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Abstract

When genetic variants in a gene cluster are associated with a disease outcome,

the causal pathway from the variants to the outcome can be difficult to

disentangle. For example, the chemokine receptor gene cluster contains

genetic variants associated with various cytokines. Associations between

variants in this cluster and stroke risk may be driven by any of these cytokines.

Multivariable Mendelian randomization is an extension of standard univari-

able Mendelian randomization to estimate the direct effects of related

exposures with shared genetic predictors. However, when genetic variants

are clustered, due to being located in a single genetic region, a Goldilocks

dilemma arises: including too many highly‐correlated variants in the analysis

can lead to ill‐conditioning, but pruning variants too aggressively can lead to

imprecise estimates or even lack of identification. We propose multivariable

methods that use principal component analysis to reduce many correlated

genetic variants into a smaller number of orthogonal components that are

used as instrumental variables. We show in simulations that these methods

result in more precise estimates that are less sensitive to numerical instability

due to both strong correlations and small changes in the input data. We apply

the methods to demonstrate the most likely causal risk factor for stroke at the

chemokine gene cluster is monocyte chemoattractant protein‐1.

KEYWORD S

causal inference, correlated variants, dimension reduction, gene cluster, Mendelian
randomization

Genetic Epidemiology. 2022;1–15. www.geneticepi.org | 1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Genetic Epidemiology published by Wiley Periodicals LLC.

http://orcid.org/0000-0002-5375-0628
mailto:sb452@medschl.cam.ac.uk
mailto:stephen.burgess@mrc-bsu.cam.ac.uk
https://www.geneticepi.org


1 | INTRODUCTION

Genetic variants associated with molecular and phenotypic
traits can provide evidence on the causal pathways linking
the associated trait with a disease outcome (Burgess et al.,
2018). Various analytical approaches, including Mendelian
randomization and colocalization, have been proposed that
synthesize data on genetic associations to assess the nature of
the relationship between a trait and a disease. In Mendelian
randomization, it is assumed that the only pathway by which
selected genetic variants influence the outcome is via the
associated trait (Lawlor et al., 2008). Formally, genetic
variants are assumed to satisfy the assumptions of an
instrumental variable (Didelez & Sheehan, 2007). If multiple
independent variants associated with the same trait show a
consistent pattern of associations with the outcome, then it is
plausible that the trait has a causal effect on the outcome
(Bowden et al., 2016; Lawlor et al., 2016).

We here consider an extension to standard Mendelian
randomization known as multivariable Mendelian random-
ization, which allows genetic variants to be associated with
multiple related traits (Burgess & Thompson, 2015). For
instance, it is difficult to find specific genetic predictors of fat‐
free mass that are not also associated with fat mass.
Multivariable Mendelian randomization can be implemen-
ted by fitting a multivariable regression model using genetic
associations with each of the traits as predictors (Sanderson
et al., 2019). Coefficients from this model represent direct
effects; that is, the effect of varying one of the traits in
the model while keeping other traits constant (Burgess,
Thompson, et al., 2017; Carter et al., 2021). Such investiga-
tions have suggested that fat mass rather than fat‐free mass
influences cardiovascular disease risk (Larsson et al., 2020),
and that, amongst a set of lipid traits, apolipoprotein B is the
primary driver of coronary heart disease risk (Zuber
et al., 2021).

Often, Mendelian randomization investigations are
conducted using genetic variants from a single genetic
region, an approach known as cis‐Mendelian randomization
(Schmidt et al., 2020). This approach is particularly common
when the risk factor is a gene product, such as gene
expression or circulating levels of a protein. Such analyses
are somewhat fragile, as the evidence is based on a single
genetic region and so it is not possible to assess heterogeneity
of findings across multiple genetic regions that represent
independent datapoints (Burgess et al., 2020). However, if
the function of the gene is well‐understood, these analyses
can be particularly insightful into the impact of intervening
on a specific biological pathway. In some cases, the function
of the gene may correspond to the action of a pharmaco-
logical agent, and hence the analysis is informative about a
druggable pathway (Gill et al., 2021). Examples include the
use of variants in the HMGCR gene region to inform about

the impact of statin drugs (Ference et al., 2015), and variants
in the IL6R gene region about the impact of interleukin‐6
receptor inhibitors, such as tocilizumab (IL6R Genetics
Consortium & Emerging Risk Factors Collaboration, 2012).

However, some genetic regions contain multiple genes
(referred to as a gene cluster), and so are associated with
multiple gene products. For example, the FADS locus
contains genetic predictors of various fatty acids (Lattka
et al., 2010), and the IL1RL1–IL18R1 locus (the interleukin‐1
receptor cluster) contains protein quantitative trait loci
(pQTLs) for several proteins (Sun et al., 2018). Although
variants in the interleukin‐1 cluster are associated with
several autoimmune diseases (Timms et al., 2004; G. Zhu
et al., 2008), it is difficult to determine which of the proteins
are causal risk factors (Reijmerink et al., 2010). Although a
multivariable cis‐Mendelian randomization approach has
been proposed to disentangle complex gene regions and
identify the causal drivers of disease (Porcu et al., 2019),
authors of this approach suggest pruning genetic variants to
near independence ( r < 0.12 ) to avoid potential problems of
collinearity. However, it may not be possible to find sufficient
near‐independent variants for the multivariable regression
model to give precise estimates for each trait. Although it is
possible to prune at a less strict threshold, we have
previously shown that under‐pruning can result in ill‐
conditioning (Burgess, Zuber, et al., 2017). This represents a
Goldilocks dilemma: too much pruning and we get
imprecision or even lack of identification; too little pruning
and we can get results that are highly sensitive to small
changes in the estimated correlation matrix, and can be
nonsensical.

We propose two methods for multivariable cis‐
Mendelian randomization that perform dimension reduction
on the available genetic variants at a locus using principal
component analysis (PCA). These methods reduce informa-
tion on large numbers of highly correlated variants into a
smaller number of orthogonal components, allowing effi-
cient multivariable analyses to be implemented that are not
so sensitive to high correlations between variants or small
changes in the inputs. We demonstrate the superior
performance of these methods over pruning methods in a
simulation study, and illustrate the methods in a applied
analysis investigating effects on stroke risk of three cytokines
associated with a gene cluster on chromosome 17.

2 | METHODS

2.1 | Overview of the approach

Multivariable Mendelian randomization takes genetic
variants that are each associated with at least one of a set
of related exposure traits, and satisfy the instrumental
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variable assumptions for multivariable Mendelian
randomization:

i. each variant is associated with one or more of the
exposures,

ii. each exposure is associated with one or more of the
genetic variants,

iii. each variant is not associated with the outcome via a
confounding pathway, and

iv. each variant does not affect the outcome directly, only
possibly indirectly via one or more of the exposures.

Although the approach was originally developed for use
with individual‐level data using the established two‐stage
least squares method (Burgess & Thompson, 2015),
equivalent estimates can be obtained using summarized
genetic association data that are typically reported by
genome‐wide association studies (GWAS) (Sanderson
et al., 2019). We use summarized genetic association data
(Bowden et al., 2017), and denote the genetic association
of variant j with exposure trait k as β̂Xjk ; this is the beta‐
coefficient from univariable regression of the trait on the
variant. We denote the genetic association of variant j
with the outcome as β̂Yj and its standard error as se β( ˆ )Yj ;

again, this is obtained from regression of the outcome on
the variant.

2.2 | Inverse‐variance weighted method

If the genetic variants are uncorrelated, then multi-
variable Mendelian randomization estimates can be
obtained by fitting a multivariable model using weighted
linear regression:



β θ β θ β θ β

β

ˆ = ˆ + ˆ +…+ ˆ + ϵ

ϵ ~ (0, ( ˆ ) )

Yj Xj Xj K XjK j

j Yj

1 1 2 2

2
(1)

for variants j J= 1, 2, …, , where K is the total number of
traits ( K J> ), and the error terms ϵj have independent
normal distributions (Burgess et al., 2015). The parame-
ter θk is an estimate of the direct effect of the kth trait on
the outcome (i.e., the effect of intervening on that trait
while keeping all other traits unchanged) (Carter et al.,
2021). We refer to this method as the multivariable
inverse‐variance weighted (MV‐IVW) method, as it is an
extension of the univariable IVW method (Burgess et al.,
2013) to the multivariable setting.

If the genetic variants are correlated, then we allow
the error terms to be correlated and use generalized
weighted linear regression:



β β β β ϵ

ϵ

θ θ θ

0

ˆ = ˆ + ˆ +…+ ˆ +

~ ( , Σ),

Y X X K XK1 1 2 2
(2)

where bold face represents vectors, and Σ is a variance‐
covariance matrix with elements ( )βΣ = se ˆ

j j Yj,1 2 1

( )β ρse ˆ
Yj j j,2 1 2

, with ρ j j,1 2
representing the correlation

between the j1 th and j2 th variants. This method was
advocated by Porcu et al. (2019) for the analysis of
summarized genetic association data on gene expression
traits with shared genetic predictors. Estimates are
obtained as

θ β β β βIVWˆ − = ( ˆ Σ ˆ ) ˆ Σ ˆ ,X
T

X X
T

YMV
−1 −1 −1 (3)

where β̂X is the J by K matrix of genetic associations with
the traits, and β̂Y is the J by 1 vector of genetic associations
with the outcome. We note that this method is identical to
the method referred to as transcriptome‐wide Mendelian
randomization (TWMR) by Porcu et al. (2019).

This calculation requires inversion of the variance‐
covariance matrix Σ, which can lead to numerical instability
if the matrix of correlations between genetic variants is near‐
singular. This occurs when there is a set of genetic variants
that is close to being linearly dependent. If a set of genetic
variants is linearly dependent (i.e., there is at least one
variant that can be perfectly predicted based on the other
variants), then the correlation matrix will be exactly singular,
and so cannot be inverted. If a set of genetic variants is
almost but not exactly linearly dependent, then the
correlation matrix can be inverted, but some elements of
the matrix inverse will be very large in magnitude. This
results in an ill‐conditioned problem, meaning that small
changes in the inputs can lead to large changes in the
estimates. The condition number of a matrix is a measure of
ill‐conditioning; for a positive‐definite symmetric matrix, this
can be calculated as the ratio of the largest to the smallest
eigenvalue. Although there are no universal thresholds,
condition numbers over 100 are cause for concern,
particularly if the genetic associations are known to a
limited degree of precision.

To implement the proposed PCA method, we first
consider the matrix Ψ where:

  ( ) ( )β β β β

ρ

Ψ = ˆ ˆ se ˆ se ˆ

.

j j
k

Xj k
k

Xj k Yj Yj

j j

,
−1 −1

,

1 2 1 2 1 2

1 2

(4)

This is a weighted version of the variance‐covariance matrix,
with weights taken as the sum of the absolute values of the
genetic associations with the traits. Obtaining principal
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components of this matrix ensures that the top principal
components assign greater weights for variants having larger
associations with the traits and more precise associations
with the outcome. If genetic associations with the outcome
are all estimated in the same data set, then their standard
errors will depend on the minor allele frequency of the
variants; inclusion of these standard errors in the weighting
matrix prioritizes genetic variants that have more precise
associations with the outcome, and hence provide the most
information to the Mendelian randomization estimate.
Considering the PCA decomposition W WΨ = Λ T , where
W is the matrix of eigenvectors (or loadings) and Λ is the
diagonal matrix with the eigenvalues λ λ> … > J1 on the
diagonal, let Wk be the matrix constructed of the first k
columns ofW . Then we define:

β β

β β

W

W

W W

˜ = ˆ as the matrix of transformed

genetic associations with the exposure

traits
˜ = ˆ as the vector of transformed

genetic associations with the outcome

Σ̃ = Σ as the transformed

variance‐covariance matrix.

X k
T

X

Y k
T

Y

k
T

k

The multivariable inverse‐variance weighted principal
component analysis (MV‐IVW‐PCA) estimate is given by

θ β β β βˆ = ( ˜ Σ̃ ˜ ) ˜ Σ̃ ˜ .MV IVW PCA X
T

X X
T

Y− −
−1 −1 −1

(5)

This is an adaptation of the MV‐IVW method using
transformed genetic instruments that represent linear
weighted scores comprised of the original genetic
variants, where the weights of the scores are the
eigenvectors from the PCA decomposition. As the
principal components are orthogonal, the transformed
variance‐covariance matrix should not be near‐singular.
The standard errors of these estimates are:

β βθse( ˆ ) = ( ˜ Σ̃ ˜ ) .k MV IVW PCA X
T

X kk, − −
−1 −1 (6)

In our investigations, we set the number of principal
components to explain 99% of the variance in the matrix Ψ.

2.3 | Limited information maximum
likelihood method (LIML)

An alternative method for instrumental variable
analysis is the LIML method (Baum et al., 2007). The

estimate from the LIML method minimizes the
Anderson–Rubin statistic (Anderson & Rubin, 1949),
which is a measure of heterogeneity of the estimates
based on the different genetic variants. Both the IVW
and LIML methods are part of a larger family of
methods, known as the generalized method of
moments (GMM) (Hansen, 1982). We here derive a
multivariable analogue of the LIML method that can
be implemented using summarized genetic association
data for correlated variants. We refer to this method
as the multivariable limited information maximum
likelihood (MV‐LIML) method.

For the MV‐LIML method, we require the additional
knowledge of the K K× correlation matrix of exposures,
which we denote Φ. In the simulation study, we set this
matrix to be the identity.

We let θ β β θg( ) = ˆ − ˆ
Y X , where θ θ θ= ( , …, )K

T
1 .

Under the assumption that all J variants are valid
instruments, setting θg 0( ) = provides a set of J

estimating equations for the K unknown parameters
θk . When J K> , if the genetic variants are linearly
independent, it is generally not possible to find an
estimator θ̂ that can set θg 0( ˆ ) = . as the number of
equations is greater than the number of unknown
parameters. Thus, LIML‐based methods take K linear
combinations of the J estimating equations, where the
weights in the linear combination are chosen to
minimize the variance of the resulting estimator θ̂.

In particular, the MV‐LIML estimator is given by

θ θQˆ = argmin ˆ ( ),
θ

MV LIML− (7)

where θ θ θ θQ g g( ) = ( ) Ω( ) ( )T −1 , and θΩ( ) is a J J×

matrix with its j j( , )1 2 th element given by

 
( )( ) ( )

( ) ( )

( ) ( )

θ β β ρ

β β

β β ρ θ θ

Ω ( ) = se ˆ se ˆ

+ se ˆ se ˆ

se ˆ se ˆ Φ .

j j Y Y j j

k

K

l

K

X X

X X j j k l k l

, ,

=1 =1

, ,

j j

j k j k

j l j l

1 2 1 2 1 2

1 2

1 2 1 2

(8)

For exposure k, the MV‐LIML estimator of θk is given by
the kth element of θ̂MV LIML− , and its standard error is

given by V̂k k, , where V̂k k, is the kth diagonal element of

the K K× matrix β θ βV̂ = ( ˆ Ω( ˆ ) ˆ )X
T

MV LIML X−
−1 −1.

Theoretical results suggest LIML provides robust
estimation when using many weak instruments (Chao
& Swanson, 2005). For univariable cis‐Mendelian ran-
domization analyses, simulation evidence has further
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highlighted the low bias properties of LIML‐based
estimators in finite samples (Patel et al., 2020).

We consider a version of the LIML method using
PCA to perform dimension reduction on the set of
genetic variants by replacing:

θ θ

θ θ

θ θ θ θ

W

W W

Q

g g

g g

˜( ) = ( )

Ω̃( ) = Ω( )

˜( ) = ˜( ) Ω̃( ) ˜( )

k
T

k
T

k

T −1

(9)

and minimizing θQ̃( ) , with Wk defined as previously. We
refer to this method as MV‐LIML‐PCA. As per the MV‐IVW‐
PCA method, we set the number of principal components to
explain 99% of the variance in the matrix Ψ.

2.4 | Simulation study

We perform a simulation study to assess whether the
proposed PCA methods are able to detect which out of a
set of traits with shared clustered genetic predictors
influences an outcome, and whether the causal effects of
the traits can be estimated reliably.

We consider a scenario with three traits and 100
correlated genetic variants. We generate 10 000 simulated
datasets according to the following data‐generating
model for 20 000 individuals indexed by i:











A j j

B A A

B

α j

X α G U

X α G U

X α G U

Y X X U U U

U U U

G 0

~ Uniform(−0.3, 1) for , = 1, …, 100

= cor( )

~ ( , )

~ (0.08, 0.01 ) for = 1, …, 15

= + + ϵ

= + + ϵ

= + + ϵ

= 0.4 − 0.6 + + + + ϵ

, , , ϵ , ϵ , ϵ , ϵ ~ (0, 1)independently.

j j

T

J

j

i

j

j ij i Xi

i

j

j ij i Xi

i

j

j ij i Xi

i i i i i i Yi

i i i Xi Xi Xi Yi

i

, 1 2

2

1

=1

5

1 1

2

=6

10

2 2

3

=11

15

3 3

1 3 1 2 3

1 2 3 1 2 3

1 2

The genetic variants Gj are simulated from a multi-
variable normal distribution with mean zero and variance‐
covariance matrix B. The traits X1 , X2 , and X3 are simulated
such that 5 variants influence the first trait, the next 5
influence the second trait, the next 5 influence the third trait,
and the remaining 85 do not influence any trait. However,
due to the moderately large correlations between the genetic
variants (which typically range from around −0.1 to +0.6

with an interquartile range from around +0.2 to +0.4),
typically each of the 100 variants is associated with all three
traits at a genome‐wide level of significance. The outcome Y
is influenced by traits X1 and X3 , with the true effect of X1
set at +0.4 and the true effect of X3 set at −0.6. The
associations between the traits and the outcome are affected
by confoundersU1 ,U2 , andU3 .

We estimate genetic associations with the exposures
on the first 10,000 individuals, and genetic associations
with the outcome on the subsequent 10,000 individuals.
Correlations between the genetic variants are estimated
on the first 10,000 individuals. This represents a two‐
sample scenario, where genetic associations with the
exposures and outcome are obtained on nonoverlapping
samples (Pierce & Burgess, 2013). The mean instrument
strength based on the 5 causal variants for each trait is
R = 3.5%2 , corresponding to a mean univariable F
statistic (on 5 and 19,994 degrees of freedom) for each
trait of around 145, and a conditional F statistic (on 15
and 19,984 degrees of freedom) for each trait of around
22 (Sanderson et al., 2019). Although these F statistics are
the most relevant measure of instrument strength for the
oracle analyses, instrument strength in all other analyses
will depend on the number and identity of the genetic
variants included in each analysis, which will vary
between simulations and depending on the pruning
threshold.

We compare four different methods: the MV‐IVW
and MV‐LIML methods with various choices of genetic
variants as inputs, and the MV‐IVW‐PCA and MV‐LIML‐
PCA methods described above. For the MV‐IVW and
MV‐LIML methods, we consider pruning the variants at
thresholds of  ρ < 0.4,  ρ < 0.6, and  ρ < 0.8 (equivalent
to r < 0.162 , r < 0.362 , and r < 0.642 ). We note that
pruning at  ρ < 0.1 would often result in 3 or fewer
variants being available for analysis, which would not
allow multivariable Mendelian randomization to be
attempted, as the number of genetic variants needs to
be greater than the number of traits. Pruning is
performed by first selecting the variant with the lowest
p value for association with any of the traits, and then
excluding from consideration all variants more strongly
correlated with the selected variant than the threshold
value. We then select the variant amongst those
remaining with the lowest p value, and exclude variants
more correlated with that variant than the threshold
value. We repeat until all variants have either been
selected or excluded. We also consider an oracle choice of
variants, in which only the 15 genetic variants that truly
influence the traits are used as instruments.

In addition to the main simulation study, we also
consider the performance of methods with other
parameter settings: (1) weaker instruments: we generate
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the αj parameters from a normal distribution with mean
0.05 (corresponding to a mean instrument strength of
R = 1.4%2 , mean univariable F= 57, mean conditional
F= 9.4); (2) stronger correlations: we generate elements
of the A matrix from a uniform distribution on +0.1 to
+1.0, resulting in correlations which typically range from
around +0.5 to +0.85 with an interquartile range from
around +0.65 to +0.75; (3) stronger causal effects, with
θ = +0.81 and θ = +1.03 , and (4) two alternative
approaches for generating a correlation matrix taken
from the R package clusterGeneration (Joe, 2006), (4) real
linkage disequilibrium data: a correlation matrix esti-
mated in UK Biobank participants of European ances-
tries on variants from the chemokine receptor gene
cluster, pruned at a threshold of r < 0.952 to avoid very
high correlations; and (5) correlated exposures: the
exposures were correlated by additionally adding Ui2 to
X U, i1 3 to X2 , and Ui1 to X3 . Further details of these
additional scenarios are provided in the Supporting
Information.

In the main simulation study, we also consider a
conditional selection of genetic variants, in which we first
select the variant having the lowest p value for association
with any of the traits. In each subsequent step, we select
the variant having the lowest p value for association with
any of the traits conditional on all previously selected
variants. We repeat until no additional variant is
conditionally associated with any trait below a threshold
of p < 0.001. Although this approach does not guarantee
that variants will not be highly correlated, it is unlikely
that two very highly correlated variants would both be
conditionally associated with a trait. For convenience, in
the main simulation study, we implement this method
using individual‐level data. If we only had access to
summarized data, a mathematically equivalent procedure
could be implemented using the Genome‐wide Complex
Trait Analysis conditional & joint association analysis
(GCTA‐COJO) method (Yang et al., 2012).

Further, we consider two variations to the main
simulation study that are reflective of potential problems
that may arise in applied practice. First, we estimate the
variant correlation matrix based on an independent
sample. This reflects the common occurrence that the
correlation matrix is obtained from a reference sample
rather than the data set under analysis, and assesses
robustness of the methods to variability in the correlation
matrix. Second, we round the genetic associations and
their standard errors to three decimal places. This reflects
the common occurrence that genetic associations are
obtained from a publicly‐available source, and hence are
not known to absolute precision. Again, this assesses
robustness of the methods to variability in the data
inputs.

2.5 | Applied example: Chemokine gene
cluster and risk of stroke

We illustrate our methods using data on genetic
associations with three cytokines and stroke risk.
Previous research has implicated monocyte chemoat-
tractant protein‐1 (MCP‐1), which is also called chemo-
kine (C‐C motif) ligand 2 (CCL2), in the pathophysiology
of stroke (Georgakis, De Lemos, et al., 2021; Georgakis,
Gill, et al., 2019; Georgakis, van der Laan, et al., 2021).
However, the CCL2 gene that encodes this cytokine is
located in a cluster that also includes genes CCL7, and
CCL11. Variants in this genetic region are associated
with multiple cytokines other than MCP‐1, including
MCP‐3 (also called CCL7), and eotaxin‐1 (also called
CCL11). Hence, it is not clear from univariable Mende-
lian randomization (i.e., analyses with a single exposure
trait) which of these proteins is driving stroke risk.

We conduct a multivariable cis‐Mendelian random-
ization analysis to disentangle the effects of these
cytokines. We take variants from the CCL2 gene region
(GRCh38/hg38; chr17:34,255,218–34,257,203) plus 500
kilobasepairs either side, genetic associations with the
cytokines from a reanalysis of data on three Finnish
cohorts by Ahola‐Olli et al. (2017) that did not adjust for
body mass index (Kalaoja et al., 2021), and genetic
associations with all stroke and cardioembolic stroke
from European ancestry individuals in the MEGA-
STROKE consortium (Malik et al., 2018). Cardioembolic
stroke was chosen as genetic associations were stronger
with this stroke subtype than for all stroke in a
motivating Mendelian randomization analysis that
included variants from throughout the genome
(Georgakis, Gill, et al., 2019). Correlations between
variants were estimated in 376 703 individuals of
European ancestries from UK Biobank.

3 | RESULTS

3.1 | Simulation study

Results from the simulation study are shown in Table 1.
For each method, we display the mean estimate of each
parameter, the standard deviation of estimates, the mean
standard error, and the empirical power of the 95%
confidence interval, which represents the proportion of
confidence intervals that exclude the null. For θ2 , the
empirical power is the Type 1 error rate, and should be
close to 5%.

Although the MV‐IVW and MV‐LIML methods
perform well under the oracle setting, power to detect a
causal effect is substantially reduced when pruning
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variants at 0.4. Although increasing the pruning thresh-
old to 0.6 increases power, it also results in Type 1 error
inflation. For the MV‐IVW method, Type 1 error rates
increase to 9.1%, and for the MV‐LIML method, to 20.2%.
When increasing the pruning threshold to 0.8, estimates
are completely unreliable, with mean estimates in the
MV‐IVW method for θ1 and θ3 having the wrong sign.

In contrast, the MV‐IVW‐PCA and MV‐LIML‐PCA
methods perform well throughout, with Type 1 error
rates similar to those of the oracle methods, and greater
power to detect a causal effect than the methods that rely
on pruning. For the MV‐IVW‐PCA method, the variabil-
ity and mean standard errors of estimates are similar to
those of the oracle methods, although estimates of θ1 and
θ3 are attenuated. This is a result of weak instrument
bias, which affects analyses similarly to non‐differential
measurement error. With a single exposure in a two‐
sample setting, estimates are biased towards the null due
to imprecision in the estimated genetic associations with
the exposures. With multiple exposures, this bias may act
in any direction, even in a two‐sample setting (J. Zhu
et al., 2022).

Similar findings were observed when considering
weaker instruments (Supporting Information: Table A2),
stronger correlations (Supporting Information:
Table A3), stronger causal effects (Supporting Informa-
tion: Table A2), alternative synthetic correlation matrices
(Supporting Information: Tables A4 and A5), a correla-
tion matrix based on real genetic data (Supporting
Information: Table A6), and with correlated exposures
(Supporting Information: Tables A7–A9). Although the
power varied between simulation settings, in each case
the PCA methods outperformed the pruning methods in
terms of power and precision at a threshold of 0.4,
whereas at a threshold of 0.6 the MV‐IVW and MV‐LIML
methods had inflated Type 1 error rates. Type 1 error
rates for the PCA methods were generally well con-
trolled, although the Type 1 error for the MV‐LIML‐PCA
method was slightly inflated with weaker instruments
(6.7% for MV‐IVW‐PCA, 13.9% for MV‐LIML‐PCA), with
correlated exposures (moderate correlations: 7.5% for
MV‐IVW‐PCA, 10.3% for MV‐LIML‐PCA; weaker corre-
lations: 7.6% for MV‐IVW‐PCA, 10.9% for MV‐LIML‐
PCA; stronger correlations: 7.5% for MV‐IVW‐PCA,
10.0% for MV‐LIML‐PCA), and the Type 1 error for
the MV‐IVW‐PCA method was slightly inflated with
stronger causal effects (12.8% for MV‐IVW‐PCA, 8.2% for
MV‐LIML‐PCA). This highlights the importance of
specifying these trait correlations in the MV‐LIML‐PCA
method, which were set at zero in the simulation study
for simplicity. For the correlated exposure scenarios, we
repeated the MV‐LIML‐PCA method accounting for
correlations between the exposures: Type 1 error rates

were reduced to 9.1% (moderate correlations), 10.3%
(weaker correlations), and 8.2% (stronger correlations).

We also considered a conditional approach for the
selection of genetic variants. As this approach requires
conditional associations with each exposure for each
variant to be recalculated at each step of the variant
selection algorithm, this approach is considerably more
computationally intensive than the pruning approach,
and so we only considered estimates for the first 1000
simulated datasets in the main simulation. Results are
provided in Table 2. The conditional selection method
performed better than the pruning methods, although it
was outperformed by the MV‐IVW‐PCA method in terms
of variability and precision of estimates (the conditional
selection method had greater standard deviations and
mean standard errors), and by the MV‐LIML‐PCA
method in terms of power to detect a causal effect.

We also considered two additional variations to the
main simulation reflective of potential problems in
applied practice. Table 3 shows results in which the
variant correlation matrix was obtained from an
independent sample of 10,000 individuals. Results were
similar, except that the Type 1 error rate for the MV‐
IVW method at a pruning threshold of 0.6 was slightly
higher at 11.2%. When obtaining the correlation matrix
from an independent sample of 1000 individuals, Type 1
error rates for the MV‐IVW method were higher still at
18.7% (Supporting Information: Table A10). Table 4
shows results in which the genetic association estimates
were rounded to 3 decimal places. Again, results were
similar, except that the Type 1 error rate for the MV‐
IVW method at a pruning threshold of 0.6 was notably
higher at 15.1%. In contrast, results from the PCA
methods were not sensitive to changes in the variant
correlation matrix or rounding of the genetic association
estimates.

3.2 | Applied example: Chemokine gene
cluster and risk of stroke

Genetic associations with each of the cytokines and all
stroke were available for 2922 variants, and with
cardioembolic stroke for 2904 variants. We compare
results from the MV‐IVW‐PCA method to those from the
MV‐IVW method at a pruning threshold of  ρ < 0.1

(equivalent to r < 0.012 ),  ρ < 0.4 (equivalent to
r < 0.162 ), and  ρ < 0.6 (equivalent to r < 0.132 ). In the
MV‐IVW‐PCA method, we initially pruned at  ρ < 0.95

to remove very highly correlated variants from the
analysis. We also excluded variants not associated with
any of the cytokines at p < 0.001 from all analyses. For
the pruned set of variants at  ρ < 0.95, the genetic
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associations with the different cytokines were not highly
correlated: correlations were 0.21 between genetic
associations with MCP‐1 and MCP‐3; 0.27 between
genetic associations with MCP‐1 and eotaxin‐1; and
0.01 between genetic associations with MCP‐3 and
eotaxin‐1. Estimates for the three cytokines, which
represent log odds ratios per 1 standard deviation
increase in the cytokine, are provided in Table 5.

For all stroke, at a pruning threshold of 0.1, the MV‐
IVW method indicates that MCP‐1 is the true causal risk
factor. However, a researcher may be tempted to consider
a less strict pruning threshold to obtain more precise
estimates. But at a pruning threshold of 0.4, the MV‐IVW
method indicates that eotaxin‐1 is the true causal risk
factor, and at a pruning threshold of 0.6, the MV‐IVW
method again indicates that MCP‐1 has the strongest

TABLE 1 Results from the main
simulation study

Parameter Method Pruning Mean SD Mean SE Power

θ1 MV‐IVW Oracle 0.353 0.133 0.120 81.4

0.4 0.304 0.164 0.147 57.4

0.6 0.207 0.115 0.094 60.9

0.8 −0.083 0.417 0.051 76.5

MV‐LIML Oracle 0.379 0.143 0.133 81.4

0.4 0.340 0.188 0.163 58.9

0.6 0.316 0.212 0.103 77.0

0.8 0.083 2.372 0.179 78.8

MV‐IVW‐PCA – 0.296 0.130 0.119 69.3

MV‐LIML‐PCA – 0.347 0.152 0.130 74.5

θ2 MV‐IVW Oracle −0.005 0.133 0.120 7.4

0.4 −0.012 0.166 0.147 7.5

0.6 −0.003 0.112 0.094 9.1

0.8 0.037 0.408 0.051 75.4

MV‐LIML Oracle −0.001 0.144 0.133 6.2

0.4 −0.007 0.192 0.163 7.3

0.6 0.006 0.186 0.103 20.2

0.8 0.010 2.522 0.179 76.6

MV‐IVW‐PCA – −0.013 0.129 0.119 7.1

MV‐LIML‐PCA – −0.006 0.154 0.130 8.7

θ3 MV‐IVW Oracle −0.545 0.132 0.120 98.6

0.4 −0.487 0.166 0.148 87.6

0.6 −0.315 0.139 0.094 86.9

0.8 0.220 0.418 0.051 77.8

MV‐LIML Oracle −0.576 0.142 0.134 98.8

0.4 −0.531 0.190 0.164 88.6

0.6 −0.451 0.212 0.103 92.6

0.8 0.005 2.250 0.179 79.3

MV‐IVW‐PCA – −0.476 0.130 0.119 96.1

MV‐LIML‐PCA – −0.538 0.152 0.131 97.0

Note: Mean estimates, standard deviation (SD) of estimates, mean standard error (mean SE) of estimates,
and empirical power of the 95% confidence interval to estimate θ = 0.41 , θ = 02 , and θ = −0.63 . We
consider four methods, and various pruning thresholds for the MV‐IVW and MV‐LIML methods, plus an
oracle setting in which only the 15 variants that truly affect the traits are included in the analysis.
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TABLE 2 Results from the main
simulation study for conditional
selection method

Parameter Method Mean SD Mean SE Power

θ1 Oracle 0.357 0.129 0.120 82.5

Cond select 0.334 0.137 0.126 73.3

MV‐IVW‐PCA 0.299 0.126 0.118 70.8

MV‐LIML‐PCA 0.349 0.150 0.130 76.3

θ2 Oracle −0.012 0.133 0.121 7.2

Cond select −0.015 0.140 0.126 7.4

MV‐IVW‐PCA −0.018 0.126 0.119 5.8

MV‐LIML‐PCA −0.009 0.148 0.131 7.1

θ3 Oracle −0.543 0.130 0.121 98.7

Cond select −0.515 0.142 0.127 96.5

MV‐IVW‐PCA −0.475 0.130 0.119 95.9

MV‐LIML‐PCA −0.539 0.151 0.131 96.6

Note: Results from oracle, conditional selection, MV‐IVW‐PCA, and MV‐LIML‐PCA methods across 1000
simulated datasets: mean estimates, standard deviation (SD) of estimates, mean standard error (mean SE) of
estimates, and empirical power of the 95% confidence interval to estimate θ = 0.41 , θ = 02 , and θ = −0.63 .

TABLE 3 Results from the main
simulation study with a correlation
matrix estimated in an independent
sample of 10,000 individuals

Parameter Method Pruning Mean SD Mean SE Power

θ1 MV‐IVW 0.4 0.303 0.166 0.147 57.1

0.6 0.206 0.114 0.090 62.4

MV‐LIML 0.4 0.340 0.189 0.162 59.0

0.6 0.301 0.183 0.098 76.7

MV‐IVW‐PCA – 0.295 0.130 0.118 69.2

MV‐LIML‐PCA – 0.347 0.153 0.130 74.7

θ2 MV‐IVW 0.4 −0.013 0.167 0.148 7.3

0.6 −0.005 0.114 0.090 11.2

MV‐LIML 0.4 −0.009 0.193 0.163 7.3

0.6 0.003 0.174 0.098 20.8

MV‐IVW‐PCA – −0.012 0.129 0.118 7.2

MV‐LIML‐PCA – −0.006 0.154 0.130 8.9

θ3 MV‐IVW 0.4 −0.485 0.165 0.148 86.8

0.6 −0.322 0.126 0.090 88.9

MV‐LIML 0.4 −0.528 0.188 0.164 87.9

0.6 −0.436 0.207 0.099 93.6

MV‐IVW‐PCA – −0.476 0.130 0.119 96.1

MV‐LIML‐PCA – −0.538 0.152 0.131 97.0

Note: Mean estimates, standard deviation (SD) of estimates, mean standard error (mean SE) of estimates,
and empirical power of the 95% confidence interval to estimate θ = 0.41 , θ = 02 , and θ = −0.63 .
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TABLE 4 Results from the main
simulation study with genetic
associations (β‐coefficients and standard
errors) rounded to three decimal places

Parameter Method Pruning Mean SD Mean SE Power

θ1 MV‐IVW 0.4 0.305 0.165 0.147 57.6

0.6 0.200 0.138 0.090 59.7

MV‐LIML 0.4 0.341 0.187 0.162 59.4

0.6 0.302 0.192 0.099 75.6

MV‐IVW‐PCA – 0.296 0.130 0.119 69.2

MV‐LIML‐PCA – 0.346 0.153 0.130 74.7

θ2 MV‐IVW 0.4 −0.013 0.165 0.148 7.3

0.6 −0.012 0.131 0.090 15.1

MV‐LIML 0.4 −0.009 0.190 0.163 7.1

0.6 −0.001 0.183 0.099 24.4

MV‐IVW‐PCA – −0.013 0.129 0.119 7.1

MV‐LIML‐PCA – −0.006 0.154 0.130 8.8

θ3 MV‐IVW 0.4 −0.487 0.166 0.148 87.5

0.6 −0.330 0.145 0.090 89.3

MV‐LIML 0.4 −0.529 0.189 0.164 88.4

0.6 −0.459 0.195 0.099 94.3

MV‐IVW‐PCA – −0.476 0.131 0.119 96.0

MV‐LIML‐PCA – −0.536 0.152 0.131 96.9

Note: Mean estimates, standard deviation (SD) of estimates, mean standard error (mean SE) of estimates,
and empirical power of the 95% confidence interval to estimate θ = 0.41 , θ = 02 , and θ = −0.63 .

TABLE 5 Applied example: effect of three cytokines on stroke risk

MCP‐1 MCP‐3 Eotaxin‐1

Method Pruning
Variants/
PCs

Cond
number Estimate (SE) p Value Estimate (SE) p Value Estimate (SE) p Value

All stroke

MV‐IVW 0.1 20 27.7 0.091 (0.045) 0.046 −0.062 (0.046) 0.18 0.062 (0.082) 0.45

0.4 75 1224 0.057 (0.035) 0.11 −0.014 (0.024) 0.55 0.110 (0.050) 0.028

0.6 151 17762 −0.038 (0.022) 0.09 −0.014 (0.017) 0.41 0.040 (0.029) 0.17

MV‐IVW‐PCA 30 24.9 0.075 (0.041) 0.071 −0.029 (0.027) 0.29 0.000 (0.063) 0.99

Cardioembolic stroke

MV‐IVW 0.1 19 22.7 0.270 (0.095) 0.005 0.151 (0.104) 0.14 −0.174 (0.169) 0.30

0.4 70 870 0.141 (0.073) 0.053 0.003 (0.051) 0.96 −0.132 (0.107) 0.21

0.6 145 15,790 0.089 (0.046) 0.056 0.040 (0.036) 0.27 0.019 (0.062) 0.76

MV‐IVW‐PCA 29 25.9 0.254 (0.089) 0.004 −0.018 (0.065) 0.78 −0.108 (0.145) 0.46

Note: Estimates (standard errors, SE) and p values fromMV‐IVW and MV‐IVW‐PCA methods. Variants/PCs indicates the number of genetic variants (MV‐IVW
method) or principal components (PCs, MV‐IVW‐PCA method) included in the analysis. Cond number indicates the condition number of the variance‐
covariance matrix Σ; larger numbers signal worse problems due to ill‐conditioning. Estimates represent log odds ratios per 1 standard deviation increase in the
cytokine.
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evidence of being the true causal risk factor, but the
causal estimate is in the other direction. In contrast, the
MV‐IVW‐PCA method indicates that MCP‐1 has the
strongest evidence of being the true causal risk factor,
similarly to the MV‐IVW method at the most conserva-
tive pruning threshold. Compared with results at this
threshold, estimates from the MV‐IVW‐PCA method
have narrower standard errors, although the estimate for
MCP‐1 is slightly attenuated and so has a slightly higher
p value. At a pruning threshold of 0.4, the condition
number for the variance‐covariance matrix Σ in the MV‐
IVW method is 1224, whereas the condition number for
the transformed variance‐covariance matrix Σ̃ in the MV‐
IVW‐PCA method is 24.9; a larger number signals worse
problems due to ill‐conditioning. We would therefore
trust results from the MV‐IVW‐PCA method and the
MV‐IVW method at a threshold of 0.1, which both
suggest that the strongest evidence is for MCP‐1 as the
causal risk factor, and the effect is in the harmful
direction. For cardioembolic stroke, estimates are more
similar amongst the different implementations of the
methods, with stronger evidence for MCP‐1 as the causal
risk factor at this locus, particularly from the MV‐IVW‐
PCA method. These findings add to the existing body of
basic science (Georgakis, van der Laan, et al., 2021),
observational (Georgakis, De Lemos, et al.,
2021; Georgakis, van der Laan, et al., 2019b), and genetic
evidence (Georgakis, Gill, et al., 2019) implicating
circulating MCP‐1 in stroke risk.

4 | DISCUSSION

In this manuscript, we have introduced two methods
for multivariable cis‐Mendelian randomization, the
MV‐IVW‐PCA and MV‐LIML‐PCA methods. Com-
pared to existing methods that rely on pruning, these
methods had superior performance: they outperformed
pruning methods in terms of power to detect a causal
effect, and they generally maintained close to nominal
Type 1 error rates across a range of scenarios. They
were also less sensitive that the pruning methods to
variation in the variant correlation matrix, and to
rounding of the genetic association estimates. We
applied the MV‐IVW‐PCA method to disentangle the
effects of three similar exposures with shared genetic
predictors at a gene cluster; the method gave results
that correspond to existing biological understanding of
this pathway. We note that these methods are not
designed for performing Mendelian randomization in
most contexts, as most such analyses are polygenic,
using genetic variants from across the genome. These
methods are recommended for consideration when

performing cis‐Mendelian randomization, that is when
genetic variants are taken from a single gene region;
typically a gene region with functional relevance to the
exposures of interest.

The approach of multivariable cis‐Mendelian random-
ization has several potential applications. In our applied
example, we considered proteins as exposures. Alternative
potential applications could include expression of different
genes as exposures, or expression of the same gene in
different tissues. However, results from the latter case may
be difficult to interpret if the genetic predictors of gene
expression do not vary between tissues, or if data on
variants affecting gene expression in all relevant tissues are
not available. Another possible area of application is if
there are different aspects of an exposure trait that could be
considered as independent risk factors, such as concentra-
tion and isoform size of lipoprotein(a) (Saleheen et al.,
2017). To obtain estimates for the different exposures, it is
not necessary to have genetic predictors that are uniquely
associated with each exposure trait, but it is necessary to
have some variants that associate more or less strongly
with the different traits (Sanderson et al., 2019).

An alternative approach for disentangling clusters of
correlated variants associated with multiple traits is
colocalization. Colocalization is a method that attempts
to distinguish between two scenarios: a scenario in which
two traits (which we here conceptualize as an exposure
and an outcome) are influenced by distinct genetic
variants, but there is overlap in the genetic associations
due to correlation between the variants; and an alterna-
tive scenario in which the two traits are influenced by the
same genetic variant (Wallace et al., 2012). In the latter
scenario, it is likely that the two traits are causally
related, although the colocalization method is agnostic as
to whether the exposure trait influences the outcome
trait, the outcome influences the exposure, or the two are
influenced by a common causal factor (Solovieff et al.,
2013). There are several conceptual differences between
colocalization and cis‐Mendelian randomization,
although there are also similarities. Two specific
advantages of the proposed cis‐Mendelian randomization
method are that it allows for the existence of multiple
causal variants, in contrast to some colocalization
methods (Foley et al., 2021; Giambartolomei et al.,
2014), and it allows for the existence of multiple causal
traits. Another feature is that it provides causal estimates,
although the value of causal estimates in Mendelian
randomization beyond indicating the direction of effect is
disputed (VanderWeele et al., 2014).

Although the PCA methods can be implemented with
highly correlated variants, we would recommend a
minimal level of pruning (say, r < 0.92 ) before applying
the methods in practice as variants that are very highly
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correlated do not contribute independent information to
the analysis, but could provide computational challenges.
Even if two variants do not have a high pairwise
correlation as measured by the r2 statistic, they may be
highly correlated. For example the case of “tagging
variants,” where a less common variant is only present
when the common variant is present. This leads to
collinearity even though the pairwise r2 may be low.
Another possibility is that three of more variants may
perfectly or near‐perfectly linear dependent even though
their pairwise correlations are only moderate in size. This
is particularly likely if the genetic variation in a region
can be explained by a small number of haplotypes.
Although the concept of ill‐conditioning is not techni-
cally related to the problem of weak instruments (ill‐
conditioning occurs when genetic variants are highly
correlated, weak instruments refers to the strength of
genetic associations with the exposure), the phenomena
are likely to be practically related, as if an investigator
has strong instruments for a set of traits, then there is no
strong motivation to include many genetic variants from
a gene region in a cis‐Mendelian randomization analysis.
Whereas if the instruments are weak (or, in a multi-
variable context, conditionally weak [Sanderson &
Windmeijer, 2016]), then an investigator is more likely
to include multiple variants in an analysis in an attempt
to bolster power.

Additionally, we have assumed in this paper that the
traits under analysis are causally independent. If a trait
has a causal effect on the outcome that is fully mediated
by one of the other traits in the analysis, then the
estimate for that trait would be zero. Hence, the method
identifies the proximal causal risk factors for the outcome
(Grant & Burgess, 2021). If there are large numbers of
traits, the MV‐IVW‐PCA method could be combined with
a Bayesian variable selection method that compares
models with different sets of traits on the assumption of a
sparse risk factor set (Zuber et al., 2020).

There are several limitations to these methods, which
are shared by other methods for Mendelian randomiza-
tion using summarized data (Bowden et al., 2017;
Burgess et al., 2016). Uncertainty in genetic associations
with the exposure traits is not accounted for in the
analysis. However, this is typically small compared with
uncertainty in the genetic associations with the outcome,
as variants selected for inclusion in the analysis are
typically associated with at least one of the traits at a
robust level of statistical significance. The effects of the
exposure traits on the outcome are assumed to be linear.
This is usually a reasonable assumption, given the small
influence of genetic variants on traits, meaning that
estimates reflect average causal effects for a small shift in
the overall distribution of a trait (Burgess et al., 2014). In

our main simulation, all the exposure and outcome traits
are continuous. For binary traits, the method can be
implemented using genetic association estimates
obtained from logistic regression. We have previously
shown that multivariable Mendelian randomization
methods are still able to make correct inferences in
this setting (Burgess & Thompson, 2015; Grant &
Burgess, 2021), although the interpretation of estimates
is obscured due to non‐collapsibility (Burgess & CHD
CRP Genetics Collaboration, 2013). The analysis model
assumes that variant correlations are the same in all
datasets. In the context of the applied example, this may
not hold as genetic associations with the exposures were
estimated in a Finnish data set, variant associations with
the outcome were estimated in European ancestry
individuals from the MEGASTROKE consortium, and
variant correlations were estimated in European ancestry
individuals from UK Biobank. It is most critical that
variant correlations are estimated in a similar population
group to genetic associations with the outcome, as causal
inferences are based on genetic associations with the
outcome. We were unable to assess the relevance of the
variant correlations estimated in UK Biobank to the
MEGASTROKE data set. Finally, estimates are subject to
weak instrument bias. Whereas in univariable Mendelian
randomization, weak instrument bias in a two‐sample
setting is towards the null (Pierce & VanderWeele, 2012),
in multivariable Mendelian randomization, weak instru-
ments can bias estimates in any direction (Zuber et al.,
2020). This is because weak instrument bias is analogous
to measurement error, as the genetically‐predicted values
of the exposures are estimated with uncertainty, which in
a multivariable regression model can lead to arbitrary
bias (Phillips & Smith, 1991; Thouless, 1939). Hence it is
important to balance the inclusion of several genetic
variants in the analysis to achieve identification, with the
inclusion of only variants strongly associated with the
exposures to minimize weak instruments. The optimal
balance will depend on the specifics of the analysis (such
as the sample size available), but researchers should
consider the conditional strength of instruments (via
conditional F statistics) as well as the more conventional
univariable F statistics (Sanderson et al., 2019). Perform-
ance with weak instruments was mixed; mean estimates
from the MV‐LIML‐PCA method were generally less
affected than those from the MV‐IVW‐PCA method,
although both methods had slightly elevated Type 1 error
rates in one of the scenarios considered. We therefore
recommend that both methods are applied when the
instruments are weak, and caution is expressed if the
methods give divergent results. Overall, we slightly prefer
the MV‐IVW‐PCA method, as the Type 1 error rates from
this method were generally slightly lower.
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In summary, multivariable cis‐Mendelian randomiza-
tion can be used to disentangle the causal relationships of
traits, such as proteins or gene expression measurements,
that are influenced by a cluster of correlated genetic
variants. The proposed PCA methods provide a compro-
mise between loss of precision resulting from over‐
pruning and numerical instability resulting from under‐
pruning, to allow valid statistical tests that identify the
causal traits influencing the outcome.
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