilong Li with a custom algorithm

described in Li et al. (2017), and henceforth referred to as YL cn calls. To

briefly summarise the YL method, the tumour-normal read depth ratio in

500 bp windows was first normalised by GC content, density of fold-back read

pairs, and sample purity and ploidy, and then segmented into cn estimates

using known bpj positions and additional change-points estimated with a

piecewise constant regression fit. These cn estimates are non-integer, allowing

for subclonal cn change and flexible fitting to noisy or complex regions, but

they are occasionally unreliable over small segments and in a few problematic

samples (Section 5.3).

For complex sv clusters, I sometimes switch to cn segmentation estimates

provided by the evolution and heterogeneity working group, and henceforth

referred to as P11 cn. Section 5.3 describes the conditions for triggering a

switch to the P11 cn calls for complex sv in a particular sample. The P11 cn

estimates are a consensus result from six cn calling algorithms, restricted to

integer values (Dentro et al., 2017). In comparison to the non-integer YL cn

estimates, these are relatively conservative and unable to capture subclonal

change levels.
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2.1.3 Classifying rearrangement event types

Robust methods for: (a) separating bpj into independent clusters, and (b) clas-

sifying their structural forms; are a critical prerequisite to distinguishing the

various simple and complex sv events generated by different underlying mecha-

nisms. Without careful bpj classification, any subsequent analysis of properties

and prevalence may be strongly confounded by heterogeneous phenomena. How-

ever, meaningful classification is a difficult goal, compounded by overlapping

and adjacent sv events, missing data, noisy cn estimation, lack of phasing

information, tumour heterogeneity, and the germline sv background. To il-

lustrate the problem, Figure D.1 plots intrachromosomal bpj configurations

on the p-arm of chromosome 17 in ten different cancer samples, each with a

unique combination of rearrangements to codify appropriately.

In Chapters 2–4 of this thesis, I use sv clustering and classification provided by

Yilong Li, described in detail in the supplementary methods of Li et al. (2017).

Table 2.2 summarises the sv classification scheme, employing a notation of angle

brackets for an intrachromosomal breakpoint pair comprising the two halves of

one breakpoint junction (e.g. 〈+−〉 for a deletion-type bpj, all combinations

illustrated in Figure 2.1B), as distinct from square brackets denoting a pair

of adjacent breakpoint positions belonging to two separate bpj (e.g. the [+−]

motif indicates the left- and right-most segments lead into different bpj with a

gap in-between, all combinations illustrated in Figure 2.1C).

In brief, the bpj clustering procedure within each sample was:

1. for every given pair of bpj, estimate the expected number of bpj that

would be closer to either of these by chance, given the sample-specific

frequency distribution of bpj distances and types (interchromosomal, or

three intrachromosomal types: 〈+−〉, 〈−+〉, and 〈++〉/〈−−〉);

2. using the expected number of closer bpj as a distance metric, group bpj

using agglomerative hierarchical clustering with single linkage;

3. define the first set of clusters with cut-off distance of 0.01 expected bpj;

4. repeat steps 1 and 2 excluding the newly clustered bpj;

5. finally, define the second round of clusters using a cut-off distance of 0.05

expected bpj.

Following this initial clustering procedure, bpj within each cluster were divided

into local genome footprints on the assumption that distances between break
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Table 2.2: Classification of simple structural variants in pcawg cohort

SV class Sub-group Definition bpj

Complex - unexplained clusters 151212
Deletion - local 〈+−〉 bpj 54311
Tandem Dup - local 〈−+〉 bpj 45669
Recip Trans - distant bpj pair, [+−] motifs 1220
Unbal Trans - distant bpj 6394
Recip Inv - interlocked 〈++〉/〈−−〉 bpj pair 2800
Unbal Inv - 〈++〉 or 〈−−〉 bpj 1995
Foldback - close local 〈++〉 or 〈−−〉 bpj 1894

Replicative
Local 2-Jump

Dup-InvDup interlocked 〈−−〉/〈++〉 bpj pair 968
Loss-InvDup nested 〈++〉/〈−−〉 bpj pair 846
Dup-Trp-Dup disjoint 〈−−〉/〈++〉 bpj pair 240

Local+
Distant
2-Jump

Trans w/
Foldback

distant bpj adjoining 〈++〉 or 〈−−〉
bpj w/ [−+] motif

580

Trans w/
InvIns

distant bpj intersecting 〈++〉 or 〈−−〉
bpj w/ [−+] motif

508

Trans w/
TandemDup

distant bpj pair w/ [−+] motifs &
unbalanced cn

176

Templated
Insertion

Ins Cycle loop of [−+] motifs 3052
Ins Bridge loop of [−+] motif/s into [+−] motif 2601
Ins Chain chain of [−+] motif/s 616

Chromoplexy
Cplxy Cycle loop of [+−] motifs 326
Cplxy Chain chain of [+−] motif/s 366
Cplxy Cycle

w/ Ins
loop of [+−] and [−+] motifs 162

Dup = duplication; Trp = triplication; Trans = translocation; Recip = reciprocal; Unbal =

unbalanced; Inv = inversion; Ins = insertion; Cplxy = chromoplexy

positions within a footprint should fit an exponential distribution (and that

distances between footprints will be larger than this). The footprinting step

and further heuristic adjustments separated out peripheral deletions or tandem

duplications, and identified isolated [−+] or [+−] motifs for the definition of

templated insertion and chromoplexy events respectively.

Finally, clusters of one or two bpj and clusters of isolated [−+] or [+−]

footprints were classified by the relative orientation of the bpj as summarised

and tallied in Table 2.2. In addition, overlaps of a few simple bpj were separated

into their constituent events by comparison against a library of all possible

overlap structures and selection of the parsimonious solution.

In total, this method classified 45% of the bpj calls, leaving the remaining 55%

(151,212 bpj) in unexplained complex clusters. Section 2.2.2 provides additional

description of the different sv classes alongside visualisation of example events.
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2.1.4 Additional sample information

Additional pcawg sample information used in this thesis includes: whole

genome duplication estimates from the evolution and heterogeneity group

(Dentro et al., 2017); driver annotation of individual snv and indel events

from the drivers and functional impact group (Sabarinathan et al., 2017); gene

expression estimates from the transcriptome group (Fonseca et al., 2017); and

microsatellite instability typing from the mutational signatures group (personal

communication with Akihiro Fujimoto).

2.2 Visualising structural variants

The somatic sv set in the pcawg cohort includes a diverse range of rearrange-

ment phenomena involving multiple genome loci in many varied combinations.

Wgs over these rearrangements yields two types of informative data: breakpoint

junctions at base-pair resolution, and copy number segmentation estimates.

Given the complexity of the underlying biology and resulting data, visualisation

is absolutely paramount for understanding and communicating sv analysis.

2.2.1 A robust plotting method for structural variation

To visualise any sv structure (or group of structures) ranging from the simplest

deletion to the largest chromothripsis event spanning multiple chromosomes, I

developed a scalable plotting method to present cn estimates with bpj calls.

As wgs data does not afford the additional benefit of phasing information, all

data is shown relative to the reference genome rather than the physical deriva-

tive chromosomes present in the sample. Without phasing information, the

precise order of bpj on the derivative chromosome cannot generally be recon-

structed, nor can the possibility of independent events on different homologous

chromosome copies be ruled out.

To arrange the data, I divide the plotting window into columns of variable-

height rectangles (one per reference chromosome) with linear reference space

on the horizontal axis and copy number on the vertical.

First, chromosomes order themselves in the grid to minimise the sum of squares

of the plotting distance traversed by interchromosomal bpj, with a double

penalty for horizontally adjacent chromosomes compared to vertically adjacent.
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For context, the ideogram of major Giemsa bands lies on the outer edge of

each chromosome’s plotting area.

Second, I define the local genome footprintsa to plot by flanking each breakpoint

by some set flank size (variable, usually many kb), leaving no gaps smaller

than some minimum distance (variable, usually 10 Mb). For chromosomes with

more than one constituent footprint, the horizontal plotting coordinates break

into two disjoint windows if there is a gap between footprints spanning over

40% of the total window (axis break indicated by parallel dashed lines). Red

highlights on each ideogram indicate the genome region/s represented.

Third, the vertical height of each chromosome’s plotting area is set to include

the maximum cn estimate in the footprint region/s.

Having established the layout and scale, mapping functions convert genome

positions and cn values into their equivalent plot coordinates. A step function

outlines the cn segmentation in each footprint, and curved lines mark the bpj

connections, with arrows pointing away from the break for + orientation and

towards the break for − orientation. The default option is to colour bpj blue

for 〈+−〉, red for 〈−+〉, purple for 〈++〉, and green for 〈−−〉. To further assist

the visual distinction between + and − ends, the segment leading into the

break is coloured to match. An alternative option is to colour bpj by any other

categorical factor, used in Chapter 5 to distinguish bpj in separate clusters.

Finally, annotation of genes and other functional elements is an optional

addition along the lower edge of each chromosome’s plotting area.

2.2.2 Visual examples of all SV classes

To supplement the sv class definitions outlined in Table 2.2, here I include some

example events for illustration. For the complex sv clusters left unexplained

by the current classification scheme, I refer the reader to Chapter 5.

The simplest sv classes comprise just one bpj, as illustrated in Figure 2.3.

They are: deletion, tandem duplication, foldback, unbalanced inversion, and

unbalanced translocation. As foldback and unbalanced inversion are both

defined by one lone 〈++〉 or 〈−−〉 orientation bpj, their only distinguishing

feature is the distance between breakpoints, although the specific threshold is

somewhat arbitrary. Foldback refers to a highly local one-sided inversion (the

sequence almost literally ‘folds back’ on itself, median distance 4 kb), whereas

aPlotting footprints are different to the classification footprints described in Section 2.1.3
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Figure 2.3: Example plots of the simple sv event classes: deletion, tandem
duplication, foldback, unbalanced inversion, unbalanced translocation, and re-
ciprocal translocation. The transformation between germline segment order and
the somatic rearrangement is annotated below, with carets to denote breakpoint
junctions between non-contiguous reference segments, parentheses to indicate
inverted segments, and a forward-slash to separate different chromosomes.
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Figure 2.4: Example plots of reciprocal inversion and the three types of
local 2-jump: duplication–inverted duplication, loss–inverted duplication, and
duplication–inverted triplication–duplication. The transformation between
germline segment order and the possible rearranged derivative structures is
annotated below, with carets to denote breakpoint junctions between non-
contiguous reference segments, and parentheses to indicate inverted segments.

unbalanced inversion refers to a bpj between more distant loci (median distance

8 Mb). An intrachromosomal bpj could, in theory, be a translocation between

two homologous chromosomes. However, given the low frequency of reciprocal

translocations detected on homologous chromosomes, I estimate that approx-

imately 0.4% of single intrachromosomal bpj might actually be unbalanced

translocationb—a negligible fraction for subsequent analyses. Figure 2.3 also

includes an example of reciprocal translocation—a pair of interchromosomal

bpj with characteristic [+−] motifs demarcating a small region of copy loss

between breakpoints.

Figure 2.4 illustrates the sv classes involving two opposite inverting bpj. The

bConsidering all inter-chrom translocations, unbalanced events outnumber reciprocal at
a ratio of 11:1. We detect 21 reciprocal translocations of type 〈+−〉/〈−+〉 on homologous
chromosomes. Assuming this is approximately half the true total (〈++〉/〈−−〉 classified as
reciprocal inversion), the total number of unbalanced translocations between homologous
chromosomes might be estimated in the ballpark of 11×21×2 = 462. There are 103,869 total
deletions, tandem dups, foldbacks and unbalanced inversions in the cohort, so if approximately
460 are actually translocations, then this is an error rate of ≈ 0.4%.
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reciprocal inversion has a 〈++〉 bpj interlocking with a 〈−−〉 bpjc, leaving [+−]

motifs with accompanying copy number loss either side of the middle segment

that now sits inverted in the derivative chromosome. The other interlocking

pattern of 〈−−〉 followed by 〈++〉 c forms the dup–inv-dup structure, imparting

[−+] motifs with accompanying copy number gain. Similar regions of local

copy gain are found in the loss–inv-dup with nested inverting bpj (either 〈−−〉
within 〈++〉 or 〈++〉 within 〈−−〉), and the dup–trp–dup structure of disjoint

bpj in the order 〈−−〉 then 〈++〉 c. These last three structures cannot be

generated by any plausible combination of ‘break and ligate’ mechanismsd,

and thus the group name ‘local 2-jump’ refers to the purported ‘template and

replicate’ mechanism with two rounds of strand invasion. Small template switch

events have previously been described in germline developmental disorders (Lee

et al., 2007; Carvalho et al., 2011), but this is the first analysis to formally

identify them in somatic cancer genomes.

Extending the concept of local 2-jump structures, Figure 2.5 illustrates three

types of local plus distant 2-jump. One structure results in an unbalanced

translocation with sequence foldback close to the breakpoint on one side. Given

that the distal side of the unbalanced translocation is preserved, it seems likely

these events are precipitated by foldback and end in translocation. The segment

of copy number gain implicates a possible role for replication-based polymerase

jumping. Another structure of unbalanced translocation with a local segment

inserted in inverted orientation could plausibly result from polymerase jumping

as well, although the absence of copy gain means simple breakage and ligation is

also a possible route. Less intuitive is the structure generated by an unbalanced

translocation followed by tandem duplication spanning the break. In the bottom

left example of Figure 2.5, the blue bpj marks an initial translocation between

chr11 and chr2, with a subsequent tandem duplication in red on the derivative

chromosome—duplicating the segment containing the original translocation

bpj. Although the two [−+] motifs match the pattern generated by templated

insertion cycles shown in Figure 2.7, the unbalanced cn either side identifies

this as tandem duplication after translocation. Likewise, the bottom right

example in Figure 2.5 illustrates an initial translocation in green, followed by

tandem duplication on the derivative chromosome in purple.

Templated insertion events come in three varieties, all characterised by [−+]

motifs with accompanying copy number gain indicative of replication-based sv

cIn the order moving 5’ to 3’ along the reference strand, left to right in plotting space.
dComparing against the library of possible overlap patterns generated by Yilong Li; more

details in Li et al. (2017).
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Figure 2.5: Example plots for three classes of local + distant 2-jump: translo-
cation with foldback; translocation with inverted insertion; and translocation
with overlapping tandem duplication. The transformation between germline
segment order and the somatic rearrangement is annotated below, with carets
to denote breakpoint junctions between non-contiguous reference segments,
parentheses to indicate inverted segments, and a forward-slash to separate
different chromosomes. The intermediate structure is included for translocation
plus tandem duplication.
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Figure 2.6: Example plots for chains of templated insertion, where two distant
loci are joined by one or more templated inserts ([−+] motif). The trans-
formation between germline segment order and the somatic rearrangement is
annotated for the simplest example, with carets to denote breakpoint junctions
between non-contiguous reference segments, parentheses to indicate inverted
segments, and a forward-slash to separate different chromosomes. Note that
the original locus of the insert segment (yb) remains intact.

formation. Insertion chains, shown in Figure 2.6, link two distant loci through

a path of one or more templated inserts. The overall derivative structure is

an unbalanced translocation, with a chain of distant segment/s copied into

the join. Insertion bridges and cycles, shown in Figure 2.7, both loop back to

the original locus. In a bridge event, the point of return is after the point of

departure—leaving a deletion on the host chromosome with a chain of distant

segment/s copied into the gap. In a cycle event, the point of return is behind

the point of departure, thus re-replicating a segment on the host to generate

a tandem duplication with a chain of distant segment/s copied in-between.

The symmetry of bpj and cn generated by templated insertion cycles means

the identity of the host chromosome cannot be determined by wgs. For all

templated insertion events, the original loci of the insert segments remain intact.

This specific definition of templated insertion events is the first of its kind in

either somatic or germline genome studies.
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Figure 2.7: Example plots for bridges and cycles of templated insertion ([−+]
motif). The ‘bridge’ events insert one or more templated inserts into a gap ([+−]
motif) on the host chromosome. The ‘cycle’ events insert one or more templated
inserts between a local duplication on the (unknown) host chromosome. The
transformation between germline segment order and the somatic rearrangement
is annotated for the simplest examples (detail in previous figure legends).
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Figure 2.8: Example plots for chains and cycles of chromoplexy. The ‘chain’
events involve one or more footprints of balanced translocation ([+−] motif)
that start and end in isolated breakpoints (unbalanced translocation). The
‘cycle’ events involve three or more footprints of balanced translocation ([+−]
motif) in a closed loop (all derivatives are balanced). The transformation
between germline segment order and the somatic rearrangement is annotated
for the simplest examples (detail in previous figure legends).
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Finally, Figure 2.8 shows chromoplexy events characterised by [+−] motifs with

accompanying copy number loss—extending the simple balanced structure of

reciprocal translocation to three or more loci. Chromoplexy chains start and end

in unbalanced translocation, connected to partners in balanced translocation

motifs. Chromoplexy cycles are a complete loop of three of more balanced

translocation motifs, with all breakpoints finding a ligation partner within the

closed set. As discussed in the supplementary methods of Li et al. (2017), repair

at balanced translocation breakpoints can sometimes result in short [−+] motifs

instead of the canonical [+−] pattern, and these can only be distinguished

from short templated insertions by the presence of reads extending through

the other break position.

2.3 Initial census of SV events

The detailed classification of sv structures in 2559 pcawg samples allows for a

comprehensive census of sv prevalence across individual cancers and different

histology groups.

2.3.1 SV prevalence by histology

Figure 2.9 presents an overview of all major sv class frequencies in cancer

samples grouped by histology. Overall, liposarcoma has the greatest sv burden

with a median of 825 bpj per sample (iqr 549–1195), followed by ovarian

adenocarcinoma and osteosarcoma with per-sample bpj medians of 231 (iqr

157–317) and 195 (iqr 110–390) respectively. At the other extreme, myelo-

proliferative neoplasms have the lowest sv burden with a median of 0 bpj per

sample (iqr 0–0.5), followed by pilocytic astrocytoma and benign bone cancerse

with per-sample medians of 1 (iqr 1–2) and 2 (iqr 0–6) bpj respectively.

In most histology groups, over 40% of all bpj occur in complex unexplained

clusters, with particularly high rates in liposarcoma (96%), glioblastoma multi-

forme (85%), osteosarcoma (80%), and melanoma (77%). Cancer types with low

rearrangement burden are the major exception to this general preponderance

of complex sv. For example, the cll cohort (median 5 bpj per sample) has a

relatively high proportion of simple deletions (50% of all bpj, compared to 34%

eThe benign bone cancers include cartilaginous neoplasm, osteoblastoma, and osteofibrous
dysplasia.
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Figure 2.9: The number of classified breakpoint junctions across samples
grouped by cancer histology, with the number of samples indicated in paren-
theses. Histology groups are sorted by the median number of bpj per sample.
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complex). Strikingly, 53% of bpj in the pilocytic astrocytoma cohort (median

1 bpj) are tandem duplications, compared to just 8% complex; upon inspec-

tion, the vast majority of the tandem duplications generate the characteristic

KIAA1549–BRAF fusion driver.

Deletions explain the greatest fraction of classified bpj, and make up a par-

ticularly high proportion of all bpj in colorectal adenocarcinoma (36%), head

squamous cell carcinoma (35%), and B-cell non-Hodgkin lymphoma (33%).

Just below deletion in overall frequency, tandem duplications are most enriched

in adenocarcinomas of the female reproductive tissues—ovary (32% of all bpj),

uterus (32%), and breast (23%)—as well as stomach (26%). Similarly, the three

histology groups with the highest overall proportion of templated insertion bpj

are ovary (5.8%), uterus (4.1%), and breast (3.4%).

Overall, only 8.5% of translocation events are reciprocal (rather than unbal-

anced), although the reciprocal fraction is significantly greater in thyroid (6 out

of 9), glioblastoma (18 out of 47), lymphoma (43 out of 124), and prostate (75

out of 228)f. In contrast, liver cancer is significantly skewed towards unbalanced

events, with only 22 reciprocal translocations observed from 755 total.

The preference for reciprocal translocation in the relatively quiet thyroid genome

extends to reciprocal exchange at several loci in chromoplexy events. Astonish-

ingly, 14% of bpj in thyroid adenocarcinoma are attributed to chromoplexy,

although the small sample size and low sv burden mean this amounts to only

23 total bpj across five (out of 48) samples. Nevertheless, this represents

an enormous enrichment for balanced chromoplexy, with the next highest

proportions of bpj classified as chromoplexy in pilocytic astrocytoma (1.6%),

oligodendroglioma (1.5%) and prostate adenocarcinoma (1.1%)g.

2.3.2 SV prevalence by sample

The number of bpj across samples within the same histology class often varies

by more than two orders of magnitude, illustrated in Figure 2.10 and Figure D.2.

For example, in the osteosarcoma cohort, the two least rearranged samples

have fewer than 10 identifiable bpj, whereas, at the other extreme, the two

most rearranged samples have more than 850 bpj.

fTwo-sided binomial test against 0.085 null hypothesis, reporting significant results below
0.001 Benjamini–Hochberg-corrected fdr.

gAlthough only 1.1% of prostate cancer bpj are classified as chromoplexy under the
stringent definition used in this section, many of the complex unexplained clusters in prostate
probably derive from a chromoplexy-type origin, as discussed in Chapter 5.
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Figure 2.10: Per-sample counts of complex (lower) and classified (upper)
breakpoint junctions for esophageal adenocarcinoma, osteosarcoma, ovarian
adenocarcinoma, and glioblastoma multiforme. The lower plot for complex bpj
is on a different scale to the upper plot for classified bpj.



40 Chapter 2. Census of rearrangement in 2500 cancer genomes

In some histology groups, the number of complex bpj mildly correlates with the

number of classified bpj—for example, prostate, uterus, and stomach all have

Spearman rank correlations above 0.65 (Figure D.3). However, this correlation

is weak or non-existent in most cancer groups, and many samples with a high

burden of complex bpj have very few sv classified with simple structure.

Some samples are particularly biased towards one sv class. For example, of

the 646 samples with more than 50 classified (not complex) bpj, 55 samples

have more than 80% of their classified junctions assigned to the same type (36

to deletion, 17 to tandem duplication, and 2 to unbalanced translocation).

To find sample covariates associated with sv burden, I considered the 13 his-

tology groups with 40 or more samples and a median bpj count above ten

(1607 samples total). For each separate histology group, I fitted a quasi-Poisson

linear regression between a set of covariates and the number of classified or

complex bpj (two separate regressions per histology). The covariates were

donor age, mean wgs coverage of the tumour, driver status at genes of inter-

esth, presence of microsatellite instability (msi), and whole genome duplication.

Each categorical variable was only included in the histology-specific model if

present in at least five samples. Any outlying samples with Cook’s distance

greater than one were excluded from the model fit. Finally, the p-values of the

regression coefficients were adjusted for multiple testing across all histologies,

and reported as fdr-adjusted q-values (Benjamini–Hochberg method).

Table 2.3 presents the histology-specific covariate–sv associations below a 10%

fdr cut-off. Age is a positive predictor of simple rearrangement burden in

prostate cancer, but does not emerge as a significant factor in any other group.

Msi does not significantly relate to sv burden in any of the five histology groups

with sufficient msi samples to test. As expected, higher rates of rearrangement

are associated with biallelic BRCA loss, TP53 mutations, and whole genome

duplication in several tissues. Driver mutations in the NEAT1 long non-

coding rna are associated with higher rates of complex sv in esophagus and

simple sv in prostate and liver. Promoter mutations at the WDR74 gene

have a particularly strong correlation with complex bpj in B-cell non-Hodgkin

lymphoma. The prospect of a significant link between rearrangement burden

and non-coding disruptions in rna genes or promoter regions exemplifies the

novel findings made possible by wgs data.

hThe gene set considered was the top 40 most commonly annotated drivers (only consid-
ering snv and indel mutations) from the pcawg driver catalogue described by Sabarinathan
et al. (2017). An additional variable registered biallelic loss of BRCA1 or BRCA2 in germline
and/or soma. Genes were only included in histology strata with five or more affected samples.
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In the liver cancer cohort, the depth of sequencing coverage positively correlates

with the number of simple and complex bpj identified, perhaps indicating a

tendency towards false negatives in lower coverage samples and/or false positives

in higher coverage samples. On the other hand, coverage may simply be a

proxy for some hidden variable/s unevenly distributed across the constituent

projects, as the sub-cohorts of liver cancer from France and the Riken center in

Japan have lower coverage (range 31–49×) than the sub-cohorts from the USA

(range 55–80×) or the Japanese National Cancer Centre (range 33–126×).

Table 2.3: Significant associations between sample covariates and the number of
classified or complex bpj in a histology group. The effect size (ES, interpreted
as linear effect on the natural logarithm of the mean) is estimated by quasi-
Poisson multivariate linear regression, stratified by histology and printing only
those associations with Benjamini–Hochberg corrected q-value (Q) below 0.1
(121 other rows not shown). The number of samples with each categorical
variable is indicated in parentheses.

Classified bpj Complex bpj
Histology Variable ES Q ES Q

Prost-AdenoCA(199) Age 0.05 0.000 *** 0.02 0.195
Panc-AdenoCA(230) BRCA bi(13) 1.16 0.000 *** -0.52 0.471
Breast-AdenoCA(192) BRCA bi(18) 0.80 0.078 -0.29 0.651
Ovary-AdenoCA(109) BRCA bi(22) 0.50 0.042 * -0.13 0.730
Prost-AdenoCA(199) BRCA bi(5) 1.15 0.013 * 0.53 0.439
Liver-HCC(312) CTNNB1(80) -0.47 0.117 -0.84 0.006 **
Eso-AdenoCA(87) NEAT1(12) 0.43 0.237 0.55 0.088
Prost-AdenoCA(199) NEAT1(12) 0.92 0.000 *** 0.41 0.374
Liver-HCC(312) NEAT1(91) 0.55 0.004 ** 0.11 0.764
Skin-Melanoma(106) NRAS(25) -0.36 0.295 -1.13 0.026 *
Prost-AdenoCA(199) PTEN(10) 0.59 0.089 0.33 0.541
Liver-HCC(312) SeqCover 0.02 0.003 ** 0.02 0.001 ***
Panc-AdenoCA(230) SF3B1(6) 0.73 0.078 -0.34 0.764
Skin-Melanoma(106) TERT(53) -0.31 0.247 -0.65 0.099
Breast-AdenoCA(192) TP53(100) 1.14 0.000 *** -0.08 0.859
Panc-AdenoCA(230) TP53(172) 0.29 0.295 0.76 0.005 **
Uterus-AdenoCA(42) TP53(30) 1.37 0.087 0.99 0.201
Liver-HCC(312) TP53(99) -0.01 0.982 0.47 0.039 *
Lymph-BNHL(107) WDR74(13) -0.11 0.894 1.36 0.001 ***
Stomach-AdenoCA(68) WGD(29) 1.28 0.008 ** 0.97 0.082
Skin-Melanoma(106) WGD(58) 0.56 0.013 * 0.49 0.203
Ovary-AdenoCA(109) WGD(66) 0.39 0.117 0.50 0.014 *
Liver-HCC(312) WGD(77) 0.34 0.194 0.51 0.024 *
Panc-AdenoCA(230) WGD(90) 0.38 0.078 0.27 0.192
Breast-AdenoCA(192) WGD(95) -0.03 0.938 0.63 0.006 **

BRCA bi is biallelic BRCA1 or BRCA2 loss including germline status. SeqCover is the

tumour sample mean coverage. WGD is whole genome duplication.
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Figure 2.11: Number of bpj in all templated insertion and chromoplexy events.
Only chromoplexy chains have two bpj because the minimal chromoplexy
cycle is classified as reciprocal translocation and the minimal chromoplexy plus
insertion cycle is classified as insertion bridge.

2.3.3 Length of templated insertions and chromoplexy

Setting aside the complex unexplained clusters, most simple sv classifications

outlined in Table 2.2 refer to a specific configuration of one or two bpj. The

exceptions to this are the templated insertion and chromoplexy classifications

which involve two or more bpj, as tallied in Figure 2.11.

The shortest events in the chromoplexy group are chains of two bpj forming

one [+−] motif and two singleton ends. This minimal case may be a poor

representation of the chromoplexy term, originally defined for several dsb

positions repaired through balanced exchange. Instead, it may be preferable

for future classification schemes to regard such events as another translocation

variant (perhaps ‘split’ translocation), where the two sides of one dsb ligate to

different partners, without the chromoplexy hallmark of multi-locus reciprocity.

For templated insertion, the longest observed events are a bridge of eight bpj

(Figure 2.12, in cervix), two cycles of seven and six bpj (Figure 2.13, in uterus

and pancreas), and one chain of five bpj (not shown, in uterus)i. The pancreatic

and both uterus samples also have three to five additional and independent

templated insertion events in other genome regions.

iNone of the four samples with these long templated insertions are annotated with any
germline or somatic mutations or copy loss affecting BRCA1 or BRCA2.
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The insertion bridge in Figure 2.12 copies seven distant genome segments into

a break on chr16 in a cervical squamous cell carcinoma, coinciding with the

CLEC16A genej. Interestingly, the longest insertion ‘cycle’ (Figure 2.13) has

unbalanced cn estimates either side of the event on chr3 and chr21. If these

cn estimates are correct, then a more logical mechanistic explanation is a long

templated insertion chain forming an unbalanced translocation between chr3

and chr21, with a subsequent tandem duplication spanning the entire set of

inserted fragments (the bpj in purple would be the tandem duplication, similar

to the translocation and tandem duplication example in Figure 2.5).

For chromoplexy, the longest observed events are one cycle of six bpj and ten

cycles of five bpj (mix of pure chromoplexy as in Figure D.4 and chromoplexy

with insertion as in Figure D.5), whereas the four longest chains comprise four

bpj (one illustrated in Figure 2.8). Some chromoplexy classifications involve

multiple adjacent [+−] motifs on the same chromosome, and may involve local

breakage in addition to the balanced exchange between distant loci on different

chromosomes or arms.

jCLEC16A is annotated by the cosmic database (Forbes et al., 2015) as having over-
expression in 6% and under-expression in 2% of cervical cancers. CLEC16A polymorphisms
are associated with multiple sclerosis and type 1 diabetes (Soleimanpour et al., 2014).
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As the current sv classification scheme for chromoplexy and templated insertion

requires all [+−] and [−+] motifs to be isolated in separate footprint divisions,

some similar sv patterns obfuscated by additional local break sets are consigned

to the complex unexplained bpj set. Larger events with profiles reminiscent of

chromoplexy or templated insertion are presented in Chapter 5.

2.4 Size distribution of SV classes

Event size is the simplest structural property, yet a historic lack of appropriate

sv classification methods for wgs data have prohibited structurally-aware

size analysis across a pan-cancer cohort. The existing literature on cna size

registers the aggregate effect of many heterogeneous and complex rearrangement

mechanisms, and offers little insight into the underlying event properties.

Tandem duplication and deletion size is a known correlate of BRCA status in

breast cancer (Nik-Zainal et al., 2016), indicating that event size distribution

is a characteristic readout of the mutational mechanism.

2.4.1 Deletion and tandem duplication

The overall size distributions for deletion and tandem duplication are multi-

modal, with recurrent peak positions shared across different histology groups,

even as their relative contribution varies (Figure 2.14). For example, deletion

size peaks around 2 kb and 160 kb in most cancer types, and is dominated by

the small peak in lung squamous cell carcinoma, by the large peak in colorectal

adenocarcinoma, and is quite evenly apportioned in liver and stomach cancers.

Peak duplication sizes are not as consistent across all cancer types, with the

striking exception of shared modes around 8 kb and 300 kb in breast, ovary, and

prostate. The tandem duplication pattern is not so bi-modal in other tissues,

but varies between large events over 100 kb in uterus and pancreatic endocrine

cancers, and smaller events below 50 kb in cervical and colorectal cancers.

To assess whether these cohort-level patterns emerge from a consistent multi-

modal distribution preserved within individual samples or the summation of

sample-specific size preferences, I set out to cluster the constituent samples.

Running separate analyses for deletion and tandem duplication, I considered

only those samples with 30 or more events, in histology groups with at least
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Figure 2.14: Deletion and tandem duplication size distributions over a log10

scale. Histology groups are sorted by total number of events in the cohort. The
median number of events per sample is annotated in the top right for each
group. Guide lines are marked at 2 kb and 160 kb for deletion (A), and 8 kb
and 300 kb for tandem duplication (B).



2.4. Size distribution of SV classes 47

five such samplesk. Then, I performed hierarchical agglomerative clustering

using the earth mover’s distancel between samples’ size distributions, cutting

clusters at the complete linkage threshold of 0.8m.

Figures 2.15 and 2.16 illustrate the deletion and tandem duplication size

distributions in a subset of individual samples randomly chosen to represent

each cluster. Events within a sample are predominantly drawn from a uni-

modal size range, often with narrow variance. Of the 14 samples in deletion

‘cluster 7’ with extremely large events spanning hundreds of kilobases, 13

are pancreatic cancers, revealing a specific large deletion phenotype almost

unique to that tissue. The largest tandem duplications are found in eight

samples assigned to ‘cluster 5’, with some degree of bimodality and an average

event frequency well above the norm. For example, one unusual liver sample

(SA269323) has 574 tandem duplications with an inter-quartile size range of

609–1710 kb (subset plotted in Figure D.6). Upon inspection, these events are:

evenly distributed across the genome; mostly (70%) agreed upon by all four

calling algorithms; have accompanying cn support (99% logical); and therefore

appear to be real events. At the other extreme of small events, two outlying

prostate cancers have deletions (SA530428; SA506736) and tandem duplications

(SA530428) almost exclusively smaller than 2 kb. Upon inspection, these events

are: evenly distributed across the genome; mostly (> 80%) returned by only

two callers (predominantly BRASS+SvABA); have somewhat unreliable cn

support (∼ 60% logical); and are possible false positives (although cn calling is

inherently difficult in small segments and may be inaccurate even in real sv).

Confirming the pattern in breast cancer (Nik-Zainal et al., 2016), 21 of 24

samples with biallelic BRCA1 loss in the tandem duplication analysis belong to

the small size ‘cluster 2’ group, while all 34 samples with biallelic BRCA2 loss

in the deletion analysis are assigned to the small size ‘cluster 3’ or ‘cluster 4’n.

These results suggest that multiple mechanisms generate deletions or tandem

duplications, with individual samples predominately affected by one pathway

acting over a tell-tale size distribution.

k538 samples included for deletion; 288 samples included for tandem duplication.
lThe earth mover’s distance measures the minimal work (mass × distance) to transform

between two probability distributions. Here, I use bins at 0.25 intervals along a log10 scale.
mIn context, the 0.8 earth mover’s distance means that any two samples in the same

cluster must be similar enough that if 60% of their size distribution is the same, then the
remaining 40% must be within a factor of 100. Equally, if 20% of their size distribution is
the same, then the remaining 80% must be within a factor of 10.

nFor tandem dup, only one of four BRCA2 samples is assigned to cluster 2 (small dup).
For deletion, 14 of 21 BRCA1 samples are assigned to clusters 3/4 (small deletion).
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Figure 2.15: Samples with 30 or more deletions, clustered by their size distribu-
tion. Clusters are labelled with the inter-quartile deletion size range (pooling
samples in the cluster), and the number of samples in parentheses. (a) Deletion
size distributions of randomly chosen individual samples from each cluster,
coloured by the median size, with number of deletions annotated top-right.
(b) The number of samples allocated to each cluster, shaded by the proportion
of samples in each histology group.
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Figure 2.17: Segment size distribution for reciprocal inversion and local 2-jumps,
shaded by the size of the middle segment. Pearson correlation coefficients
between segment lengths on a log10 scale are annotated top left.

2.4.2 Reciprocal inversion and local 2-jumps

The sv structures defined by specific configurations of two inverting bpj are the

reciprocal inversion, and three sub-classes of ‘local 2-jump’. In each case, the

event size is comprised of three distinct segments between adjacent breakpoints,

as summarised in Figure 2.17. In all four structures, the two outermost segments

(such as the gaps bordering a reciprocal inversion or the duplications in the dup–

inv-dup or dup–trp–dup) are modestly correlated in size, presumably reflecting

some mechanistic symmetry, such as the length a mmbir D-loop travels before

dissociating and triggering another round of strand invasion. Although the

correlations suggest some internal consistency within each event, the overall

size range varies massively, from about 1 kb to over 100 Mb. Some reciprocal

inversion classifications consist of a tiny (< 1 kb) inverted segment captured in

a much larger deletion spanning several megabases, and, from a copy number

standpoint, might alternatively be considered a variant of canonical deletion

rather than a true reciprocal inversion as classically imagined.
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2.4.3 Templated insertion

Regarding templated insertion sv, the insert fragments ([−+] motifs) are re-

markably bi- or tri-modal in every histology group, with recurrent peaks around

200 bp, 8 kb, and 300 kb (Figure 2.18A). Intriguingly, these larger two peak po-

sitions match those in the tandem duplication analysis, and implicate common

underlying ‘template and replicate’ mechanisms which have previously been

characterised in the bimodal context of short and long tract gene conversions

(Nagaraju et al., 2009; Yim et al., 2014).

In general, inserts in cycle events tend to draw from the larger sizes, whereas

inserts in bridge events are predominantly under 1 kb. The pattern varies across

cancer types, with cycles of small inserts being relatively common in ovary,

breast, and prostate, but quite rare in uterus, glioblastoma, and esophagus.

Insertion bridge events are also characterised by deletion size on the host

chromosome ([+−] motif), with the insert fragment/s slotting in the gap

(Figure 2.18B). This gap is typically smaller than 1 kb, with little variation

across cancer types. If the mechanism of formation involves template switching,

it seems the event most often resolves with polymerase re-start just after the

point of departure, causing minimal sequence loss.

Events involving two or more insert fragments (all cycles, plus bridges and

chains with ≥ 3bpj) fall into two distinct clusters (Figure 2.18C): those with

highly correlated insert sizes, and those with at least one small (< 1 kb) and

one arbitrarily-sized insert. I found no obvious associations between these

two clusters and either BRCA status, sub-class (chain, cycle, or bridge), or

histology.

As shown in Figure 2.18D, most events with three or more large (> 1 kb) inserts

have extremely consistent internal size, even as the mean size varies between

events. There are also many events with a mix of small and large insert sizes.

While the distinctive copy gain patterns imply that most templated insertion

events are generated by a replication-based mechanism, some intra-chromosomal

insertion chains of two bpj (not shown) are also consistent with dsb-mediated

deletion with a small intervening fragment rescued in its native orientation in

the junction (similar to the deletion-type reciprocal inversion cases discussed

in the previous section). Future classification methods may wish to separate

this special case.
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Figure 2.18: (a) Size distribution of templated inserts ([−+] motifs) by sub-class.
(b) Size distribution of insertion bridge gaps ([+−] motifs). (c) Correlation
between the smallest and largest insert in the same event (no chains/bridges of
only two bpj). (d) Events with three or more inserts, sorted by size composition.
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Figure 2.19: Gap sizes of [+−] motifs in (a) reciprocal translocation, (b) chro-
moplexy, and (c) correlation within the same event.

2.4.4 Gaps in reciprocal translocation and chromoplexy

The gap size ([+−] motif) in reciprocal translocation and chromoplexy is

typically smaller than 1 kb, but occasionally stretches beyond 100 kb in this

classification scheme (Figure 2.19). Translocations with larger stretches of

lost sequence are particularly prevalent in prostate cancer and lymphoma,

and possibly arise from ligation repair across two sets of two correlated break

positions rather than extreme resection at a pair of individual dsbs.

Within individual events, the gap size at distant loci is modestly correlated.
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Gap size correlation may result from the underlying biology—such as nuclease

activity levels eroding free dna ends—or bias imposed by the bpj cluster-

ing method which only groups breaks within a sample-specific threshold by

orientation type.

2.5 Homology at the breakpoint junction

With the exception of nhej, most dsb repair pathways rely on some degree

of sequence homology to facilitate annealing or strand invasion. Mmej and

mmbir only require a few bases of homology, whereas ssa, bir, and hr require

much longer matching (details unclear, see Renkawitz et al. (2014) and Anand

et al. (2017)). Wgs data provides enough sequence detail at each breakpoint

junction to detect short runs of homology, although this is somewhat muddied

in the pcawg dataset where consensus bpj calls are merged from four different

callers. Despite some slight confounding from different sv calling algorithms,

the consensus estimates are sufficient to indicate the relative degree of mh

enrichment across samples and sv classes. Longer tracts of potentially imperfect

homology are not reported with the bpj calls, but could be estimated in future

research by comparing the reference genome sequence either side.

2.5.1 Microhomology by SV class and histology

To analyse the extent of microhomology enrichment in the pcawg cohort, I

modelled mh as an ordinal variable from zero to four-plus bases using pro-

portional odds (cumulative logit) regression with histology group as the sole

predictor in separate strata for each sv class (excluding complex unexplained

bpj). In each model fit, the baseline mh level was set by 100,000 dummy

observations from the background of random position pairs in the callable

genome spaceo. For this analysis, I pooled all histology groups with fewer than

one thousand classified bpj into a mixed ‘Other’ category, and only included

histologies with at least 30 bpj in the sv class stratum. To correct for multiple

testing and p-value inflation from the dummy sample size, I ran a conservative

oIn the callable genome space (see Section 3.1.1), the empirical mh distribution at random
position pairs is Pr(0) = 0.743, Pr(1) = 0.187, Pr(2) = 0.050, Pr(3) = 0.014, Pr(≥ 4) = 0.006.
Curiously, this empirical distribution has slightly more one-length mh than the theoretical
proportion in completely random sequence. This possibly emerges because of microsatellite
depletion in callable genome areas, and overall GC bias.
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Bonferroni adjustment over the coefficient p-values from all model fits, and

report significant mh enrichment at a 0.01 fwer threshold.

Figure 2.20 shows the mh distribution for each sv class and cancer type.

Randomly matched junctions have one or more mh bases about 25% of the

time, so any significantly larger proportion indicates activation of non-nhej

repair. Overall, ovarian cancer has the greatest degree of mh enrichment,

while prostate cancer has the least. Many distributions peak at two bases,

indicating a mechanistic role for very short mh. Reciprocal translocation is

the only sv class with no significant mh, suggesting that nhej is perhaps the

only major mechanism of reciprocal translocation. All other sv classes have

some degree of mh enrichment, from low levels observed in reciprocal inversion

and unbalanced translocation to high levels observed in tandem duplication,

foldback, and many other structural forms. Chromoplexy—as the multi-locus

extension of the no-mh reciprocal translocation class—does have more mh

than random expectation, perhaps indicating a greater time delay between dsb

formation and repair, during which time strand resection triggers a switch to

mmej mechanisms. Surprisingly, of the sv classes hypothesised to result from

bir/mmbir—that is templated insertion, local 2-jumps, and some fraction of

tandem duplications—about half of these events have no discernible mh. This

may reflect: the ability of low-fidelity translesion polymerases to create small

de novo mh (Sakofsky et al., 2015; Ceccaldi et al., 2016); failure to report

homology interspersed with mismatches; and/or the insertion of non-templated

bases which some sv callers treat as a mutually exclusive feature to mh.

2.5.2 Microhomology by sample

To roughly gauge mh variation across samples, I considered deletion and tandem

duplication in four cancer types (esophagus, ovary, pancreas, and prostate) and

compared the samples with the most events against the pool of all other samples

in the same histology group using the proportional odds model described above

(without the dummy background observations).

As shown in Figure D.7, most samples have reasonably consistent mh distribu-

tions, with a few notable exceptions. One pancreatic and five prostate samples

have considerably greater mh in their tandem duplications, a signature of

sample-specific repair preferences. The underlying reason is unclear, although

two of the high-mh prostate examples are known to have biallelic BRCA loss.

Interestingly, some samples have considerably less mh than the pool of other
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Figure 2.20: Distribution of microhomology at the breakpoint junction for
different sv classes, separated by cancer histology. The magnitude of significant
enrichment (compared to random background expectation) is coloured by the
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samples. Although this could be interpreted (up to a point) as a preference for

nhej, about a quarter of random junctions should have at least one base of

homology. For the samples with significantly less mh, the difference may be

attributed to the variable treatment of non-templated base insertions by the

different sv callers. Many sv events insert a few random nucleotides into the

junction, which may be considered part of the potential mh sequence by some

algorithms, and mutually exclusive to mh by others. In the four examples with

significant mh depletion (deletion in one esophagus and two prostate samples;

tandem duplication in one esophagus), the vast majority of events are returned

by only two sv callers (in a variety of combinations), perhaps indicating some

systematic problem with breakpoint reconstruction, or loss of mh information

due to different modelling approaches and the consensus reporting method.

2.6 Kataegis and SV classes

Kataegis regions are dense hypermutation clusters of several snv in far closer

proximity than chance expectation (Nik-Zainal et al., 2012). Most clusters are

attributed to APOBEC cytidine deaminase activity targeting single stranded

dna (Taylor et al., 2013), accounting for the observed signature of strand-

coordinated C>N snv in a TpC context with frequent proximity to sv breakpoints.

Nik-Zainal et al. (2016) recently described a non-APOBEC signature in just 1%

of all breast cancer kataegis foci, mostly consisting of T>G and T>C mutations

with a pattern reminiscent of translesion polymerase η activity. This finding was

further investigated by Supek and Lehner (2017), who propose that polymerase η

participates in error-prone mismatch repair following carcinogen exposure.

Although kataegis clusters have long been associated with rearrangement break-

points, a lack of appropriate sv classification has prevented structurally-aware

analysis of hypermutation frequency around different sv classes.

2.6.1 Defining kataegis regions

To correlate kataegis events with sv in the pcawg cohort, I searched for

hypermutation clusters by fitting a piecewise constant modelp to the sequence

of inter-snv distances on a log10 scale, one chromosome at a time. All segments

pPiecewise constant fit assuming Gaussian noise with constant standard deviation, using
the narrowest-over-threshold method from Baranowski et al. (2016).
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with at least five snv and a mean inter-snv distance less than 1 kbq were

defined as kataegis, with any gaps over 10 kb dividing separate clusters. Each

cluster was associated with the closest sv breakpoint up to a maximum distance

of 50 kb, and labelled as APOBEC type if more than 70% of the snv were C>N

or G>N. To avoid false positive clusters and recurrently mutated immune loci,

I excluded 39 samplesr with extremely high mutational burdens (more than

150,000 snv) as well as the entire lymphoma and cll cohorts.

2.6.2 Analysing kataegis in the PCAWG cohort

In total, 9149 kataegis foci are spread genome-wide (no recurrent hotspots) over

1281 samples, with a median of four foci per sample (range 1–124) and a median

of eight snv per cluster (range 5–169). Figure 2.21 illustrates example kataegis

events in fifteen samples. The vast majority of clusters have the distinctive

APOBEC signature (91.4%, in 1175 samples), while just 790 clusters (8.6%, in

334 samples) have an alternative signature shown in Figure 2.22A. As previously

observed, this non-APOBEC kataegis signature bears some resemblance to the

polymerase η pattern (Alexandrov et al., 2013b; Nik-Zainal et al., 2016), but is

by no means an exact recapitulation and may instead derive from one or more

processes yet to be determined. Further investigation would need to apply

signature decomposition methods (discussed in Chapter 4) to obtain detailed

kataegis subdivisions by mutational process, following a similar logic to Supek

and Lehner (2017).

The distribution of kataegis classes in each major histology group is shown in

Figure 2.22B. Bladder transitional cell carcinomas have the highest average

kataegis count per sample by a wide margin, strongly biased towards APOBEC

clusters without a nearby sv breakpoint. Squamous cell carcinomas (scc) from

all tissues show a similar predilection for high APOBEC kataegis independent

of svs. In contrast, sarcomas, which also have a particularly high APOBEC

cluster rate, have a very strong connection between kataegis and sv breakpoint

positions. Of the twelve samples with more than 50 kataegis foci, six are

bladder cancers, three are scc (two head, one lung), two are liposarcomas, and

one is a breast cancer. Kataegis foci with the other (non-APOBEC) signature

are mostly found in stomach, esophageal, and liver cancers.

qIn rare cases where the median inter-snv distance m on the chromosome was under
15 kb, the kataegis threshold was lowered from 1 kb to m

15 , down to a lower bound of 100 bp.
rExcluded hypermutator samples included 25 melanoma, 8 colorectal, 2 lung, and 4 other

cancers.
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Figure 2.21: Fifteen chromosomes with identified kataegis regions, marked by
dark gray stars along the lower edge. Rearrangement bpj in associated events
are marked by vertical lines in gray (complex sv), blue (deletion sv) or pink
(other sv class; reciprocal inversion in the prostate example and unbalanced
translocation in the ovary example).
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Figure 2.22: Kataegis distributions in the pcawg cohort. (a) Somatic snv
distribution in a trinucleotide context around the pyrimidine reference base
for two types of kataegis cluster: APOBEC type (mostly C>N in TCN), and
other. (b) Number of kataegis regions in each histology group, shaded by snv
signature and proximity to sv breakpoint (within 50 kb or not), and sorted
by proportion of APOBEC type clusters. The number of considered samples
is indicated in parentheses (accounting for hypermutator exclusion), and the
mean kataegis count per sample is annotated in red.
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Within a cut-off distance of 50 kb, 62% of APOBEC and 32% of other clusters are

close to an identified sv breakpoint. The vast majority of these associations are

very close indeed, usually well within 1 kb (Figure 2.23D). Most sv-associated

APOBEC clusters are found around complex sv events (78%) or deletions

of any size (14%), with a marked depletion around tandem duplicationss as

shown in Figure 2.23A. Presumably, APOBEC enzymes mutate single stranded

dna exposed by resection at the dsb. The non-APOBEC kataegis regions

are also found at complex sv events (52%), and have a specific bias towards

small (< 100 kb) deletions (38%) (Figure 2.23A,E). These clusters are also set

apart by their lack of strand-coordination (Figure 2.23C), indicating that single

stranded dna is not the major substrate for this alternative process. Supek and

Lehner (2017) attribute most of these clusters to mismatch repair error, but

that does not necessarily account for their frequent sv association. I conjecture

that the small deletion preference may point to translesion polymerase restart

of stalled replication forks, possibly coupled with error-prone mismatch repair.

Kataegis is notably absent from most tandem duplication, local 2-jump, and

templated insertion events, despite the hypothesised role for mmbir generating

mechanisms known to expose single stranded dna with a vulnerability to

APOBEC mutagenesis (Sakofsky et al., 2014). Perhaps single strand protection

(by RPA binding) is particularly efficient in these contexts, although complex

template switching events consigned to the unexplained sv bin may yet be

found to have a kataegis association.

For those thousands of kataegis foci with no associated sv event, the mutation

clusters may mark sites of competent break repair, or APOBEC targeting

of transcribed or lagging strand dna, both of which are general—but not

necessarily kataegis—APOBEC biases described by Haradhvala et al. (2016)

and Morganella et al. (2016).

Visual inspection of snv plots like those in Figure 2.21 reveals that my current

method of kataegis calling occasionally misses some adjacent clusters, and

so the analysis presented here slightly underestimates the kataegis burden,

particularly around complex sv.

sAlthough tandem duplications make up almost 17% of the total bpj set, only 1.7% of
sv-associated APOBEC clusters are near a tandem dup.
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2.7 Discussion

In this chapter, I explored a novel sv classification scheme in a pan-cancer

wgs dataset of 2559 samples, and presented a census of somatic rearrangement

classes and their structural properties.

Although the pcawg consortium strived to ensure the reliable quality of all

sequencing data and variant calling, no orthogonal validation could be meaning-

fully applied to the somatic svs. Consequently, the sensitivity and specificity of

the bpj callset is unclear. Data visualisation and cn concordance suggest the

data is optimised for high specificity; however, it is practical to assume a small

fraction are false positives from germline polymorphism or mapping/sequencing

artefacts. For example, two prostate samples had unusually small deletion calls

with atypically low evidentiary support (Section 2.4.1), and their inconsistency

with the dataset at large suggest possible false positive contamination. It is

also reasonable to assume a false negative rate of at least 5%, as short read

wgs data cannot reliably map to approximately that fraction of the genome,

even without counting centromeres and telomeres (Section 3.1.1). Although all

samples were processed with the same bioinformatics pipeline, the underlying

differences in sequencing centre, platform iteration, depth, and library insert

size will inevitably impart some variant detection bias across the sub-cohorts by

cancer type. All results should be interpreted in the context of these potential

data quality caveats.

The task of bpj clustering and classification fell chiefly to my colleague, Yilong

Li. In collaboration, we developed the scheme outlined in Sections 2.1.3

and 2.2.2, and classified about 45% of all bpj in the cohort. Alongside the

traditional classes of deletion, tandem duplication, inversion, and translocation,

we formalised a variety of medium-complexity sv structures in the cancer

genome for the first time, including local 2-jumps and templated insertions. Bpj

classification in highly convoluted cancer genomes is a difficult task, confounded

by complex and overlapping sv events with ambiguous phasing. Even clean

bpj calls can have more than one plausible interpretation. For example, the

relatively simple sv pattern in the osteosarcoma shown in Figure D.1 (second

row, first column) was classified as a reciprocal inversion overlapping a prior

tandem duplication, but is equally consistent with a templated insertion bridge

on one chromosome. To present this diverse array of somatic sv events, I

developed a novel plotting method in use throughout this thesis. Arguably,

the modular layout and leveraging of clean cn segments provides a more
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interpretable visualisation of complex structures than most existing approaches,

particularly the ubiquitous ‘circos’ plot.

Most bpj clusters were too large and/or cryptic to be interpreted against a

library of simple sv overlaps, and a preliminary exploration of these complex

unexplained clusters is deferred to Chapter 5. Other rearrangement phenomena

excluded from this census were aneuploidy, sv on chrY, retrotransposition (anal-

ysed separately by Rodriguez-Martin et al. (2017)), mitochondrial insertions

(Yuan et al. (2017)), and telomere length (Sieverling et al. (2017)).

Careful sv classification facilitated downstream analysis of properties and

prevalence, without confounding from heterogeneous structures. Deletion

and tandem duplication were by far the most common simple svs, together

accounting for about 80% of all classified bpj in the cohort. Among the other sv

classes, the extent of templated insertion was a revelatory finding, accounting

for just over 5% of all classified bpj across the three variant structures of chain,

cycle, and bridge that re-route the genome through as many as eight distant

loci, possibly via a mmbir template switching mechanism.

The multi-modality of sv size distributions presumably reflects structural

attributes about tad size, resection rates, replication fork dynamics, strand

invasion search, D-loop migration, and other unknown factors. The tendency

of individual samples to incur events within the same characteristic size range

suggests distinct underlying mechanisms have differential activity across samples

and tissues, depending on the nature of dna injury and subsequent repair.

Microhomology analysis implicated some level of mh-mediated repair in all sv

classes except reciprocal translocation, with (mostly minor) variation between

samples and cancer types. Even in the sv classes with the most mh-enrichment,

about 40–50% of bpj had no reported homology. This may indicate that

repair mechanisms in cancer are less reliant on mh matching than previously

expected, or reflect the failure of sv callers to estimate junction homology in

the presence of non-templated base insertions and/or a few mismatching bases.

Unfortunately, base insertion estimates could not be consolidated across the four

sv callers, and the only reported values (from SvABA) were often inconsistent

with the consensus break set, and ultimately too difficult to include.

The connection between APOBEC kataegis clusters and rearrangement break-

points was confirmed for deletion and complex events, but was rarely observed

for any other sv class. I also described a non-APOBEC kataegis signature with

a striking preference for small deletion in stomach, esophagus, and liver.
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Significant scope remains for further structural analysis of genome rearrange-

ment in the pcawg cohort. Besides extending and refining the bpj classification

procedure, further work could: quantify and improve the concordance between

bpj calls and cn estimates; identify regions of longer and imperfect junction

homology; and explore sv-connected loh as previously described for germline

local 2-jumps (Carvalho et al., 2015).
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Chapter 3

Genome properties and the rate

of rearrangement

In Chapter 2, I introduced the pcawg dataset of classified structural variants

in over 2500 cancer samples. Having previously described the properties of sv

class, size, and junction homology, I now turn to their specific location in the

genome. Somatic rearrangements in clinically-detectable cancer samples reflect

the distribution of events at generation, filtered by the forces of positive and

negative selection. In this way, the total observed sv catalogue reveals biases

about the dynamics of dna breakage and repair, and highlights particular

cancer-associated loci which recurrently drive oncogenesis through altered gene

dosage, disruption, fusion, or regulation.

When considering the distribution of pcawg sv events along the genome

(Figure 3.1), a few dozen ‘hotspots’ immediately emerge at fragile sites, immune

loci, and certain cancer genes under positive selection for rearrangement.a

Outside these anomalous genome regions, variation in the rearrangement rate

is more modest, and associates with a variety of genome properties such as

replication timing and chromatin state. In this chapter, I describe a library of

quantitative metrics to measure more than 30 properties across the genome

(Section 3.1); show the pattern of association between these properties and the

different sv classes described in Chapter 2 (Section 3.2); examine their utility

for modelling the rate of rearrangement (Section 3.3); define and analyse fragile

sites in the pcawg dataset (Section 3.4); and, finally, explore the different sv

patterns observed around cancer genes (Section 3.5).

aNote that somatic retrotransposition events were excluded from this study at the outset;
some ‘hot’ L1 elements have a comparable rate of somatic activity and would also be marked
in Figure 3.1 if retrotransposition was included.

67
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Figure 3.1: The genome-wide distribution of somatic rearrangements across
2559 pcawg samples. Each dot records the number of samples containing
a somatic sv breakpoint in a 100 kb bin. Bins with breakpoints in fewer
than three samples are excluded. A selection of peak regions with more than
50 rearranged samples are labelled for the presence of cancer genes (orange),
fragile sites (blue), and immune loci (pink). The equal chromosome facet width
means the horizontal scale is not constant across chromosomes.



3.1. A library of genome properties 69

0Gb

1Gb

2Gb

1kb 10kb 100kb 1Mb

Length of callable segment

C
um

ul
at

iv
e 

ca
lla

bl
e

ge
no

m
e 

le
ng

th

Figure 3.2: Cumulative
length of callable genome
regions, sorted by size.

3.1 A library of genome properties

3.1.1 Defining the callable genome

Before characterising the rate of rearrangement, I first defined the ‘callable’

subset of the hg19 reference genome to account for unmappable regions in

which variants are unable to be detected.

To estimate these boundaries, I ran a random collection of 200 BAM files

from pcawg normal samples through the GATK CallableLoci tool (McKenna

et al., 2010)b. Summarising results across these 200 normals, I defined the

callable genome space to be positions callable in ≥ 40% of samples, such that

non-callable tracts must be at least 100 bp in length, and callable regions at

least 300 bp.

The resulting callable genome covers 95.3% of non-N bases in hg19 (2.76 Gb,

Figure 3.2). Of the non-callable fraction, the vast majority is excluded due to

consistently poor mapping quality, less than a fifth because of low coverage,

and less than a thousandth because of excessive coverage.

Of 551,872 total breakpoint positions in the pcawg cohort, only 1102 (0.20%)

are outside this callable genome definition. As these 1102 positions are spread

across 883 different loci in 609 samplesc, I consider this a negligible discrepancy

bGATK CallableLoci v3.3-0 run with options maxFractionOfReadsWithLowMAPQ=0.25,
maxDepth=1000, and otherwise default settings.

cGrouping breakpoints within 20 kb of each other, no locus contains more than 8 break-
points in non-callable regions (worst cases: 8 breakpoints in 8 samples around IGH on chr14;
7 breakpoints in 6 samples in chr17:58061250–58088813; and 6 breakpoints in 5 samples in a
78 bp stretch on chr7:107410599–107410676 containing poly-T tracts). Only 15 samples have
more than five breakpoints outside the callable genome.
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with no strong systematic bias to affect downstream analyses, and do not filter

out these calls nor do I extend the callable genome definition to encompass them.

Strikingly, 63% of breakpoints outside the callable genome are returned by

BRASS and just one other caller, a combination matching 13.5% of breakpoints

in general. This suggests the BRASS sv calling algorithm is most vulnerable

to dubious calls in regions of consistently poor mapping quality.

3.1.2 Defining pixel metrics

I divide the hg19 (GRCh37) human reference genome (autosomes and chromo-

some X) into 3,036,315 pixels of 1 kb, and calculate a suite of metrics per-pixel

to summarise a variety of genome properties with potential relevance to the

rate of rearrangement. The metric definitions aim to optimise three desirable,

and often competing, properties: clarity of interpretation and communication;

a genome-wide distribution that is (where possible) symmetric, uni-modal, and

without extreme zero-inflation; and a preference for measuring local sequence

effects operating at short-range.

Basic sequence features

The following properties are with respect to the hg19 reference genome sequence.

GC sequence content The calculated metric is (g + c)/w where g and c

are the number of guanine and cytosine bases in the pixel, and w is the number

of known (non-N) bases in the pixel. Pixels with 50% or more unknown bases

(w < 500) are disregarded.

Sequence complexity/simplicity The calculated metric is
(∑

i x
2
i

)
/w2

where xi is the number of trinucleotide motifs of identity i in the pixel, for all

possible trinucleotide motifs.

Centromeres and telomeres The calculated metric is log10(dM + 1) where

dM is the distance in megabases to the feature (centromere or telomere).

Centromere and telomere positions are taken from the UCSC Genome Table

Browser ‘Gap’ track (Karolchik et al., 2014).
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CpG islands The calculated metric is log10(dk + 1) where dk is the distance

in kilobases to the nearest CpG island (zero for pixels containing one). CpG

island positions are taken from the UCSC Genome Table Browser (Karolchik

et al., 2014). In brief, islands are defined as segments at least 200 bp long, with

GC content above 50% and more CpG dinucleotides than expected given the

GC content. In total, CpG islands make up 21 Mb of genome (0.7%), with

median width 562 bp and median gap between islands of 27 kb.

Repeat sequences

The calculated metric for each of the following repeat types is log10(dk+1) where

dk is the distance in kilobases to the nearest annotated repeat (zero for pixels

containing a repeat). Repeat sequence annotations are from Repeatmasker

(repeat library version 20140131, hg19 genome build (RepeatMasker Open-4.0 )).

LTR retrotransposons Long terminal repeat (ltr) transposable elements

(te) are autonomous retrotransposons with characteristic direct repeats at

either end. The canonical active versions are about 5–7 kb in full, but the

annotated ltr repeats are typically much shorter (< 1 kb) remnants of historic

transposition activity. In total, the ltr family makes up 266 Mb of genome

(9%), with median width 329 bp and median gap between repeats of 1.2 kb.

L1 and L2 L1 and L2 tes (lines) are autonomous non-ltr retrotransposons

about 5–7 kb in their active form, although the annotated repeats are typically

much shorter remnants. The median annotation width is 287 bp for L1 and

146 bp for L2, in total covering 510 Mb (17%) and 111 Mb (4%) of the genome

respectively. The median gap between L1s is 470 bp and between L2s is 2 kb.

Alu and MIR Alu and mir tes (sines) are non-autonomous non-ltr retro-

transposons. Alu elements have median width of 295 bp, totalling 304 Mb of

genome (10%) with a median gap of 850 bp. Mir elements have median width

142 bp, covering 85 Mb (3%) with a median gap of 2 kb.

DNA transposons Dna transposons have a ‘cut-and-paste’ mechanism

acting directly via dna as opposed to the ‘copy-and-paste’ retrotransposon

mechanism with an rna intermediate. The canonical active versions are about

1–5 kb in full, but the annotated dna te repeats are typically much shorter
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remnants. In total, the dna transposon family makes up 109 Mb of genome

(4%), with median width 156 bp and median gap between repeats of 2.5 kb.

Simple repeats Simple repeats are runs of identical motifs (mostly 1–6 bp),

including single or di- nucleotide tracts. In total, they cover 35 Mb of genome

(1%), with median width 36 bp and median gap between repeats of 2.7 kb.

Non-B DNA forming motifs

Unless otherwise specified, the calculated metric for each of the following motif

types is log10(dk + 1) where dk is the distance in kilobases to the nearest

annotated motif in the non-B dna database (version 2.0 (Cer et al., 2013); see

review by Bacolla and Wells (2009)).

Direct repeats Direct repeats are sequences of 10–300 bp repeated directly

one or more times 0–10 bp away, with the potential to form loop structures by

misalignment. Their median length is 28 bp, median gap between annotations

is 1.5 kb, and total in the genome is 52 Mb (2%).

G-quadruplex forming motifs G-quadruplex forming motifs are four runs

of three G (or three C) bases, with 1–4 bp between each run (a subset of those

in the non-B dna database, guided by results in Piazza et al. (2015)). Their

median length is 22 bp, median gap is 7.5 kb, and total in the genome is 4.6 Mb

(0.15%).

Triplex-forming mirror repeats Triplex-forming mirror repeats are se-

quences of 10 or more bases with 90% pyrimidine (C or T) content on one

strand, repeated as a mirror up to 8 bp away. Their median length is 24 bp,

median gap is 4.5 kb, and total in the genome is 11 Mb (0.4%).

Z-DNA forming motifs Z-dna forming motifs are alternating purine-

pyrimidine tracts of 10 or more bases, excluding AT dinucleotide repeats. Their

median length is 12 bp, median gap is 3.7 kb, and total in the genome is 7 Mb

(0.2%).
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Cruciform-forming inverted repeats Cruciform-forming inverted repeats

are sequences of six or more bases repeated inversely up to 4 bp away. Their

median length is 15 bp, median gap is 365 bp, and total in the genome is 83 Mb

(3%). The calculated metric is the proportion of bases belonging to a cruciform

inverted repeat in a 3 kb sliding window (i.e. considering one pixel either side).

Short tandem repeats Short tandem repeats are sequences of 1–9 bp re-

peated perfectly three or more times with no bases between. Their median

length is 13 bp, median gap is 600 bp, and total in the genome is 46 Mb (1.5%).

The calculated metric is the proportion of bases belonging to a short tandem

repeat in a 3 kb sliding window (i.e. considering one pixel either side).

ROADMAP Epigenomics

I derive the following properties from imputed signal tracks (Ernst and Kellis,

2015) from the Roadmap Epigenomics Consortium et al. (2015). Table E.1

details the match between each tissue type in the pcawg cohort and one or

more cell lines in the roadmap database, with the average taken as a tissue-

matched metric. The tissue-matched definition is unique to the roadmap

properties; all properties derived from other data are defined once, with no

tissue-type information considered.

DNase hypersensitivity The calculated metric is the average imputed

negative log p-value in the pixel from DNase-seq experiments, with high values

indicating high chromatin accessibility (as required for binding of regulatory

proteins etc.).

RNA expression level The calculated metric is the average logRPKM value

in the pixel from rna-seq experiments. RPKM denotes reads per kilobase of

transcript per million mapped reads, so high values indicate high expression in

the tissue type.

DNA methylation The calculated metric is the average fractional methyla-

tion value in the pixel from DNAMethylSBS experiments. High values indicate

an increased tendency for CpG methylation at that locus in the tissue.
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Table 3.1: Histone mark interpretations adapted from ENCODE Project Con-
sortium (2012)

H2A.Z regulatory elements with dynamic chromatin
H3K4me1 enhancers, and downstream of transcription starts
H3K4me2 promoters and enhancers
H3K4me3 promoters and transcription starts
H3K9ac active regulatory elements, including promoters
H3K9me3 repressive mark, heterochromatin, repeats
H3K27ac active regulatory elements, promoters and enhancers
H3K27me3 repressive mark, Polycomb repression
H3K36me3 transcribed genes, especially after first intron
H3K79me2 transcribed genes, especially at 5’ end
H4K20me1 5’ end of genes

Histone marks I chose a subset of 11 (out of 31) available ChIP-seq tracks

to represent the landscape of histone modifications, as listed in Table 3.1.

These 11 tracks were used for the 25-state chromatin segmentation analysis

reported by the Roadmap Epigenomics Consortium et al. (2015). For each, the

calculated metric is the average imputed negative log p-value in the pixel.

Genome organisation

Topologically associating domains The calculated metric is log10(dk + 1)

where dk is the distance in kilobases to the nearest tad boundary taken from

a Hi-C experiment in the IMR90 cell line of normal human embryonic lung

fibroblasts (Dixon et al., 2012), lifted over to hg19 coordinates.

Lamina associated domains The calculated metric is the proportion of

bases in a lamina associated domain in a 1.001 Mb sliding window (i.e. con-

sidering 500 pixels either side). Lads are taken from a DamID experiment

by Guelen et al. (2008) in the Tig3 cell line of normal human embryonic lung

fibroblasts, lifted over to hg19 coordinates.

Nucleosome occupancy Nucleosome occupancy is the only property for

which the metric is not calculated per-pixel. Instead, for any given genome posi-

tion, the raw value is taken at base-pair resolution using nucleosome occupancy

data from a MNase-seq experiment by the ENCODE Project Consortium (2012)

in the K562 cell line of myelogenous leukaemia lymphoblasts. High signal values
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indicate core dna wrapped around a nucleosome, and low signal indicates linker

dna between nucleosomes.

Other properties

DNA replication timing For replication timing, I calculated the per-pixel

average of three wavelet-smoothed signal tracks from the ENCODE Project

Consortium (2012) summarizing Repli-seq experiments in three different cell

lines: NHEK (normal skin, ectoderm), GM12878 (normal blood, mesoderm),

and IMR90 (normal lung, endoderm). All three original tracks had a Pearson

correlation of 0.93 or higher with the average track. High values indicate early

replicating dna, and low values indicate late replicating dna.

Germline recombination rate The calculated metric is the germline re-

combination rate of the nearest snp, using data from the HapMap consortium

(Frazer et al., 2007)d.

Protein-coding genes The calculated metric is the proportion of bases in

a protein-coding gene in a 1.001 Mb sliding window (i.e. considering 500 pixels

either side). Protein-coding gene positions are taken from GENCODE v19

(Harrow et al., 2012).

3.1.3 Correlation between genome properties

As shown in Figure 3.3, there is a complex correlation structure between the

different genome properties. The nine histone marks associated with active

genes have strong positive correlations amongst themselves, and with high

DNase hypersensitivity and high rna expression. The two histone marks

associated with repressive regions have a strong positive correlation with each

other, and, curiously, a mild positive correlation with the histone marks for

active genes. High gene density correlates with early replication timing, high

GC content, low density of lamina-associated domains, and close proximity to

CpG islands and tad boundaries.

dftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/

ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/


76 Chapter 3. Genome properties and the rate of rearrangement

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
en

tr
om

er
e 

(d
is

ta
nc

e)
N

uc
le

os
om

e 
oc

cu
pa

nc
y

G
er

m
lin

e 
re

co
m

bi
na

tio
n

G
C

 c
on

te
nt

L1
 (

di
st

an
ce

)
R

N
A

 e
xp

re
ss

io
n

H
4K

20
m

e1
H

3K
36

m
e3

H
3K

79
m

e2
D

N
as

e 
hy

pe
rs

en
si

tiv
ity

H
2A

.Z
H

3K
4m

e1
H

3K
27

ac
H

3K
9a

c
H

3K
4m

e2
H

3K
4m

e3
D

N
A

 m
et

hy
la

tio
n 

fr
ac

tio
n

S
ho

rt
 ta

nd
em

 r
ep

ea
t (

de
ns

ity
)

LT
R

 (
di

st
an

ce
)

G
en

es
 (

de
ns

ity
)

R
ep

lic
at

io
n 

tim
in

g
H

3K
27

m
e3

H
3K

9m
e3

z−
D

N
A

 m
ot

if 
(d

is
ta

nc
e)

D
ire

ct
 r

ep
ea

t (
di

st
an

ce
)

S
im

pl
e 

re
pe

at
 (

di
st

an
ce

)
D

N
A

 tr
an

sp
os

on
 (

di
st

an
ce

)
S

eq
 c

om
pl

ex
ity

L2
 (

di
st

an
ce

)
M

IR
 (

di
st

an
ce

)
A

LU
 (

di
st

an
ce

)
Tr

ip
le

x 
m

irr
or

 r
ep

ea
t (

di
st

an
ce

)
LA

D
 (

de
ns

ity
)

C
pG

 is
la

nd
 (

di
st

an
ce

)
TA

D
 b

ou
nd

ar
y 

(d
is

ta
nc

e)
C

ru
ci

fo
rm

 in
ve

rt
ed

 r
ep

 (
de

ns
ity

)
G

−
qu

ad
ru

pl
ex

 m
ot

if 
(d

is
ta

nc
e)

Te
lo

m
er

e 
(d

is
ta

nc
e)

Centromere (distance)
Nucleosome occupancy
Germline recombination

GC content
L1 (distance)

RNA expression
H4K20me1
H3K36me3
H3K79me2

DNase hypersensitivity
H2A.Z

H3K4me1
H3K27ac
H3K9ac

H3K4me2
H3K4me3

DNA methylation fraction
Short tandem repeat (density)

LTR (distance)
Genes (density)

Replication timing
H3K27me3
H3K9me3

z−DNA motif (distance)
Direct repeat (distance)

Simple repeat (distance)
DNA transposon (distance)

Seq complexity
L2 (distance)

MIR (distance)
ALU (distance)

Triplex mirror repeat (distance)
LAD (density)

CpG island (distance)
TAD boundary (distance)

Cruciform inverted rep (density)
G−quadruplex motif (distance)

Telomere (distance)

Figure 3.3: Spearman correlation between 38 genome properties at 100,000 ran-
dom uniform positions in the callable genome space. Circle size is proportional
to the magnitude of correlation.
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3.2 SV classes associate with genome proper-

ties

3.2.1 Property quantile skew at SV breakpoints

To test for association between sv event classes and the library of genome

properties described in Section 3.1.2, I compared genome property metrics

between real sv positions and one million uniform random positions from the

callable genome space. To compare the tissue-specific roadmap properties, each

simulated random position was assigned a random tissue type, drawing from

the observed tissue type distribution in the sv call set. To reduce dependence

between observations, I only included one side of each bpj, ensuring that the

side chosen was:

• random for bpj classified as complex, deletion, tandem duplication, un-

balanced inversion, foldback, or unbalanced translocation;

• one side per motif for reciprocal translocation, templated insertions,

chromoplexy, or translocation with tandem duplication (i.e. pick one side

per bpj with the stipulation that they must be in different loci);

• the outermost side for each bpj in a reciprocal inversion, dup–inv-dup,

or dup–trp–dup structure;

• the opposite side for each bpj in a loss–inv-dup structure; and

• the distal translocation side for a bpj in translocation with foldback

or translocation with inverted insertion, and the side closest to the

translocation for the partner intrachromosomal bpj.

For each genome property and each event class (separately), I pool the real

observations amongst the million random values, then rank transform and

normalise on a scale from zero to one to calculate quantiles. Under the

null hypothesis of no event–property association, the quantiles of the real

observations would follow a uniform distribution. In each case, I assess departure

from uniformity with a Kolmogorov-Smirnov test, and apply a Benjamini-

Yekutieli correction for false discovery rate across the entire suite of tests,

setting the reporting threshold at 0.01 fdr. In this analysis, I flip the distance-

type metrics so that positions close to the feature of interest score higher than

positions far away, and thus higher values correspond to signal enrichment

(similar to density metrics).
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Figure 3.4 presents the results for 13 of the genome properties considered, with

the other 25 properties shown in Figure D.8.

Both small and large deletions (separating the groups at 10 kb) are enriched in

late-replicating, AT-rich dna, with breakpoints preferentially occurring in linker

dna between nucleosomes. Small deletions are the only sv class significantly

associated with low gene density, whereas a small proportion of larger deletions

skew massively towards genic regions—mostly in large gene related common

fragile sites (analysed in Section 3.4). Reciprocal inversions also have a mild

skew towards late-replicating AT-rich regions with breakpoints in linking dna

between nucleosomes.

Small and large tandem duplications (separating at 50 kb), templated insertion

events, and unbalanced translocations are all enriched in early-replicating,

gene- and GC-rich dna, with breakpoints preferentially occurring close to alu

elements, short tandem repeats, and mirror repeats. The skew towards early-

replicating dna is particularly strong for larger tandem duplications; indeed, for

every 10-point increase in the replication timing metric (roughly equivalent to

a quantile position 0.1 higher/earlier), the average size of a tandem duplication

at that location increases by 8%e.

Unbalanced translocations are more likely to occur close to centromeres, and

also, to a lesser extent, close to telomeres. Proximity to centromeres is the only

significant association observed for unbalanced inversions, and is also a very

strong characteristic of foldback rearrangements. Reciprocal translocations are

strongly enriched close to telomeres, and, like most sv classes, are enriched in

early replicating regions.

With the exception of complex bpj, most sv classes are positively associated

with histone marks at active genes, with H3K4me3 shown in Figure 3.4 and

the other histone marks shown in Figure D.8.

The general tendency of sv breakpoints (except deletions and reciprocal in-

versions) to occur in early-replicating, active, genic dna has the flipside of

breakpoint depletion in lamina-associated domains and L1 and ltr repeats.

Given the correlation structure between genome properties (Figure 3.3), all

univariate associations must be interpreted with caution in the context of

competing biological explanations, including properties not measured here.

ep-value < 10−15, linear regression of log10 tandem dup size vs replication timing, con-
verting back to the ratio interpretation on a base-pair (non-log) scale.
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Figure 3.4: Associations between genome properties (rows) and sv classes
(columns). Each density curve represents the quantile distribution of the
genome property metrics at observed breakpoints compared to random genome
positions, with stars indicating significant departure from uniform quantiles:
fdr < 0.01 *, < 0.001 **, and < 10−6 ***. Significant property associations
are shaded by the magnitude of the shift of the median observed quantile above
(blue) or below (red) 0.5. The interpretation of each property metric from left
to right is indicated in parentheses.
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This analysis does not attempt to quantify differences between more specific

breakpoint classifications—such as templated insertion bridges compared to

chains or cycles—and may be averaging over subtle distinctions. For example,

a comparison of the replication timing distribution of breakpoints in the three

sub-groups of local 2-jump (Figure 3.5) reveals that the loss–inv-dup structure

does not share the same strong preference for early replicating dna as the dup–

inv-dup and dup–trp–dup structures. Interestingly, this places the loss–inv-dup

structure combining copy gain and copy loss in a middle zone between the copy

gain event types with a preference for early replicating regions (tandem dup,

templated insertion, and dup–inv-dup/dup–trp–dup) and the copy loss events

(deletion) with a preference for late replicating regions.

3.2.2 Breakpoints in close proximity with short repeats

Using the property metric library, description of the positive association between

sv classes and small sequence repeats is limited by the 1 kb pixel resolution, and

may reflect broad correlation with other genome properties rather than specific

localisation of breakpoints within repeats. To check whether these associations

hold at a shorter range, I tallied the proportion of breakpoints (using one side

per bpj as described in Section 3.2.1) within a short radius around each class

of sine and non-B dna motif. Comparing against the proportion of random

uniform positions in the callable genome that also sit within these repeat radii,

I checked for significant enrichment/depletion with a binomial proportion test

followed by Benjamini-Hochberg fdr correction within each repeat class.

The results in Figure 3.6 confirm a significant enrichment for several sv classes

around alu elements, as well as around direct repeats, short tandem repeats,

and triplex-forming mirror repeats. In most cases, any significant enrichment

only accounts for an extra 1–2% of breakpoints above expectation under a
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Figure 3.6: The proportion of sv breakpoints (one side per bpj) within a short
radius of each sine and non-B dna motif class. The proportion expected under
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uniform null. However, the enrichment is greater for unbalanced translocation,

with 11.6% of breaks within 100 bp of a direct repeat (8.4% expected), 14.6%

within 50 bp of a short tandem repeat (10.4% expected) and 5.3% within 100 bp

of a triplex-forming mirror repeat (2.8% expected). The alu association is

strongest for tandem duplication, with 19.3% of breaks within 50 bp of an alu

element compared to 14.3% expected. These univariate tests do not account

for other correlated property associations.

3.2.3 Replication timing at hypermutator breakpoints

Sections 3.2.1 and 3.2.2 consider property associations of sv breakpoints

grouped by classification, pooling observations across all samples and his-

tology types. Any potential differences between samples and/or cancer types

are averaged out, with results skewing towards those groups with large sample

size and high rearrangement burden.

In general, I choose to avoid direct quantitative comparison of property associa-

tions between cancer types because differences in metric accuracy for each tissue

would confound any biological variation in rearrangement rate. Furthermore,

tissue-specific sv driver events promoted by natural selection would exacerbate

biases in observed location properties if separated by histology.

To circumvent these problems with bulk histology comparison, I instead tested

for variation in sv–property associations by comparing hypermutator samples

with the general cohort of the same cancer type. Although many relevant

genome properties could be considered, I limited this exploration to replication

timing—a strong correlate of the rearrangement rate as shown in Section 3.2.1

and a reasonable proxy for other correlated properties such as GC content and

gene content as shown in Figure 3.3.

For each of six cancer typesf with large sample size and high rearrangement

burden, I considered three sv classes: deletion, tandem duplication, and

unbalanced translocation. For each sv class in each cancer type, I defined

hypermutator samples to be the subset with over three times as many events as

the upper quartile (0.75 quantile). Then, I modelled event replication timing as

a linear regression with two predictors: hypermutator status (each hypermutator

represented by one dummy variable, with the non-hypermutator samples pooled

together as the baseline level); and log10 event size (for deletion and tandem

fBreast, esophagus, liver, pancreatic (adenocarcinoma), prostate, and skin (melanoma).
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duplication only, size is irrelevant for translocation). As in Section 3.2.1,

dependence between observations was reduced by only including one side per

bpj. The replication timing outcome variable was taken to be the quantile

value when pooled with one million uniform random positions from the callable

genome. As shown in Figure 3.7, I only report those hypermutator samples

whose (absolute) regression coefficient is at least 0.07g with p-value < 0.01.

Although deletions, on average, skew towards late replicating regions, some

hypermutator samples have deletions significantly skewing towards earlier

replicating dna, including one breast, two liver, and four pancreatic cancer

samples. In contrast, seven deletion hypermutators in the prostate group have

a stronger predilection towards late replicating regions than the pool average.

Tandem duplications generally skew towards early replication, and the extent

of this bias is even greater in many hypermutators, including one breast, six

esophageal, eight liver, five pancreatic, two prostate, and two melanoma samples.

Some hypermutators have tandem duplications in later replicating dna than

the group average, including two breast, two liver, and two melanoma samples.

Note that these results for deletion and tandem duplication account for event

size, which is known to vary between samples (Section 2.4).

Unbalanced translocations generally skew towards early replicating regions,

with two hypermutators displaying an even stronger association with early

regions (one esophageal, one pancreatic) and one translocation hypermutator

skewing late (melanoma).

Figure 3.7 also lays out histology-specific replication timing for the pool of

non-hypermutator samples. As discussed above, caution should be applied to

general property comparisons across histology groups because the metric may

not be accurate for some tissues. Although replication timing is known to vary

across cell types and individuals (Hansen et al., 2010; Koren et al., 2014), it may

be consistent enough to warrant modest consideration (the three contributing

tracks—each from a different germ layer—had high correlation; Section 3.1.2).

Of the six cancer types explored here: the late-replicating deletion bias is

less pronounced in liver, and may be absent altogether in breast; the early-

replicating tandem duplication bias may be absent in prostate and esophagus

(aside from the hypermutators); and the early-replicating translocation bias

may be absent in pancreas (aside from one hypermutator).

gA coefficient of 0.07 means that, on average, events in this hypermutator sample had a
replication timing quantile 0.07 away from the average in non-hypermutator samples of the
same cancer type.
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Figure 3.7: Density skew of replication timing quantiles for hypermutators
compared to the pool of non-hypermutators for deletions, tandem duplications,
and unbalanced translocations in six cancer types. The number of events in the
sample (or pool of non-hypermutators) is indicated in the legend. Only those
samples with a significant absolute average difference > 0.07 are plotted, with
the top-left annotation indicating how many hypermutators were considered.
Low quantiles are late replicating; high quantiles are early replicating.
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Assuming that characteristic patterns in hypermutator samples are signatures

left by specific over-active mechanisms of breakage and/or repair, this analysis

suggests that subtypes of the simple sv classes have different biases in genome

location as measured by replication timing (in addition to subtypes by size,

introduced in Section 2.4).

3.2.4 Property correlation at the junction

Sections 3.2.1–3.2.3 consider the property associations of individual breakpoint

positions, selecting one side to represent each bpj. The additional complexity of

two genome positions joining in a breakpoint junction adds another dimension

in which genome properties may influence the rate of rearrangement. In

a companion paper analysing the same dataset, Wala et al. (2017a) found

significant enrichment of bpj within the same tad, and significant enrichment

of bpj between repeat elements of the same class for ltrs, sines, and lines—

partly driven by microhomology.

To extend our understanding of correlation at breakpoint junctions beyond

intrachromosomal tad structures and repeat-driven microhomology, I first

considered the role of replication timing at interchromosomal bpj.

For sv events classified as templated insertion, chromplexy, or unbalanced or

reciprocal translocation, I collected the set of interchromosomal bpj (ignoring

any intrachromosomal) and took the absolute difference between replication

timing estimates at either side of the junction. To compare against a null

expectation that preserves the class-specific marginal distribution, I shuffled

the footprint ids within each sv class group such that the two breakpoints in

a [+−] or [−+] motif adopted the replication timing of another such motif,

and any singleton breakpoints adopted the replication timing of another single

break. Over ten iterations of footprint shuffling, I compared the difference in

replication timing across the simulated and observed junctions.

The results in Figure 3.8 show a modest significant increase in the proportion

of interchromosomal bpj with similar replication timing. Given that replication

timing correlates with physical proximity in broad nuclear compartments (Rhind

and Gilbert, 2013), and, as shown in Figure 3.7, some samples have a particularly

different replication timing bias, this result is somewhat expected and does not

necessarily indicate a mechanistic role for rearrangements generated during

replication.
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Figure 3.8: Difference in replication timing estimates across interchromosomal
bpj, compared to the expected distribution at randomly shuffled junctions.
The proportion of junctions with a replication timing difference less than 20 is
compared with a binomial proportion test, annotated middle right.

Nonetheless, this motivated a hypothesis that there may be a significant

association between the direction of leading or lagging strand replication and

the orientation of interchromosomal bpj. Using annotations generated by

Haradhvala et al. (2016) that mark about 40% of the callable genome as either

predominantly ‘right’ or ‘left’ leading, I considered all bpj with both sides in

annotated regions for the same sv classes tested in Figure 3.8. About 15% of

bpj have known replication direction at both sides. Annotating + orientation

breakpoints in right replicating regions and − orientation breakpoints in left

replicating regions as “type 1”, and the reverse cases as “type 2”, I tested the

null hypothesis that 25% of junctions are both type 1, 25% are both type 2, and

50% are type 1 and 2. Using a χ2 goodness-of-fit test, I found no significant

associations between the replication strand direction and bpj orientation for

translocations or templated insertions or chromoplexy.

For any future analysis quantifying correlations between junction sides, it

may indeed be sufficient to consider only physical proximity (including tad

structure) and homology, as demonstrated by Wala et al. (2017a).



3.3. Modelling the rate of rearrangement 87

3.3 Modelling the rate of rearrangement

In addition to the biological insight about factors affecting genome alteration,

the other major reason for characterising genome property associations is the

need for appropriate mutation rate models to underpin recurrence-based driver

discoveryh. To explore the utility of my genome property library (Section 3.1)

for predicting rearrangement rate along the genome, I aimed to fit multivariate

logistic regression models to distinguish real sv breakpoints from a background

of randomly distributed positions. This exercise also serves to test the strength

of property associations (Section 3.2) in a multivariate setting.

3.3.1 Methods

Outcome variable

Each logistic regression model considered the set of observed breakpoints for a

given sv class (one side per bpj) against one million uniform random positions

in the callable genome space. The six sv classes were: small and large deletion

(split at 10 kb); small and large tandem duplication (split at 50 kb); unbalanced

translocation; and foldback.

Predictor variables

To reduce multicollinearity among the predictors, I followed guidelines by James

et al. (2013) to remove three (of 38) property library metrics with variance

inflation factor above five. The three discarded variables with high correlation

to other predictors were the histone marks H3K9ac, H3K4me2, and H3K4me3.

The remaining 35 predictors (Section 3.1) were scaled to have mean zero and vari-

ance one. All random genome positions were assigned tissue-specific roadmap

property metrics according to an empirically matched tissue distribution. No

interaction or histology model terms were included.

hDriver discovery methods aim to distinguish positively-selected cancer loci from predis-
posed mutational hotspots with negligible fitness effect, and require background mutation
rate models to account for bias in the formation distribution.
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GLM models with lasso regularisation

Lasso regularisation on a generalised linear model (glm) performs variable

selection by restricting the absolute coefficient sum to a total budget, naturally

forcing coefficients to zero as the budget shrinks. To find the optimal lasso

tuning parameter (budget constraint) for logistic glm with each sv class, I ran

five-fold cross validation in a two-thirds training set to find the model with

minimal classification error. Using this optimal model from the training set,

I recorded model predictions for the separate testing third, and then finally

report coefficients fitted to the whole dataset.

Glm lasso models were fitted with the glmnet (v2.0-13) R package by Friedman

et al. (2010). Coefficient confidence intervals and significance were calculated

with the selectiveInference (v1.2.3) package which accounts for the lasso

selection procedure (Lee et al., 2016; Taylor and Tibshirani, 2017).

GAM models with lasso-type regularisation

Generalised additive models (gam) allow predictors to have a non-linear effect,

typically via a spline function. Extending the concept of lasso regularisation to

the gam case, the gamsel (v1.8-0) package by Chouldechova and Hastie (2015)

restricts the (adjusted) coefficient sum in a similar way, such that increasing

the budget constraint reduces spline terms to linear terms and linear terms to

zero (predictor removal). To find the optimal lasso-type tuning parameters for

logistic gam with each sv class, I ran five-fold cross validation in a two-thirds

training set to find the model with minimal classification error. As above, I

used this optimal training model to record predictions for the separate testing

third, and then finally report coefficients fitted to the whole dataset. Spline

functions were constructed from at most ten orthonormal basis functions of

degree five.

3.3.2 Results

Figure 3.9 illustrates the coefficient paths in each glm as the lasso tuning

parameter reduces the total budget from unlimited to zero. For the optimal

model choice with the best cross-validation performance, the coefficients and

their confidence intervals are shown in Figure 3.10. In contrast to the strictly

linear effects allowed in the glm model, the gam regressions permit non-linear
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spline effects. The optimal gam fit for small tandem duplications is shown in

Figure 3.11, with models for the other sv classes shown in Figures D.9–D.13.

To interpret the direction of predictor effects on the log odds of a position being

a real breakpoint, recall that high replication time values are early, and that

(unlike the reversed distances used in Section 3.2.1) high distance metrics are

far from the feature while high density metrics are close to the feature.

Different sv class models select different subsets of the 35 available predictors

to achieve optimal classification performance. For the glms, only six predictors

are included for large tandem duplication, whereas the large deletion model

uses 32 predictors. For the gams, just one predictor (centromere proximity) is

included for foldback, whereas the small deletion model uses 31 predictors.

The major findings from Section 3.2.1 are recapitulated in the multivariate

setting, with replication timing a strong predictor of deletion (late) and tandem

duplication (early). High gene density stands out as predictor for large deletion,

whereas centromere and telomere proximity are the most important predictors

of translocation and foldback. Interestingly, although gene density skews low

for small deletion in a univariate dimension (Figure 3.4), when conditioning on

other properties in the multivariate model, small deletions have a significant

association with high gene density in both glm and gam models.

The non-linear gam terms offer more detailed insight into the domain of a

predictor’s effect. For translocation, small deletion, and both tandem du-

plication sizes, the gam models suggest that replication timing effects are

specifically limited to the earliest few deciles. Other non-linear associations

include small tandem duplications with mid-range values of the active histone

mark H3K36me3, and small deletions with mid-range values of the repressive

histone mark H3K9me3. Despite these hints at non-linear effects, when the

predictive performance of the glm and gam models is compared on a held-out

test set, the difference between them is minimal (Figure 3.12). The similar

area-under-the-curve (auc) performance metrics of the two approaches suggests

that linear terms are generally adequate for rearrangement rate estimation with

this property library.

To illustrate the predicted rearrangement rate with the glm model, Figure 3.13

plots the average prediction in 10 kb bins for each sv class along two chromo-

somes, normalising the rates to have the same total sum. As the roadmap

predictors are tissue-specific, the illustration is chosen for breast tissue proper-

ties. Notable features include: the predicted increase in foldback rate around
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Figure 3.11: The optimal (best cross-validation performance) logistic gam with
lasso-type regularisation for small tandem duplications. The effect on the log
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each centromerei and—to a lesser extent—telomere; the predicted increase in

large deletion rate around loci with high gene density, including two fragile site

genes (Section 3.4) annotated on chromosome 16; and the general tendency for

large tandem duplications to have greater rate fluctuations (but in the same

direction) as their smaller counterparts.

3.3.3 Discussion

In this section, I explored the utility of glm and gam logistic regression for

distinguishing genuine breakpoints from uniform random genome positions.

As shown in Figure 3.12, these modelling strategies achieve auc performance

ranging from 0.56 for small deletion to 0.64 for foldback. As the two outcome

categories have substantial physical overlap, the auc metric does not hold its

standard interpretation as a value between 0.5 (no predictive power) and 1.0

(perfect predictive power). Rather, the upper bound is an unknown value less

than one, which depends on the true breakpoint distribution’s departure from

uniformity. It is unclear whether the observed performance around auc 0.6

reflects a genuine upper bound on achievable classification, or that the model

predictors do not adequately describe all factors influencing rearrangement rate.

Quantifying the fraction of unexplained variance is beyond the scope of this

work, as the standard R2 statistics are not applicable to logistic regression.

My exploratory attempt at rearrangement rate modelling did not consider

interaction terms, histology differences, or finer sv class distinctions, any of

which might improve the model fit. In particular, the illustration of predicted

rearrangement rate in Figure 3.13 shows the massive rate hikes predicted for

large deletion in certain loci with extremely high gene density. This gene

density metric encompasses fragile sites in large genes, and causes the predicted

rate to skyrocket in any similar region, fragile site or no. As discussed in the

following Section 3.4, most fragile sites are characterised not only by long genes,

but also by late replication time. To more accurately predict the deletion

rate without dummy variables for known or suspected fragile loci, it would be

advisable to include an interaction term between gene density and replication

timing. As it stands, of the predicted deletion peaks shown in Figure 3.13, only

two correspond to real fragile sites (Section 3.4), while the others correspond

to large genes in earlier replicating regions without such a high deletion rate,

iThe q-arm side of the chromosome 16 centromere is missing because that region is not
included in the callable genome definition from Section 3.1.1.
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but the current model is unable to accommodate this distinction without an

interaction term.

Overall, these models demonstrate important differences in the rearrangement

rate of different sv classes, and suggest that sv breaks should not be modelled

as one generic process. Future work could develop more sophisticated models

including interaction terms, with sv classes divided by specific signatures of

size, sample, histology, and property association.

3.4 Fragile sites and other anomalous genome

regions

Within the human genome, there are several regions (besides centromeres and

telomeres) with unusual properties and roles. For example, the short p-arms of

acrocentric chromosomes contain large clusters of ribosomal rna genes termed

nucleolar organising regions. Due to their highly repetitive nature, these regions

are missing from the human reference genome and their possible contribution to

the cancer rearrangement landscape is largely unknown (McStay, 2016). Other

anomalous regions include: the mitochondrial genome; immune loci encoding

hyper-variable immunoglobulin products following v(d)j recombination; and

the sex chromosomes with different gender dosage and random X inactivation

in female cells.

In this section, I focus mainly on particular regions termed commonj fragile

sites (fs), reviewed by Sarni and Kerem (2016) and Glover et al. (2017).

Cytogenetic studies first characterised fs bands by their innate propensity

to develop gaps and breaks under replication stressk. Wilson et al. (2015)

proposed a transcription-dependent double fork failure model to account for

the cell-type-specific fs locations within unusually long, late-replicating genes.

As fs genes have a paucity of dormant replication origins, contain difficult-

to-replicate sequences, and suffer replication interference from transcription

bubbles, conditions of replication stress may cause un-replicated regions between

two stalled forks to persist into M phase. These lesions often resolve as deletion

svs, and cause a high rate of focal deletion at fragile sites in cancer genomes

(Le Tallec et al., 2013).

j‘Common’ fs because they are common to all individuals, as opposed to rare fs which
express fragility only in certain polymorphic forms.

kIn vitro replication stress typically induced by the dna polymerase inhibitor aphidicolon.
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3.4.1 Defining fragile sites in the PCAWG cohort

To define the set of fragile sites with appreciable activity in the pcawg dataset, I

split the genome into 500 kb tiles sliding every 50 kb and calculated the density of

deletion breakpoints, normalising by the length of callable regions (Section 3.1.1)

within each tile. As an initial set of fragile candidates, 56 contiguous regions

had deletion breakpoint density above 100 breaks/Mbl for at least 500 kb, and

an absolute deletion break count over 100. Fragile sites are characterised not

only by high deletion density, but also by the predominance of deletion events

above all other sv classes. Considering the proportion of breaks classified as

deletion in each candidate region, I set thresholds at > 42% for candidates

overlapping known cfsm and > 50% otherwise. After removing some regions

overlapping known cancer census genes (ERBB4 and GPHN ) and the IGK

locus on chr2, 27 candidate fragile sites remained, including 22 overlapping

known cfs. Of these 27 fragile regions (listed in Table E.2), 21 are located

at long protein-coding genes and are used in downstream analyses. Three

fragile genes have no overlap with a known cfs: CSMD1 on chr8; PTPRD on

chr9; and RBFOX1 on chr16. The six fragile regions without an explanatory

transcript are not carried forward in the rest of this section.

3.4.2 Fragile site activity

Figure 3.14 illustrates the nine most active fs, sorted by the number of samples

affected (see Figure 3.15A for ranking, and Figure D.14 for the other twelve

fs). Deletions are particularly enriched in fragile sites, accounting for 64%

of all breakpoints in the nine major fs, and 54% of all breakpoints in the

other twelve fs. Indeed, 9.7% of all deletions have both ends inside these fs

regions which span only 1.4% of the callable genome. Tandem duplications and

reciprocal inversions are also mildly enriched in fragile sites, with 2.3% of each

event class within the bounds of a fs.

Fragile site tandem duplications tend to occur in the same samples as fs

deletions, suggesting a similar aetiology. Outside the fs, most deletions and

tandem duplications in the cohort are observed in breast, ovary, and liver

cancer samples. However, inside the fs, esophageal cancers contribute the

lper total cohort, not per sample!
mUsing 109 cfs defined in the Supplementary Materials from Bignell et al. (2010) and

Le Tallec et al. (2013), lifting over to hg19 coordinates and using the UCSC Genome Browser
to find coordinates of cytogenic bands where necessary.
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Figure 3.14: All sv breakpoint positions in nine major fragile sites, sorted by
number of affected samples. Breakpoint positions are coloured by classification,
and vertically spaced by the distance to the next breakpoint in the cohort.
If the two sides of a bpj are contained within the plotting window, they are
joined with a curved line. The number of samples with a breakpoint in the
plotting window is annotated top left.
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Figure 3.15: (a) number of deletions, tandem duplications and other bpj within
each of the 21 fragile sites considered (upper), sorted by the number of affected
samples (lower); (b) size distribution of deletions and tandem duplications
in fragile sites compared to the rest of the genome; (c) proportion of fs
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most deletions and tandem duplications. The Pearson correlation between the

number of fs deletions and fs tandem duplications in a sample is 0.52n.

The size distribution of fs rearrangements differs from the general genome-wide

distribution (Figure 3.15), with fragile deletions skewed towards larger events

above 100 kb (on average, 2.2–2.4 times larger than a non-fs deletiono) and

fragile tandem duplications skewed towards smaller events below 100 kb (on

average, 1.7–2.1 times smaller than a non-fs tandem duplicationo).

Figures 3.16 and D.15 show how closely the fragile site definitions correspond to

dramatic local peaks in deletion density. Most fs have a symmetric ‘bell-shaped’

deletion distribution, with notable exceptions including: DMD with a peak

in the 3’ gene end and a long tail stretching across to the tssp; and FRA1I

with a peak over the SMYD3 gene and a tail stretching over the adjacent

KIF26B gene (see Figure D.14 for gene positions). Some of the less active

fragile sites may be imprecisely defined, with areas of elevated deletion density

flanking the GPC6 and PRKG1 regions. As expected, these fs definitions

correlate with late replication, and sometimes co-locate almost perfectly with

a local timing dip between two early loci (presumably between replication

origins). FHIT, WWOX, PACRG;PARK2, LSAMP, RBFOX1, PRKG1, and

DIAPH2 are all good examples of fragility demarcated by protein-coding genes

in a local replication timing dip. Reassuringly, all three fragile genes without

a known cfs overlap have very late replication, supporting genuine fragility

over positive selection. These plots also illustrate slightly elevated rates of

tandem duplication at some fragile sites, and suggest a possible enrichment

in the edge regions—as previously reported by Wilson et al. (2015)—where

replication forks may tend to stall. This duplication effect is most noticeable

in the weaker fragile sites like AUTS2, PRKG1, and DIAPH2 whose vertical

scales (Figure D.15) do not compress the duplication track, but is also hinted

at for some of the more common sites like PDE4D, IMMP2L, and NAALADL2.

3.4.3 Fragile site deletions are mostly intronic

With fs genes accounting for about half the recurrent deletion foci in cancer

genomes (Le Tallec et al., 2013), the question of whether these events drive

the cancer phenotype has received ongoing attention. Genuine tumour suppres-

np-value testing null hypothesis of zero correlation is < 10−15.
o95% confidence interval for mean difference between fs and non-fs events, using a t-test

on the log10-scale and then converting back to the ratio on a base-pair scale.
pDMD is on the − strand.
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Figure 3.16: The upper plot shows the density of deletion (blue) and tandem
duplication (red) breakpoints in 500 kb windows sliding every 10 kb for the 12
major fs marked in yellow, with 2 Mb flanks either side. The lower plot shows
the replication timing track, with high values for early and low for late.
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sor genes whose disruption is subject to positive selection typically have an

enrichment of inactivating point mutations and/or homozygous loss, neither of

which are observed for fs genes (Bignell et al., 2010; Lawrence et al., 2014).

On the other hand, some functional studies support a tumour suppressing role

for FHIT, WWOX, and PARK2 (Gong et al., 2014; Karras et al., 2017; Glover

et al., 2017), and it remains entirely plausible that a subset of fs deletion

confers a modest selective advantage.

To capitalise on the precise breakpoint resolution of this wgs dataset, I com-

pared the observed frequency of exon disruption by fs deletion with the rate

expected by random chance. I marked any event crossing within 5 bp of a fs

gene exon as having an exonic effect, regarding all other deletions as purely

intronic events unlikely to change cell fitness. To estimate the expected rate in

the absence of selection at each fs, I considered the specific distribution of exon

placement, deletion size, and deletion position—aiming to roughly account for

the bell-shaped concentration patterns shown in Figure 3.16. Within each fs

region, I binned the deletion sizes on a log10 scale divided every 0.25 units,

and found the median event size within each bin. For that particular size, I

simulated ∼500,000 deletions within the fs window, centred in accordance to

a lowess-smoothed empirical distribution function capturing the observed mid

positions of all deletions in the locus. Finally, the overall expected proportion

of exonic-vs-intronic deletions was taken as the sum of each simulated fraction

weighted by the proportion of deletions in that size bin.

As shown in Figure 3.15C, most fs deletions are purely intronic, and never

exceed the expected rate of exon-disruption by any notable margin (granted

that this cursory analysis did not extend to a formal statistical test). The

variation across fs loci is almost entirely due to exon placement within the

gene. For example, deletions within PTPRD are almost exclusively intronic

because the exons are concentrated in the shoulder region with a much lower

deletion rate. The only two loci with a noticeable departure from the estimated

background rate are LRP1B and DIAPH2 with slightly less exon disruption

than expected.

The absence of protein-disrupting enrichment supports the view that fs dele-

tions are mostly passenger events with recurrence stemming from inherent

fragility, and are not under strong positive selection for their possible pheno-

typic effects.
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Figure 3.17: Fragile site preference by cancer histology group as measured
by the proportion of samples with a deletion in each of the 21 fragile sites
considered here. The number of samples is indicated in parentheses.

3.4.4 Tissue specificity of fragile sites

This pan-cancer dataset also offers a rare opportunity to compare fragile site

activity across many different tissues. In Figure 3.17, I compare the proportion

of samples with deletion in each fs region across histology groups.

Gastrointestinal cancers are the most affected by fs deletion, with esophageal,

colorectal, and stomach cancers all commonly expressing fragility in FHIT,
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MACROD2, WWOX, IMMP2L, NAALADL2, and others. There are some

tissue-specific differences even within this group, with DMD deletions in 56%

of esophagus samples but only 4% and 10% of colorectal and stomach, and

RBFOX1 deletions in 40% of colorectal samples but only 8% and 9% of

esophagus and stomach.

LSAMP is the dominant fs in osteosarcoma (53%), ovarian adenocarcinoma

(28%), and liposarcoma (21%). For squamous cell carcinomas, LRP1B is the

dominant fs in the lung (36%), cervix (33%), and—to a lesser extent—head

(25%). Other unusual tissues where one fragile site is affected more than the

others are lung adenocarcinoma with 22% of samples having a PTPRD deletion,

and pancreatic endocrine cancer with 21% of samples having a DMD deletion.

The cell type differences in fs fragility may be partly explained by different

transcriptional programs (Wilson et al., 2015), replication timing variance

(Letessier et al., 2011), and other unknown factors including oncogene-specific

effects described by Miron et al. (2015). Aside from the site-specificity, the over-

all differences in fs deletion frequency likely reflect the incidence of replication

stress triggers, with gastrointestinal cancers particularly vulnerable.

3.4.5 Complex SV in fragile sites

The extent of fragile site deletion is slightly underestimated due to misclas-

sification of deletion clusters as complex events. It is common to have many

deletions at the same fs within one sample, and in some samples where they

overlap too much (both with each other and with different bpj), the sv classifi-

cation method groups the fs deletions into one complex unexplained cluster.

In total, 83 complex clusters have at least half their bpj within a fragile site,

as summarised in Figure 3.18A. Some of these events are genuine fs deletion

clusters (for example, Figure 3.18B–D at the MACROD2 gene in esophageal

and colorectal cancers), while others are different sv events. Figure 3.18E shows

a complex cluster of mostly inversion-orientation bpj at the DMD fs gene

causing amplification of the promoter region in a pancreatic adenocarcinoma.

Figure 3.18F shows a complex cluster with all bpj orientations within the

PARK2 fs gene, causing a copy loss pattern reminiscent of chromothripsis, but

unusually restricted to a ∼100 kb region.
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3.4.6 Other anomalous genome regions

Of the sv in other anomalous genome regions, some—mitochondrial insertions,

L1 retrotranspositions, and telomere length—were excluded from this dataset

and analysed separately by other pcawg members.

The three immunoglobulin loci (Figure 3.19) are notable outliers in any somatic

rearrangement catalogue involving lymphocytes, with a high rate of programmed

deletion for v(d)j recombination. As a result of their enzymatic dsb generation

and highly active enhancer/promoter regions, these immune loci are also prone

to forming recurrent oncogenic fusion translocations with spatially proximal

genes including MYC and BCL2 (Roix et al., 2003).

Chromosomes X and Y are another special case, with chrY excluded from

this dataset and chrX present at half the dosage in male cells. Interestingly,

the male pcawg samples have sv events on chromosome X at about 60% the

rate of female samplesq, closer than the approximately 50% expected by cn

difference alone. A likely explanation is that heterochromatin inactivation of

one female X copy goes some way to protecting it from rearrangements biased

towards active, open chromatin (Section 3.2).

qConsidering the average number of separate sv events (clusters) on chrX in male or
female samples, pooling only those histologies with at least a 30:70 gender balance (either
way) to reduce cancer type confounding.
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3.5 Structural variation affecting cancer genes

As shown in Figure 3.1, recurrent sv loci are usually explained by the presence

of inherently breakable fragile sites, or cancer genes under positive selection for

disruption (at tumour suppressors) or up-regulation (at oncogenes). Attempts

to quantify the selection pressures conferred by rearrangement and discover

novel cancer sv drivers are beyond the scope of this thesis (although can be

found in a companion paper by Wala et al. (2017a) for the same dataset). In

lieu of a formal sv driver analysis, I present a brief overview of different sv

class patterns around several canonical cancer genes. To guide this exploration,

Table 3.2 ranks cosmic census cancer genes by the event density of various sv

classes.

Table 3.2: Cosmic cancer census genes ranked by number of samples with a
classified sv breakpoint in the region (gene plus 70 kb flanks), normalised by
the region length and requiring at least five samples with the classification.
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CDKN2A 1 - 1 - - - 1 - - -

TMPRSS2 2 3 3 - - - - - - 1

PTEN 3 - 2 - - - - - - -

MYC 4 8 - 5 1 4 - - - -

CCND1 5 1 - - - - - - - -

TERT 6 4 - - - 1 - - 1 -

ERBB2 7 2 - - - - - - - -

TP53 8 - 7 - - - - - - -

RARA 9 9 - - - 6 - - - -

CDK12 - 5 - - - - - - - -

CCNE1 - 6 - - - - - - - -

CDK4 - 7 - - - - - - - -

FHIT - - 4 - - - - - - -

SMAD4 - - 5 - - - - - - -

BRD4 - - 6 - - - - - - -

RB1 - - 8 - 3 - - - 5 -

CDKN2C - - 9 - - - - - - -

KIAA1549 - - - 1 - - - - - -

BRAF - - - 2 - - - - - -

Continued on next page
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Table 3.2 – continued from previous page
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FGFR3 - - - 3 - - - - - -

MUC1 - - - 4 - - - - - -

H3F3B - - - 6 - - - - - -

CALR - - - 7 - - - - - -

STK11 - - - 8 - - - - - -

LMNA - - - 9 - - - - - -

BCL2 - - - - 2 - - - - -

RUNX1 - - - - 4 - - - - -

ELK4 - - - - - 2 - - - -

PCSK7 - - - - - 3 - - - -

SLC45A3 - - - - - 5 - - - -

CNTRL - - - - - 7 - - - -

CRTC3 - - - - - 8 - - - -

SETD2 - - - - - 9 - - - -

NCOA4 - - - - - - - 1 - -

ERBB3 - - - - - - - - 2 -

MPL - - - - - - - - 3 -

ACSL3 - - - - - - - - 4 -

TCF12 - - - - - - - - 6 -

KMT2C - - - - - - - - 7 -

RAD51B - - - - - - - - 8 -

CAMTA1 - - - - - - - - 9 -

ERG - - - - - - - - - 2

3.5.1 Cancer genes are affected by different SV classes

Figure 3.20 shows all sv breakpoints in the pcawg cohort around eight example

cancer genes with different rearrangement profiles.

Some tumour suppressors—like CDKN2A and SMAD4 —are mostly lost through

simple deletion. Others—like PTEN and TP53 —are commonly disrupted by

deletion or complex sv events. In contrast, the homologous recombination

repair gene RAD51B is commonly disrupted by internal tandem duplications
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Figure 3.20: Sv breakpoint positions around known cancer genes (plus 70 kb
flanks). Breakpoints are coloured by sv class, and vertically spaced by distance
to the next breakpoint in the cohort. If the two sides of a bpj are contained
within the plotting window, they are joined with a curved line. The number of
samples with a breakpoint in the plotting window is annotated top left.
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and templated insertions, both of which are frequent events in the breast and

ovary tissues observed to have RAD51B rearrangement. Tandem duplication

within a gene causes loss-of-function by duplicating exons to disrupt the open

reading frame, and are also observed within PTEN and TP53. Around an

oncogene like FGFR3, most tandem duplications span—rather than interrupt—

the transcript, and presumably up-regulate gene expression through increased

dosage. Unlike FGFR3 with its propensity for simple local duplication, other

oncogenes like ERBB2 and CCND1 are the focus of complex sv clusters forming

local amplicon structures (not shown).

3.5.2 Fusion drivers are formed by different SV classes

Figure 3.21 illustrates six genes involved in recurrent fusion events, with several

breakpoints of the same sv class and cancer type stacking in a tightly defined

cluster (usually between particular exons).

In pilocytic astrocytoma, the KIAA1549-BRAF driver is caused by a distinctive

tandem duplication event spanning 1.9 Mb. In lymphoma, most recurrent

fusion drivers are formed via translocation with an immunoglobulin locus,

activating oncogenes such as MYC and BCL2. Another example of a recurrent

translocation fusion is the ‘RUNX1 translocation partner’ gene (RUNX1T1 )

frequently fused with RUNX1 in acute myeloid leukaemia. Other sv classes

generating fusion drivers include reciprocal inversion at the RET gene in thyroid

cancer, and deletion and chromoplexy at the TMPRSS2 gene in prostate cancer.

Figure 3.22 illustrates breakpoints in the prostate fusion partners TMPRSS2

and ERG. Approximately 40% of these fusions arise through simple deletion

events spanning almost 3 Mb, with the remainder resulting from chromoplexy

type events involving reciprocal exchange across multiple loci. Using the

stringent definition outlined in Section 2.1.3, eight (out of 199) prostate cancer

samples have a clear chromoplexy-mediated TMPRSS2-ERG fusion. However,

a further 49 samples have a complex unexplained cluster intersecting both

genes, with manual inspection revealing the vast majority to be chromoplexy-

type events with a complex character that is currently inaccessible to our

automated classification algorithm. Other prostate fusion events involving

different ETS family transcription factors are also mediated by chromoplexy-

type events, mostly involving convoluted bpj structures consigned to the

complex unexplained bin (not shown).
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Figure 3.21: Sv breakpoints around six genes (plus 70 kb flanks) with recurrent
fusion drivers. The KIAA1549 and BRAF plots illustrate two sides of the
same fusion event in pilocytic astrocytoma.
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Figure 3.22: Sv breakpoints around TMPRSS2 and ERG, plus four example
fusion events in prostate cancer: one simple chromoplexy cycle, and three
complex clusters with chromoplexy features. Annotations mark: known cancer
census genes in navy; other protein-coding genes in light grey-blue (without
names); and enhancer sites in orange.
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3.5.3 Rearrangement structures around MYC

As previously indicated in Figure 3.21, the MYC oncogene is rearranged

through many different sv forms, including translocation, tandem duplication,

templated insertion, and a range of complex structures. To further illustrate

this variety, Figure 3.23 shows ten sv examples affecting MYC in different

cancer types—a small subset of the total.

Although the canonical chr8;chr14 translocation generating the IGH-MYC

lymphoma fusion is typically a simple event, the pattern in some samples is

more complex. For example, sample SA321030 has a translocation with foldback

structure, and in sample SA320830 the canonical reciprocal translocation sits

within a chromoplexy-type sv cluster.

In other cancer types, MYC is more commonly up-regulated by amplification

rather than fusion. In two uterus examples (SA514439; SA460859), MYC is

amplified through templated insertionr. The breast sample SA6128 amplifies

MYC with a similar structure to the dup–trp–dup local 2-jump, confounded with

an additional duplication-type bpj. Another breast sample (SA77461) appears

to achieve amplification via a nested series of simple tandem duplications.

Three of the examples—SA411786 (pancreas), SA517281 (medulloblastoma),

SA466124 (uterus)—have extremely high cn estimates indicative of double

minute (dm) amplification. In the pancreas example, the outermost bpj (〈−+〉
type) demarcates the circularised fragment, with other bpjs from some internal

dm rearrangement. In the medulloblastoma example, the cn profile suggests a

highly rearranged dm containing five distinct fragments from the same original

neighbourhood. In the uterus example, the interchromosomal bpj appear

to demarcate a circularised dm formed from two distant fragments, again

spanning some internal rearrangement. Finally, the MYC amplification in the

ovary sample SA505563 is not obviously consistent with either a dm structure

(expect a discrete and extreme cn profile) or with the successive overlap of

simple sv structures (expect graduated cn and few bpj). Instead, I conjecture

that the complex sequence of low to mid level copy gains is indicative of a

chromoanasynthesis mechanism with multiple mmbir template switches.

rFigure 3.23 shows one simple classified templated insertion example, and one complex
unexplained cluster with features approximating templated insertion.
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Figure 3.23: Example sv events around the MYC oncogene, with annotations
to mark: known cancer census genes in navy; other protein-coding genes in
light grey-blue (without names); and enhancer sites in orange.
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3.5.4 Templated insertion effects

To highlight the importance of templated insertion, Figures 3.24 and 3.25

illustrate how this novel sv event can activate oncogenes (TERT ) and disrupt

tumour suppressors (RB1 ).

TERT encodes the catalytic subunit of telomerase, and is over-expressed in most

cancers to preserve telomere length over many cell divisions (Bell et al., 2016).

In addition to common promoter snv drivers, TERT can also be up-regulated

by enhancer-hijacking genome rearrangements (Davis et al., 2014; Peifer et al.,

2015; Alaei-Mahabadi et al., 2016; Fujimoto et al., 2016; Weischenfeldt et al.,

2017; Barthel et al., 2017). This observation is confirmed once again in the

pcawg cohort, with 64 samples having a sv breakpoint within 20 kb upstream

(or 500 bp downstream) of the tss (Figure 3.24A). Templated insertion is a

frequent contributor to the TERT sv profile, with ten events in the liver cohort

(of 312 samples) and four in other cancers (biliary, medulloblastoma, head

squamous cell)s. Considering the 100 liver cancers with available rna data,

both templated insertion and other sv correlate with high TERT expression

(Figure 3.24B)t. The second highest TERT rpkm in a liver cancer is observed

in SA270088 with a three-bpj insertion cycle shown in Figure 3.24C. Templated

insertion cycles may up-regulate an oncogene by both increasing gene dosage

and introducing the gene to new regulatory elements.

RB1 encodes an inhibitor of cell cycle progression, and is inactivated in many

cancers (Dyson, 2016). As shown in Figure 3.25, many sv classes intersect and

disrupt RB1, including deletion, tandem duplication, translocation, chromo-

plexy, and local 2-jumps. Templated insertion also acts to disrupt this tumour

suppressor, with six events observed in both breast and ovarian cancer cohortsu.

Although insertion cycles could theoretically leave the RB1 locus undisturbed

(host chromosome unknown), rna data in the breast cohort (and ovary, not

shown) suggests RB1 expression is significantly reduced in the templated inser-

tion samples (Figure 3.25B), perhaps due to nonsense mediated decay of the

rearranged open reading frame.

sThese 14 purported templated insertion events in the TERT locus (gene plus 70 kb
flanks) include ten classified events and four complex unexplained clusters manually curated
as having strong resemblance to templated insertion.

tDespite previous reports (Totoki et al., 2014; Fujimoto et al., 2016) that the majority
of liver cancers contain the canonical TERT promoter snv (also expected to drive high
expression in the ‘None’ sv status category in Figure 3.24B), only twelve (two with rna)
pcawg liver samples are annotated with this mutation—a possible false negative result.

uThese 12 templated insertions in RB1 include manual curation of three complex clusters.
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3.6 Discussion

In this chapter, I analysed the distribution of sv classes across the genome,

and attributed variance in the observed rearrangement rate to a combination

of genome property correlations (Sections 3.1–3.3) and particular hotspot loci

with inherent fragility (Section 3.4) or relevance to the cancer phenotype

(Section 3.5).

Much of this work depends on the library of quantitative property metrics

described in Section 3.1, and further improvements in accuracy and detail

could be made by refining this suite of properties. For example, instead of

using predicted G-quadruplex motifs based solely on sequence composition, it

may be preferable to use experimentally determined G-quadruplex locations in

ChIP-seq data from Hänsel-Hertsch et al. (2016). Likewise, instead of using tad

boundary estimates from just one cell line, it may be more accurate to define a

consistent boundary set across multiple cell lines as reported by Akdemir et al.

(2017). For the tissue-specific roadmap epigenome data, one major limitation

was that some pcawg cancer types—biliary, bladder, prostate, uterus—had

no close cell type available, and were instead matched to a generic average

over many epithelial cell lines (Table E.1). This discrepancy could already

be mitigated for rna expression, with more tissues—including prostate and

uterus—now available in the GTEx atlas (GTEx Consortium, 2017). Ideally,

replication timing—which is known to correlate with the plastic topology of

chromatin domains (Hansen et al., 2010; Rhind and Gilbert, 2013)—should also

be upgraded to a tissue-specific variable as the data becomes available. The

chosen pixel size of 1 kb causes: zero-inflation of some metrics (such as distance

to the nearest L1); a slightly arbitrary series of edge effects; and obfuscation of

highly local effects from non-B dna motifs. In theory, the property library is

calculable for pixels of any length, with file size the only practical limitation.

In future, a compact property library at single base resolution could feasibly

be constructed from rounded values with run-length encoding.

Attempts to describe sv-property associations at event generation are somewhat

confounded by the fact that observed rearrangements in cancer cohorts are

disproportionately skewed towards recurrent events conferring positive selection.

However, if we assume that: (a) most observed svs are passenger events largely

impervious to selection forces; and that (b) positively selected loci are situated

in different topographical genome features; then it is reasonable to suppose that

biased associations average out across the driver regions, particularly in the
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heterogeneous pan-cancer setting of this study. To further reduce the influence

of events under positive selection, one possible approach would be to ignore

samples with a low sv burden in which each individual event is more likely to

confer a relevant driver effect (for example, nearly all sv in the quiet pilocytic

astrocytoma genomes are specific tandem duplications causing the driver gene

fusion). Another interesting caveat is that large-scale genome rearrangements

are likely to reduce the congruence between genome properties in the reference

library and the derivative chromosomes present in the cancer sample. However,

this only effects a subset of events occurring after major rearrangement, and

any inaccurate property annotations may again be assumed to average out

across a large sample size.

Overall, I found that different sv classes have different correlations with repli-

cation timing, gene density, open chromatin marks, telomere/centromere prox-

imity, and repeat features. Within the same sv class and cancer type, some

hypermutator samples have remarkably distinctive property associations, indi-

cating that separate mutational processes may have unique effect topologies,

depending on the pathways of dna breakage and repair. For example, I hy-

pothesise that the location of sv events following replication fork stalling will

depend on the underlying cause, be it nucleotide pool depletion or collision

with transcription bubbles, dna adducts, and/or dsbs.

In somatic snv studies, a widely adopted paradigm is for mutational processes—

with differential activity across samples—to be characterised by their signature

distributions of alteration class and genome topography (Alexandrov et al.,

2013b; Helleday et al., 2014; Haradhvala et al., 2016; Morganella et al., 2016).

Crucially, this variation across samples, mutation classes, and genome regions

has important consequences for selection analysis and driver detection (Lawrence

et al., 2013; Martincorena et al., 2017). In following a similar logic for structural

variants, a truly comprehensive set of rearrangement rate models may need to

account for the mutational processv, in addition to tissue-specific properties and

two-dimensional correlations such as tad structure and homology. However,

unlike simple point mutations, about half the rearrangement burden is currently

intractable to automatic classification, and therefore cannot have a sensible

background rate estimation with even the simplest strategy. These difficulties

pose a serious challenge for sv driver analysis, as further discussed in Chapter 6.

vSee Chapter 4 for a signatures decomposition of somatic sv events.
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Chapter 4

Mutational process signatures:

an application for the

Hierarchical Dirichlet Process

Somatic genome alterations stem from a variety of underlying processes, includ-

ing mutagen exposure, replication error, and defective repair. As each different

process generates a characteristic distribution or ‘signature’ of alteration classes,

somatic mutation catalogues serve as useful records of historic and ongoing

mutagenic activity. To decipher the constituent signatures, observed mutations

in a sample cohort are fractionated by their co-occurrence patterns (Nik-Zainal

et al., 2012). For snvs, a subset of about twenty derived signatures have

a proposed aetiology as genuine mutational processes or known sequencing

artefacts (Alexandrov et al., 2013b; Helleday et al., 2014), often confirmed

through experimental data (Segovia et al., 2015; Drost et al., 2017). Cancer

sample characterisation by signature exposure has important applications such

as: quantifying the effect of environmental carcinogens like aristolochic acid

(Poon et al., 2013; Poon et al., 2015), and revealing druggable opportunities like

hr-deficiency (with or without BRCA loss) (Alexandrov et al., 2015a; Davies

et al., 2017; Polak et al., 2017).

In this chapter, I briefly review published methods for mutational signature

decomposition (Section 4.1), and describe a different statistical approach using

the hierarchical Dirichlet process (Section 4.2). I illustrate the performance

of this hdp method on simulated (Section 4.3) and real (Section 4.4) snv

catalogues, and then examine its ability to match new data to an existing

signature library while simultaneously discovering novel signatures (Section 4.5).

121
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Finally, I return to the pcawg sv dataset and find fifteen novel rearrangement

signatures defined by sv class, size, and replication timing (Section 4.6).

4.1 Existing methods for mutational signature

analysis

In the first formal analysis of this kind, Nik-Zainal et al. (2012) used non-

negative matrix factorization (nmf) to find five underlying signatures in

21 breast cancer genomes. Alexandrov et al. (2013a) further expounded the

details of this nmf application, developing the most widespread signature

analysis framework to date. This nmf method assumes each signature is a

discrete probability distribution over a finite set of unordered mutation classes.

For the p× n count matrix M which tallies p mutation classes in a cohort of

n samples, standard nmf algorithms approximate M ≈ S × E, where S is the

p× k matrix of k signatures (constrained to have non-negative columns sum to

one), and E is the k × n sample exposure matrix recording the non-negative

burden of each signature in each sample. That is, the sample exposure to a

signature is the estimated number of mutations generated by that signature

in that particular sample. Most snv studies define mutation classes by the

trinucleotide context, yielding p = 96a.

To determine the number of signatures (k unknown), Alexandrov et al. (2013a)

calculate nmf solutions at a range of plausible k values for a series of bootstrap-

resampled M matrices, returning the consensus solution with stability across

bootstraps and minimal reconstruction error by the Frobenius norm. Nmf was

most notably used to extract 21 validated snv signatures from 7000 cancer

samples analysed by Alexandrov et al. (2013b). However, nmf is not a formal

statistical model with probabilistic interpretation, and the choice of Frobenius

norm does not account for the integer nature of the input matrix.

Three alternative methods—EMu (Fischer et al., 2013), signeR (Rosales et al.,

2016), and SignatureAnalyzer (Kim et al., 2016)—make similar assumptions as

the nmf approach, namely that mutations derive from sample-specific mixtures

of shared underlying signatures, where each signature is a discrete probability

distribution over unordered mutation classes. Crucially, all three methods

assume the observed mutation counts follow a Poisson distribution. Their

aThere are six possible single base substitutions (reported from the pyrimidine side), with
four possible flanking bases either side, so 4× 6× 4 = 96 snv classes.
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major distinctions lie in the method of estimation and signature number choice.

EMu uses expectation-maximisation (em) iterations to fit signatures and sample

exposures until convergence, whereas signeR models the signature probabilities

and sample exposures with gamma priors in a Bayesian framework. Both

EMu and signeR use the Bayesian information criterion to select a model

with high likelihood and few parameters (penalising too many signatures).

SignatureAnalyzer aims to minimise the Kullback-Leibler divergence between

the nmf solution and input matrix (rather than Frobenius norm), which is

equivalent to maximising the Poisson likelihood. To select the number of

signatures, SignatureAnalyzer adopts a Bayesian skrinkage methodology (Tan

and Févotte, 2013) which automatically determines the relevant components

by driving some signature weights to a small lower bound (effectively zero).

Taking a different approach, the ‘pmsignature’ method (Shiraishi et al., 2015)

does not consider a mutational signature to be one discrete probability distri-

bution over a large set of mutation classes. Instead of assigning each mutation

to just one classification, Shiraishi et al. (2015) model each mutation as having

a set of observed categorical variables such as substitution type, flanking base

identity, and transcriptional strand (in genic regions). In this paradigm, signa-

tures are defined by a collection of distributions over each separate variable,

under the simplifying assumption of independence between all mutation fea-

tures. With this strategy, many relevant features beyond simple trinucleotide

context are included within a relatively small parameter space. Pmsignature

uses em iterations to calculate all signature and sample exposure parameters,

and selects the number of signatures that yields high likelihood without splitting

into multiple components with very similar distributions.

In this chapter, I propose that the hierarchical Dirichlet process (hdp) (Teh

et al., 2006) is well-suited to the problem of mutational signature decom-

position, particularly in the context of multiple sample groups and/or prior

signature information. The signatures defined by the hdp model match the

‘traditional’ paradigm of one discrete probability distribution per signature,

as previously established by nmf and most other methods (with the notable

exception of ‘pmsignature’). With hdp, a flexible hierarchical model borrows

information across samples and groups to identify shared signatures, while also

quantifying differences between samples and groups. Under the nonparametric

Bayes assumption of infinitely many generating processes, hdp automatically

determines the underlying signature number, and can discover novel patterns

while simultaneously matching against a prior library of known signatures.
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4.2 HDP method for mutational signatures

Teh et al. (2006) first developed the hierarchical Dirichlet process mixture model

for the problem of topic modelling in corpora (collections of written text; concept

reviewed by Blei (2012)). The hdp is a non-parametric Bayesian clustering

method, and infers the number of clusters directly from the complexity of the

dataset by assuming the data is drawn from some finite subset of infinitely

many generative processes. In Appendix B, I describe the hdp for the novel

use case of signature patterns within somatic mutation catalogues.

4.2.1 HDP overview

An overview of the hdp model is shown in Figure 4.1, as designed for multiple

groups of samples. Other designs with different hierarchical levels are also

possible; for example, an additional child node layer could capture multiple

samples from the same individual.

In brief, mutations observed in each sample are tallied into discrete, unordered

categories. I assume these mutation counts are randomly drawn from a sample-

specific mixture of an infinite number of multinomial distributions (the signa-

tures) over the set of possible mutation classes. Under the hdp model, the

sample-specific signature distribution is a Dirichlet process (dp) draw from

the group-specific signature distribution. A dp can be intuitively understood

as taking in one probability density function, and outputting a sparser, more

discretised probability function defined on the same domainb. That is, the

signature distribution in a sample is based on the parent distribution of its

group, but with the probability density further concentrated at particular val-

ues/signatures. Moving up one hierarchical level, the group-specific signature

distribution is itself a dp draw from the overall distribution of signatures in

the dataset. At the top level, the dataset-specific signature distribution is a dp

draw from the uniform probability over the infinite set of all possible signatures.

In practice, we observe the mutation catalogues at the bottom of the tree, and

specify the uniform Dirichlet prior at the top of the tree, but must estimate

the signatures (their identity and prevalence) at each node in-between. To

bTo use the stick-breaking analogy, a dp draw is built from an infinite random sample
from the input distribution, weighted by an infinite series of successive weights randomly
broken off an imaginary ‘stick’ of unit length. A concentration parameter controlling the
proportion of ‘stick’ broken off each time (rate at which the weights attenuate) controls the
degree of sparsity in the output.
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Figure 4.1: Schematic overview of the hdp model for multiple sample groups.
Each blue node represents a distribution over the infinite set of all possible
signatures, and is a Dirichlet process draw from its parent node. At the
top of the tree, the prior distribution is uniform over all possible signatures.
Each successive child node concentrates the probability density at particular
signature values. The small blue dots inside each node represent particular
signatures (discrete probability distributions over the mutation classes), with
different shades representing the probability of that signature in the node.
The two example signatures over six mutation classes are illustrative only; in
practice, mutations are classified into more specific groups (e.g. 96 snv classes
in a trinucleotide context). At the bottom of the tree, the observed data are
per-sample mutation catalogues (tallies of mutation classes), assumed to be
drawn from sample-specific multinomial mixtures.
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perform this posterior inference with the Gibbs sampling method by Teh et al.

(2006), all observed mutations are initialised with a random cluster allocation

(clusters of mutations define the estimated signatures, and are shared across

nodes/samples). Then, the Gibbs procedure cycles through each mutation in

turn and assigns an updated cluster allocation, most likely moving to a cluster

with: (a) a high proportion of that same mutation class (across all samples);

and/or (b) a high proportion of mutations in that sample and/or parent dp

(across all mutation classes). At any iteration, there is also a small chance

(controlled by the concentration parameter) that a mutation gets assigned to

a brand new cluster by itself. In this way, the number of clusters fluctuates

throughout the mcmc sampling chain, and there is no need to specify how many

clusters should be found. Concentration parameters for each dp are sampled

from a Gamma hyper-prior as one of the Gibbs iterations. More details are

available in Appendix B. After a burn-in period, posterior samples taken at

regular intervals provide a snapshot of possible cluster allocations that defines

the space of probable signatures and their prevalence at each node.

Originally, Teh et al. (2006) implemented this Gibbs scheme for the hdp as a

suite of functions written in MATLAB and Cc. To encourage the adoption of

hdp in the bioinformatics community, I developed the open-source R package

hdp as a practical front-end to the original C engine for mcmc inference (R

Core Team, 2017; Roberts, 2015). In addition to providing a user-friendly

package with detailed documentation and examples, I also developed a suite of

post-processing functions for practical reporting across mcmc chains, and a

convenient method for setting up pseudo-counts in frozen nodes to condition on

prior knowledge. Although this work was motivated by mutational signatures

analysis, the utility of my hdp package extends to any similar problem involving

categorical count data, and was used by Papaemmanuil et al. (2016) to cluster

co-occurring driver alterations in acute myeloid leukaemia. Given the range of

applications, the package documentation refers to the generic nomenclature of

‘components’ rather than mutational signatures.

4.2.2 Extracting consensus signatures

Each posterior sample collected off an mcmc chain consists of per-mutation

cluster allocations. This output is not immediately amenable to direct reporting

because:

chttp://www.stats.ox.ac.uk/~teh/research/npbayes/npbayes-r21.tgz available
as of December 2017

http://www.stats.ox.ac.uk/~teh/research/npbayes/npbayes-r21.tgz
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• the number of raw clusters varies across posterior samples;

• many raw clusters are very small, with only a few mutations assigned

(because hdp assumes infinitely many underlying signatures); and

• multiple clusters can have the same data distribution (strong signatures

sometimes found multiple times).

To extract meaningful output from a collection of posterior samples (ideally

from multiple independent mcmc chains), I developed a new post-processing

methodd to hone in on the stable set of consistently returned clusters while

consolidating the smaller, transitory raw clusters into an additional component

capturing noise and uncertainty. While useful for accessible interpretation, this

method loses the variable posterior distribution over the number of signatures.

However, as the number of raw clusters in a non-parametric Bayesian model is

known to scale logarithmically with the number of observed data items (Teh

and Jordan, 2009), I conjecture that the raw clusters do not provide the best

biological insight by themselves, and instead propose the following approach.

Let S be the number of posterior samples collected, and K [s] the number of

raw clusters in posterior sample s for s ∈ 1, . . . , S. Each posterior sample s

assigns each individual mutation to a raw cluster k[s] ∈ 1, 2, . . . , K [s]. Let the

maximum number of raw clusters be denoted Km. For p mutation classes,

let r
[s]
k be a p-length count vector of mutations assigned to raw cluster k in

posterior sample s, and R[s] denote the p × K [s] count matrix of mutation

classes in all raw clusters from that posterior sample.

My method for extracting consensus signatures is as follows.

1. Append Km −K [s] zero vectors to each R[s] so all count matrices have

dimension p×Km. That is, R[s]′ =
[
R[s] 0p×(Km−K[s])

]
.

2. Match up raw clusters across posterior samples by Km-centroid clus-

tering of all r
[s]′

k , minimising the Manhattan distance to the median

and imposing a cannot-link constraint on raw clusters from the same

posterior sample. This enforces a result of Km super-clusters (compo-

nents), each with S members all from different posterior samples. Let

C` =
[
r
[1]′

` , r
[2]′

` , · · · , r[S]
′

`

]
be the p × S matrix of all raw clusters (and

possibly some zero vectors) assigned to component ` for ` ∈ 1, . . . , Km.

3. Merge components with very similar mutation class distributions. Let

dAvailable in the hdp extract components function within the hdp package.
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the average mutation class distribution for C` be

c̄` =

[
S∑
s=1

(
r
[s]′

`

/∥∥∥r[s]′` ∥∥∥
1

)]/
S .

If cosine. similarity(c̄a, c̄b) ≥ 0.9, then Cnew = Ca + Cb e.

4. Assign components with no significantly non-zero mutation classes to ‘com-

ponent zero’ to capture the fraction of noise/uncertainty. Let HPD0.95(y)

return the highest posterior density interval containing 95% of y values,

so an indicator for the absence of significant mutation classes is

z` =

1 if 0 ∈ HPD0.95(C`,i,:) for all rows i = 1, . . . , p ,

0 otherwise.

Initialise the zero component as

Czero init =
∑
{`|z`=1}

C` ,

removing non-significant components (with z` = 1) from the main set.

5. Assign components with no significantly non-zero sample exposures to

‘component zero’. Where previously we have pooled samples and looked

at the distribution across mutation classes (p rows), now pool mutation

classes and consider the distribution across samples. For n samples

(leaf nodes), let C∗` be the n× S count matrix of mutations assigned to

component ` for each sample (row) in each posterior sample (column).

An indicator for the absence of significant sample exposures is

z∗` =

1 if 0 ∈ HPD0.95(C∗`,i,:) for all rows i = 1, . . . , n ,

0 otherwise.

Add to the zero component, such that

Czero = Czero init +
∑
{`|z∗`=1}

C` ,

removing non-significant components (with z∗` = 1) from the main setf.

e0.9 is the default similarity threshold for merging components, but can be changed.
fAn optional variation is to require non-zero sample exposure in two (or more) samples,

changing the z∗` indicator to one if all but one (or more) rows have credibility intervals
including zero.
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6. Finally, the remaining components are ranked by their prevalence (total

number of mutations assigned, averaged over posterior samples) and

reported as the set of consensus signatures.

This method returns a set of robust signatures with significant exposure in at

least one sample and significant presence of at least one mutation class. The

number of signatures is empirically determined without resorting to separate

model fitting for every plausible number. A fraction of mutations are assigned

to component zero, and reflect the extent of noise and uncertainty in the

signature estimation method. Credibility intervals for the mutation classes

in each signature, and for the level of signature exposure in each sample and

group, are simply constructed as highest posterior density intervals from the

set of posterior samples.

4.2.3 Conditioning on prior knowledge

Given the availability of known snv signatures extracted from large datasets

(Alexandrov et al., 2013b; Alexandrov et al., 2015b), it will often be desirable to

match a new mutation catalogue to existing signatures, rather than performing

de novo signature discovery every time. Conditioning on prior knowledge not

only saves computational time and effort, but also improves accuracy for small

datasets, and leverages existing signature aetiology explanations.

Matching a new dataset to an existing library of mutational signatures is already

possible with several methods. For example, with nmf, any mutation tally

matrix can be factored into a fixed matrix of known signatures and an unknown

sample exposure matrix to be estimated. Alternatively, the ‘deconstructSigs’

R package by Rosenthal et al. (2016) matches new mutation data to existing

signatures with brute-force iterations to minimise the reconstruction error.

However, both these approaches are restricted to the pre-defined signature set,

and will find a poor solution if the new dataset contains previously unreported

signatures, either from cohort-specific mutational mechanisms or a specific

profile of artefactual variant calls. Artefacts vary with dna library preparation,

sequencing platform, and bioinformatics calling pipelines, so may appear as

novel signatures even in well-studied cancer types.

With its non-parametric Bayes assumption of infinitely many generating sig-

natures, the hdp model is uniquely suited to address this problem, and can

simultaneously match data to known signatures and allow for potential discovery

of new signatures.
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All possible signatures

Distribution of signatures
in whole dataset

...

...

...

New
data

W

D

Frozen nodes with pseudo-counts
distributed by known signatures
(e.g. COSMIC database)

Prior:
uniform
DirichletSimulataneous matching to 

existing signatures and 
discovery of new signatures

Figure 4.2: Overview of the hdp model conditioning on prior knowledge about
known mutational signatures. For each known signature, a number of pseudo-
counts following the expected mutation class distribution are assigned to a
frozen node and allocated to one fixed cluster. The ‘frozen’ node status means
the cluster allocation of these pseudo-counts is fixed throughout the mcmc
posterior sampling. This forces their parent node describing the distribution
of signatures in the whole dataset to always apportion some probability to
these known signatures. The other nodes behave as in Figure 4.1, and observed
mutations in the new dataset are free to cluster either with the fixed pseudo-
counts of prior signatures, or in separate clusters describing novel signatures.

The diagram in Figure 4.2 overviews the pseudo-count strategy for condition-

ing on prior knowledge. When initialising the hdp structure describing the

generative model for a new dataset, each known signature is assigned to a

‘frozen’ child node (dp draw) as shown in Figure 4.2. For each prior signa-

ture, the characteristic distribution over mutation classes is instantiated as a

set of pseudo-counts fixed to one cluster throughout the posterior sampling

process. While the pseudo-counts are held frozen in their cluster allocation,

the mutations observed in the new dataset are free to cluster with either the

fixed pseudo-counts of a prior signature, or in novel clusters solely composed

of new data observations. Following the collection of posterior samples and

extraction of consensus signatures (Section 4.2.2), the signatures are labelled

by their match in the prior set or with a new label for novel discoveries.
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4.3 HDP performance on simulated data

4.3.1 Simulated mutation catalogues

To assess the performance of the hdp method for mutational signatures analysis,

I generated a collection of simulated snv mutation catalogues and compared

the hdp reconstruction with the known underlying signatures and sample

exposures under a range of conditions.

In total, I simulated 240 separate datasets (parameters in Table 4.1) by varying

the number of samples, number of underlying signatures, similarity of sample

exposure patterns, number of distinct sample sub-groups, and whether or not

the total mutational burdens are consistent with wes or wgs data.

Table 4.1: Parameter combinations for simulated snv catalogues. Five indepen-
dent datasets were simulated with every possible combination of parameters
within each column, generating 240 simulated datasets in total.

base
combinations

different
exposure

three
sub-groups

samples 50, 100, 200 50, 100 50,100
generating signatures 5, 10, 15, 20 5, 10 5, 10

seq tech / burden wes, wgs wes, wgs wes, wgs
exposure similarity medium low, high medium

number of groups 1 1 3
replicates 5 5 5

total datasets 120 80 40

Each simulated dataset randomly sampled K underlying signatures from a set

of 30 published by the cosmic database (v74, Forbes et al. (2015)g) after nmf

analysis of 10,952 exomes and 1,048 whole genomes (Alexandrov et al., 2013b;

Alexandrov et al., 2015b). Each cosmic signature θk is a discrete probability

distribution over 96 mutation classes (snvs in trinucleotide context).

The number of mutations in sample j was taken to be nj = min(b10xje, 20000)

for X ∼ Gamma(α, β), with shape and rate parameters specific to either wes

or wgs datah.

Next, the signature exposure vector φj for sample j (probability distribution

over the set of K signatures) was sampled from φ ∼ DirichletK(τ × η), where

ghttp://cancer.sanger.ac.uk/cosmic/signatures available as of December 2017
hBy fitting gamma distributions to the log10-transformed per-sample mutation counts

in exome and genome datasets described in Section 4.4, I obtain shape αE = 8.23 and rate
βE = 4.55 for wes data, and αG = 10.02 and βG = 3.15 for wgs data.

http://cancer.sanger.ac.uk/cosmic/signatures
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the concentration parameters τ ∼ DirichletK(1) were newly sampled for each

simulated cohort, and the exposure similarity weight η was set to 10 for ‘medium’

similarity across samples, 1 for ‘low’, and 20 for ‘high’. In simulations with

three sample sub-groups (g ∈ [1, 2, 3]), the sample exposures were drawn from

group-specific distributions with τ g ∼ DirichletK(1 × 0.5). As an additional

constraint on the exposure profile, each of the K generating signatures was

forced to contribute at least 2% (for K ∈ 5, 10) or 1% (for K ∈ 15, 20) of the

total mutations in the cohort.

Finally, the nj mutations in sample j were drawn from a sample-specific distri-

bution over the 96 mutation classes as defined by [θ1, . . . ,θK ]×φj (signatures

mixed by sample-specific exposure proportions).

4.3.2 Posterior inference settings

For the 240 separate simulated datasets outlined in Table 4.1, I attempted

to reconstruct the generating signatures and sample exposures using the hdp

model with a variety of settings. Unless otherwise specified, the default hdp

design is for one shared concentration parameter across all nodes, with one top

parent node modelling the dataset distribution of signatures, and one child

node per sample descended from the same shared parent.

The base setting was to collect 500 posterior samples (50 iterations apart) from

four independent mcmc chains after 5000 burn-in iterations (2000 posterior

samples total). Under the base setting, I initialised all models with 10 clusters,

and set the gamma hyper-parameters for the shared concentration parameter

at shape = 1 and rate = 1. All 240 datasets were put through hdp clustering

with these base settings, and some were also run with additional combinations.

As the generating signatures from the cosmic set include one pair with cosine

similarity just below 0.92, I set 0.92 as the similarity threshold for component

merging during signature extraction.

To assess the influence of initial clustering, 60 datasets were also run with

initial cluster counts of 5 or 15, holding the other settings constanti.

To assess the influence of the concentration parameter, 40 datasets were also

run with a shape hyper-parameter of 0.1 or 10, holding the other settings

iFor datasets with 50 or 100 samples; wes or wgs burden; 5, 10, or 15 underlying
signatures; medium sample exposure similarity; and one shared group.
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constantj.

Finally, to assess the influence of specifying a sub-group structure in cases

where it does and does not exist, 80 datasets were also run with a three-group

node hierarchy and group-specific concentration parameters, holding the other

settings constantk.

4.3.3 HDP performance on simulated data

Metrics To assess performance of the hdp method, Figures 4.3–4.8 compare

the following four metrics:

• number of signatures returned (compare against number of generating

signatures, indicated by colour);

• proportion of mutations explained by the fit (proportion of mutations

not assigned to component zero, averaged over posterior samples);

• cosine similarity of returned signatures with underlying signatures; and

• cosine similarity of estimated sample exposures with the true underlying

exposure vectors.

Above each plot is a p-value for the independent variable in question (either

a posterior sampling setting, or a property of the simulated dataset) and its

relation to the performance metric, controlling for all other variables with a

Poisson regression for number of signatures returned, or a beta regression for

the other three metrics (defined on a 0–1 scale).

Posterior sampling settings Overall, hdp solutions are robust to the

posterior sampling settings, and do not change significantly as the number

of initial clusters varies from five to fifteen (Figure 4.4), nor as the mean

of the hyper-prior for the concentration parameter varies by a factor of ten

(Figure 4.5). Increasing the number of independent mcmc chains from two to

eight has little impact (Figure 4.3), indicating that the sampling procedure is

mixing around the posterior distribution in a reasonably representative manner

even within one chain.

jFor datasets with 50 or 100 samples; wes or wgs burden; 5 or 10 underlying signatures;
medium exposure similarity; and one shared group.

kFor datasets with 50 or 100 samples; wes or wgs burden; 5 or 10 underlying signatures;
medium exposure similarity; and one or three shared groups.
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Figure 4.3: Hdp performance as the number of independent mcmc chains
varies. P -values above each plot are for the number of chains as a quantitative
predictor of each vertical axis metric, controlling for number of samples, number
of underlying signatures, and sequencing type.
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Figure 4.4: Hdp performance as the number of initial clusters varies. P -values
above each plot are for the number of initial clusters compared to a baseline of
10, controlling for number of samples, number of underlying signatures, and
sequencing type.
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Figure 4.5: Hdp performance as the shape hyper-parameter for the dp con-
centration parameter varies. P -values above each plot are for the shape hyper-
parameter levels compared to a baseline of 1, controlling for number of samples,
number of underlying signatures, and sequencing type.
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Dataset properties The greatest determinants of accurate signature recon-

struction are dataset size and sample exposure similarity. As expected, hdp

performance improves in larger datasets with more samples and more observed

mutations (wgs better than wes, Figure 4.6). Under the simulation condi-

tions established here, five mutational signatures are reliably reconstructed

with about 200 exomes or 50 whole genomes. For datasets generated with

15 or 20 underlying signatures, 200 exomes will only reconstruct about 10 of

these, whereas 200 whole genomes can accurately return all 15, and almost all

20 signatures. However, these guidelines are heavily dependent on the sample

exposure patterns. As shown in Figure 4.7, accurate signature reconstruction

requires much less data when samples have very different signature exposures,

as the co-occurrence profile is more distinct for variably assorting signatures.

Sub-group structure Finally, for these simulations, the hdp results are

broadly similar whether or not the samples’ sub-group structure is accounted

for (Figure 4.8). Although modelling the sub-group structure has no discernible

influence on signature estimation, it does significantly improve the sample

exposure estimates when there is a genuine underlying difference, and is of no

detriment when the sub-group division is erroneous.

Factors influencing accuracy In all the hdp model fits on simulated data,

some signatures and sample exposures are more reliably reconstructed than

others. To investigate factors influencing reconstruction accuracy, I considered

the subset of base setting simulations with 50 or 100 wgs samples with 5 or 10

underlying signatures and medium exposure similarity. Pooling observations

across simulated cohorts, I fitted a beta regression for the outcome variable of

cosine similarity between the estimation and underlying truth, with predictor

variables as indicated in Figures 4.9 and 4.10. This exercise shows that sample

exposure recall (Figure 4.9) is more likely to be inaccurate if the number of

extracted signatures is incorrect, and/or the sample has: similar contributions

from most signatures (low standard deviation); low mutation count; or a higher

proportion of mutations in rare signatures. For the signatures (but not the

exposures), I subset to the models returning the correct number of underlying

signatures (eliminating poor reconstruction due to incorrect number). Signature

recall (Figure 4.10) is more likely to be inaccurate if the dataset is small, or if

the signature in question is: rare in the cohort (contributes a low proportion

of total mutations); close to uniform across mutation classes (low standard

deviation); or roughly similar to another generating signature in the cohort.
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Figure 4.6: Hdp performance as the number of samples varies. P -values
above each plot are for the number of samples compared to a baseline of 100,
controlling for number of underlying signatures, and sequencing type.
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Figure 4.7: Hdp performance as the level of signature exposure similarity across
samples varies. P -values above each plot are for the level of exposure similarity
compared to a ‘medium’ baseline, controlling for number of samples, number of
underlying signatures, and sequencing type. Exposure similarity was controlled
by a weight on Dirichlet concentration parameters for the sample exposure
vectors when generating the simulated data (Section 4.3.1).
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Figure 4.8: Hdp performance when modelling the sub-group structure of
samples, in cases where this sub-group structure genuinely existed (true3) and
in cases where it did not (true1). P -values above each plot compare the 3-group
model with the 1-group model, given that the dataset was simulated from one
true group or from three true groups. Regression tests controlled for number
of samples, number of underlying signatures, and sequencing type.



4.3. HDP performance on simulated data 141

p=3.9e−65
0.4

0.6

0.8

1.0

0 1 2

discrepancy b/w number of true and estimated sigs

E
xp

os
ur

e 
re

co
ns

tr
uc

tio
n

p=4.6e−32
0.4

0.6

0.8

1.0

0.1 0.2 0.3

s.d. of true sample exposure over sigs

E
xp

os
ur

e 
re

co
ns

tr
uc

tio
n

p=4.2e−19
0.4

0.6

0.8

1.0

100 10000

number of mutations in sample

E
xp

os
ur

e 
re

co
ns

tr
uc

tio
n

p=0.00012
0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6

proportion of mutations in rare sigs

E
xp

os
ur

e 
re

co
ns

tr
uc

tio
n

a b

c d

Figure 4.9: Factors influencing cosine similarity between true and estimated
sample exposures (vertical axis). P -values shown are from a multivariate beta
regression fit on the four predictor variables: (a) discrepancy between the
number of underlying signatures and the number of signatures returned by hdp
for the cohort; (b) standard deviation of the true exposure values for a sample;
(c) number of mutations in a sample; and (d) proportion of mutations in a
sample from ‘rare’ signatures (defined as the maximal subset which cumulatively
contribute less than 10% of total cohort mutations).
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Figure 4.10: Factors influencing cosine similarity between true and estimated
mutational signatures (vertical axis). P -values shown are from a multivariate
beta regression fit on the four predictor variables: (a) proportion of mutations
in the cohort from that signature; (b) standard deviation of the true mutation
class probabilities in that signature; (c) cosine similarity with the most similar
generating signature in the cohort; and (d) total number of mutations in the
cohort. For panel (b), the underlying signatures are marked with their identifier
in the cosmic database (horizontal position for underlying signature s.d. is
constant across datasets).
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Figure 4.11: Computational resources for hdp posterior inference (mcmc
approach) on simulated datasets.

Computational resources The computational time and memory required

for hdp inference with mcmc (Figure 4.11) scales with the number of mutations

that must be iterated over and tracked through successive cluster allocations.

The cpu time also increases with the complexity of the data (number of

underlying signatures), as the volume of calculations at each step relates to

the number of clusters. The easiest way to reduce computational cost is to

sub-sample the mutation set in hypermutators, thereby reducing the number

of data items. The memory requirements are also reduced by collecting fewer

posterior samples, and time in human hours (rather than cpu hours) is reduced

by running more chains in parallel, particularly after the burn-in period.

4.4 Application to SNVs in original signature

discovery dataset

In the first major effort to describe mutational signatures in a large pan-cancer

somatic snv dataset, Alexandrov et al. (2013b) applied nmf to almost 5 million

mutations from over 7000 samples (mostly exomes) representing 30 different

cancer types. By focusing on 96 snv classes in a trinucleotide context, the

original report presented 27 consensus signatures, including: 22 which validated

(including two versions of the CpG deamination ‘signature 1’); 3 confirmed

artefacts; and 2 unable to be validated. The cosmic database (Forbes et al.,
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2015) has since released an updated set of 30 signatures (numbers 22–30 not

reported in the 2013 paper) extracted with the same methods from an updated

set of more than 10,000 samples (Alexandrov et al., 2015b). In this section, I

return to the original signature discovery cohort of ∼7000 samples (summarised

in Table E.3), and compare hdp results in a practical real-world dataset.

4.4.1 Model design, combining exomes and genomes

One obstacle to combining exome and genome data in signatures analysis

is the difference in background trinucleotide frequency (Figure D.16). To

take the extreme examples, ATA has a trinucleotide frequency of 4.1% in the

whole genome but 2.7% in the exome (ratio 1.5)l, while GCG has frequency

0.47% in the genome but 1.3% in the exome (ratio 0.36)l. The upshot of this

discrepancy is that the same underlying mutational process will present with

different mutation class proportions in exome or genome data. In their original

signatures analysis paper, Alexandrov et al. (2013b) ran nmf in separate sample

groups divided by cancer type and sequencing type (exome or genome), then

matched the signatures post hoc, adjusting for exome biases on the signature

distributions at this stagem.

In contrast, I choose to pool the exome and genome data, and fit the hdp

signatures model to all samples simultaneously, grouping cancer types by

parent nodes as illustrated in Figure 4.1. This approach empowers the clustering

method to share information across cancer type boundaries, while upholding the

prior expectation of significant differences between groups. However, mutation

class tallies in the exome samples require adjustment to reflect mutational

signatures on a comparable background.

For an exome sample j with observed 96-length mutation class count vector µj

and total snv count of ‖µj‖1 = mj, the adjusted mutation class counts are

µ′j =
⌊{(

γ � µjm−1j
)/∥∥γ � µjm−1j ∥∥1}×mj

⌉
,

lFor trinucleotide frequency in the whole genome, I only include the callable genome
regions defined in Section 3.1.1. For the exome, I include all protein-coding exons plus 100 bp
flanks as variant calls are often made in flanks and off-target regions.

mI follow Alexandrov et al. (2013b) in reporting mutation class signature probabilities as
their expected relative frequency in a (human) genome-wide landscape, without normalising by
background trinucleotide frequency. That is, the reported probabilities inherently account for
how rare (e.g. ACG or TCG) or common (e.g. TTT) the context is. If the genome composition was
adjusted for (maybe useful to generate species-agnostic signatures), the signature probabilities
would increase for the rare contexts, and decrease for the common contexts.
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where � denotes element-wise multiplication, γ is the genome-to-exome ratio

of the trinucleotide context for each mutation class, and b. . . e is shorthand for

integer rounding using a modified procedure guaranteed to preserve mj total

snv count for sample j.

Using these adjusted mutation tallies for any exome sample, and down-sampling

hypermutator samples to a maximum of 20,000 snvs eachn, I allocated each

sample to a leaf node using the hdp design for multiple cancer type groups as

in Figure 4.1.

In the first instance, I ran four independent burn-in chains for 15,000 iterations,

each separately initialised with 30 random clusters. Picking up from the end

of each initial chain, I started another four independent mcmc chains for a

further 10,000 burn-in iterations and then collected 50 posterior samples at

intervals of 300 iterations (800 total samples from 16 separate chains).

4.4.2 Sampling chain diagnostics

Theoretically, an infinitely long mcmc chain would sample all possible cluster

allocations in proportion to their likelihood. In practice, we aim to have a

finite posterior sample set that approximates the true random sampling space

without strong biases imparted by the initialisation state or by slow mixing

between successive iterations. The diagnostic plots in Figure 4.12 show no

strong trends in the likelihood or number of raw clusters across the mcmc

chains which might indicate poor sampling. In future method development, it

would be beneficial to include more formal convergence diagnostics.

4.4.3 HDP signature and exposure estimates

Using the method outlined in Section 4.2.2o, the hdp model returned 54 con-

sensus mutational signatures and assigned 19.8% of mutations (on average) to

the zero component for noise and uncertainty.

For each hdp-estimated mutational signature (‘HSig’; all presented in Fig-

ure D.17), I matched the mean mutation class distribution with its closest

n30 hypermutator samples downsampled.
oI set the similarity threshold for signature merging to 0.92 as the cosmic set includes one

pair with this level of similarity. Also, I required every reported signature to have significant
exposure (95% credibility interval above zero) in at least two samples.
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match in the current cosmic set (‘CSig’; including the artefact and un-validated

signatures from Alexandrov et al. (2013b)), down to 0.9 cosine similarity.

Of the artefactual and un-validated signatures described by Alexandrov et al.

(2013b), hdp only recovered the three artefacts R1–R3. Of the 21 validated

signatures (CSig1–CSig21), hdp recovered all but four. The four missing

signatures were CSig3, CSig5, CSig6, and CSig19. Cosmic annotates CSig3

as a hr-deficiency signature, and CSig5 as a ‘clock-like’ process associated

with age (Alexandrov et al., 2015b). CSig3 and CSig5 have relatively uniform

mutation class profiles which hdp may struggle to differentiate in exome data,

presumably apportioning many of these mutations to the zero component with

uncertain allocation. Part of the hr-deficiency signature is probably captured

by HSig7, with a 0.88 similarity to CSig3 and frequent contribution to the breast

cancer cohort. CSig6 is annotated as defective dna mismatch repair, often

co-occurring with the other mismatch repair signatures CSig15 and CSig20.

Of the hdp-estimated signatures, HSig30 matches CSig15 extremely closely

(0.98 similarity) while HSig10 matches CSig20 quite roughly (0.91 similarity).

Further investigation reveals that HSig10 is a much closer match to a blend of

CSig20 and CSig6p, so it seems that hdp does not distinguish between these

aspects of defective mismatch repair. The missing CSig19 is solely identified in

pilocytic astrocytoma (Alexandrov et al., 2013b), and is not apparent in the

hdp output. Considering the signature-tissue overview presented in Figure 4.13,

the mutations originally attributed to CSig19 are presumably subsumed by the

zero component.

Of the nine validated signatures subsequently added to the cosmic database

after analysis of more data (Alexandrov et al., 2015b), hdp recovered CSig22

(aristolochic acid) and CSig28 (mostly T>G in NTT) without requiring the extra

samples. This suggests the hdp method may have greater sensitivity for

detecting some genuine signatures.

The nmf analysis of this dataset recovered two versions of the common CSig1

CpG deamination signature (Alexandrov et al., 2013b). Similarly, hdp outputs

three signatures resembling CSig1: HSig17 as a very pure distribution of C>T in

NCG (even stronger peaks than the current cosmic estimate); and HSig13 and

HSig9 as relatively ‘muddled’ versions (Figure D.17) with particular prominence

in esophageal and breast cancers respectively. It seems likely that these latter

estimates mix different underlying processes. Two other cosmic signatures are

also represented multiple times in the hdp output. The CSig7 uv radiation

p0.97 cosine similarity between HSig10 and a 60:40 mixture of CSig20 and CSig6.
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Figure 4.13: Number of samples with significant exposure to hdp-extracted
signatures (95% credibility interval above zero). Hdp signatures (‘HSig’) are
labelled with their closest match in the cosmic signature library (‘CSig’), with
known artefacts prefixed ‘R’. ‘HSig0’ denotes the zero component for noise and
uncertainty. The number of samples considered is indicated in the column label
for each cancer type. Figure continues on the next page.
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Figure 4.13: Number of samples with significant exposure to hdp-extracted
signatures (95% credibility interval above zero)—continued from previous page.
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signature is matched by both HSig2 and HSig18, both with strong exposure

in the melanoma cohort (Figure 4.13). It remains unclear whether this is a

genuine biological difference in the uv profile affecting some samples, or a false

positive signature split caused by over-fitting. Finally, the CSig10 signature of

mutant POLE activity is matched by both HSig15 and HSig20, differentiated

by the relative probabilities of C>A in TCT and C>T in TCG (Figure D.17). This

signature split may plausibly reflect biological variation in the POLE effect of

different mutant protein residues (Rayner et al., 2016; Campbell et al., 2017a).

Of the 28 hdp signature estimates with no match in the cosmic database,

some are close to uniform with similar patterning to other known signatures

(centre of Figure 4.14), whereas others have unique, distinctive peaks (edges of

Figure 4.14). Some novel signatures with particularly clear patterns (see all in

Figure D.17) include:

• HSig19 in 54 liver cancers (T>C in ATN, possibly a cleaner extraction of

CSig16/HSig16);

• HSig28 in 15 liver cancers (C>T in TCT);

• HSig29 in 19 various samples including stomach, uterus (T>C in NTG);

• HSig40 in 12 various samples, including 7 gliomas (C>G in WCW);

• HSig44 in 10 melanomas (T>C in GTT);

• HSig47 in 28 melanomas (T>N in TTT);

• HSig49 in 83 kidney clear cell cancers (T>C in NTY);

• HSig51 in 7 liver cancers (T>G in GTN); and

• HSig53 in rare bladder, melanoma and thyroid samples (C>G in CCN).

The tendency for many novel signature estimates to group similar mutation

classes supports their biological validity, as the model regards all 96 snv

categories as equally independent. Furthermore, the novel melanoma signatures

in a TpT context are consistent with the known modality of uv radiation

causing thymine dimer lesions. However, validating these signature estimates

as sequencing artefacts, genuine mutational processes, or over-fitting to random

data correlations, is beyond the scope of this work.

In contrast to the simulated data (Section 4.3) for which hdp typically consigned

one or two percent to the zero component, this real-world example grouped

almost 20% of total mutations in the zero component for noise and uncertainty.
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Figure 4.14: Map of
hdp-extracted signatures
(blue for cosmic match)
using t-distributed
stochastic neighbour
embedding (two
dimensions mapping
similarity between
signature distributions).

With thousands of small exome samples, my consensus signature extraction

method (Section 4.2.2) failed to reproduce the close-to-uniform CSig3 and CSig5.

Further method development may improve the sensitivity to uniform patterns,

possibly by upgrading the raw cluster matching step (across posterior samples)

to consider sample exposure similarity in addition to signature similarity. It is

also possible that my approach for normalising exome data to a genome-wide

background (Section 4.4.1) introduced unintended biases that confounded the

clustering procedure. Overall, the zero component is a similar match to the

CSig5 signature found in all cancer types (Alexandrov et al., 2013b). To extract

CSig5 as its own confident signature, the hdp method may require cleaner

genome data and/or a more robust post-processing procedure.

In addition to the mutational signatures, hdp also estimates the exposure

weights within each sample (leaf node) and group (parent node). By taking 95%

highest posterior density credibility intervals, hdp formalises the significance

of each signature’s activity. As shown in Figure 4.15, this leads to my novel

approach of plotting sample exposure with a fraction left unexplained. By

plotting the mean exposure estimate for significant findings only, the blank

proportion of sample exposure represents the proportion of mutations with

uncertain cluster allocation (to the same, or different, signatures). This strategy

is important for communicating uncertainty, and emphasizes our reduced

confidence in the signature exposures of low-burden samples. To highlight some

examples in Figure 4.15: bladder samples are dominated by the APOBEC

signatures (HSig4/CSig13, HSig14/CSig2); lung cancers by tobacco (HSig1/

CSig4); melanoma by uv radiation (HSig2/CSig7, HSig18/CSig7); and high-

burden stomach cancers by defective mismatch repair (HSig10/CSig20).
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Figure 4.15: Average estimated sample exposures to hdp-extracted signatures
for six cancer types with samples sorted by observed mutational burden, capped
at 20,000 snv. Large cohorts are subset to a maximum of 200 samples for
presentation. For each sample, mean estimated exposures are only plotted
for significant signatures (95% credibility interval above zero), leaving a blank
proportion with uncertain signature allocation.
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4.5 Simultaneous signature matching and dis-

covery

One of the key theoretical advantages of the hdp method for mutational signa-

tures analysis is the ability (outlined in Section 4.2.3) to match a new dataset

to an existing library of known signatures while simultaneously empowering

any novel mutational signatures in the dataset to emerge as separate clusters.

Data and methods

To briefly illustrate this approach on real data from the pcawg cohort, I selected

somatic snv calls from the pancreatic endocrine cancer group (81 samples;

252,930 snvs) and prostate adenocarcinoma group (198 samples; 635,688 snvs).

Following the hdp design illustrated in Figure 4.2, the 30 known mutational

signatures in the current cosmic databaseq were each represented by 500 pseudo-

count mutations in a frozen node. Analysing each cohort separately, I randomly

initialised the real mutations into 35 clusters—30 linked with a prior signature,

and five others solely comprised of observed mutations from the new dataset.

After running four burn-in chains for 10,000 iterations, two chains bifurcated

from the end of each burn-in and ran a further 2000 burn-in iterations before

collecting 125 posterior samples separated by 100 iterations (1000 total posterior

samples from eight independent mcmc chains).

Results

For the pancreatic endocrine cohort, hdp identifies four additional signatures

(shown in Figure 4.16) while simultaneously matching to the set of known

signatures. The newly extracted signature N1 is characterised by a consistent

distribution of C>A mutations, with high-confidence peaks in TCT and TCA

contexts. Scarpa et al. (2017) recently attributed this pancreatic neuroendocrine

signature to MUTYH loss and consequent deficiency in base excision repair.

Seven samples have significant exposure to this MUTYH signature, including

three with high overall burden (> 7500 snv) and > 92% of mutations attributed

to signature N1 (Figure 4.17). Signatures N2 and N3 have greater uncertainty

about their mutation class distribution, and have significant exposure in three

and six samples respectively, with estimated exposure proportions as high as

qhttp://cancer.sanger.ac.uk/cosmic/signatures available as of December 2017

http://cancer.sanger.ac.uk/cosmic/signatures
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Figure 4.16: Newly discovered mutational signatures in pancreatic endocrine
cancer wgs cohort (mean and 95% credibility interval from hdp posterior
samples, with non-significant mutation classes in grey and four major peaks
labelled with trinucleotide context). Component N4 is similar to the known
artefact signature R1.

24% and 27%. Signature N4 has one dominant peak of T>G in GTG and probably

corresponds to the known artefact signature ‘R1’ (Alexandrov et al. (2013b),

artefact signatures not included as priors). Across the cohort, samples also have

significant exposure to many prior cosmic signatures, including age-related

signatures 1 and 5 (Alexandrov et al., 2015b), APOBEC signatures 2 and 13,

and signature 8 (low C>A peaks, with CC>AA double nucleotide substitutions).

One unusual sample has 66% of 1463 snvs attributed to signature 12 (peaks in

T>C), previously described in liver cancer only (Alexandrov et al., 2013b).

For the prostate cohort, hdp identifies six novel signatures shown in Figure 4.18.

Signature N1 is quite common in the cohort (Figure 4.19), with significant

exposure in 30 samples including several with over 3000 snvs attributed to

this novel signature. In contrast, signature N6 has significant exposure in
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Figure 4.17: Pancreatic endocrine cancer sample exposures (average from hdp
posterior samples) to a library of known signatures (labelled ‘P’ for prior)
and newly discovered signatures (labelled ‘N’ for new) with samples sorted
by observed mutational burden, capped at 10,000 snvs. For each sample,
mean estimated exposures are only plotted for significant signatures (95%
credibility interval above zero), leaving a blank proportion with uncertain
signature allocation.
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Figure 4.18: Newly discovered mutational signatures in prostate adenocar-
cinoma wgs cohort (mean and 95% credibility interval from hdp posterior
samples, with non-significant mutation classes in grey and four major peaks
labelled with trinucleotide context).

just one sample, contributing an estimated 70% of its 2775 snv calls, with

a huge peak of C>A mutations in a TCA context. Prostate samples also have

significant exposure to some prior cosmic signatures, including 1, 5, and 8.

Interestingly, one sample in the prostate cancer cohort has almost 1000 snvs

attributed to cosmic signature 9, thought to be the mark of polymerase η

activity and previously identified in CLL and B-cell lymphomas only (cells with

AID hypermutation) (Alexandrov et al., 2013b). This hdp finding implicates

rare polymerase η activity under other conditions in prostate tissue.
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Figure 4.19: Prostate cancer sample exposures (average from hdp posterior
samples) to a library of known signatures (labelled ‘P’ for prior) and newly
discovered signatures (labelled ‘N’ for new) with samples sorted by observed
mutational burden, capped at 10,000 snvs. For each sample, mean estimated
exposures are only plotted for significant signatures (95% credibility interval
above zero), leaving a blank proportion with uncertain signature allocation.
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Discussion

Any newly discovered pattern of co-occurring mutation classes may: reflect

a genuine mutational process previously missed by signature analysis; be a

variant form of a previously described signature (genuine biological variant, or

different form due to calling bias); or be a specific profile of artefact calls from

contamination, sequencing errors, etc. Validating the new signatures described

in pancreas and prostate as artefact or genuine is beyond the scope of this

thesis.

While these results demonstrate the efficacy of this hdp approach for discovering

novel mutational signatures and quantifying the uncertainty in their distribution

with credibility intervals, interpretation of the prior signature matching has

possible pitfalls.

First, when observed mutations from the new dataset cluster with fixed pseudo-

counts corresponding to a prior signature, the distribution over mutation classes

in that cluster can sometimes deviate substantially from the prior signature as

primed by the pseudo-counts. The signature extraction method attempts to

resolve this problem when reporting results, and will de-couple a cluster from

the prior identity of its pseudo-counts if the overall pattern has diverged from

the original intended signature. With the current implementation, the final

estimated signature will still be labelled with its closest match in the prior set

down to a threshold of 0.85 cosine similarity. As a result, reported exposure to

a prior signature may sometimes indicate a rough match only. For example,

the cosine similarity between the reference version of cosmic signature 19 and

the version reported in the pancreatic endocrine cancers is 0.92, and it remains

unclear whether or not this represents the same underlying process.

Second, it may be the case that more uniform signatures (low variation over

mutation class proportions) are particularly difficult to distinguish when condi-

tioning on prior knowledge. Whereas the roughly uniform cosmic signature 5

has previously been reported in all cancer types, another roughly uniform

signature 8 has only been reported in breast and medulloblastoma (Alexandrov

et al., 2013b) and yet was estimated to have a significant presence in most of

the pancreatic and prostate samples analysed here. It seems plausible that

this signature 8 exposure stems from mis-clustering of genuine signature 5

mutations, primed by pseudo-counts with similar spread over all mutation

classes. The cosmic database reports that signature 8 has a weak transcription

strand bias for C>A mutations and a tendency for double nucleotide CC>AA
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substitutions, so it would be interesting to check in future research whether or

not the purported signature 8 exposures in pancreas and prostate have similar

distinguishing properties.

Finally, conditioning on a large number of prior signatures may increase the

likelihood of a small subset of mutations consistently clustering with a known

prior by chance, introducing small false positive signature exposures not ad-

equately sampled away by the finite mcmc sample collection. For example,

previous analysis with nmf reported only three mutational signatures with

significant exposure in 520 prostate cancer exomes (cosmic signatures 1, 5

and 6, Alexandrov et al. (2015b)), whereas my hdp analysis of 198 prostate

genomes found significant exposure to eleven known cosmic signatures and

a further six novel signatures. This discrepancy could partially result from

greater detection power in genomes rather than exomes; greater sensitivity of

the hdp approach (particularly when conditioning on prior signatures); and

possible false positive matching to prior signatures.

To assess how the inclusion of prior signature information impacts results, it

would be informative to compare against de novo hdp signature extraction

on these same cohorts, and see whether a pattern like cosmic signature 8

emerges separately to cosmic signature 5, and whether the low frequency

signature exposures are still reported. The performance of hdp matching to

prior signatures could also be investigated with simulation studies under a

range of conditions, with particular interest in close-to-uniform signatures, and

possible false-positive clustering with fixed pseudo-counts.

In practice, including all previously reported signatures as equally weighted

priors may be naive and possibly confounding, particularly as the number of

known mutational signatures will continue to grow. I conjecture that a better

approach would be to weight known priors by their reported prevalence in

related cancer types, even to the point of excluding priors only described in

completely unrelated cancer types.

If future studies come to model mutational signatures in more detail than a

simple categorical distribution over 96 snv classes—for example, including

strand bias, double nucleotide substitutions, replication timing bias—then

methods to match new data to previously reported signatures will have more

diverse evidence to draw from, likely improving results.
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4.6 Signatures of genome rearrangement

In contrast to the detailed analyses of somatic snv signatures (Alexandrov

et al., 2013b; Helleday et al., 2014; Alexandrov et al., 2015b), few publications

have attempted a similar decomposition of somatic rearrangement signatures.

In 560 breast cancer genomes, Nik-Zainal et al. (2016) applied nmf to a set

of bpj calls classified by their orientation, size, and presence in clustered or

isolated svs. This yielded six rearrangement signatures, broadly defined by:

large or small tandem duplications (two separate signatures); small deletions;

unbalanced translocations with large deletions and inversions; and intra- or

inter-chromosomal complex rearrangements (two separate signatures). With

essentially the same sv classification and nmf signature pipeline, Hillman et al.

(2018) extracted five rearrangement signatures from 80 ovarian cancers, finding

similar results with basic separation by sv class and size for isolated bpj.

In this section, I return to the sv dataset of approximately 2500 pcawg

samples (introduced in Chapter 2) and leverage our detailed bpj classifications

(Section 2.1.3) to calculate signatures of co-occurring rearrangement patterns.

4.6.1 Generating the SV tally matrix

Using the bpj classification in Table 2.2 as a starting point, I defined 76 sv

categories to use an input alteration classes for a hdp signature analysis.

For deletion and tandem duplication, I first separated the fragile site events

with both breakpoints inside one of the 21 fs regions defined in Table E.2

(Section 3.4). Then, I classified the remaining deletions and tandem duplications

by both size (breaks at 50 kb, 500 kb, and 5 Mb) and replication timing (at the

event mid-point; early > 60, late < 30, or in-between, using the definition in

Section 3.1.2). Events larger than 5 Mb were not sub-categorised by replication

timing.

For classified sv like translocation (unbalanced and reciprocal), 2-jumps (local

and distant), chromoplexy (cycles and chains), and templated insertion (cycles,

chains and bridges), I tallied the counts per-event rather than per-bpj. Local

2-jumps and reciprocal inversions (two bpj per event count) were additionally

separated by size categories split at 100 kb (measuring the total event span).

Templated insertions were divided by the size of the insert fragment (split at

5 kb), taking the median insert size for multi-insert events were necessary.
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Finally, of the ∼150,000 bpj in complex unexplained clusters, I included

categories for the subset of individual local footprints with a recurrent bpj

pattern present at least one hundred times in the cohort (tallied once per-

footprint, not per-bpj). In the category labels shown in Figure 4.20, the complex

footprint patterns are annotated with an alphabetical segment notation, using

+ for the 3’ end, − for the 5’ end, carets for bpj joins, and a forward slash

for adjacent breakpoints in separate bpj. The many complex unexplained bpj

in rarer, more convoluted local footprints were excluded from the signatures

analysis.

After removing samples with less than three counted sv events, the final

matrix tallied 147,508 sv events across 2050 samples. Of the 76 sv categories,

the most common were: a single translocation breakpoint within a complex

cluster (12,753) and deletions smaller than 50 kb with mid-range replication

timing (11,289). The least common categories were: dup-trp-dup local 2-

jumps smaller than 100 kb (31) and local+distant 2-jumps of translocation

with subsequent tandem duplication (88).

4.6.2 HDP model for SV signatures

Following the hdp design for multiple cancer type groups as in Figure 4.1, I

allocated each sample to a leaf node, using a separate concentration parameter

for each group of child nodes and the set of all parent nodes, using gamma

hyper-priors with shape = 1 and rate = 1.

I ran eight independent burn-in chains—each separately initialised with ten

clusters—for 40,000 iterations, and then collected 125 posterior samples at

intervals of 300 iterations (1000 total samples from 8 separate chains).

4.6.3 Estimated SV signatures

Using the method outlined in Section 4.2.2, the hdp model returned 15 consen-

sus rearrangement signatures and assigned just 0.3% of sv events (on average)

to the zero component for noise and uncertainty—a far lower proportion of

uncertain clustering than for the snv signatures in Section 4.4.

Figure 4.20 presents the fifteen pcawg rearrangement signatures (sorted by

structure, not frequency) with an inverse normalisation such that event class

proportions (across signatures) sum to one. This is a different interpretation to
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the standard plot showing individual signatures as proper probability distribu-

tions integrating to one. Given the extreme differences in sv class frequency,

this inverted visualisation allows rare sv classes to be seen alongside common

structures. However, the values shown within each signature need careful

interpretation, as the rearrangement process will generate common sv classes

far more frequently than rare sv classes at the same plotted height.

The complex sv footprints are mostly split across two signatures: one generic

‘Complex’ group, and one ‘Complex+Chromoplexy’ group co-occurring with

chromoplexy cycle events. Fragile site deletions almost exclusively assort to

their own ‘Fragile Site’ signature, which also includes about half the fs tandem

duplications, and a range of other deletions enriched in late-replicating regions.

Other deletions separate into four different signatures:

• ‘Small Deletion’, co-occurring with several other classes including: small

reciprocal inversion, small insertion bridge, and reciprocal translocation;

• ‘Mid Deletion’ with few other sv classes;

• ‘Large Deletion’, co-occurring with large reciprocal inversions and recip-

rocal inversions within complex clusters; and

• ‘Late Deletion’ of late-replicating events at any size, also co-occurring

with a small fraction of reciprocal inversion events at any size.

Tandem duplications mostly assort over five signatures:

• ‘Early Small TD’, co-occurring with templated insertions (particularly

small insertion cycles) and translocation plus tandem duplication events;

• ‘Late Small TD’, co-occurring with small dup–inv-dup 2-jumps;

• ‘Early Mid TD’, co-occurring with large insertion cycles and chains;

• ‘Late Mid TD’, co-occurring with large dup–inv-dup 2 jumps; and

• ‘Large TD’ with few other sv classes.

‘Unbalanced Translocation’ forms a largely separate signature, co-occurring

with a small fraction of chromoplexy chains. The ‘Reciprocal Sv’ signature

pairs reciprocal translocations with other balanced events like chromoplexy

cycles and some reciprocal inversions. Finally, the miscellaneous ‘Break+Ligate’

signature groups foldback rearrangements with extremely large deletions and

duplications, as well as local+distant 2-jumps, chromoplexy chains, and some

complex sv footprints involving foldback bpjs.
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Figure 4.20: Sv signatures and 95% credibility intervals, normalised by event
class fraction (rows—not columns—sum to one, including the figure continuation
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Figure 4.20: Sv signatures and 95% credibility intervals, normalised by event
class fraction (rows—not columns—sum to one, including the figure continuation
on the previous page).
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Figures 4.21 and D.18 show a subset of the estimated sample exposures, re-

capitulating the basic bpj census presented in Figures 2.10 and D.2 with

the enhanced signature context of size, replication timing, and sv group.

Prostate cancer is particularly enriched for the late-replicating deletion and

complex chromoplexy signatures; this latter exposure indicates that many bpj

in chromoplexy-associated events are found in the complex unexplained bin.

Other cancer types with particularly high exposure to certain rearrangement

signatures include: bladder cancer with large deletion and ‘break+ligate’ svs;

osteosarcoma with complex svs; medulloblastoma with the unbalanced translo-

cation signature; and colorectal cancer with the fragile site signature. Not all

sv events in the fragile site signature are confined to the annotated fs regions,

as the other deletions in the signature are more common than their relative

values in Figure 4.20 suggest (because of the inverted normalisation to visualise

common and rare sv classes concurrently). The exposure patterns in breast,

liverr and uterus highlight the different replication timing skews of tandem

duplication by sample, extending the results of Section 3.2.3.

4.6.4 Discussion

The fifteen rearrangement signatures presented in this section are an apotheosis

of the results presented in Chapters 2 and 3, combining sv class, size, and

location (as represented by replication timing) into one decomposition of

underlying rearrangement processes with characteristic structural readouts and

varying activity levels across samples and groups.

The co-occurrence patterns indicate the same underlying condition may generate

different structural forms with similar properties of size and/or location. For

example, deletions coincide with reciprocal inversions of a similar size range,

presumably mediated by break and ligate repair of dsbs at consistent intervals.

Similarly, tandem duplications in late-replicating regions coincide with dup–

inv-dup 2-jumps of a similar size range, presumably mediated by template and

replicate repair of invading strands with consistent processivity (mechanisms

reviewed in Section 1.4.1). The conditions generating fragile site deletions also

foster fs tandem duplications and a range of other late-replicating deletions,

possibly present in un-annotated fs regions.

Compared to previous reports of five or six relatively simplistic sv signatures

rFor liver cancer, the outlying high-burden sample with large duplications was previously
illustrated in Figure D.6.
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Figure 4.21: Average estimated sample exposures to hdp-extracted sv signa-
tures (Figure 4.20) for eight of the pcawg cancer types. Large cohorts are
subset to a maximum of 100 samples for presentation. For each sample, mean
estimated exposures are only plotted for significant signatures (95% credibility
interval above zero), leaving a blank proportion with uncertain allocation to
the same or different signatures.
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(Nik-Zainal et al., 2016; Hillman et al., 2018), this analysis of 76 sv categories—

including many novel structures—tallied across 2050 samples in a pan-cancer

cohort is the most detailed and comprehensive summary of rearrangement

signatures yet produced. However, the scope for further improvement is vast.

My hdp method currently requires genome alterations to be tallied in discrete,

unordered categories, as do the nmf-based methods reviewed in Section 4.1.

When classifying sv events, a large swathe of the complex rearrangement

landscape remains intractable to simple categorisation, and is largely precluded

from signature analysis. Even if bpj in complex events like chromothripsis or

bfb were to be classified, it remains unclear how these large-scale phenomena

should be tallied for meaningful comparison against a simple deletion count,

for example. For the sv events that do have classifiable structures, their

other pertinent features of size and replication timing are best measured as

quantitative variables. My current categorisation of size and timing is a crude

substitute for the real value, causing edge effect bias and violating the assumed

independence of separate alteration classes. Ideally, future signature analysis

methodologies will handle quantitative event features (perhaps using a similar

approach to Shiraishi et al. (2015)), and sv signatures may extend to additional

features such as microhomology and chromatin state.

4.7 Discussion

In this chapter, I introduced the hierarchical Dirichlet process as a novel strategy

for mutational signature decomposition, and derived a set of fifteen somatic

rearrangement signatures with unprecedented detail and scale.

The hdp model was first developed by Teh et al. (2006) for topic modelling

in corpora, but it is also well-suited to mixed-membership cluster problems

in biology, such as the mutational signature decompositions explored in this

thesis. The flexible tree of hierarchical dp nodes provides a natural framework

for grouping samples by any number of pertinent factors, such as cancer type,

germline genotype, mutagen exposure, or patient of origin (if multiple metas-

tases or subclones are available from the same individual). This consideration

of sample relatedness empowers the clustering procedure to borrow information

across disparate groups, while upholding the prior expectation of differences

between groups. In contrast, most other methods perform siloed signature

extraction in separate cancer types, with a post hoc consolidation to match

results across groups. As the mcmc posterior sampling method naturally gener-
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ates credibility intervals for every signature and sample exposure estimate, hdp

quantifies significant differences between samples and groups with a justifiable

comparison often lacking in other methods. Two further advantages of the

hdp approach stem from its nonparametric Bayesian assumption of infinitely

many generative processes. First, this enables the number of underlying signa-

tures to be automatically determined from the complexity of the data itself

so that—unlike many other methods—hdp does not need to separately assess

all plausible signature numbers to find the optimal fit. Second, hdp easily

conditions on a prior set of known signatures while simultaneously finding

novel clusters in a new dataset. This property is particularly important for

small and/or heterogeneous cancer cohorts which might be underpowered for

completely de novo signature extraction, but which nevertheless contain some

number of previously undescribed signatures (particularly artefacts).

One of the major downsides to my current hdp R package implementation is

that runtime and memory both scale at a roughly linear rate with the number

of observed mutations. For the dataset of about 5 million snvs analysed in

Section 4.4, every 1000 mcmc iterations required approximately 3 cpu hours.

Although this speed was sufficient to complete analysis in under a week (human

time) with parallel computing, the computational expense is prohibitive for

larger datasets such as the entire pcawg snv catalogue of almost 44 million

mutations. For a collection of 10–100 million items, mcmc inference could still

be made in separate silos of relevant cancer type groups (as is done for nmf

and other methods), or an alternative variational inference method (reviewed

by Blei et al. (2017)) could approximate the optimal solution in far less time.

Several variational inference methods have been proposed for the hdp model,

with two available Python packages to support multinomial data (Wang et al.,

2011; Hughes et al., 2015).

Another limitation of my current hdp package is the multinomial distribution

definition for mutational signatures. By modelling genome alterations as dis-

crete, unordered categories, any quantitative features are forced into crude bins,

relationships between similar alteration types are ignored, and the parameter

space multiplies with each subdivision for additional features. The requirement

for a modest number of separate mutation categories (perhaps less than one

thousand) is the major reason most snv analyses are restricted to 96 classes

defined by trinucleotide context, despite the relevance of other signature fea-

tures such as pentanucleotide context, replication timing, chromatin state, and

transcriptional and replication strand bias (Shiraishi et al., 2015; Haradhvala
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et al., 2016; Morganella et al., 2016). With the simplifying assumption of inde-

pendence between features, Shiraishi et al. (2015) proposed a novel approach

where each signature is modelled as a collection of distributions over different

mutational features. Although currently implemented for categorical features

only, the same principle should extend to quantitative variables, and offers an

appealing solution for sv alterations defined by many disparate properties such

as form, size, microhomology, complexity, and genome topography. In future

work, I propose that the nonparametric Bayesian hdp framework—with its

many advantages for modelling sample relatedness, conditioning on prior knowl-

edge, quantifying uncertainty, and learning the signature number—could be

extended to signature clustering based on sets of independent multinomial and

Gaussian distributions, and thus combine the best aspects of both strategies.

Other directions for future improvement include: adoption of formal convergence

diagnostics to assess mcmc chains; refinement of my post-processing signature

extraction procedure (Section 4.2.2); and incorporation of other topic modelling

developments to explicitly account for correlation between topics/signatures

(Blei and Lafferty, 2007; Kim and Sudderth, 2011) and/or impose sparsity

constraints (Wang and Blei, 2009; Williamson et al., 2010).
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Chapter 5

Complex rearrangement events

Complex sv events spanning tens to hundreds of bpj are a common feature

in the cancer rearrangement landscape. The various complex phenomena—

reviewed in Section 1.4.2—include chromothripsis (Stephens et al., 2009),

chromoplexy (Berger et al., 2011; Baca et al., 2013), extrachromosomal double

minutes (Cox et al., 1965; Turner et al., 2017), breakage-fusion-bridge cycles

(McClintock, 1941; Greenman et al., 2016), and chromoanasynthesis (Liu et al.,

2011; Meier et al., 2014). As described in Section 2.1.3, Yilong Li’s classification

of sv in the pcawg dataset focused on (relatively) simple rearrangement

structures involving a small handful of bpj at most. This classification scheme

left 151,212 bpj from 1889 samples in complex unexplained clusters. In this

chapter, I embark on a preliminary attempt to meaningfully partition and

describe these complex rearrangements, and propose strategies for further

investigation in future projects.

5.1 Clustering complex unexplained breakpoint

junctions

All bpj in the pcawg dataset were previously clustered by the original sv

classification pipeline described by Li et al. (2017). However, these existing bpj

clusters are a poor starting point for comprehensive analysis of the complex

sv landscape for several reasons. First, the original bpj clustering method

was optimized to extract and explain the non-complex structures, and was

never refined to generate distinct and classifiable complex clusters. Second, the

original method demarcated cluster boundaries solely based on the immediate

171
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adjacency distance between breakpoints on the same chromosome, and did

not consider additional information about breakpoint groups neighbouring at

multiple distant loci. Third, two complex sv structures would be joined in the

same cluster with as little as one bpj spanning between them, even if each side

was a large interconnected “hairball” of dozens of bpj with no other external

connections. Finally, one known oversight of the original algorithm left some

bpj together in the same cluster even after the linking bpj that joined them

were siphoned out as classifiable sub-structures.

Given these problems with the existing cluster breakdown of the complex

unexplained bpj, I set out to develop a new clustering algorithm as follows.

5.1.1 New BPJ clustering method

For each sample in the pcawg cohort, I considered the set of ‘complex’ bpj

left unexplained by the original sv classification scheme. Then, I grouped

the breakpoints into primary local footprints by placing a partition between

adjacent (on same reference chromosome) breakpoints if the distance between

them was greater than some sample-specific threshold (and requiring double

the threshold before separating any pair of adjacent breakpoints belonging to

the same bpj).

To choose the sample-specific footprint partition threshold, I fitted a mixture

of two gamma distributions to the collection of inter-break distances on a log10

scale, and calculated the 0.95 quantile of the lower gamma component, subject

to the following caveats:

• the footprint cut-point was constrained to a minimum of 40 kb and a

maximum of 4 Mb, and

• if the sample had fewer than 20 inter-break distances, the cut-point

defaulted to 1 Mb.

By fitting a mixture of two gamma distributions, I aimed to quantify the

expected inter-break distances between positions which are and are not mecha-

nistically linked, with a cut-point chosen to keep related positions in the same

footprint 95% of the time. Figure 5.1 illustrates the gamma fit and cut-point

choice for 64 randomly chosen samples. The variation across samples suggests

that this approach will work better for some samples than for others, and will

not pick the ideal initial footprint grouping in all cases.
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Figure 5.1: The distribution (shown in grey histogram on a log10 scale) of inter-
break distances between adjacent (on same reference chromosome) positions of
complex unexplained bpj in 64 randomly chosen pcawg samples. For samples
with 20 or more inter-break distances, the primary footprint partition cut-point
(blue dashed line) is placed at the 0.95 quantile of the lower component in a
two gamma mixture (constrained to minimum 40 kb and maximum 4 Mb). For
samples with few inter-break distances, the cut-point is fixed at 1 Mb.
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As a final refinement to the primary footprint definition, any footprint larger

than 1 Mb with at least two breakpoints on either side of a gap spanning > 70%

of the footprint region was then split apart in the gap.

I then proceeded to represent the complex sv network in a sample with a

weighted, undirected, node-edge graph. Each node is a primary footprint region

with a size attribute representing the number of contained breakpoints. Each

edge represents the bpj with a side in each node, with a weight attribute repre-

senting the number of connecting bpj. The disjoint (unconnected) components

in the node-edge graph provide the initial candidates for a bpj cluster division.

Next, I aimed to reduce under-clustering by grouping graph components with

several nodes adjacent in genome space. Two candidate bpj clusters were

merged if:

• any two “foldback” type footprints were within 5 Mb of each othera,

• four unique footprints were within 8 Mb of a footprint from the other

cluster (either 2 ∗ (1↔ 1), (1↔ 3) or (2↔ 2) arrangement),

• five unique footprints were within 12 Mb of a footprint from the other

cluster (either (1↔ 2)/(1↔ 1), (1↔ 4) or (2↔ 3) arrangement),

• six unique footprints were within 16 Mb of a footprint from the other

cluster (either 3∗(1↔ 1), 2∗(1↔ 2), (1↔ 3)/(1↔ 1), (2↔ 2)/(1↔ 1),

(1↔ 5), (2↔ 4) or (3↔ 3) arrangement), and

• if and only if a cluster had just one or two nodes, three footprints were

within 4 Mb of a footprint from the other cluster ((1↔ 2) arrangement).

After every merge, the resulting cluster was compared against the sample’s

current bpj cluster set to check for subsequent merges now meeting the criteria.

One final part of the cluster merging stage aimed to capture cycles of multiple

graph components that cannot be captured through simple pairwise cluster

comparison. To look for cycles, I considered any small bpj clusters of 2–

4 footprint nodes, and merged any maximal subset of these clusters for which:

• there were at least two footprints in each cluster within 15 Mb of another

cluster in the subset, and

• each cluster was within 15 Mb of at least two footprints from another

cluster in the subset (subtle distinction from the first criterion).

aFoldback-type footprints defined as those solely comprised of one or two (non-overlapping)
foldback-type bpj, i.e. 〈++〉 or 〈−−〉.
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Figure 5.2 illustrates the graph component and merging steps for four samples.

As the last step in the bpj clustering algorithm, I aimed to reduce over-clustering

by separating out distinct graph communities within large candidate clusters.

For any candidate cluster involving 15 or more bpj (≥ 30 breakpoints), I first

defined larger secondary footprints to construct a new node-edge graph repre-

sentation. For a cluster with b breakpoints, local footprints were partitioned in

gaps larger than some threshold tM in megabase units such that

tM = 10− 6× min(b, 1500)− 30

1500− 30
.

This set the partition threshold on a sliding scale between 4 Mb for clusters

involving ≥ 1500 breakpoints and 10 Mb for clusters involving 30 breakpoints.

Using these new footprint definitions to define the nodes, and using a double

weighting on any intrachromosomal bpj edges between nodes, I identified

candidate sub-clusters using the “walktrap” community detection algorithm

with s steps where

s = 7 +

⌊
14× min(b, 1500)− 30

1500− 30

⌉
.

This walktrap algorithm (Pons and Latapy, 2006) finds sub-graph community

structures using short random walks along graph edges (accounting for edge

weights) to measure the distance between nodes. Considering this community

division, I separated a sub-graph into a new bpj cluster if:

• it had at least eight breakpoints; and

• less than 12.5% of breakpoints (up to a maximum of six) were connected

to a bpj leading outside the sub-graph (double-counting any intrachro-

mosomal bpj).

Figures 5.3–5.5 illustrate several examples, with full event plots in Figure D.19.

If the walktrap algorithm returned more than four candidate sub-graphs and

less than a quarter of these met the criteria for separation, I then tried to

agglomerate the sub-graphs and reassess the separation criteria (example

Figure 5.6). I also checked whether sub-graph removal isolated any other

sub-graph into its own disjoint component. Finally, any bpj spanning two

separated clusters was assigned to the smaller of the two.
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Figure 5.2: Node-edge graph representation of the complex unexplained bpj in
four pcawg samples. Each node is a genome footprint, coloured by reference
chromosome with size corresponding to breakpoint count. Node labels indicate
the chromosome position in megabase units. Each edge indicates breakpoint
junctions between footprints, with edge weights corresponding to the number
of linking bpj. In side (A), none of the initial disjoint graph components are
merged any further. In side (B), the blue circles indicate graph components
merged into the same final bpj cluster.
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Figure 5.3: Two samples containing large bpj clusters with no separable
sub-graphs. The left side graphs show all complex bpj in each sample. The
right side graphs show the secondary footprint partition of the large candidate
cluster, with blue circles indicating that the walktrap community detection
algorithm finds no significant sub-graph structures. The large candidate groups
are accepted as the final bpj clusters.
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Figure 5.4: Two samples containing large bpj candidate clusters with fully
separable sub-graphs. The left side graphs show all complex bpj in each sample.
The right side graphs show the secondary footprint partition of the large
candidate cluster, with blue circles indicating sub-graphs found by walktrap
community detection. All sub-graphs meet the criteria for separation into
different bpj clusters. Full bpj plots are available in Figure D.19.
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Figure 5.5: Two samples containing large bpj candidate clusters with partially
separable sub-graphs. The left side graphs show the secondary footprint
partition of the candidate cluster, with blue circles indicating sub-graphs found
by walktrap community detection. In each case, only one sub-graph meets
the criteria for separation into a different bpj cluster, with the final cluster
allocation indicated in the right side graphs. The inset boxes show all complex
bpj in the sample for context. Full bpj plots are available in Figure D.19.
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Figure 5.6: A large candidate bpj cluster with separable sub-graphs following
extra agglomeration. The left node-edge graph shows the secondary footprint
partition, with blue circles indicating community sub-graphs. In this case, none
of the four initial sub-graphs meet the separation criteria. Following extra
agglomeration into two sub-graphs shown in the right side plot, the separation
criteria are now met and the final allocation divides the sv into two clusters.
The full bpj plot is available in Figure D.19.

5.1.2 Comparison between old and new BPJ clustering

Of the 1889 pcawg samples with complex unexplained bpj, 78 samples have

all bpj assigned to tiny clusters of one or two bpj in the new clustering scheme

(summarised in Section 5.2). Of the remaining samples, 582 have exactly the

same cluster breakdown as the old method, and a further 455 have the same

cluster breakdown if bpj now allocated to tiny clusters are disregarded. This

leaves 774 samples with a different cluster breakdown by the old and new

methods (Figure 5.7), including 555 samples with more clusters in the new

scheme and 219 samples with fewer clusters in the new scheme. As summarised

in Table 5.1, the samples with different cluster divisions tend to be those with

greater rearrangement burdens.

Figures D.20–D.26 illustrate the new and old cluster divisions in a range of

samples with either a greater or lesser degree of cluster separation with my

novel method outlined in Section 5.1.1. In particular, the extreme outlying

melanoma sample with more than 60 clusters in the old scheme and fewer than

10 clusters in the new scheme is included in Figure D.26. Although the old

partition appears to over-split these melanoma rearrangements, the massive
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Table 5.1: Number of samples (n) with the same or different complex bpj
cluster divisions by the old and new methods. The total number of complex bpj
and new-scheme clusters per sample are summarised by the median, minimum
and maximum. The samples with the most junctions (J) and clusters (C) are
listed for each group. Samples with ‘nearly’ the same cluster breakdown differ
only by the separation of tiny clusters of one or two bpj.

n total bpj total clust. max bpj max clust.
all ‘complex’
bpj in tiny

clusters

78 2 (2–8) 1 (1–5) SA515309,
8J in 5C

see left

exactly the
same cluster

breakdown

582 14 (3–1183) 2 (1–27) SA554721,
1183J in 7C

SA54378, 242J
in 27C

nearly the
same cluster

breakdown

455 26 (3–1387) 3 (1–21) SA236844,
1387J in 2C

SA541880,
168J in 21C

different
cluster

breakdown

774 80 (8–1954) 6 (1–32) SA554739,
1954J in 6C
(11C before)

SA440859,
949J in 32C
(26C before)
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Figure 5.7: Discrepancy in complex unexplained bpj cluster counts between
new and old schemes for 774 pcawg samples. Red dashed line separates
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cluster from my new scheme may be failing to separate distinct sub-structures.

In future work, it would be helpful to define objective summary statistics to

quantify the fit of different bpj cluster partitions. From manual inspection

of these examples (and dozens more not shown), I conclude that my current

partitions are a more logical division of the bpj terrain than the pre-existing

clusters. In many cases, this improvement is due to known oversights in the

previous algorithm which left bpj in the same cluster even after their connecting

svs were separated out. Despite this progress, many samples may yet have poor

clustering results, and substantial opportunities remain for further development

of bpj clustering algorithms, ideally accompanied by more formal statistics for

performance comparison.

5.2 Tiny unexplained BPJ clusters

Of the 151,212 complex unexplained bpj, 6964 (4.6%) are separated into tiny

clusters of one or two bpj by the method described in Section 5.1.1. Some of the

two-bpj clusters are the same as those generated by Yilong Li (Section 2.1.3),

in combinations unaccounted for by the existing classification scheme.

As summarised in Table 5.2, these bpj are configured in a variety of known

and unknown structural forms. The majority of single bpjs newly separated

from larger complex clusters are unbalanced translocations (978) and foldback

svs (869). Of the recovered bpj pairs with familiar structures, 270 junctions

are in reciprocal inversions, 78 in reciprocal translocations, 544 in local 2-

jumps, and 232 in templated insertion chains, cycles or bridges. Additionally, I

identified a new sv class and termed it templated insertion mediated foldback

(198 observations). This novel structure is characterised by the ‘insertion’

fragment ([−+] motif) mediating an overall rearrangement of foldback in

another locus ([++] or [−−] motif). For the bpj pairs with other, unclassified

configurations, the majority involve foldback-type bpj intersecting or adjoining

another junction with uncertain derivative structure (possibly involving chance

proximity of unphased events on separate homologous chromosomes). The

remaining small proportion of unexplained pairs are simple overlaps of deletion,

tandem duplication and/or translocation.
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Table 5.2: Isolated bpjs (singles and pairs) unexplained by initial classification.

SV class Sub-group Definition bpj

Deletion - local 〈+−〉 bpj 236
Tandem Dup - local 〈−+〉 bpj 179
Foldback - 〈++〉 or 〈−−〉 bpj 869
Unbal Trans - distant bpj 978
Recip Inv - interlocked 〈++〉/〈−−〉 bpj pair 270
Recip Trans - distant bpj pair, [+−] motifs 78
Foldback Pair - adjacent inverting bpj, same orienta-

tion
180

Local
2-Jump

Dup-InvDup interlocked 〈−−〉/〈++〉 bpj pair 182
Loss-InvDup nested 〈++〉/〈−−〉 bpj pair 232
Dup-Trp-Dup disjoint 〈−−〉/〈++〉 bpj pair 130

Local+
Distant
2-Jump

Trans w/
Foldback

distant bpj adjoining 〈++〉 or 〈−−〉
bpj w/ [−+] motif

136

Trans w/ InvIns distant bpj intersecting 〈++〉 or
〈−−〉 bpj w/ [−+] motif

138

Templated
Insertion

Cycle two [−+] motifs 78
Bridge [−+] and [+−] motif 84
Chain [−+] motif and two single breaks 70

Foldback [−+] and [++] or [−−] motif 198
Chromoplexy Chain [+−] motif and two single break-

points
60

Other
Complex

Local two other bpj in local configuration 2124
Distant distant bpj intersecting or adjoining

other local bpj
530

Unphased distant bpj pair with [++] or [−−]
motifs

160

Other rare configurations 54
Dup = duplication; Trp = triplication; Trans = translocation; Recip = reciprocal; Unbal =

unbalanced; Inv = inversion; Ins = insertion
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5.3 Matching complex SV with CN estimates

To describe complex sv clusters with more than two bpj, the breakpoint

calls must be considered in conjunction with the cn profile calculated from

wgs read depth. As described in Section 2.1.2, most cn estimates used in

this thesis are the YL calls with non-integer (sub-clonal) segmentation values.

Upon inspection, these YL cn calls are unreliable in a minority of samples.

Fortunately, Dentro et al. (2017) generated another set of cn estimates (the

P11 calls) for the pcawg cohort by calculating a consensus segmentation from

several algorithms constrained by the simplifying assumption of integer (clonal)

values. Prior to the characterisation and visualisation of the remaining complex

unexplained svs, I set out to determine which samples had sufficiently poor YL

cn estimates as to necessitate a switch to the more conservative P11 estimates.

For the 1811 samples with complex unexplained bpj (excluding tiny clusters

from Section 5.2), I consider the cn profiles returned by YL and P11 in 1 Mb

flanks around each breakpoint, leaving no gaps smaller than 5 Mb. I also

round the non-integer YL calls to 0.05 intervals to disregard any minor change-

points between very similar adjacent segments. As shown in Figure 5.8A, the

YL cn segmentation around complex bpj consistently involves many more

change-points than the P11 calls. My criteria for switching a sample to P11

cn estimates are that:

• the YL cn has 6-fold more change-points than there are bpj in the

footprint of interest; or

• at least 25% of the footprint has a major cn discrepancy, defined as any

region where (Y + 0.4)/(P + 0.4) is either > 2.5 or < 0.4—that is, the

two cn callers differ by more than 2.5-fold after adding a dummy value

to disregard differences in the 0–1 cn range; except

• the cn estimates are not switched in samples where the number of P11

cn change-points is fewer than half the number of bpj in the footprint

or in cases where the P11 cn contains more than double the length of NA

values over at least 10% of the total footprint.

With these criteria, I switched 174 samples (9.6%) to the integer P11 cn

estimates for the remaining analyses in this chapter (Figure 5.8B). Figures 5.9

and D.28 provide a side-by-side comparison of the two cn call sets in five of

these qualifying samples.
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(a) Number of change-points in the cn calls around complex bpj for each sample.

(b) Approximately 9% of samples are switched to P11 cn calls, in cases with excessive
change-points in the YL set (vertical axis) or a large discrepancy in overall copy
estimation (horizontal axis), barring a few exceptions as detailed in the text.

Figure 5.8: Comparison of YL and P11 copy number estimates around all
complex unexplained bpj in 1811 pcawg samples (considering cn in 1 Mb
flanks around each breakpoint, leaving no gaps smaller than 5 Mb).
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5.4 Outlying clusters and samples

Having excluded the set of 6964 bpj in tiny clusters of one or two junctions

(Section 5.2), 144,248 bpj remain in 8696 unexplained clusters of three or

more bpj, spread across 1811 samples. As illustrated in Figure 5.10, the vast

majority of samples contain fewer than 100 unexplained bpj spread across a

small handful of clusters, with most events containing fewer than 10 bpj within

one or two chromosomes. Indeed, just under 40% of these unexplained clusters

involve only three or four bpj. However, each of these distributions has a long

tail, with many outlying clusters and samples.

One outlying event involving more than 1000 bpj distributed over just three

chromosomes—and primarily two chromosomes upon inspection—is the kidney

renal cell cancer rearrangement shown in Figure 5.11. This event has the

characteristic hallmarks of chromothripsis, with short fragments along two

distinct chromosome arms randomly shuffled together to generate an oscillating

cn profile. The number of breaks is unusually high (even for chromothripsis),

particularly within this relatively contained region spanning 128 Mb on chr21

and chrX (15 kb median gap between adjacent breaks).

In contrast, Figure 5.12 shows two outlying events with relatively few bpj

spanning a large number of chromosomes in esophageal cancer. The distinctive

‘star’ pattern of multiple translocations emanating from one confined source

locus is a hallmark of retrotransposition from an active L1 element. Although

the pcawg structural variation working group endeavoured to separate all

retrotransposition events for independent analysis by Rodriguez-Martin et al.

(2017), some complex clusters appear to have slipped through this filter, pre-

sumably because the activity stems from a secondary (somatically transposed)

element. The two samples presented in Figure 5.12 are both known to have high

retrotransposition activity more generally, with Rodriguez-Martin et al. (2017)

reporting 427 transpositions in SA528901 and 125 transpositions in SA130917.

Another set of outlying sv clusters are massive rearrangements involving hun-

dreds to thousands of bpj spanning more than a dozen reference chromosomes.

Four bpj clusters even extend to the entire complement of 23 reference chro-

mosomes. The twenty bpj clusters spanning 17 or more chromosomes are

represented as node-edge graphs in Figure 5.13, including six sarcomas, five

melanomas, four liver cancers, and three breast cancers. To demonstrate the

level of detail underlying each simplified graph representation, Figures 5.14 and

5.15 present the full bpj plot for two examples: a liver sample with relatively
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(a) Number of chromosomes and bpj involved in 8696 clusters.

(b) Number of clusters and bpj within 1811 samples.

Figure 5.10: Complex sv events of three or more bpj in the pcawg cohort.
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Figure 5.11: Unusual chromothripsis event with 1365 bpj spanning two chro-
mosome arms in a kidney renal cell cancer.

sparse connectivity, and a liposarcoma sample with high connectivity between

most nodes. In the liver example (Figure 5.14), the small local copy gains

implicate a dominant role for template and replicate repair, whereas the sharp

copy spikes over a low oscillating sv background in the sarcoma example (Fig-

ure 5.15) are consistent with a break and ligate model of chromothripsis with

subsequent dm amplification and integration. In all examples, the complex

network structures were unable to be subdivided with the current methodology

into smaller, more local, clusters. It remains unclear whether these giant clus-

ters amass through the chance proximity of independent events on separate

homologous chromosomes and/or in separate subclonal populations, or are

genuinely connected on the same derivative chromosomes through one or more

rounds of punctuated genome evolution. In future work, samples with mass sv

overlap may require specialised analytic approaches to divide and describe their

relevant features via simplifying assumptions that are generally unnecessary in

samples with more isolated rearrangement.
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Figure 5.13: Graph representation of all bpj clusters spanning 17 or more
chromosomes. The footprint nodes partition adjacency gaps greater than 5 Mb.
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Figure 5.14: Complex sv cluster in a liver cancer sample spanning 19 chromo-
somes with 155 bpj.
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Figure 5.15: Complex cluster in a liposarcoma sample spanning 17 chromosomes
with 1122 bpj. The vertical copy number scale is limited to a maximum of 50.
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Figure 5.16: Number of
bpj per cluster in three
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complex clusters. Each
dot is shaded by the
average distance between
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cluster and the next
closest breakpoint in a
different complex cluster.

As shown in Figure 5.10B, the pcawg cohort includes three outlying samples—

a breast, lymphoma, and stomach cancer—each containing over 30 separate

complex sv clusters. In each case, the vast majority of clusters are small to

medium events (fewer than ∼20 bpj) separated by several megabases (Fig-

ure 5.16). Manual inspection revealed that most events in these recurrently

affected samples have characteristic hallmarks of template and replicate repair,

including small local copy gains and many [−+] insertion motifs. A selection of

these events are shown in Figure D.27, including one interesting example in the

breast sample (third row, first column) of a templated insertion cycle crossing

back on itself to re-replicate and insert the same locus (at different lengths)

twice over. These examples are testament to the sample-specific activity of

particular rearrangement mechanisms, in this instance generating multiple

complex configurations with broadly similar features.

5.5 Small unexplained BPJ clusters

Of the 8696 complex clusters, 3435 involve only three or four bpj (total of

11,537 bpj). For future method development, I propose that categorisation

of these medium-complexity sv events may best be achieved as a separate

task, as strategies optimised for success on large clusters of dozens of bpj are

unlikely to extend to these (relatively) small configurations. Here, I present
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a diverse—but not exhaustive—selection of the major sv patterns found in

these small unexplained bpj clusters. In lieu of a systematic taxonomy, I

aim to provide a summary of the dominant features to expect and account

for in further studies. Of the small rearrangements not summarised in this

section, the most common structures are simple dm circles presenting with

highly amplified copy number, and groups of adjacent foldback bpj indicative

of bfb cycles.

5.5.1 Break and ligate SV

The hallmarks of break and ligate dna repair are small copy loss regions

demarcated by [+−] gap motifs with junction reciprocity across local or distant

loci.

Figure 5.17 illustrates small sv clusters consistent with three or four dsbs

along one locus, with subsequent ligation repair to reorder and/or reorient the

internal segments after some degree of copy loss at each break. For example,

three local breaks may transmute a reference sequence of abcd segments into

various derivatives harbouring junctions of non-contiguous sequence, including

acbd, ac(b)d, a(c)bd or a(b)(c)db. These events occupy a middle ground

between simple reciprocal inversion and larger break and ligate events across

multiple loci (chromoplexy) or dozens of breaks (chromothripsis). As such,

these small clusters may warrant a novel classification term of “k-break” (for

small k = 3, 4, . . . ).

Figure 5.18 illustrates small break and ligate clusters spanning two chromosomes.

The upper two rows show events where the middle fragment in a deletion sv

is rescued and inserted into a distant break. In an unusual variation, the

lymphoma example (second row, first column) is consistent with fragmentation

of the deleted chr13 segment, with two small fragments ligated into a break

on chrX. These events share similar features to chromoplexy, but instead of

reciprocal exchange between loci, the lost fragment from one side is captured

as a simple insertion in the other side. In the third row, these unbalanced

translocation events share similar features to the translocation plus inverted

insertion 2-jumps first illustrated in Figure 2.5. The complex extensions shown

here involve multiple fragments on one or both sides of the translocation. In the

fourth row, the prostate and lymphoma examples show reciprocal translocation

overall, with the added complexity of intervening fragment capture in one of

bParentheses denote inverted segments.
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Figure 5.17: Small break and ligate clusters on one chromosome
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Figure 5.18: Small break and ligate clusters on two chromosomes

the translocation derivatives. Finally, the ovary example (bottom left) is an

unusual event of double reciprocal translocation consistent with non-crossover

recombination whereby small fragments (about 1 kb) on chrX and chr11 are

mutually exchanged. Although this rare configuration presents with hallmark

break and ligate features, this structure is likely to result from a rare somatic

double Holliday junction resolution following non-allelic hr.
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Figure 5.19: Small complex templated insertion events with adjacent or over-
lapping footprints.

5.5.2 Template and replicate SV

The hallmarks of template and replicate dna repair are small copy gain regions

demarcated by [−+] insertion motifs or overlapping intrachromosomal bpj.

Figure 5.19 illustrates a subset of the many templated insertion events that

were missed in the initial classification scheme (Section 2.1.3) because the

footprints were either adjacent or overlapping, and therefore not detected as

completely isolated [−+] motifs. These overlooked templated insertions include

bridges, chains, cycles, and at least one insertion-mediated foldback shown

for a stomach cancer sample. In future projects, the definition of templated
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Figure 5.20: Small template and replicate clusters with three bpj converging
at one recurrent break position.

insertion should ideally account for these additional possibilities.

Figure 5.20 illustrates a very common pattern consistent with local or distant

polymerase template switching where three or more bpj all converge at (or

emanate from) the same recurrent break locus. I hypothesise that these events

are precipitated by a persistent dna lesion—such as an inter-strand crosslink

(Meier et al., 2014)—triggering multiple template switches at the same position.

5.5.3 Combination SV

Occasionally, small bpj clusters present with unexpected configurations (and

no obvious false negative or false positive calls) that are inconsistent with
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Figure 5.21: Combination sv clusters with hallmarks of both break and ligate
and template and replicate repair mechanisms.

either repair mechanism acting in isolation. Three such examples are shown in

Figure 5.21. In the bladder sample cluster of three bpj, the data suggest an

overall effect of reciprocal translocation, combined with the added complexity

of a templated insertion from a distant locus within one derivative chromo-

some. The breast sample cluster of four bpj appears to be a small templated

insertion cycle, additionally capturing a fragment lost through deletion on

another chromosome (as previously introduced in Figure 5.18). Finally, the

lymphoma sample cluster of three bpj appears to generate a reciprocal inversion

with a templated insertion copied into one of the breaks. These observations

are somewhat incongruous with our current understanding of rearrangement

mechanisms, hinting at unexplored subtleties in the repertoire of dna repair.

To complete this overview of the major patterns generated by three or four bpj,

Figure 5.22 illustrates a range of clusters involving overlapping bpj that may

or may not result from chance proximity of independent events. For example,

in the top row, the breast and head scc examples are possibly consistent

with a dup–inv-dup local 2-jump following by subsequent tandem duplication

or deletion, or may possibly result from three polymerase template switches.

Likewise, the pancreas example is consistent with overlapping deletion and
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Figure 5.22: Overlapping or adjacent sv clusters

reciprocal inversion events independently acquired, or with a local 3-break (as in

Section 5.5.1) repaired in the order a(c)(b)d. Future bpj classification projects

will ideally address the complexity and ambiguity generated by overlapping

clusters of few bpj, perhaps by conditioning on the sample-specific frequencies

and sizes of the various isolated sv classes.
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5.6 Heuristic classification of complex SV

To complete a tour d’horizon of the complex sv landscape, this section explores

the remaining tranche of unclassified sv with an approximate parametrisation

of various rearrangement phenomena. This survey is preliminary in nature,

aiming to furnish future endeavours with a base appreciation of the challenges

involved.

After filtering out 30 clusters of fragile site deletion and 16 clusters of immune

loci recombination, there remain 5215 complex sv of five or more bpj. To

initially assess the character and scope of these unexplained clusters, I defined a

suite of heuristic classification rules to mark each event as a ‘first tier’ or ‘second

tier’ candidate example of different sv categories (detailed in Appendix C).

These pilot classifications are not enforced to be mutually exclusive, so one sv

cluster may match the provisional criteria for several groups.

For the six categories currently implemented—breakage fusion bridge, complex

chromoplexy, chromothripsis without double minutes, complex amplification

(possibly chromoanasynthesis), isolated double minutes without chromothripsis,

and retrotransposition hotspots—1051 sv clusters (20%) meet first tier criteria

for at least one class. The overlap at first tier is minimal for most categories

(Figure 5.23), with the exception of chromothripsis and complex chromoplexy

which manifest on a spectrum of break and ligate repair, sometimes with

ambiguous origin. I estimated the specificity of the first tier classifications

by manually curating fifty randomly chosen examples in each category (or

the maximum possible for retrotransposition), counting half a point for un-

certain candidates. The specificity estimates ranged from 95% or higher for

retrotransposition and double minutes, to just above 70% for chromothripsis

(Table 5.3).

Double minute candidates are often found in glioblastoma samples, and involve

one or more reference fragments in highly amplified extrachromosomal circles

(Figures 5.24 and 5.25). Breakage-fusion-bridge candidates are enriched in

esophageal, pancreatic, and many other cancer types (including scc in lung

and head), causing step-wise copy gain profiles (Figures 5.24 and 5.26). Com-

plex amplifying events are enriched in cancers of female reproductive tissues,

recapitulating the tissue preference of small template and replicate events like

tandem duplication and templated insertion (Figures 5.24 and 5.27). I hy-

pothesise that many of these amplifications are caused by multiple polymerase

template switches, and could possibly be termed ‘chromoanasynthesis’.
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Table 5.3: Complex sv clusters (five or more bpj) meeting the first tier criteria
for preliminary classification as defined in Appendix C. The specificity of each
category was estimated by manual curation of fifty randomly chosen examples.

Group Clusters Specificity Median bpj Total bpj
Break-Fus-Bridge 168 0.80 9 1688

C-plexy 515 0.90 8 5904
C-thripsis (noDM) 228 0.72 16 5025
Complex Amplify 130 0.88 19 4396

Double Minute 52 0.95 23 2735
Retrotrans 14 1.00 7 119

Unexplained 4164 NA 10 109491
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ated by chromoanasynthesis.
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Over 50% of all complex chromoplexy candidates are found in the prostate

cancer cohort, often involving micro-fragmentation at each ‘macro’ break

locus (Figures 5.24 and 5.28). Chromothripsis events are found in many

different cancer types, but are often difficult to distinguish from one end of the

chromoplexy spectrum (Figures 5.24 and 5.29). Some chromothripsis candidates

span entire arms or chromosomes in a manner consistent with micronucleus

capture of lagging dna (Zhang et al., 2015), whereas other localised events

span just a few megabases, and potentially reflect the alternative trigger of

chromatin bridge shattering following telomere crisis (Maciejowski et al., 2015).

My heuristic classification rules for preliminary description of the complex sv

remain a work in progress, and currently miss chromothripsis events associated

with double minute amplification, as well as a range of medium-complexity

templated insertions, and other novel patterns yet to be described.

5.7 Discussion

In this chapter, I outlined an exploratory sketch of the structural content

within the 55% of pcawg bpj left unexplained by the simple sv classifications

presented in previous chapters.

As the pre-existing bpj cluster divisions were not optimised for the meaning-

ful separation of complex events, I developed an alternative bpj clustering

procedure (Section 5.1) using a novel node-edge graph description of connec-

tivity across variably sized footprints. By inspection only, these new cluster

partitions appear to be a more logical division of the complex sv landscape,

with the ability to merge sv groups connected via multiple distant loci, and

separate out distinct sub-graphs with negligible external connection. In its

current implementation, the major shortcomings of my alternative clustering

procedure relate to the over-reliance on fixed threshold decision points for

footprint definition, merging, and separation, without a statistical justification

accounting for the sample-specific rearrangement landscape.

The bpj cluster divisions are assumed to demarcate a set of independent (or at

least punctuated) sv events, with hallmark features indicative of the underlying

generating mechanism. Clusters of 2–4 bpj (Sections 5.2 and 5.5) manifest in

a huge variety of possible configurations, usually—but not always—consistent

with the activity of ‘break and ligate’ or ‘template and replicate’ repair across

one or two loci. Despite the relatively small number of constituent breaks,
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Figure 5.28: Example complex chromoplexy events (first tier)
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Figure 5.29: Example chromothripsis events (first tier)
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these rearrangements are difficult to systematically catalogue. Even for just

three bpj, there are hundreds of possible unique configurations which vary by

order, orientation, and connection across loci. I anticipate that these medium-

complexity rearrangements will require an intermediate classification strategy

between the two extremes of exact motif recognition allowing no variation (as

for simple sv) and top-down characterisation of the overall feature distribution

(as for large sv clusters).

Large rearrangements of five or more bpj are highly variable, with some

outlying clusters involving more than a thousand bpj and/or more than a dozen

chromosomes (Section 5.4). In a pilot survey, about 20% of complex clusters

were approximately compatible with a canonical rearrangement phenomenon

(Section 5.6). Of the 80% of clusters with no putative explanation, some fraction

may be described by missing categories such as chromothripsis with double

minutes, others may be retrieved with improved bpj clustering methods, and

some may be confounded by overlapping events, false positive or negative bpj

calls, and/or poor cn segmentation (which is occasionally unreliable, even after

the mitigation described in Section 5.3).

The results presented in this chapter describe the major contours of the complex

sv landscape, but do not represent a definitive solution to the ongoing challenge

of systematic complex rearrangement classification. Strategies for improving

the separation and interpretation of complex sv are discussed in Chapter 6.
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Chapter 6

Future perspectives

With the advent of high-throughput dna sequencing technology, somatic al-

terations in cancer genomes are now identified at base-pair resolution in ever-

expanding patient cohorts across a wide variety of histological subtypes. In

contrast to the well-studied catalogues of single nucleotide variants, compre-

hensive studies of somatic rearrangement have lagged in development, impeded

by the intrinsic complexity of their irregular and multifaceted structural forms.

Consequently, the cancer genomics field lacks a robust and well-founded method-

ology for systematic sv specification, visualisation, and annotation.

The main aims of this thesis were to capitalise on a newly collated wgs dataset

of somatic sv calls in 2559 cancer samples in order to: survey the diverse

panorama of cancer rearrangement in different cell types; analyse signatures

of sv form, location, and prevalence; and define a consistent framework for

understanding and reporting genome rearrangement to advance the capabilities

of future projects. Building on a recently developed classification scheme to

identify the precise structure of individual breakpoint junctions and separate

out complex clusters, I described the pan-cancer sv landscape of structural

features (Chapter 2), genome property associations (Chapter 3), co-occurrence

patterns (Chapter 4), and complex events (Chapter 5). To conclude, I highlight

opportunities for further research and development with a focus on: algo-

rithms and technology for sv detection (Section 6.1); the need for complete

sv classification tools (Section 6.2); open questions regarding sv signature

analysis (Section 6.3); and, finally, discovery and annotation of key functional

consequences, with the ultimate goal of pinpointing relevant sv drivers of the

cancer phenotype in a clinical setting (Section 6.4).

213
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6.1 Identifying somatic genome rearrangement

In the pcawg dataset used in this thesis, structural variants were identified by

discordant and split paired-end sequences from the short-read Illumina Hi-Seq

platform. Taking the intersection of sv calls from four different algorithms,

the pcawg consortium aimed to report high-confidence somatic events with

congruent copy number support from read depth evidence. Without orthogonal

technologies for sv detection, the specificity and sensitivity of this dataset is

unknown. In future projects analysing cancer rearrangement, other biotech-

nology platforms may supplement or supersede the current Illumina pipelines

to: validate sv calls with independent data; capture previously unmapped

svs in longer repeat regions; find variation in the 50 bp–1 kb range mostly

overlooked by short-read sequencing; and phase bpj to the same or different

derivative chromosomes. New technologies with established benefits for sv

detection (germline or somatic) include linked-read sequencing (Greer et al.,

2017; Xia et al., 2017), long-read sequencing (Nattestad et al., 2017; Merker

et al., 2018), optical mapping (Chan et al., 2017; Jaratlerdsiri et al., 2017), and

Hi-C chromosome conformation assays (Harewood et al., 2017). A combina-

tion of approaches will yield the richest portrait of rearrangement (Chaisson

et al., 2017), subject to comprehensive algorithmic development for integrating

disparate lines of evidence within multi-platform datasets.

Although technological developments may eventually render short-read sequenc-

ing obsolete, the short to medium term prospects for sv analysis in large patient

cohorts is still largely dominated by Illumina data in the legacy repositories of

tcga and icgc, as well as ongoing sequencing projects by Genomics England

(2017) and other initiatives. As such, there remains considerable value in

continuing to improve variant calling pipelines for short-read wgs data. Ideally,

sv events and cn segmentation would be jointly estimated by one inclusive

algorithm aiming to uphold the logical expectation of higher cn states on the

read-group side of every genuine breakpoint. The sub-clonal cn calls used in

this thesis were obviously inaccurate in a sizeable minority of cases (Section 5.3),

leaving an unmet demand for reliable estimation of non-integer cn states in

complex and heterogeneous cancer cell populations. Sv detection and cn

estimation in the soma is further confounded by germline polymorphism. Cn

segmentation may benefit from explicit modelling of the germline sv states

found in the matched normal sample, possibly using catalogues of common,

population-matched sv inheritance (Sudmant et al., 2015) to better separate

the germline events from the cancer-specific alterations.
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6.2 Classifying breakpoint junctions

The major insights contributed by this thesis were facilitated by a novel bpj

classification scheme described in Sections 2.1.3 and 2.2.2. Where cancer

rearrangement studies were previously limited to a handful of basic sv classes

defined by bpj orientation with one or two additional caveats, I was instead able

to leverage twenty well-reasoned sv classes, including local 2-jump subtypes

and long looping events of chromoplexy or templated insertion. All downstream

investigation benefited from this detailed codification of individual breakpoints,

empowering meaningful stratification within every sv property analysis to avoid

massive confounding from heterogeneous phenomena. Notwithstanding this

advancement, bpj clustering and taxonomy remain deeply challenging tasks,

with over half of all pcawg breakpoints unexplained by the current system.

In the existing pipeline, bpj are first clustered into groups with closer than ex-

pected proximity given sample-specific sv rates, and then adjacent breakpoints

are partitioned into footprints labelled by their break orientation pattern. The

final event classification depends on these footprint motifs and the connecting

bpj, shelving all cryptic configurations to a complex unexplained bin. The

output depends heavily on the initial bpj clustering, and it this clustering step

which provides the first opportunity for improvement.

The limitations of the current approach (Section 2.1.3) include: the failure

to account for bpj interrelation in loops across multiple loci; the inability to

separate distinct clusters connected by an unrelated bpj; and the dependence

on bpj orientation frequencies oblivious to the broader structural context. I

attempted to overcome some of these limitations with an alternative clustering

method on the complex unexplained fraction using node-edge graph models

(Section 5.1.1). However, in its present implementation, my graph method is

also compromised by a reliance on arbitrary thresholds for node partitioning and

component merging/separation. Ideally, the next generation of bpj clustering

methods will address these shortcomings in a formal probabilistic framework

conditioning on the sample-specific sv composition. I propose that an iterative

approach may offer the optimal solution—clustering and classifying by turns

until the updates converge on a final stable solution. For example, if a sample

has 250 foldback-type bpj (〈++〉 or 〈−−〉), and two such junctions fall within

one or two megabases of each other, an initial cluster partition might separate

these bpj into independent events given the high overall rate of this junction

class. However, if the subsequent classification step estimates that 220 of these
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bpj are actually explained by one chromothripsis event, the purported rate of

isolated foldback would drastically reduce, causing the next cluster iteration to

group the two inverting bpj in one related event such as a dup-trp-dup or small

bfb cluster (depending on the orientation). In an iterative framework, the

clustering procedure could even account for the estimated location distribution

of different event classifications, such as independent tandem duplications

enriched in early replicating dna, and independent deletions enriched in late

replicating dna (especially fragile sites). Sub-clonality provides another line of

evidence informing cluster estimation (Cmero et al., 2017), assuming that high-

confidence sub-clonal bpj should only cluster with sv in the same approximate

cell fraction. As ‘third’ (and ‘fourth’) generation sequencing becomes more

ubiquitous, additional phasing information may greatly reduce the ambiguity of

sv patterns along homologous chromosomes and/or in different cell fractions.

Given a particular partition of a sample’s bpj terrain, the next logical step

is classification of the separated clusters, assuming they are generated by

independent (or at least punctuated) rearrangement events. The current

classification scheme (Section 2.1.3) is limited to isolated footprints in simple

combinations, augmented with a library of possible overlaps to dissect a fraction

of those convoluted clusters up to three or four bpj. From my exploratory

analysis of the complex unexplained sv in Chapter 5, I established that a

different bpj clustering scheme may recover additional sv events conforming to

simple definitions, and that many more templated insertion and chromoplexy

events would be recovered by extending the classification scheme to adjacent

and overlapping footprint motifs. Furthermore, the current library of theoretical

overlap structures does not account for templated insertion or local 2-jump

events, and so upgrading this reference library may readily yield automatic

classifications for another tranche of sv clusters.

These avenues for refining the current classification procedure are ultimately

limited to small and relatively simple events, as larger clusters rapidly approach

a unique parameter space that cannot possibly be afforded individual categories

by specific bpj configurations. At some point, sv classification strategies

must transition from bottom-up to top-down, such that complex sv clusters

are characterised by their overall feature profile, linking the total formation—

where possible—to compatible underlying mechanisms such as chromothripsis,

chromoplexy, chromoanasynthesis, and so forth. A top-down view is also more

robust to false negative and/or false positive contamination; problems not

accommodated by the simple sv classifier assuming complete bpj information.
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An outstanding question is how best to summarise the characteristic attributes

of complex sv events in order to generate taxonomical divisions with proven

correspondence to the underlying rearrangement mechanism. Thus, future

research could consider: de novo event clustering using distance measures

between independent sv; fixed classification rules trained on clear examples

of canonical mechanisms; and computer simulations of genome rearrangement

under a range of mechanistic models applied in varying combinations. In any

case, the distinctions between different phenomena must be measured via a raft

of summary statistics to capture relevant aspects of copy number, orientation,

and connectivity. Experimental systems which generate complex sv events

via known pathways of breakage and repair may provide additional validation

and guidance in optimising these efforts (Meier et al., 2014; Maciejowski et al.,

2015; Mardin et al., 2015; Zhang et al., 2015).

Given the importance of somatic rearrangement in cancer biology—and the

role of similarly complex germline svs in developmental disorders (Heesch

et al., 2014; Collins et al., 2017)—complete sv specification tools are in high

demand for research and clinical use, and must be regarded a major priority of

bioinformatic development in the next few years.

6.3 Signatures of mutational process

As a valuable window into cancer aetiology and dna dynamics, the muta-

tional signatures imparted by different underlying processes are estimated by

co-occurrence pattern matching across cancer sample cohorts. Throughout

Chapter 4, I discussed my future proposals for extending the current signature

paradigm, with particular attention to the hierarchical Dirichlet process. Here,

I briefly highlight some open questions in relation to sv signatures in particu-

lar. In the abiding signature model, genome alteration classes are tallied as

independent events in discrete, unordered categories. This may be a partially

false premise in the structural variant realm, with events spanning a wide

spectrum of size and complexity without neatly dividing into independent

categories of comparable scale. It remains unclear how large, rare events like

chromothripsis and chromoplexy should be compared against small, common

sv like deletion and tandem duplication. Furthermore, the relevant features

of size, microhomology, and replication timing skew, more naturally suit a

signature framework of distributions over separate variables rather than discrete

categorical observations. Regardless of the model, another frontier for signature
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research is the integration of snv, indel, and sv alteration classes within one

overarching analysis, possibly using hierarchical models to share information

across disparate data types reflecting a shared underlying condition such as hr

deficiency or uv radiation.

6.4 Functional consequences of rearrangement

The investigations in this thesis focused mainly on the patterns and properties

of somatic rearrangement, irrespective of their functional import as passenger

or driver genome alterations. In this section, I discuss the prospects for

annotation and selection analysis of functional consequences, as informed by

the sv landscape surveyed throughout this work.

6.4.1 Annotation

As reviewed in Section 1.5, one rearrangement event may impart several gene-

altering effects, including gene disruption or fusion across breakpoint junctions,

gene dosage changes within the span of a sv footprint, and ectopic gene-

enhancer regulation within merged or neo-tad structures. At present, there

are no available tools to annotate the full consequence spectrum of bpj clusters

in varying configurations.

For simple sv between two genome positions, it would be feasible to construct

a complete atlas of gene-level consequences in the two-dimensional space of

all possible events. Figure 6.1 outlines a proposed design for partitioning the

space of all possible deletions or tandem duplications along a chromosome

into functional consequences for one particular gene of interest. In theory, a

simple rule set could construct a similar map for every gene, with any observed

event easily annotated by position look-ups across the atlas of relevant maps.

Although this construct may seem more convoluted than on-the-fly calculations

for individually observed events, the annotation atlas has useful implications

for recurrence-based driver analysis, as discussed in the following section.

For more complex sv events spanning multiple genome loci, it is impractical

to calculate a full atlas of functional consequences for all possible structures.

Instead, the individually observed bpj and cn profiles could be parsed for

likely fusions and dosage change, with ectopic enhancer contacts predicted from

tad boundary placement along likely derivatives. As adjacent bpj may have
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Figure 6.1: Schematic annotation maps of the functional consequences at gene j
(assuming a + strand gene) imparted by all possible deletions (upper) or tandem
duplications (lower) along the chromosome, with every point in the triangle
representing a possible bpj between two perpendicular points (like a and b).
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uncertain phasing, some annotations (particularly enhancer apposition) may

best be reported as probabilistic possibilities given the sample-specific likelihood

of adjacent breakpoints occurring by chance on different chromosomes.

Existing knowledge banks of established cancer genes can be utilised to high-

light putative driver sv events. For example, Notta et al. (2016) annotated

pancreatic cancer rearrangements with simultaneous knockout of several canon-

ical cancer genes. Aside from highlighting alterations to known oncogenes and

tumour suppressors, it would also be beneficial to assess which of the many

other functional consequences have relevance to cancer progression. Although

hundreds of genes have already been labelled with known cancer effects, many

more may yet be found, with one recent estimate suggesting half of all coding

snv drivers occur outside known cancer genes (Martincorena et al., 2017).

6.4.2 Driver discovery

So far, sv driver discovery efforts have focussed on: foci of recurrent copy gain

or copy loss (Beroukhim et al., 2010; Mermel et al., 2011); enhancer-hijacking

(Weischenfeldt et al., 2017); and one or two dimensional breakpoint recurrence,

agnostic to bpj classification (Wala et al., 2017a). As discussed in Chapter 3,

different sv classes have markedly different formation rates across the genome,

and, therefore, recurrence-based driver discovery should ideally account for

structure-specific (and tissue-specific) background distribution estimates (before

selection), in concert with sample-specific sv class exposures. Additionally, it

would be preferable to integrate multiple effects—dosage, disruption, fusion,

and regulation—to maximise available evidence for positive selection at the

level of individual genes.

To this end, I return to the annotation map concept illustrated in Figure 6.1.

For a given set of observed annotations, the question arises: which of these

functional effects has occurred significantly more or less often than expected in

the absence of selection? If we could determine the background probability of

every possible sv event—that is, the probability at each point in the annotation

map—then the expected rate of each annotated consequence before selection is

the summation of event probabilities within the relevant partition. In this way,

effects can be integrated across disparate sv classes while upholding the class-

specific genome distributions and sample exposures to quantify the selection

coefficients (neutral, positive, or negative) acting on functional up-regulation or

inactivation for different genes. This approach is limited to simple sv classes—
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such as translocation, foldback, reciprocal inversion, as well as deletion and

tandem duplication shown in Figure 6.1—subject to appropriate estimation of

the tissue-specific rearrangement rate at every position in the class-specific 2D

annotation map.

To estimate the sv probability at every point (or pixelated square for reduced

computation) in the 2D map (triangle for intra-chromosomal events; rectangle

for inter-chromosomal events), recall that Pr(A∩B) = Pr(A) Pr(B | A). In this

context, the probability of a bpj between positions (or pixels) A and B is the

marginal breakpoint probability at A, multiplied by the conditional probability

of a partner break at B. The first factor is easily obtained via class-specific

logistic regression models explored in Section 3.3. The second factor is harder

to obtain, and depends on the class (or signature) size distribution, sequence

homology, physical proximity imposed by tad structure and neighbouring

chromosome territories, and the marginal breakpoint likelihood of B for this sv

class. If this proves intractable to estimate, another possibility is to eschew 1D

breakpoint likelihood models (such as logistic regression) in favour of 2D spatial

point process models for the event locations directly observed within the space

of possible junctions. For the spatial point process, the predictor variables at

each 2D location could include size, homology, proximity (from Hi-C data), and

a range of properties along the 1D genome that somehow require translation to

the 2D junction space. In either scenario, properties such as chromatin state

and gene expression should ideally be regarded as tissue-specific predictors.

With a spatial point process, it may even be beneficial to regard tissue type as a

third dimension, along which some tissue-agnostic properties are held constant,

and the tissue-specific properties allowed to vary by identity pixels sorted by

relatedness of tissue development and/or chromatin correlation.

One important caveat to using observed cancer variation datasets as the basis

for background rearrangement rate models is the disproportionate bias towards

positively-selected driver events, as previously discussed in Section 3.6. A more

critical limitation is that background rate models do not readily extend to

complex structures involving several genome loci in convoluted configurations.

If the annotated consequences of templated insertion, chromoplexy, chromoth-

ripsis, and other structures, cannot be modelled as probabilistic distributions in

the absence of selection, it is difficult to conceive how recurrence-based driver

analysis will be possible without massive simplification. In the short to medium

term, the prospects for driver discovery with complex sv may be limited to

existing approaches on a reduced profile—such as copy number (Mermel et al.,
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2011) or junction enrichment (Wala et al., 2017a)—or depend on functional

assessment of related alterations to transcription, translation, and/or chromatin

conformation, where complementary data (such as rna-seq) are available to

elaborate on the sv effect. Given the many challenges in interpreting sv struc-

tures and consequences, experimental validation of putative drivers is especially

pertinent, perhaps using crispr technology to recreate specific rearrangement

structures with a predicted functional consequence (Maddalo et al., 2014).

6.4.3 Clinical translation

Method development for somatic sv specification and annotation has important

clinical ramifications (Macintyre et al., 2016b), with driver alterations and

signatures of underlying repair deficiency illuminating diagnosis, prognosis,

therapeutic opportunities, and the dynamics of ongoing genome instability

which facilitates adaptation and acquired drug resistance.

6.5 Concluding remarks

Through errors of dna repair, replication, and segregation, somatic genomes

gradually diverge from their common ancestor in the zygote, occasionally

evolving into cancerous cell populations with unregulated growth. Genome

alterations at any scale may contribute to oncogenic transformation, with this

thesis focussing on structural variation (typically larger than 1 kb) detected

through whole genome sequencing of 2559 pcawg samples. In addition to pre-

viously recognised sv phenomena involving isolated junctions of non-contiguous

sequence or, at the other extreme, mass rearrangement under catastrophic

stress, the pcawg dataset revealed a vast intervening continuum of medium-

complexity structure with hallmarks of both ‘break and ligate’ and ‘template

and replicate’ repair modalities. By methodically surveying this panorama of

sv structures and properties, the available repertoire of genetic manoeuvres is

revealed with unprecedented breadth and resolution across dozens of common

cancer types. The tissue and sample specificity of sv form, size, location,

and complexity are testament to the many diverse rearrangement mechanisms

driving somatic genomes towards pathological cancer phenotypes.
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List of abbreviations

aCGH array comparative genomic hybridisation

BFB breakage fusion bridge

BIR break-induced replication

bp base pairs

BPJ breakpoint junction

CFS common fragile site

chr chromosome

CN copy number

CNA copy number alteration

CNV copy number variation

COSMIC catalogue of somatic mutation in cancer

DNA deoxyribose nucleic acid

DP Dirichlet process

DSB double-stranded break (in DNA)

FDR false discovery rate

FS fragile site

FWER family-wise error rate

GAM generalised additive model

GLM generalised linear model

HDP hierarchical dirichlet process

HR homologous recombination

ICGC international cancer genome consortium

IQR inter-quartile range

kb kilobase

LAD lamina associated domain

LOH loss of heterozygosity

LTR long terminal repeat

Mb megabase
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MCMC Markov chain Monte Carlo

MH microhomology

MMBIR microhomology-mediate break-induced replication

MMEJ microhomology-mediated end-joining

MSI microsatellite instability

NHEJ non-homologous end-joining

NMF non-negative matrix factorization

PCAWG pan-cancer analysis of whole genomes

RNA ribose nucleic acid

RPKM reads per kilobase of transcript per million mapped reads

SNP single nucleotide polymorphism

SNV single nucleotide variant

SSA single stranded annealing

SV structural variation or structural variant

TAD topologically associating domain

TCGA the cancer genome atlas

TE transposable element

TSS transcription start site

WES whole exome sequencing

WGD whole genome duplication

WGS whole genome sequencing



Appendix B

A description of the Hierarchical

Dirichlet Process in the context

of mutational signatures

In the following, I assume a mutational process is characterized by a discrete

probability distribution over V mutation classes, hereafter termed its ‘signature’.

Model description for one group of cancer samples

For each of N cancer samples, observe Mj total mutations across V mutation

classes (j = 1, . . . , N).

Let G0 be a distribution over some countably infinite set of V -length probability

vectors, describing the set of signatures found across the group of samples.

G0 is drawn from a Dirichlet process (DP) with prior H and concentration

parameter γ0, such that

γ0 | α0, β0 ∼ Gamma(α0, β0) ,

G0 | γ0, H ∼ DP(γ0, H) .

Let Gj be a distribution over the same set of probability vectors, describing

the (sub)set of signatures found in sample j. Gj is drawn from a DP with prior

G0 and concentration parameter γj, such that

γj | αj, βj ∼ Gamma(αj, βj) ,

Gj | γj, G0 ∼ DP(γj, G0) for j = 1, . . . , N .
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Define θji to be the signature that causes the i-th mutation xji in cancer

sample j. Each θji is a probability vector over the V classes, and each xji is

one categorical draw from that distribution, such that

θji | Gj ∼ Gj ,

xji | θji ∼ Categorical(θji) for i = 1, . . . ,Mj .

Figure B.1 illustrates this HDP for one group.

Model description for multiple groups of cancer samples

Assume P groups of cancer samples with Ng samples in each group (g =

1, . . . , P ). For each cancer sample, observe Mgj mutations across V mutation

classes (j = 1, . . . , Ng). Let G0 be defined as above.

Let Gg be a distribution over the set of probability vectors, describing the

(sub)set of signatures found in group g. Gg is drawn from a DP with prior G0

and concentration parameter γg, such that

γg | αg, βg ∼ Gamma(αg, βg) ,

Gg | γg, G0 ∼ DP(γg, G0) for g = 1, . . . , P .

Similarly, let Ggj be a distribution over probability vectors, describing the

(sub)set of signatures found in cancer sample j from group g. Ggj is drawn

from a DP with prior Gg and concentration parameter γgj, such that

γgj | αgj, βgj ∼ Gamma(αgj, βgj) ,

Ggj | γgj, Gg ∼ DP(γgj, Gg) for j = 1, . . . , Ng .

Define θgji to be the signature that causes the i-th mutation xgji in sample j

from group g. Each θgji is a probability vector over the V classes, and each

xgji is one categorical draw from that distribution, such that

θgji | Ggj ∼ Ggj ,

xgji | θgji ∼ Categoical(θgji) for i = 1, . . . ,Mgj .

Figure B.2 illustrates this HDP for P = 2
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Figure B.1: The hierarchical Dirichlet process mixture model for one group of
cancer samples.
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Figure B.2: The hierarchical Dirichlet process mixture model for two groups.
Gamma priors for γ1j and γ2j not shown for convenience.
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Posterior sampling in the Chinese Restaurant Franchise

For any such HDP, we observe the values of x (the mutations) and specify the

prior distribution H and the hyperparameters α and β, but must estimate all

other variables to make inference. Teh et al. (2006) described Gibbs sampling

schemes in the general case for any data distribution. Here, I derive the

equations of the ‘Chinese Restaurant Franchise’ Gibbs sampling scheme for

categorical data in the context of mutational process signatures. This scheme

fits the ‘one group’ HDP as shown in Figure B.1.

Assume a franchise of restaurants (cancer samples), each containing an unlimited

number of tables. Each table is associated with one dish (mutational process),

characterised by a probability distribution over V categories (mutation classes).

Customers (mutations) are assigned to tables within the restaurant (sample),

and take values from the probability distribution assigned to that table. Note

that more than one table in the restaurant (sample) can be generating customer

values (mutations) from the same dish (mutational process/signature).

Let tji be the index of the table in sample j that mutation i belongs to. Let

kjtij be the index of the mutational process at the table in sample j with the

i-th mutation. Let njtkc be the number of mutations in sample j at table t

assigned to process k equal to class c. Let mjk be the number of tables in

sample j associated with process k. Any of these variables can be summed over

(denoted with a bullet) to represent the marginal counts for n or m.

Let H be a Dirichlet distribution with concentration parameters τ . Each

mutational signature φ is a draw from H, such that

φ ∼ H(τ ) ,

h(φ | τ ) =
1

B(τ )

V∏
v=1

φτv−1v .

The probability of mutation xji being equal to its observed mutation class c,

given that xji originates from a particular process k, given all other mutations

currently assigned to process k and integrating over all possible values for the

signature φk, is

p
−xji
k (xji = c) =

n
−xji
··kc + τc

n
−xji
··k· +

∑V
v=1 τv

.
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where n
−xji
··kc is the number of mutations (across all samples and tables) currently

assigned to signature k and class c (excluding xji), n
−xji
··k· is the total number

of mutations (across all samples, tables and classes) currently assigned to

signature k (excluding xji), and τc is the concentration parameter for class c

from the prior H (like a pseudocount).

The probability of mutation xji being equal to its observed mutation class c,

given that xji originates from a new process knew, integrating over all possible

values for the signature φk, is

p
−xji
knew(xji = c) =

τc∑V
i=1 τi

.

The probability of mutation xji being equal to its observed mutation class c,

given that xji belongs to a new table tnew in sample j, given all other table

assignments in all other samples and given the current set of mutational

processes, is

p(xji = c | t−ji, tji = tnew,k) =
K∑
k=1

m·k
m·· + γ0

p
−xji
k (xji = c)+

γ0
m·· + γ0

p
−xji
knew(xji = c)

where m·k is the number of tables associated with process k (across all samples),

m·· is the total number of tables across all samples, and γ0 is the concentration

parameter of the Dirichlet process prior for G0.

The probability of the set of table t mutations xjt given they originate from a

particular process k, given all other mutations currently assigned to process k

and integrating over all possible values for the signature φk, is

p
−xjt

k (xjt) =
Γ(n

−xjt

··k· +
∑V

v=1 τv)

Γ(njtk· + n
−xjt

··k· +
∑V

v=1 τv)

V∏
v=1

Γ(njtkv + n
−xjt

··kv + τv)

Γ(n
−xjt

··kv + τv)

where n
−xjt

··k· is the number of mutations (across all samples, tables and classes)

assigned to process k (excluding the mutations at table t in sample j), njtk·

is the number of mutations (across all classes) at table t in sample j, njtkv is

the number of mutations in sample j at table t equal to class v, and n
−xjt

··kv is

the number of mutations (across all samples, tables) assigned to process k and

class v (excluding the mutations at table t in sample j).

The probability of the set of table t mutations xjt given they originate from a
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new process knew, integrating over all possible values for the signature φk, is

p
−xjt

knew (xjt) =
Γ(
∑V

v=1 τv)

Γ(njtk· +
∑V

v=1 τv)

V∏
v=1

Γ(njtkv + τv)

Γ(τv)
.

Gibbs sampling scheme

The sampling scheme is initialised with some total number of mutational

processes (K) and some number of tables in each cancer sample (mj· for

j = 1, . . . , N). Each table is assigned a mutational process (initialise each kjt -

the index of the process associated with table t in sample j) and each mutation

is assigned to a particular table (initialise each tji - the index of the table in

sample j with mutation i).

Iterate steps:

1. For each mutation, sample a new value for tji.

2. For each table, sample a new value for kjt.

3. For each concentration parameter, sample a new value given the current

cluster allocations.

After removing the burn-in period, the Gibbs sampling scheme thus generates

a posterior sample to estimate K, and all mj·, tji and kjt.

Sampling t

The probability that the i-th mutation in sample j belongs to a particular

table t, given all other table assignments in all other samples and given the

current set of mutational processes, is:

Pr(tji = t | t−ji,k) ∝

n
−ji
jt·· p

−xji
kjt

(xji) if t previously used ,

α0p(xji | t−ji, tji = tnew,k) if t = tnew ,

where n−jijt is the number of mutations in sample j already at table t (excluding

xji), and α0 is the concentration parameter for the Dirichlet process prior on

Gj (the distribution of mutational signatures in sample j).
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If the sampled value of tji is tnew, then a mutational process must be assigned

to the new table by sampling a value for kjtnew from

Pr(kjtnew = k | t,kjtnew) ∝

m·kp
−xji
k (xji) if k previously used ,

γp
−xji
knew(xji) if k = knew .

Sampling k

Changing the mutational process assigned to a particular table (updating

kjt) changes the mutational process assigned to all mutations at that table.

Therefore

Pr(kjt = k | t,k−jt) ∝

m
−jt
·k p

−xjt

k (xjt) if k previously used ,

γp
−xjt

knew (xjt) if k = knew .

Sampling concentration parameters

See Appendix in Teh et al. (2006).
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Heuristic classification rules for

complex SV

In the following list of pilot classification criteria, second tier thresholds are
given in parentheses following the first tier threshold values. The estimated
specificity (by manual curation) of the first tier preliminary classification is
reported in Table 5.3.

The heuristics for breakage-fusion-bridge are:

• the proportion of breaks on one chromosome is at least 0.75 (0.65);

• the proportion of intra-chromosomal bpj with foldback-type orientations
is greater than or equal to 0.7 (0.6), and also outnumbers the frequency
of inter-chromosomal bpj; and

• in the footprint with the highest number of breaks, the flanking cn states
differ by more than 6 (4).

The heuristics for retrotransposition hotspots are:

• at least 4 (3) involved chromosomes;

• one (and only one) footprint contains 6 or more breaks, and there are at
least four other footprints containing no more than 2 (3) breaks;

• the footprint with the most breaks spans less than 100 kb (1 Mb); and

• the proportion of inter-chromosomal bpj at the footprint with the most
breaks is at least 0.6 (0.5).

The heuristics for isolated double minutes (with no chromothripsis) are:

• at least 75% (70%) of breaks have one cn side higher than 12 (9);

• the cn at least one side of the footprint with the most breaks is less than
6 (8);
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• no more than 3 (6) chromosomes have three or more breaks;

• at least two copy jumps are larger than 10 (6);

• at least two copy jumps larger than 6 are at least 50 kb (10 kb) apart; and

• on the chromosome with the largest copy area, less than 60% (70%) of
the junctions are foldback-type.

The heuristics for a diverse range of complex graduated amplifications possibly
involving chromoanasynthesis mechanisms are:

• at least one footprint has 10 (8) breakpoints;

• the proportion of intra-chromosomal bpj with foldback-type orientations
is less than or equal to 0.6 (0.67);

• at least one chromosome has over 95% of its involved cn profile spread
over at least 4 (3) rough cn states above 2 (using integer rounding);

• every footprint with 5 or more breakpoints has an internal cn average 1
(0.5) copy higher than at least one flanking side; and

• the 0.9 quantile of absolute cn jump magnitude is less than 4 (6).

The heuristics for chromoplexy are:

• no footprint has more than 50 (75) breaks;

• no chromosome contains more than 8 (12) separate footprints;

• at least 35% (30%) of the inter-break motifs are [+−] gaps smaller than
1 Mb (3 Mb);

• the geometric mean [+−] gap motif is less than 0.5 (1.0) times the
geometric mean [−+] motif (disregarded if both are <10 kb);

• at least 50% (33%) of footprints start with a + break orientation and
end with a − break orientation;

• no one orientation type contributes more than 50% (60%) of all intra-
chromosomal junctions;

• all copy jumps are smaller than 3 (5);

• every chromosome has over 85% (75%) of its involved cn profile spread
over at most 2 rough cn states (using integer rounding);

• every footprint with 5 or more breakpoints has an internal cn average
not more than 0.75 (1.1) copies higher than either flanking side;

• any chromosome with more than 15 breaks should have a non-uniform
break distribution, with a Kolmogorov-Smirnov test significant at 0.05
(0.1); and

• if the event is restricted to one chromosome, it must span more than
100 kb.
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The heuristics for chromothripsis (with no double minute amplification) are:

• at least one chromosome has 15 (10) breakpoints;

• the proportion of breaks in footprints containing three or fewer breaks is
less than or equal to 0.25 (0.4);

• every intra-chromosomal bpj orientation is observed at least once, with
no one orientation type contributing more than 0.45 (0.55) of all intra-
chromosomal junctions;

• the median span of intra-chromosomal junction types varies by less than
50-fold (500-fold) across the four possible bpj orientations;

• inter-break motifs are at least 0.33 (0.25) [+−] and 0.33 (0.25) [−+];

• the 0.95 quantile of absolute cn jump magnitude is smaller than 3 (4)
times the median cn jump, up to a maximum of 4 (6);

• every chromosome has over 85% (75%) of its involved cn profile spread
over at most 3 rough cn states (using integer rounding);

• every footprint with 5 or more breakpoints has an internal cn average
not more than 1 (2) copies higher than either flanking side;

• if there is more than one footprint, at least one footprint is larger than
500 kb (100 kb); and,

• to attempt differentiation from chromoplexy, if there are four or more
breaks on two different chromosomes:

– the median size of a [+−] gap motif is not smaller than 1 kb if the
median size of a [−+] retained motif is larger than 10 kb;

– a Kolmogorov-Smirnov test for uniform breakpoint positioning in
footprints with 12 or more breaks is non-significant at a 10−3 (10−6)
threshold, or has a test statistic smaller than 0.25.
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Figure D.1: All intrachromosomal bpj on the p-arm of chromosome 17 in ten
different samples, coloured by orientation. Blue denotes deletion type 〈+−〉,
red is tandem duplication type 〈−+〉, and purple and green indicate inversion
type 〈++〉 or 〈−−〉.
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Figure D.2: Per-sample counts of complex (lower) and classified (upper) break-
point junctions.
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Figure D.3: Spearman’s rank correlation coefficient between complex (hori-
zontal) and classified (vertical) bpj counts in samples grouped by histology.
Benjamini–Hochberg-corrected fdr for the null hypothesis of zero correlation
is indicated at levels: * < 0.01, ** 0.001, and *** < 10−6.
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Figure D.8: For each sv class, the quantile distribution of the genomic property
metrics at observed breakpoints compared to random positions, with significant
departure from uniform quantiles marked by: fdr < 0.01 *, < 0.001 **, and
< 10−6 ***; shading the magnitude of the shift of the median observed quantile
above (blue) or below (red) 0.5.
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Figure D.9: The optimal lasso gam for small deletions, with predictor effects
on the log odds of a real breakpoint in red for splines, green for linear terms,
and blue for removed predictors.
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Figure D.10: The optimal lasso gam for large deletions, with predictor effects
on the log odds of a real breakpoint in red for splines, green for linear terms,
and blue for removed predictors.
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Figure D.11: The optimal lasso gam for large tandem duplication, with pre-
dictor effects on the log odds of a real breakpoint in red for splines, green for
linear terms, and blue for removed predictors.
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Figure D.12: The optimal lasso gam for unbalanced translocation, with pre-
dictor effects on the log odds of a real breakpoint in red for splines, green for
linear terms, and blue for removed predictors.
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Figure D.13: The optimal lasso gam for foldback, with predictor effects on the
log odds of a real breakpoint in red for splines, green for linear terms, and blue
for removed predictors.
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Figure D.14: All sv breakpoint positions in the 12 minor fragile sites. If the
two sides of a bpj are contained within the plotting window, they are joined
with a curved line. The number of samples with a breakpoint in the plotting
window is annotated top left.
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Figure D.17: Hdp mutational signatures in discovery dataset (mean and 95%
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Figure D.17: Hdp mutational signatures in discovery dataset (continued from
previous)
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Figure D.17: Hdp mutational signatures in discovery dataset (continued from
previous)



256 Appendix D. Supplementary Figures

HSig24 matches (0.96) CSig18

0.00

0.05

0.10

0.15

0.20

C
C

A
G

C
A

T
C

A
T

C
T

C>A C>G C>T T>A T>C T>G

HSig25 matches (0.99) CSig17

0.0

0.1

0.2

0.3

0.4

C
T

T

C
T

T
G

T
T

T
T

T

C>A C>G C>T T>A T>C T>G

HSig26 has no match

0.00

0.05

0.10

0.15

0.20

A
C

G
C

C
C

G
C

G

A
T

A

C>A C>G C>T T>A T>C T>G

HSig27 matches (0.97) CSig21

0.00

0.05

0.10

0.15

0.20

G
T

A
G

T
C

G
T

G
G

T
T

C>A C>G C>T T>A T>C T>G

HSig28 has no match

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
C

A

T
C

A

T
C

T
A

T
A

C>A C>G C>T T>A T>C T>G

HSig29 has no match

0.00

0.05

0.10

0.15

0.20

A
T

G
C

T
G

G
T

G
T

T
G

C>A C>G C>T T>A T>C T>G

HSig30 matches (0.98) CSig15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

G
C

A
G

C
C

G
C

G
G

C
T

C>A C>G C>T T>A T>C T>G

HSig31 matches (0.92) CSig28

0.0

0.1

0.2

0.3

0.4

G
T

T

A
T

T
C

T
T

T
T

T

C>A C>G C>T T>A T>C T>G

Figure D.17: Hdp mutational signatures in discovery dataset (continued from
previous)



257

HSig32 has no match

0.0

0.1

0.2

0.3

0.4

0.5

C
C

A
C

C
G

C
C

T

T
C

G

C>A C>G C>T T>A T>C T>G

HSig33 matches (0.95) CSig11

0.00

0.05

0.10

0.15

0.20

A
C

C
A

C
T

T
C

C
T

C
T

C>A C>G C>T T>A T>C T>G

HSig34 has no match

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
T

T

T
T

C
T

T
G

T
T

T

C>A C>G C>T T>A T>C T>G

HSig35 has no match

0.00

0.02

0.04

0.06

0.08

0.10

A
C

A
A

C
T

T
T

C
T

T
T

C>A C>G C>T T>A T>C T>G

HSig36 has no match

0.00

0.02

0.04

0.06

0.08

0.10

A
C

C

G
C

C

C
C

C

C
T

T

C>A C>G C>T T>A T>C T>G

HSig37 matches (1.00) CSigR1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
T

C

G
T

C
G

T
G

G
T

T

C>A C>G C>T T>A T>C T>G

HSig38 has no match

0.00

0.05

0.10

0.15

0.20

A
C

G
A

C
T

T
C

G

A
T

T

C>A C>G C>T T>A T>C T>G

HSig39 has no match

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
C

G

G
C

T
T

C
G

T
C

T

C>A C>G C>T T>A T>C T>G

Figure D.17: Hdp mutational signatures in discovery dataset (continued from
previous)



258 Appendix D. Supplementary Figures

HSig40 has no match

0.00

0.05

0.10

0.15

0.20

A
C

A
A

C
T

T
C

A
T

C
T

C>A C>G C>T T>A T>C T>G

HSig41 has no match

0.00

0.02

0.04

0.06

0.08

0.10

C
C

A

T
C

A

C
C

A

T
C

A

C>A C>G C>T T>A T>C T>G

HSig42 matches (0.98) CSigR2

0.0

0.1

0.2

0.3

0.4

0.5

C
C

A
C

C
C

C
C

T

T
C

G

C>A C>G C>T T>A T>C T>G

HSig43 has no match

0.00

0.05

0.10

0.15

0.20

G
C

C
G

C
G

G
T

C

G
T

T

C>A C>G C>T T>A T>C T>G

HSig44 has no match

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
C

C

A
T

T

G
T

T
T

T
G

C>A C>G C>T T>A T>C T>G

HSig45 matches (0.93) CSig22

0.00

0.05

0.10

0.15

0.20
A

T
G

C
T

A
C

T
C

C
T

G

C>A C>G C>T T>A T>C T>G

HSig46 has no match

0.00

0.05

0.10

0.15

0.20

A
C

G

T
C

C

A
T

T

A
T

A

C>A C>G C>T T>A T>C T>G

HSig47 has no match

0.00

0.05

0.10

0.15

0.20

C
T

T

T
T

T

T
T

T

T
T

T

C>A C>G C>T T>A T>C T>G

Figure D.17: Hdp mutational signatures in discovery dataset (continued from
previous)



259

HSig48 has no match

0.00

0.05

0.10

0.15

0.20
A

C
G

A
T

T

T
T

A

T
T

A

C>A C>G C>T T>A T>C T>G

HSig49 has no match

0.00

0.05

0.10

0.15

0.20

C
T

C
C

T
T

G
T

C
G

T
T

C>A C>G C>T T>A T>C T>G

HSig50 has no match

0.00

0.05

0.10

0.15

0.20

G
C

C

A
T

A
A

T
C

G
T

C

C>A C>G C>T T>A T>C T>G

HSig51 has no match

0.00

0.05

0.10

0.15

0.20

G
C

A

G
T

A
G

T
G

G
T

T

C>A C>G C>T T>A T>C T>G

HSig52 has no match

0.00

0.02

0.04

0.06

0.08

0.10

A
T

A

G
T

C
T

T
A

A
T

A

C>A C>G C>T T>A T>C T>G

HSig53 has no match

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
C

A

C
C

A
C

C
C

C
C

G

C>A C>G C>T T>A T>C T>G

HSig54 has no match

0.00

0.05

0.10

0.15

0.20

A
C

T

G
C

C
G

C
T

C
T

T

C>A C>G C>T T>A T>C T>G

Figure D.17: Hdp mutational signatures in discovery dataset (continued from
previous)
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Figure D.18: Average estimated sample exposures to hdp-extracted sv signa-
tures (Figure 4.20) for eight of the pcawg cancer types. Large cohorts are
subset to a maximum of 100 samples for presentation. For each sample, mean
estimated exposures are only plotted for significant signatures (95% credibility
interval above zero), leaving a blank proportion with uncertain allocation to
the same or different signatures.
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Figure D.19: Large bpj candidate clusters, split by walktrap graph community
detection as described in Section 5.1.1. Node-edge graph visualisations are
available in Figures 5.4–5.6. Figure continues on the next page.
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Figure D.19: Large bpj candidate clusters, split by walktrap graph community
detection as described in Section 5.1.1. Node-edge graph visualisations are
available in Figures 5.4–5.6. Figure continued from the previous page.
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Figure D.20: New and old clustering schemes (more clusters in new) for complex
unexplained bpj in prostate cancer sample SA506736, only showing clusters
with disagreement.
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Figure D.21: New and old clustering schemes (more clusters in new) for complex
unexplained bpj in breast cancer sample SA27437, only showing clusters with
disagreement. Figure continues on the next page.
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Figure D.21: New and old clustering schemes (more clusters in new) for complex
unexplained bpj in breast cancer sample SA27437, only showing clusters with
disagreement. Figure is continued from the previous page.
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Figure D.22: New and old clustering schemes (more clusters in new) for complex
unexplained bpj in melanoma sample SA438657, only showing clusters with
disagreement. Figure continues on the next page.
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Figure D.22: New and old clustering schemes (more clusters in new) for complex
unexplained bpj in melanoma sample SA438657, only showing clusters with
disagreement. Figure is continued from the previous page.
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Figure D.23: New and old clustering schemes (more clusters in new) for complex
unexplained bpj in prostate cancer sample SA530648, only showing clusters
with disagreement.
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Figure D.24: New and old clustering schemes (fewer clusters in new) for complex
unexplained bpj in lung squamous cell cancer sample SA503918 and esophageal
cancer sample SA528788, only showing clusters with disagreement.
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Figure D.25: New and old clustering schemes (fewer clusters in new) for complex
unexplained bpj in lung cancer sample SA273481, only showing clusters with
disagreement. Figure continues on the next page.
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Figure D.25: New and old clustering schemes (fewer clusters in new) for complex
unexplained bpj in lung cancer sample SA273481, only showing clusters with
disagreement. Figure is continued from the previous page.
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Figure D.26: New and old clustering schemes (fewer clusters in new) for complex
unexplained bpj in melanoma sample SA557522, only showing clusters with
disagreement. Figure continues on the next page.
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Figure D.26: New and old clustering schemes (fewer clusters in new) for complex
unexplained bpj in melanoma sample SA557522, only showing clusters with
disagreement. Figure is continued from the previous page.
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Figure D.27: Four example events from each of three outlying samples containing
more than 30 separate complex clusters. These samples are further summarised
in Figure 5.16.
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Figure D.28: Comparison of cn calls returned by YL (left) and P11 (right)
around complex unexplained bpj in samples qualifying for a switch to P11 cn.
Breakpoint junctions are coloured by cluster assignment within the sample.
Figure continues on the next page.
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Figure D.28: Comparison of cn calls returned by YL (left) and P11 (right)
around complex unexplained bpj in samples qualifying for a switch to P11 cn.
Breakpoint junctions are coloured by cluster assignment within the sample.
Figure continued from the previous page.
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Table E.1: Roadmap cell lines chosen to estimate tissue-specific epigenomic
properties for pcawg tissues. Tissues without a close match in roadmap are
instead matched to the average over many epithelial cell types. Details of the
cell lines are available in Roadmap Epigenomics Consortium et al. (2015).

Pcawg tissue
group

Matching roadmap cell line ids

Biliary E028, E065, E076, E079, E094, E096, E098, E109,
E126, E127

Bladder E028, E065, E076, E079, E094, E096, E098, E109,
E126, E127

BoneSoftTissue E025, E107, E108, E129
Breast E027, E028, E119
Cervix E117
CNS E067, E068, E069, E070, E071, E072, E073, E074
ColonRectum E075, E076, E102, E103
Esophagus E079
HeadNeck E079
Kidney E086
Liver E066
Lung E088, E096, E128
Lymphoid E032, E034
Myeloid E029, E030
Ovary E097
Pancreas E087, E098
Prostate E028, E065, E076, E079, E094, E096, E098, E109,

E126, E127
Skin E059, E061, E126, E127
Stomach E094, E110, E111
Thyroid E080
Uterus E028, E065, E076, E079, E094, E096, E098, E109,

E126, E127
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Table E.2: Fragile site definitions for the pcawg cohort

Chr Start End CFS Gene Note

chr1 71750001 72900000 FRA1L NEGR1
chr1 245000001 247100000 FRA1I KIF26B;SMYD3
chr2 140900001 143100000 FRA2F LRP1B
chr3 59350001 61750000 FRA3B FHIT
chr3 115600001 117450000 FRA3L LSAMP
chr3 173850001 175900000 FRA3O NAALADL2
chr4 90750001 92800000 FRA4F CCSER1
chr5 57900001 60200000 FRA5H PDE4D
chr6 161900001 163650000 FRA6E PACRG;PARK2
chr7 68850001 70700000 FRA7J AUTS2
chr7 109400001 111600000 FRA7K IMMP2L
chr8 2750001 4600000 no CFS name CSMD1
chr9 8500001 10450000 no CFS name PTPRD
chr10 52550001 53950000 FRA10G;FRA10C PRKG1
chr10 67750001 68750000 FRA10D CTNNA3
chr13 94050001 95100000 FRA13H;FRA13D GPC6
chr16 5800001 7600000 no CFS name RBFOX1
chr16 77750001 79650000 FRA16D WWOX
chr20 13700001 16250000 FRA20B MACROD2
chrX 31000001 33850000 FRAXC DMD
chrX 95800001 97100000 FRAXL DIAPH2

chr2 77350001 78350000 no CFS name no long gene excluded
chr2 186500001 188000000 FRA2H no long gene excluded
chr4 19050001 20100000 FRA4D no long gene excluded
chr4 181000001 183100000 no CFS name no long gene excluded
chr18 36600001 37600000 FRA18A no long gene excluded
chrX 6400001 8250000 FRAXB no long gene excluded



280 Appendix E. Supplementary Tables

Table E.3: Sample counts of somatic snv dataset from original mutational
signatures discovery project by Alexandrov et al. (2013b).

Cancer Exomes Genomes Total snv
ALL 140 0 1562
AML 147 7 4903
Bladder 136 0 36390
Breast 844 119 687514
Cervix 38 0 7563
CLL 103 28 53513
Colorectum 559 0 204630
Esophageal 146 0 24861
Glioblastoma 98 0 3508
Glioma Low Grade 217 0 20601
Head and Neck 380 0 56078
Kidney Chromophobe 65 0 1287
Kidney Clear Cell 325 0 24999
Kidney Papillary 100 0 5489
Liver 0 88 850734
Lung Adeno 636 24 1658098
Lung Small Cell 70 0 13950
Lung Squamous 176 0 62412
Lymphoma B-cell 24 24 128212
Medulloblastoma 0 100 124941
Melanoma 396 0 280918
Myeloma 69 0 3467
Neuroblastoma 210 0 4508
Ovary 471 0 22307
Pancreas 98 15 115645
Pilocytic Astrocytoma 0 101 10577
Prostate 330 0 15176
Stomach 212 0 77345
Thyroid 304 0 4910
Uterus 241 0 163742
Total 6535 506 4669840
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Leon Di Stefano, Jan Schröder, Jason Li, Zhi-Ping Feng, Bo W Kim, et al.

http://dx.doi.org/10.1101/183889
http://dx.doi.org/10.1093/nar/gku1075
http://dx.doi.org/10.1038/nature19800
http://dx.doi.org/10.1038/nature20788
http://dx.doi.org/10.1038/nature06258
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1038/nbt.2049
http://dx.doi.org/10.1038/ng.3547
http://dx.doi.org/10.1016/j.devcel.2016.10.023
http://dx.doi.org/10.1038/nature24277
http://dx.doi.org/10.1038/nrc3916


288 Bibliography

(2014). “The architecture and evolution of cancer neochromosomes”. Cancer
Cell 26.5, pp. 653–667. doi: 10.1016/j.ccell.2014.09.010.

Genomics England (2017). The 100,000 Genomes Project Protocol v3. doi:
10.6084/m9.figshare.4530893.v2.

Gerstung, Moritz, Elli Papaemmanuil, Inigo Martincorena, Lars Bullinger,
Verena I Gaidzik, Peter Paschka, Michael Heuser, Felicitas Thol,
Niccolo Bolli, et al. (2017). “Precision oncology for acute myeloid leukemia
using a knowledge bank approach”. Nat. Genet. doi: 10.1038/ng.3756.

Gibcus, Johan H and Job Dekker (2013). “The hierarchy of the 3D genome”.
Mol. Cell 49.5, pp. 773–782. doi: 10.1016/j.molcel.2013.02.011.

Gisselsson, D, L Pettersson, M Höglund, M Heidenblad, L Gorunova,
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Rosa R Bernabé, M K Bhan, Fabien Calvo, et al. (2010). “International
network of cancer genome projects”. Nature 464.7291, pp. 993–998. doi:
10.1038/nature08987.

http://dx.doi.org/10.1016/j.celrep.2014.11.022
http://dx.doi.org/10.1038/nrg3729
http://dx.doi.org/10.1101/gr.163659.113
http://dx.doi.org/10.1093/jnci/djx176
http://dx.doi.org/10.1101/cshperspect.a015792
http://dx.doi.org/10.1016/j.cell.2014.06.049
http://dx.doi.org/10.1056/NEJMoa1502309
http://dx.doi.org/10.1016/j.cell.2016.12.015
http://dx.doi.org/10.1093/bioinformatics/btv751
http://dx.doi.org/10.1038/nature08987


Bibliography 291

Jackson, Stephen P and Jiri Bartek (2009). “The DNA-damage response in
human biology and disease”. Nature 461.7267, pp. 1071–1078. doi:
10.1038/nature08467.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013).
An Introduction to Statistical Learning. Springer Texts in Statistics.

Jaratlerdsiri, Weerachai, Eva K F Chan, Desiree C Petersen, Claire Yang,
Peter I Croucher, M S Riana Bornman, Palak Sheth, and Vanessa M Hayes
(2017). “Next generation mapping reveals novel large genomic
rearrangements in prostate cancer”. Oncotarget 8.14, pp. 23588–23602. doi:
10.18632/oncotarget.15802.

Jones, David T W, Sylvia Kocialkowski, Lu Liu, Danita M Pearson,
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Le Tallec, Benôıt, Gaël Armel Millot, Marion Esther Blin, Olivier Brison,
Bernard Dutrillaux, and Michelle Debatisse (2013). “Common fragile site
profiling in epithelial and erythroid cells reveals that most recurrent cancer
deletions lie in fragile sites hosting large genes”. Cell Rep. 4.3, pp. 420–428.
doi: 10.1016/j.celrep.2013.07.003.

Lee, Eunjung, Rebecca Iskow, Lixing Yang, Omer Gokcumen, Psalm Haseley,
Lovelace J Luquette 3rd, Jens G Lohr, Christopher C Harris, Li Ding, et al.
(2012). “Landscape of somatic retrotransposition in human cancers”. Science
337.6097, pp. 967–971. doi: 10.1126/science.1222077.

Lee, Jason D, Dennis L Sun, Yuekai Sun, and Jonathan E Taylor (2016).
“Exact post-selection inference, with application to the lasso”. Ann. Stat.
44.3, pp. 907–927. doi: 10.1214/15-AOS1371.

Lee, Jennifer A, Claudia M B Carvalho, and James R Lupski (2007). “A DNA
replication mechanism for generating nonrecurrent rearrangements
associated with genomic disorders”. Cell 131.7, pp. 1235–1247. doi:
10.1016/j.cell.2007.11.037.

http://dx.doi.org/10.1089/cmb.2012.0020
http://dx.doi.org/10.1016/j.cell.2013.02.023
http://dx.doi.org/10.1126/science.1149504
http://dx.doi.org/10.1016/j.cell.2014.10.025
http://dx.doi.org/10.1093/nar/gku590
http://dx.doi.org/10.1038/nature12213
http://dx.doi.org/10.1038/nature12912
http://dx.doi.org/10.1016/j.celrep.2013.07.003
http://dx.doi.org/10.1126/science.1222077
http://dx.doi.org/10.1214/15-AOS1371
http://dx.doi.org/10.1016/j.cell.2007.11.037


Bibliography 293
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Itziar Salaverria, Cristina Royo, Laura Martinez, Montserrat Puiggròs,
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