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In this work we introduce the application of black-box quantum control as an interesting rein-
forcement learning problem to the machine learning community. We analyze the structure of the
reinforcement learning problems arising in quantum physics and argue that agents parameterized
by long short-term memory (LSTM) networks trained via stochastic policy gradients yield a general
method to solving them. In this context we introduce a variant of the proximal policy optimization
(PPO) algorithm called the memory proximal policy optimization (MPPO) which is based on this
analysis. We then show how it can be applied to specific learning tasks and present results of nu-
merical experiments showing that our method achieves state-of-the-art results for several learning
tasks in quantum control with discrete and continuous control parameters.

I. INTRODUCTION

As a result of collaborative efforts by academia and in-
dustry, machine learning (ML) has in recent years led to
advancements in several fields of application ranging from
natural language and image processing over chemistry
to medicine. In addition to this, reinforcement learning
(RL) has recently made great progress in solving chal-
lenging problems like Go or Chess [1, 2] with only small
amounts of prior knowledge which was widely believed
to be out of reach for the near future. Consequentially,
RL is nowadays thought to hold promise for applications
such as robotics or molecular drug design. This success
naturally raises the question of what other areas of ap-
plication might benefit from the application of machine
learning.

Quantum mechanics and especially quantum comput-
ing is of special interest to the machine learning com-
munity as it can not only profit from applications of
state-of-the-art ML methods but is also likely to have
an impact on the way ML is done in the future [3]. This
bidirectional influence sets it apart from most other ap-
plications and is a strong incentive to investigate possible
uses of machine learning in the field despite the compa-
rably steep learning curve.

One challenging and important task in the context of
quantum physics is the control of quantum systems over
time to implement the transition between an initial and a
defined target physical state by finding good settings for
a set of control parameters [4]. This problem lies at the
heart of quantum computation as performing any kind
of operation on quantum bits (qubits) amounts to imple-
menting a controlled time evolution with high accuracy
in the face of noise effects induced by the environment.
Apart from the relevance to quantum computation, the
analysis and understanding of the properties of quantum
control problems also is an interesting research problem
in its own right. However, for a given physical system

as implemented in a real experiment it is in general not
possible to express all influence factors and dependencies
of particles in mathematical form to perform an analyt-
ical analysis or gradient-based optimization of the con-
trol variables. Thus, physicists have for some time been
proposing automated solutions for these problems [5–9]
that are able to find good control parameter settings
while being as agnostic as possible about the details of
the problem in question. Unfortunately though, these ap-
proaches are in general based on tailored solutions that
do not necessarily generalize to other problems as they,
e.g. only consider discrete variables when the underlying
problem is actually continuous and are not always very
sample efficient.

In this work we improve over the status quo by intro-
ducing a control method based on recurrent neural net-
works (RNNs) and policy gradient reinforcement learn-
ing that is generic enough to tackle every kind of quan-
tum control problem while simultaneously allowing for
the incorporation of physical domain knowledge. More
precisely, we present an improved version of the recently
introduced proximal policy optimization (PPO) algo-
rithm [10] and use it to train Long Short-Term Mem-
ory (LSTM) [11] networks to approximate the probabil-
ity distribution of good sequences of control parameters.
We furthermore show how physical domain knowledge
can be incorporated to obtain state-of-the-art results for
two recently addressed control problems [8, 9]. While
our method is based on an analysis of the reinforcement
problem underlying quantum control, it can also be ap-
plied to other RL problems yielding the same structure.
Our contribution hence is threefold in that we firstly in-
troduce the general method, secondly demonstrate how
to successfully apply it to quantum control problems and
thirdly, by doing so, try to stimulate a more intense ex-
change of ideas between quantum physics to the broader
machine learning community to facilitate mutual benefit.

The rest of this work is structured as follows: in Sec-
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tion II, we provide a very brief introduction to quantum
control, followed by a discussion and analysis of the re-
inforcement learning problem posed by quantum control
in Section III. Building on the analysis, we present the
method in Section IV and subsequently introduce two
concrete quantum control problems in Sections V A and
V B respectively. We then present numerical results ob-
tained by our method for these problems and compare
them to those of existing solutions in Section VI. Finally,
we conclude with a discussion of the work in Section VII.

II. QUANTUM CONTROL

The time evolution of a physical system in quantum
mechanics is described by the Schrödinger equation

ih
δ

δt
|ψ(t)〉 = H |ψ(t)〉 (1)

whereH is the Hamiltonian, a complex Hermitian Matrix
describing the energy of the physical system, and h is
Planck’s constant [12]. Hereby, |ψ〉 is the Dirac notation
for a physical state which for finite dimensional systems
as we treat here corresponds to a complex column vector
of the same dimensionality as the Hamiltonian’s. The
conjugate transpose of a vector |ψ〉 then is denoted as 〈ψ|
such that 〈ψ,ψ〉 denotes the inner and |ψ〉 〈ψ| the outer
product. The Schrödinger equation yields the unitary
quantum time evolution

|ψ(t)〉 = e−itH/h |ψ(0)〉 . (2)

In a discretized time setting with time steps ∆t the evo-
lution for a total time T can thus be written as

|ψ(T )〉 = e−i∆tH/h
L
|ψ(0)〉 (3)

where we define L = T/∆t. In quantum control we now
assume to be able to control the time evolution by ap-
plication of so-called control Hamiltonians H1, · · · , HC ,
which yields the controlled time evolution

|ψ(T )〉 =e−i∆t
∑C
i=1 ciLHi/h · · · (4)

e−i∆t
∑C
i=1 ci1Hi/h |ψ(0)〉 (5)

where the cit are time-dependent scaling constants for the
control Hamiltonians. This formulation however assumes
that we have full control over the system which due to
various kinds of noise or environmental effects will not be
the case. Hence we introduce a noise or drift Hamiltonian
H0, which we here assume to be time independent and
of constant strength, and obtain the final formulation

|ψ(T )〉 =e−i∆t(H0+
∑C
i=1 ciLHi) · · · (6)

e−i∆t(H0+
∑C
i=1 ci1Hi) |ψ(0)〉 (7)

where we set h = 1 for convenience.

Now that we have a well-defined notion of our control
problem, we need to state the actual goal that we aim to
achieve. Generally, starting from an initial state |ψ(0)〉 or
the corresponding density operator ρ(0) = |ψ(0)〉 〈ψ(0)|
we would like to obtain an evolution to target state |ψ∗〉
or ρ∗ = |ψ∗〉 〈ψ∗|. Hence we need to define some simi-
larity measure between the state we actually obtain after
evolving for time T and our ideal result. The easiest way
of doing this is simply to compute the overlap between
these states by

S(ψ∗, ψ(T )) = 〈ψ∗, ψ(T )〉 (8)

or

S(ρ∗, ρ(T )) = Trρ∗†ρ(T ) (9)

respectively for Hermitian operators and correspond-
ingly only using the real part Re(S(ρ∗, ρ(T ))) for non-
Hermitian ones [13].

Equipped with this metric, we can formally define the
problem we would like to solve as

max
{cit}

S(ρ∗, ρ(T, {cit}). (10)

This formulation is broad enough to capture every prob-
lem from synthesizing certain quantum gates over evolv-
ing from one eigenstate of a Hamiltonian to another to
storing the initial state in a quantum memory setting.

III. REINFORCEMENT LEARNING: WHY
AND WHAT?

As we have seen above, solving quantum control prob-
lems amounts to determining an optimal or at least good
sequence of principly continuous variables that describe
the influence we exert on the system at each discrete
time step. If a rigorous mathematical description of
the evolution dynamics is available, there exist methods
like GRAPE [13] or CRAB [14, 15] to obtain good solu-
tions. However, the gap between theory and experiment
also does not close in quantum mechanics and hence it
is reasonable to assume that the actual dynamics of a
real experiment will slightly differ from the mathematical
model due to various noise effects induced by the environ-
ment. As can for instance also be observed in robotics,
these slight differences between theory/simulation and
real world implementation might still have a significant
impact on the optimization problem to be solved. Addi-
tionally, it is clear that in general it is neither an inter-
esting nor feasible task to derive a proper mathematical
model for the effect of every influence factor in a real
experiment [8].

This shows that it is worthwhile to investigate ways
of optimizing such a control problem from a black box
perspective in the sense that we are agnostic about the
actual time evolution dynamics of the system and can
only observe the final results obtained by a chosen set
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of parameters. In fact, in the absence of a mathematical
model it is the only possible option to obtain information
after the end of an experiment as in quantum mechanics
a measurement during the experiment would in general
cause the wave function to collapse and hence destroy
the experiment without any way of determining what the
final outcome would have been. Hence the task we would
like to solve is to find a controller or at least find a good
sequence of control parameters based on the outcomes
of trial runs of a given experiment, which in quantum
control terminology corresponds to a closed-loop setting.

While one viable route to solving this problem would
be to use classical evolutionary or hill-climbing algo-
rithms or more advanced black-box methods such as
Bayesian optimization, another interesting option is to
fit a generative probabilistic model from which we can ef-
ficiently sample good sequences. This approach has two
advantages. Firstly, we can iteratively update the model
by fitting it to additional data we might acquire after
the initial fitting phase. Doing so allows it to improve
over previous results or make it adapt to changing condi-
tions, e.g. a change of the noise Hamiltonian after some
time. This is in contrast to pure optimization methods
which would have to start from scratch for every prob-
lem. Secondly, by examining the distribution over the
sequence space the model has learned and inspecting the
best sampled control sequences, it might be possible to
gain a better understanding of the underlying dynamics
of a system.

It is clear that the sequences of control parameters in a
quantum control problem should not be treated as i.i.d.
as a given choice of parameters ct at time t potentially
depends on all previous choices c1, · · · , ct−1 and thus we
have a conditional distribution p(ct|c1, · · · , ct−1). This
kind of distribution can successfully be learned by mod-
ern RNN variants, such as LSTM or Gated Recurrent
Unit (GRU) networks. This can for instance be seen
in natural language processing (NLP) problems, which
feature similar structure and where RNNs have led to
breakthrough results in recent years. Note that, with
this modelling decision, we still capture the full multi-
variate distribution p(c1, · · · , cT ) as by the factorization
rule of probabilities it holds that

p(c1, · · · , cT ) =

T∏
t=1

p(ct|c1, · · · , ct−1). (11)

Having decided on the class of models to employ, we
are left with the question of how to fit them. This is
non-trivial as we obviously can not hope to be able to
obtain gradients of real-world experiments and also can
not assume to have any a priori data available. Hence, we
must ‘query’ the experiment to obtain tuples of sequences
and results. Thereby we would naturally like to be as
sample efficient as possible and hence have to find an
intelligent way to draw samples from the experiment and
learn from them.

In a recent attempt to address this problem, an

evolutionary-style algorithm for training LSTMs was in-
troduced [9] that iteratively generates better data and
fits the models to that data, then uses sampling from
these models instead of the usual mutation operations to
generate new sequences. While the algorithm was able
to find better sequences than known in theory for the
considered control problem of quantum memory, it was
only demonstrated for a discretized version of the prob-
lem and there is room for improvement with respect to
the efficient use of sampleded sequences.

A more direct solution to this black-box optimization
problem would however be if we were able to simply ap-
proximate the gradient of the error function with respect
to the parameters of our model from the sampled data.
Being able to obtain an approximate gradient would al-
low us to optimize our model in a gradient descent fash-
ion and thus to leverage existing optimization methods
mainly used in superivsed learning. Indeed, this is a typ-
ical RL scenario which is commonly referred to as policy
gradient learning. In the following, we will thus show
how to solve the optimization task at hand by perceiving
the problem of black-box quantum control as an RL prob-
lem and tackling it with a state-of-the-art policy gradient
algorithm. To this end, we start by analyzing the partic-
ular reinforcement learning problem posed by black-box
quantum control.

As we only receive a result or measurement, from now
on also referred to as reward, after having chosen a com-
plete sequence of control parameters, we can perceive the
sequence c = (c1, · · · , cT ) as a single action of the RL
agent for which it receives a reward R(c). This approach
most clearly reflects the envisioned closed-loop control
scenario explained above. Modelling the sequences and
their respective results in this way then implies that our
Markov decision process (MDP) takes the form of a bi-
partite graph consisting of a single initial state s0 on
the left and multiple final states sc on the right that are
reached deterministically after exactly one action c. The
set of states S of this MDP is thus given by S = s0∪{sc}
while the set of actions A corresponds to A = {c} and
the transition probabilities are defined as Pc(s0, sc) = 1.
The reward R(c) of an action c is determined by the asso-
ciated value of the error function as defined in Section II.
We assume here that two different sequences always lead
to different final states of the system, which is the most
challenging conceivable case as equivalence classes in the
sequence space would effectively reduce the size of the
search space. This particular structure then implies that
the value function simplifies to

V (s0) = max
c
R(c) = R(copt) (12)

where copt is the optimal sequence and the Q-function

Q(s0, c) = R(c) (13)

is in fact independent of the state and equal to the reward
function R(c) as each sequence c is associated with ex-
actly one final state. Additionally, the number of actions
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|{c}| and hence final states xc is at least exponential in
the number of possible values of control parameters per
time step t and generally infinite. This learning setting
can be perceived as a multi-armed bandit [25] problem
but constitutes a special case as firstly we assume to be
only able to perform one action, i. e. generate one se-
quence, before receiving the total reward and secondly
the actions are not atomic but rather exhibit a structure
we exploit for learning.

While it is true that one could derive a different formu-
lation of the problem by considering the ct to be individ-
ual actions and using the discounted rewards of complete
sequences, this approach puts more emphasis on optimal
local behvaior of the agent when our goal clearly is to op-
timize the global performance, i.e. to generate the best
possible sequences of control parameters. However, for
this RL problem to be solvable the compositional struc-
ture of the actions c is in fact of critical importance as
we will discuss now.

In principle, the RL problem amounts to learning to
choose the best out of up to infinitely many possible ac-
tions which in general clearly is unsolvable for every al-
gorithm. So, why can we hope to achieve something with
an algorithm learning from trials in the introduced prob-
lem setting? The main reason for this is in fact that
we know that the actions the agent takes are not atomic
but concatenations of multiple sub-actions which have a
physical meaning. Nature as we perceive it seems to be
governed by simple underlying rules (or complex rules
that are at least approximated very well by simple ones)
which allows us to capture them with mathematical ex-
pressions. This in turn implies that there is much struc-
ture to be found in Nature and hence it is reasonable to
assume that likewise the desirable actions in our learning
problem share certain patterns which can be discovered.
More precisely, we conjecture that solving the particu-
lar problems we are tackling in this work requires less
abstract conceptual inference, which would still be out
of reach for todays machine learning models, and more
recognition of patterns in large sets of trials, i.e. con-
trol sequences, and hence in fact lends itself to treatment
via machine learning and especially contemporary RNN
models. Some empirical evidence for the validity of this
conjecture has recently been provided for the problem of
quantum memory [9] and for a problem related to quan-
tum control, the design of quantum experiments [6].

IV. THE LEARNING ALGORITHM

Having discussed the modelling of the control se-
quences and the RL problem, we will now introduce the
actual learning algorithm we employ. As we have seen
above, we can not perform direct optimization of R(c)
as we cannot access ∇R(c). However, it has long been
known that it is possible to approximate ∇ΘEc[R(c)]

since

∇ΘEc[R(c)] = Ec[∇ ln pΘ(c)R(c)] (14)

where Ec is the expectation over the sequence space and
pΘ(c) is the stochastic policy of the agent parameterized
by the weight vector Θ, which in this work corresponds
to an RNN. This insight is known as the likelihood ratio
or REINFORCE [16] trick and constitutes the basis of
the policy gradient approach to reinforcement learning.
From the physics point of view, the trick allows us to
take the gradient of the average outcome of a given ex-
periment with respect to the parameters of our stochas-
tic controller and perform gradient-based optimization
while being agnostic about the mechanisms behind the
experiment, i.e. model-free. In a sense we thus have a
way of taking a gradient through an experiment with-
out the necessity to mathematically model every vari-
able of influence and their interplay. From a different
perspective, this approach simply corresponds to maxi-
mizing the likelihood of sequences that are weighted by
their results, such that the agent has a higher incentive
to maximize the likelihood of good sequences. The ap-
proach can be refined by replacing the weighting by the
pure rewardR(c) with an approximation of the advantage
A(s, c) = Q(s, c)−V (s). This has been shown to improve
the convergence significantly and especially for continu-
ous control problems, policy gradient methods outper-
form Q-learning algorithms [10].

Despite such improvements, policy gradient ap-
proaches still suffer from slow convergence or catastroph-
icly large updates, which has led to the development
of improvements such as trust region policy optimiza-
tion [17] (TRPO). These methods however make use of
second-order information such as inverses of the Hessian
or Fisher information matrix and hence are very difficult
to apply in large parameter spaces which are common in
the deep learning regime. The underlying idea of such im-
provements thereby is limiting the magnitude of updates
to Θ by imposing constraints on the difference between
pΘ and pΘnew in order to prevent catastrophic jumps out
of optima and achieve a better convergence behvaior.

In an effort to strike a balance between ease of applica-
tion and leveraging the insights behind TRPO, recently
a novel policy gradient scheme called proximal policy op-
timization [10] (PPO) was introduced. One main novelty
hereby lies in the introduced loss, which is for a general
RL scenario given by

LCLIP (Θ) =Et[min(rt(Θ)At, (15)

clip(rt(Θ), 1− ε, 1 + ε)At)] (16)

where Et and At are the expectation over time steps and
the advantage at time t respectively, which both need to
be approximated. The term rt is defined as the ratio of
likelihoods

rt(Θ) =
pΘ(ct|st)
pΘold(ct|st)

(17)
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of actions ct in states st in our notation and we de-
fine clip(a, b, c) = min(max(a, b), c). The distribution
pΘ(ct|st) is a stochastic policy depending on parameters
Θ. Note that this generic formulation assumes multiple
actions ct per episode and thus does not yet apply to the
learning scenario discussed here.

The objective function poses a lower bound on the im-
provement induced by an update and hence establishes a
trust region around Θold. The hyperparameter ε controls
the maximal improvement and thus the size of the trust
region.

Now, the basic algorithm is defined as follows:

1. Obtain new set of trajectories, i.e. sequences, C, by
sequentially sampling from pΘ(ct|st).

2. Optimize LCLIP over C for K iterations.

3. Set Θold = Θ.

4. Repeat until convergence.

Note that there exists a straight-forward generalization
to the case of multiple agents but as we can not reason-
ably assume in our application to have access to multi-
ple identical experiments, we only consider the case of
one agent here. The algorithm was shown to achieve
state-of-the-art performance for several discrete and con-
tiouous control tasks, which makes it ideally suited for
the problems tackled in this work. However, we will
now introduce a few improvements tailored to our specific
reinforcement learning problem as defined in the previ-
ous section which we will for the sake of brevity from
now on refer to as memory proximal policy optimization
(MPPO).

Since in our problem we only consider episodes con-
sisting of one action c, the objective becomes

LCLIP1 (Θ) =Ec[min(r(Θ)A, (18)

clip(r(Θ), 1− ε, 1 + ε)A)] (19)

with

r(Θ, c) =
pΘ(c)

pΘold(c)
(20)

and pΘ(c) being parameterized by an LSTM, as discussed
above. A again denotes the advantage function. We have
omitted the dependence on c in L1 for the sake of clarity.
Since we know that in our problem setting it holds that
Q(c, s) = R(c), the advantage function becomes

A(c) = R(c)− V (c). (21)

It is worth noting that this implies that in our scenario
there is no need to approximate the Q-function as we can
access it directly. In fact approximating the Q-function
and hence R(c) would be equivalent to solving the opti-
mization problem as we could use the approximator to
optimize over its input space to find good sequences. The
quality of the approximation of A(c) consequentially only

depends on the approximation of V (c). While there ex-
ist many sophisticated ways of approximating the value
function [10, 18] in our case the optimal approximation
is given by

V̂ (c) = R(c∗) (22)

where c∗ is the best sequence we have encountered so
far. Since we do not know the best sequence and its
corresponding reward (at best we know an upper bound),
the reward of the best sequence found so far is the closest
approximation we can make. The optimal approximation
of the advantage A(c) hence is given by

Â(c) = R(c)−R(c∗). (23)

Since we need to store c∗ to compute the advantage ap-
proximation and are generally interested in keeping the
best solution, it is a natural idea to equipping the agent
with a memory M of the best sequences found so far.
We can then formulate a memory-enhanced version of
the PPO algorithm:

1. Obtain new set of trajectories, i.e. sequences, C, by
sampling from pΘ(c).

2. Update the memory of best sequences M

3. Optimize LCLIP1 over C ∪M for K iterations.

4. Set Θold = Θ.

5. Repeat until convergence

The memory sequences are treated as newly sampled se-
quences such that their weighting always is performed
with respect to the current values of Θold and Θ. This
ensures compatibility with the policy gradient frame-
work while the access to the best actions discovered so
far leads to a better convergence behavior as we will
see later. Note that, under the previously introduced
assumption, the best sequences share common struc-
tural properties. Maximizing the expected reward over
all sequences Ec[R(c)] is thus equivalent to maximizing
the expected reward over the sequences in the memory
Ec∈M [R(c)] which ensures relevance and stability of the
updates computed overM . This memory scheme further-
more is different from experience replay in Q-learning [19]
as only the best sequences are kept and reintroduced to
the agent. The relation between |C| and |M | thereby
is a new hyperparameter of the algorithm affecting the
exploration-exploitation dynamics of the learning pro-
cess.

Another factor that has a significant impact on the ex-
ploration behavior is the value of the scaling or variance
parameter of the probability distributions employed in
continuous control tasks, such as for instance the stan-
dard deviation σ of the univariate normal distribution
or the covariance matrix Σ in the multivariate case. It is
clear that a large variance induces more exploration while
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a small variance corresponds to a more exploitation-
oriented behavior. Over the course of training an agent
to find a good policy it is hence reasonable to start with
a larger variance and reduce it during the optimization
until it reaches a defined minimal value. However, while
the agent usually learns to predict the mean of the given
distribution, the variance parameter is currently often
treated as fixed or follows a predefined decay schedule
which does not account for the randomness in the train-
ing process. Utilizing the sequence memory, we propose
an improvement by introducing a dynamical adaptation
scheme for the variance parameters depending on the im-
provement of the memory M . More concretely, we pro-
pose to maintain a window Wi of the relative improve-
ments of the average rewards in memory

Wi =

[
R(Mi−l+1)−R(Mi−l)

R(Mi−l)
, · · · , (Mi)−R(Mi−1)

R(Mi−1)

]
(24)

where R(Mi) denotes the average reward over the mem-
ory in iteration i of the optimization and l is the window
length. At every l-th step in the optimization, we then
compute a change parameter

αt = 1 +
Wt−l −Wt

Wt−l
(25)

with Wt being the window average and multiply (possi-
bly clipped) the variance parameters by it. Note that we
assume here monotonic improvement of M and R ∈ [0, 1].
This scheme thus poses a dynamic adaptation of the vari-
ance parameters based on second-order information of
the improvement of the average reward of M . It follows
the intuition that if the improvement slows down, a de-
crease of the variance gives the agent more control over
the sampled actions and allows for a more exploitation-
oriented behavior. On the other side, when the improve-
ment accelerates, it appears reasonable to prevent too
greedy a behavior by increasing the uncertainty in the
predicted actions. The same scheme can furthermore also
be applied to parameters such as ε, which plays a similar
role to the variance.

In conclusion, extending the PPO training with a
memory of the best perceived actions prevents good so-
lutions of the control problem to be lost, gives the agent
access to the best available advantage estimate, improves
convergence and allows to dynamically scale the variance
parameters of respective distributions from which actions
are sampled. While we introduce this variant of the PPO
algorithm for our specific application, we believe that it
would generalize to other applications of reinforcement
learning.

V. APPLYING THE METHOD

In this section, we will now introduce two quantum
control scenarios that were recently explored via ma-

chine learning [8, 9]. We show how one can apply our
method to tackle some interesting learning tasks arising
in these control settings by leveraging physical domain
knowledge.

A. Quantum Memory

One particular instance of a quantum control problem
is the problem of storing the state of a qubit, i.e. a two-
level system used in quantum computation. This is, next
to quantum error correction, a very relevant problem in
quantum computation. Here we assume that our qubit
is embedded in some environment, called the bath, such
that the complete system lives in the Hilbert space

H = HS ⊗HB

with the subsripts S and B denoting the space of the sys-
tem and bath respectively. If we let this system evolve
freely, decoherence effects will over time destroy the state
of the qubit. Hence the question is how we can intervene
to prevent the loss of the state in the presence of the en-
vironment or, for computer scientific purposes, the noise
where we assume to have control over the qubit only.
From a quantum computing perspective, we would like
to implement a gate that performs the identity function
over a finite time interval.

Qubit states are commonly represented as points on
the Bloch sphere [4] and the effect of the environment on
the qubit can in this picture be perceived as some rota-
tion that drives the qubit away from its original position.
To counter this problem we must hence determine a good
rotation at each time step such that we negate the effect
of the environment. So, our goal is to dynamically decou-
ple the qubit from its bath by performing these rotations.
The rotation of a qubit is defined as

Rn(α) = e−i
α
2 nσ

with n being a unit vector specifying the rotation axis,
α denoting the rotation angle and σ the ‘vector’ of the
stacked Pauli matrices σ{x,y,z} [20]. Thus our controlled
time evolution operator per time step t becomes

U(nt, αt) = e−i∆t(H0+
αt
2∆tntσ⊗IB),

expressing that we only apply the rotation to the qubit,
but not the bath. The noise Hamiltonian H0 here reflects
the effect of the bath on the qubit and IB simply denotes
the identity of size of the dimensionality of HB such that
the Kronecker product yields a matrix of equal size to
H0.

One possible metric to quantify how well we were able
to preserve the qubit’s state is

D(U, I) =

√
1− 1

dSdB
‖TrS(U)‖Tr
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with U denoting the total evolution operator, I the iden-
tity and TrS is the partial trace over the system [21].

‖U‖Tr = Tr
√
U†U is the trace or nuclear norm. This dis-

tance measure is minimized by the ideal case U = IS⊗UB
with an arbitrary unitary UB acting on the bath. Thus,
the problem we would like to solve is a special instance
of quantum control and can be formulated as

min
{(nt,αt)}

D(U({(nt, αt)}, I).

Having introduced the quantum memory scenario, we
now turn to a description of possible reinforcement learn-
ing tasks in this context. We present three different for-
mulations of the setting which we will in the following
refer to as the discrete, semi-continuous and continuous
case. These formulations differ in the parametrization of
the rotation Rn(α) that is to be performed at each time
step.

Discrete case: It is known from analytical derivations
that the Pauli matrices σ{0,x,y,z} give rise to op-
timal sequences under certain ideal conditions [22,
23], where at each time step exactly one of the ro-
tations R{0,x,y,z} = e−i

π
2 σ{0,x,y,z} is performed. σ0

hereby denotes the identity. Hence, in the simplest
formulation we can define the problem as choosing
one of the four Pauli matrices at each time step.
This formulation then leads to a sequence space S
of size |S| = 4T being exponential in the sequence
length T . This is the formulation which was also
used in recent work on quantum memory [9].

Semi-continuous case: While the class of sequences
introduced above is provably ideal under certain
conditions, one might be interested in allowing the
agent more freedom to facilitate its adaption to
more adverse conditions. This can in a first step
be achieved by allowing the agent full control over
the rotation angle while keeping the discrete for-
mulation for the rotation axis. That means that
at each time step, the agent will have to choose
a rotation axis from σ{0,x,y,z} as before, but now
must also predict the rotation angle α ∈ [0, 2π].
As α can take infinitely many values, this formu-
lation of the problem now yields a sequence space
S of inifinite size, making it much harder from a
reinforcement learning perspective. To lighten this
burden we can make use of the fact that we know
that in principle a rotation around π is ideal. Thus,
we will interpret the output of the agent as the de-
viation from π ∆α ∈ [−π, π]. This should facilitate
learning progress even in the early training phase.

Continuous case: Finally, we can of course also allow
the agent full control over both the rotation angle
and axis. This formulation of the problem requires
the agent to predict a unit vector n ∈ R3 and a cor-
responding rotation angle α for each time step. It
is clear that without any prior knowledge it will be

very difficult for the agent to identify the ‘right cor-
ner’ of this infinite sequence space. We hence pro-
pose to again leverage the knowledge about Pauli
rotations being a good standard choice by having
the agent predict a Pauli rotation together with
the deviation in n and α. While for α we have
already seen how this can be easily achieved, n re-
quires slightly more insight. As is customary in
quantum physics, every state of a two-dimensional
particle |ψ〉 can be represented by choosing two an-
gles θ ∈ [0, π] and φ ∈ [0, 2π], yielding the three-
dimensional real unit Bloch vector

b =

sin θ cosφ
sin θ sinφ

cos θ

 .

We can hence use this formulation to parameter-
ize n by θ and φ. It is easy to see that the Pauli
rotations correspond to the unit vectors that equal
a one-hot encoding of the Pauli matrices such that
we obtain the following identities

θx = θy = φy =
π

2
and

φx = φz = θz = 0

with periodicity in π. We can now leverage this
knowledge by translating the Pauli rotation axis
chosen by the agent into its Bloch expression and
requring it to predict the deviations ∆θ and ∆φ.
In this way the agent has access to the full axis
space. As with the rotation angle, this formulation
has the effect that the agent starts learning from a
reasonable baseline.

B. Ground state transitions

Another scenario that was recently addressed in an anl-
ysis of the characteristics of the optimization problem
behind controlling systems out of equilibrium [8] is the
transition between ground states of different Hamiltoni-
ans. The considered class of Hamiltonians was thereby
defined to be the class of Ising Hamiltonians given by

H(J, g, h) = J

L−1∑
i=1

I⊗i−1 ⊗ σx ⊗ σx ⊗ I⊗L−(i+1)

+ g

L∑
i=1

I⊗i−1 ⊗ σz ⊗ I⊗L−i

+ h

L∑
i=1

I⊗i−1 ⊗ σx ⊗ I⊗L−i

where the σ{x,y,z} again denote the Pauli matrices and
L specifies the number of particles. In this setting we
furthermore set J = g = −1, leaving h as the only free
parameter specifing the strength of the magnetic field
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represented by σx. From a mathematical perspective,
the ground state |Emin(h)〉 of a given Hamiltonian H(h)
is then defined as the eigenvector of H(h) corresponding
to its lowest eigenvalue.

In the considered scenario we now choose the initial
and target states to be |ψi〉 = |Emin(hi)〉 and |ψ∗〉 =
|Emin(h∗)〉 respectively where hi 6= h∗ are particular
choices of h. The controlled time evolution operator is
then simply defined to be the one generated by H(h) as
given by

U(ht) = e−i∆t/hH(ht)

where we assume ht to be time dependent. The closeness
between the state resulting from the controlled time evo-
lution |ψ(T )〉 and the target state |ψ∗〉 is measured by
their squared overlap

S2(ψ∗, ψ(T )) = | 〈ψ∗, ψ(T )〉 |2,

similar to what was shown in Section II. We thus obtain
the optimization problem formulation

max
{ht}

S2(ψ∗, ψ({ht}))

representing the quantum control optimization prob-
lem.

Next, we will introduce some RL tasks arising in this
control scenario. Similarly to the the taxonomy intro-
duced above, we will thereby distinguish between a dis-
crete, a continuous and a constrained case. These cases
correspond to different domains of possible values for the
time dependent field strengths ht. All of them however
have in common that we assume a maximal magnitude
hmax of the field strength such that ht ∈ [−hmax, hmax]
holds. This is simply done to reflect the fact that in
real experiments infinite field strengths are impossible to
achieve.

Discrete case: Knowing that the potentially continu-
ous domain of our control parameter ht is up-
per and lower bounded by ±hmax, we can apply
Pontryagin’s principle to limit ourselves to actions
st ∈ {−hmax, hmax}. We thus obtain a reinforce-
ment learning problem where at each point in time
the agent has to make a binary decision. While this
is arguably the easiest conceivable scenario, the se-
quence space still is of size |S| = 2T .

Continuous case: Although we know from theory that
optimal sequences will comprise only extremal val-
ues of the control parameter ht, it is still interesting
to examine if the agent is able to discover this rule
by itself. In this case we hence allow the agent
to freely choose ht ∈ [−hmax, hmax] which again
presents us with a sequence space of infinite size.
Following our reasoning from the continuous quan-
tum memory case, we cast the problem as learning
the deviation ∆h ∈ [0, hmax] from ±hmax. Hence,

TABLE I. The best values of D(U, I) found by or method for
the discrete, semi-continuous and continuous quantum mem-
ory learning tasks together with baseline results. The refer-
ence values were taken from [9] and computed with the cor-
responding algorithm for T = 0.512 and ∆t = 0.002. Lower
values are better.

∆t = 0.002 ∆t = 0.004

T = 0.064 0.512 0.256 0.512

Ref. 7 · 10−5 2 · 10−4 4 · 10−4 8 · 10−4

Disc. 7 · 10−5 2 · 10−4 4 · 10−4 8 · 10−4

Semi-Cont. 6 · 10−5 2 · 10−4 4 · 10−4 8 · 10−4

Cont. 6 · 10−5 2 · 10−4 4 · 10−4 7 · 10−4

for each time t the agent must predict the devia-
tion ∆h and decide to which of the two extremal
values the deviation should be applied. This formu-
lation clearly allows the agent to predict any value
in [−hmax, hmax].

Constrained case: In the continuous case as defined
above, we know that the agent should ideally learn
to predict deviations of 0 to achieve sequences with
extremal values of ht. We can thus try to make
the problem more challenging by imposing an up-
per bound B < T |hmax| on

∑
t |ht|, representing

an upper limit of the total field strength. Imposing
such a bound is not an artificial problem as it could
for instance be used to model energy constraints in
real experiments. This constraint can easily be re-
alized by defining the reward of a sequence s to
be

R(s) =

{
S2(ψ∗, ψ(s)) if

∑
t |ht| ≤ B

0 else.

This constraint requires the agent to learn how to
distribute a global budget over a given sequence
where it can maximally allocate an absolute field
strength of |hmax| to each action st. As it is not
clear which values are optimal in principle for a
given bound B, instead of a deviation we here let
the agent directly predict the field strength ht.

VI. RESULTS

In this section we will now present numerical results
for the two application scenarios presented above to il-
lustrate the validity of our method and the usefulness of
the MPPO algorithm. As we did not have at our disposal
real physical experiments implementing these scenarios,
the results presented in the following are based numerical
simulations.
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T=0.256,∆t=0.004

T=0.512,∆t=0.004

T=0.512,∆t=0.002

FIG. 1. The best 10 sequences found for the discrete learning
problem with varying parameters of T and ∆t. It is clearly
visible how the best sequences for each setting share com-
mon structural properties and also exhibit recurring patterns
making them amenable to machine learning models.

Training iterations
6 · 10−5

1 · 10−4

2 · 10−4

3 · 10−4

D
(U
,I

)

|M|= 0

|M|= 1

|M|= 64

|M|= 256

|M|= 1024

|M|= 1024 local

FIG. 2. A comparison of the convergence behavior of the best
results sampled per iteration for different sizes of the memory,
no memory and a memory with the LCLIP loss applied to the
invididual ct for T = 0.064 and ∆t = 0.002. The conver-
gence becomes more stable with larger memory and updates
based on the entire sequences lead to convergence to better
sequences.

A. Quantum Memory

For the quantum memory scenario, we investigate the
performance of our algorithm for different lengths of
the discrete time step, total evolution times and across
the three formulations of the problem described above.
More concretely, we explore the method’s behavior for
a discrete time evolution with ∆t ∈ {0.002, 0.004}, T ∈
{0.064, 0.256, 0.512, 1.024} and a physical system consist-
ing of one memory qubit coupled to a bath of four qubits
with up to three-body interactions to allow for a compar-
ison with the baseline results [9]. We refer the interested
reader to this article for a more precise description of the
physical setup. While we ultimately would like to opti-
mize D(U(c), I) as defined above, we used 1−D(U(c), I)
as a reward signal to obtain an R(c) ∈ [0, 1]. We further-

more shifted the reward such that a uniformly random
policy obtains zero reward on average.

As the three learning tasks introduced for this scenario
differ in their action domains, we need to use a different
probabilistic modelling for each setting. For the discrete
case, we simply model each element ct of a sequence c by
a categorical distribution such that we have

p(c) =
∏
t

Cat(ct ∈ {I,X, Y, Z}|{pI,t, pX,t, pY,t, pZ,t})

for a complete sequence c. In the semi-continuous case we
employ a mixture-of-Gaussians distribution which yields

p(c) =
∏
t

∑
i∈{I,X,Y,Z}

pi,tN (ct = ∆α|µi,t, σt).

This can easily be generalized to the continuous case via
a multivariate mixture-of-Gaussians distribution with di-
agonal covariance matrix such that we obtain

p(c) =
∏
t

∑
i∈{I,X,Y,Z}

pi,tN (ct = {∆α,∆θ,∆φ}|µi,t, σtI).

Note that we have omitted here the dependence on the
weights Θ for the sake of brevity. As discussed in Sec-
tion III, we use an LSTM to parameterize these probabil-
ity densities. More concretely, we use a two-layer LSTM
and use its output as input to a softmax layer to pre-
dict the pi,t. From this output state and the relevant
parts of the output from the previous time step we also
predict the µi for ∆α in the semi-continuous case and
analogously for ∆θ and ∆φ in the continuous case. For
every deviation output we train an individual output unit
for each discrete rotation. For the semi-continuous and
continuous tasks, we scale the standard deviation σt and
PPO parameter ε over the course of the optimization us-
ing our introduced adaption scheme with a window size
of 10 and optimize the loss function with the Adam op-
timizer [24].

The scores D(U(c), I) of the best sequences found in
our numerical experiments are listed in Table I. They
clearly show that our method is able to achieve the same
or slightly better results as the baseline algorithm from [9]
for all considered settings and learning tasks. For the
semi-continuous case, we observe that for the setting in-
volving the shortest sequences slightly better sequences
than in the discrete case can be found. For longer se-
quences the performance is on par with the discrete se-
quences. The same in principle holds for the continuous
case with the exception of the results for T = 0.512 and
∆t = 0.004 being slightly better then for the other two
cases. Overall we can conclude that our method finds se-
quences several orders of magnitude better than those a
random policy generates, which are generally in the inter-
val [0.1, 0.5], showing that in all cases LSTMs trained by
the MPPO algorithm seem to perform quite well. We can
also see that the discrete sequences pose a strong base-
line that is hard to beat even with a fully continuous ap-
proach and in fact we observed the predicted deviations
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TABLE II. The best values of S2 obtained by our method for
the discrete, continuous and constrained ground state transi-
tion learning problems with reference values taken from [8].
Higher values are better.

T = 0.5 T = 1 T = 3

Ref. (L = 1) 0.331 0.576 1

Disc. (L = 1) 0.331 0.576 1

Cont. (L = 1) 0.331 0.576 1

Disc. (L = 5) 0.57 0.767 1

Cont. (L = 5) 0.57 0.768 1

Const. (B = 20) 0.313 − −
Const. (B = 30) 0.322 − −
Const. (B = 40) − 0.572 −
Const. (B = 50) − 0.577 −
Const. (B = 60) − 0.577 −
Const. (B = 120) − − 1

Const. (B = 140) − − 1

Const. (B = 160) − − 1

to converge to very small values. The results further-
more support the conjecture that good sequences share
common structure and local patterns that can be learned
which is also illustrated in Figure 1. Here, the best 10 se-
quences found during the training process in the discrete
case for three different settings are shown, illustrating
the high degree of structure that the best sequences ex-
hibit. The structural similarities become more apparent
with growing sequence length. Interestingly, in all cases
the best sequences only make use of two of the four Pauli
rotations and less surprisingly never use the identity ‘ro-
tation’. In Figure 2 we show the effect of different sizes of
the memory M on the convergence of the best sequences
in the discrete case for otherwise constant optimization
parameters. As can be seen, when not using a memory
or only storing the best sequence, the optimization di-
verges. For larger sizes of the memory, the algorithm
converges to better and better sequences, arriving at the
best sequence found for this setting with a memory of
1024 sequences. We also compared the performance of
our algorithm to updates computed not over complete
sequences but over the single control parameters ct as
done in the PPO algorithm for |M | = 1024. While also
the latter performs well, only the former converges to the
best sequence.

B. Ground state transition

In the ground state transition setting, we evaluate
our method for times T ∈ {0.5, 1, 3} with ∆t = 0.05
and an initial hi = −2, target h∗ = 2 as well as
|hmax = 4| to achieve comparability with the base-
line results [8]. For the discrete and continuous case,

T=0.5,B=20

3.0

1.5

0.0

1.5

3.0

T=1.0,B=40

3.0

1.5

0.0

1.5

3.0

T=3.0,B=120

1.2

0.6

0.0

0.6

1.2

FIG. 3. The 10 best sequences found for different values of
T and a maximal field strength B amounting to half of the
maximally possible. While the best sequences for T = 0.5
and T = 1.0 are very similar und use the maximal possible
absolute field strength, the best sequences for T = 3.0 use
much smaller pulses.

0.0
0.2
0.4
0.6
0.8
1.0
1.2

σ

Training iterations
0.35

0.40

0.45

0.50

0.55

0.60

R
(c

)

Best

Average

FIG. 4. The convergence the best and average reward per
iteration together with the dynamically adapted σ for the
constrained scenario with T = 1.0 and B = 60.

we consider systems of size L = 1 and L = 5 and
B ∈ {20, 30, 40, 50, 60, 100, 120, 140} with L = 1 for the
constrained case. Since the overlap S2 as defined above
already lies in the interval [0, 1], we used it directly as
reward function, again shifting it such that a uniformly
random policy achieved zero reward.

The probabilistic modelling of the sequences is similar
to the quantum memory case in that we use a categor-
ical distribution for the discrete case and a mixture-of-
Gaussians for both the continuous and constrained tasks.
Thereby, we model the probability density of the devia-
tions ∆ht in the continuous case and the predicted abso-
lute value of ht in the constrained case. The distributions
are parameterized in the same way as above, namely by
a two layer LSTM form whose output state both the dis-
crete probabilities and the means for both discrete cases
as predicted. The optimization is conducted as in the
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quantum memory scenario.
The results of our numerical experiments are listed in

Table II. As shown, our method was able to replicate
the baseline results from [8] both for the discrete and
the continuous formulation of the problem for a system
size of L = 1 and also performs well for larger systems
of L = 5 with both versions yielding generally the same
results. We indeed found the continuous version to con-
verge to predicting zero deviation as it was expected to.
For the constrained case we can see that our method con-
verges to sequences whose performance is surprisingly
close to the baseline results even when allowed to use
only half of the maximal absolute field strength. For
T = 3.0 the imposed constraints in fact seem to have
no negative effect as apparently already sequences with
a very small total field strength suffice to achieve per-
fect overlap. This is also illustraed by Figure 3 which
shows the best 10 sequences found during the training
process for T ∈ {0.5, 1.0, 3.0} and B set to half the max-
imal total field strength. While for the smaller two total
times the sequences are very similar and always make
use of the maximal field strength or apply no pulse at
all, for T = 3.0 only the general scheme of applying pos-
itive pulses first, then doing nothing and finally apply-
ing negativ pulses persists. The individual pulses that
are applied are very weak and and entire sequence typ-
ically only amounts to a total absolute strength of ∼ 6.
This phenomenon is likely caused by the fact that the
optimization problem in this case becomes significantly
easier for longer times [8]. In Figure 4 we display the
convergence of the best and average results sampled per
iteration together with the dynamic schedule for sigma
during the optimization. It can be seen that σ is dy-
namically increased when the convergence slows down,
decreased when it speeds up and finally converges to a
stable value as the optimization converges as well. In
other scenarios we also observed our adaption scheme to
perform similarly to a decayed annealing schedule.

VII. CONCLUSION AND FUTURE WORK

In this work we have tried to introduce quantum
physics and especially problems in (black-box or model-
free) quantum information and quantum control to a
broader audience in the machine learning community and
showed how they can be successfully tackled with state-

of-the-art reinforcement learning methods. To this end,
we have given a brief introduction to quantum control
and discussed different aspects of the application of rein-
forcement learning to it. We have argued that LSTMs are
a good choice to model the sequences of control parame-
ters arising in quantum control and shown how black-box
quantum control gives rise to a particular reinforcement
learning problem for whose optimization policy gradient
methods are a natural choice. As a recent and successful
variant of policy gradient algorithms, we have adapted
the PPO scheme for our application and introduced the
MPPO algorithm. We then went on to show how our
general method for treating black-box quantum control
can be easily combined with physical prior knowledge
for two example scenarios and presented numerical re-
sults for a range of learning tasks arising in this context.
These results showed that our method is able to achieve
state-of-the-art performance in different tasks while be-
ing able to address problems of discrete and continuous
control alike and provided evidence for the hypotheses
that machine learning is a good choice for the automated
optimization of parameters in experiments.

This work can also be understood to some extent as a
contribution to the debate about how much prior knowl-
edge is necessary for machine learning algorithms to per-
form well in real-world tasks. During the course of this
work, we have found it a necessary precondition for the
addressed problems in continuous domains to be solvable
to incorporate physical domain knowledge such as known
good rotation axes and angles. Without this information
a reinforcement learning agent would be required to at
least implicitly learn about certain laws of physics to not
be lost in the infinite action space of which only a neg-
ligibly small part results in good solutions. This clearly
is out of scope for current models and algorithms with-
out symbolic reasoning capacity and might remain so for
some time especially when the data collected by the agent
is very small compared to the search space.

Finally, interesting directions of future work would be
to apply the method to a real experiment and evaluate
its performance there as well as to develop a set of bench-
mark problems in quantum control to compare the dif-
ferent already existing algorithms on neutral grounds. It
would also be interesting to investigate which other prob-
lems of relevance yield reinforcement learning problems
similarly structured to the formulation presented in this
work.
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