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Abstract
High-dimensional biomarkers such as genomics are increasingly being mea-
sured in randomized clinical trials. Consequently, there is a growing interest
in developing methods that improve the power to detect biomarker–treatment
interactions. We adapt recently proposed two-stage interaction detecting proce-
dures in the setting of randomized clinical trials. We also propose a new stage
1 multivariate screening strategy using ridge regression to account for correla-
tions among biomarkers. For this multivariate screening, we prove the asymp-
totic between-stage independence, required for familywise error rate control,
under biomarker–treatment independence. Simulation results show that in vari-
ous scenarios, the ridge regression screening procedure can provide substantially
greater power than the traditional one-biomarker-at-a-time screening procedure
in highly correlated data. We also exemplify our approach in two real clinical
trial data applications.
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1 INTRODUCTION

Recent developments in medicine have seen a shift toward
targeted therapeutics. It has been shown that individ-
ual variability can often contribute to differences in
response to the same treatment. For example, patientswith
leukemia respond to the treatment with all-trans retinoic
acid if they have the promyelocytic leukemia/retinoic
acid receptor alpha translocation (Sawyers, 2008). Con-
versely, the use of some drugs can lead to increased
risk to patients with specific genetic variants, for exam-
ple, the Class II allele HLA-DRB1*07:01 has been asso-
ciated with lapatinib-induced liver injury (Parham et al.,
2016). Detecting such interactions between biomarkers
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and treatments in randomized clinical trials is of growing
interest.
Discovering biomarker–treatment interactions helps

identify predictive biomarkers: biomarkers that influence
treatment efficacy can be used to find the subgroup of
patients who are most likely to benefit from the new treat-
ment, aswell as to predict subgroup treatment effects. Con-
sequently, new adaptive design approaches can be used in
settings where there are genetically driven subgroups to
improve efficiency (Wason et al., 2015). Furthermore, the
discovery of novel biomarker–treatment interactions may
result in the identification of new disease susceptibility
loci, providing insights into the biology of diseases. Such
outcomes are verymuch alignedwith the goals of precision
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medicine: to enable the provision of “the right drug at the
right dose to the right patient” (Collins and Varmus, 2015).
Detecting biomarker–treatment interactions in large-

scale studies of human populations is a nontrivial task,
which faces several challenging problems (McAllister
et al., 2017). Traditional interaction analysis, using regres-
sion models to test biomarker–treatment interactions one
biomarker at a time, may suffer from poor power when
there is a large multiple testing burden, for example,
when performing such analysis on a genome-wide scale
for genetic biomarkers. Standard genotyping microarrays
measure half a million or more variants and, when com-
bined with whole genome imputation, can lead to mil-
lions of biomarkers to consider. Another type of omics,
metabolomics—the measurement of metabolite concen-
trations in the body—mayhave amore direct effect on drug
efficacy and is also becoming increasingly widely assayed
(Beckonert et al., 2007).
In the context of gene–environment interaction studies,

there is now a significant literature of statistical methods,
which exploit aspects of the study design to improve
power thus mitigating the multiple testing burden. These
include case-only tests (Piegorsch et al., 1994), empirical
Bayes (Mukherjee and Chatterjee, 2008), Bayesian model
averaging (Li and Conti, 2008), and two-stage tests with
different screening procedures (Kooperberg and LeBlanc,
2008; Murcray et al., 2008; Wason and Dudbridge, 2012;
Gauderman et al., 2013). To alleviate the multiple testing
burden, two-stage methods use independent information
from the data to perform a screening test to select a subset
of genetic biomarkers and then only test interactions
within this reduced set. Since there is a clear analogy to
gene–environment interaction problems, in this paper, we
will examine how existing gene–environment interaction
testing methods may be modified so that they are transfer-
able to the biomarker–treatment setting (Dai et al., 2009,
2016; Wang and Dai, 2016). One significant drawback of
the traditional two-stage approach testing each biomarker
one at a time is that the univariate screening tests will
harm power of the overall two-stage procedure when there
exist substantial correlations between biomarkers. We also
propose a novel screening test in this two-stage frame-
work, which utilizes ridge regression to model correlated
high-dimensional data at stage 1. We prove that this new
two-stagemethod is able to preserve the overall familywise
error rate given independence between the treatment and
biomarkers. Furthermore, it is shown by simulations and
real data applications that the newmethod can provide bet-
ter performance than traditional one-biomarker-at-a-time
approaches for correlated biomarkers. In the context of
more general variable selection settings, screening strate-
gies have been explored to focus algorithms on a reduced

search space (Fan and Lv, 2008; Wang and Leng, 2016).
In this work, we explore the use of variable prescreening
specifically to help identify interactions and the condition
required for controlling the familywise error rate.

2 METHODS

2.1 Standard single-step
one-biomarker-at-a-time interaction tests

In the context of randomized clinical trials, one can test
each biomarker in turn for a biomarker–treatment inter-
action using the following linear model:

𝐸(𝑌𝑖 ∣ 𝑋𝑖𝑗, 𝑇𝑖) = 𝛽0𝑗 + 𝛽𝑋𝑗𝑋𝑖𝑗 + 𝛽𝑇𝑇𝑖 + 𝛽𝑋𝑗×𝑇𝑋𝑖𝑗 × 𝑇𝑖 (1)

with 𝑌𝑖 denoting the response outcome, 𝑇𝑖 the binary
treatment-control indicator, and 𝑋𝑖1, … , 𝑋𝑖𝑚 representing
the values of 𝑚 biomarkers, for the 𝑖th patient. The null
hypothesis 𝛽𝑋𝑗×𝑇 = 0 could be tested for each 𝑗 = 1,… ,𝑚,
for example, using a Wald test with the Bonferroni correc-
tion applied to preserve the familywise error rate.
The number of biomarkers𝑚 to be considered is poten-

tially large. Given the desired overall familywise error
rate 𝛼, a Bonferroni correction (Dunn, 1961) requires an
adjusted significance level for each individual test to be
𝛼∕𝑚. Although the Bonferroni correction is typically used
for its simplicity and flexibility, with regard to our interest
in high-dimensional interaction testing it is worth explor-
ing whether other procedures are able to provide improved
efficiency. In Web Appendix A, we demonstrate theoret-
ically some alternative familywise error rate controlling
methods (Šidák, 1967; Holm, 1979) can only provide a small
improvement across the settings we consider in this paper:
when𝑚 is large and only a small subset of biomarkers have
true interactions with treatment.

2.2 Two-stage interaction tests with
some existing screening methods

Two-stage approaches use a screening test as a filtering
stage (stage 1) to select a subset of biomarkers, and then
in stage 2, only test interactions within the reduced set of
biomarkers, thus increasing power. To preserve the over-
all familywise error rate, two-stage approaches rely on the
stage 1 screening tests being independent of the final stage
2 tests.
A common stage 1 screening test used in two-stage inter-

action testing is a marginal association test (Kooperberg
and LeBlanc, 2008). Considering this type of screening
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test in the clinical trial setting, the marginal effect of a
biomarker on the outcome can bemeasured in a regression
model of the form

𝐸(𝑌𝑖 ∣ 𝑋𝑖𝑗) = 𝛿0𝑗 + 𝛿𝑋𝑗𝑋𝑖𝑗. (2)

The screening procedure is conducted by testing the null
hypothesis 𝛿𝑋𝑗 = 0 for 𝑗 = 1,… ,𝑚, with a prespecified sig-
nificance level𝛼1 ∈ (0, 1). In stage 2, one then tests interac-
tions using the one-biomarker-at-a-time model (1) within
the set of biomarkers selected at stage 1. Another way to
utilize stage 1 information is to test all 𝑚 biomarkers in
stage 2 using weighted significance levels, that add up to
the targeted error rate 𝛼, based on ordered biomarkers
from stage 1. One possible weighting scheme (Ionita-Laza
et al., 2007) is as follows: the𝐵most significant biomarkers,
that is with the lowest 𝑝-values in stage 1, are compared
with an adjusted significance level (𝛼∕2)∕𝐵, the next 2𝐵
biomarkers are comparedwith (𝛼∕4)∕(2𝐵), …, the next 2𝑘𝐵
biomarkers are compared with (𝛼∕2𝑘+1)∕(2𝑘𝐵), and so on.
Themotivation of conductingmarginal association tests

to screen for candidate interaction tests is that we expect a
biomarker that has an interaction with the treatment for
the disease will also show some level of marginal associa-
tion with the response. However, it is also possible that the
biomarker’s main association with response and the inter-
action effect may be in opposite directions. When this is
the case, a marginal screening strategy would downgrade
due to the first stage test statistic having low power.
To preserve the overall familywise error rate, a key

requirement to apply the two-stage approach is the inde-
pendence between stage 1 and 2 tests. Both Murcray et al.
(2008) andDai et al. (2012) proved the following: with stage
1 and 2 test statistics being asymptotically independent and
𝑚∗ defined as the number of stage 1 selected biomarkers,
using a Bonferroni adjusted significance level 𝛼 = 𝛼∕𝑚∗

at stage 2 to test interactions within the reduced set is suf-
ficient to preserve the overall familywise error rate of the
two-stage procedure under 𝛼.
In the context of gene–environment interaction studies,

an alternative type of screening is testing the correlation
between a gene and the environmental factor (Murcray
et al., 2008). This type of screening requires case-control
sampling for a rare response endpoint, thus it can be use-
ful for detecting biomarker–treatment interactions in large
prevention trials. However, such a screening procedure
is not generally applicable in randomized clinical trials,
where the rare response condition does not hold. In this
case, the trial population represents the entire dataset and
cases (responders) are not “oversampled.” We make this
argument and also discuss the applicability of other related
proposals more formally in Web Appendix B.

2.3 New stage 1 penalized regression
screening procedure accounting for
biomarker–biomarker correlations

One drawback of existing two-stage interaction testing
procedures is that biomarkers are only screened one
at a time in stage 1. This ignores correlations between
the biomarkers. In a high-dimensional, low-sample-size
dataset, an ordinary multivariate regression analysis test-
ing each predictor, while accounting for correlations with
the other predictors, is not feasible. Therefore, we con-
sidered penalized regression methods to model correlated
high-dimensional data. These techniques have improved
the development of risk predictors from high-dimensional
genomic information (Wu et al., 2009; Newcombe et al.,
2017).
We propose a new stage 1 multivariate screening test of

the following form to account for biomarker–biomarker
correlations:

𝐸(𝑌𝑖 ∣ 𝑋𝑖1, … , 𝑋𝑖𝑚) = 𝛿0 + 𝛿𝑇𝑇𝑖 +

𝑚∑
𝑗=1

𝛿𝑋𝑗𝑋𝑖𝑗. (3)

This multivariate version of the marginal association
screening test also includes the treatment main effect
term. This is necessary to preserve the independence
between stage 1 screening and stage 2 interaction tests as
described later.
To fit this multivariate model, we use ridge regres-

sion, which applies regularization to avoid overfitting
in high-dimensional low-sample-size problems. Typically,
the objective of ridge regression is to minimize a loss
function 𝐿𝑛 along with an 𝐿2 regularization term: 𝐿𝑛(𝜹) +
𝜆𝑛||𝜹||22, where ||𝜹||2

2
= 𝛿2𝑇 +

∑𝑚

𝑗=1
𝛿2𝑋𝑗

and 𝜆𝑛 is the reg-
ularization parameter. Ridge shrinks all the estimated
coefficients towards zero, but will not set them exactly
to zero. For use in a two-stage interaction testing strat-
egy, we propose ordering the biomarkers based on the
ridge coefficients obtained from stage 1, and then use the
resulting ranking to determine varying significance thresh-
olds across buckets of markers during stage 2 one-at-a-
time interaction tests according to the weighting scheme
described in Section 2.2.

2.4 Proof of independence between
stage 1 penalized regression screening and
stage 2 standard interaction tests

In this section, we show that independence between stage
1 and stage 2 test statistics holds for stage 1 ridge regression
screening tests.
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For the 𝑖th subject, let 𝑌𝑖 denote the outcome variable,
𝑿𝑖 = (𝑇𝑖, 𝑋𝑖1, … , 𝑋𝑖𝑚)

𝑇 be a vector of the binary treatment-
control indicator and 𝑚 biomarkers. Consider the pro-
posed stage 1 marginal association screening test based on
the multivariate model of the form

𝐸(𝑌𝑖 ∣ 𝑿𝑖) = 𝑿𝑇
𝑖
𝜹,

where 𝜹 = (𝛿𝑇, 𝛿𝑋1 , … , 𝛿𝑋𝑚)
𝑇 . The model underlying the

stage 2 standard one-biomarker-at-a-time interaction test
is of the form

𝐸(𝑌𝑖 ∣ 𝑽𝑖𝑗) = 𝑽𝑇
𝑖𝑗
𝜷𝑗 (𝑗 = 1,… ,𝑚),

where 𝑽𝑖𝑗 = (𝑋𝑖𝑗, 𝑇𝑖, 𝑋𝑖𝑗𝑇𝑖)
𝑇 and 𝜷𝑗 = (𝛽𝑋𝑗 , 𝛽𝑇𝑗 , 𝛽𝑋𝑗×𝑇)

𝑇 .
The above forms ignore intercepts without loss of gener-
ality. Homogeneity of variance is assumed, that is var(𝑌𝑖 ∣

𝑿𝑖) and var(𝑌𝑖 ∣ 𝑽𝑖𝑗) are assumed to be constants. We first
show the between-stage asymptotic independence for the
stage 1 multivariate regression marginal association esti-
mator without regularization.

Theorem 1. For any 𝑗 = 1,… ,𝑚, if 𝑋𝑖𝑗 is independent of
𝑇𝑖 , and, 𝐸(𝑇𝑖) = 0 or 𝐸(𝑋𝑖𝑗) = 0 (i.e., 𝑇𝑖 or 𝑋𝑖𝑗 is centered
around 0), then under the null hypothesis 𝛽𝑋𝑗×𝑇 = 0,

cov{𝑛1∕2(𝛿0𝑋𝑗
− 𝛿𝑋𝑗 ), 𝑛

1∕2(𝛽𝑋𝑗×𝑇 − 𝛽𝑋𝑗×𝑇)} → 0

in probability, where 𝛿0𝑋𝑗 and 𝛽𝑋𝑗×𝑇 are the maximum like-
lihood estimators for unknown parameters 𝛿𝑋𝑗 and 𝛽𝑋𝑗×𝑇 ,
respectively, without regularization (i.e., 𝜆𝑛 = 0).

The proof is provided in the Appendix. Previous works
(Dai et al., 2012) have demonstrated that the stage 1 univari-
ate marginal association screening tests are independent
of the stage 2 one-biomarker-at-a-time interaction tests.
Theorem 1 extends this to show independence still holds
when stage 1 tests are extended to a multivariate regres-
sion. Our proof relies on (1) the inclusion of the treatment
main effect in the multivariate regression of the form (3);
(2) an assumption of independence between the treatment
assignment and biomarker values, which is valid in ran-
domized clinical trials. The proof in Dai et al. (2012) for
the univariate marginal association screening tests is more
general; it does not depend on biomarker–environment
independence, and it also holds for generalized linear
models.
Next we establish the asymptotic distribution of the

ridge estimator.

Lemma 1. Under standard regularity conditions (Van der
Vaart, 2000, pp. 51–52) and if 𝜆𝑛 = 𝑂(𝑛1∕2), that is

lim𝑛→∞ 𝜆𝑛∕𝑛
1∕2 = 𝜆0 ≥ 0, then

𝑛1∕2(𝜹𝜆 − 𝜹) →  (−2𝜆0𝚺
−1𝜹, 𝜎2𝚺−1)

in distribution, where 𝜹𝜆 is the ridge estimator, is a nor-
mal distribution, 𝜎 and Σ are a constant and an invertible
constant matrix.

Based on the asymptotic results derived in Lemma 1
and Theorem 1, we are able to prove the asymptotic inde-
pendence between the stage 1 ridge marginal association
screening estimator and the stage 2 one-at-a-time interac-
tion estimator in the following corollary.

Corollary 1. For any 𝑗 = 1,… ,𝑚, if 𝑋𝑖𝑗 is independent of
𝑇𝑖 , and, 𝐸(𝑇𝑖) = 0 or 𝐸(𝑋𝑖𝑗) = 0 (i.e., 𝑇𝑖 or 𝑋𝑖𝑗 is centered
around 0), then under the null hypothesis 𝛽𝑋𝑗×𝑇 = 0,

cov{𝑛1∕2(𝛿𝜆𝑋𝑗
− 𝛿𝑋𝑗 ), 𝑛

1∕2(𝛽𝑋𝑗×𝑇 − 𝛽𝑋𝑗×𝑇)} → 0

in probability, where 𝛿𝜆𝑋𝑗 is the maximum likelihood estima-
tor with the ridge penalty.

Proofs of Lemma 1 and Corollary 1 are given in Web
Appendices C and D.

3 RESULTS

3.1 Simulation study

To evaluate performance of our proposed biomarker–
treatment interaction testing procedure described above,
we generated simulated data sets, each having 𝑚 = 1000

biomarkers. Data were simulated under the model 𝑌𝑖 =

𝛽0 + 𝛽𝑇𝑇𝑖 +
∑𝑚

𝑗=1
(𝛽𝑋𝑗𝑋𝑖𝑗 + 𝛽𝑋𝑗×𝑇𝑋𝑖𝑗 × 𝑇𝑖) + 𝜀𝑖 , where the

treatment main effect was set to 𝛽𝑇 = 0.5 and the inter-
cept 𝛽0 = 0. We partitioned the 1000 biomarkers into 50
clusters of correlated biomarkers, containing 20 biomark-
ers each. We denote the clusters 𝐶1 = {𝑋1, … , 𝑋20}, 𝐶2 =
{𝑋21, … , 𝑋40}, and so on. One biomarker in the first clus-
ter was ascribed a main effect and an interaction effect,
that is 𝛽𝑋1 = 0.5 and 𝛽𝑋1×𝑇 = 1. Four other biomark-
ers in four other different clusters were ascribed main
effects on the trait without interactions, that is 𝛽𝑋21 =
𝛽𝑋41 = 𝛽𝑋61 = 𝛽𝑋81 = 1.5. All other biomarkers do not have
direct effects on the outcome. Each biomarker 𝑋𝑗 was
generated from a standard normal distribution  (0, 1),
and the binary treatment assignment was drawn from a
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) distribution, while 𝜀𝑖 was generated from
a normal distribution with standard deviation 5. In this
case, the proportion of variance explained by the true
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model is 0.292. We consider two types of correlation pat-
terns among biomarkers: (1) The 20 biomarkers within
each cluster are correlated with each other (𝜌 = 0.6),
but there are no correlations between biomarkers in dif-
ferent clusters; (2) all biomarkers are independent of
one another (𝜌 = 0). For each scenario, 1000 replicate
datasets were generated to estimate power and family-
wise error rates. Power for all the approaches is defined
according to the idea of “cluster discoveries” in Brzyski
et al. (2017) as 𝑝𝑟(reject at least one𝐻𝑗

0
for any 𝑋𝑗 ∈ 𝐶𝑖 ∣

at least one𝐻𝑘
1
is true for any 𝑋𝑘 ∈ 𝐶𝑖), where 𝐻

𝑗
0
is the

null hypothesis for𝑋𝑗 and𝐻𝑘
1
is the alternative hypothesis

for 𝑋𝑘.
Four different screening procedures are compared:

(1) “Univariate screening (threshold)”: A selection of
biomarkers to take forward to stage 2 is based on signifi-
cance in a regression of response on the biomarkers one
at a time, of the form (2). A significance level 𝛼1 = 0.05

is used without adjustment for each stage 1 biomarker
test. (2) “Univariate screening (rank)”: All biomarkers are
taken forward to stage 2, and the stage 1 𝑝-value rank-
ing is used to conduct a stage 2 weighted hypothesis test
described in Section 2.2 with 𝐵 = 5 {a number recom-
mended by Gauderman et al. (2013)}. (3) “Ridge screen-
ing (rank)”: Ridge regression is used to estimate marginal
effects at stage 1. Then all biomarkers are ordered based
on these stage 1 coefficients, and the rank will be used
by the stage 2 weighted hypothesis test with 𝐵 = 5. The
optimal 𝜆𝑛 is chosen based on fivefold cross-validation
errors. The R package glmnet (Friedman et al., 2010) was
used. (4) “No screening”: A standard single-step interac-
tion test of the form (1), targeting an overall familywise
error rate 𝛼 = 0.05, is performed as a baseline comparator
(with a Bonferroni correction applied with𝑚 = 1000) and
also as the stage 2 test for all three two-stage approaches
described above.
In Figure 1(A), with highly correlated biomarkers, the

proposed ridge regression screening procedure demon-
strated substantially higher power than the univariate
screening procedures, showing a clear benefit of account-
ing for correlations between the biomarkers at stage 1. For
the univariate screening procedures, all the biomarkers
with univariate marginal signals, including 𝑋1,… , 𝑋100,
were likely to be retained after screening in the “thresh-
old” approach or land into the top buckets at stage 2 in
the “rank” approach. In contrast, the ridge-screening pro-
cedure considered the effect of each biomarker, adjusted
for all other biomarkers, and therefore tended to ascribe
less evidence to biomarkers whose marginal associations
were exaggerated by correlation with the true signal(s).
Thus, biomarkers with true marginal associations, which
are more likely to have interactions, tended to be ranked

in the top buckets because of accounting for biomarker–
biomarker correlations at stage 1. This enhanced the power
of the overall two-stage approach compared with using
the univariate screening procedures. In Figure 1(B), with
independent biomarkers, where the multivariate regres-
sion is not required for unbiased effect estimation, the
univariate screening and the ridge-screening procedures
using weighted hypothesis tests perform similarly. All
three two-stage tests outperformed the single-step inter-
action test by providing better power at the same fami-
lywise error rate level whether biomarkers are correlated
or independent.
In Figure 1(C), we simulated scenarios with one

biomarker having an interaction, no correlations among
the biomarkers, and changed only the main effect of the
interacting biomarker 𝛽𝑋1 , that is main effects of the other
four biomarkers were the same as the previous scenario.
The sample size was fixed at 1500. Figure 1(C) reveals that
there are some special cases, in which the main and inter-
action effect parameters are in opposite directions such
that they cancel out, where all two-stage approaches give
lower power than a single-step test.
In Figure 1(D), we used the previous scenario with

one biomarker having an interaction (biomarker corre-
lation 𝜌 = 0.6, sample size of 1500) as the base and
changed only the main effects of the four biomarkers
with main effects alone 𝛽𝑋21 , 𝛽𝑋41 , 𝛽𝑋61 , 𝛽𝑋81 . Figure 1(D)
shows that power of all four tests decreases with increas-
ing effect sizes of main-effect only biomarkers, because
the proportion of variation explained by the interaction-
effect biomarker decreases. The univariate screening using
weighted hypothesis testing performs worse than the
single-step test when effect sizes of four main-effect
biomarkers become too large. This is because a large num-
ber of biomarkers that only have marginal associations,
and no interaction, tend to fall into the top buckets, thus
the bucket size allocated to the true interaction signal can
lead to a more stringent significance threshold than that
allocated by the single-step test through the Bonferroni
adjustment accounting for all 𝑚 biomarkers. The ridge-
screening strategy still outperforms the single-step test,
despite the biomarkers with marginal effects only exhibit-
ing very strong stage 1 associations; their many corre-
lated proxies are still screened out through multivariate
modeling.
In Web Appendix E, we summarize familywise error

rates in different scenarios, which shows no inflation
for all the screening procedures. We also provide addi-
tional simulation results. Relative patterns of performance
among the screening strategies were consistent with the
results described above, demonstrating the robustness of
our method and findings.
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F IGURE 1 Comparison of two-stage interaction tests with different screening testing procedures. Four were compared: univariate
screening (threshold) (long dashes), univariate screening (rank) (short dashes), ridge screening (rank) (dot-dash), and no screening (solid).
The four panels represent: (A) highly correlated biomarkers (𝜌 = 0.6), (B) independent biomarkers (𝜌 = 0), (C) independent biomarkers
(𝜌 = 0, sample size of 1500), changing the main effect of the interacting biomarker 𝛽𝑋1

, and (D) highly correlated biomarkers (𝜌 = 0.6, sample
size of 1500), changing the main effects of the four biomarkers 𝛽𝑋21

, 𝛽𝑋41
, 𝛽𝑋61

, 𝛽𝑋81

3.2 Data applications

In addition to validating ourmethods through simulations,
we exemplified our approaches in two real data applica-
tions.
We first applied our approaches to data from the ran-

domized controlled trial START (Fonagy et al., 2020),
which is composed of 684 participants aged from 11 to 17
with antisocial behavior, half of whom were treated with
management as usual (the control arm) and the rest were
treated with multisystemic therapy followed by manage-
ment as usual (the treatment arm). We used a secondary
outcome of this trial, the 18 months’ follow-up outcome
from Inventory of Callous and Unemotional Traits, as the

continuous outcome and applied our interaction testing
procedures to detect covariates having interactions with
the treatment.We excluded covariates withmore than 10%
missing data and usedmean imputation to replacemissing
values for covariates with less than 10%missing data. As a
result, 75 covariates were included in the analysis. Correla-
tion among these covariates is generally low (a correlation
plot is provided in Web Appendix F).
We performed all four screening procedures described

in the previous section with a significance level of 𝛼 =

0.05 and did not find any significant interactions. The
top covariates from each of the univariate screening
and ridge-screening procedures are presented in Table 1,
which shows that the selected covariates from these two
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TABLE 1 Top covariates from different stage 1 marginal screening procedures

START trial
Univariate screening Ridge screening

1 Total Inventory of Callous and Unemotional Traits Total Inventory of Callous and Unemotional Traits
2 Total Antisocial Beliefs and Attitudes Scale Total Antisocial Beliefs and Attitudes Scale
3 Strengths & Difficulties Conduct Problems Score Strengths & Difficulties Conduct Problems Score
4 Strengths & Difficulties ProSocial Behaviour Score Strengths & Difficulties ProSocial Behaviour Score
5 Strengths & Difficulties Hyperactivity Score Strengths & Difficulties Hyperactivity Score
6 Volume of self-reported delinquency excluding violence

towards siblings
Volume of self-reported delinquency excluding violence
towards siblings

7 Strengths & Difficulties Total Difficulties Score Strengths & Difficulties Total Difficulties Score
8 IQ IQ
9 Variety of self-reported delinquency excluding violence

towards siblings
Parental reported total Inventory of Callous and
Unemotional Traits

10 Parent reported Strengths & Difficulties Conduct Problems
Score

Alabama Positive Parental Involvement Score

PREVAIL trial
Univariate screening Ridge screening

1 11715617_a_at 11715488_s_at
2 11749774_x_at 11715489_a_at
3 11725694_at 11739745_a_at
4 11746124_x_at 11749774_x_at
5 11739745_a_at 11746124_x_at
6 11747047_a_at 11747047_a_at
7 11715488_s_at 11728717_at
8 11720970_at 11725694_at
9 11751473_a_at 11716479_s_at
10 11756156_s_at 11752423_a_at

procedures are similar in this dataset where covariates
have low correlation.
In the second application, we applied our approaches

retrospectively to a publicly available dataset with high-
dimensional gene expression biomarkers (the PREVAIL
trial) (Muscedere et al., 2018). The dataset is a phase
II randomized trial, which aimed to evaluate the effi-
cacy of lactoferrin as a preventative measure for hospital-
acquired infections. Gene expression data are available
for 61 patients from the National Center for Biotechnol-
ogy Information (NCBI) website (GSE118657). Of the 61
patients, 32 patients were in the lactoferrin group, and the
remaining patients were in the placebo group. We used
the Sequential Organ Failure Assessment score measuring
change in organ function postrandomization as the contin-
uous response endpoint. From a total of 49,495 genes, we
restricted our analysis to the 10,000 probes with the high-
est variability.
All four methods described in the previous section with

a significance level of 𝛼 = 0.05 did not find any signifi-
cant biomarker–treatment interactions. A list of the top

TABLE 2 Empirical correlation between stage 1 ridge
screening and stage 2 interaction test statistics

START PREVAIL
Estimate 0.044 0.001
𝑝-value 0.711 0.938
95% confidence interval (−0.188, 0.271) (−0.019, 0.020)

biomarkers from different marginal screening procedures
is presented in Table 1. The rankings of selected covariates
are notably different between the ridge regression screen-
ing and the univariate screening procedures, likely owing
to the high correlation among the biomarkers.
In addition, we examined the empirical correlation

between stage 1 ridge screening and stage 2 interaction test
statistics applied in the above two real datasets. Table 2
summarizes results from Pearson correlation tests, which
shows that the empirical correlation between stages is
close to zero and in all cases the 95% confidence interval
contains zero as expected.
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4 DISCUSSION

We propose, for the first time with formal justification, the
use of ridge regression in a two-stage interaction testing
framework for identifying biomarker signatures of treat-
ment efficacy in randomized clinical trials. Interaction
testing frameworks which are designed to scale to large
numbers of covariates will become ever more important as
omics technologies continue to drop in price and become
routinely measured in clinical trials. Naturally, there will
be variation in the level of correlation among different sets
of omics-based biomarkers from one setting to the next.
For instance, when there is a strong a priori hypothesis of
which genes influence treatment efficacy, such that a panel
of geneticmarkers are all taken from the same region, pair-
wise correlationswill be stronger on average compared to a
genome-wide panel of variants, because local genetic cor-
relations tend to bemuch stronger than long-range correla-
tions (known as linkage disequilibrium decay). Similarly,
considering transcriptomics, correlations will be stronger
when focusing on a subset of genes that correspond to the
same pathway. Therefore, the ridge-screening approach
will be particularly well motivated when related biomark-
ers of a priori interest have been preselected, for instance,
from a gene region or pathway. These biomarker sets will
tend to exhibit the strongest correlation structures, and so
will benefit the most from multivariate modeling during
stage 1 screening.
It is known that ridge regression has a tendency to

average effects across strongly correlated covariates. This
phenomenon is not desirable for a screening strategy since
it could inflate the number of noninteracting biomarkers
being put forward to stage 2. Thus, lasso (Tibshirani,
1996), as an alternative penalized regression model, which
does not exhibit this effect-averaging behavior, may be
expected to perform better. However, as lasso uses a 𝐿1
penalty, which is not a smooth function, it is challeng-
ing to prove it meets the between-stage independence
requirement to preserve the overall familywise error rate
in two-stage approaches. Since themain goal of employing
the penalized regression screening procedures in stage 1
is to account for biomarker–biomarker correlations, some
less computationally intensive multiple testing correction
methods for correlated tests might be beneficial (Nyholt,
2004; Gao et al., 2008). However, applying such methods
which calculate an “effective” number of independent
tests to the single-step interaction test in a limited set of
simulations did not offer any power improvement when
controlling for the same familywise error rate (results
not shown). We suggest further investigation in how to
incorporate these methods into the two-stage interac-
tion framework including a formal justification of the
familywise error rate control as a topic of future work.

We also showed that there exist special cases where
our proposed two-stage screening strategy offers no
benefit, for example, the case when the main effect of a
biomarker and its interaction effect with the treatment to
the response is in opposite directions, which reduces the
strength of the marginal association (sometimes leaving
no detectable marginal effect) for true interactions. We
suggest exploring the weighting scheme thus changing
how much stage 1 information to be used in the fol-
lowing stage 2 tests as a future topic for investigation.
Another technical caveat was shown by Sun et al. (2018)
that, for logistic regression, the interaction estimator
under treatment misspecification can be biased when the
biomarker is associated either indirectly or directly with
the outcome. This is a generic issue to interaction mod-
eling using logistic regression, but could manifest in our
framework as an elevated familywise error rate at stage 2
one-biomarker-a-time tests. Therefore, we highlight that,
currently, our theoretical work only guarantees familywise
error rate control when using linear regression. The extent
to which this bias might inflate familywise error rates
when applying our framework using logistic regression,
and potential corrections, will be the topic of future
work.
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APPENDIX A
A.1 Proof of Theorem 1
Based on the unified approach to proving between-stage
asymptotic independence by Dai et al. (2012), we need to
evaluate the covariance matrix 𝑨−1

1
𝑩𝑨−1

2
, where

𝑨1 = 𝐸[(𝑿𝑖𝑿
𝑇
𝑖
){𝑌𝑖 − 𝐸(𝑌𝑖 ∣ 𝑿𝑖)}

2]

𝑩 = 𝐸[(𝑿𝑖𝑽
𝑇
𝑖𝑗
){𝑌𝑖 − 𝐸(𝑌𝑖 ∣ 𝑿𝑖)}{𝑌𝑖 − 𝐸(𝑌𝑖 ∣ 𝑽𝑖𝑗)}]

𝑨2 = 𝐸[(𝑽𝑖𝑗𝑽
𝑇
𝑖𝑗
){𝑌𝑖 − 𝐸(𝑌𝑖 ∣ 𝑽𝑖𝑗)}

2].

We simplify the expression of 𝑩 as

𝑩 = 𝐸[(𝑿𝑖𝑽
𝑇
𝑖𝑗
){𝑌2

𝑖
− 𝑌𝑖𝐸(𝑌𝑖 ∣ 𝑿𝑖) − 𝑌𝑖𝐸(𝑌𝑖 ∣ 𝑽𝑖𝑗)

+𝐸(𝑌𝑖 ∣ 𝑿𝑖)𝐸(𝑌𝑖 ∣ 𝑽𝑖𝑗)}]
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𝑇
𝑖𝑗
)𝐸{𝑌2

𝑖
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= 𝐸(𝑿𝑖𝑽
𝑇
𝑖𝑗
)var(𝑌𝑖 ∣ 𝑿𝑖)

which uses the law of iterated expectations, the fact that
𝑿𝑖 includes 𝑽𝑖𝑗 under the null hypothesis 𝛽𝑋𝑗×𝑇 = 0, and
assumes homogeneity of variance, that is var(𝑌𝑖 ∣ 𝑿𝑖) is
a constant.
Similarly, we have 𝑨1 = 𝐸(𝑿𝑖𝑿

𝑇
𝑖
)var(𝑌𝑖 ∣ 𝑿𝑖) and 𝑨2 =

𝐸(𝑽𝑖𝑗𝑽
𝑇
𝑖𝑗
)var(𝑌𝑖 ∣ 𝑽𝑖𝑗). Thus,
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We consider the second and the third terms:
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Thus, for the (𝑚 + 1) × 3 matrix 𝐸(𝑿𝑖𝑽
𝑇
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)𝐸(𝑽𝑖𝑗𝑽
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the (𝑘 + 1)th element (𝑘 = 1,… ,𝑚) of the last column is
proportional to

{
𝐸(𝑋𝑖𝑘𝑋𝑖𝑗), 𝐸(𝑇𝑖𝑋𝑖𝑘), 𝐸(𝑇𝑖𝑋𝑖𝑘𝑋𝑖𝑗)

}

×

⎧⎪⎪⎨⎪⎪⎩

𝐸(𝑇𝑖𝑋𝑖𝑗)𝐸(𝑇
2
𝑖
𝑋𝑖𝑗) − 𝐸(𝑇2

𝑖
)𝐸(𝑇𝑖𝑋

2
𝑖𝑗
)

𝐸(𝑇𝑖𝑋𝑖𝑗)𝐸(𝑇𝑖𝑋
2
𝑖𝑗
) − 𝐸(𝑋2

𝑖𝑗
)𝐸(𝑇2

𝑖
𝑋𝑖𝑗)

𝐸(𝑋2
𝑖𝑗
)𝐸(𝑇2

𝑖
) − 𝐸(𝑇𝑖𝑋𝑖𝑗)

2

⎫⎪⎪⎬⎪⎪⎭
= 𝐸(𝑇𝑖)var(𝑇𝑖)𝐸(𝑋𝑖𝑗)

× {𝐸(𝑋𝑖𝑘𝑋𝑖𝑗)𝐸(𝑋𝑖𝑗) − 𝐸(𝑋𝑖𝑘)𝐸(𝑋
2
𝑖𝑗
)} = 0,

which uses the independence between 𝑇𝑖 and 𝑋𝑖𝑗 and the
assumption𝐸(𝑇𝑖) = 0 or𝐸(𝑋𝑖𝑗) = 0. Similarly, the first ele-
ment of the last column is also zero.
Premultiplying 𝐸(𝑿𝑖𝑽

𝑇
𝑖𝑗
)𝐸(𝑽𝑖𝑗𝑽

𝑇
𝑖𝑗
)−1 by 𝐸(𝑿𝑖𝑿

𝑇
𝑖
)−1

completes the covariance matrix, the last column of
which are all zeros. Thus, for any 𝑗 = 1,… ,𝑚, we have
cov{𝑛1∕2(𝛿0𝑋𝑗

− 𝛿𝑋𝑗 ), 𝑛
1∕2(𝛽𝑋𝑗×𝑇 − 𝛽𝑋𝑗×𝑇)} → 0 in proba-

bility.
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