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ABSTRACT: Tetrahedral amorphous carbon (ta-C) is widely used for coatings due to its superior mechanical properties and 
has been suggested as an electrode material for detecting biomolecules. Despite extensive research, however, the complex 
atomic-scale structures and chemical reactivity of ta-C surfaces are incompletely understood. Here, we combine machine 
learning, density-functional tight-binding, and density-functional theory simulations to shed new light on this long-standing 
problem. We make atomistic models of ta-C surfaces, characterize them by local structural fingerprints, and provide a library 
of structures at different system sizes. We then move beyond the pure element and exemplify how chemical reactivity (hy-
drogenation and oxidation) can be modeled at the surfaces. Our work opens up new perspectives for modeling the surfaces 
and interfaces of amorphous solids, which will advance studies of ta-C and other functional materials. 

INTRODUCTION 
Understanding the structures, properties, and reactivity 

of material surfaces is a challenging task requiring a wide 
array of experimental and computational tools. Today, at-
omistic simulations based on density-functional theory 
(DFT) are routinely performed for surfaces of crystals and 
crystalline nanoparticles.1–3 The issue is more complicated, 
however, for amorphous matter: the absence of transla-
tional symmetry means that there are no well-defined 
cleavage planes nor ordered unit cells. Atomistic modeling 
of amorphous-material surfaces therefore requires large 
structural models, long molecular-dynamics (MD) simula-
tions, and accurate energies and interatomic forces, all at 
the same time. At present, this is impossible to achieve for a 
quantum-mechanical method, such as DFT. 

Diamond-like or “tetrahedral” amorphous carbon (ta-C), 
a dense form of carbon with a large concentration of four-
fold-coordinated atoms and a density around 3 g cm–3, is an 
important example of amorphous functional materials.4–6 
Due to its attractive mechanical properties, ta-C is widely 
used in coatings (for example, to protect machinery from 
mechanical wear) and tribological applications.6–8 It has 
also been suggested and used as an electrode material for 
detecting biomolecules.9–11 All these applications are di-
rectly enabled by atomic-scale adsorption and reaction 
mechanisms at the amorphous surfaces and by the inter-
faces they form with chemical environments. Accurate mod-
eling of ta-C surfaces and understanding their chemical re-
activity is therefore crucial for the design of ta-C materials. 

Over the years, several key papers reported simulations 
of ta-C surfaces, but these have mainly been based on clas-
sical (empirically fitted) force fields. For example, the 
widely used interatomic potential by Tersoff was initially 
applied to amorphous carbon surfaces.12 MD simulations of 
ta-C film growth were reported, directly mimicking the im-
pact of atoms on a substrate.13–17 Still, these classical poten-
tials face inherent challenges: surface energies of diamond 
and ta-C can be difficult to describe,18,19 and various poten-
tials describe the high-temperature “graphitization” of ta-C 
in qualitatively different ways.20 In principle, DFT could pro-
vide the required accuracy for these tasks, but it quickly be-
comes prohibitively expensive for large simulation cells. 
Consequently, previous DFT studies of ta-C surfaces have 
been limited to relatively small model system sizes.21–25 

Machine-learning (ML)-based interatomic potentials are 
emerging tools for materials simulations, promising to alle-
viate some of these problems. By “learning” (interpolating) 
high-dimensional potential-energy surfaces, ML-based po-
tentials enable atomistic simulations at close-to-DFT accu-
racy (to within a few kJ/mol) but with a computational cost 
that is several orders of magnitude lower.26–31 Recent stud-
ies suggest that ML-based potentials are becoming viable 
tools for materials chemistry and physics.32–41 We recently 
used such a potential for large-scale deposition simulations 
of ta-C films, describing the impact of thousands of individ-
ual atoms, one at a time, and achieving excellent agreement 
with experimental observables (including the count of four-
fold-coordinated“sp3” atoms and mechanical properties).38  
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Figure 1. Exemplary structure models for ta-C surfaces, ob-
tained in GAP-driven MD simulations. Atoms are colored ac-
cording to their number of neighbors, N (counted using a 1.85 
Å cutoff, which corresponds to the first minimum of the radial 
distribution function): two (yellow), three (dark gray), and four 
(blue). Thin lines denote the boundaries of simulation cells: the 
structures extend in two dimensions and are terminated by 
vacuum in the third, exposing ta-C surfaces at top and bottom. 

While most simulations so far have dealt with surfaces of 
the pure amorphous element, a further key role is played by 
chemical functionalization: that is, by the presence of hy-
drogen, oxygen, and other atomic species and functional 
groups. Such an extension of compositional space is chal-
lenging for any ML-based potential because it requires large 
amounts of additional reference data. In contrast, arbitrary 
chemical compositions can trivially be entered in first-prin-
ciples DFT as long as the system size is sufficiently small. 
The methods therefore do not exclude but complement each 
other: once an accurate slab model of the pure surface has 
been obtained in fast ML-driven simulations, it is amenable 
to further DFT studies. We have shown the usefulness of 
such combined ML/DFT approaches very recently for Na in-
tercalation in bulk disordered carbon structures.42  

In this work, we propose combining ML and established 
simulation methods to study structures and the reactivity of 
amorphous material surfaces, as applied here to ta-C. We 
create and validate a library of optimized “slab” models 
(Figure 1) that enable a range of atomistic studies from first 
principles. We study the generation of progressively hydro-
genated ta-C:H slabs using a heuristic Monte Carlo (MC) 
scheme and interactions obtained from Density-Functional 
Tight-Binding (DFTB),43,44 and we perform DFT-MD studies 
of the atomic-scale oxidation mechanisms: in other words, 
we move beyond pure ta-C both to hydrogen and oxygen 
surface species. This opens the door for the realistic model-
ing and understanding of amorphous material surfaces, in-
cluding their chemical functionalization, with unprece-
dented accuracy.  

 

Figure 2. Generating optimized ta-C surface models. (a) Sketch 
of the temperature profile used to anneal structures after cleav-
ing from the bulk, as in ref 19, with exemplary structural snap-
shots shown. Atoms are colored according to their number of 
neighbors: one (red), two (yellow), three (dark gray), and four 
(blue). (b) Statistics of atomic coordination at the surfaces (top-
most 3 Å; see Supporting Information), measuring the degree 
of graphitization during simulations. Data have been averaged 
over the respective most stable slabs from each of the bulk 216-
atom structures (10 in total); shading indicates standard devi-
ations. (c) Same for the concentration of sp2 and sp3 atoms 
within the reconstructed slabs (central 3 Å), evidencing that 
the central regions remain bulk-like and do not reconstruct on 
annealing. The results for the slab interior are consistent with 
bulk melt–quench simulations using GAP.19 The experimental 
sp3 content of ta-C is even larger (> 80%), which can be repro-
duced by explicit deposition simulations using GAP-MD,38 but 
these require much larger system sizes (> 10,000 atoms); for a 
discussion, see ref 38. 

RESULTS AND DISCUSSION 
Surface Reconstructions. Our simulation protocol and 

its main outcomes are sketched in Figure 2. We begin by 
“cleaving” slabs from the bulk: as is common practice in 
crystalline systems,1–3 we take ta-C bulk structures, here 
containing 216 atoms (from ref 19), and insert an artificial 
vacuum region in one dimension (cf. Figure 1b). We use 10 
uncorrelated cells and cleave each at five equidistant planes 
to enhance the sampling. Using MD simulations driven by 
our ML-based Gaussian approximation potential (GAP),19 
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we then heat and anneal all 50 slabs at 1,000 K. These sim-
ulations induce surface reconstructions and quickly “heal” 
the dangling-bond defects (red atoms in Figure 2a).19  

The most common (and simplistic) way to quantify the lo-
cal structure in ta-C is to count three- and four-fold coordi-
nated atoms (“sp2/sp3”). We use this to monitor structural 
transformations at the surfaces (Figure 2b): during heating 
and annealing, the connectivity of near-surface atoms 
changes visibly, and graphitic “sp2” atoms are created (gray) 
while chain-like “sp” atoms (yellow) are gradually removed. 
This is consistent with surface “graphitization” as described 
earlier.13,14,19 We also verify that the interiors of our slabs re-
main bulk-like during annealing, as analyzed using both the 
sp2/sp3 count (Figure 2c) and the mass density (Figure S2).  

System Size and Structural Metrics. While GAP-MD can 
easily generate ta-C structures with thousands of atoms in 
the unit cell (since GAP is a linearly scaling potential),19,38 
we focus here on smaller systems on purpose: we want to 
analyze them using DFTB or DFT subsequently, as said 
above. Hence, what is the smallest system size that can still 
give a physically meaningful description of ta-C surfaces? 
To assess this question, we generated more slab models 
with different numbers of atoms: first, quenching bulk ta-C 
from the melt as in ref 19, then, cleaving and annealing sur-
face structures (cf. Figure 2). Simulations with 512 atoms 
per cell serve as the benchmark, as this is currently the larg-
est system size routinely accessible to subsequent DFT 
modeling. Again, we look at two key structural indicators: 
the sp3 count in the slab centers (Figure 3a) and the sp2 
count at the surfaces (Figure 3b), defined as above. For both 
measures, with 125 atoms already, the mean values largely 
converge to within the standard deviation of the 512-atom 
benchmark (shaded). In contrast, 64-atom systems do not 
give reliable results, and in one case the entire slab graphi-
tized, reflected in an unphysically low sp3 count. 

Characterizing carbon structures by counting nearest 
neighbors is intuitive but has intrinsic shortcomings. For ex-
ample, square-planar coordinated carbon is a highly ener-
getic and elusive species,45 but having four neighbors it 
would be assigned as “sp3” using the above scheme. Im-
proved structural metrics based on bond angles46,47 have 
been applied to carbon.48,49 We here take a more general ap-
proach originating in the ML field: namely, a numerical sim-
ilarity measure, or kernel, to compare atomic environments. 
We use the “Smooth Overlap of Atomic Positions” (SOAP),50 
as detailed in the Methods section. SOAP has proven useful 
both for fitting GAPs19,51 and for analyzing chemical struc-
tures.52,53 Here, we show that the approach is particularly 
beneficial for amorphous surfaces, as it readily identifies 
special surface sites and enables a quantitative comparison 
of bulk and surface structures.  

SOAP measures the similarity for a given pair of atoms, nor-
malized to a range between zero (fully dissimilar) and unity 
(identical within a given cutoff). We start by calculating this 
quantity for each atom in a ta-C slab as compared to an atom 
in bulk diamond (Figure 3c). As expected, the slab interior is 
structurally similar to diamond, albeit with pronounced scat-
ter (due to the “sp2/sp3” coexistence, reflected by colors rang-
ing from light to dark green). The surface regions are much 
less similar to diamond, in line with the graphitization dis-
cussed before, and the lower coordination numbers overall 
(Figure 3a–b). In turn, repeating the SOAP analysis but now 

comparing to graphene shows clear similarity at the surfaces 
but not in the bulk (Figure 3d). The approach also readily 
identifies a surface “sp” motif that is dissimilar both to dia-
mond and graphene (–C≡C–; arrows).  

 

 

Figure 3. System-size dependence of ta-C slab models and a 
quantitative measure for their local structure. (a) Count of sp3 
atoms in the center of the slabs, as in Figure 2c, but now as a 
function of system size. (b) Same for the sp2 count at the sur-
faces. Error bars give standard deviations. (c) Structural analy-
sis using SOAP. A ta-C surface slab containing 512 atoms is 
shown; atoms are colored according to their SOAP similarity to 
diamond, the prototype for “sp3” carbon. Yellow atoms are 
highly similar to diamond (in the center of the slab); blue atoms 
are dissimilar (mainly near the surface). (d) Same for a com-
parison to graphene as a prototype for “sp2” carbon. (e) Finger-
prints of SOAP similarity to diamond for different system sizes, 
obtained by collecting data over atoms in the center as above. 
Values lower than 0.3 are very rare and the horizontal axis is 
thus truncated to ease comparison. (f) Same but for SOAP sim-
ilarity to graphene, measured in the surface regions as above. 
Arrows highlight deviations from the reference (512 atoms). 
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Figure 4. Hydrogenation of ta-C surfaces, to give “ta-C:H”, stud-
ied using Monte Carlo (MC) simulations as detailed in the Meth-
ods section. (a) Count of carbon atoms in fourfold bonded “sp3” 
configurations on the surface (topmost 3 Å) for simulation cells 
with progressively increasing hydrogen content. Each gray dot 
corresponds to one accepted step out of 50 MC trajectories, and 
each blue dot corresponds to one of the end points. (b–d) Struc-
tural snapshots from selected final structures with different cH, 
as marked above in red. Panel (d) shows an extreme case where 
subsurface voids developed but the slab still stayed intact. 

With this algorithm, we can now obtain numerical finger-
prints to better characterize our structural models. We col-
lect histograms, similar in spirit to ref 54, but now using 
SOAP. Again, we restrict our analysis of “diamond-like-ness” 
(Figure 3e) to the central regions of the slabs, and that of sur-
face graphitization (Figure 3f) to the outermost 3 Å. The ref-
erence distributions (512 atoms; gray shading) peak at ≈ 0.9 
for diamond similarity in the bulk, and at ≈ 0.7 for graphene 
similarity at the surface. We observe a few sites with for-
mally high similarity (≈0.9) to both crystalline structures; 
we stress, however, that the numerical scales are somewhat 
arbitrary, and the focus should be on the relative similarity 
of different sites in a given structure. Returning to the ques-
tion of system-size dependence, clear deviations from the 
reference are seen for the surfaces in the 64- and 125-atom 
systems (arrows in Figure 3f), suggesting that both are 
structurally different—a dissimilarity that, for the 125-
atom systems, could not have been spotted by counting 
“sp2/sp3” environments alone (Figure 3a–b). By contrast, at 
216 atoms, the SOAP fingerprints, both in the center and at 
the surface, agree very well with the respective benchmark. 
We therefore use 216-atom systems for subsequent 
DFTB/DFT studies of ta-C surface chemistry.  

Beyond the present work, the smaller structures (125 at-
oms) could still be useful for higher-level computations of 
electronic properties, and the larger ones (343–512 atoms) 
for studying mechanical properties. All surface models gen-
erated in this work are provided as Supporting Information. 

 

Figure 5. Evolution of different hydrogen-containing environ-
ments during the GCMC simulations (main panels), and the av-
eraged abundance of these motifs in the final hydrogenated 
structures (right-hand side) on the surface (topmost 3 Å). Error 
bars, where reasonable, indicate standard deviations over 50 
simulation cells. 

Surface Hydrogenation. Incorporating hydrogen in amor-
phous carbon phases leads to diverse materials with inter-
esting properties.6,55 The most relevant to the present work 
is so-called hydrogenated ta-C, or “ta-C:H”, which was ex-
perimentally shown to exhibit large hardness and sp3 con-
centration (≈ 75% of carbon atoms) at a hydrogen content 
of up to ≈ 30%.56 To study hydrogenation of ta-C surfaces in 
a representative ensemble of structures, we decided to per-
form Markov-chain Monte Carlo (MC) simulations of hydro-
genation, exploring diverse local environments and hydro-
gen contents. As the underlying ta-C is already reliably de-
scribed by the GAP,19,38 and the modeling of local C–H inter-
actions is a problem of limited chemical complexity, we re-
sort to the DFTB method43,44 which is much less computa-
tionally demanding than DFT, thus allowing us to carry out 
50 MC trajectories in parallel. Below, we will also address a 
problem of larger chemical complexity (namely, oxidation), 
for which we will use first-principles DFT-MD instead. 

Starting from 50 unique, optimized 216-atom slabs intro-
duced above, we gradually added hydrogen atoms to each 
and accepted or rejected each individual step based on an 
energy criterion (Methods section). Figure 4a characterizes 
the outcome of these MC trajectories as a function of the hy-
drogen concentration, cH = NH / (NC + NH): each data point 
refers to an accepted step in one of the cells, and the surface 
concentration of fourfold bonded “sp3” atoms is plotted on 
the y-axis (again, considering as surface region the topmost 
3 Å). The latter increases with cH, in line with the simplified 
chemical notion of double-bonded “sp2” environments be-
ing saturated by hydrogenation, forming “sp3” sites. In the 
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final structures, 74±6% of surface carbon atoms are four-
fold bonded (blue points in Figure 4a); there is, of course, 
some scatter due to the necessarily finite system sizes. 
Snapshots from three simulation cells are shown in Figure 
4b–d, visualizing interesting limiting cases in terms of cH.  

The local chemical environments can be further analyzed 
by collecting statistics about the numbers of C/H neighbor 
atoms (Figure 5). The most prominent motif we find is an 
“sp3” carbon atom bonded to three C and one H neighbors, 
with an abundance of 53±8% in the final structures. An-
other important role, although only at larger hydrogen con-
tent, is played by doubly hydrogenated CH2 units (9±5%); 
several of these are seen in Figure 4d, partly explaining the 
very high surface sp3 content (> 90%) observed for this par-
ticular structure. In contrast, methyl groups (–CH3) are not 
formed in significant amounts in our MC simulations. 

Surface Oxidation. We finally move on to the modeling 
of oxygen at ta-C surfaces, which represents the second key 
type of functionalization—and arguably the more compli-
cated one. Somewhat reminiscent of organic chemistry, 
“ether”, “keto”, and other motifs have been discussed in an 
early DFT study of ideal57 and worn58,59 diamond surfaces in 
contact with oxygen. One would expect similar groups to be 
present at the amorphous surfaces, but here the structural 
variety is much larger. While the existence of various oxy-
gen-based surface species has been observed in X-ray ab-
sorption spectroscopy (XAS)60 and X-ray photoelectron 
spectroscopy (XPS),61,62 no structural information is known 
a priori. We therefore decided, in this case, to perform DFT-
MD simulations to gain insight from first principles.  

We randomly selected six slabs, randomly placed either 
four or eight oxygen atoms on either side and heated the 
systems from 300 K to 1,800 K (in 300 K increments). The 
holding time at each increment was 5 ps (≡ 5,000 steps). 
Exemplary structural snapshots from these DFT-MD trajec-
tories are shown in Figure 6a–c. For one sample, we heated 
the slab further to 3,000 K; at these temperatures, the struc-
tures disintegrate by releasing CO (cf. Figure 6c). We did not 
observe formation of CO2, which we ascribe to the relatively 
low concentration of oxygen on the surfaces. We also per-
formed additional tests with further annealing (10 ps at 
each temperature increment) for one of the systems. 

Overall, our exploratory DFT-MD simulations suggest the 
presence of three main surface species (Figure 6d); recall 
that the initial adsorption sites are sampled at random, 
without chemical preconceptions. We quantify the abun-
dance of sites, based on the atomic connectivity, and report 
the results in Table 1: these data still comprise a limited 
sample size (72 independent oxygen environments), but 
nonetheless provide clear chemical insight. Epoxy groups 1 
are abundant early on in our simulations, but during anneal-
ing their count decreases progressively, presumably due to 
the high strain in this three-membered ring structure, and 
consistent with the high reactivity of epoxy groups in or-
ganic molecules. Ether groups 2 are less abundant in the 
300 K simulations, but they persist throughout annealing. 
Keto groups 3 are the most common structural fragment 
found in our simulations, qualitatively consistent with the 
XAS result from ref 60, and become even more important 
with increasing annealing temperature.  

 

Figure 6. Surface oxidation of ta-C. (a–c) Exemplary structural 
snapshots during progressive DFT-MD annealing of the same 
ta-C surface slab with chemisorbed oxygen atoms. At low to 
moderate temperatures, mostly epoxy and keto groups are 
found, and no significant structural changes occur (panel a). At 
1,200 K, the epoxy rings have been broken and surface recon-
struction takes place (panel b). At much higher temperatures, 
CO molecules detach from the surface (panel c). (d) Character-
istic oxygen-containing surface motifs, as observed in our sim-
ulations: example snapshots from a 300 K trajectory are shown. 

Table 1. Count of Functional Groups at ta-C Surfaces as 
Observed in DFT-MD Simulations 

T (K) 1 (epoxy) 2 (ether) 3 (keto) Other 
300 27 13 28 4 
600 19 13 34 6 
900 16 17 35 4 
1200 12 18 35 7 
1500 7 18 39 8 
1800 2 18 41 11 

 
We note that MD simulations using empirical potentials, 

which are less accurate than DFT but applicable to larger 
systems, have been reported for chemically reduced gra-
phene oxide (rGO).63–65 We envision that further insight into 
both materials classes will be possible by exploiting their 
close chemical similarity (quantitatively supported by the 
graphene-likeness at ta-C surfaces; Figure 3d). We also note 
that temperature-induced decrease in epoxy groups 1 and 
increase in keto groups 3 was observed in MD simulations 
for rGO,63 qualitatively in line with our results in Table 1. 

With the onset of decarbonylation of the slab, the two 
most relevant structural motifs observed in our MD simula-
tions are keto groups 3 and allylic, chain-like –C=C=O mo-
tifs; on heating even further, CO molecules detach from the 
slab (Figure 6c). The latter agrees with previous DFT stud-
ies of formation and oxidation of linear carbon chains;58,59 
these studies, however, were conducted on small model sys-
tems (such as linear molecules), not on slab cells. Further 
ongoing work will deal with the following questions: (i) how 
can one automatically identify and catalogue the most rep-
resentative surface sites (using the SOAP kernel in the spirit 
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of ref 52 and Figure 3c–d);66 and (ii) what are the spectro-
scopic fingerprints of these particular surface sites? 

CONCLUSIONS 
Machine learning combined with DFT modeling can give 

new insights into the surface chemistry of amorphous ma-
terials. We exemplified this here for tetrahedral amorphous 
carbon (ta-C), one of the prototypical amorphous materials 
whose surfaces are of key technological importance. We 
generated and characterized a representative set of slab 
models that can enable future DFT studies at various system 
sizes, and we assembled large databases of functionalized 
structures that may serve for fitting multicomponent poten-
tial models in the future. Direct comparison to experiments, 
including spectroscopic probes such as XAS/XPS, will ulti-
mately make it possible to quantify, understand, and control 
the surface chemistry of ta-C. Looking beyond carbon, with 
the recent development of high-quality machine-learning 
potentials for other (bulk) amorphous solids,36,67 we expect 
that simulation strategies as introduced here will be useful 
for other amorphous material surfaces in the near future. 

METHODS 
GAP-MD simulations in the NVT ensemble were used to gen-

erate ta-C surface slabs, using similar protocols as in our initial 
work.19 Simulations were performed using a Langevin thermo-
stat, as implemented in QUIP/quippy, which is freely available 
for non-commercial research at https://github.com/lib 
Atoms/QUIP. The GAP approach (ref 27) has been validated 
earlier for a range of relevant applications, including the de-
scription of metal surfaces,51 structure-searching for carbon al-
lotropes,49 and lithium diffusion in graphitic systems.37 

Borrowing ideas from Grand-canonical Monte Carlo, our 
heuristic Markov-chain MC simulations (Figure 4–5) pro-
gressed by randomly placing H atoms near undercoordinated 
(less than four-fold bonded) C atoms or removing H atoms (if 
present) and then relaxing the system to its nearest local mini-
mum.68 In each step, the choice to add or remove H was made 
with 50% probability, and the specific insertion or removal site 
was then chosen with equal probability among the possible 
sites. Trial moves were accepted with a Metropolis criterion69 
based on the energy difference between initial and final states. 
Specifically, given the (total) energy 𝐸𝐸𝑛𝑛 for a system with n 
chemisorbed H atoms and m possible adsorption sites, we ac-
cept the addition of an H atom with probability 

𝑃𝑃+1 = min �1, 𝑛𝑛+1
𝑚𝑚

exp �− 𝐸𝐸𝑛𝑛+1−(𝐸𝐸𝑛𝑛+𝜇𝜇)
𝑘𝑘𝐵𝐵𝑇𝑇

��  

and accept the removal of an H atom with probability 

𝑃𝑃−1 = min �1, 𝑚𝑚+1
𝑛𝑛

exp �− 𝐸𝐸𝑛𝑛−1−(𝐸𝐸𝑛𝑛−𝜇𝜇)
𝑘𝑘𝐵𝐵𝑇𝑇

��, 

where 𝜇𝜇 is half the binding energy of molecular H2 in our DFTB 
model, 𝜇𝜇 = −2.6eV. Therefore, 𝐸𝐸react = −𝐸𝐸𝑛𝑛+1 + (𝐸𝐸𝑛𝑛 + 𝜇𝜇) is 
the reaction energy of the corresponding hydrogenation reac-
tion. The factor in front of the exponential accounts for the fact 
that the number of adsorbed H and the number of potential ad-
sorption sites change during the course of the MC simulation. 
All simulations were run at 𝑇𝑇 = 300K, but since 𝑘𝑘𝐵𝐵𝑇𝑇 ≪ ⟨𝐸𝐸react⟩, 
the results obtained here are largely independent of tempera-
ture for typical ambient temperatures. 

We note that this scheme is heuristic because it does not ful-
fill detailed balance, since addition of hydrogen can trigger re-
laxation into a new minimum energy configuration. Initial par-
ametric tests using the Reactive Empirical Bond Order Poten-
tial (REBO2)70 showed that the resulting structures were 

largely independent of the temperature chosen in the MC 
scheme; this is because the hydrogen adsorption energy is far 
larger than kBT for T smaller than the melting point of diamond. 
All results presented here were obtained at 300 K. Our compu-
tations do not include vibrational contributions to the free en-
ergy, and do not include other gaseous species (such as H2O in 
a humid atmosphere); both constitute interesting further di-
rections but will increase the computational cost very signifi-
cantly. Final simulations employed the DFTB method44 with the 
mio-1-1 parameter set,44 available at http://dftb.org, without 
self-consistent charges as implemented in the ATOMISTICA 
code, which is freely available at https://github.com/Atomis-
tica/atomistica. Each of the 50 trajectories ran for 1000 steps 
of adding/removing hydrogen from the structures. 

DFT-MD simulations of ta-C surface oxidation (Figure 6) 
were performed using the QUICKSTEP algorithm as imple-
mented in CP2K.71–73 We used double-ζ quality basis sets, 
Goedecker–Teter–Hutter pseudopotentials,74 the PBE func-
tional for exchange and correlation,75 without spin polariza-
tion, and a cut-off energy of 250 Ry. Reciprocal space was sam-
pled at Γ. Temperature was controlled using a stochastic 
Langevin thermostat.76 The timestep, both for GAP-MD and 
DFT-MD simulations, was 1 fs. 

Structural similarity to diamond and graphene (Figure 3c–f) 
was quantified using the average Smooth Overlap of Atomic Po-
sitions (“average SOAP”) kernel.50,52 SOAP is a numerical simi-
larity measure based on the neighborhood density of atoms ex-
panded into spherical harmonics: we use convergence param-
eters of nmax = lmax = 10, a radial cutoff of 3.5 Å, a selectivity pa-
rameter of ζ = 4, and a smoothness parameter of σat = 0.5 Å (the 
latter setting controls how “fuzzy” the neighbor densities are, 
and is the same as used for fitting the GAP model). The histo-
grams given in Figures 3e–f represent averages over 50 differ-
ent slab structures for each given system size. For visualization, 
we used AtomEye,77 OVITO,78 and VESTA.79 
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