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Abstract

Probabilistic machine learning and circular statistics—the branch of statistics concerned
with data as angles and directions—are two research communities that have grown
mostly in isolation from one another. On the one hand, probabilistic machine learning
community has developed powerful frameworks for problems whose data lives on
Euclidean spaces, such as Gaussian Processes, but have generally neglected other
topologies studied by circular statistics. On the other hand, the approximate inference
frameworks from probabilistic machine learning have only recently started to the circular
statistics landscape. This thesis intends to redress the gap between these two fields
by contributing to both fields with models and approximate inference algorithms. In
particular, we introduce the multivariate Generalised von Mises distribution (mGvM),
which allows the use of kernels in circular statistics akin to Gaussian Processes, and an
augmented representation. These models account for a vast number of applications
comprising both latent variable modelling and regression of circular data. Then, we
propose methods to conduct approximate inference on these models. In particular,
we investigate the use of Variational Inference, Expectation Propagation and Markov
chain Monte Carlo methods. The variational inference route taken was a mean field
approach to efficiently leverage the mGvM tractable conditionals and create a baseline
for comparison with other methods. Then, an Expectation Propagation approach is
presented drawing on the Expectation Consistent Framework for Ising models and
connecting the approximations used to the augmented model presented. In the final
MCMC chapter, efficient Gibbs and Hamiltonian Monte Carlo samplers are derived for
the mGvM and the augmented model.
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Chapter 1

A primer on circular data,
associated distributions and this
thesis

Mainstream modelling in Probabilistic Machine Learning has targeted function approx-
imation on Euclidean spaces, often disregarding available topological structure present
in either observed or latent spaces. While it is true that flexible models with thousands
of parameters such as Deep Neural Networks may approximate well manifolds and
emulate their topological properties, these models require a substantial amount of data
to be trained. Moreover, if the underlying manifold and associated topology are known
a priori, bespoke models for these manifolds will perform better as they will not have
to learn the manifold structure from the data.

A particularly important case where the modeller knows the nature of data or latent
space topology is when the variables of interest are angles. Angles arise in a myriad
of scientific and engineering contexts. For instance, controlling articulated or flying
robots requires estimation of individual joint angles and bearings in the presence of
noisy measurements. Likewise, to predict protein structures, it is paramount to be able
to characterise and correctly estimate a vast number of dihedral and torsion angles
between protein side chains and the main backbone. Equally important is to handle
phase angles and the uncertainty surrounding them in numerous signal processing tasks
from speech analysis to recovering corrupted signals in mobile phones. More generally,
transformations in rigid body rotations, complex numbers and Fourier-representations
rely on learning angles and invariant representations.

Representing angles as Euclidean variables neglect the invariance structure and
constraints inherent to the topology conveyed by angles, e.g. the same angle is identified
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by adding an integer multiple of 2π. Consequently, this has a detrimental effect on
the model’s predictions and uncertainty estimates. For example, when capturing the
motion of a human arm, a model that does not account for the circular nature of the
body joints may confidently predict configurations which would imply in body joints
bending beyond their physical limits.

This thesis examines bespoke probabilistic models and approximate inference meth-
ods for systems comprised of angles, or as referred in statistical literature, circular
variables. This chapter reviews circular distributions and their multivariate extensions.
The remained of the thesis is divided into two major segments. Part II presents and
discusses a new model for circular variables that leverages the existing machinery
for Gaussian Processes in Chapter 2, as well as transformations and sparse models
in Chapter 3. Part III provides methods for performing approximate inference and
learning in the models of Part II, namely Variational Inference (VI) methods in Chap-
ter 4, Expectation Propagation (EP) in Chapter 5 and Markov chain Monte Carlo
in Chapter 6.

1.1 Distributions over the unit circle

In this section, we demonstrate how to generate unidimensional circular distributions.
Circular distributions are identified with the topology of the unit circle, supported on
[0, 2π) and functions of trigonometric functions of a random angle ϕ. These distributions
can be either generated from a transformation of a distribution over a Euclidean space
or generated by defining a measurable function directly on the unit circle. The former
case applies a transformation to random variables defined on the real line or plane
and can be followed by an additional conditioning or marginalisation step. The latter
procedure is often used to generalise existing distributions by re-defining a parameter
as a function in the unit circle, as in the case of the Batschelet distribution (Batschelet,
1981), or by convolving an existing distribution with another function in the unit circle,
as is the case of the Jones-Pewsey distribution (Jones and Pewsey, 2005).

The discussion presented in this section will focus on the construction from existing
distributions over the real line. Traditionally, this approach is divided into three
main constructions, namely wrapped, projected and intrinsic. These approaches are
diagrammatically summarised in Figure 1.1 and explored in further detail in Section 1.1.1
and Section 1.1.2.
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Euclidean
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Circular
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Fig. 1.1 Graphical summary of construction procedure for circular distributions from
Euclidean distributions exemplified through the Gaussian distribution circular counter-
parts.

1.1.1 Constructions based on the wrapping transformation

The intuition behind the wrapping construction is that any point 2π apart in the real
line correspond to the same location on the unit circle, modulo a complete clockwise
revolution. Since any location on the unit circle added with a 2π multiple corresponds
to the same location in the unit circle, both locations should have the same probability
density. A distribution with such property can be constructed by reparametrizing each
point of a distribution p(x) with x ∈ R through the modulo 2π transformation

ϕ = x mod 2π. (1.1)

Through this transformation1, the probability mass of each 2π multiple of ϕ is
condensed at the location ϕ. Therefore, any wrapped density will have the form

p(ϕ) ∝
∞∑

k=−∞
p(x = ϕ+ 2kπ). (1.2)

The name wrapped distribution arises from the fact that Equation (1.1) can be
geometrically interpreted as winding, or wrapping, the real line around the unit circle.
This genesis is presented in Equation (1.2) and is illustrated graphically in Figure 1.2.

1The transformation of Equation (1.1) can also be posited in terms of complex numbers. In this
setting, the transformation becomes ϕ = ei·x, where e is Euler’s number and i =

√
−1.
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The univariate Gaussian analogue on the unit circle obtained from wrapping is the the

x

ϕ
−

8π
ϕ

−
6π
ϕ

−
4π
ϕ

−
2π
ϕ

+ 0π
ϕ

+ 2π
ϕ

+ 4π
ϕ

+ 6π
ϕ

+ 8π

(a)

ϕ
ϕ

[
0

)
2π

(b)

Fig. 1.2 Illustration of the construction of a wrapped distribution: the shaded regions
in the distribution to the left represent 2π intervals with 2π multiples of an angle
ϕ ∈ [0, 2π) and their respective probability (dashed coloured lines). A wrapped
distribution, shown in the right figure, is constructed by condensing all the probability
mass of the 2π multiples of ϕ from the distribution in the left figure to the point ϕ.

Wrapped Gaussian distribution (Pólya, 1927),

WG(ϕ;m,σ2) = 1√
2πσ2

∞∑
k=−∞

exp
−1

2

(
ϕ+ 2kπ −m

σ

)2
 . (1.3)

where m and σ2 are the mean and standard deviation of the Gaussian distribution on the
real line that originated the wrapped distribution. Even though wrapped distributions
can be obtained with relative ease, the infinite sums involved in their definition render
them impractical in unapproximated form. For most uses, the Wrapped Gaussian
truncated at the third harmonic, i.e., k = 3 (Mardia, 1999), using adaptive truncation
schemes (Jona-Lasinio et al., 2012) or modelling the truncation point as a latent
variable (Jona-Lasinio et al., 2014). It is also trivial to show that wrapped distributions
are not members of the exponential family, a useful property when deriving analytical
relationships.

1.1.2 Constructions based on polar transformations

Another valid transformation to map a distribution on the real plane to the unit circle
is the polar transformation, i.e. for every point in the plane x = [x1, x2]⊤ becomes

x1 = r cos(ϕ)
x2 = r sin(ϕ)

(1.4)
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where r ∈ R+ is a positive real scalar and ϕ is an angle in [0, 2π). The determinant of
the Jacobian for the transformation of Equation (1.4) is

det Jx1,x2→r,ϕ = det
∂x1
∂r

∂x1
∂ϕ

∂x2
∂r

∂x2
∂ϕ

 = det
cosϕ −r sinϕ

sinϕ r cosϕ

 = r. (1.5)

The distribution yielded after the transformation is still on the real plane. Therefore, an
additional step is required to eliminate the radial component r to obtain a distribution
on the unit circle. There are two ways of to achieve this goal, either by marginalising r
or by conditioning r to a fixed value.

Marginalisation of the radial component can be viewed geometrically as a projection,
where the probability mass along a ray from the origin forming an angle ϕ with the x1

axis is condensed to a point. This geometric interpretation illustrated in Figure 1.3 is
the basis for categorising distributions constructed following this procedure as projected
distributions.

x1

x2

.

.Bivariate
Gaussian

x1

x2 r

Unit circle
.

.

ϕ

Fig. 1.3 Illustration of the genesis of projected distributions as marginalisation over a
radial component. Here, the probability of ϕ is obtained by integrating over the ray
forming an angle ϕ with the x1 axis and renormalising.

The Gaussian distribution analogue obtained by the marginalisation of the radial
component is the Projected Gaussian (PG) (Mardia, 1975b). The expression for the
Projected Gaussian is rather long winded and to simplify its presentation we define
the quantities α, β, γ, and η as functions of ϕ, [m1,m2]⊤ and

Σ =
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 (1.6)
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of the original bivariate Gaussian distribution. These quantities are defined as

α = σ2
2 cos2 ϕ− 2σ1σ2 cosϕ sinϕ+ σ2

1 sin2 ϕ (1.7)
β = σ2

2m1 cosϕ− σ1σ2ρm2 cosϕ− σ1σ2ρm1 sinϕ+ σ2
1m2 sinϕ (1.8)

γ = σ2
2m1 − 2σ1σ2ρm1m2 + σ2

1m2 (1.9)
η = σ2

1σ
2
2(1 − ρ2) (1.10)

allow the Projected Gaussian distribution to be written as

PG(ϕ) =
exp

{
α
η

(
γ
α

− β2

α2

)}
π

√
det Σ

(
β

√
ηπ

2α3/2

(
erf
[
(α− β)(αη)− 1

2
]

− erf
[
−β(αη)− 1

2
])

− d

2α
(
exp{(α− β)2(αη)−1} + exp{−β2(αη)−1}

))
.

(1.11)

As demonstrated by Equation (1.11), distributions obtained from marginalising
of the radial component yield complicated and analytically intractable expressions
when such expressions are available. More generally, the marginalisation step does not
necessarily yield closed-form expressions for the circular distribution. Furthermore,
theoretical properties of the base distribution, such as exponential family membership,
are not preserved under the transform-then-marginalise approach.

An alternative approach to marginalising the radial component r is to condition r to
a particular value, without loss of generality taken to be 1. This procedure is illustrated
in Figure 1.4. Conditioning alleviates the problems associated with the marginalisation;
the functional form of the base distribution is inherited by circular distribution2 as
well as exponential family membership where applicable. The preservation of these
properties is a direct consequence of the Jacobian of the transformation collapsing to a
scalar. The distributions arising from the transform-then-condition construction are
traditionally referred to as the intrinsic class of circular distributions.

The intrinsic analogue for a Gaussian distribution is the Generalised von Mises dis-
tribution (GvM) (Cox, 1975; Gatto and Jammalamadaka, 2007; Yfantis and Borgman,
1982),

GvM(ϕ;κ,µ) = 1
2πG(κ,µ) exp {κ1 cos(ϕ− µ1) + κ2 cos(2(ϕ− µ2))} , (1.12)

2This procedure can result in over-parametrised forms of the distribution. The distributions often
admit further simplification by applying trigonometric identities to yield minimal and compact forms.
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x1

x2

.

.Bivariate
Gaussian

x1

x2

Unit circle.

.

Fig. 1.4 Graphical interpretation of the construction of an intrinsic distribution: the
Generalised von Mises distribution is constructed by conditioning a two-dimensional
distribution to the unit circle, and then expressing it through an angle.

where G is a special function expressed as a series of modified Bessel functions of the
first kind, Ij, bearing the form

G(κ,µ) = I0(κ1)I0(κ2) + 2
∞∑

j=1
Ij(κ1)I2j+1(κ2) cos(2j(µ1 − µ2)). (1.13)

The GvM can be either unimodal or bimodal, symmetric or asymmetric depending
on the configuration of its parameters. The trigonometric moments3 of the GvM are
available through series of modified Bessel functions of the first kind similar to the
function G in its normalising constant, originally presented in (Gatto, 2008).

The Generalised von Mises was suggested independently by Vyacheslav Maksi-
mov (Maksimov, 1967) in the context of distributions on groups and harmonic analysis,
and Sir David Cox (Cox, 1975) as an extension of the von Mises distribution. Later,
Yfantis and Bogman (Yfantis and Borgman, 1982) analysed the symmetry, modality
and related properties of the Generalised von Mises. More recently, Gatto and Jam-
malamadaka (Gatto and Jammalamadaka, 2007) reintroduced this distribution, but
expanded to an arbitrary number of cosine harmonics, that is,

GvMN(ϕ;κ,µ) ∝ exp
{ N∑

n=1
κn cos(n(ϕ− µn))

}
. (1.14)

3Trigonometric moments, or expectations over harmonics of sines and cosines obtained by complex
exponentials 〈

einϕ
〉

p(ϕ) = ⟨cos(nϕ)⟩p(ϕ) + i ⟨sin(nϕ)⟩p(ϕ) ,

characterise circular distributions, as opposed to standard moments defined for distributions over
Euclidean spaces.
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However, most theoretical results and properties are provided only for the N = 2
case—including its connection with the Gaussian distribution. Therefore, the term
GvM will be used interchangeably to GvM2 unless otherwise noted.

Drawing on the analytic inverse for a covariance matrix of a bivariate Gaussian,

Σ−1 =
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

−1

= 1
σ2

1σ
2
2(1 − ρ2)

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 . (1.15)

the GvM parameters µ and κ can be obtained by noting that

GvM(ϕ) ∝ exp

−1
2

cosϕ−m1

sinϕ−m2

⊤

Σ−1

cosϕ−m1

sinϕ−m2


 . (1.16)

Equation (1.16) admits the expansion

GvM(ϕ) ∝ exp
{

− cos2 ϕ− 2m1 cosϕ
2σ2

2(1 − ρ2) − sin2 ϕ− 2m2 sinϕ
2σ2

1(1 − ρ2)

− ρ
sinϕ cosϕ−m1 sinϕ−m2 cosϕ

2 − 2ρ2

}
,

(1.17)

which can be simplified using trigonometric relations to yield

GvM(ϕ) ∝ exp
{(

m2

2 − 2ρ2 − m1

2σ2
2(1 − ρ2)

)
cosϕ+

(
σ2

1 − σ2
2

2σ2
1σ

2
2(1 − ρ2)

)
cos 2ϕ+(

m1

2 − 2ρ2 − m2

2σ2
1(1 − ρ2)

)
sinϕ+

(
ρ

2ρ2 − 2

)
sin 2ϕ

}
.

(1.18)

Equation (1.18) implies that the Generalised von Mises parameters can be posed
as a complex variable z ∈ C2 such that

z1 =
(

m2

2 − 2ρ2 − m1

2σ2
2(1 − ρ2)

)
+ i

(
m1

2 − 2ρ2 − m2

2σ2
1(1 − ρ2)

)
(1.19)

z2 =
(

σ2
1 − σ2

2
2σ2

1σ
2
2(1 − ρ2)

)
+ i

(
ρ

2ρ2 − 2

)
(1.20)

and the Generalised von Mises parameters relate to the absolute values and phase of
z1 and z2. In particular, if we denote the absolute value of a complex number by the
function abs and its angle in the interval [0, 2π) by the function ang,

κ1 = abs(z1), µ1 = ang(z1), κ2 = abs(z2), and µ2 = ang(z2)
2 . (1.21)
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As the name indicates, the Generalised von Mises distribution is closely related to
the von Mises distribution (vM) (von Mises, 1918),

vM(ϕ;κ, µ) = 1
2πI0(κ) exp

{
κ cos(ϕ− µ)

}
. (1.22)

The von Mises distribution was the first circular distribution ever proposed and
is arguably the most widely know and studied circular distribution. It is a unimodal
distribution whose trigonometric moments are obtained as ratios of Bessel functions.
A Generalised von Mises distribution reduces to a von Mises distribution when the
covariance matrix of the underlying bivariate Gaussian is isotropic. An excellent
overview of the von Mises distribution along with its properties and statistical tests is
presented by Kanti Mardia and Peter Jupp in (Mardia, 1999).

1.1.3 Other constructions in the literature

Other constructions for distributions on the unit circle make use of functional maps.
These maps, called linking functions (ℓ) assign −∞ to 0 and +∞ to 2π. One of the
most common linking functions is the scaled probit link,

ℓ(x) = 2π
(

1
1 + exp(β · x)

)
. (1.23)

Despite the simplicity of this approach, the choice of mapping −∞ to 0 and +∞
to 2π is arbitrarily defined and may have undesirable consequences over the obtained
density. For example, using the scaled probit linking function on a Gaussian distribution
imposes that the region around 0 will necessarily have low probability mass. More
precisely, for any ξ ∈ R, ξ → 0, the probability mass of the interval [0, 0+ξ]∪ [2π−ξ, 2π)
will tend to zero a consequence of p(x → −∞) = p(x → +∞) = 0, regardless of the
mean of the Gaussian distribution. Besides showing the unsuitability of this approach,
this arbitrary singularity around 0 exemplifies the need for bespoke distributions on
the unit circle and its generalisations.

Another approach in literature is termed Kernel Density Estimation (KDE). This
approach expresses the a distribution implicitly through the average of a mapping
evaluated at a finite number of inducing points ϱ1, . . . , ϱN, i.e. a distribution p is
defined as

p(ϕ) = 1
N

N∑
n=1

kθ(ϕ− ϱn) (1.24)
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where kθ is the mapping that implicitly defines the distribution with parameters θ.
Di Marzio et al. (2009) detailed the mapping requirements for inducing the circular
distributions. This mapping k : [0, 2π) → R, termed a circular probability kernel, needs
to be defined such that

1. k admits a convergent Fourier expansion with the form 1
2π

1 +
∞∑
j
γj(θ) cos(jϕ)

,

2. k is normalised in the unit circle,
∫ 2π

0 kθ(ϕ)dϕ = 1,

3. for ηj(kθ) =
∫ 2π

0
sinj(ϕ)kθ(ϕ)dϕ, if ηi(kθ) ̸= 0, all ηj(kθ) = 0 for 0 < j < i,

4. as the smoothing parameter θ → ∞,
∫ ψ+ϵ

ψ−ϵ
kθ(ϕ)dϕ = 1 with ϵ → 0 and ψ ∈

[0, 2π).

Di Marzio and coworkers also later expanded to encompass circular regression (Di Marzio
et al., 2017) merging the linking function treatment with KDEs.

Kernel Density Estimation is a flexible approach that can handle multiple modes
and provide asymmetric distributions. However, these advantages are hampered by
the difficulty in selecting the smoothing parameter. A common approach to solve
this problem is to minimise the a loss function of the KDE differences to a known,
parametric distribution.

1.2 Multivariate extensions

There are multiple ways to generalise circular variables to higher dimensions. Each
type of generalisation is associated with a different kind of topological manifold. Next,
we will explore distributions over the surface of (hyper-)spheres in Section 1.2.1 and
distributions over the surface of (hyper-)toruses in Section 1.2.2. These subsequent
sections are quite technical to provide a comprehensive introduction of the topic.
However, the reader should not lose sight that the central issue discussed is that there
are two main classes of distributions over multi-dimensional distributions over angles:
spheres and toruses. Other less prominent topologies are also discussed in Section 1.2.4.

1.2.1 Distributions over the surface of (hyper-)spheres

Distributions over the surface of (hyper-)spheres are often referred to as directional
distributions, as they can be geometrically interpreted as distributions over unit vectors.
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Following this geometrical intuition, directional distributions can be constructed from
distribution over a multi-dimensional Euclidean space by applying the transformation

s = x
∥x∥

(1.25)

to obtain the unitary vector s. The unitary vector s can be then recast into a distribution
over angles by parametrising s in (hyper-)spherical coordinates. For example, when s
is defined on the usual sphere (S2), the usual spherical transformation applies, and the
unit vector can be expressed as


s1

s2

s3

 =


sinϕ1 cosϕ2

sinϕ1 cosϕ2

cosϕ1

 . (1.26)

This transformation can be related to the conditioning approach to producing distribu-
tions on the unit circle, as spherical coordinates for the unit hypersphere (S1) reduces
to the polar coordinate system, i.e. the unit circle, rather than parametrising the circle
points by an angle ϕ, each point is represented ass1

s2

 =
sinϕ
cosϕ

 , (1.27)

The Gaussian analogue for directional distributions using this construction is the
Fisher-Bingham distribution (FB) (Mardia, 1975a),

FB(s;κ,η,A) ∝ exp
{
κη⊤s − 1

2s⊤A−1s
}
. (1.28)

where the parameters κ ∈ R, and η is an N-dimensional unit vector, are related
a N-dimensional Gaussian with A = Σ−1 and κη = Σ−1m. The Fisher-Bingham
distribution is equivalent to a Generalised von Mises distribution when N = 2.

A large number of other directional distributions that can be related to a multivariate
Gaussian and the Fisher-Bingham distribution exist. These distributions often refer to
a specific covariance structure for the underlying multivariate Gaussian. For example,
when the covariance matrix is assumed to be diagonal, the Fisher-Bingham distribution
reduces to the von Mises-Fisher distribution (vMF) (Fisher, 1953)

vMF(s;κ,η) = 1
Γ(N

2 )I N
2 −1(κ)

(
κ

2

)N
2 −1

exp
{
κη⊤s

}
(1.29)
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where N is the dimension of vector s and Γ(·) is the Gamma function.
The von Mises-Fisher distribution is also called the Langevin distribution and

particular forms of the von Mises-Fisher distribution also bear special nomenclature.
When N = 3, the distribution is known as the Fisher distribution, while the case when
N = 2 reverts to a von Mises distribution.

Another distribution closely related to the Fisher-Bingham distribution is the
Bingham distribution (B) (Bingham, 1974)

B(s; Σ) = 1
0F
(

1
2 ,

N
2 ,Σ

−1
) exp

{
s⊤Σ−1s

}
(1.30)

where 0F is the confluent hypergeometric function of matrix argument, a special
function of described in further details in (Abramowitz and Stegun, 1972).

The Bingham distribution can be viewed as a zero-mean N-dimensional Gaussian
with covariance Σ that has been conditioned to the surface of the (N − 1)-sphere.

Other directional distributions based on a multivariate Gaussian distribution assum-
ing a special structure for the covariance matrix include the Watson, Fisher-Watson,
Bingham-Mardia and Kent distributions. A brief summary of each of these distributions
and how they relate to the Fisher-Bingham distribution is provided diagrammatically
in Figure 1.5. For a review of the properties of each of these distributions, see Kanti
Mardia and Peter Jupp’s cornerstone reference in directional statistics (Mardia, 1999).

Distributions that capture the correlations between multiple unit vectors are anal-
ysed within the framework of distributions over orthonormal matrices S ∈ RD×N, where
N is the dimension of the hypersphere and D is the number of individual unit vectors.
These ‘multivariate’ directional distributions belong to a special topological space
known as Stiefel manifolds. More formally, a Stiefel manifold is defined as the space
composed of the Cartesian product of N-dimensional spheres, i.e. SN × · · · × SN.

Examples of distributions over Stiefel manifolds include the Matrix von Mises-Fisher
Distribution (MvMF) by Downs (1972), Khatri and Mardia (1977),

MvMF(S;m,V,K) ∝ exp
{
(vec(S) −m)⊤(V ⊗ K)(vec(S) −m)

}
, (1.31)

where vec(S) is the function that constructs single column vector by stacking the
columns of the matrix S, with ⊗ denoting the Kronecker product between the positive
definite matrices V and K.
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Fisher-Bingham

Σ−1η = 0 Σ−1 = κww⊤

Kent

Σ−1 = I

η = 0

Fisher-Watson

η = vw⊤von Mises-Fisher

Bingham Bingham-Mardia

Σ−1 = κww⊤, η = 0

Watson

Fig. 1.5 Relationship between directional distributions based on conditioning a mul-
tivariate Gaussian to the unit circle: arrows show additional assumptions over the
covariance matrix of the base Gaussian, extended from (Mardia, 1999).

The most general matrix distribution is the matrix Fisher-Bingham distribution
(MFB) (Kume et al., 2013),

MFB(S;η,Σ) ∝ exp
{
η⊤vec(S) − 1

2vec(S)⊤Σ−1vec(S)
}

(1.32)

where η is a location and concentration parameter, while Σ captures the covariance
between unit vectors.

1.2.2 Distributions over the surface of (hyper-)toruses

Unlike distributions over the surface of (hyper-)spheres, distributions over the surface
of (hyper-)toruses are described as the Cartesian product of random angles rather than
two-dimensional unit vectors. The applications for distributions over (hyper-)spheres
are also distinct from the applications for distributions over (hyper-)toruses. While
the former is suitable for representing directions and orientations, the latter excels at
capturing the phase component of complex-valued signals and sequences of correlated
angular measurements.
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All construction methods outlined in Section 1.1 to generate distributions on the
unit circle can be used to produce distributions on the (hyper-)torus. For example, to
generate a N-dimensional wrapped distribution, each variable is wrapped independently
using the wrapping transformation of Equation (1.1). The same procedure applies to N-
dimensional marginalised and conditioned distributions using the polar transformation.

The known (hyper-)toroidal distributions analogue to multivariate Gaussians with
arbitrary covariance structure are the general Wrapped Gaussian (gWG) (Ferrari, 2009),
and the general Projected Gaussian (gPG) (Hernandez-Stumpfhauser et al., 2017). The
general Wrapped Gaussian can be analytically given as

gWG(ϕ;m,Σ) = 1
(2π)N

2 (det(Σ)) 1
2
×

∞∑
k1=−∞

· · ·
∞∑

kN=−∞
exp

{
−1

2(ϕ− 2kπ)⊤Σ−1(ϕ− 2kπ)
} (1.33)

while the general Projected Gaussian bears no closed form expression for higher
dimensions.

The conditioned analogue for a multivariate Gaussian is only known for cases where
an additional structure is imposed over the covariance matrix. Mardia’s multivariate
von Mises distribution (mvM) is one of such distributions (Mardia et al., 2008),

mvM(ϕ;κ,G) ∝ exp
{
κ⊤ cosϕ− 1

2 sinϕ⊤G sinϕ
}
, (1.34)

where G is a symmetric matrix with zeros on its main diagonal4.
Mardia’s multivariate von Mises assumes that the underlying 2N-dimensional

Gaussian has zero mean and a covariance matrix that admits an inverse with the
structure

Σ−1
ord =

Λ A
A Λ

 (1.35)

where Λ is a diagonal matrix and A is an anti-symmetric matrix.
4The Multivariate von Mises can be also parametrised with an additional location parameter with

a trivial shift ϕ′ = ϕ− µ.
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1.2.3 A short note on other multivariate extensions of circular
distributions

Alternatives to deriving multivariate circular distributions analytically also exist. For
example, Di Marzio and collaborators extended the Kernel Density Estimators for
cicular models for to multiple dimension, both toroidal (Di Marzio et al., 2011) and
spherical (di Marzio et al., 2012) generalisations. The treatment follows that directly
from the univariate case described in Section 1.1.3.

Another important way to form multivariate distributions from univariate distri-
butions is through the use of copulas. Copulas can be used to define dependencies
in multivariate distributions through the cumulative density function of the marginal
distributions. For a complete treatment, see the excellent introductions from Nelsen
(2007) and Joe (1997) for an overview of the subject. In the field of circular statistics,
Perlman and Wellner (2011) introduced and proved multiple results on circular copulas,
and coined the term circula for a circular copula. Further analysis on circulas on their
theoretical properties were developed later by Jones (2013) and Jones et al. (2015).

Perlman and Wellner (2011) provided a result particularly important for constructing
multivariate circular distributions. They showed that only two and three dimensional
circulas exist. This result has important consequences for higher dimensional generali-
sations of circular distributions as it implies that D-dimensional distributions on the
hyper-torus or hyper-sphere can be constructed using a single circula. Instead, a vine of
copulas must be used. Copula vines use a hierarchical structure of D(D−1)/2 bivariate
conditional copulas to express a D-dimensional distribution. An example of how vines
can be used for building complex dependency structures is given by Lopez-Paz et al.
(2013) for Gaussian Processes.

1.2.4 Comment on the relationships between distributions on
spheres, toruses and other manifolds

The relationship between distributions on the unit circle, (hyper-)spheres, (hyper-
)toruses and Stiefel manifolds can be succinctly explained for distributions arising from
polar transformation and conditioning. Figure 1.6 presents these relationships diagram-
matically, showing how the assumptions about the underlying Gaussian distribution
yield different distributions on these manifolds.
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FB

GvM mGvM

MFB

vM

vMF

mvM

MvMF

Full covariance

Multivariate (hyper-torus)

Directional (hyper-sphere)

Fig. 1.6 A diagram outlining the relationship between circular and directional distribu-
tions, their multivariate extensions and the underlying Gaussian’s covariance structure.
A new distribution introduced in this thesis is highlighted in red.

For example, starting from the von Mises distribution, one can derive a von Mises-
Fisher by considering the polar transformation a sub-case of the spherical transformation.
If a toroidal construction is chosen instead, one obtains Mardia’s multivariate von
Mises distribution. By letting the covariance matrix of the underlying multivariate
Gaussian for these distributions to have any form, one obtains the Fisher-Bingham
distribution. The Stiefel manifold generalisation of directional distributions collapses
onto distributions over hypertoruses when the unit vectors are two-dimensional.

In particular, the density for a hyper-toroidal topology built from a multivariate
Gaussian with general covariance matrix had not been fully explored before. This
distribution would be particularly important for modelling the covariances between
phase angles, for example, in an array of complex signals. Furthermore, there are
currently no efficient inference and learning methods for the intractable distributions
on the multi-dimensional torus, sphere and Stiefel manifolds as shown in Figure 1.7.

Other topological manifolds using circular variables are (hyper-)cylindrical models.
In these settings, the cylindrical distribution has both Euclidean variables and circular
variables. Such models, however, are not atomic in the sense that they can be
decomposed as a simple graphical model that combines (atomic) circular distributions
with (atomic) Euclidean distributions, i.e.

p(ϕ, x) = p(ϕ|x)p(x) = p(x|ϕ)p(ϕ). (1.36)
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FB

GvM mGvM

MFB

vM

vMF

mvM

MvMF

Tractable
Intractable

Fig. 1.7 A diagram indicating the tractable and intractable distributions on the (hyper-
)torus, (hyper-)spheres and Stiefel manifolds. By tractable we imply that numerical
stable and efficient approximations exist for calculating the moments of the underlying
distribution (this criterion excludes the infinite series approximation for the GvM,
which are only accurate for low concentration values). The methods presented in this
thesis provide ways to perform inference and learning in the intractable distributions
by using the tractable ones.

1.3 Aims and contributions of the thesis

There are two major contributions of this thesis: (i) introducing new bespoke mul-
tivariate models for circular variables, and (ii) providing algorithms for performing
tractable inference and learning in these models. The intent behind such contribu-
tions is to redress the gap between the Machine Learning and the Circular Statistics
communities so that models and algorithms for circular data are incorporated into
mainstream probabilistic modelling. Moreover, the thesis uses the circular case to
exemplify how intractable directional distributions on Stiefel manifolds can be inferred
or approximated. The thesis is outlined as follows.

• Chapter 2 presents and discusses the Multivariate Generalised von Mises (mGvM),
a new multivariate model for circular variables that correctly represents the co-
variance structure between any two random angles in a toroidal topology. This
distribution is also a high-dimensional extension of an unduly forgotten distribu-
tion proposed by Mardia (1975b). The Multivariate Generalised von Mises also
allows us to empower circular statisticians with kernels. Originally developed for
Gaussian Processes, kernels provide a flexible yet interpretable way to analyse
and represent a multitude of structures in the data through the covariance of a
multivariate Gaussian.
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The use of kernels allows this thesis to make significant contributions to two
major areas of circular statistics: circular regression and latent variable modelling.
Before this thesis, regression problems between circular responses and circular
inputs was treated as a different problem from regressing circular responses with
Euclidean or other types of inputs. The use of kernels proposed in this thesis
unifies all these problems into a single regression framework. In the latent variable
modelling front, this thesis introduces a Principal Component Analysis analogue
for circular variables, a previously unsolved problem in circular statistics.

• Chapter 3 introduces model augmentations based on the Hubbard-Stratonovich
transformation for arbitrary-dimensional distributions on hyper-toruses, hyper-
spheres and other Stiefel manifolds. The Hubbard-Stratonovich transformation
is rooted in statistical physics and is used here to eliminate computational
difficulties associated with the normalising constants of these distributions. The
transformation augments the mGvM, FB and MFB models with Euclidean
variables that lift the distribution to (hyper-)cylindrical manifolds where inference
can be efficiently computed.

• Chapter 4 examines Variational Inference (VI) methods for performing approx-
imate inference and learning for the multivariate Generalised von Mises models.
The variational free energy framework’s reliance on optimisation methods makes
it a promising candidate for learning and inference in high dimensions. Here, a
standard fully-factored mean-field approach is presented as a an efficient way
to perform inference and a stardard to which other inference methods could be
compared to.

• Chapter 5 evaluates Expectation Propagation (EP) approaches for the mGvM.
Here we introduce a novel approach based on a structured approximation following
Manfred Opper and Ole Winther’s approximation for Ising models (Opper and
Winther, 2005). Such algorithm is central for the use of message passing methods
with the mGvM as a naïve application of the standard Expectation Propagation
could not converge in our experiments.

• Chapter 6 explores two Markov chain Monte Carlo techniques for the proposed
models: Gibbs sampling and Hamiltonian Monte Carlo. Markov chain Monte
Carlo methods have been widely used as the main approach to simulating
circular variables. Gibbs sampling is one of the standard methods to perform
inference with circular distributions and hence serves as a baseline to which all
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other methods can be compared. Hamiltonian Monte Carlo represents a more
sophisticated approach for Markov chain Monte Carlo. The use of contrastive
divergence for learning a Multivariate Generalised von Mises is also assessed in
this analysis.

• Chapter 7 concludes the thesis reviewing the contributions of each chapter, and
outlines new research avenues opened by the work contained in this thesis.





Part II

Models





Chapter 2

The multivariate Generalised von
Mises distribution

This chapter introduces the multivariate Generalised von Mises distribution (mGvM),
a multivariate circular density on the surface of hyper-toruses, that is the Cartesian
product of N unit circles (S1 ×· · ·×S1). This distribution receives its name from its one-
dimensional conditionals, which are Generalised von Mises distributed. We demonstrate
how to construct the mGvM, prove its central properties and introduce probabilistic
models that employ the mGvM for regression and latent variable modelling.

Besides introducing the mGvM, the chapter contains another original contribution:
drawing on the machinery developed for Gaussian Process regression, we port the
notion of kernels as covariance functions to the context of circular statistics through the
mGvM. To best our knowledge, this is the first use of kernel functions within Circular
Statistics. Covariance functions play a foundational role in Probabilistic Machine
Learning, and the Gaussian Process community has developed them into a mature
modelling framework. For completeness, we provide a brief overview of covariance
functions and how they unify regression problems under a single framework.

We remark that apart from univariate special cases and the genesis of the mGvM
distribution, the remaining properties presented in this chapter comprise novel contri-
butions.

2.1 The mGvM model

Chapter 1 introduced methods to generate distributions on the hyper-torus, that is,
on the Cartesian product of N unit circles S1 × · · · × S1 . One of such methods re-
expressed a distribution over a Euclidean spaces in polar coordinates then conditioned
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the resulting radial components to unity. The model we present in this section leverages
that construction to produce the most general distribution of this kind based on the
multivariate Gaussian distribution.

More precisely, starting from a 2N-dimensional random vector x following a multi-
variate Gaussian with arbitraty mean m and covariance Σ, i.e.

p(x) = N(x;m,Σ), (2.1)

the construction in Section 1.1.2 stipulates that each of the N pairs of variables xj and
xN+j from the Gaussian must be transformed into polar coordinates and their radial
components conditioned to unity, i.e.



x1
...

xN

xN+1
...

x2N


Polar transformation−−−−−−−−−−−→



r1 cosϕ1
...

rN cosϕN

r1 sinϕ1
...

rN sinϕN


ri=1 for i=1,...,N−−−−−−−−−→



cosϕ1
...

cosϕN

sinϕ1
...

sinϕN


. (2.2)

This procedure yields a log unnormalized density for the angles given as

log p∗(ϕ|m,Σ) = −1
2

cosϕ
sinϕ

−m

⊤

Σ−1

cosϕ
sinϕ

−m

 . (2.3)

Equation (2.3) admits multiple simplifications. For example, if we define v = Σ−1m

and expand the quadratic term, Equation (2.3) becomes

log p∗(ϕ|v,Σ) = v⊤

cosϕ
sinϕ

− 1
2

cosϕ
sinϕ

⊤

Σ−1

cosϕ
sinϕ

 . (2.4)
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By expressing v in polar coordinates, the linear term of the density in Equation (2.4)
attains a von Mises form, i.e.

v⊤

cosϕ
sinϕ

 =


cosµ

sinµ

⊤ diag(κ) 0
0 diag(κ)




⊤ cosϕ
sinϕ


=

n∑
n=1

κn(cosµn cosϕn + sinµn sinϕn)

= κ⊤ cos(ϕ− µ).

(2.5)

As in the univariate von Mises case, the parameters κ will represent the concentration
parameters for each ϕ. The µ are also interpreted as in the von Mises case, that is,
they are location parameters on which the ϕ will be concentrated, dubbing as a mean
angle vector.

Using this result into Equation (2.4) gives rise to the model

p(ϕ|µ,κ,Σ) ∝ exp
{
κ⊤ cos(ϕ− µ) − 1

2

cosϕ
sinϕ

⊤

Σ−1

cosϕ
sinϕ

} (2.6)

which we term the multivariate Generalised von Mises and represent by mGvM. This
density’s name arises from the property that all of its one-dimensional conditionals are
Generalised von Mises distributed, as it will be shown later in Section 2.2. An example
of this distribution is shown in Figure 2.1.

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π

φ
2

Fig. 2.1 Example of a two-dimensional mGvM distribution with four modes plotted in
the [0, 2π) × [0, 2π) plane and as a torus. Darker tones denote high probability zones,
while lighter tones indicate low-probability regions.
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The mGvM in Equation (2.6) is over-parametrised; it possesses 3N+N2 parameters
while drawing on trigonometric identities it can be expressed with fewer parameters.
To show this, we express the quadratic term of Equation (2.6) as a block matrix of N
by N matrices F, G, and H such that

Σ−1 =
 F G
G⊤ H

 . (2.7)

Using the inverse-covariance form in Equation (2.7), the quadratic term can be
expanded as
cosϕ

sinϕ

⊤

Σ−1

cosϕ
sinϕ

 = cosϕ⊤F cosϕ+ 2 cosϕ⊤G sinϕ+ sinϕ⊤H sinϕ. (2.8)

Writing the quadratic form of Equation (2.6) as Equation (2.8) allows the application
of product-to-sum trigonometric identities. These identities can pose the RHS of
Equation (2.8) as the sums

N∑
n=1

N∑
j=1

[Fn,j + Hn,j

2 cos(ϕn − ϕj) + Fn,j − Hn,j

2 cos(ϕn + ϕj)

− Gn,j sin(ϕn − ϕj) + Gn,j sin(ϕn + ϕj)
]
.

(2.9)

If we further define the quantities A, Ω, B and Υ from F, G and H as

An,j = abs
(

1/2(Fn,j + Hn,j) − iGn,j
)
, (2.10)

Ωn,j = ang
(

1/2(Fn,j + Hn,j) − iGn,j
)
, (2.11)

Bn,j = abs
(

1/2(Fn,j − Hn,j) + iGn,j
)
, and (2.12)

Υn,j = ang
(

1/2(Fn,j − Hn,j) + iGn,j
)

(2.13)

the RHS of Equation (2.8) attains its minimal form
[
An,j cos(ϕn − ϕj − Ωn,j) + Bn,j cos(ϕn + ϕj − Υn,j)

]
. (2.14)

Drawing on the definitions presented in Equation (2.7), and from Equation (2.10) to
Equation (2.13), the multivariate Generalised von Mises as presented in Equation (2.6)
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can be written in its minimal form

mGvM(ϕ;µ,κ, A, B, Ω, Υ) ∝ exp
{
κ⊤ cos(ϕ− µ)

− 1
2

N∑
n=1

N∑
j=1

[
An,j cos(ϕn − ϕj − Ωn,j) + Bn,j cos(ϕn + ϕj − Υn,j)

]} (2.15)

with only 2N2 parameters.

2.1.1 Generative view of the mGvM

Another way of expressing the mGvM is through defining a generative model, that
is, defining a series of conditional sampling procedures and operations on the samples
attained at each step such that the obtained samples follow the distribution of interest.
Under this view, the mGvM construction outlined in this chapter can be explored by
denoting the transformations through Dirac Delta functions as degenerate distributions.

To discuss this view in a concrete form, remember that the mGvM arises from an
arbitrary 2N-variate Gaussian distribution by both expressing the distribution in terms
of polar components and conditioning all radial components to unity. This process can
be encoded using Dirac delta distributions if we define

p(x) = N(x;m,Σ) (2.16)

p(z|x) =
N∏

n=1
δ
(
z2

n + z2
N+n − 1

)
δ (zn − xn) δ (zn+N − xN+n) (2.17)

p(ϕ|z) =
N∏

n=1
δ(cosϕn − zn)δ(sinϕn − zN+n), (2.18)

and recall that the marginal distribution for ϕ can be recovered from the joint model
based on Equation (2.16) to Equation (2.16) marginalising both x and z, i.e.

p(ϕ) =
∫
p(ϕ|z)p(z|x)p(x)dxdz. (2.19)

=
∫
p(ϕ|z)p(z)dz. (2.20)

The reasoning behind the choice of functions for the model just presented benefits
from further explanation. As with the standard mGvM construction, we start with
the Gaussian states in Equation (2.16). Then, Equation (2.17) introduces auxiliary
variables z to constrain x to the unit circle. The conditioning step is performed using
the sifting property when integrating Dirac Delta functions. Equation (2.18) then uses
the same sifting property as a proxy for the polar transformation.
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Posing the multivariate Generalised von Mises as a generative process can be useful
for deriving approximate inference methods as described in Chapter 5.

2.1.2 Related models

The multivariate Generalised von Mises relates to several other distributions. For
example, relationships between circular and directional distributions are not unusual
and the mGvM finds in the Matrix Fisher-Bingham distribution its generalisation to
the directional case. In particular, the form presented in Equation (2.4) showcases the
mGvM as a Matrix Fisher-Bingham concentration vector v and matrix Σ−1. Another
distribution which the mGvM is directly related to is a bivariate distribution that
generalised the von Mises-Fisher distribution by Mardia (1975b),

p(ϕ1, ϕ2) ∝ exp
{
κ1 cos(ϕ1 − µ1) + κ2 cos(ϕ2 − µ2) + a cosϕ1 cosϕ2+

b sinϕ1 cosϕ2 + c cosϕ1 sinϕ2 + d sinϕ1 sinϕ2

} (2.21)

This distribution is exactly the multivariate Generalised von Mises for two variables.
Assuming additional structures over the mGvM parameters also leads to other

distributions. For example, a special case defines the covariance in Equation (2.7) as a
block-diagonal and obtained using the Kronecker product of the identity matrix in R2

with a N × N symmetric matrix W, that is

Σ−1 = I2×2 ⊗ W =
W 0

0 W

 . (2.22)

The symmetry that Equation (2.22) establishes for sine and cosine quadratic terms
induces multiple simplifications. For example, the fundamental trigonometric identity,
cos2 ϕ+ sin2 ϕ = 1, dictates that the diagonal of the matrix W should not impact the
density shape. These diagonal values collapse to a multiplying constant which could
be removed because of the density’s normalisation. Given that the diagonal values of
W do not alter the distribution, we can additionally require the trace or diagonal of
W to be 0 as they are not identifiable.

The diagonal symmetric structure in Equation (2.22) also induces multiple simplifi-
cations in the parameter definitions from Equation (2.10) to Equation (2.12). More
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precisely, the mGvM parameters A, B, Ω, and Υ become

An,j = abs
(Wn,j + Wn,j

2 − 0i
)

= W, (2.23)

Bn,j = abs
(Wn,j − Wn,j

2 + 0i
)

= 0. (2.24)

Ωn,j = ang
(Wn,j − Wn,j

2 + 0i
)

= 0, and (2.25)

Υn,j = ang
(Wn,j + Wn,j

2 − 0i
)

= 0. (2.26)

Combining these simplifications with Equation (2.15) form a density we introduce
under the name of Toroidal Normal (TN). This distribution is defined as

TN(ϕ;κ,µ,W) ∝ exp
κ⊤ cos(ϕ− µ) − 1

2

N∑
n=1

N∑
j=1

[
Wn,j cos(ϕn − ϕj)

] (2.27)

and an example of which is shown in Figure 2.2.

Fig. 2.2 Example of a two-dimensional TN plotted in the [0, 2π) × [0, 2π) plane and
a torus, a unimodal distribution which is a special case of the mGvM. Darker tones
denote high probability zones, while lighter tones indicate low-probability regions.

Here we remark that the TN corresponds to a multivariate Generalised von Mises
distribution whose conditionals are all von Mises-distributed as shown in Section 2.2,
but it differs from the Mardia’s multivariate von Mises distribution (Mardia et al.,
2008). To see this difference, recall that the mvM is given as

mvM(ϕ;κ,W) ∝ exp
{
κ⊤ cos(ϕ) − 1

2 sinϕ⊤W sinϕ
}
, (2.28)
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while re-expressing the cosine differences in Equation (2.27) produces the distribution

TN(ϕ) ∝ exp
{
κ⊤ cos(ϕ− µ) − 1

2

[
cosϕ⊤W cosϕ+ sinϕ⊤W sinϕ

]}
. (2.29)

The differences between the mvM and the TN showcase that the Toroidal Normal
is the most-general distribution derived from the mGvM whose conditionals are all
von Mises distributed. Consequently, the TN is the most general symmetric, unimodal
distribution on the hyper-torus that stems from a multivariate Gaussian distribution.

2.1.3 Higher order extensions

As with the higher order Generalised von Mises, the mGvM can also be expanded to
include D cosine harmonics if its genesis from a Gaussian distribution is disregarded.
In this case, an mGvM of order D can be defined as

mGvMD(ϕ; M,K,A,B,Ω,Υ) ∝ exp
{ N∑

n=1

[ D∑
d=1

Kn,d cos(d(ϕd − Md,n))

+ 1
2

N∑
j=1

Ai,j cos(ϕn − ϕj − Ωn,j) + Bn,j cos(ϕn + ϕj − Υn,j)
]} (2.30)

As the further harmonics are added to the mGvM, the distribution can represent
more modes for each variable. Hence, it becomes more flexible and can express
behaviours on the hyper-torus and can be linked to Fourier-based shape modelling. An
example of how Fourier-based modelling can be applied is given by Li et al. (2008) in
a biological context.

However, the distribution loses its link to the multivariate Gaussian, since higher
order moments are also constrained. This higher order moment dependency can be
evidenced by invoking the general multi-angle formulae,

cos Dϕ =
D/2∑
d=0

(−1)d
(

D
2d

)
cosD−2d ϕ · sin2d ϕ (2.31)

sin Dϕ =
D/2∑
d=0

(−1)d
(

D
2d + 1

)
cosD−2d−1 ϕ · sin2d ϕ, (2.32)

which establishes the correspondence between a higher harmonic and a polynomial in
cosine and sine functions.
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2.2 Relevant properties of the mGvM and TN for
inference and modelling

The previous section introduced the multivariate Generalised von Mises and a particular
case of the mGvM, the Toroidal Gaussian. In this section, we present properties of these
models that are useful for modelling in applications and deriving special models. In
particular, this section explores some information theoretical properties, the distribution
of the model’s conditionals and its modes. We stress that unless explicitly noted, all the
results outlined in this section were not previously known for the arbitrary dimensional
case.

2.2.1 The mGvM and TN are maximum entropy distributions

In both applied or theoretical contexts, it is important to make as few assumptions
as possible about the modelled phenomena or the derived result. In inference, this
translates to choosing a prior distribution that embeds the fewest possible assumptions,
i.e. it is non-informative.

Drawing on previous connections between information theory and statistical me-
chanics (Jaynes, 1957a,b), Jaynes (1968) argued that distributions which maximise
information entropy correspond to the ones that incorporate the fewest prior assump-
tions on a given problem. Hence, such distributions should be chosen as priors for
Bayesian inference. Examples of distributions that maximise information entropy
feature many members of the exponential family, including the multivariate Gaussian.

The multivariate Generalised von Mises maximises the information entropy if the
data lives in a N-dimensional torus with defined first and second moments. Likewise, the
Toroidal Gaussian also maximises the entropy in the N-dimensional torus provided we
assume the particular covariance structure of the mGvM that induces a TN. Therefore,
these distribution should be considered when selecting priors for inference in the
hyper-torus.

To verify this property, we formalise the problem of finding the distribution that
maximises the entropy subject to the moment and topological constraints (i.e. the
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distribution must live on the surface of a hyper-torus) as the problem

maximise
p

−
∫
p(x) log p(x)dx

subject to ⟨x⟩p(x) = m,〈
xx⊤

〉
p(x)

= Σ,

x2
n + x2

N+n = 1, n = 1, . . . ,N,∫
p(x)dx = 1

(2.33)

where ⟨·⟩p(x) denotes the expectation of the quantities within the bracket taken with
respect to p(x).

The problem in Equation (2.33) can be recast in terms of polar coordinates with
unit radial component. Under this representation, Equation (2.33) becomes

minimise
p

∫
p(ϕ) log p(ϕ)dϕ

subject to
〈cosϕ

sinϕ

〉
p(x)

= m,

〈cosϕ
sinϕ

 cosϕ
sinϕ

⊤〉
p(x)

= Σ.

∫
p(ϕ)dϕ = 1.

(2.34)

To obtain the optimal distribution p, we write the Lagrangian of Equation (2.34)
and utilise calculus of variations. In particular, the first order optimality criterion
imposes that an optimal p should satisfy

δL
δp

= − log p(ϕ) + λ⊤

〈
cosϕ

sinϕ

〉
p(x)

−m


− η⊤vec

〈
cosϕ

sinϕ

cosϕ
sinϕ

⊤〉
p(x)

− Σ


− ν⊤

(∫
p(ϕ)dϕ− 1

)
= 0.

(2.35)
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Equation (2.35) result implies that the optimal p will have the form

p(ϕ) ∝ exp

λ⊤

cosϕ
sinϕ

− 1
2

cosϕ
sinϕ

⊤

mat(η)
cosϕ

sinϕ


 (2.36)

where mat(η) is the representation of η as 2N × 2N matrix.
Equation (2.36) can be identified with the over-parametrised form of the mGvM

distribution and is the maximum entropy distribution with moments constrained to
the unit circle. Furthermore, it is trivial to verify that the Toroidal Normal is also a
maximum entropy distribution once Σ is constrained to have the structure that induces
a TN from a mGvM.

2.2.2 Conditional and marginal distributions

Other properties of interest for modelling and inference refer to the distributions that
can be obtained from subsets of a random vector. A concrete example comes from time
series modelling, where it is often useful to understand what is the distribution of a
variable at a particular time given the values it assumed in previous time steps. Another
quantity of interest is to identify the distribution of a variable irrespective of the other
variables. This section analyses such properties for mGvM and TN distributions by
investigating their conditional and marginal distributions.

Conditional distributions

To analyse what is the distribution of a subset of variables as in the time series
example in a mGvM, we need to analyse the structure of conditional distributions.
This property can be examined by we partition the indexes of ϕ into two disjoint sets
A = {1, . . . ,D} and B = {D + 1, . . . ,N}.

With the subsets ϕA and ϕB, we can fix one of the subsets and analyse the dis-
tribution of the remaining variables. For example, if we fix the variables in B, the
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unnormalised log distribution over the distributions A is given as

log p∗(ϕA|ϕB) = κ⊤
A cos(ϕA − µA) + κ⊤

B cos(ϕB − µB)

− 1
2
∑
n=1
n∈A

∑
j=1
j∈A

[
An,j cos(ϕn − ϕj − Ωn,j) + Bn,j cos(ϕn + ϕj − Υn,j)

]

− 1
2
∑
n=1
n∈A

∑
j=1
j∈B

[
An,j cos(ϕn − ϕj − Ωn,j) + Bn,j cos(ϕn + ϕj − Υn,j)

]

− 1
2
∑
n=1
n∈B

∑
j=1
j∈A

[
An,j cos(ϕn − ϕj − Ωn,j) + Bn,j cos(ϕn + ϕj − Υn,j)

]

− 1
2
∑
n=1
n∈B

∑
j=1
j∈B

[
An,j cos(ϕn − ϕj − Ωn,j) + Bn,j cos(ϕn + ϕj − Υn,j)

]
.

(2.37)

The mGvM in Equation (2.37) admits further simplification since the variables
in B are constant. Hence, terms which feature difference and sums of angles whose
indexes lie in the set B could be re-expressed through a scaled cosine difference, that
is, for n ∈ A and j ∈ B,

An,j cos(ϕn − ϕj − Ωn,j) + Bn,j cos(ϕn + ϕj − Υn,j) = r cos(ϕn − φ), (2.38)

where r ∈ R+ and φ ∈ [0, 2π).
Applying Equation (2.38) to Equation (2.37) and simplifying results in the log

unnormalised density

log p∗(ϕA|ϕB) = κ̃⊤
A cos(ϕA − µ̃A)

− 1
2
∑
n=1
n∈A

∑
j=1
j∈A

[
An,j cos(ϕn − ϕj − Ωn,j) + Bn,j cos(ϕn + ϕj − Υn,j)

]
, (2.39)

which corresponds to a mGvM distribution, where the mean and concentration terms
fully absorb the information of the conditioned variables.

A particular case of interest occurs when the set A represents only one variable. In
this case, the corresponding distribution for A is a Generalised von Mises

GvM(ϕn|ϕ̸=n) ∝ exp
{
κ̃1,n cos(ϕn − µ̃1,n) + κ̃2,n cos(2ϕn − 2µ̃2,n)

}
(2.40)
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whose parameters can be linked to the over-parametrised form as

κ̃n,1 cos µ̃n,1 = κ1,n cos(µ1,n)

− 1
2
∑
j ̸=n

[
(Σ−1)n,j cos(ϕj) + (Σ−1)n,j+N sin(ϕj)

]
κ̃n,1 sin µ̃n,1 = κ1,n sin(µ1,n)

− 1
2
∑
j ̸=n

[
(Σ−1)n+N,j cos(ϕj) + (Σ−1)n+N,j+N sin(ϕj)

]
κ̃n,2 cos 2µ̃n,2 = −1

4
[
(Σ−1)n,n + (Σ−1)n+N,n+N

]
κ̃n,2 sin 2µ̃n,2 = −1

2(Σ−1)n,n+N.

(2.41)

Using the assumptions that simplify the multivariate Generalised von Mises into a
Toroidal Normal, it is possible to show that the conditionals of a Toroidal Normal are
also Toroidal Normal. That is, for a TN-distributed ϕ split into two mutually exclusive
sets A and B, the conditionals will follow

log p∗(ϕA|ϕB) = κ̃⊤
A cos(ϕA − µ̃A) − 1

2
∑
n=1
n∈A

∑
j=1
j∈A

[
(K−1)n,j cos(ϕn − ϕj)

]
. (2.42)

In special, when A contains only one index, e.g. n, the one-dimensional conditional is
a von Mises variable with parameters of which are given by

κ̃ cos µ̃ = κn cosµn − 1
2

N∑
j=1

(K−1)n,j cos(ϕj) (2.43)

κ̃ sin µ̃ = κn sinµn − 1
2

N∑
j=1

(K−1)n,j sin(ϕj). (2.44)

Marginal distributions

To analyse the behaviour of a variable in isolation of other set of mGvM variables
we turn to marginal distributions. A known result from Mardia (1975b) the two-
dimensional mGvM

p(ϕ1, ϕ2) ∝ exp
{
κ1 cos(ϕ1 − µ1) + κ2 cos(ϕ2 − µ2) + a cosϕ1 cosϕ2+

b sinϕ1 cosϕ2 + c cosϕ1 sinϕ2 + d sinϕ1 sinϕ2

}
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showed that the one-dimensional marginal of a two-dimensional mGvM is

p(ϕ1) ∝ exp
{
κ1 cos(ϕ1 − µ1)

}
× I0(q1/2(ϕ1)) (2.45)

where I0 is the modified Bessel function of first kind and order 0 and

q(ϕ1) =κ2
1 + 2κ1(a cosµ1 + b sinµ1) cosϕ1

+ 2κ1(c cosµ1 + d sinµ1) sinϕ1 + (a2 + b2) cos2 ϕ1 + (c2 + d2) sin2 ϕ1

+ (ab+ cd) cosϕ1 sinϕ1.

(2.46)

This suffices to show that the marginals of the mGvM are not in general mGvM-
distributed. This lack of marginalisation consistency implies that the Daniell-Kolmogorov
Extension Theorem (Daniell, 1919; Kolmogoroff, 1933; Rogers and Williams, 2000),
typically used to prove the existence of an underlying infinite-dimensional stochastic
process associated with underlying distribution, cannot be applied. This result also
suggests that an approach leveraging circulas, the copula analogue for circular variables
(see Section 1.2.3), should be considered if mGvM marginals are important for the
application in question.

Following the same argument outlined in this section, it is possible to show that a
bivariate Toroidal Normal given as

p(ϕ1, ϕ2) ∝ exp
{
κ1 cos(ϕ1 − µ1) + κ2 cos(ϕ2 − µ2) + w cos(ϕ1 − ϕ2)

}
(2.47)

has one dimensional marginal

p(ϕ1) ∝ exp
{
κ1 cos(ϕ1 − µ1)

}
× I0(q1/2(ϕ1)) (2.48)

where I0 is the modified Bessel function of first kind and order 0 with

q(ϕ1) = κ2
1 + w2 + w(2κ1 cos(cosϕ1 − µ1) + sin 2ϕ1). (2.49)

and, therefore, is also not closed under marginalisation.

2.2.3 Modes

It is not trivial to assess the number of modes for the multivariate Generalised von
Mises and the Toroidal Normal models for arbitrary parametrisations.
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Since both distributions are exponential family, to establish modality, it suffices to
analyse the critical points of their log-unnormalised densities and the Hessian at such
points. We obtain such locations by solving

∂

∂ϕi
log p∗(ϕ) = 0, (2.50)

where the partial derivative for the mGvM case corresponds to

∂

∂ϕi
log p∗(ϕ) = −κi sin(ϕi − µi)

− 1
2
∑
j̸=i

[−Ai,j sin(ϕi − ϕj − Ωi,j) − Bi,j sin(ϕi + ϕj − Υi,j)]

− 1
2
∑
j̸=i

[+Ai,j sin(ϕj − ϕi − Ωi,j) − Bi,j sin(ϕi + ϕj − Υi,j)]

= −κi sin(ϕi − µi) +
∑
j̸=i

[Bi,j sin(ϕi + ϕj − Υi,j)]].

(2.51)

It is possible to re-express the sums Equation (2.51) through phasor addition. This
leads to the realisation that Equation (2.51) is equivalent to the imaginary part of a
phasor

∂

∂ϕi
log p∗(ϕ) = Im {ηi exp{i(ϕi − νi)}} = 0 (2.52)

the phasor components ηi and νi are given as

η2
i =

κi cosµi −
∑
j ̸=i

Bj,i cos(ϕj + Υj,i)
2

+
κi sinµi −

∑
j̸=i

Bj,i sin(ϕj + Υj,i)
2

νi = arctan
(
κi sinµi −∑

j̸=i Bj,i sin(ϕj + Υj,i)
κi cosµi −∑

j̸=i Bj,i cos(ϕj + Υj,i)

)
.

Equation (2.51) implies that for each angle ϕi the optima is given by ϕ⋆i = ±π − νi.
Next, the Hessian is evaluated at these locations to determine points are modes of the
distribution. The Hessian at such locations need to be positive-definite in order for the
location to be a mode.
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By differentiating the gradient and using phasor arithmetic, the Hessian can be
shown to be defined as

∂2

∂ϕ2
i

log p∗(ϕ) = −κi cos(ϕi − µi) +
∑
j̸=i

Bi,j cos(ϕi + ϕj − Υi,j) (2.53)

= Re {η̃i exp{i(ϕi − ν̃i)}} (2.54)
∂2

∂ϕi∂ϕj
log p∗(ϕ) = Bi,j cos(ϕi + ϕj − Υi,j). (2.55)

The analytic expressions for the Hessian entries do not suggest any special properties
can be leveraged to analyse positive-definiteness at all 2N ϕ⋆i locations. Therefore, the
number of modes cannot be ascertain specifically and only a maximum of 2N can be
obtained.

For the TN distribution, the same reasoning can be conducted to arrive at the gra-
dients and Hessian of the unnormalised log-TN. These quantities are given analytically
as

∂

∂ϕi
log p∗(ϕ) = −κi sin(ϕi − µi) +

N∑
j=1

K−1
i,j sin(ϕi − ϕj)

= Im {ηi exp {ϕi − νi}} , (2.56)
∂2

∂ϕ2
i

log p∗(ϕ) = −κi cos(ϕi − µi) +
N∑

j=1
K−1

i,j cos(ϕi − ϕj)

= Re {ηi exp {ϕi − νi}} , and (2.57)
∂2

∂ϕi∂ϕj
log p∗(ϕ) = −K−1

i,j sin(ϕi − ϕj). (2.58)

As with the mGvM case, it is not trivial to establish positive-definiteness for the
Hessian at the critical points. Hence, we can only assume that in general, the TN
distribution will be multi-modal despite posessing unimodal conditionals.

2.3 Modelling with the multivariate Generalised
von Mises

In this section we will explore the ways in which the multivariate Generalised von
Mises can be used in practice for modelling. In Section 2.3.1 we discuss the role of
the mGvM as a posterior in a multitude of contexts. Then we analyse specific cases
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that result in mGvM posteriors: circular regression in Section 2.3.2 and latent variable
modelling in Section 2.3.3.

2.3.1 Relationship to other distributions: Posterior and ap-
proximations

In Probabilistic Machine Learning, learning and inference in probabilistic models are
often performed by direct application of Bayes rule,

p(x|y) = p(y|x)p(x)
p(y) (2.59)

where p(x) is the prior distribution over x, p(y|x) is the likelihood of the data y and
p(x|y) is the posterior distribution over x.

The multivariate Generalised von Mises arises as a posterior to many different
distributions spanning both circular, directional and Euclidean spaces. Figure 2.3
exemplifies the range of models that give rise by the multivariate Generalised von
Mises.

While the general Wrapped Gaussian and the general Projected Gaussian might
arise as posterior densities in some cases, the models which produce such distributions
are not as clear nor as broad as the ones encompassed by the mGvM. This fact can
be traced to their intricate functional forms. Mardia’s multivariate von Mises and the
Toroidal Normal are sub-cases of the multivariate Generalised von Mises and will only
be associated with a posterior distribution under exceptional cases when the likelihood
terms do not induce cross-correlations between sine and cosine terms of the mGvM.

The mGvM can also be used to approximate unimodal symmetric multivariate
distributions, as the Wrapped Gaussian, and multimodal asymmetric multivariate
circular distributions, as is the case for the general Projected Gaussian.

For illustrative purposes, we numerically compared approximations the general
Wrapped Gaussian and multivariate von Mises approximations to a base mGvM and
mGvM approximations to these two distributions. The approximations were obtained
by numerically minimising the KL divergence between the approximating distribution
and the base distributions. These experiments were conducted in a two-dimensional
setting and did not include the projected Gaussian to render the computation of the
normalising constants tractable by numerical integration. The resulting distributions
are shown in Table 2.1. In Table 2.1, the mvM and the multivariate wrapped Gaussian
cannot capture the multimodality and asymmetry of the mGvM. Moreover, these
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mGvM

vM TN

mvM GvM

vMF FB

N

(a)

mGvM

vM TN

mvM GvM

vMF FB

N

(b)
mGvM

vM TN

mvM GvM

vMF FB

N

(c)

mGvM

vM TN

mvM GvM

vMF FB

N

(d)
mGvM

vM TN

mvM GvM

vMF FB

N

(e)

Prior distribution

Circular Likelihood

Directional Likelihood

Euclidean Likelihood

Fig. 2.3 Diagrams outlining how circular prior distributions be combined with different
likelihoods yield a multivariate Generalised von Mises posterior. The source node in
red corresponds to the prior, while the node the connecting arrow points to represents
the likelihood. The priors under consideration are the mGvM shown in (a), vM
shown in (b), TN shown in (c), mvM shown in (d), and GvM shown in (e). The
conjugacy relationship shown in diagrams (a) to (e) is established through the mean of
the distributions shown.
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Approximation
True mGvM gWG mvM

mGvM

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π
φ

2

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π

φ
2

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π

φ
2

gWG

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π

φ
2

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π

φ
2

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π

φ
2

mvM

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π

φ
2

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π

φ
2

0 π/2 π 3π/2 2π
φ1

0

π/2

π

3π/2

2π

φ
2

Table 2.1 Circular distributions and their approximations obtained by numerically
minimising the KL divergence. Diagonal entries represent the true distribution of
each row. Off-diagonal entries show the approximation of the diagonal entry using the
column distribution. For example, the entry on row 1 (mGvM) and column 2 (gWG)
denote the obtained gWG approximation to the mGvM shown in row 1, column 1.

distributions approximate the multiple modes by increasing their variance and assigning
a high probability to the region of low-probability between the modes of the mGvM.
On the other hand, when the mvM and the multivariate wrapped Gaussian are
approximated by the mGvM, the mGvM can approximate well the high-probability
zones of the wrapped Gaussian and its unimodality and fully recover the mvM.

2.3.2 Circular regression

Consider a regression problem in which a set of noisy output circular variables {ψn}N
n=1

have been collected at a number of input locations {xn}N
n=1. The treatment will apply
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to inputs that can be multi-dimensional and lie in any space (e.g., they could be circular
themselves). The goal is to predict circular variables {ψ∗

m}M
m=1 at unseen input points

{x∗
m}M

m=1.
Here we leverage the connection between the mGvM distribution and the multivari-

ate Gaussian to produce a powerful class of probabilistic models for this purpose based
on Gaussian Processes. In what follows the outputs and inputs will be represented as
vectors and matrices respectively, that is ψ, x, ψ∗ and x∗.

Therefore, to present regression with the multivariate Generalised von Mises, this
section succinctly reviews the Gaussian Process regression, which informs the mGvM
regression framework. Then, the particularities of the mGvM regression case such as
the transductive characteristic of the model are analysed in detail Section 2.3.2. We
remark that regardless of some limitations of the mGvM regression when compared
to Gaussian Processes, the advances promoted by the mGvM is substantial for both
Circular Statistics and Data Science as it provides an unifying regression framework
for circular responses, adequate representation of angle correlations and uncertainty.

Gaussian Process regression

In standard Gaussian Process regression (Rasmussen and Williams, 2006), a multivariate
Gaussian prior is placed over the underlying unknown function values at the input
points

p(f|x) = GP(f; 0,K(x, x′)), (2.60)

and a Gaussian noise model is assumed to produce the observations at each input
location,

p(yn|fn, xn) = N(yn; fn, σ2
y). (2.61)

The prior over the function values is specified using the Gaussian Process’s covariance
function K(x, x′) that encapsulates prior assumptions about the properties of the
underlying regression function.

Prediction then involves forming the posterior predictive distribution, which also
takes a Gaussian form due to conjugacy, i.e.

p(f∗|y, x, x∗) = GP(f∗;m,Σ), (2.62)
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where the mean and covariance parameters are given by

m = K(x∗, x)
(
K(x, x) + σ2

yI
)−1

y (2.63)

Σ = K(x∗, x∗) − K(x∗, x)
(
K(x, x) + σ2

yI
)−1

K(x∗, x∗). (2.64)

The covariance function K(x, x′) is a cornerstone in Gaussian Processes modelling.
Covariance functions are positive semi-definite kernels, i.e. functions k : X × X → C

such that ∫
X
k(x, x′)f(x)f(x′)Hdµ(x)dµ(x′) ≥ 0 (2.65)

for all square-integrable f under measure µ, for which the evaluation of k at every
input pair in the set {(xi, xj)|i = 1, . . . ,N; j = 1, . . . ,N} forms a Gram matrix identified
with the covariance of the input locations.

There is a large body of knowledge on modelling with covariance functions and how
to unify the treatment of different inputs ranging from Euclidean and circular variables
to more exotic inputs such as strings (Lodhi et al., 2001) or graphs (Gärtner et al.,
2003). Covariance functions can also be used for performing model criticism (Lloyd
and Ghahramani, 2015) and automatically construct interpretable models (Duvenaud
et al., 2013, 2011). Here we refrain from providing an exhaustive analysis of modelling
with kernels and direct the interested reader to the works of Rasmussen and Williams
(2006), Murphy (2012), and Duvenaud (2014).

Interpretable models based on covariance functions can be constructed using elemen-
tary kernels and kernel operations. Elementary kernels embody the central assumptions
over the underlying function, while the kernel operations allow compounding elementary
kernels to provide more intricate function structures.

Examples of assumptions embodied by elementary kernels include function smooth-
ness and locality through the order-ν Matérn kernel

K(x, x′) = 21−ν

Γ(ν)

(√
2ν
ℓ

∥x − x′∥
)ν

Kν

(√
2ν
ℓ

∥x − x′∥
)

(2.66)

or the Squared Exponential kernel

K(x, x′) = σ exp
{

−∥x − x′∥2

2ℓ2

}
. (2.67)

The order-ν Matérn kernel implies the underlying function is less than ν-times Mean
Square differentiable, whereas the Squared Exponential kernel implies in an infinitely
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differentiable function. In both cases, the parameter ℓ determines the correlation
strength between different points. This characteristic can be used to weight the
importance of distinct inputs as proposed by Sir David Mackay (1995) by localising
the parameter ℓ in his Automatic Relevance Determination kernel,

K(x, x′) = σ exp

−
N∑

j=1

(
xj − x′

j

)2

2ℓ2
j

 . (2.68)

Other function behaviours such as periodicity and linear trends can be incorporated
through the periodic kernel1

K(x, x′) = σ exp
{
α cos

(
β(x − x′)

)}
, (2.69)

and the linear kernel
K(x, x′) = σ(x − c)(x′ − c). (2.70)

To form more complex functions, these simple kernels can be combined through
kernel operations. Kernel operations are operations ◦ such that for A and B kernels,
K = A ◦ B is also a kernel. Two elementary operations include kernel (element-wise)
addition

K(x, x′) = A(x, x′) ⊕ B(x, x′) (2.71)

and kernel (element-wise) multiplication

K(x, x′) = A(x, x′) ⊙ B(x, x′) (2.72)

The function associated with the addition of kernels A and B will present a
behaviour incorporating both structures of kernel A and B. Multiplication of different
kernels can weight the structures of kernel A with the structures of kernel B, effectively
convolving the two function behaviours.

1The periodic kernel proposed by MacKay (1998) is presented throughout the Probabilistic Machine
Learning literature as a more convoluted expression with a squared sine relation.

Here, we adopt an equivalent form that can be obtained using double angle formulas. This
alternative presentation emphasises three major points: (i) the similarities with the von Mises family
of distributions, and (ii) remark that it is the analogue of a Squared Exponential kernel constrained
to the unit circle and (iii) the cosine difference is the Euclidean distance analogue on the unit circle.
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Operations are not restricted to multiplication or addition. More complex operators
can be posed, such as the change point kernel,

K(x, x′) = σ(x)A(x, x′) + (1 − σ(x))B(x, x′), (2.73)

which alternates between the structures of kernels A and B, or nesting kernels (Cho
and Saul, 2009; Hermans and Schrauwen, 2012),

K(x, x′) = A
(
B(x, x′),C(x, x′)

)
, (2.74)

whose behaviour extends that of atomic kernels into more complex structures when
kernel A differs2 from that of the kernels B and C (Duvenaud, 2014).

mGvM regression

Regression using the mGvM distribution draws upon the covariance function framework
developed for Gaussian Process regression.

In mGvM regression, an underlying function maps input locations x to variables ϕ
in the unit circle and their noisy realisations ψ. A schematic overview of the similarities
and differences between Gaussian Process regression and mGvM regression is shown
in Figure 2.4.

2Duvenaud (Duvenaud, 2014, Chapter 5) obtained the result that an infinite nesting of Squared
Exponential covariance functions yields another Squared Exponential function. This result was part
of a comparison of Gaussian Processes to Deep Gaussian Processes (Damianou and Lawrence, 2013),
models with recursive latent GP structure,

p(y) =
∫

GP(y|x1) ×

[D−1∏
j=1

GP(xi|xi+1)
]

dx1 × · · · × dxD. (2.75)

However, we note that Duvenaud’s comparison is limited only to the nesting of Squared Exponential
kernels. While this analysis is a major step in establishing a comparison between ‘deep’ kernels
and deep Gaussian Processes, we believe nested kernels deserve further analysis. In particular, a
comparison of ‘deep’ kernel representations to those obtained from deep Gaussian Processes could be
established by nesting Neural Network kernels by Williams (Williams, 1997),

K(x, x′) = 2
π

arcsin

 2x⊤Σx′√(
1 + 2x⊤Σx

)(
1 + 2x′⊤Σx′

)
 . (2.76)

Under this approach, the nonlinearity introduced by the arcsin function prevents the nested kernel
from admitting simple reductions like the one found in the Squared Exponential case. Moreover, it
accurately represents the behaviour of ‘stacking’ Neural Network layers, which better describes how
deep Neural Networks are constructed. To the best of our knowledge, the aforementioned analysis has
not yet been conducted.
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The ability to use Gaussian Processes’ covariance functions is a major motivation
for using a mGvM regression model. The introducing a function for the covariance of
the over-complete mGvM allows handling a myriad of different input variables, thus
unifying the treatment of circular regression for different types of inputs. Currently,
regression for circular variables relies on bespoke regression frameworks based on the
input data type. Next, we motivate the simplest mGvM regression model based

Fig. 2.4 Similarities and differences between Gaussian Process regression and Circular
regression with the mGvM.

on Gaussian Process regression defining functions whose image coincides with the
unit circle. The mGvM would fit such description because it is connected with the
multivariate Gaussian distribution by constraining it to live in the unit circle. This
property was previously shown in Section 2.2. For example, we can assume that prior
to observing data, the responses ϕ at the points x are well represented by Toroidal
Normal prior,

p(ϕ|x) = TN(ϕ; 0, 0,K(x, x′)), (2.77)

if we do not want to impose correlations between the sine and cosine terms.
If, as in the outlined Gaussian Process model, isotropic noise is assumed for the

data ψ, the model obtained is a product of von Mises

p(ψ|ϕ) =
N∏

n=1
vM(ψn;ϕn, κ), (2.78)

The posterior arising from combining Equation (2.77) and Equation (2.78) is also a
Toroidal Normal

p(ϕ|ψ, x) = TN(ϕ;κ1 × 1,ψ,K(x, x′)) (2.79)

where 1 is the vector whose all entries are one.
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A more general model expanding on this particular case is consider all ranges of
possible correlations between the sine and cosines of the response for the location
modelled. This general construction case uses a mGvM prior of the form

p(ϕ|ψ, x) = mGvM

ϕ;η,ω(x),
 F(x, x′) G(x, x′)
G⊤(x, x′) H(x, x′)

 . (2.80)

where ω(·) represents a mean-angle function and η is an associated concentration
vector. The a more general likelihood than the von Mises distribution would be a
circular distribution that allows for a correlated Normal behaviour. A distribution that
is conjugate to the mGvM and satisfies this criterion is the Generalised von Mises

p(ψn|ϕn) = GvM(ψn;ϕn, κ1, ϕn, κ2). (2.81)

The model resulting from Equation (2.80) and Equation (2.81) is a mGvM distribution,

p(ϕ|ψ, x) = mGvM (ϕ;α,β,W) , (2.82)

whose parameters can be defined succinctly using phasor arithmetic. The parameters
α and β are implicitly given as

αii cos(ϕi − βi) = Re

{∑
i
κ1ei(ψn−ϕn) + ηnei(ϕn−ω(xn))

}
(2.83)

where Re denotes the real part of a complex number and i =
√

−1. Noting that the
second harmonic of the GvM can be re-written in matrix form as

κ2 cos(2ψn − 2ϕn) = κ2
(
cos2(ψn − ϕn) − sin2(ψn − ϕn)

)
= κ2

(
(cosψn cosϕn + sinψn sinϕn)2

−(sinψn cosϕn − sinϕn cosψn)2
)

= κ2
(
cos2 ϕn cos 2ψn + 2 sinϕn cosϕn(1/2 sin 2ψn)

+ sin2 ϕn(− cos 2ψn)
)

=
cosϕn

sinϕn

⊤ κ2 cos 2ψn
κ2
2 sin 2ψn

κ2
2 sin 2ψn −κ2 cos 2ψn

cosϕn

sinϕn

 ,
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the matrix W in Equation (2.82) can be explicitly given as

W =


 F(x, x′) G(x, x′)
G⊤(x, x′) H(x, x′)

−1

+
diag(κ2 cos 2ψ) diag(κ2

2 sin 2ψ)
diag(κ2

2 sin 2ψ) −diag(κ2 cos 2ψ)




−1

.

In both the regression model with the Toroidal Normal and the more general one
with the multivariate Generalised von Mises, inference proceeds subtly differently to
that in a GP. Both the Toroidal Gaussian and multivariate Generalised von Mises lack
of consistency under marginalisation, hence the mGvM regression should be treated
as transductive model, that is, the locations for the predictions should be specified at
inference time.

Another aspect where the mGvM regression model differs from Gaussian Processes
lies in the fact that the covariance function parameters—the model hyper-parameters—
for Toroidal Normal priors cannot be easily learned. This issue arises because the TN
is an intractable distribution, in the sense that its normalising constant is unknown.
Therefore, it is not trivial to perform learning in these models and any approximate
inference methods used for learning will need to additionally approximate the normaliser
of the prior. This additional difficulty is termed double-intractability in probabilistic
machine learning. This issue arises in prominent probabilistic machine learning models
such as Ising models, Restricted Boltzmann Machines and Markov Random Fields, as
well as in most circular and directional statistics models in higher dimensions.

2.3.3 Latent variable modelling

We motivate latent variable modelling with the mGvM with the concrete problem
of learning the motion of an articulated rigid body from noisy measurements in a
Euclidean space. Articulated rigid bodies can represent a large class of physical
problems including mechanical systems, human motion and molecular interactions.
The dynamics of rigid bodies can also be fully described by rotations around a fixed
point plus a translation and, therefore, can be succinctly represented using angles as
described by Chirikjian and Kyatkin (2000).

For simplicity, we will restrict our treatment to a rigid body with N articulations
on a 2-dimensional Euclidean space and rotations only, as the discussion trivially
generalises to higher-dimensional spaces and translations can be incorporated through
an additional linear term. Extensions for 3-dimensional models follow directly from
the 2-dimensional case, which can be seen as the first step towards these more complex
models.
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The Euclidean components of any point on an articulated rigid body can be described
using the angles between each articulation and their distances. More precisely, for an
upright, counter-clockwise coordinate system, the horizontal and vertical components
of a point in the N-th articulator can be written as

xN =
n∑

j=1
lj sin(φj) (2.84)

yN = −
N∑

j=1
lj cos(φj), (2.85)

where lj is the length of a link j to the next link or the marker as displayed in Figure 2.5.

Subject arm Wire-frame model

Origin

Marker 2

Maker 3

Maker 4
Marker 1

Fig. 2.5 Schematic view of the motion caption problem outlining the coordinate system
and wire-frame diagram extraction.

Considering noise corruption on the measurements for each marker position, Equa-
tion (2.84) and Equation (2.85) become

y
x

 =
−L

L

cosφ
sinφ

+ ϵ (2.86)

where ϵ ∼ N(0,Λ) with Λ a diagonal matrix and L is the matrix that encodes the
distances between each pair of joints (i, j) through the li,j such that

li,j =


√

(xi − xj)2 + (yi − yj)2 if node i connected to node j
0 otherwise

(2.87)
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Without loss of generality, we can model only the variation around a fixed mean
angle for each joint, i.e. φd = ϕd − µd which results in the general model for noisy
measurements y

x

 =
−L

L

cos (µ− ϕ)
sin (µ− ϕ)

+ ϵ (2.88)

=
−L

L

R(µ)
cosϕ

sinϕ

+ ϵ (2.89)

=
A

B

 cosϕ
sinϕ

+ ϵ (2.90)

where R(µ) is a rotation matrix, A and B are distance matrices after the rotation.
The prior over the joint angles can be modelled by a multivariate Generalised

von Mises. Here we take inspiration from Principal Component Analysis and use
independent von Mises distributions

p(ϕn,d) = vM (ϕn,d; 0, κd) , (2.91)

although in some cases when performing motion capture, such as a flexed arm rotating
around the shoulder joint, the limb angles may exhibit a dependence structure.

Due to conjugacy, the posterior distribution over the latent angles is a mGvM
distribution. This can be informally verified by noting that the log unnormalised
priors on the latent angles ϕ are linear functions of sines and cosines, while the
log unnormalised likelihood is the exponential of a quadratic function in sine and
cosines. This choice of distributions implies that the log unnormalised posterior being
a quadratic function of sines and cosines,

log p∗(ϕ|x,y) = κ(x,y)⊤ cos
(
ϕ− µ(x,y)

)
− 1

2

cosϕ
sinϕ

Σ(A,B)
cosϕ

sinϕ

 (2.92)

where

Σ(A,B) =


A

B

⊤

Λ−1

A
B




−1

and
κ(x,y) ⊙ sinµ(x,y)
κ(x,y) ⊙ cosµ(x,y)

 =
A

B

y
x

 , (2.93)

hence, the posterior is a

p(ϕ|x,y) = mGvM
(
ϕ;κ(x,y),µ(x,y),Σ(A,B)

)
(2.94)
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The model can be extended to treat the parameters in a Bayesian way by including
sparse priors over the coefficient matrices A and B and the observation noise. A
standard choice for this task is to define Automatic Relevance Detection priors (Mackay,
1995) over the columns of these matrices,

p(An,d) = N(An,d; 0, σ2
A,d) (2.95)

p(Bn,d) = N(Bn,d; 0, σ2
B,d), (2.96)

in order to perform automatic structure learning. Additional Inverse Gamma priors
over σ2

A,d, σ2
B,d and the entries of Λ, i.e.

p(σ2
A,d) = IG(σ2

A,d, αA,d, βA,d) (2.97)
p(σ2

B,d) = IG(σ2
B,d, αB,d, βB,d) (2.98)

p(Λn,n) = IG(Λn,n, αΛ,n, βΛ,n), (2.99)

complete the model as regularisers for measurement noise and the pruning of A and B
entries. Unlike the regression model, the latent variable model is not doubly-intractable
as all components of the model p(ϕ,x,y) have tractable normalising constants. Hence,
its parameters can be learned using methods that only approximate the mGvM
posterior distribution.

The dimensionality reduction mGvM model has constructed analogously to the
Probabilistic Factor Analysis (PFA) model introduced by Tipping and Bishop (1997,
1999). The special case when the diagonal matrix of the noise is isotropic, i.e. Λ = σ2I,
coincides with Probabilistic Principal Component Analysis (PPCA).

Hence, we denote the dimensionality reduction models with diagonal Λ and isotropic
Λ, circular Factor Analysis (cFA) and circular Principal Component Analysis (cPCA).
Further connections between these circular models and their Euclidean counterparts
are explored next through limiting behaviour and geometrical analysis.

The cFA model is given by

p(x) = N(x; 0, I)
p(y|x) = N(y; Wx,Λ)

(2.100)

where W is a matrix that encodes the linear mapping between hidden components
x ∈ RM and data y ∈ RN, with N > M.
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If we impose that each of the latent components xm is sinusoidal and may be
parametrised by a hidden angle ϕm plus a phase shift φm, we obtain the model

p(ϕm) = GvM(ϕ;κ1,m, κ2,m, µ1,m, µ2,m)
p(xm|ϕm) = δ(xm − sin(ϕm − φm))

p(y|x) = N(y; Wx,Λ)
(2.101)

To obtain the relation directly between the data and the hidden angle, we integrate
out the latent components x

p(y|ϕ) =
∫
δ(x − sin(ϕ−φ))N(y; Wx,Λ)dx (2.102)

which results in the model used in the mGvM dimensionality reduction application.
Alternatively, it is also possible to show the limiting behaviour of the model arising

from the mGvM dimensionality reduction application becomes the PFA model, for
mean angles µ → 0 and high concentration parameters. In this regime, the small angle
approximation

sinϕ ≈ ϕ, cosϕ ≈ 0 (2.103)

is valid and leads to the Generalised von Mises priors simplification to

p(ϕ) ∝ exp {κ1 cos(ϕ− µ1) + κ2 cos(2(ϕ− µ2))}
∝ exp

{
−κ1 cos(µ2)ϕ2 + (κ1 sin(µ1) + 2κ2 sin(2µ2))ϕ

}
∝ exp

−κ1 cos(µ2)
[
ϕ− κ1 sin(µ1) + 2κ2 sin(2µ2)

2κ1 cos(µ2)

]2


(2.104)

which is proportional to a Gaussian distribution and shows that under the small angle
regime, the coefficient matrix A is a good approximation for W and the model collapses
to PFA.

Another connection between the dimensionality reduction with the mGvM and
PFA may be established geometrically. While PFA describes the data through hidden
hyperplanes, the lower dimensional description of the data with mGvM occurs through
hidden toruses, as illustrated in Figure 2.6. The effect of priors in these systems is also
highlighted by Figure 2.6. The mean angle and concentration of each prior impacts the
distribution of mass along the direction of the angular component on the hyper-torus.
High concentration values on the prior leads to dense regions around the mean angle,
as presented in the middle graph of Figure 2.6 while low concentration leads to uniform
mass distribution, shown in the right graph of Figure 2.6.
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[tbp]

Fig. 2.6 Plots of the model x = 2 cosϕ1 + ϵ, y = 2 sinϕ1 + 2 cosϕ2 + ϵ, z = 2 sinϕ2 + ϵ
where ϕ1 ∼ vM(50, π/2) is a peaked von Mises distribution, ϕ2 ∼ vM(0.1, 0) is an
almost-uniform von Mises distribution and the noise is ϵ ∼ N(0, 0.01) to exemplify a
3-dimensional Cartesian data set as a function of a 2-dimensional angular space: plot
of samples from the model (left), samples on the z = 0 plane, which is equivalent to
fixing ϕ2 = ±π (middle), samples on the x = 0 plane, which is equivalent to fixing
ϕ1 = ±π/2 (right).

An analogy often used to describe this shape of the data in the PFA’s hidden space
is a “fuzzy pancake”, as the Gaussian noise induces the shape irregularity (“fuzziness”),
of the hidden plane (“pancake”). Likewise, for dimensionality reduction with the
mGvM the corresponding analogy would be a “fuzzy doughnut”, as the Gaussian noise
also incurs in irregularities over the surface of a “doughnut”, which bears a similar
shape to a torus.

2.4 Related work

The mGvM is a generalisation of Zemel, Williams and Mozer’s Directional-Unit
Boltzmann Machine (DUBM) (Zemel et al., 1993), which only featured the quadratic
term and its proposition stemmed purely from Boltzmann Machines, and not from
conditioning a Gaussian to the unit circle. At the same time, the mGvM is a special
case of a matrix Fisher-Bingham distribution, as can be identified by inspecting
Equation (2.4) and Equation (1.32).

Scholz (Scholz, 2007) proposed a circular PCA based on the circular neural network
of (Kirby and Miranda, 1996). A more appropriate name such this model, however,
would be a circular auto-encoder, as the model’s architecture fundamentally resembles
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that of two neural networks sharing a latent space with circular units shown in
Figure 2.7. Furthermore, Scholz’s circular PCA was not presented in a probabilistic
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y1

y2

y3

ϕ1

ϕ2

(b)

Fig. 2.7 Comparison of model architectures for dimensionality reduction with circular
variables. The model by Scholz (2007) (a) uses intermediary latent Euclidean states and
an auto-encoder structure to learn latent circular variables from Euclidean observations.
The circular PCA outlined in this thesis (b) directly maps from observed space to
latent circular variables.

framework, nor was it related to standard PCA. However, using the mGvM it would
be possible to build a probabilistic model based on this architecture, a probabilistic
circular auto-encoder.

2.5 Summary

This chapter presents two major contributions: a new multivariate distribution for
circular variables, and a modelling framework for circular variables based on covariance
functions.

Unlike previously multivariate distributions for circular variables, the first con-
tribution of this chapter, we introduced the Multivariate Generalised von Mises, a
multivariate distribution that allows for the most general covariance structure between
any two angles. We showed that besides generalising previously existing distributions,
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the mGvM has important theoretical properties including that it is a maximum entropy
distribution, an exponential family member, and a posterior for a large number of
models. Other properties demonstrated in this chapter for submodels of the mGvM
will be central to the algorithms outlined in Part III. More interestingly, we introduced
properties regarding the marginal distributions and the process view of the distri-
bution. These important results had not been derived previously and present novel
contributions of this thesis.

The second contribution of this chapter relies on porting the covariance function
modelling framework to circular variables. We outlined how this framework developed
for Gaussian Processes can be incorporated into mGvM-based models for both re-
gression and latent variable settings. To best our knowledge, the covariance function
modelling framework reviewed in this chapter had not previously been applied to
circular statistics problems. We also showed how regression and latent variable models
with the multivariate Generalised von Mises relate to their Euclidean counterparts.

Although the multivariate Generalised von Mises lays the foundations for porting
the Gaussian Process machinery to circular statistics, the mGvM is an intractable
distribution. Moreover, its reliance on covariance functions implies that the mGvM
requires careful, bespoke approximations to handle large data sets. In the next chapter,
we introduce models based on transformations of the Generalised von Mises to solve
these issues.





Chapter 3

Augmented representations of the
mGvM

The previous chapter introduced the multivariate Generalised von Mises distribution,
the maximum entropy distribution on the hyper-torus that arises as a posterior for a
multitude of different probabilistic models. While this new distribution provides a basis
for applying the covariance function modelling framework, the lack of a closed-form
expression to evaluate the mGvM normalising constant makes inference and learning
difficult. Perhaps the most important example of where such difficulties arise is in
circular regression with mGvM priors.

These issues are not exclusive to the mGvM, similar problems are endemic to Ising
models (Hubbard, 1959), Restricted Boltzmann Machines (Hinton, 1989) and Markov
Random Fields (Pakman and Paninski, 2013). Inference and learning in these models is
made tractable through an augmented representation cleverly designed to eliminate the
functional terms responsible for generating computational difficulties. An example of
such augmented representations is the Hubbard Stratonovich transformation for Ising
models, which augments Ising models introducing Gaussian states to fully factorise
the resulting model and eliminate the quadratic terms responsible for Ising model’s
intractabilities.

Drawing on these augmented representations, this chapter presents a significant
contribution to help solve the difficulties associated to the mGvM intractability:
a family of augmented models for the mGvM which are amenable to approximate
inference. This family of models decouples the quadratic terms that produce intractable
normalising constants for the mGvM. This characteristic is important when performing
learning on a model that has a mGvM prior, such as the circular regression model
presented in Chapter 2, as the normalising constant is responsible for performing
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adequate parameter regularisation. The proposed augmentation also allows building
sparse models for the mGvM, which can be useful when dealing with large data sets.

3.1 Derivations for the mGvM

In this section, we explore an augmentation of the mGvM that allows writing it as
a joint model with factorised structure and known partition functions leveraging the
concept of exchangeability. Then, we relate the variable augmentation to the Hubbard-
Stratanovich transformation, a widely used transformation from statistical physics for
calculating partition functions.

3.1.1 Exchangeablility and modelling

The notion of exchangeability can be informally explained as order independence,
i.e. an array of variables x1, . . . , xN can have its indices permuted without any loss
of information. This concept is made precised by the celebrated fundamental result
from Bernardo de Finetti (de Finetti, 1931) which was later extended by Czesław
Ryll-Nardzewski (Ryll-Nardzewski, 1957). This result states that the distribution of
any a fully correlated random vector x can be re-expressed as a latent conditional
independence structure

p(x1, . . . , xN) =
∫
p(f|x)p(x)df =

∫ [ N∏
n=1

p(xn|f)
]
p(f)df. (3.1)

where f is a latent variable.
Bernardo and Smith (Bernardo and Smith, 2008) argue that de Finetti’s theorem

on exchangeability is a central piece in hierarchical models. Indeed, a vast range of hier-
archical probabilistic Machine Learning models hinge on the concept of exchangeability.
Examples typically include space partitioning and clustering models such as the Chinese
Restaurant Process (Aldous, 1985; Pitman, 2002), the Indian Buffet Process (Ghahra-
mani and Griffiths, 2006), Mondrian processes and forests (Lakshminarayanan et al.,
2014; Roy and Teh, 2009), Dirichlet trees (Neal, 2003) and topic models (Blei et al.,
2003). However, the entire field of inducing input representations for sparse Gaussian
Processes (Bui and Turner, 2014; Lee et al., 2017; Quiñonero-Candela and Rasmussen,
2005; Snelson and Ghahramani, 2006a) can can also be posited as a direct consequence
of exchangeability.
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A singularly useful extension of the exchangeability property is partial exchange-
ability. The concept of partial exchangeability was independently derived by David
Aldous (Aldous, 1981) and Douglas Hoover (Hoover, 1979), who showed that the in-
dices of an array of variables x1, . . . , xN can be compartmentalised into M ≤ N disjoint
partitions I1, . . . , IM where each partition has a private latent variable fm associated
with it, i.e.

p(x1, . . . , xN) =
∫
p(f|x)p(x)df =

∫ M∏
m=1

p(fm)
∏

n∈Im

p(xn|fm)
 df. (3.2)

A particular case where this notion of decoupling through augmenting an ex-
changeable distribution can be seen in the Hubbard-Stratonovich transformation from
statistical physics. Ruslan Stratonovich (Stratonovich, 1957) proposed the transforma-
tion which was later popularised by John Hubbard (Hubbard, 1959) as a method to
estimate the partition function in many–body systems, particularly for Ising models,
i.e.,

p(x) ∝ exp
{
a⊤x + 1

2x⊤Wx
}

(3.3)

where x is random vector such that each entry xi represents a particle state taking -1
or +1 as values, a is a real-valued vector and W is a real-valued matrix.

Stratonovich’s insight can be interpreted as through the lens of exchangeability
as realizing that is no ordering requirement on how the individual particle states xi

in x are represented in the Ising model. Hence, the states are exchangeable and it is
possible to derive an expansion that decoupled the model states as in Equation (3.2).
This property would allow estimating the normalising constant of the Ising model.

The the distribution over the augmentation states f has to be judiciously chosen to
promote the decoupling described by Equation (3.2). Stratonovich noticed that the
coupling in Equation (3.3) arose exclusively from the term +1

2x⊤Wx, which implied that
the conditional distribution p(f|x) would need to be an exponential family distribution
with so that the dependency with x would need to be quadratic in order to cancel the
coupling term in the Ising model.
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One natural choice for a distribution with such characteristics would be a multi-
variate Gaussian with a mean dependent on x, that is,

p(f|x) = N(f; x,Σ)

= 1
(2π)2/N det Σ

exp
{

−1
2(f − x)⊤Σ−1(f − x)

}
= 1

(2π)2/N det Σ
exp

{
−1

2f⊤Σ−1f + f⊤Σ−1x − 1
2x⊤Σ−1x

}
.

(3.4)

This conditional distribution of augmentation states f given x implies that the joint
Ising model becomes

p(f, x) ∝ exp
{

−1
2f⊤Σ−1f + f⊤Σ−1x − 1

2x⊤Σ−1x + a⊤x + 1
2x⊤Wx

}
(3.5)

= exp
{

−1
2f⊤Σ−1f + (f⊤Σ−1 + a⊤)x + 1

2x⊤(W − Σ−1)x
}
. (3.6)

From Equation (3.6) it becomes clear that to eliminate the quadratic dependency
on x, Σ−1 must be equal to W. Assuming Σ−1 = W, the joint distribution over x and
f reduces to

p(f, x) ∝ exp
{

−1
2f⊤Σ−1f + (f⊤Σ−1V + a⊤)x

}
, (3.7)

leading to the factorisation

p(f, x) = p(x|f)p(f) = Multinomial(x; f⊤Σ−1 + a⊤) × N(f; 0,Σ) (3.8)

for which all partition functions can be easily evaluated from closed-form expressions.
From Equation (3.2) and the Hubbard-Stratonovich transformation, it becomes

clear that partial exchangeability can be employed to decouple correlated variables
in the multivariate Generalised von Mises, and more generally the matrix Fisher-
Bingham distribution over Stiefel manifolds. Specifically, Equation (3.1) implies that a
N-dimensional multivariate Generalised von Mises mGvM over base states ϕ,

p(ϕ) = mGvM (ϕ;κ,µ,K)

∝ exp

κ⊤ cos(ϕ− µ) − 1
2

cosϕ
sinϕ

⊤

K−1

cosϕ
sinϕ


 ,

(3.9)



3.1 Derivations for the mGvM 63

can be recast in terms of latent partitions through augmentation states f as

p(ϕ) =
∫
p(ϕ|f)p(f)df =

∫
p(f)

N∏
n=1

p(ϕn|f)df (3.10)

where we leveraged the compartmentalised structure promoted by Equation (3.2) to
further induce independence relationships between the each of the base states ϕn.

Since the intractability of the mGvM distribution stems from the quadratic rela-
tionship between the trigonometric vector v(ϕ) = [cosϕ⊤, sinϕ⊤]⊤, a clear parallel
between the Hubbard-Stratonovich Transformation for Ising models and the mGvM
by can be established. Next, drawing on the insights of the Hubbard-Stratonovich
transformation, we will derive a family of augmented representations for the mGvM
that decouple the circular states.

As in the Hubbard-Stratonovich for Ising models, we want to eliminate the quadratic
function in the trigonometric vector. Hence, once more a multivariate Gaussian with
vector of interest as a mean is a suitable choice for the distribution of the augmentation
conditional, that is

p(f|ϕ) = N (f; v(ϕ),Σ) (3.11)

= 1
(2π)2/N det Σ

exp
{

−1
2(f − v(ϕ))⊤Σ−1(f − v(ϕ))

}
(3.12)

= 1
(2π)2/N det Σ

exp
{

−1
2f⊤Σ−1f + f⊤Σ−1v(ϕ) − 1

2v(ϕ)⊤Σ−1v(ϕ)
}
. (3.13)

Using the augmented state conditional from Equation (3.13), we can form the joint
density for ϕ and f by multiplying by the mGvM in Equation (3.9). This operation
results in the distribution

p(ϕ, f) ∝ exp
{

−1
2f⊤Σ−1f + f⊤Σ−1v(ϕ) − 1

2v(ϕ)⊤Σ−1v(ϕ) (3.14)

+ κ⊤ cos(ϕ− µ) − 1
2v(ϕ)⊤K−1v(ϕ)

}
= exp

{
−1

2f⊤Σ−1f +
(
Σ−1f +m(κ,µ)

)⊤
v(ϕ) (3.15)

−1
2v(ϕ)⊤(Σ−1 + K−1)v(ϕ)

}

where we introduced the notationm(κ,µ) as [(κ⊙cosµ)⊤, (κ⊙sinµ)⊤] for ⊙ denoting
the Hadamard product.
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Equation (3.15) highlights central difference between the Hubbard-Stratonovich
transformation for Ising models and the augmentation: in the mGvM case, the
covariance cannot simply mirror the mGvM’s kernel matrix K. To find a suitable
covariance, we draw on the spectral decomposition of the matrix K−1, i.e.,

K−1 = PΛP−1, (3.16)

where Λ is a diagonal matrix with the eigenvalues of K−1 and P are orthonormal
matrices. If let λmax denote the maximum eigenvalue of K−1, the precision of the
augmentation states can be chosen to be

Σ−1 = (1 + ϵ)λmaxI − K−1 (3.17)

for some ϵ > 0.
It is simple to show that Equation (3.17) results in a valid choice of a precision

matrix. Drawing on the definition for this covariance and the spectral decomposition,
we can express the precision as

Σ−1 = ((1 + ϵ)λmaxI − K−1 (3.18)
= (1 + ϵ)λmaxPP−1 − PΛP−1 (3.19)
= P((1 + ϵ)λmaxI − Λ)P−1. (3.20)

Since (1 + ϵ)λmax is strictly greater than all of the eigenvalues of K−1, Equation (3.17)
is a valid covariance matrix. With the precision from Equation (3.17), the joint
model from Equation (3.15) can be written as

p(ϕ, f) ∝ exp
{

−1
2f⊤Σ−1f +

(
Σ−1f +m(κ,µ)

)⊤
v(ϕ) (3.21)

−1
2v(ϕ)⊤

(
(1 + ϵ)λmaxI − K−1 + K−1

)
v(ϕ)

}
= exp

{
−1

2f⊤Σ−1f +
(
Σ−1f +m(κ,µ)

)⊤
v(ϕ) (3.22)

−(1 + ϵ)λmax

2 v(ϕ)⊤v(ϕ)
}
.

Using the fundamental trigonometric identity sin2 ϕ + cos2 ϕ = 1, the residual
quadratic term v(ϕ)⊤v(ϕ) becomes the number of circular variables, that is, N. The
joint can be then factorised to yield a product of independent von Mises distributions
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over the circular variables and a correlated Gaussian augmentation state, i.e.,

p(ϕ, f) = p(ϕ|f)p(f) =
[ N∏

n=1
vM(ϕn, αn, βn)

]
× N (f; 0,Σ) (3.23)

where the parameters α and β are defined such that

m(α,β) = Σ−1f +m(κ,µ). (3.24)

There are infinite possible augmented joint distributions for each mGvM. This
is evident from the fact that Equation (3.23) depends on the precision matrix of the
augmented states, which is parametrised by a ϵ > 0. A way to define a valid augmented
distribution is that avoids the numerically cumbersome eigenvalue computations, is to
define ϵ in terms of an upper bound. Given that a direct consequence of the positive-
definiteness of K−1 is that its trace will be greater than the maximum eigenvalue, we
draw on Bai and Golub (1997)’s upper bound for the trace of the inverse a N by N
positive definite matrix K,

Tr
(
K−1

)
≤

Tr(K)
N

⊤ ||K||2F Tr(K)
γ2 γ

−1 N
1

 (3.25)

where || · ||2F is the squared Frobenius norm and γ is a positive constant that lower-
bounds the eigenvalues of K. While for an arbitrary matrix it is difficult to define the
constant γ, in practice this issue can be completely remedied by always adding a small
perturbation matrix σ2I to the kernel matrix, for some σ2 → 0+. Hence, expanding
Equation (3.25), a valid ϵ can always be found using

ϵ = σ2NTr(K + σ2I) − Tr(K + σ2I)2 − σ2N2 + N||K + σ2I||2F
σ2||K + σ2I||2F − σ4Tr(K + σ2I) . (3.26)

Another relationship worth analysing lies in the graphical model structure of the
augmented model. Latent variables f induces a multi-view structure (Blum and
Mitchell, 1998; de Sa, 1994; Rüping and Scheffer, 2005) where fn and fN+n can be
understood as the real and imaginary views that produce the phase of a complex
variable. To simplify the notation in the remainder of the chapter and emphasise this
multi-view interpretation, in what follows we will denote f1, . . . , fN as fRe,1, . . . , fRe,N as
the real component tied to the cosines in the models in Figure 3.1 and fN+1, . . . , f2N as
fIm,1, . . . , fIm,N tied to the sines of the graphical models of Figure 3.1.
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fRe,1

fIm,1

ϕ1

ψ1

fRe,2

fIm,2

ϕ2

ψ2

· · ·

· · ·

· · ·

· · ·

fRe,n

fIm,n

ϕn

ψn

Fig. 3.1 The graphical model for different augmented mGvM representations denoting
f1, . . . , fN as fRe,1, . . . , fRe,N and fN+1, . . . , f2N as fIm,1, . . . , fIm,N: the graphical model of
the augmented representation gives rise to a multi-view structure.

A few interesting properties arise from the functional form of the augmented rep-
resentation. Perhaps the most important one lies in the analysing the augmented
representation itself as a new probabilistic model. In particular, the resulting model
will be consistent under marginalisation of the variable triple (ϕn, fRe,n, fIm,n) by con-
struction. Hence, we can lean on the Daniell–Kolmogorov Extension Theorem (Daniell,
1919; Kolmogoroff, 1933; Rogers and Williams, 2000) and assert that the augmented
representation of the mGvM defines a stochastic process over (ϕ, fRe, fIm).

A sample from the augmented representation are presented in Figure 3.2 for a
mGvM with by viewing the augmented model as a generative process as presented in
Algorithm 1. It can be noted that while the mean function is continuous and smooth,
the individual samples of the process need not be. Since each sample is obtained from
a von Mises distribution, for finite concentrations there is bound to be discontinuities
between samples.

This noisy characteristic is different from the behaviour observed when using
smooth covariance functions like the squared exponential kernel on standard Gaussian
Process models, however it is also found in augmented representations of Gaussian
Processes like sparse models. In particular, the structure resembles that of the SPGP
of Snelson and Ghahramani (2006b) where noise is added to the diagonal entries of the
covariance to generate heteroskedastic behaviour, as the net effect the augmentation
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has on the individual samples of the model can be viewed as changing the value of the
concentration of each ϕ locally.

Algorithm 1: Obtaining sample functions from the augmented representation of
the mGvM
1 Sample f from N(f;m, (ϵI − K−1)−1)
2 for n = 1 : N,
3 Set κ = abs(fn + ifN+n)
4 Set µ = ang(fn + ifN+n)
5 Sample ϕn from vM(ϕn;κ, µ)
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Fig. 3.2 Samples from the process defined by the augmented representation of the
mGvM model using squared exponential (top), periodic (bottom) kernels. Vertical
lines spanning the entire interval [0, 2π) indicate wrapping. The individual samples of
the process are denoted by dashed lines and are not continuous.

3.2 Related work

Martens and Sutskever (2010) reintroduced the Hubbard-Stratonovich transformation
in discrete Markov Random Fields as a way to parallelise Markov chain Monte Carlo
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algorithms. Zhang and coworkers (Zhang et al., 2012) also leveraged this transformation
as a method to apply the Hamiltonian Monte Carlo sampling method for discrete
variables. Later, Pakman and Paninski (Pakman and Paninski, 2013) expanded on this
work and analysed the transformation under a auxiliary-variable method for sampling
binary states.

In the context of circular and directional statistics, series approximations to partition
functions (Kume et al., 2013) and pseudo-likelihood models (Mardia, 2007) have been
favoured over augmented representations when approximate partition functions for
learning models. To our best knowledge, the topic of sparse covariances in augmented
representations for circular distributions has not been explored previously in literature.

3.3 Augmented distributions for more general dis-
tributions on Stiefel Manifolds

Interestingly, the approach undertaken in Section 3.1 is widely applicable to problems
of interest to circular statistics. In the context of circular and directional statistics,
augmented representations based on the Hubbard-Stratonovich transformation can
be interpreted as a geometrical transformation that changes the problem geometry
from a unwieldy Stiefel manifold to a simpler distribution on a hyper-cylinder. This
observation is important because this model augmentation is not only applicable to
any mGvM-derived distribution, but also to the entire family of distributions derived
from the matrix Fisher-Bingham as shown next.

Recall that the matrix Fisher-Bingham distribution (MFB) (Kume et al., 2013) is

MFB(S;η,Σ) ∝ exp
{
η⊤vec(S) − 1

2vec(S)⊤Σ−1vec(S)
}

(3.27)

where η is a location and concentration parameter, while Σ captures the covariance
between unit vectors, and S is a N × M matrix where M is the dimension of the hyper-
sphere of the Stiefel manifold and N is the number of Cartesian products between
hyper-spheres manifolds.

To provide more intuition about the Matrix Fisher-Bingham distribution, we provide
two concrete examples that tie to its applications. The first example a mGvM of
dimension D, since each Stiefel manifold is a unit circle, S1, M = 2 and there are D
Cartesian products between each hypersphere, N = D. The second example is a discrete
time series consisting of T steps where each time point represents an orientation, i.e. a
point the canonical sphere in R3 (i.e. S2). In this case, the matrix Fisher-Bingham
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for the entire time series has N = T and M = 3. An augmented conditional suitable
to the MFB can be formed using a Gaussian state as proposed to the mGvM in
Equation (3.13). Explicitly, the augmented conditional can be defined as

p(f|S) = N
(

f; vec(S),
(
(1 + ϵ)λmaxI − Σ−1

)−1
)

(3.28)

where ϵ is a positive real constant and λmax is the maximum eigenvalue of Σ−1).
Drawing on Equation (3.28), the joint distribution of base MFB states and the

Gaussian augmentation states after simplifications analogous to those performed for
the mGvM case in Section 3.1 is

p(S, f) ∝ exp
{((

(1 + ϵ)λmaxI − Σ−1
)
f + η

)⊤
vec(S)

− 1
2f⊤

(
(1 + ϵ)λmaxI − Σ−1

)
f
} (3.29)

which results in a model corresponding to a product of von Mises-Fisher conditional
distributions and Gaussian states,

p(S, f) = N
(

f; 0,
(
(1 + ϵ)λmaxI − Σ−1

)−1
)

︸ ︷︷ ︸
p(f)

×
N∏

n=1
vMF

(
Sn;ωidx(Sn)

)
︸ ︷︷ ︸

p(S|f)

, (3.30)

where Sn denotes the entire n-th row of S, ω is the von Mises-Fisher parameter given
by ω =

(
(1 + ϵ)λmaxI − Σ−1

)
f + η and the notation ωidx(Sn) indicates the entries of ω

corresponding to Sn.

3.4 Summary

In this chapter, we have introduced for the first time an augmented representation
in the context of circular and directional variables motivated from a exchangeability
perspective.

The augmented representation outlined in this chapter allows re-writing the mGvM
in a factored form for which all partition functions are known. This characteristic
allows learning to be performed on models bearing the augmented representation of
the mGvM as a prior. When the partition functions for the prior are not known,
learning has to be performed through techniques such as contrastive-divergence learning
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explored in Chapter 6, which are computationally expensive and restricted to small
scale models.

Combining the augmented representations with the sparse constructions outlined
in this chapter allows models of considerable size to be learned. While not restricted to
density modelling or circular regression, the sparse models defined in this chapter can
be particularly useful when performing regression and prediction on large data sets.



Part III

Inference and learning





Chapter 4

Variational free energy methods

In Part II, we introduced the multivariate Generalised von Mises distribution along with
an associated augmented representation related to the Hubbard-Stratonovich transfor-
mation. In Part III our focus shifts to providing methods to perform inference on these
models. Therefore, from Chapter 4 to Chapter 6, we successively introduce, compare
and explore methods for performing inference with the mGvM and its augmented
representations where applicable.

In this chapter, we introduce the Variational Free Energy framework for approxi-
mate inference with the mGvM. In particular, we focus on developing a mean field
approximation for the mGvM and test its performance against standard approxima-
tions in machine learning practice leveraging Euclidean distributions. We show that
despite the limitations inherent to a simple mean field approximation, regression and
latent variable modelling using the mGvM for circular data outperforms the approaches
rooted in Euclidean distributions. Moreover, the relative success of the mean field
approximation allows us to use it as a benchmark for evaluating different approaches
in subsequent chapters.

4.1 Inference

This section is organised as follows. Section 4.1.1 provides a brief exposition of the
Variational Free Energy framework to the novice following the treatment of Barber
(2012) and MacKay (2003). The expert reader may start directly in Section 4.1.2,
where we derive the mean field distribution associated with the mGvM. The chapter
concludes by providing experiments in Section 4.2 of the approximation variational
inference updates devised for the mGvM against standard Euclidean approaches to
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handling circularity. The experimental datasets span both synthetic and real-world
cases.

4.1.1 Variational Free Energy

A simple motivation for the Variational Free Energy framework stems from approxi-
mating the log marginal likelihood from below. This result can be obtained by first
interpreting the marginal likelihood p(y|θp) as the resulting distribution obtained from
marginalising a latent variable x,

p(y|θp) =
∫
p(x, y|θp)dx (4.1)

Drawing on Jensen’s inequality and the fact that log is a concave function, it can be
established that the expectation relationship

log
[∫

f(x)p(x)dx
]

≥
∫

log[f(x)]p(x)dx (4.2)

holds for any distribution and f : RN 7→ R++. Therefore,

log p(y|θp) = log
∫
p(y, x|θp)dx (4.3)

= log
∫ p(y, x|θp)q(x|θq)

q(x|θq)
dx (4.4)

≥
∫
q(x|θq) log p(y, x|θp)

q(x|θq)
dx = F(q, θp) (4.5)

where we have used f(x) = p(y, x|θp)/q(x|θq). Here F is defined as the Free Energy
functional whose arguments are the approximating distribution q and the parameters
θp of the posterior.

Another way to derive the bound of Equation (4.5) is to minimise the error between
a posterior distribution p(x|y, θp) and an approximating distribution q. The canonical
information theoretic metric for performing measuring the approximation error is the
Kullback-Leiber (KL) divergence,

KL(q(x)||p(x|y)) =
∫
q(x) log q(x)

p(x|y, θp)
dx. (4.6)

The Kullback-Leibler divergence is asymmetric and, while it may be argued that
the best representation for the approximation error when approximating p with q is
KL(p(x|y)||q(x)), typically the posterior p is intractable and renders the computation
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of KL(p(x|y)||q(x)) intractable. Hence, in the Variational Free Energy framework it is
customary to use the divergence KL(q(x)||p(x|y)).

We can perform algebraic manipulations on the KL divergence to recover the Free
Energy function, that is

KL(q(x)||p(x|y)) = −
∫
q(x|θq) log p(x|y, θp)dx +

∫
q(x|θq) log q(x|θq)dx (4.7)

= −
∫
q(x|θq) log p(x, y|θp)dx +

∫
q(x|θq) log p(y|θp)dx (4.8)

+
∫
q(x|θq) log q(x|θq)dx

= log p(y|θp) −
(
⟨log p(x, y|θp)⟩q(x|θq) + H(q)

)
︸ ︷︷ ︸

F(q,θp)

(4.9)

where we adopted the angled bracket shorthand notation for denoting expectations
as is customary in physics. The lower bound is then found using the fact that the
Kullback-Leiber divergence is non-negative and equal to zero only the approximating
distribution is equal to the approximated distribution,

log p(y) = F(q, θp) + KL(q(x)||p(x|y)) ≥ F(q, θp). (4.10)

To find the optimal approximating distribution q we turn to calculus of variations and
form the Lagrangian for maximising the Free Energy. Maximising the Free Energy is
equivalent to minimise the divergence between p and q. The resulting Lagrangian has
the form

L(q, λ) = F(q, θp) − λ
(∫

q(x)dx − 1
)

(4.11)

where we highlight the constraint that q(x) is a valid, normalised distribution. Imposing
the first order optimality condition and finding the stationary points of the Lagrangian,

δ

δq
L(q, λ) = 0 (4.12)

requires specifing the class of valid distributions q can be chosen from a priori. Typically,
this distribution will either be a parametric distribution, for example a multivariate
Gaussian, a distribution expressed as the fully factorised product of parametric dis-
tributions, or a distribution with a conditonal independence assumption build into it.
The fully factorised case, i.e.

q(x) =
D∏

d=1
qd(xd) (4.13)
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leads to the solution known as the mean-field approximation. This moniker arises from
the fact that the solution that the fixed points of the Lagrangian under this assumption
imply that each distribution qd(xd) only depends on expectations of the remaining
variables xℓ̸=d.

To verify this result, we apply Equation (4.13) to Equation (4.12) and expanding
yields

δ

δqℓ

[
⟨log p(x, y)⟩∏

d qd(xd) −
∫ D∏

d=1
qd(xd)

( D∑
d=1

log qd(xd)
)

dx

−
D∑

d=1
λd

∫
qd(xd)dxd

]
= 0

(4.14)

simplifying the differentials gives

⟨log p(x, y)⟩∏
d̸=ℓ

qd(xd) − log qℓ(xℓ) − 1 − λℓ = 0 (4.15)

which in turn can be expressed as

qℓ(xℓ) = 1
exp(λ+ 1) exp

{
⟨log p(x, y)⟩∏

d̸=ℓ
qd(xd)

}
(4.16)

resulting in the set of distributions known as mean field approximation.
The usefulness of the mean field approximation is strongly related to the tractability

of the conditional distributions of the model. To see this, we expand Equation (4.16)
into

qℓ(xℓ) ∝ exp
{

⟨log p(x, y)⟩∏
d ̸=ℓ

qd(xd)

}
(4.17)

∝ exp
{

⟨log (p(xℓ|xd ̸=ℓ, y)p(xd ̸=ℓ, y))⟩∏
d ̸=ℓ

qd(xd)

}
(4.18)

∝ exp
{

⟨log p(xℓ|xd̸=ℓ, y)⟩∏
d̸=ℓ

qd(xd) + ⟨log p(xd̸=ℓ, y)⟩∏
d̸=ℓ

qd(xd)

}
(4.19)

∝ exp
{

⟨log p(xℓ|xd̸=ℓ, y)⟩∏
d̸=ℓ

qd(xd)

}
(4.20)

Equation (4.20) implies that if the conditionals are tractable, then the resulting
variational approximation should be tractable as well.

The fully-factored representation of the mean field approximation cannot capture
well the correlations between variables. Hence, mean field approximations possess
a bias towards under-representing the uncertainty present in the true posterior. A
thorough analysis of such problems is given by Turner et al. (2008). For brevity of
exposition, we illustrate this issue through a simple concrete example. Consider the
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x1

x2

Mean field (q)

.

.

True posterior (p)

Fig. 4.1 Diagrammatic representation of the bias present in a mean-field approximation,
showing equivalent level sets for the posterior p and approximation q. The correlation
structure of the posterior is not captured by the mean field approximation.

posterior

p(x|y) ∝ exp


x1

x2

⊤ α β

β γ

 x1

x2


 (4.21)

for some parameters α, β and γ potentially dependent on y. The model of Equa-
tion (4.21) has the mean field distributions

q(x) ∝ exp


x1 −m1(⟨x2⟩q2(x2))
x2 −m2(⟨x1⟩q1(x1))

⊤ α 0
0 γ

x1 −m1(⟨x2⟩q2(x2))
x2 −m2(⟨x1⟩q1(x1))


 (4.22)

which removes the cross dependency imposed by the beta parameter leading to over-
confident situations as illustrated in Figure 4.1.

Prior work has applied variational procedures for probabilistic models using circular
distributions has been conducted focusing the applications of phase inference and
clustering. As an example, Taghia et al. (2013) used a simple variational Bayes
procedure to approximate the posterior over the phase in a hierarchical model. The
use of von Mises priors over phase variables can be also found in signal processing
algorithms, including generalisations of previously known algorithms such as turbo
synchronisation1 Herzet et al. (2007).

1Turbo synchronisation is a an information-theoretic algorithm for detecting and extracting the
phases component of real-valued signals. Areas of interest related to algorithms such as this one
include coding theory, compression, information retrieval and, more broadly, signal processing.
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Another application of the variational framework in circular statistics is found
in clustering. For example, Tang et al. (2009) used a mixture of von Mises-Fisher
distributions to perform the clustering of speakers from audio data.

4.1.2 Mean field variational inference for the mGvM

The results obtained in Section 4.1.1 are distribution-independent, hence can also be
applied to a mGvM posterior

p(ϕ) ∝ exp

κ⊤ cos(ϕ− µ) − 1
2

cosϕ
sinϕ

⊤

K−1

cosϕ
sinϕ


 . (4.23)

If this mGvM posterior is approximated using a fully-factored approximation q(ϕ) =∏D
d=1 qd(ϕd), and the derivations for the optimal distribution are perfomed applying

calculus of variations as described in the previous section, it is possible to demonstrate
that the functional form for each of mean field conditional qd is a GvM distribution,
that is,

q(ϕd|ϕ̸=d) = GvM (ϕd; η1,d, η2,d, ν1,d, ν2,d) (4.24)

where the parameters η1,d, η2,d, ν1,d and ν2,d can be obtained directly taken from the
original mGvM distribution. More specifically, the parameters can be calculated
through the relations

η1,d cos ν1,d = κd cos(µd) − 1
2

D∑
ℓ̸=d

〈
(K−1)d,ℓ cosϕℓ + (K−1)d,ℓ+D sinϕℓ

〉
qℓ

, (4.25)

η1,d sin ν1,d = κd sin(µd) − 1
2

D∑
ℓ̸=d

〈
(K−1)d+D,ℓ cosϕℓ + (K−1)d+D,ℓ+D sinϕℓ

〉
qℓ

, (4.26)

η2,d cos 2ν2,d = 1
4
[
(K−1)d,d − (K−1)D+d,d+D

]
and (4.27)

η2,d sin 2ν2,d = 1
2(K−1)d,d+D. (4.28)

The dependencies Equation (4.25) to Equation (4.25) can be readily obtained from
the optimal fully factored approximation in Equation (4.20) using the results from
Chapter 2 for the conditionals, that is, Section 2.2.2. To see this, notice that the
log-unnormalised distribution corresponding to Equation (4.23) is a quadratic in cosϕ
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and sinϕ, that is, it can be expressed as

log p∗(ϕ) =
D∑

d=1

[
κd(cosϕd cosµd + sinϕd sinµd)

]

− 1
2

D∑
d=1

[
cos2 ϕd(K−1)d,d + sin2 ϕd(K−1)d+D,d+D

]

− 1
2

D∑
d=1

[
2 sinϕd cosϕd(K−1)d,d+D

]

− 1
2

D∑
d=1

D∑
ℓ=1
ℓ ̸=d

[
cosϕd(K−1)d,ℓ cosϕℓ + cosϕd(K−1)d,ℓ+D sinϕℓ

]

− 1
2

D∑
d=1

D∑
ℓ=1
ℓ ̸=d

[
sinϕd(K−1)d+D,ℓ cosϕℓ + sinϕd(K−1)d+D,ℓ+D cosϕℓ

]
.

(4.29)

Hence, the unidimensional log-unnormalised distribution for ϕd is given as

log p∗(ϕd|ϕℓ ̸d) = κd(cosϕd cosµd + sinϕd sinµd)

− 1
2

[
cos2 ϕd(K−1)d,d + sin2 ϕd(K−1)d+D,d+D

]

− 1
2 cosϕd

D∑
ℓ=1
ℓ̸=d

[
(K−1)d,ℓ cosϕℓ + (K−1)d,ℓ+D sinϕℓ

]

− 1
2

[
2 sinϕd cosϕd(K−1)d,d+D

]

− 1
2 sinϕd

D∑
ℓ=1
ℓ̸=d

[
(K−1)d+D,ℓ cosϕℓ + (K−1)d+D,ℓ+D cosϕℓ

]
,

(4.30)

which after simplifications leveraging the double angle formula becomes

log p∗(ϕd|ϕℓ̸d) = cosϕd

[
κd cosµd − 1

2

D∑
ℓ=1
ℓ̸=d

(K−1)d,ℓ cosϕℓ + (K−1)d,ℓ+D sinϕℓ
]

+ sinϕd

[
κd sinµd − 1

2

D∑
ℓ=1
ℓ ̸=d

(K−1)d+D,ℓ cosϕℓ + (K−1)d+D,ℓ+D cosϕℓ
]

+ cos 2ϕ
[

(K−1)d,d − (K−1)d+D,d+D

4

]

+ sin 2ϕd

[
(K−1)d,d+D

2

]
.

(4.31)
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Taking the expectation of Equation (4.31) with respect to the distributions of the
other factors results in the expressions from Equation (4.25) to Equation (4.28).

The parameter dependencies shown from Equation (4.25) to Equation (4.28) suggest
that the mean field conditionals may admit further simplifications when the matrix K
has special structure. In particular, when

K =
Q 0

0 Q

 (4.32)

for some positive-definite matrix Q, the mGvM becomes the particular case of the
Toroidal Normal distribution and the second-harmonic terms of the GvM approxima-
tions vanish. Hence, the mean field model becomes a product of von Mises conditionals
where

q(ϕd|ϕ̸=d) = vM (ϕd; η1,d, ν1,d) . (4.33)

Here, the parameters η1,d and ν1,d are as defined by Equation (4.25) and Equation (4.26).
After applying the simplifications that arise from the kernel structure, Equation (4.25)
and Equation (4.26) become

η1,d cos ν1,d = κd cos(µd) − 1
2

D∑
ℓ̸=d

〈
(K−1)d,ℓ cosϕℓ

〉
qℓ

(4.34)

η1,d sin ν1,d = κd sin(µd) − 1
2

D∑
ℓ̸=d

〈
(K−1)d+D,ℓ+D sinϕℓ

〉
qℓ

.

To compute the expectations required in the mean field approximations, we leverage
the expressions available for the trigonometric moments2 of the GvM and vM.

In practice, we found the series expansions provided by Gatto (2008) for the
trigonometric moments associated with the GvM were numerically unreliable for
large concentration parameters η1,d and η2,d. The situation of concentrated data is
common in practice as discussed by Sra (2012) in the context of estimating von Mises-
Fisher parameters. Empirically, we verified that by either capping the values of the
concentration parameters or using instead a sub-optimal von Mises mean field provided
reasonable results when approximating a general mGvM. For a more extensive analysis
of the computation of the trigonometric moments of GvM using the series expansions
and how to render them tractable, see Appendix C.

2Recall from Chapter 1 that the usual n-th order moments for a circular distribution p(ϕ) are
defined as expectations over the E[cos nϕ] and E[sin nϕ].
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4.2 Experimental Results

Experimental results in this chapter are segregated into both regression, presented in
Section 4.2.1, and latent variable modelling, presented in Section 4.2.2. In subsequent
chapters, as the overall focus shifts towards non-naive approaches to approximating the
posterior, the experiments are limited only to the regression settings for convenience.

4.2.1 Circular regression

In this section, we investigate the advantages of employing the mGvM regression
model discussed in Chapter 2 over two common approaches to handling circular data
in machine learning contexts.

The first approach is to ignore the circular nature of the data and fit a non-circular
model. This approach is not infrequent as it is reasonable in contexts where angles
are constrained to a small region of the unit circle and there is no wrapping. A
typical example of the motivation for such models is the use of a first-order Taylor
approximation to the rate of change of an angle as can be found in classical aircraft
control applications (see, e.g. Skogestad and Postlethwaite, 2005). To represent this
approach to modelling, we will fit a one-dimensional GP (1D-GP) to the data sets.

The second approach tries to address the circular behaviour by regressing the sine
and cosine of the data. In this approach, the angle can be extracted by taking the
arc tangent of the ratio between sine and cosine components. While this approach
partially addresses the underlying topology of the data, the uncertainty estimates for
a non-circular model can be poorly calibrated. Here, each data point is modelled
by a two-dimensional vector with the sine and cosine of each data point using a
two-dimensional GP (2D-GP).

Five data sets were used in this evaluation as outlined in Table 4.1. A Wrapped
hat data set generated by wrapping a Mexican hat function around the unit circle, a
dataset consisting Uber ride requests in NYC in April 20143, the tide levels predictions
from the UK Hydrographic Office in 20164 as function of the latitude and longitude of
a given port, the first side chain angle of aspartate as a function of backbone angles
in proteins (Harder et al., 2010), and yeast cell cycle phase as a function of gene
expression (Santos et al., 2015).

To assess how well the fitted models approximate the distribution of the data, a
subset of the data points was kept for validation and the models scored in terms of

3https://github.com/fivethirtyeight/uber-tlc-foil-response
4http://www.ukho.gov.uk/Easytide/easytide/SelectPort.aspx

https://github.com/fivethirtyeight/uber-tlc-foil-response
http://www.ukho.gov.uk/Easytide/easytide/SelectPort.aspx
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Table 4.1 Information pertaining the data sets for the regression experiments including
number of training points (Ntrain), number prediction locations (Npred), input dimensions
(D) and Kernel used in the regression.

Data set Ntrain Npred D Kernel
Wrapped hat 14 100 1 SE + White noise
Tides 182 175 2 SE + White noise
Protein 1.000 1.000 2 SE × Periodic
Yeast 10 10 4.490 Linear
Uber 10.000 5.000 2 SE + White Noise

Table 4.2 Log-likelihood score for regression with the mGvM, 1D-GP and 2D-GP on
validation data.

Data set mGvM 1D-GP 2D-GP
Wrapped hat +2.02 · 104 −1.62 · 103 +8.28 · 102

Uber +3.29 · 104 −1.49 · 103 −2.83 · 102

Tides +1.25 · 104 −6.46 · 104 −8.41 · 101

Protein +1.42 · 105 −3.34 · 105 +1.28 · 105

Yeast +1.33 · 102 −1.46 · 102 −1.65 · 101

the log likelihood of the validation data set. To guarantee fairness in the comparison,
the likelihood of the 2D-GP was projected back to the unit circle by numerically
marginalising the radial component of the model for each point. This converts the
2D-GP into a one-dimensional projected Gaussian distribution over angles. The results
are summarised in Table 4.2.

The results shown in Table 4.2 indicate that the mGvM provides a better overall
fit than the 1D-GP and the 2D-GP in in all experiments in terms of the validation
log-likelihood. The 1D-GP approach performs poorly in every case studied as it
cannot account for the wrapping behaviour of circular data and it assigns all wrapping
behaviour to its noise component. The 2D-GP performs better than the 1D-GP, however
in the Uber, Tides and Yeast datasets and its performance is substantially closer to
the one presented by the 1D-GP case rather than the mGvM. The Wrapped hat fits
are examined in Figure 4.2 and the Tides dataset conclusions shown in Figure 4.3.
From the Wrapped hat dataset, it is possible to conclude that the 2D-GP may learn a
different, yet reasonable, underlying function. It should also be noted that as discussed
during the derivations for the mean field updates, the fit is over-confident as seen by
the highly concentrated probability regions between x = 0.25 and x = 0.50. However,
the 2D-GP performs better in terms of predictive performance 3 of the 5 datasets
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Table 4.3 Root Mean Squared Error for regression with the mGvM, 1D-GP and 2D-GP
on validation data. To make the error amenable to the angle space, the error is
taken as the norm of the difference of data vector [cosψ∗, sinψ∗] and the predictions
[cosϕ∗, sinϕ∗].

Data set mGvM 1D-GP 2D-GP
Wrapped hat 0.53 1.36 0.11
Uber 1.32 1.26 1.25
Tides 1.46 1.43 1.38
Protein 0.81 1.25 1.40
Yeast 0.79 1.38 1.37
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Fig. 4.2 Regression on a Wrapped hat data set using the mGvM (left) and 2D-GP
(right): data points are denoted by crosses, the true function by circles and predictions
by solid dots.

as shown in Table 4.3. It is important to highlight that even in the cases where the
mGvM is outperformed in terms of errors, the predictive distribution better represents
the underlying data than the GP models.

From the fit obtained for the Tides dataset as shown in Figure 4.3, it is possible to
establish further that the 2D-GP case can never account for bimodality in the data,
whereas by considering a Generalised von Mises likelihood as discussed in Chapter 2
we can model this data characteristic.

4.2.2 Latent variable modelling

To demonstrate the dimensionality reduction application, we analysed two data sets:
one motion capture dataset comprising marker positions placed on a subject’s arm and
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Selected port locations

mGvM 2D-GP

Fig. 4.3 Tide time predictions on the UK coast: port location for a subset of the data
set (left), mGvM fit (left) and 2D-GP (right). The ports whose data was supplied for
training are displayed in magenta (darker) rose diagrams whereas the ports held out
for prediction are displayed in cyan (lighter). The regression model predictive density
is plotted as the orange lines.
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Fig. 4.4 Capturing 2D motion: the datasets was generated by recording the motion of
a subject with markers on its body then using a colour threshold algorithm and taking
the location of the centre of mass of the filtered region.

captured through a low resolution camera as depicted in Figure 4.4, while another set
comprising a noisy simulation of a 4-DOF robot arm was generated under the same
noise corruption conditions of the motion capture. In the motion capture data sets,
we applied a colour filter to the resulting images to isolate each marker. Then, each
marker’s position was found by calculating the centre of mass of each marker as shown
in Figure 4.4. We compared the model using point estimates for the matrices A and
B, a variational Bayes approach by including ARD priors for A and B, Probabilistic
Principal Component Analysis (PPCA) (Tipping and Bishop, 1999) and the Gaussian
Process Latent Variable Model (GP-LVM) (Lawrence, 2004) using a squared exponential
kernel and a linear kernel. The models using the mGvM require special attention to
initialisation. To initialise the test, we used a greedy clustering algorithm to estimate
the matrices A and B. The variational Bayes model was initialised using the learned
parameters for the point estimate model.

The performance of each model was assessed by denoising the original dataset
corrupted by additional Gaussian noise of 2.5, 5 and 10 pixels and comparing the
signal-to-noise ratio (SNR) on a test dataset. The best results after initializing the
models at 3 different initial starting points are summarized in Table 4.4 and additional
experiments for a wider range of noise levels are available in Figure 4.5.

In Table 4.4, the point estimate cPCA model performs best and is followed by
its variational Bayes version for both datasets. The variational Bayes performance
is only worse in the motion capture case, whereas it not significantly different in the
robot case. This is likely to be an effect of isotropic noise assumption not being valid
under the motion capture dataset. By violating this assumption, the structure of the
pendulum that gave rise to the data becomes difficult to identify. To further expand
on this point, if the noise is assumed fixed, but indeed changes through time, an
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Fig. 4.5 Signal-to-noise ratio with 3 standard deviations for the latent variable modelling
datasets: filmed subject (top) and simulated robot arm dataset (bottom).
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Table 4.4 Signal-to-noise ratio (dB) of the learned latent structure after denoising
corrupted signals with by Gaussian noise.

Model Motion Capture Robot
2.5 5 10 2.5 5 10

cPCA-Point 29.6 23.5 17.6 33.5 30.0 24.9
cPCA-VB 24.6 21.9 17.6 33.2 29.8 24.8
PPCA 23.6 20.9 17.2 22.3 21.8 20.5
GPLVM-SE 8.6 8.5 8.2 21.8 15.7 15.2
GPLVM-L 11.0 7.5 8.1 24.0 16.6 15.9

N -joint pendulum can be more simply explained by a N + 1-joint pendulum, where
the extra joint is not observed. The representation of this extra pendulum joint makes
matrices A and B assume a different form. This phenomenon can account for the
poorer performance of variational bayes comparied to point estimates. Furthermore, in
the motion capture dataset, as the latent angles are highly concentrated. Under these
circumstances, the small-angle approximation for sine and cosine provides good results
and the cPCA model degenerates into the PPCA model as shown previously. This
behaviour is reflected in the proximity of the PPCA and cPCA signal to noise ratios in
Table 4.4. In the robot dataset, the latent angles are less concentrated. As a result,
the behaviour of the PPCA and cPCA models is different which explains the larger
gap between the results obtained for these models.

4.3 Summary

In this chapter we introduced the Variational Free Energy framework for performing
inference in both the regression and the latent variable model setting of the mGvM.
We derived the mean-field distribution for the mGvM and showed that despite its
shortcomings, it is able to outperform standard Euclidean approaches for modelling
circular data.

Moreover, the results obtained by the mean field approach developed in this chapter
establish an important benchmark for comparing other models both in terms of
quantitative predictive performance as well as qualitative evaluating the quality of the
posterior approximation.





Chapter 5

Expectation Propagation inference
for the mGvM

In the previous chapter, we introduced the Variational Free Energy framework and
approximate inference for the multivariate Generalised von Mises using Mean-Field
Variational Inference. Despite the efficiency and convergence guarantees of such
approach, a fully-factored von Mises approximation to a mGvM posterior is necessarily
unimodal. While this property is not a problem for Toroidal Normal models, they
will in general yield pauper approximations to a general posterior. It may also be
argued that even for Toroidal Normal models, the fact that the approximations are
fully factored add to the well-known tendency of Variational Free Energy methods to
underestimate the posterior variance discussed in Section 4.1.1.

To mitigate these problems, in this chapter, we turn our attentions to forming
approximations of a mGvM using Expectation Propagation (EP). While EP methods
are only guaranteed to converge distributions than can be posed as a acyclic exponential
family graphical model, they are often able to provide a better characterisation of
the approximated distribution than mean field variational inference. In particular, we
draw on the approximations by Opper and Winther (2005) to produce an algorithm
for performing inference on the mGvM. We also show the connections between the
augmented representation of the mGvM proposed in Chapter 3 and the inference
algorithm presented.

5.1 Inference

In this section, we provide a short introduction to Expectation Propagation and its
relationship to variational inference in Section 5.1.1, followed by the derivation and
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discussion of more sophisticated approaches in Section 5.1.2 and Section 5.1.2. The
content of Section 5.1.1 is directed to the EP novice, and the experienced reader may
skip it altogether.

5.1.1 Introduction to EP and its connection to variational
inference

The Expectation Propagation algorithm was initially proposed by Minka (2000) as
an extension of both the Assumed Density Filter and Belief Propagation algorithms.
Algorithmically, EP inference can be succinctly described as forming a product repre-
sentation of the distribution we wish to approximate

p(x) =
N∏

n=1
fn(x), (5.1)

constructing an approximation

q(x) =
N∏

n=1
f̃n(x|θn), (5.2)

and iteratively refining the approximations by constructing a cavity function

q ̸=d(x) =
N∏

n̸=d
f̃n(x) (5.3)

and obtaining the new parameters θ⋆d for f̃d such that

θ⋆d = arg min
θd

KL
(
f(x)q ̸=d(x)

∥∥∥f̃(x)q ̸=d(x)
)

(5.4)

where KL is the Kullback-Leibler divergence.
It is common to require q to be an exponential family distribution as the optimisation

in Equation (5.4) reduces to moment matching. Additionally, when both p and q

are exponential family distributions, Expectation Propagation admits a variational
interpretation as shown by Wainwright and Jordan (2008). For the remainder of
this section, we will briefly review this variational interpretation of EP. When the
approximated distribution p admits a exponential family representation, it can be
written in the form

p(x|θ) = exp
{
θ⊤T(x) − log Z(θ)

}
(5.5)
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where the θ are the parameters of the distribution p, Z is the partition function
associated with p and T are the sufficient statistics of the distribution. Recall the free
energy functional presented in Chapter 4

F(q) = ⟨log p(x|θ)⟩q(x) + H(q), (5.6)

and, that in variational inference our objective is to maximise it with respect to the
variational approximation q. For the exponential family model of Equation (5.5), this
objective becomes

max
q

F(q) = max
q
θ⊤ ⟨T(x)⟩q(x) − log Z(θ) + H(q). (5.7)

Wainwright and Jordan (2008) showed that under mild regularity conditions, the
Expectation Propagation algorithm can be seen as maximising a relaxed form of the
Equation (5.7). If we assume that the approximating distribution q can be factored,
we and split the factors into two sets A and B, the EP relaxation effectively substitutes
the Shannon entropy functional H in Equation (5.7) for the Bethe entropy. The Bethe
entropy only into account only pair-wise interactions between all factors of sets A and
B and is defined as

HBethe(qA, qB) = H (qA) +
∑
j∈B

[
H
(
qA, qj

)
− H (qA)

]
. (5.8)

If the true distribution p and the approximating distribution q are exponential
family members, moment matching between these distributions solves the first-order
optimality condition of the Lagrangian associated with the EP free energy, that is,

max
q

FEP(q) = max
q
θ⊤ ⟨T(x)⟩q(x) − log Z(θ) + HBethe(q). (5.9)

There are multiple technicalities required to understand the theoretical underpinnings
of the approximations outlined, such as their relationship to probability polytopes.
Such topics are important in a deeper understanding of Expectation Propagation and
other message passing algorithms, however such discussions lie beyond the scope of a
first introduction to these methods. Therefore, we have opted for providing the reader
with an intuition and referring the interested reader to Wainwright and Jordan (2008)
and Murphy (2012) for a thorough exposition of these technicalities.

In the context of circular statistics, EP updates for the multivariate von Mises have
been derived by Razavian et al. (2011) and Razavian et al. (2012). However, despite
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considerable efforts, we could neither obtain converging results using the algorithm
outlined by these researchers nor a naïve implementation of the EP algorithm for
the mGvM even when annealing and damped updates are introduced. This lack of
convergence of such algorithms can be traced to the fact that they utilise mean-field
type of factorisation for the mGvM and such approximations have been shown to fail,
for example, the multivariate Gaussian case is discussed by Cseke and Heskes (2008).

Another limitation of these methods is that they consider every factor to be an
independent von Mises distribution. This choice of approximation is problematic both
in terms of representation power and numerical stability. Representations arising from
a product of independent von Mises are limited to unimodal, symmetric distributions
which does not capture the multimodality of the mGvM. Numerical issues also arise
since moment matching requires inverting modified Bessel functions of first kind, since
their inverse does not bear an analytic form. Such quantities need to be estimated
through a root-finding procedure such as the Newton-Raphson method requiring
multiple evaluations of Bessel functions of possibly high-valued arguments. The use of
such methods adds another source of numerical stability and can be slow.

In the following sections, we will derive two alternative factorised representations of
EP and how to do moment matching in the mGvM through a lifting transformation.

5.1.2 Lifted Expectation Propagation approximation for the
mGvM

Drawing on previous work in statistical physics, Opper and Winther (2005) proposed
structuring Expectation Propagation factors of an intractable density p(x) into two
parts, one a collection of analytically-tractable factors fs(x), while the second part
agglomerates constraint-encoding factors fc(x), which are defined through the use of
Dirac Deltas.

Such constructions can prove useful when distributions can be posed in terms of a
series of transformations in generative models. For example, if we adopt the generative
view of the mGvM distribution provided in Section 2.1.1, a random vector ϕ following
a mGvM distribution can be viewed as a 2N-variate Gaussian conditioned to the
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N-torus,

p(x) = N(x;m,Σ) (5.10)

p(z|x) =
N∏

n=1
δ
(
z2

n + z2
N+n − 1

)
δ (zn − xn) δ (zn+N − xN+n) (5.11)

p(ϕ|z) =
N∏

n=1
δ(cosϕn − zn)δ(sinϕn − zN+n), (5.12)

such that marginal distribution for ϕ can be recovered by marginalising both z and x,

p(ϕ) =
∫
p(ϕ|z)p(z|x)p(x)dxdz. (5.13)

=
∫
p(ϕ|x)p(x)dx. (5.14)

A key insight of this factorisation is that Expectation Propagation can be performed
in the lifted space comprising both the simple variates and the constraints, i.e., the
tuple (ϕ, z, x) in the mGvM case. Each of the Dirac Delta constraints are then
approximated by Gaussians centred at the Delta’s argument. These approximations
lead to an interpretation that Opper and Winther (2005)’s factorisation is, essentially,
an approximate inference procedure over a relaxed version of the original constrained
problem. Moreover, because the Gaussian relaxations of the Dirac Delta’s have their
means at the exact constraint locations, it can be proved that the expectations of the
factored approximation will be consistent with the original model (hence the name
“expectation-consistent” approximations used in the original paper).

Specifically for the mGvM case, we can derive the updates over a simpler lifted
space by analytically integrating over the z as in Equation (5.14), that is, we can
consider a lifted space comprised of

p(x) = N(x;mp,Σp)

p(ϕ|x) =
N∏

n=1
δ(cosϕn − xn)δ(sinϕn − xN+n)δ

(
x2

n + x2
N+n − 1

)
.

(5.15)

Under the lifted view of the augmented space, we can write a von Mises or a Generalised
von Mises likelihood term for each data point ψ as

p(x) = N(x;mℓ,Σℓ)

p(ψ|x) =
N∏

n=1
δ(cosψn − xn)δ(sinψn − xN+n)δ

(
x2

n + x2
N+n − 1

) (5.16)
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where Σℓ is a R2×2 covariance matrix that results in the κ1 and κ2 parameters of the
mGvM. Combining Equation (5.15) and Equation (5.16) and drawing on conjugacy of
Gaussian distributions, we obtain the posterior model

p(x) = N(x; m̃, K̃)

p(ϕ|x) =
N∏

n=1

[
δ(cosϕn − xn)δ(sinϕn − xN+n)

× δ(cosψn − xn)δ(sinψn − xN+n)δ
(
x2

n + x2
N+n − 1

)] (5.17)

for appropriate posterior parameters K̃ and m̃. This resulting model can be succintly
represented as a factor graph in Figure 5.1.

The next step in this algorithmic setup is to construct individual approximations
to the constraints involving of Equation (5.17). A natural choice is to use Gaussian
distributions over the terms that appear in the argument of the delta functions, for
example,

δ(x2
n + x2

N+n − 1) ≈ N

 xn

xN+n

 ;mn, σ
2
nI

 (5.18)

since N(x, 0, σ2) → δ(x) as σ2 → 0. In the case of the mGvM’s delta functions, the

x1 xN+1

fc,1(x1, xN+1)

ϕ1

xN x2N

fc,N(xN, x2N)

ϕN

fs(x)

· · ·

· · ·

· · ·

Fig. 5.1 The factor graph for the mGvM model under the Lifted approximation
indicating the factors fs comprising the joint Gaussian distribution, and the constraint
factors fc for the delta functions.

m and σ2
n parameter bears additional significance, as the mean indicate the location
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on the unit circle a tangent approximation to the delta function is to be constructed
and the variance represents the degree to which the delta function has been relaxed.
This interpretation in shown graphically in Figure 5.2
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Fig. 5.2 Illustration of different delta function approximations in the Expectation-
Consistent framework for the mGvM: before the algorithm iterates, factors have large
variances and are not centred on the unit circle (left), as the algorithm progresses, the
approximations tend to assign the factor mean to locations on the unit circle (middle),
and final steps focus on reducing the factor variance to avoid assigning high-probability
to the regions far from the unit circle (right).

With Equation (5.18), the EP approximation can be simply written as a product
of Gaussians

q(x) = p(x)
N∏

n=1
f̃n(xn, xN+n)

= N(x,m,K)
N∏

n=1
N

 xn

xN+n

 ;
m1,n

m2,n

 ,
 σ2

1,n ρnσ1,nσ2,n

ρnσ1,nσ2,n σ2
1,n

 (5.19)

such that the EP updates adjust the relaxations on the model constraints as shown
schematically in Figure 5.2. Notice that the moments of the true underlying distribution
which involve delta functions are obtained directly from a GvM distribution, since∫
δ
(
cosϕ2

n − xn
)
δ
(
sinϕ2

N+n − xN+n
)
δ
(
x2

n + x2
n − 1

)
p(x)dx = GvM

(
ϕn;µ1, µ2, κ1, κ2

)
(5.20)
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with the parameters are given by Equation (5.21) to Equation (5.24)

κ1,d cosµ1,d = 2
(

ρd
σ1,dσ2,d

m2,d − 1
σ2

1,d
m1,d

)
(5.21)

κ1,d sinµ1,d = 2
(

ρd
σ1,dσ2,d

m1,d − 1
σ2

2,d
m2,d

)
(5.22)

κ2,d cos 2µ2,d = 1
2

(
1
σ2

1,d
− 1
σ2

2,d

)
(5.23)

κ2,d sin 2µ2,d = − ρd
σ1,dσ2,d

. (5.24)

and hence, the moments of the approximating distribution must be matched to the
moments of a GvM distribution. We term the approximation derived above as well as
its associated Expectation Propagation updates as Lifted Expectation Propagation for
the mGvM (LEP-mGvM).

The approach described above can be seen as an extension of the algorithm proposed
by Turner and Sahani (2011). In their original algorithm, they proposed a constraint
approximation to demodulate phase and obtain the signal amplitude using a constrained
Markov process. The algorithm presented in this chapter differs from this previous work
both in focus and generality. Here, we focus only on modelling the circular component
and further constrain the amplitude to unity. At the same time, we extend the Markov
framework to allow more general correlation structures present in Gaussian processes.

Relationship to the augmented representation of the mGvM

Recall that the augmented representation of the mGvM distribution presented in the
previous chapter eliminates the difficulties associated with the mGvM’s quadratic term
by introducing additional Gaussian states. Applying this augmentation to a posterior
distribution over ϕ, f and g results in

p(ϕ, f, g|ψ) = N

f
g

 ;m,Σ

×
N∏

n=1
vM(ϕn;αn(f, g,ψ), βn(f, g,ψ) (5.25)

where Σ = Σ(σ2,K−1,A) for A an arbitrary invertible real-valued matrix, σ2 is a
positive real constant such that σ2 − K−1 is positive-definite, m is a mean vector, and
the parameters α and β are such thatα⊙ cosβ

α⊙ sinβ

 = κ

cosψ
sinψ

+ A−1

f
g

−m

 (5.26)
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with ⊙ denoting point-wise multiplication.
Based on the transformation employed in the previous section, the circular variables

model from Equation (5.25) can be approximated by treating each ϕn as the angle
arising from two Gaussian components un and vn to yield the model

p
(
ϕ, f, g

)
= N

f
g

 ;m,Σ

×
N∏

n=1
[δ(cosϕn − un)δ(sinϕn − vn)δ(u2

n + v2
n − 1)]×

N

u
v

 ;
cosβ

sinβ

 ,
diag(α)−1 0

0 diag(α)−1

 .
(5.27)

The Gaussian distributions of Equation (5.27) can be viewed through the eyes of the
Expectation Propagation approximation as

p
(
ϕ, f, g

)
=
[ N∏

n=1
δ(cosϕn − un)δ(sinϕn − vn)δ(u2

n + v2
n − 1)

]

× N

f
g

 ; m̃(u, v,ψ), Σ̃
 (5.28)

for appropriate m̃ and Σ̃. Equation (5.28) defines a model very similar to that
approximated by Equation (5.15) and Equation (5.16). This shows that both models
are inherently connected, despite adopting different routes for approximating a mGvM
model.

Different representations can induce different types of related EP algorithms, as
portrayed in Figure 5.3. However not all representations are tractable or yield efficient
algorithms. From the algorithms outlined in Figure 5.3, only the LEP-mGvM algorithm
has an efficient scheme for matching moments. For example, while technically feasible,
direct EP for the augmented representation of the mGvM requires estimating the
moments of the underlying distribution with Monte Carlo methods and as a consequence
its performance can be slowed significantly when compared to LEP-mGvM.
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p(ϕ)

p(ϕ, x) δ(u2
n + v2

n − 1)p(u, v, x)

δ(xn
2 + x2

N+n − 1)p(x)

Razavian et al. (2011)

EP for Equation (5.25) EP for Equation (5.28)

LEP-mGvM (Section 5.1.2)

Original to
Augmented

Circular to
Generative view

EP algorithm
to model

Fig. 5.3 A diagram outlining the relationship between the different Expectation Prop-
agation algorithms, the mGvM models in original circular form and constrained GP
representations, and augmented representations.

5.2 Experimental results

In this section, we present experiments on synthetic and real data sets for the Expecta-
tion Propagation algorithm for the mGvM and compare this method’s performance to
mean-field variational inference. In particular, we evaluate the predictive performance
in both quantitative and qualitative grounds using the Mean-Field Variational Inference
outlined in Chapter 4 as a comparison reference. To establish a fair comparison, we
employ the same data sets and model parameters and also evaluate the total running
time pertaining both inference algorithms. We note that while a comparison with
naïve applications of Expectation Propagation was attempted based on the EP updates
derived by Razavian et al. (2011) and Razavian et al. (2012), we could not obtain
converging results using the algorithm outlined by these researchers1.

Quantitative results for both the inference algorithms are presented in Table 5.1 in
terms of the predictive likelihood of a test data set and a running time comparison
between both algorithms. Table 5.1 shows that the Expectation Propagation algorithm
is slower than the Mean-Field Variational Inference. Profiling the source code of both
implementations reveals that the major source for this time discrepancy is the moment
calculation step. This discrepancy arises because the Lifted EP algorithm requires

1For reproducibility purposes, it is important to remark that we could not rely on the original
implementation of these methods. The original implementation was not openly available, nor was it
supplied upon request at the time of the writing of this thesis. The results shown correspond to our
implementation of the EP updates described in their papers.
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Table 5.1 Log-likelihood of the predictions with the mGvM using different algorithms
and ratio between the running time of the Lifted Expectation Propagation for the
mGvM algorithm (LEP-mGvM) to Mean-Field Variational Inference (MF-VI). In-
stances of EP that did not converge even in the presence of both annealing and damping
are indicated in the table

Data set MF-VI Razavian et al. (2011) LEP-mGvM Time Ratio
Wrapped hat 2.02 · 104 Not Converged 3.60 · 104 4.23
Yeast 1.33 · 102 Not Converged 1.34 · 102 3.77
Tides 1.25 · 104 Not Converged 3.45 · 104 1.37
Protein 1.42 · 105 Not Converged 2.03 · 105 1.47 · 102

Uber 3.29 · 104 Not Converged 1.68 · 104 2.06 · 101

matching moments of a Generalised von Mises computed through series of modified
Bessel functions, whereas the moment calculations in the Mean-Field Variational
Inference algorithm rely solely on a simple ratio of modified Bessel functions. The
likelihood scores in Table 5.1 show that in general the Expectation Propagation
algorithm has superior predictive performance when compared to the MF-VI. This
characteristic is a consequence of a better representation of uncertainty surrounding the
true underlying function as evidenced by Figure 5.4 We conjecture that the improved
performance can be traced to the lifting procedure. This procedure is similar to the
one used when fitting the 2D-GP model discussed in the previous chapter, which
allows the Lifted EP model to incorporate characteristics from both the uncertainty
representation of the 2D-GP with the mean estimates from the MF-VI. An interesting
point for further analysis is to investigate whether analytic relationships between the
MF-VI, the 2D-GP and the Lifted EP can be established.

It is also possible to view in Figure 5.4 that the underlying mean function learned by
LEP-mGvM is different from the learned mean function of MF-VI, which the MF-VI
over-confidently commits to a single regressed function, without properly weighing the
possibility for different functions to fit the structure as discussed in Chapter 4. The
Lifted EP algorithm is, instead, forced to assign probability mass asymmetrically to
contemplate the hypothesis that the underlying function has wrapped or not at a given
point, and weight such hypothesis adequately. This behaviour leads to the differences
in the error bars illustrated in Figure 5.4. A similar behaviour is also noted in the
Tides data set as demonstrated in Figure 5.5.

It was necessary to introduce damping in the EP updates and anneal the strictness
of the constraints to the unit circle to obtain the results above. This annealing
procedure consisted of setting the variance terms of the delta factors to fixed values
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Fig. 5.4 Regression on the Wrapped Mexican Hat function using LEP-mGvM (left)
and MF-VI (right): data points are denoted by crosses, the true function by circles
and mean of each factor for the prediction locations by solid dots (darker regions have
higher probability than lighter regions).

and progressively decreasing them until it was completely absent. We denote a set of
values used in this procedure as an annealing schedule. Multiple annealing schedules
were attempted by considering 10 different variance settings taking values between 10
and 0.01, initially starting with a linear profile and then manually adjusting the values
on a log-scale grid. From all the schedules tested, the one which produced the best
overall predictive value on a test data set was retained. This procedure is illustrated in
Algorithm 2.

Algorithm 2: Annealing and damping scheme utilised in the mGvM Expectation
Propagation schemes
1 getInput (epFactors, dampingValues, annealValues); // Supply initial values

for the EP factor parameters, a list of damping values to be used
and a list of annealing values to be used

2 for α ∈ dampingValues do
3 for β ∈ annealValues do
4 epFactors = runEP (noise=β, damping=α, initialFactors=epFactors) ;

// Run the EP algorithm
5 end
6 end
7 Output epFactors

Annealing has a severe impact on the function that is learned and requires careful
attention, as evidenced by Figure 5.6. If no annealing is used, the algorithm will not
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Fig. 5.5 Selected ports for regression on the Tides dataset using LEP-mGvM (left)
and MF-VI (right): predicted ports are highlighted in blue while training ports are
shown in magenta locations denote training ports data points are denoted by crosses,
the inferred density for each port is displayed as the orange line. The LEP-mGvM
inferred densities are typically less certain than the ones obtained by MF-VI, while the
modes of both approximations are close.

converge in general, as displayed in the leftmost plot of Figure 5.6. An annealing
schedule starting with a stricter variance value for the approximation of the constraints
will induce a different learned regressed function, as can be seen comparing the middle
plot of Figure 5.6 with the rightmost plot in Figure 5.6. This difference is a direct
consequence of the constraints localising the fit on a region of space as portrayed
in Figure 5.2 and the non-convex nature of the space of inferred functions. The
computation of the moments of the GvM distributions also required further attention
to render them more numerically stable, including imposing a limitation on the
concentration parameter values and developing a variant of the moment equations from
Gatto (2008) shown in Appendix C.

5.3 Summary

In this chapter, we have introduced an Expectation Propagation algorithm for mGvM
based on the Expectation Propagation framework proposed by Opper and Winther
(2005) and compared the proposed method with Mean-Field Variational Inference.
Through experiments on real and synthetic data sets, we showed that the Lifted
Expectation Propagation for the mGvM algorithm provides a better approximation to
the posterior than the Mean Field distribution at the expense of additional computation
time.
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Fig. 5.6 Regression on the Wrapped Mexican Hat function using different annealing
schemes representing data points as crosses, the true function by circles and mean of
each approximating factor for the predictions by a solid dot: no annealing (left), a
schedule with variances of 0.5, 0.1 and 0.01 (middle), and a slower schedule from 103

to 10−4 decreasing a power at each iteration (right).



Chapter 6

Approaches based on Markov chain
Monte Carlo

In this chapter, we introduce Markov chain Monte Carlo techniques which are suitable
for data sets with up to N = 102 variables. In particular, we investigate sampling
schemes using Gibbs sampling, Hamiltonian Monte Carlo (HMC) and a hybrid method
that uses both algorithms. We show that in general sampling directly from the mGvM
model performs worse than using sampling schemes which employ the augmented
representation of the mGvM. Each sampler is tested in both synthetic and real world
data sets and the HMC samplers were tuned using Bayesian Optimisation to maximise
sample indepech6/figndence.

6.1 Simulation and inference

Markov chain Monte Carlo (MCMC) are a class of methods based on the seminal work
of Metropolis and Ulam (1949), which proposed Monte Carlo methods approximate
integrals based on samples, with an insight from Hastings (1970). Hasting’s key insight
was to construct a Markov chain that converged to a target distribution we wish to
draw samples from. Then, samples obtained from the Markov Chain transitions are
used to form a Monte Carlo estimate of the target distribution.

There is often an expensive computational load associated with these methods,
which also explains why these techniques were only popularised decades later by the
influential works of Gelfand and Smith (1990) in statistics and Neal (1993) in machine
learning. Furthermore, while this class of techniques produces exact samples from
any distribution of interest including intractable posteriors, there is no diagnostic
capable of guaranteeing convergence of the underlying Markov chain. Users must rely
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on metrics based on analysing the auto-correlation generated by samplers such as the
Rubin-Gelman diagnostic simulating multiple chains in parallel (Gelman and Rubin,
1992) or the Geweke test (Geweke, 1992).

The methods utilised in this chapter are already well-established in literature,
therefore we provide only a brief overview of each of these methods along with the
particulars for their use with the mGvM. Readers interested in the minutiae of these
methods are directed to the excellent texts by Neal (1993), Gilks et al. (1995), Brooks
et al. (2011), Gelman et al. (2013), MacKay (2003), Bishop (2006) and Murphy (2012).

6.1.1 Gibbs sampling

Gibbs sampling (Geman and Geman, 1984) is a widely used method that constructs
a Markov Chain through the univariate conditionals of the distribution of interest.
Namely, if one is interested in the distribution p(x1, . . . , xN), a Gibbs sampler will
draw samples from unidimensional conditionals of p according to Algorithm 3. In

Algorithm 3: Gibbs sampling
1 Define the number of samples to be S.
2 for s = 1 : S,
3 for n = 1 : N,
4 Sample xs,n from p(xi|xs−1,1, . . . , xs−1,n=1, xs−1,n+1, . . . , xs−1,N)
5 Set xs−1,n to xs,n,

the limit as the number of samples approaches infinity, the sampler will converge to
the distribution of interest. Hence, samples generated from the conditionals xn,s will
coincide with samples of p(x1, . . . , xN).

There are two major advantages of the Gibbs sampler: there is no time wasted
generating samples that are not going to be accepted, and there are no free parameters
that require tuning. However, these advantages come at a cost of very local transitions,
a problem that is further aggravated when the joint distribution exhibits strong
correlations (see, e.g. Bishop, 2006; MacKay, 2003).

Gibbs sampler’s reliance on tractable conditionals of the distribution of interest and
its lack of tuning parameters renders it an attractive baseline for comparing sampling
methods for the mGvM. As discussed in Chapter 2, the one-dimensional conditionals
of the mGvM

mGvM(ϕ;µ,κ,K) ∝ exp
{
κ⊤ cos(ϕ− µ) − 1

2

cosϕ
sinϕ

⊤

K−1

cosϕ
sinϕ

} (6.1)
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are GvM-distributed

GvM(ϕn|ϕ̸=n) ∝ exp
{
κ̃1,n cos(ϕn − µ̃1,n) + κ̃2,n cos(2ϕn − 2µ̃2,n)

}
(6.2)

with parameters defined through the relations

κ̃n,1 cos µ̃n,1 = κ1,n cos(µ1,n)

− 1
2
∑
j ̸=n

[
(K−1)n,j cos(ϕj) + (K−1)n,j+N sin(ϕj)

]
κ̃n,1 sin µ̃n,1 = κ1,n sin(µ1,n)

− 1
2
∑
j ̸=n

[
(K−1)n+N,j cos(ϕj) + (K−1)n+N,j+N sin(ϕj)

]
κ̃n,2 cos 2µ̃n,2 = −1

4
[
(K−1)n,n + (K−1)n+N,n+N

]
κ̃n,2 sin 2µ̃n,2 = −1

2(K−1)n,n+N.

(6.3)

6.1.2 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) method (Duane et al., 1987) relies on two central
ideas: considering an intelligent augmentation of the distribution we wish to sample
from as a Hamiltonian, and leveraging on the dynamical system associated with a
Hamiltonian to drive the exploration of the sample space. More precisely, given a
distribution

p(x) ∝ exp
{

− E(x)
}
, (6.4)

we wish to sample from, we define an augmented system

p(x,v) ∝ exp
{

−H(x,v)
}

(6.5)

where H(x,v) = E(x) +K(v). Within the statistical physics formalism, the function
E can be interpreted as potential energy for the states x while K(v) can be regarded
as a kinetic energy term with associated momenta v.

The function H(x,v) induces dynamical system that can be described in terms of
the flow equations

∂H(x,v)
∂x = −∂v

∂t
and ∂H(x,v)

∂v
= ∂x
∂t
, (6.6)
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describing the state and momentum transitions along a simulation time t. The
dynamical system of Equation (6.6) represents a principled way to steer x away from
the initial simulation point. Each iteration involves sampling a new initial state by
drawing a sample for the momentum variable, integrating the Hamiltonian system
and deciding whether to accept the new sample state based on the preservation of the
volume of Hamiltonian system as presented in Algorithm 4

Algorithm 4: Hamiltonian Monte Carlo sampling
1 Define the number of samples to be S.
2 Define the number of integration steps L.
3 Define the size of integration steps ξ.
4 Define a set of accepted samples A.
5 Set initial state x0.
6 while |A| ≤ S,
7 Sample v0 from p(v) ∝ exp −K(v)
8 Calculate h0 = H(x0,v0)
9 Get final states xL,vL by numerically integrating Equation (6.6) with a

symplectic integrator using L steps of size ξ.
10 Calculate hL = H(xL,vL)
11 Sample u = Uniform(0, 1)
12 if u ≤ exp(h0 − hL),
13 Add xL to A and set x0 to xL

Since the method’s inception, the kinetic energy term K(x,v) is assumed to be a
quadratic function of the momentum variables, i.e. 1

2v
⊤M−1v for some matrix M−1.

The reasons for maintaining this form are two-fold: it relates directly to the classical
formulation of kinetic energy in physical systems, and it results in a multivariate
Gaussian distribution which can be easily sampled from.

For the mGvM, the energy function from Equation (6.4) becomes

E(ϕ) = −κ⊤ cos(ϕ− µ) + 1
2

cosϕ
sinϕ

⊤

K−1

cosϕ
sinϕ

 (6.7)

Different kinetic energy terms for circular distributions can be used, since the
algorithm proposed by Duane et al. (1987) does not depend on the kinetic energy to
be a Gaussian term. However, empirically we did not find any significant difference
when other different, static1 kinetic energy terms are used. For example, using

1In the investigation presented in this chapter we did not use any adaptive weight scheme such as
a Riemannian Manifold Hamiltonian Monte Carlo (Girolami and Calderhead, 2011).
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K(v) = α ⊙ cos(v) to sample from an associated von Mises associated distribution
yielded similar results to the usual quadratic energy term.

Different from the Gibbs sampler, an HMC sampler possesses a large list of tuning
parameters: the number of steps of symplectic integrator for the dynamical system
of the Hamiltonian, the size of the steps taken by the symplectic integrator and the
weights of the Kinetic energy distribution. Tuning this large number of parameters is
often a dauting task. Moreover, there is no consensus on which metric the sampler has
to be tuned for. In this study, we chose to prioritise exploration of the variable’s space
and adopted the Normalised Expected Squared Jump Distance criterion of by Wang
et al. (2013), i.e.

NESJD = 1√
L

Ep(x) [xs−1 − xs]2 , (6.8)

where p is the true distribution of the random of x and L is the size of the integration
step in the HMC sampler.

Wang et al. (2013)’s criterion is a modification of the Expected Squared Jump
Distance (ESJD) proposed by Pasarica and Gelman (2010),

ESJD = Ep(x) [xs−1 − xs]2 (6.9)

to account for the fact that increasing the number of integration steps in the HMC
algorithm necessarily leads to an increase in the ESJD without necessarily improving
the exploration of the space.

The sampler parameters are then tuned using a Bayesian Optimisation (BO)
procedure as described by Wang et al. (2013). A discussion of Bayesian Optimisation
methods are outside the scope of this chapter, however, the interested reader is referred
to Brochu et al. (2010), Hoffman and Shahriari (2014) and Hernández-Lobato et al.
(2014, 2015) for further details.

6.1.3 MCMC methods for the augmented representation

Recall from Chapter 3 that the augmented representation for the mGvM distribution
defined in Equation (6.1), has two possible representations. The first representation
defines the augmentation states conditioned on the mGvM-distributed circular variables,
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i.e.

p(ϕ) = mGvM(ϕ;µ,κ,K)

p(f|ϕ) = N

f; A(σ2I − K−1)
cosϕ

sinϕ

+m,A(σ2I − K−1)A⊤

 . (6.10)

The second representation has fully factorised circular variables conditioned on the
Gaussian augmentation states,

p(f) = N
(
f;m,A(σ2I − K−1)A⊤

)
p(ϕ|f) =

N∏
n=1

[
vM(ϕn;αn(f), βn(f))

] (6.11)

where the parameters α and β are given as

α⊙ v(β) = κ⊙ v(µ) + A−1(f −m) (6.12)

and ⊙ denotes the Hadamard product, i.e. point-wise vector multiplication.
Leveraging representations of Equation (6.10) and Equation (6.11), an efficient

Gibbs sampler can be proposed. When sampling the conditionals of the circular states,
the sampler resorts to the tractable representation of Equation (6.11). When the
sampler needs to obtain samples from circular variables ϕ, the sampler utilises the
representation of Equation (6.10).

One can also leverage the augmented representation to derive a hybrid sampler
where HMC is performed on the augmentation states, and the energy and then samples
for the circular states are obtained by drawing from von mises representations of
Equation (6.10).

It can be hypothesised that the additional structure imparted by the additional
variables from the augmentation transformation allows for more efficient sampling.
This conjecture resides on the fact that changes in the added Euclidean states lead
to longer jumps in the circular space than those that would result from the direct
application of these methods. Moreover, similar results have been shown for discrete
space models (see, e.g. Pakman and Paninski, 2013) to further support this conjecture.

6.1.4 Contrastive divergence learning

Recall that when using the mGvM in a regression setting, the model prior is given by a
special case of the mGvM distribution, the Toroidal Normal, for which the normalising
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constant is not known. As in this chapter we developed samplers for this distribution,
we can use these MCMC procedures to implement a learning procedure similar to
contrastive divergence.

Contrastive divergence was initially proposed by Ackley et al. (1985); Hinton (1989)
for Ising models and more recently enjoyed a revival as a consequence of the popularity
of Deep Restricted Boltzmann Machines (Hinton, 2002, 2010; Salakhutdinov and Hinton,
2009). We note that while in the circular context, the Directional-Unit Boltzmann
machines proposed by Zemel et al. (1993) already employed a contrastive divergence
learning procedure, their method used a mean-field approximation with von Mises
distributions. The methods outlined next do not require this additional approximation
step since we can compute all expectations required through the sampling procedures
outlined in Section 6.1.

The contrastive divergence method hinges on two main concepts: reformulating the
derivative of an intractable partition function in terms of the expectation of a gradient
and the ability to optimise functions under noisy gradients to perform maximum-
likelihood or maximum a posteriori learning. The former is addressed by writing either
the log likelihood or log joint distribution as the objective function for a gradient-based
stochastic optimisation method, most prominently, stochastic gradient ascent. The
latter can be derived using log derivatives and the quotient rule for differentiation

∂

∂θ
log Zp(ϕ|θ) = 1

Zp(ϕ|θ)

∂

∂θ

∫
p∗(ϕ|θ)dϕ (6.13)

= 1
Zp(ϕ|θ)

∫ p∗(ϕ|θ)
p∗(ϕ|θ)

∂

∂θ
p∗(ϕ|θ)dϕ (6.14)

=
∫
p(ϕ|θ) ∂

∂θ
log p∗(ϕ|θ)dϕ (6.15)

which can be re-expressed as the expectation

∂

∂θ
log Zp(ϕ|θ) =

〈
∂

∂θ
log p∗(ϕ|θ)

〉
p(ϕ|θ)

(6.16)

6.2 Experiments

In this section, we conduct experiments with synthetic and real-world data sets to
investigate the behaviour of different samplers and the use of contrastive divergence
learning for the mGvM.
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6.2.1 Analysis of sampler behaviour

The experiments conducted aimed to investigate the characteristics of both Gibbs and
Hamiltonian Monte Carlo samplers applied directly to the mGvM as well as their
performance on the augmented model.

In order to assess the behaviour of the samplers in detail, four toy data sets were
utilised to explore the qualitative behaviour of the sampler under controlled conditions,
while another three real-world data sets were used to analyse the sampler’s performance
in practical settings. In general, the dimensionsionality of the problems tackled by
the samplers presented in this section are smaller than the ones in previous chapters.
This limitation is a consequence of the difficulty of effectively assessing the convergence
of MCMC samplers in high-dimensional spaces (for a more in depth analysis of such
convergence issues see, e.g. Rajaratnam and Sparks, 2015).

The toy data sets were created to reflect cases when the mGvM can be unimodal
or multimodal, and the effect of correlations. Therefore, for each example we sampled
40 points sampled from the empirical distributions on 2-dimensional grids for an
uncorrelated, multimodal mGvM (Toy-1), a correlated, multimodal mGvM (Toy-2),
an uncorrelated and unimodal GvM (Toy-3), and an unimodal and correlated mGvM
(Toy-4). We also employed reduced versions of the datasets used in previous chapters
in dimensions amenable to the samplers. These data sets included the training points
the Wrapped Mexhat, Tides dataset and a subset of 10 angles in protein dataset
(Sub-protein). The kernels used were the same as in the previous studies. Models were
run with a fixed time budget of one hour and the first 5000 samples were discarted as
a burn-in phase.

The performance of the different samplers was analysed using the log-evidence for
a validation set comprising of held out data points. This metric was computed by
forming the (simple) Monte Carlo estimate as

log p(ψ) = log
∫
p(ψ|ϕ)p(ϕ)dϕ (6.17)

≈ log p̂(ψ) =
N∑

n=1
log

S∑
s=1

p(ψn|ϕs) ϕs ∼ p(ϕs). (6.18)

This performance score was chosen as it clearly indicates whether samples generated
by a given method represent well the validation set. The results for this measure are
tabulated in Table 6.1.

Table 6.1 indicates that the augmented representation model tend to represent
the validation set better than their non-augmented counterparts. This evidence is
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Table 6.1 Comparison of log-evidence evaluated at held out data set for different
sampling schemes for the same running time. Columns referring to an algorithm using
the augmented representation of the mGvM are denoted by the prefix AR.

AR-HMC HMC AR-Gibbs Gibbs
Toy-1 +1.7 · 10−1 +1.31 · 10−1 +1.54 · 10−1 +1.29 · 10−1

Toy-2 +1.3 · 10−1 +1.04 · 10−1 +1.07 · 10−1 +1.05 · 10−1

Toy-3 +4.81 · 10−1 +4.76 · 10−1 +4.27 · 10−1 +4.55 · 10−1

Toy-4 +6.4 · 10−1 +3.82 · 10−1 +4.23 · 10−1 +3.75 · 10−1

Wrapped hat +1.27 · 10−1 +1.16 · 10−1 +1.46 · 10−1 +1.10 · 10−1

Tides +2.89 · 10+0 +2.81 · 10+0 +3.79 · 10+0 +3.67 · 10+0

Sub-protein +2.88 · 10+0 +9.40 · 10−1 −5.50 · 10−1 −2.00 · 10−1

supported by the plots shown from Figure 6.1 to Figure 6.8, which examine the sample
histograms against the true distribution as well as each sampler’s trajectory and trace
for a limited number of samples.

In the multimodal cases Toy-1 and Toy-2, both the AR-HMC sampler and the
AR-Gibbs samplers represent well all four modes of the true distribution. The optimally
tuned HMC sampler can also represent three of the four modes well, but also places a
substantial amount of probability mass in lower-probability regions between modes.
The Gibbs sampler trace indicates that generally the sampler does not switch modes,
as can be seen in the remaining samplers. This indicates the poor representation of the
underlying distribution as it places substantial mass on a low-probability zone despite
providing the sampler with a long burn-in phase.

In the unimodal cases of Toy-3 and Toy-4, the Gibbs sampler can correctly explore
and sample from the underlying distribution and performs well in the unimodal
uncorrelated case as expected. However, the samplers using the model with the
augmentation transformation perform better in the unimodal correlated case as they
tend to spend more time sampling the high-probability regions.

It is worth noting that in the low-dimensional toy data sets, AR-HMC, HMC and
AR-Gibbs do not exhibit significant discrepancies regarding their end results. This
similarity is explained by the fact that the computational time allowed to generate
the samples are sufficient for mixing even in the AR-Gibbs case. It is also the case
for Wrapped hat and Tides data set. For larger-dimensional problems such as the
Sub-protein data set, a more sophisticated method is required to sample from the
high-probability regions. Short-sighted methods such as Gibbs sampling cannot provide
an efficient exploration of the sample space and perform substantially worse.
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6.2.2 Contrastive divergence learning for the mGvM

To assess the effectiveness of contrastive divergence learning, we analysed the behaviour
of the samplers discussed the previous section and compared it against the true
parameter values synthetic data sets. These synthetic data sets were generated by
obtaining 200 samples from a known 5-dimensional mGvM using the HMC sampler.
The stochastic gradient descent parameters utilised in this experiment were a maximum
of 500 solver iterations with learning rate of 1.0 × 10−4 and momentum of 5.0 × 10−5.
Convergence was assessed when the norm between successive iterations decreased below
10−4.

The parameters learned by contrastive divergence for data sets whose ground truth
parameters are known are outlined in Table 6.2.

Table 6.2 Comparison of between true parameter values and learned values through
contrastive divergence with 10 samples (CD-10) and 100 samples (CD-100).

Kernel Parameter True CD-10 CD-100
Value Time Value Time Value

SE
κ 5.00

39.8
5.59

384.0
5.84

σ 200.0 179.1 177.4
ℓ 1.41 1.81 1.80

Matérn 5/2 κ 3.0 34.9 4.73 360.6 4.75
ℓ 0.75 17.9 20.8

The results for the squared exponential kernel in Table 6.2 show that the contrastive
divergence procedure has learned a distribution similar to the original distribution
from which the samples were obtained. For the Matérn kernel, the learned parameters
differ from those of the true underlying distribution, with the learned length-scale
being considerably inflated. The overall kernel influence is downplayed in favour of the
concentration parameter, which is learned to be greater than ground truth. This last
effect can be attributed to the mGvM’s over-parameterisation. This feature implies
that there exist situations such as the Matérn kernel experiment where it is not simple
to disambiguate the effects of the kernel and the ones from the concentration parameter
under a limited number of samples. Furthermore, the energy function optimised is
intrinsically non-convex, and special attention to initialisation has to be considered as
in the Gaussian Process case (e.g. see Rasmussen and Williams, 2006, Section 5.4 and
Figure 5.5)
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In both experiments, there was no significant difference regarding the values obtained
after 500 iterations for using 10 or 100 samples. However, the variance in the learning
procedure is much more pronounced for fewer samples as shown in Figure 6.9. In our
experiments there was no major difference between results with Gibbs and AR-Gibbs
samplers. The AR-HMC and HMC samplers were not considered in this analysis since
they require special tuning.

6.3 Conclusions

In this chapter, we introduced two Markov chain Monte Carlo methods for both the
multivariate Generalised von Mises and its augmented model representation. We
compared each sampler scheme against each other on synthetic and real-world data
sets, showing that the samplers using the augmented representation perform better
over standard sampling techniques in correlated and multi-modal cases, with their
performance advantage growing with the dimensionality of the data. We also showed
that there is little difference in the sampling schemes for unimodal uncorrelated cases
when using the chosen HMC tuning metric.

Another contribution of this chapter is to present a contrastive divergence learning
procedure for the mGvM, which can properly learn the parameters of the mGvM and
alleviates the issue of double intractability when performing regression with the mGvM
model in problems of reduced dimensionality.
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Fig. 6.1 Comparison of bivariate histogram of 5000 samples for an uncorrelated and
multimodal bivariate mGvM distribution of the data set Toy-1: true distribution with
validation samples indicated (a), AR-HMC (b), HMC (c) and AR-Gibbs (d) and Gibbs
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Fig. 6.2 Sampler trace for the 500 first samples for an uncorrelated multimodal bivariate
mGvM distribution of the data set Toy-1 using AR-HMC (a), HMC (b), AR-Gibbs (c)
and Gibbs (d).
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Fig. 6.3 Comparison of bivariate histogram of 5000 samples for a correlated multimodal
bivariate mGvM distribution of the data set Toy-2: true distribution with validation
samples indicated (a), AR-HMC (b), HMC (c) and AR-Gibbs (d) and Gibbs (e).
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Fig. 6.4 Sampler trace for the 500 first samples for a correlated multimodal bivariate
mGvM distribution of the data set Toy-2 using AR-HMC (a), HMC (b), AR-Gibbs (c)
and Gibbs (d).
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Fig. 6.5 Comparison of bivariate histogram of 5000 samples for an uncorrelated unimodal
bivariate mGvM distribution of the data set Toy-3: true distribution with validation
samples indicated (a), AR-HMC (b), HMC (c) and AR-Gibbs (d) and Gibbs (e).
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Fig. 6.6 Sampler trace for the 500 first samples for an uncorrelated unimodal bivariate
mGvM distribution of the data set Toy-3 using AR-HMC (a), HMC (b), AR-Gibbs (c)
and Gibbs (d).
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Fig. 6.7 Comparison of bivariate histogram of 5000 samples for a correlated unimodal
bivariate mGvM distribution of the data set Toy-4: true distribution with validation
samples indicated (a), AR-HMC (b), HMC (c) and AR-Gibbs (d) and Gibbs (e).
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Fig. 6.8 Sampler trace for the 500 first samples for a correlated unimodal bivariate
mGvM distribution of the data set Toy-4 using AR-HMC (a), HMC (b), AR-Gibbs (c)
and Gibbs (d).
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Chapter 7

Conclusions and further directions

In this chapter, we conclude the thesis by providing a discussing of overarching
contributions presented in this work in Section 7.1. Following this discussion, Section 7.2
presents further research avenues stemming from the work presented in this thesis.

7.1 Conclusions arising from the thesis contribu-
tions

The thread that unites this thesis is its goal of bridging the gap between the Circular
Statistics and the Probabilistic Machine Learning communities. To this intent, several
models and inference methods that fuse insights from both areas were developed.

In the modelling front, one of the central developments lies in the introduction of
Multivariate Generalised von Mises distribution and the analysis of its properties. This
distribution provides a straightforward way to match the need to correctly represent
the covariance structure for hyper-toroidal spaces (a key requirement of the Circular
Statistics community) with the kernel machinery developed for Gaussian Processes (a
workhorse of the Probabilistic Machine Learning community). The mGvM allowed
for the creation of a probabilistic Principal Component Analysis analogue for circular
variables, a previously unsolved problem in circular statistics, and contributing towards
unifying the treatment of regression problems in circular statistics through the use
of kernels, since kernels admit a myriad of different inputs ranging from Euclidean
variables to character sequences which had to be posed under different frameworks
before.

While the thesis focuses on mGvM, it is important to remark that the algorithms and
modelling framework developed also extend to the Matrix Fisher-Bingham distribution.
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Minor adjustments have to be performed for this more general distribution to be used.
These adjustments are mentioned throughout the thesis and can be often seen as taking
inner products of D-dimensional unit vectors instead of 2-dimensional unit vectors.
Therefore, the thesis can be seen as trying to integrate Circular Statistics in its broadest
sense to Machine Learning. That is, to consider both spaces comprised of angles and
unit vectors.

The thesis also evidences that it is not trivial to perform inference with circular
distributions, in particular the mGvM. Inference has issues both of numerical and
theoretical nature. For example, the numeric evaluation of the moments of Generalised
von Mises are non-monotonically decreasing series of Bessel functions, which require
substantial effort and to evaluate and implement in robust manner. Such numerical
issues have plagued every method attempted. This is often not a problem in typical
Machine Learning models.

On the theoretical front, we can point to the transductiveness of the model, that
is, the fact that the input locations have to be known before regression is performed.
This behaviour is a direct consequence of the way the mGvM is constructed, as the
the mGvM can be seen as imposing a finite number of constraints on a continuous
functions. That is, the function represented by the kernels in the mGvM need to be on
the unit circle only at the input locations. This construction then inherently limits how
the mGvM generalises, different from more flexible models such as Gaussian Processes.

The power and limitations of the mGvM showcase how the use of Circular Statistics
models in Probabilistic Machine Learning can yield promising results, as well as the
limitations of a purely circular approach. The augmented representations introduced
in Chapter 3 presents an alternative approach to modelling circular variables that
resonates more with Probabilistic Machine Learning generative models. This model
requires additional latent variables to facilitate inference, but turned an intractable
model into a tractable one.

While in the modelling front a central goal was to bring Circular Statistics models
into evidence for the Probabilistic Machine Learning community, in the algorithms
section the aim was to introduce approximate inference methods to Circular Statistics.
The Circular Statistics community has greatly relied in exact inference, whereas the
Probabilistic Machine Learning has greatly advanced approximate inference methods.
With this in mind, we provided simple Variational Inference (Chapter 4), Expectation
Propagation (Chapter 5) and Markov chain Monte Carlo (Chapter 6) techniques that
are widely diffused in the Probabilistic Machine Learning community.
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This explains why we have emphasised in Chapter 4 a standard mean-field approxi-
mations for the mGvM, leaving more complex approximations to Appendix B. The
mean-field approximation is a rather simple approximation when compared to the
state-of-the-art in contemporary Machine Learning research, but provides an important
foundation for a novice to the field. Furthermore, it provides a good foundation to later
compare more sophisticated approximations such as the one outlined in Appendix B.

In Chapter 5, we have focused on obtaining an Expectation Propagation algorithm
that was fully convergent, as the other existing methods in literature failed to converge
even for small problems and using damping. While there is room for exploring other
updates and factor approximations, achieving an algorithm that consistently converges
is an important initial step. As in the variational free energy case, this sets a standard
over which future algorithms can be compared to.

Finally, Chapter 6 concerned itself with algorithms that make use of augmented
states in Markov chain Monte Carlo. It is fair to say that despite the use of MCMC
techniques in Circular Statistics, in general only the original form of the distribution is
used instead of an augmented form—be it in Hamiltonian Monte Carlo or with model
augmentation of the kind presented in Chapter 3. Furthermore, we also showed how
contrastive divergence can be used to learning Multivariate Generalised von Mises, a
technique that also has had little permeation in the Circular Statistics community.

In conclusion, this thesis achieves its goal of establishes a number of benchmarks and
points for discussion over the need for integrating Circular Statistics and Probabilistic
Machine Learning. The thesis provides a convergent point from which practitioners
from both Circular Statistics and Probabilistic Machine Learning can build upon as
well as outlining multiple further research points.

7.2 Further work

A recurrent problem throughout when applying the mGvM and related distributions to
large datasets resides in the numerical stability of algorithms involving modified Bessel
functions of first kind. Despite the existence of bounds and asymptotic approximations
for such functions in literature, we did not find such methods to be robust in practice.
This resonates with the findings of Sra (2012), who showed that in some cases naïve
numerical implementations for such functions perform better in large dataset contexts.
Hence, we believe that further numerical research should be conducted to obtain stable
and accurate methods for calculating modified Bessel functions and their ratios.
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In this thesis we focused on fully factored approximations of the mGvM. A
interesting research direction is to use structured approximations that do not require
factors to be independent. For example, one could use an augmented representation
defined in Appendix B as the approximating distribution to a true mGvM in a
variational free energy setting. The details surrounding the use of this approximation
are sketched Appendix B. While the application of such approximations may seem
trivial, preliminary experiments revealed that further reserach is needed before one can
use this approximation. These experiments revealed that the gradients of the variational
free energy suffer from high variance as a consequence of the Monte Carlo integration
of the moments of the Bessel functions. While there are significant improvements in
variance reduction for continuous and and categorical variables (see e.g., Greensmith
et al., 2005; Jang et al., 2016; Maddison et al., 2016), variance reduction for gradients
in circular models remains an open problem.

Another area that could benefit from the results derived in this thesis is probabilistic
deconvolution. For example, the distributions and methods derived in this thesis
can lead to probabilistic versions of the Discrete-Time Fourier transform and the
Z-transform (Ragazzini and Zadeh, 1952). The inverse of such transformations cannot
be obtained analytically for general functions, and require the deconvolution of a
signal into an angular and an amplitude component. As the mGvM allows imposing
a functional structure on the phase component, we conjecture that the mGvM can
be play a significant role in the derivation of probabilistic methods for deconvolving
time series and frequency analysis of control systems. Moreover, since modern control
methods are strongly reliant on phase and frequency analysis (see, e.g., the celebrated
results from McFarlane and Glover, 1992, which found multiple practical applications)
we recognise that the use of machine learning in control theory should be able to benefit
greatly from the contributions from this thesis.

Finally, a straightforward direction towards extending the work in this thesis is to
incorporate further contributions from the Gaussian Process literature to the mGvM.
These include scaling the mGvM and its augmented representations to handle very
large data sets through the use of sparse representation, the creation of latent variable
models for circular spaces akin to the GP-LVM (Lawrence, 2004), the use of mGvM-
distributed time series as the GPSS (Frigola et al., 2014; Turner, 2011), extending
Gaussian states in deep Gaussian Processes (Damianou and Lawrence, 2013) and
Gaussian Process Auto-Encoders (Eleftheriadis et al., 2017) in a similar vein to the
work of Davidson et al. (2018).



References

M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions, With Formulas,
Graphs, and Mathematical Tables. Wiley, New York, 1972. ISBN 0486612724.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltzmann
machines*. Cognitive Science, 9(1):147–169, 1985. ISSN 1551-6709. doi: 10.1207/
s15516709cog0901_7. URL http://dx.doi.org/10.1207/s15516709cog0901_7.

D. J. Aldous. Representations for partially exchangeable arrays of random variables.
Journal of Multivariate Analysis, 11(4):581 – 598, 1981. ISSN 0047-259X. URL
http://dx.doi.org/10.1016/0047-259X(81)90099-3.

D. J. Aldous. Exchangeability and related topics. In École d’Été St Flour 1983, pages
1–198. Springer-Verlag, 1985. Lecture Notes in Mathematics 1117.

Z. Bai and G. H. Golub. Bounds for the trace of the inverse and the determinant of
symmetric positive definite matrices. Annals of Numerical Mathematics, 4:29–38,
1997.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,
2012.

E. Batschelet. Circular Statistics in Biology. Mathematics in biology. Academic Press,
1981. ISBN 9780120810505.

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. John Wiley & Sons, Inc., 2008.
ISBN 9780470316870. doi: 10.1002/9780470316870.

C. Bingham. An Antipodally Symmetric Distribution on the Sphere. The Annals of
Statistics, 2(6):1201–1225, 1974.

C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, 2006. ISBN 9780387310732.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993–1022,
Mar. 2003. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=944919.944937.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the Eleventh Annual Conference on Computational Learning Theory,
COLT’98, pages 92–100, New York, NY, USA, 1998. ACM. ISBN 1-58113-057-0.
doi: 10.1145/279943.279962.

http://dx.doi.org/10.1207/s15516709cog0901_7
http://dx.doi.org/10.1016/0047-259X(81)90099-3
http://dl.acm.org/citation.cfm?id=944919.944937


130 References

E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. eprint arXiv:1012.2599, arXiv.org, December 2010.

S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng. Handbook of Markov Chain
Monte Carlo. Chapman and Hall/CRC, 2011. ISBN 978-1-4200-7941-8. URL
https://doi.org/10.1201/b10905.

T. D. Bui and R. E. Turner. Tree-structured gaussian process approximations.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 27, pages
2213–2221. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5459-tree-structured-gaussian-process-approximations.pdf.

G. S. Chirikjian and A. B. Kyatkin. Engineering Applications of Noncommutative
Harmonic Analysis: With Emphasis on Rotation and Motion Groups. CRC Press,
Abingdon, 2000.

Y. Cho and L. K. Saul. Kernel methods for deep learning. In Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural
Information Processing Systems 22, pages 342–350. Curran Associates, Inc., 2009.
URL http://papers.nips.cc/paper/3628-kernel-methods-for-deep-learning.pdf.

D. R. Cox. Discussion of Professor Mardia’s paper. Journal of the Royal Statistical
Society. Series B (Methodological), 37(3):380–381, 1975.

B. Cseke and T. Heskes. Bounds on the bethe free energy for gaussian networks.
In D. McAllester and P. Myllymaki, editors, Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence (UAI2008), pages Helsinki,
Finland, July 9 – 12 2008342–350. Helsinki, Finland, July 2008.

A. Damianou and N. Lawrence. Deep gaussian processes. In C. M. Carvalho and
P. Ravikumar, editors, Proceedings of the Sixteenth International Conference on
Artificial Intelligence and Statistics, volume 31 of Proceedings of Machine Learning
Research, pages 207–215, Scottsdale, Arizona, USA, 29 Apr–01 May 2013. PMLR.
URL http://proceedings.mlr.press/v31/damianou13a.html.

P. J. Daniell. Integrals in an Infinite Number of Dimensions. Annals of Mathematics,
20:281–288, 1919.

T. R. Davidson, L. Falorsi, N. D. Cao, T. Kipf, and J. M. Tomczak. Hyperspherical
variational auto-encoders, 2018.

B. de Finetti. Funzione Caratteristica Di un Fenomeno Aleatorio. In Atti della R.
Academia Nazionale del Lincei, 6. Memorie, Classe di Scienze Fisiche, Mathematice
e Naturale, pages 251–299. Academia Nazionale del Linceo, 1931.

V. R. de Sa. Learning classification with unlabeled data. In J. D. Cowan, G. Tesauro,
and J. Alspector, editors, Advances in Neural Information Processing Systems
6, pages 112–119. Morgan-Kaufmann, 1994. URL http://papers.nips.cc/paper/
831-learning-classification-with-unlabeled-data.pdf.

https://doi.org/10.1201/b10905
http://papers.nips.cc/paper/5459-tree-structured-gaussian-process-approximations.pdf
http://papers.nips.cc/paper/5459-tree-structured-gaussian-process-approximations.pdf
http://papers.nips.cc/paper/3628-kernel-methods-for-deep-learning.pdf
http://proceedings.mlr.press/v31/damianou13a.html
http://papers.nips.cc/paper/831-learning-classification-with-unlabeled-data.pdf
http://papers.nips.cc/paper/831-learning-classification-with-unlabeled-data.pdf


References 131

M. Di Marzio, A. Panzera, and C. C. Taylor. Local polynomial regression for circular
predictors. Statistics & Probability Letters, 79(19):2066–2075, 2009. ISSN 0167-7152.
doi: https://doi.org/10.1016/j.spl.2009.06.014. URL http://www.sciencedirect.com/
science/article/pii/S0167715209002417.

M. Di Marzio, A. Panzera, and C. C. Taylor. Kernel density estimation on the torus.
Journal of Statistical Planning and Inference, 141(6):2156–2173, 2011. ISSN 0378-
3758. doi: https://doi.org/10.1016/j.jspi.2011.01.002. URL http://www.sciencedirect.
com/science/article/pii/S037837581100019X.

M. di Marzio, A. Panzera, and C. C. Taylor. Non-parametric Regression for Circular
Responses. Scandinavian Journal of Statistics, 40(2):238–255, 2012. doi: 10.1111/
j.1467-9469.2012.00809.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1467-9469.2012.00809.x.

M. Di Marzio, S. Fensore, A. Panzera, and C. C. Taylor. Nonparametric estimating
equations for circular probability density functions and their derivatives. Electron. J.
Statist., 11(2):4323–4346, 2017. doi: 10.1214/17-EJS1318. URL https://doi.org/10.
1214/17-EJS1318.

T. D. Downs. Orientation statistics. Biometrika, 59(3):665–676, 1972. doi: 10.1093/
biomet/59.3.665. URL http://dx.doi.org/10.1093/biomet/59.3.665.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Physics Letters B, 195(2):216–222, 1987. ISSN 0370-2693. doi: 10.1016/0370-2693(87)
91197-X. URL http://dx.doi.org/10.1016/0370-2693(87)91197-X.

D. Duvenaud. Automatic Model Construction with Gaussian Processes. PhD thesis,
Computational and Biological Learning Laboratory, University of Cambridge, 2014.

D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, and Z. Ghahramani. Structure
discovery in nonparametric regression through compositional kernel search. arXiv
preprint arXiv:1302,4922v4, 28, 2013. URL http://arxiv.org/abs/1302.4922.

D. K. Duvenaud, H. Nickisch, and C. E. Rasmussen. Additive Gaussian Pro-
cesses. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Wein-
berger, editors, Advances in Neural Information Processing Systems 24, pages
226–234. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/
4221-additive-gaussian-processes.pdf.

S. Eleftheriadis, O. Rudovic, M. P. Deisenroth, and M. Pantic. Variational gaussian
process auto-encoder for ordinal prediction of facial action units. In S.-H. Lai,
V. Lepetit, K. Nishino, and Y. Sato, editors, Computer Vision – ACCV 2016, pages
154–170, Cham, 2017. Springer International Publishing. ISBN 978-3-319-54184-6.

C. Ferrari. The Wrapping Approach for Circular Data Bayesian Modelling. PhD thesis,
Università di Bologna, Bologna, 2009.

R. Fisher. Dispersion on a Sphere. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 217(1130):295–305, 1953. ISSN
0080-4630. doi: 10.1098/rspa.1953.0064.

http://www.sciencedirect.com/science/article/pii/S0167715209002417
http://www.sciencedirect.com/science/article/pii/S0167715209002417
http://www.sciencedirect.com/science/article/pii/S037837581100019X
http://www.sciencedirect.com/science/article/pii/S037837581100019X
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9469.2012.00809.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9469.2012.00809.x
https://doi.org/10.1214/17-EJS1318
https://doi.org/10.1214/17-EJS1318
http://dx.doi.org/10.1093/biomet/59.3.665
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://arxiv.org/abs/1302.4922
http://papers.nips.cc/paper/4221-additive-gaussian-processes.pdf
http://papers.nips.cc/paper/4221-additive-gaussian-processes.pdf


132 References

R. Frigola, Y. Chen, and C. E. Rasmussen. Variational gaussian process state-
space models. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 3680–3688. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5375-variational-gaussian-process-state-space-models.pdf.

T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning Theory and Kernel Machines, pages 129–143. Springer
Berlin Heidelberg, 2003.

R. Gatto. Some computational aspects of the generalized von Mises distribution.
Statistics and Computing, 18(3):321–331, sep 2008. ISSN 0960-3174, 1573-1375. doi:
10.1007/s11222-008-9060-4.

R. Gatto and S. R. Jammalamadaka. The generalized von Mises distribution. Statistical
Methodology, 4(3):341–353, jul 2007. ISSN 15723127. doi: 10.1016/j.stamet.2006.11.
003.

A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410):398–409, 1990.
ISSN 01621459. URL http://www.jstor.org/stable/2289776.

A. Gelman and D. B. Rubin. Inference from Iterative Simulation Using Multiple
Sequences. Statist. Sci., 7(4):457–472, 11 1992. doi: 10.1214/ss/1177011136. URL
http://dx.doi.org/10.1214/ss/1177011136.

A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. Bayesian Data
Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor
& Francis, 2013. ISBN 9781439840955.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6(6):721–
741, Nov. 1984. ISSN 0162-8828. doi: 10.1109/TPAMI.1984.4767596. URL http:
//dx.doi.org/10.1109/TPAMI.1984.4767596.

J. Geweke. Evaluating the accuracy of sampling-based approaches to calculating
posterior moments. In J. M. Bernardo, J. Berger, A. P. Dawid, and J. F. M. Smith,
editors, Bayesian Statistics 4, pages 169–193. Oxford University Press, Oxford, 1992.

Z. Ghahramani and T. L. Griffiths. Infinite latent feature models and
the indian buffet process. In Y. Weiss, P. B. Schölkopf, and J. C.
Platt, editors, Advances in Neural Information Processing Systems 18,
pages 475–482. MIT Press, 2006. URL http://papers.nips.cc/paper/
2882-infinite-latent-feature-models-and-the-indian-buffet-process.pdf.

W. Gilks, S. Richardson, and D. Spiegelhalter. Markov Chain Monte Carlo in Practice.
Chapman & Hall/CRC Interdisciplinary Statistics. Taylor & Francis, 1995. ISBN
9780412055515.

http://papers.nips.cc/paper/5375-variational-gaussian-process-state-space-models.pdf
http://papers.nips.cc/paper/5375-variational-gaussian-process-state-space-models.pdf
http://www.jstor.org/stable/2289776
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://papers.nips.cc/paper/2882-infinite-latent-feature-models-and-the-indian-buffet-process.pdf
http://papers.nips.cc/paper/2882-infinite-latent-feature-models-and-the-indian-buffet-process.pdf


References 133

M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte
Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011. ISSN 1467-9868. URL http://dx.doi.org/10.
1111/j.1467-9868.2010.00765.x.

E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. JMLR, 5:1471–1530, Nov. 2005.

T. Harder, W. Boomsma, M. Paluszewski, J. Frellsen, K. E. Johansson, and
T. Hamelryck. Beyond rotamers: a generative, probabilistic model of side chains
in proteins. BMC Bioinformatics, 11(1):306, jun 2010. ISSN 1471-2105. doi:
10.1186/1471-2105-11-306.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 44:97–109, Apr. 1970. doi: 10.1093/biomet/57.1.97. URL
http://dx.doi.org/10.2307/2280232.

M. Hermans and B. Schrauwen. Recurrent kernel machines: Computing with infinite
echo state networks. Neural Computation, 24(1):104–133, 2012. doi: 10.1162/NECO\
_a\_00200. URL http://dx.doi.org/10.1162/NECO_a_00200. PMID: 21851278.

J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy
search for efficient global optimization of black-box functions. In Neural Information
Processing Systems, 2014.

J. M. Hernández-Lobato, M. A. Gelbart, M. W. Hoffman, R. P. Adams, and Z. Ghahra-
mani. Predictive entropy search for bayesian optimization with unknown constraints.
In the International Conference on Machine Learning, 2015.

D. Hernandez-Stumpfhauser, F. J. Breidt, and M. J. van der Woerd. The general
projected normal distribution of arbitrary dimension: Modeling and bayesian in-
ference. Bayesian Analysis, 12(1):113–133, 03 2017. doi: 10.1214/15-BA989. URL
http://dx.doi.org/10.1214/15-BA989.

C. Herzet, N. Noels, V. Lottici, H. Wymeersch, M. Luise, M. Moeneclaey, and L. Van-
dendorpe. Code-Aided Turbo Synchronization. Proceedings of the IEEE, 95(6):
1255–1271, jun 2007. doi: 10.1109/JPROC.2007.896518.

G. E. Hinton. Deterministic boltzmann learning performs steepest descent in weight-
space. Neural Comput., 1(1):143–150, Mar. 1989. ISSN 0899-7667. doi: 10.1162/
neco.1989.1.1.143. URL http://dx.doi.org/10.1162/neco.1989.1.1.143.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800, 2002. doi: 10.1162/089976602760128018.
URL http://dx.doi.org/10.1162/089976602760128018.

G. E. Hinton. A practical guide to training restricted boltzmann machines. Technical
Report UTML TR 2010–003, University of Toronto, Toronto, Canada, Aug. 2010.
URL http://www.csri.utoronto.ca/~hinton/absps/guideTR.pdf.

M. W. Hoffman and B. Shahriari. Modular mechanisms for bayesian optimization. In
the NIPS workshop on Bayesian optimization, 2014.

http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.2307/2280232
http://dx.doi.org/10.1162/NECO_a_00200
http://dx.doi.org/10.1214/15-BA989
http://dx.doi.org/10.1162/neco.1989.1.1.143
http://dx.doi.org/10.1162/089976602760128018
http://www.csri.utoronto.ca/~hinton/absps/guideTR.pdf


134 References

D. N. Hoover. Relations on probability spaces and arrays of random variables. Preprint,
Institute for Advanced Study, School of Mathematics,, Princeton, NJ, 1979.

J. Hubbard. Calculation of Partition Functions. Phys. Rev. Lett., 3(2):77–78, jul 1959.
URL http://link.aps.org/doi/10.1103/PhysRevLett.3.77.

E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-Softmax.
2016. ISSN 1611.01144. URL https://arxiv.org/pdf/1611.01144.pdfhttp://arxiv.org/
abs/1611.01144.

E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620–630,
May 1957a. doi: 10.1103/PhysRev.106.620. URL https://link.aps.org/doi/10.1103/
PhysRev.106.620.

E. T. Jaynes. Information theory and statistical mechanics. ii. Phys. Rev., 108:171–190,
Oct 1957b. doi: 10.1103/PhysRev.108.171. URL https://link.aps.org/doi/10.1103/
PhysRev.108.171.

E. T. Jaynes. Prior probabilities. IEEE Transactions on Systems Science and Cyber-
netics, 4(3):227–241, Sept 1968. ISSN 0536-1567. doi: 10.1109/TSSC.1968.300117.

K. N. C. D. T. H. I. V. L. T. R. N. Joe, H. Multivariate Models and Multivariate De-
pendence Concepts. Chapman and Hall/CRC New York, 1997. ISBN 9781466581432.

G. Jona-Lasinio, A. Gelfand, M. Jona-Lasinio, and Others. Spatial analysis of wave
direction data using wrapped Gaussian processes. The Annals of Applied Statistics,
6(4):1478–1498, 2012.

G. Jona-Lasinio, G. Mastrantonio, and A. E. Gelfand. Models for space-time di-
rectional data using Wrapped Gaussian processes. In S. Cabras, T. D. Bat-
tista, and W. Racugno, editors, Proceedings of the 47th Scientific Meeting of the
Italian Statistical Society, pages 1–10, Italy, 2014. ISBN 9788884678744. URL
http://www.sis2014.it/proceedings/.

M. C. Jones. Perlman and wellner’s circular and transformed circular copulas are
particular beta and t copulas. Symmetry, 5(1):81–85, 2013. ISSN 2073-8994. doi:
10.3390/sym5010081. URL http://www.mdpi.com/2073-8994/5/1/81.

M. C. Jones and A. Pewsey. A family of symmetric distributions on the circle. Journal
of the American Statistical Association, 100(472):1422–1428, 2005.

M. C. Jones, A. Pewsey, and S. Kato. On a class of circulas: copulas for circular
distributions. Annals of the Institute of Statistical Mathematics, 67(5):843–862, Oct
2015. ISSN 1572–9052. doi: 10.1007/s10463-014-0493-6. URL https://doi.org/10.
1007/s10463-014-0493-6.

C. G. Khatri and K. V. Mardia. The von mises-fisher matrix distribution in orientation
statistics. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):
95–106, 1977. ISSN 00359246. URL http://www.jstor.org/stable/2984884.

http://link.aps.org/doi/10.1103/PhysRevLett.3.77
https://arxiv.org/pdf/1611.01144.pdf http://arxiv.org/abs/1611.01144
https://arxiv.org/pdf/1611.01144.pdf http://arxiv.org/abs/1611.01144
https://link.aps.org/doi/10.1103/PhysRev.106.620
https://link.aps.org/doi/10.1103/PhysRev.106.620
https://link.aps.org/doi/10.1103/PhysRev.108.171
https://link.aps.org/doi/10.1103/PhysRev.108.171
http://www.sis2014.it/proceedings/
http://www.mdpi.com/2073-8994/5/1/81
https://doi.org/10.1007/s10463-014-0493-6
https://doi.org/10.1007/s10463-014-0493-6
http://www.jstor.org/stable/2984884


References 135

M. J. Kirby and R. Miranda. Circular nodes in neural networks. Neural Computation,
8(2):390–402, 1996. doi: 10.1162/neco.1996.8.2.390. URL http://dx.doi.org/10.1162/
neco.1996.8.2.390.

A. N. Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung, volume 2 of Ergeb-
nisse der Mathematik und Ihrer Grenzgebiete. Springer Berlin Heidelberg, 1933. doi:
10.1007/978-3-642-49888-6.

A. Kume, S. P. Preston, and A. T. A. Wood. Saddlepoint approximations for the
normalizing constant of fisher–bingham distributions on products of spheres and
stiefel manifolds. Biometrika, 100(4):971, 2013. doi: 10.1093/biomet/ast021. URL
+http://dx.doi.org/10.1093/biomet/ast021.

B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Mondrian forests: Efficient online
random forests. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 3140–3148. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5234-mondrian-forests-efficient-online-random-forests.pdf.

N. D. Lawrence. Gaussian process latent variable models for visualisa-
tion of high dimensional data. In S. Thrun, L. K. Saul, and P. B.
Schölkopf, editors, Advances in Neural Information Processing Systems
16, pages 329–336. MIT Press, 2004. URL http://papers.nips.cc/paper/
2540-gaussian-process-latent-variable-models-for-visualisation-of-high-dimensional-data.
pdf.

B.-J. Lee, J. Lee, and K.-E. Kim. Hierarchically-partitioned Gaussian Process Ap-
proximation. In A. Singh and J. Zhu, editors, Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research, pages 822–831, Fort Lauderdale, FL, USA, 20–22 Apr
2017. PMLR. URL http://proceedings.mlr.press/v54/lee17a.html.

S. Li, F. Hany, and M. M. A. Modeling three-dimensional morphological structures using
spherical harmonics. Evolution, 63(4):1003–1016, 2008. doi: 10.1111/j.1558-5646.
2008.00557.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1558-5646.
2008.00557.x.

J. R. Lloyd and Z. Ghahramani. Statistical model criticism using kernel two sample
tests. In Proceedings of the 28th International Conference on Neural Information
Processing Systems, NIPS’15, pages 829–837, Cambridge, MA, USA, 2015. MIT
Press. URL http://dl.acm.org/citation.cfm?id=2969239.2969332.

H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. J. C. H. Watkins. Text classification
using string kernels. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances
in Neural Information Processing Systems 13, pages 563–569. MIT Press, 2001. URL
http://papers.nips.cc/paper/1869-text-classification-using-string-kernels.pdf.

D. Lopez-Paz, J. M. Hernández-Lobato, and G. Zoubin. Gaussian process vine copulas
for multivariate dependence. In S. Dasgupta and D. McAllester, editors, Proceedings
of the 30th International Conference on Machine Learning, volume 28 of Proceedings

http://dx.doi.org/10.1162/neco.1996.8.2.390
http://dx.doi.org/10.1162/neco.1996.8.2.390
+ http://dx.doi.org/10.1093/biomet/ast021
http://papers.nips.cc/paper/5234-mondrian-forests-efficient-online-random-forests.pdf
http://papers.nips.cc/paper/5234-mondrian-forests-efficient-online-random-forests.pdf
http://papers.nips.cc/paper/2540-gaussian-process-latent-variable-models-for-visualisation-of-high-dimensional-data.pdf
http://papers.nips.cc/paper/2540-gaussian-process-latent-variable-models-for-visualisation-of-high-dimensional-data.pdf
http://papers.nips.cc/paper/2540-gaussian-process-latent-variable-models-for-visualisation-of-high-dimensional-data.pdf
http://proceedings.mlr.press/v54/lee17a.html
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1558-5646.2008.00557.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1558-5646.2008.00557.x
http://dl.acm.org/citation.cfm?id=2969239.2969332
http://papers.nips.cc/paper/1869-text-classification-using-string-kernels.pdf


136 References

of Machine Learning Research, pages 10–18, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR. URL http://proceedings.mlr.press/v28/lopez-paz13.html.

D. J. C. Mackay. Probable networks and plausible predictions — a review of practical
bayesian methods for supervised neural networks. Network: Computation in Neural
Systems, 6(3):469–505, 1995. doi: 10.1088/0954-898X\_6\_3\_011. URL http:
//www.tandfonline.com/doi/abs/10.1088/0954-898X_6_3_011.

D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor, Neural
Networks and Machine Learning, volume 168 of NATO ASI Series, pages 133–165.
Springer, 1998.

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, Cambridge, 2 edition, sep 2003. ISBN 978-0521642989.

C. J. Maddison, A. Mnih, and Y. W. Teh. The Concrete Distribution: A Continuous
Relaxation of Discrete Random Variables. 2016. URL https://arxiv.org/pdf/1611.
00712.pdfhttp://arxiv.org/abs/1611.00712.

V. M. Maksimov. Necessary and sufficient statistics for the family of shifts of
probability distributions on continuous bicompact groups. Theory of Proba-
bility & Its Applications, 12(2):267–280, 1967. doi: 10.1137/1112029. URL
http://dx.doi.org/10.1137/1112029.

K. V. Mardia. Distribution theory for the von Mises-Fisher distribution and its
application. In A Modern Course on Statistical Distributions in Scientific Work,
pages 113–130. Springer, 1975a.

K. V. Mardia. Statistics of Directional Data. Journal of the Royal Statistical Society,
37(3):52, jan 1975b.

K. V. Mardia. Directional statistics and shape analysis. Journal of applied Statistics,
26(8):949–957, 1999.

K. V. Mardia. On some recent advancements in applied shape analysis and directional
statistics. Systems Biology & Statistical Bioinformatics, pages 9–17, 2007.

K. V. Mardia, G. Hughes, C. C. Taylor, and H. Singh. A Multivariate Von Mises
Distribution with Applications to Bioinformatics. Canadian Journal of Statistics, 36
(1):99–109, mar 2008.

J. Martens and I. Sutskever. Parallelizable sampling of markov random fields. In
Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 517–524, Chia Laguna Resort, Sardinia, Italy,
13–15 May 2010. PMLR. URL http://proceedings.mlr.press/v9/martens10a.html.

D. McFarlane and K. Glover. A loop-shaping design procedure using h infin; synthesis.
IEEE Transactions on Automatic Control, 37(6):759–769, Jun 1992. ISSN 0018-9286.
doi: 10.1109/9.256330.

http://proceedings.mlr.press/v28/lopez-paz13.html
http://www.tandfonline.com/doi/abs/10.1088/0954-898X_6_3_011
http://www.tandfonline.com/doi/abs/10.1088/0954-898X_6_3_011
https://arxiv.org/pdf/1611.00712.pdf http://arxiv.org/abs/1611.00712
https://arxiv.org/pdf/1611.00712.pdf http://arxiv.org/abs/1611.00712
http://dx.doi.org/10.1137/1112029
http://proceedings.mlr.press/v9/martens10a.html


References 137

N. Metropolis and S. M. Ulam. The Monte Carlo Method. Journal of the American
Statistical Association, 44(247):335–341, Sept. 1949. ISSN 01621459. doi: 10.2307/
2280232. URL http://dx.doi.org/10.2307/2280232.

T. P. Minka. Automatic choice of dimensionality for PCA. In Advances in Neural
Information Processing Systems 13, volume 13, pages 598–604, 2000.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
ISBN 0262018020, 9780262018029.

R. M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods.
Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto,
1993.

R. M. Neal. Density Modelling and Clustering Using Dirichlet Diffusion Trees. In
J. O. B. A. P. D. J. M. Bernardo, M. J. Bayarri, editor, Bayesian Statistics 7, pages
619–629. Oxford University Press, 2003. URL http://www.cs.toronto.edu/~radford/
ftp/dft-val7.pdf.

R. Nelsen. An Introduction to Copulas. Springer Series in Statistics. Springer New
York, 2007. ISBN 9780387286785.

M. Opper and O. Winther. Expectation Consistent Approximate Inference. Journal of
Machine Learning Research, 6:2177–2204, 12 2005.

A. Pakman and L. Paninski. Auxiliary-variable Exact Hamiltonian Monte
Carlo Samplers for Binary Distributions. In C. J. C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 26, pages 2490–
2498. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/
5045-auxiliary-variable-exact-hamiltonian-monte-carlo-samplers-for-binary-distributions.
pdf.

C. Pasarica and A. Gelman. Adaptively scaling the metropolis algorithm using expected
square jumped distance. Statistica Sinica, 20:343–364, 2010. URL http://www3.stat.
sinica.edu.tw/sstest/oldpdf/A20n113.pdf.

M. D. Perlman and J. A. Wellner. Squaring the circle and cubing the sphere: Circular
and spherical copulas. Symmetry, 3(3):574–599, 2011. ISSN 2073-8994. doi: 10.3390/
sym3030574. URL http://www.mdpi.com/2073-8994/3/3/574.

J. Pitman. Combinatorial stochastic processes. Notes for Saint Flour Summer School
621, University of California - Berkeley, 2002.

G. Pólya. Elementarer Beweis einer Thetaformel. S-B. Akad. Wiss. Berl. (Phys.-Math.
Kl.), pages 158–161, 1927.

J. Quiñonero-Candela and C. E. Rasmussen. A Unifying view of Sparse Approximate
Gaussian Process Regression. Journal of Machine Learning Research, 6:1939–1959,
dec 2005. ISSN 1532-4435.

http://dx.doi.org/10.2307/2280232
http://www.cs.toronto.edu/~radford/ftp/dft-val7.pdf
http://www.cs.toronto.edu/~radford/ftp/dft-val7.pdf
http://papers.nips.cc/paper/5045-auxiliary-variable-exact-hamiltonian-monte-carlo-samplers-for-binary-distributions.pdf
http://papers.nips.cc/paper/5045-auxiliary-variable-exact-hamiltonian-monte-carlo-samplers-for-binary-distributions.pdf
http://papers.nips.cc/paper/5045-auxiliary-variable-exact-hamiltonian-monte-carlo-samplers-for-binary-distributions.pdf
http://www3.stat.sinica.edu.tw/sstest/oldpdf/A20n113.pdf
http://www3.stat.sinica.edu.tw/sstest/oldpdf/A20n113.pdf
http://www.mdpi.com/2073-8994/3/3/574


138 References

J. R. Ragazzini and L. A. Zadeh. The analysis of sampled-data systems. Transactions
of the American Institute of Electrical Engineers, Part II: Applications and Industry,
71(5):225–234, Nov 1952. ISSN 0097-2185. doi: 10.1109/TAI.1952.6371274.

B. Rajaratnam and D. Sparks. Mcmc-based inference in the era of big data: A
fundamental analysis of the convergence complexity of high-dimensional chains,
2015.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. MIT
Press, Cambridge, Mass., 2006. ISBN 026218253X 9780262182539.

N. Razavian, H. Kamisetty, and C. J. Langmead. The von mises graphical model:
Regularized structure and parameter learning. Tech Rep CMU-CS-11-108, Carnegie
Mellon University, Department of Computer Science, 2011.

N. S. Razavian, H. Kamisetty, and C. J. Langmead. Learning generative models of
molecular dynamics. BMC genomics, 13(Suppl 1):S5, 2012.

L. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales: Volume 1,
Foundations. Cambridge Mathematical Library. Cambridge University Press, 2000.
ISBN 9780521775946.

D. M. Roy and Y. W. Teh. The mondrian process. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing
Systems 21, pages 1377–1384. Curran Associates, Inc., 2009. URL http://papers.
nips.cc/paper/3622-the-mondrian-process.pdf.

S. Rüping and T. Scheffer. Proceedings of the ICML 2015 Workshop on Learn-
ing with Multiple Views. http://www-ai.cs.uni-dortmund.de/MULTIVIEW2005/
MultipleViews.pdf, August 2005.

C. Ryll-Nardzewski. On stationary sequences of random variables and the de finetti’s
equivalence. Colloquium Mathematicae, 4(2):149–156, 1957. URL http://eudml.org/
doc/210023.

R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In D. van Dyk and
M. Welling, editors, Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research,
pages 448–455, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–
18 Apr 2009. PMLR. URL http://proceedings.mlr.press/v5/salakhutdinov09a.html.

A. Santos, R. Wernersson, and L. J. Jensen. Cyclebase 3.0: a multi-organism database
on cell-cycle regulation and phenotypes. Nucleic Acids Research, 43(D1):D1140–
D1144, 2015. doi: 10.1093/nar/gku1092. URL http://nar.oxfordjournals.org/content/
43/D1/D1140.abstract.

M. Scholz. Analysing periodic phenomena by circular pca. In S. Hochreiter and
R. Wagner, editors, Proceedings of the Conference on Bioinformatics Research and
Development (BIRD’07), volume 4414 of LNCS/LNBI, pages 38–47, Berlin, 2007.
Springer-Verlag.

http://papers.nips.cc/paper/3622-the-mondrian-process.pdf
http://papers.nips.cc/paper/3622-the-mondrian-process.pdf
http://www-ai.cs.uni-dortmund.de/MULTIVIEW2005/MultipleViews.pdf
http://www-ai.cs.uni-dortmund.de/MULTIVIEW2005/MultipleViews.pdf
http://eudml.org/doc/210023
http://eudml.org/doc/210023
http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://nar.oxfordjournals.org/content/43/D1/D1140.abstract
http://nar.oxfordjournals.org/content/43/D1/D1140.abstract


References 139

S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design.
Wiley, Hoboken, NJ, 2 edition, 2005. ISBN 978-0-470-01167-6.

E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. In
Y. Weiss, P. B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 1257–1264. MIT Press, 2006a. URL http://papers.
nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs.pdf.

E. Snelson and Z. Ghahramani. Variable noise and dimensionality reduction for sparse
gaussian processes. In R. Dechter and T. S. Richardson, editors, Proceedings of the
22nd Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2006b.

S. Sra. A short note on parameter approximation for von Mises-Fisher distributions:
and a fast implementation of Is(x). Computational Statistics, 27(1):177–190, 2012.

R. L. Stratonovich. On a Method of Calculating Quantum Distribution Functions.
Soviet Physics Doklady, 2:416, jul 1957.

J. Taghia, Z. Ma, and A. Leijon. On von-mises fisher mixture model in text-independent
speaker identification. In INTERSPEECH, pages 2499–2503, 2013.

H. Tang, S. M. Chu, and T. S. Huang. Generative model-based speaker clustering via
mixture of von Mises-Fisher distributions. In Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference on, pages 4101–4104. IEEE,
2009.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Technical
Report NCRG/97/10, Aston University, Birmingham, UK, 9 1997.

M. E. Tipping and C. M. Bishop. Probabilistic Principal Component Analysis. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622,
1999. ISSN 1467-9868. doi: 10.1111/1467-9868.00196.

M. Titsias. Variational learning of inducing variables in sparse gaussian processes.
In D. van Dyk and M. Welling, editors, Proceedings of the Twelth International
Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Ma-
chine Learning Research, pages 567–574, Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA, 16–18 Apr 2009. PMLR. URL http://proceedings.mlr.press/
v5/titsias09a.html.

R. Turner and M. Sahani. Probabilistic amplitude and frequency demodulation. In
Advances in Neural Information Processing Systems 24, pages 981–989. The MIT
Press, 2011.

R. D. Turner. Gaussian Processes for State Space Models and Change Point Detection.
PhD thesis, University of Cambridge, Cambridge, UK, July 2011.

R. E. Turner, P. Berkes, and M. Sahani. Two problems with variational expectation
maximisation for time-series models. In Workshop on Inference and Estimation in
Probabilistic Time-Series Models, volume 2, 2008.

http://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs.pdf
http://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs.pdf
http://proceedings.mlr.press/v5/titsias09a.html
http://proceedings.mlr.press/v5/titsias09a.html


140 References

R. E. von Mises. Über die ‘Ganzzahligkeit’ der Atomgewichte und verwandte Fragen.
Physikalische Zeitschrift, 19:490–500, 1918.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Found. Trends Mach. Learn., 1(1-2):1–305, Jan. 2008. ISSN
1935-8237. doi: 10.1561/2200000001. URL http://dx.doi.org/10.1561/2200000001.

Z. Wang, S. Mohamed, and N. Freitas. Adaptive hamiltonian and riemann manifold
monte carlo. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 1462–1470, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.
URL http://proceedings.mlr.press/v28/wang13e.html.

C. K. I. Williams. Computing with infinite networks. In M. C. Mozer, M. I. Jor-
dan, and T. Petsche, editors, Advances in Neural Information Processing Sys-
tems 9, pages 295–301. MIT Press, 1997. URL http://papers.nips.cc/paper/
1197-computing-with-infinite-networks.pdf.

E. A. Yfantis and L. E. Borgman. An extension of the von Mises distribution. Com-
munications in Statistics - Theory and Methods, 11(15):1695–1706, jan 1982. ISSN
0361-0926. doi: 10.1080/03610928208828342.

R. S. Zemel, C. K. I. Williams, and M. C. Mozer. Directional-unit boltzmann machines.
In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information
Processing Systems 5, pages 172–179. Morgan-Kaufmann, 1993. URL http://papers.
nips.cc/paper/674-directional-unit-boltzmann-machines.pdf.

Y. Zhang, Z. Ghahramani, A. J. Storkey, and C. A. Sutton. Continuous Relaxations
for Discrete Hamiltonian Monte Carlo. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 3194–3202. Curran Associates, Inc., 2012. URL http://papers.nips.cc/
paper/4652-continuous-relaxations-for-discrete-hamiltonian-monte-carlo.pdf.

http://dx.doi.org/10.1561/2200000001
http://proceedings.mlr.press/v28/wang13e.html
http://papers.nips.cc/paper/1197-computing-with-infinite-networks.pdf
http://papers.nips.cc/paper/1197-computing-with-infinite-networks.pdf
http://papers.nips.cc/paper/674-directional-unit-boltzmann-machines.pdf
http://papers.nips.cc/paper/674-directional-unit-boltzmann-machines.pdf
http://papers.nips.cc/paper/4652-continuous-relaxations-for-discrete-hamiltonian-monte-carlo.pdf
http://papers.nips.cc/paper/4652-continuous-relaxations-for-discrete-hamiltonian-monte-carlo.pdf


Appendix A

Sparse models using the augmented
representations

A sparse version of the augmented representation of the mGvM can be generated
drawing on sparse Gaussian Process representations. In particular, we can apply the
exchangeability property to the augmented states to reparametrise the augmenting
states by a low-dimension set of variables u that induce the distribution over the
augmented state f, i.e.

p(u) = N
(
u; 0,Ku,u

)
(A.1)

p(f|u) = N
(
f;m,Qf,f

)
(A.2)

p(ϕ|f, g) =
N∏

n=1
vM(ϕn;αn(f), βn(f)) (A.3)

where mf = KfuK−1
u,uu, and the covariance Qff is a function of Kff − KfuK−1

uu Kuf .
The function to be employed in obtaining Qff determines the sparsity pattern of the

model as is the case for sparse Gaussian Processes. For example, Quiñonero-Candela
and Rasmussen (2005) show that the Partially Independent Training Conditional
(PITC) approximation for Gaussian process assumes that

Qff = blkdiag
S1,...,SD

(
KfuK−1

uu Kuf
)

(A.4)

where blkdiagS1,...,SD
extracts a the block diagonal matrix over D index subsets

S1, . . . ,SD. A particualr case of the PITC model is the Fully-Independent Train-
ing Conditional (FITC) model, where each index subset contains only a single element,
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i.e.,
Qff = diag

(
KfuK−1

uu Kuf
)

(A.5)

where diag extracts only the diagonal elements of its matrix argument. Another sparse
approximation closely linked to the FITC approximation is the Variational Free Energy
model of Titsias (2009). In both cases, the covariance Kuu is dense and the overall
complexity of the approximation is of order O(M2 × N) computations, where M is the
number of inducing points u.

More recently, sparse models have considered special covariate structure for the
inducing points u to alleviate this constraint. Bui and Turner (2014) proposed struc-
turing the inducing points covariance as a block-diagonal matrix, which has O(D2N)
complexity, where D is the average number of observations per block. Lee et al. (2017)
have expanded over this work and considered a tree-structured approximation that
can be summarized as nesting PITC approximations over the inducing inputs.

A graphical summary for the models for FITC, PITC and tree-based approximations
are presented in Figure A.1.

FITC
u

f1 f2 · · · fN

PITC
u

fS1 fS2 · · · fSD

Chain-like

uS1 uS2 · · · uSD

f1 f2 · · · fN

Tree-Based
uroot

uleaf,S1 · · · uleaf,SD

f1 · · · fj fk · · · fN

Fig. A.1 The graphical model for the PITC, FITC, Chain-like and Tree-based approxi-
mations.



Appendix B

Variational inference for the
augmented mGvM representation

In this section, we outline a variational free energy approximation based on Titsias
(2009) for the augmented model.

Recall that the augmented representation for a mGvM(ϕ,κ,µ,K) was presented
in Chapter 3 as the joint model over the circular variables ϕ and the augmentation
states f given by

p(ϕ, f) = N
(
f;m,A(σ2I − K−1)A⊤

)
︸ ︷︷ ︸

p(f)

×
N∏

n=1

[
vM(ϕn;αn(f), βn(f))

]
︸ ︷︷ ︸

p(ϕ|f)

(B.1)

with parameters A an arbitrary real-valued invertible matrix, m an arbitrary mean
vector, σ2 a constant chosen so that the matrix σ2I − K−1 is positive-definite, where
the parameters α and β defined asα⊙ cosβ

α⊙ sinβ

 =
κ⊙ cosµ
κ⊙ sinµ

+ A−1(f −m) (B.2)

with ⊙ denotes point-wise multiplication.
Titsias (2009) suggested constructing the variational approximation distributions

to produce cancellations between difficult terms arising from likelihoods in Gaussian
Process models. Using the same principle to form an approximation for the augmented
model, the approximating distribution takes the form

q(ϕ, f) = p(ϕ|f)q(f). (B.3)
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This approximation results in a simplification of the free energy so that

F(q) =
〈

log p(ψ,ϕ, f)
q(ϕ, f)

〉
p(ϕ|f)q(f)

(B.4)

=
〈

log p(ψ|ϕ) + log
XXXXp(ϕ|f)p(f)
XXXXp(ϕ|f)q(f)

〉
p(ϕ|f)q(f)

(B.5)

= ⟨log p(ψ|ϕ)⟩p(ϕ|f)q(f) − KL(q(f)∥p(f)). (B.6)

Expanding the likelihood term of Equation (B.6) reveals the mean sine and cosine
relationship,

F(q) = −KL(q(f)∥p(f)) − N log I0(κ) + N log 2π
+ κ cosψ⊤ ⟨cosϕ⟩p(ϕ|f)q(f) + κ sinψ⊤ ⟨sinϕ⟩p(ϕ|f)q(f) ,

(B.7)

which admit further simplification. In particular, the sine and cosine expectations can
be analytically solved with respect to p(ϕ|f) to yield

⟨cosϕn⟩p(ϕ|f)q(f) =
〈

I1(αn(f))
I0(αn(f)) cos βn(f)

〉
q(f)

(B.8)

⟨sinϕn⟩p(ϕ|f)q(f) =
〈

I1(αn(f))
I0(αn(f)) sin βn(f)

〉
q(f)

, (B.9)

Despite not admitting closed-form expressions to evaluate Equation (B.8) and Equa-
tion (B.9), these expectations can be computed numerically with quadrature schemes
or approximated through simple Monte Carlo.

To complete the variational specification, we define define q(f) = N(ν,Σ). Substi-
tuting Equation (B.8) Equation (B.9) and the variational distribution chosen for f in
Equation (B.7), yields the free energy expression

F(q) = N (log 2π + 1 − log I0(κ)) + κ cosψ⊤
〈

I1(αn(f))
I0(αn(f)) cos βn(f)

〉
q(f)

+ κ sinψ⊤
〈

I1(αn(f))
I0(αn(f)) sin βn(f)

〉
q(f)

+ 1
2 log det Σ

det A(σ2I − K−1)A⊤

− 1
2Tr

[
A−⊤(σ2I − K−1)−1A−1

(
Σ + (m− ν)(m− ν)⊤

)]
(B.10)

which can be maximised using gradient-based methods. We note however, that up to the
submission of this thesis, automatic differentiation packages for machine learning such
as Tensorflow and Theano offer no support for exponentially-weighted implementations
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of modified Bessel functions of first kind required for numerically stable implementations
of ratio of Bessel functions.





Appendix C

Improving numerical stability of
the Generalised von Mises moment
calculations

Gatto and Jammalamadaka (2007) derived the moments for the Generalised von Mises
distribution using series approximations. During this work, it was verified that the
formulas provided needed a correction and are given as

Gn(µ1 − µ2, κ1, κ2) = I0(κ2)In(κ1) +
∞∑

j=1
cos(2jµ1 − µ2)Ij(κ2)

[
I2j+n(κ1) + I|2j−n|(κ1)

]
(C.1)

Hn(µ1 − µ2, κ1, κ2) =
∞∑

j=1
sin(2jµ1 − µ2)Ij(κ2)

[
I2j+n(κ1) − I|2j−n|(κ1)

]
. (C.2)

Naive implementation of these series suffer from two major problems: the fact that
modified Bessel functions grow exponentially and the difficulty in evaluating oscillating
series.

The overflow problem can be overcome by using exponentially-weighted imple-
mentations of modified Bessel functions of first kind and appropriate weighting. In
particular, for non-zero κ1, we can form the alternative series

Gn(µ1 − µ2, κ1, κ2)
I0(κ2)I0(κ1)

= Rj,0(κ1) +
∞∑

j=1
cos(2jµ1 − µ2)Rj,0(κ2)

[
R2j+n,0(κ1) + R|2j−n|,0(κ1)

]
(C.3)

Hn(µ1 − µ2, κ1, κ2)
I0(κ2)I0(κ1)

=
∞∑

j=1
sin(2jµ1 − µ2)Rj,0(κ2)

[
R2j+n,0(κ1) − R|2j−n|,0(κ1)

]
. (C.4)
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Fig. C.1 Modified Bessel function ratio value decrease with the order of the numerator
Bessel function.

The series in Equation (C.3) and Equation (C.4) are substantially more stable than
the forms presented in Equation (C.1) and Equation (C.2). The principal reason for
this lies in the rate at which the ratio of modified Bessel functions decrease value with
their order, illustrated in Figure C.1. We also found empirically that numerically safe
implementation of the moments also require limiting the concentration parameters to
500 to avoid overflow issues.

The second numerical issue arising from the use of Equation (C.1) and Equation (C.2)
is the non-decreasing series. The source of the non-decrease lies in the trigonometric
terms of the series as all other terms are monotonically decreasing. Hence, a simple
way to side-step this issue is to we aggregate terms of the series to produce strictly
decreasing terms, i.e. series of the form

Gn(µ1 − µ2, κ1, κ2)
I0(κ2)I0(κ1)

= Rj,0(κ1) +
∞∑

m=1
SG(m, n, µ1 − µ2, κ1, κ2) (C.5)

Hn(µ1 − µ2, κ1, κ2)
I0(κ2)I0(κ1)

=
∞∑

m=1
SH(m, n, µ1 − µ2, κ1, κ2) (C.6)
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where the aggregated terms SG and SH are strictly decreasing. We can construct SG
and SH leveraging on the periodic nature of sines and cosines. In particular, by finding
the period T associated with µ1 − µ2, we can form the updates

SG(m, n, µ1 − µ2, κ1, κ2) =
T∑

j=1
cos(2µ1 − µ2(m · T + j))R(m·T+j),0(κ2)×[

R2(m·T+j)+n,0(κ1) + R|2(m·T+j)−n|,0(κ1)
] (C.7)

SH(m, n, µ1 − µ2, κ1, κ2) =
T∑

j=1
sin(2µ1 − µ2(m · T + j))R(m·T+j),0(κ2)×[

R2(m·T+j)+n,0(κ1) − R|2(m·T+j)−n|,0(κ1)
]
.

(C.8)

which are stricly decreasing.
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