A Case for Efficient Accelerator Design Space
Exploration via Bayesian Optimization

Brandon Reagenl, José Miguel Hernandez-Lobato?, Robert Adolf?,
Michael Gelbart3, Paul Whatmough471, Gu-Yeon Weil, David Brooks!

"Harvard University ~ ?University of Cambridge

Abstract—In this paper we propose using machine learning to
improve the design of deep neural network hardware accelerators.
We show how to adapt multi-objective Bayesian optimization to
overcome a challenging design problem: optimizing deep neural
network hardware accelerators for both accuracy and energy
efficiency. DNN accelerators exhibit all aspects of a challenging
optimization space: the landscape is rough, evaluating designs is
expensive, the objectives compete with each other, and both design
spaces (algorithmic and microarchitectural) are unwieldy. With
multi-objective Bayesian optimization, the design space exploration
is made tractable and the design points found vastly outperform
traditional methods across all metrics of interest.

I. INTRODUCTION

Deep Neural Networks (DNNs) have recently gained attention
due to their success in solving notoriously difficult classification
and regression problems. However, their high computation and
memory demands make them difficult to deploy and impractical
in heavily constrained form factors, such as mobile and IoT
devices. Dedicated hardware accelerators are one promising
way of lessening the computational burden, offering orders
of magnitude higher energy efficiency than general purpose
processors.

Building a DNN accelerator is fundamentally a co-design
problem: an architect must devise a system that achieves high
prediction accuracy on the application task while simultaneously
minimizing the amount of energy consumed doing so. Three
factors make finding such a system challenging. First, the design
space is known to be large and complex for both DNNs [20]
and hardware accelerators [15] independently. Combined, the
co-design requires properly tuning upwards of 14 parameters
(see Table I). Second, the parameters tend to have non-obvious
interactions. A parameter which might control a DNN structural
trait can indirectly affect the way a datapath can be laid out
(see Section II). Finally, evaluating the characteristics of a
single design point is expensive, as it involves training a neural
network and running hardware simulations. This limits the
total number of points which can be explored. Together, these
factors paint a picture of a multi-objective problem with a rough
optimization landscape. An intelligent search strategy is needed
to navigate the design space and arrive at a good solution.

This paper proposes using a machine learning technique,
Bayesian optimization (BayesOpt), to solve the DNN acceler-
ator co-design problem. BayesOpt has had success in machine
learning circles as a solution for tuning DNN parameters
alone [20]. The algorithm works by building a simplified statis-

3University of British Columbia ~*ARM Research

TABLE I: Co-design Parameters

Parameter | Min | Max | Step | Type
Neurons per layer 10 200 1 DNN
Initial learning rate | 0.001 1 Continuous | DNN
Learning rate decay 10 107 | Continuous | DNN
Droptrain rate 0 0.4 Continuous | DNN
Dropout rate 0 0.4 Continuous | DNN
Max weight norm 0 10 Continuous | DNN
L2 regularization 0 0.1 Continuous | DNN
Initial momentum 0 0.9 Continuous | DNN
Final momentum 0 0.99 | Continuous | DNN
Memory bandwidth 1 32 2% HW
Loop parallelism 1 32 2T HW
Pipelining 0 1 1 HW
Integer bits 1 32 1 HW
Fractional bits 1 32 1 HW

tical model of the parameter space and iteratively refining it as
more data is collected. BayesOpt is able to gradually tease apart
complex parameter interactions and avoids running experiments
in unprofitable areas of the design space. This paper is the
first to apply BayesOpt to a hardware and algorithm co-design
problem and demonstrates how BayesOpt can be adapted to
efficiently search the combined parameter space, outperforming
conventional search algorithms.
This paper makes the following contributions:

1) We build an automated framework to co-design DNN
hardware accelerators for accuracy and energy efficiency
by adapting multi-objective Bayesian optimization. The
resulting set of Pareto-optimal designs strictly outperform
those found with traditional methods.

2) We demonstrate that Bayesian optimization consistently
samples better points than both grid search and a genetic
algorithm over the course of the design space search.
Bayesian optimization also results with a more densely
populated Pareto frontier.

3) As the points are costly to evaluate, we also show that
Bayesian optimization finds better designs with fewer
samples. After only 42 samples, the designs found by
Bayesian optimization outperform those found by other
methods even after 200 samples are taken.

II. BACKGROUND AND MOTIVATION

A. Efficient Design Space Exploration

The design space exploration required to find good DNN
and hardware parameter settings is problematic and exhibits all
the makings of a challenging optimization problem. The first
challenge is due to the shear magnitude of the design space.

As the DNN accelerator space consists of upwards of 14 free
parameters, a thorough exploration is infeasible. The second
problem is that evaluating the energy and accuracy of a single
design point is costly as it involves both training a DNN and
simulating hardware. This expense limits the number of points
that can be explored, requiring good designs to be found with
minimal point evaluations. Finally, the effects of the parameters
on the objectives (energy and accuracy), as well as between the
parameters themselves, are intertwined, creating an unintuitive
and rough optimization landscape.

Consider optimizing just two parameters: the bitwidth of
fixed-point datatypes (a well known energy efficiency optimiza-
tion [16]), and the L2 regularization parameter, used to prevent
overfitting during training. While regularization is only intended
to directly affect the accuracy objective, it also indirectly affects
the energy objective: regularizing weights compresses their
dynamic range, impacting the number of bits required to store
the weights. Likewise, using a fixed-point datatype does not
directly affect the regularization parameter, but it does reduce
the resolution of a model’s weights and the overall model accu-
racy, which both end up affecting the choice of regularization
strength. Nearly all the design parameters in Table I impact
both objectives, and the complex interactions between them are
difficult to capture using traditional modeling techniques used
to reason about hardware design spaces [11], [12].

B. The Optimization Problem

Generally speaking, the optimization problem revolves
around finding the global optimal of an unknown objective
function. Optimization methods typically work by evaluating
a black-box function. However, most challenging optimization
problems do not have closed form solutions and can only hope
to be optimized via repeated evaluations of the function(s), i.e.,
exploring the design space by sampling points.

Traditional Solutions: A common starting point is to do
a grid search (GS) over the design space. While this is a
common approach found in computer architecture, it is the least
effective. The fidelity of GS results depend on the strides of
each parameter, and in high dimensional spaces it is extremely
likely that the settings are poor. A provable improvement on GS
is stochastic grid search (SGS) [3]. In SGS, the setting for each
parameter for each iteration is sampled from a uniform random
distribution, which provides much better value diversity over
each individual dimension.

Optimization is a well-traversed field and SGS is not state-of-
the-art. Common best practices include heuristics like simulated
annealing, gradient decent, and genetic algorithms. Of the three,
genetic algorithms (GA) are the most applicable here. While
gradient descent and simulated annealing work well in certain
circumstances, they tend to fall victim to local minima, and do
not work well for the complex, rough optimization landscape of
DNNSs [20]. GA goes a step further by attempting to isolate good
parameter combinations, saving them to be interchanged with
others, and exploring more suspected-good points. GA is used
as a comparison point for state-of-the-art hardware optimization
algorithms.

A handful of more advanced solutions have been proposed
as well. A solution to accelerator design space exploration
based on decomposition was presented by Liu et al. [13]. The

approach leverages locally-convex behavior of an optimization
landscape to rapidly prune away sub-optimal components. How-
ever, this algorithm suffers in high-dimensional, tightly-coupled
parameter spaces such as the one considered here. Zuluaga et
al. propose a modeling approach similar to the one in this
paper, but consider only a limited set of well-behaved hardware
parameters in a design space that is small enough to be searched
exhaustively [22]. A recent paper proposed using DNNs to
model the energy cost of DNN hardware [19]. However, the
paper considers a limited design space (at least ten orders of
magnitude smaller than this work), and the on-line approach
to training a DNN to model the design space is susceptible
to becoming data-starved in high-dimensional problems with
expensive sample functions.

C. Deep Neural Networks

Deep neural networks are machine learning models that
can learn complex, non-linear functions. The basic structure
consists of a series of neuron layers connected by weighted
edges. Each individual neuron produces an activity output that
is computed by summing all activity-weight products of the
previous layer’s neurons and subjecting the result to a non-linear
activation function. The outputs of the final layer represent the
classification prediction made by the DNN.

DNNs are used in two modes: training and inference. In
training mode, DNN weight values are fit to labeled training
data. As inputs are run through the model, a loss function
is computed between the model’s predictions and reference
output values. The gradient of the loss function is then used to
adjust its behavior, propagating backwards through the network
proportional to the strength of the weights that produced the
prediction. This backpropagation process repeats until weight
values converge, at which point the DNN is considered trained,
and its weights are fixed. In inference mode, the network only
runs in the forward direction and is used to make predictions
on new input data. In this paper, we focus on optimizing
hardware accelerator designs just for inference, which is the
more common use case in low-power devices.

D. Hardware Accelerators

A hardware accelerator is a fixed-function, application spe-
cific integrated circuit block that is typically FSM-controlled
and expends minimal resources on superfluous circuitry. Accel-
erators have been shown to provide orders of magnitude more
energy efficiency than general-purpose computing. Despite their
narrow domain, the lack of predetermined structures and the
ability to consider radically different techniques leads to a large
design space [15].

Accelerating DNNs: Accelerating DNNs is a well studied
topic [4], [5], [16]. While results and approaches vary, each
concludes that the use of low-precision fixed-point arithmetic,
specialized memories, and hardware/data reuse are essential
for efficiency. The problem is that exploring the design space
of DNN accelerators and optimizing for both accuracy and
efficiency is challenging. The contributions of this paper are not
to design the best DNN accelerator, but rather provide hardware
designers with a powerful method to more thoroughly evaluate
design options in a tractable manner.

Iteration n Iteration n+2

— Objective

Iteration n+1

— Objective — Objective

1
|
1
Xn

Xn41
— Acquisition ¢,
Function ar

— Acquisition «
Function ™

— Acquisition ¢,
Function =1

Fig. 1: Three iterations of BayesOpt are shown. Blue dots are
sampled data points, the blue line is the GP’s mean, and the
shaded blue region shows model confidence bands. In Iteration
n, the point x,, is chosen to be evaluated as it maximizes the AF.
At n+ 1, a Bayesian step updates the GP to include point (z,,
yn). This process is repeated for each sampled design point.

III. BAYESIAN OPTIMIZATION

Bayesian optimization is a statistical framework that uses in-
formation gained from past experiments to model and minimize
an arbitrary objective function. BayesOpt works by building and
querying cheap surrogate models which estimate the behavior
of real objective functions which are expensive to evaluate.
Surrogate models are typically built using Gaussian Processes
(GPs) [14]. GPs are fit to previously observed data and used to
make predictions about the objectives’ values in areas not yet
explored. These predictions are easy to compute and can intelli-
gently choose the next set of parameters such that solutions are
found with a minimal number of expensive objective function
evaluations.

We describe single-objective BayesOpt to provide context
for this work. While we use a multi-objective formulation,
the differences are beyond the scope of this paper and an
overview can be found in Herndndez-Lobato et al. [§]. BayesOpt
finds the global minimizer x, = argmin,y f(x) of a func-
tion f over some bounded domain, typically X C R? It
assumes that f can only be evaluated via expensive queries
to a black-box that provides an output y; given input x;.
BayesOpt implements a sequential search algorithm that, after n
iterations, proposes to evaluate f at some new location x,, 1. To
make this decision, the algorithm uses all previous observations
D, = {(x1,v1),- -, (Xn,yn)}, and leverages GPs to model the
design space and make predictions about y, 41 given X, and
D,,. The predictive distribution p(yn+1|Xn+1, Dn) is then used
to guide the search for the global minimizer by computing an
acquisition function (AF), a,,(x). The value of «,,(x) is given
by the expected utility of evaluating f at x which is a measure of
how useful it is to observe y,; at x with respect to the goal
of optimizing f. Intuitively, an AF should balance exploiting
known-good points and exploring unknown regions. Thus, the
function v, (x) should take on high values both in areas where
the minima is most likely to lie given the past observations
but also in areas where there are few samples. Rewarding
exploration avoids local optima, and a balance between the two
ensures quick convergence.

Example: Figure 1 illustrates the operations performed
by BayesOpt. Top plots show the probabilistic predictions

p(y|x, D) of the data collected so far (blue dots) from evalu-
ating the objective function. The mean of p(y|x, D,,) is shown
as a continuous blue line with plus/minus confidence bands of
30 in light blue. The surrogate model of the space is used to
compute the AF, shown in the bottom plots. This AF is globally
maximized to find the next evaluation location for the objective,
shown as a vertical green line. Middle and right plots show the
result of adjusting the GPs to the available data plus the newly
collected data-point, shown as a vertical red line.

A. Adapting Bayesian Optimization to Accelerator Co-design

Bayesian optimization is a framework, not a single algorithm.
In this paper, we craft an implementation appropriate for the
characteristics of DNN hardware design. First, we must decide
which AF to use, as a variety are used practice [17]. A popular
choice for tuning DNNs is expected improvement (EI) [20].
However, in the multi-objective setting EI requires objective
scalarization (casting the multi-objective as a single-objective),
which makes computing Pareto frontiers burdensome. Instead,
we use Predictive Entropy Search (PES) [8]. The PES ac-
quisition function approximates the expected information gain
of a sample with respect to the optimization problem, where
information is measured in terms of entropy. PES has been
shown to be effective at tuning DNN parameters alone, and
here it also enables a true multi-objective design space search.

In addition, hardware design has several characteristics which
required a rethink of prior work. First, most hardware pa-
rameters are discrete-valued, whereas BayesOpt typically uses
continuous parameters. While some methods exist for BayesOpt
to handle discrete parameters, we found that allowing BayesOpt
to treat the parameters as continuous and discretizing them
afterwords to be more successful. Second, some hardware fea-
tures can be characterized by multiple parameters, introducing
uninformative regions which confuse the model. For example,
the precision of fixed-point operations are usually written as a
combination of the total number of bits as well as how many are
used for the fractional piece. However, we found that parameters
expressed in this fashion were unstable when the two values
were close, slowing surrogate model convergence. We solved
this by expressing overlapping parameters hierarchically; in the
fixed-point example, it meant choosing the total number of
bits and re-parameterizing the integer-fractional split as a ratio
instead.

IV. METHODOLOGY AND DESIGN FLOW

The design parameters considered for optimization are pre-
sented in Table I. These hardware parameters encompass the
most pertinent aspects of accelerator design. Loop parallelism
specifies how much parallel hardware is instantiated, which
in the case of DNNs translates to how many neurons can be
processed in parallel. Memory bandwidth governs how many
ports and banks the SRAMs have. The DNN parameters are
those typically used to specify and train a model. Note that while
we are only considering accelerating inference, we still need to
consider training parameters as they impact both accuracy and
energy efficiency.

To measure the benefits of BayesOpt, we compare it with
two traditional search techniques: SGS [3] and GA [6]. SGS is
a common baseline used in the machine learning community

©)

I
I
: Update
|
|

Sample Evaluate
Parameters Objectives Models
C code

|
uArch Aaddin Energy
— F |

Spearmint

———|> DeepNet
Hyperparameters |

i Error

|
| |
| JSON |
I

f
Fig. 2: The proposed design flow to explore the DNN acceler-
ator design space.

and GA is one of the most widely used search optimizers.
The MNIST [10] dataset is used as the target application of
our accelerator design space search. MNIST is relatively small,
especially compared to modern datasets, but it is widely seen
as a standard for reasoning about new ideas and methodolo-
gies; larger datasets tend to make it difficult to compare and
generalize [7]. Three tools were combined to explore the DNN
accelerator design space. Spearmint [2] was used to perform
BayesOpt and guide parameter sampling. To train and evaluate
DNNs, we used the DeepNet [1] GPU library. Finally, the
Aladdin [18] simulator was used to estimate energy numbers
for accelerators.

Each optimization technique considers the objection functions
as black boxes. While we chose to use Aladdin and DeepNet,
the optimization methods are agnostic to the actual means by
which the numbers are collected. If a user wanted more accurate
hardware numbers they could replace Aladdin with a traditional
hardware flow. The use of a simulator does not detract from the
contributions of this paper as BayesOpt will equally outperform
the other methods regardless of whether a simulator or CAD
flow is used.

The accelerator design flow is presented in Figure 2. Each
pass through this 3-step process produces one sample point,
and the cycle is repeated to explore the design space.

Step 1—Sample Parameters: Each exploration iteration
begins with Spearmint selecting values for each of the 14
parameters. Parameter values are chosen based on their ability
to maximize expected utility (see Section III).

Step 2—Evaluate Objectives: Chosen parameters are then
translated to a representation the evaluation tools can interpret.
DeepNet uses a declarative JSON file for training DNNs, which
is straightforward to generate given the sampled hyperparam-
eters. Aladdin requires a C description of the DNN. We built
a templated code generator to produce C implementations of
DNNs as well as Aladdin constraint files containing hardware
microarchitectural parameter settings.

Step 3—Update Design Space Models: The outputs from
the function evaluations, model error and accelerator energy
consumption, are fed back to Spearmint. Spearmint uses this
information to update the posterior distribution of its surrogate
model (i.e., the GPs). The AF can then be recomputed (bottom
of Figure 1) and the process repeated.

N
(S,]

[e T 1=
P 0@ SGS
° o 000 GA
20 ° ° @®e BayesOpt |]
| d e
= ° o e o
Z15} e |
> o . %o
510 e :
tee @ 1
g (S
° [¢) ° e o
b)
51 o oe _ ® |
14 ® LJI0) [)
o @
0 &t% °e Oo ® o O’ e P OE
0 20 40 60 80 100

Error (%)

Fig. 3: Exploration results using SGS, GA, and BayesOpt.
Crosshair points are the sample means. BayesOpt outperforms
SGS and GA, finding more accurate, efficient designs.

V. RESULTS

In this section we demonstrate the merits of applying
BayesOpt to hardware design problems. We find that BayesOpt
outperforms traditional design search methods (SGS and GA)
across all major metrics of interest by: consistently sampling
better design points, finding a strictly better Pareto frontier, and
achieving both in fewer iterations.

A. Bayesian Optimization Consistently Samples Better Designs

Figure 3 depicts each design point evaluated by SGS, GA,
and BayesOpt. The objective functions, error and energy, are
plotted on the x- and y-axis, respectively (better designs are
closer to the origin). Immediately obvious is the tendency for
SGS points to cluster around the 90% error mark. This is a
reflection of the underlying problem domain and speaks to its
inherent challenges: MNIST is a classification problem with
10 categories, so an algorithm that randomly picked classes
should choose correctly about 10% of the time. Thus, a DNN
configuration with 90% error is effectively useless. The fact
that SGS samples tend to fall in this area does not imply that
SGS is a poor search algorithm. Rather, DNN optimization is
a fundamentally difficult problem, and most configurations are
in fact bad. Moreover, while it is hard to discover an accurate
DNN, it is easy to ruin one: mis-setting even a single parameter
is often sufficient to eliminate any model accuracy. The end
result is a peaky optimization landscape where isolated good
design points are surrounded by a floor of poor ones. Because
SGS is an unbiased sampler of the design space, it is not
unreasonable that almost 60% of its networks do no better than
random guessing.

The results from using a genetic algorithm give some in-
sight into the optimization space, despite its still-mediocre
performance. GA tends to do well optimizing energy, but not
accuracy. In Figure 3, it can be seen that there is still a large
clustering of points around the 90% error mark, but compared
to SGS, points tend to consume considerably less energy. This
suggests that of the two objectives, the DNN training space
is more difficult to reason about than the hardware space.
This finding is somewhat intuitive, as there are several simple

)]

o @0 ‘ ‘
e o — SGS
51 ° GA |
Ce — BayesOpt

N

Energy (u))
w

2 . |
®
e o
1 o o
0§
O
20 25 3.0 35 40 45 5.0

Error (%)
Fig. 4: Pareto frontiers for each optimization method. BayesOpt
strictly outperforms both SGS and GA while SGS and GA
overtake each other in different regions of the space.

relationships between hardware parameters which even a basic
search algorithm could uncover—the tradeoff between datapath
parallelism and memory bandwidth, for instance. While GA is
able to exploit these simple trends, it has difficulty optimizing
both objectives simultaneously. While BayesOpt and GA have
similar mean energy consumption, BayesOpt finds designs with
substantially lower mean error.

BayesOpt’s strength comes from modeling intricate relation-
ships between parameters and avoiding cliffs in the optimization
landscape. This is clear from its sample distribution: the major-
ity of its evaluated design points have low error and low energy.
While BayesOpt does produce a small number of ineffective
network configurations, this is partially by design: BayesOpt
seeks to strike a balance between exploitation and exploration.
Many of these inaccurate or high-energy points are an insurance
plan against getting stuck in a local minimum.

The red, green, and blue cross-hairs represent the average
energy consumption and prediction error for points chosen by
BayesOpt, GA, and SGS respectively. SGS designs have an
average error of 61.4% using 14.2J and GA has an average
error of 28.4% and consumes 4.29uJ. BayesOpt does best with
an average of 14.4% model error and 3.95.J energy usage.

B. Bayesian Optimization Produces a Superior Pareto Frontier

Figure 4 compares the Pareto frontiers selected from the
points shown in Figure 3. For every SGS and GA Pareto
point, there is at least one point on the BayesOpt Pareto
frontier which dominates it in both energy and accuracy. This is
intuitive given the observations in the previous section: Pareto
frontiers represent the extrema of a sample distribution and thus
nearly always have very low probability. Because SGS is a flat
distribution over the parameter space, it rarely samples in the
Pareto region. GA does reasonably well on the energy objective
but significantly under-performs on DNN accuracy. Because
BayesOpt intentionally picks points expected to have low-
energy and low-error, its resulting sample distribution skews
heavily towards that region, producing a higher-quality Pareto
frontier.

Consider the best design points achieved for a target energy
budget of 1pJ. This results in a DNN model with an error
of 3.4% and 2.7% for GA and SGS respectively. BayesOpt
does substantially better with a error of 2.25%. Along the other
dimension, if a designer has a target error rate of 2.2%, the best
BayesOpt design uses 58% less energy than GA, and SGS is
unable to find any design which can meet this target.

BayesOpt also produces a larger number of points on and
near the frontier. A more populated Pareto frontier and dense
surrounding region offers several benefits. First, larger number
of points on the frontier provides designers more flexibility. For
instance, a designer using BayesOpt with an energy budget of
0.5-1.0 pJ would have four different designs to choose from.
With SGS, the designer has only one viable solution, and a
poor solution at that. While GA offers slightly more flexibility
than SGS, these points actually perform worse than the designs
found by either of the other methods. BayesOpt provides the
best of both worlds: flexibility and superior performance.

Second, a high concentration of points near the Pareto
frontier gives some confidence that the best designs are not
coincidental and that the search is close to the global optimum.
The concentration of BayesOpt (red) points near the Pareto
frontier is a result of the surrogate model accurately modeling
the design space and exploiting good parameter settings. The
sparsity of GA and SGS points raises concerns: both are
stochastic algorithms, so what if a different seed had been
chosen? The paucity of high-quality results offers little reas-
surance to a designer that their next search will stumble across
an optimal configuration. BayesOpt finds dozens of points near
the Pareto frontier, so even under different circumstances, its
results are unlikely to change substantially—it will still identify
a satisfactory Pareto set.

C. Bayesian Optimization Discovers Optimal Designs Faster

Evaluating a DNN accelerator is a costly task. For our
experiments, training and simulation could each take hours per
sample, and it is not uncommon for modern DNNs to take
days to train a single network configuration. Consequently, we
want the benefits from the preceding two sections in as few
samples as possible. We can compare the sample efficiency of
SGS, GA, and BayesOpt by analyzing the evolution of their
Pareto frontiers as a function of the cumulative number of
samples evaluated. This is done via the notion of a Pareto
hypervolume [21]. Hypervolume is the integral between a Pareto
frontier and a fixed reference point in the objective space, which
captures the region of interest for the design space in question.

The arbitrary units used to measure hypervolume can make
it difficult to reason about what the results mean. A good
way to interpret the results is to compare the hypervolume
curves against each other, which is fair since all three are
computed using the same reference point. This allows us to draw
the following conclusion: in the converged state, the relative
improvement of GA relative to SGS is the same as BayesOpt
is to GA. This implies the superiority of designs with respect
to quality of results found with BayesOpt are the same and the
difference between GA and SGS (a random search). As GA is
an intelligent optimization algorithm, this provides significant
evidence as to the power and merit of applying BayesOpt to
accelerator design problems.

0.16 ‘ ‘
0.14 |]
©0.12}]
50.10} -
S 0.08| |
20.06 E——e]
20.04} GA]
0.02} — BayesOpt|]
0.00 : : ‘
0 50 100 150 200

Samples taken
Fig. 5: The hypervolume gained from each sampled point is
shown. The evolution of the Pareto frontiers shows the quality
of results scales with the number of evaluations.

While both SGS, GA, and BayesOpt achieve nonzero hyper-
volume after just 11, 2, and 9 samples, respectively, BayesOpt
quickly outperforms the traditional solutions. After only 32
samples, BayesOpt reaches a value of 0.12 (arbitrary units),
but it takes SGS 97 samples (3 x more) to find a Pareto frontier
with similar coverage. Once BayesOpt samples 42 points, its
Pareto frontier covers more of the objective space than SGS
and GA over all our experiments.

Comparing the hypervolumes for GA and BayesOpt provides
interesting takeaways from this experiment. Most notable, is
that between iterations 2 and 29 GA actually outperforms
BayesOpt, meaning it found a better point earlier. While this
may seem to weaken the justification for using BayesOpt, it
in fact strengthens the case. When GA begins sampling points
from the space, points are sampled randomly (as in SGS). So the
large spike in hypervolume at point 2 is entirely coincidental,
and yet after 42 iterations, BayesOpt still outperformed GA
for the remaining samples. This means that even though GA
had what turned out to be its best point in its entire search
by only the second iteration, it was unable to leverage this to
effectively explore the design space. On the other hand, once
BayesOpt had a reasonable surrogate model of the space, it was
able to exploit its samples, consistently finding improvements
to its Pareto frontier.

VI. CONCLUSION

This paper proposes using machine learning methods to
design better hardware. We demonstrate how to adapt multi-
objective Bayesian optimization to co-design deep neural net-
work parameters and accelerator hardware parameters to simul-
taneously maximize the accuracy of the DNN and the energy
efficiency of the hardware. We find Bayesian optimization
substantially outperforms existing optimization methods across
all relevant metrics.

We are optimistic about the future applications of machine
learning in hardware design and optimization. Many of the
statistical building blocks we use in this paper have only
matured in the last few years, and continued progress in
algorithmic techniques will only reinforce the results seen here.
E.g., a recent advancement has shown how decoupled Bayesian
optimization can speed up search time by evaluating hardware
and algorithmic objectives separately [9]. We believe that tech-
niques like Bayesian optimization will eventually become core

components of the next generation of computer-aided hardware
design tools.

ACKNOWLEDGMENTS

This work was partially supported by C-FAR, one of six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA. This research
was, in part, funded by the U.S. Government under the DARPA
CRAFT and PERFECT programs (Contract # HRO0O011-13-
C-0022). Intel Corporation also provided support. JM.H.L.
acknowledges support from the Rafael del Pino Foundation. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Government or other sponsors.

REFERENCES

[1] DeepNet: implementations of deep learning algorithms.
com/nitishsrivastava/deepnet. 2014.

[2] Spearmint: a package to perform bayesian optimization. https://github.
com/JasperSnoek/spearmint, 2016.

[3] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimiza-
tion. JMLR, 2012.

[4] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam.
Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning. ASPLOS, 2014.

[5] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. ISCA, 2016.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 2002.

[71 R. Grosse. Which research results will generalize? https://hips.seas.
harvard.edu/blog/2014/09/02/which-research-results- will- generalize,
2014.

[8] D. Hernandez-Lobato, J. M. Hernandez-Lobato, A. Shah, and R. P.
Adams. Predictive entropy search for multi-objective bayesian optimiza-
tion. ICML, 2016.

[9]1 J. M. Hernandez-Lobato, M. A. Gelbart, B. Reagen, R. Adolf,
D. Hernandez-Lobato, P. N. Whatmough, D. Brooks, G.-Y. Wei, and R. P.
Adams. Designing neural network hardware accelerators with decoupled
objective evaluations. In NIPS workshop on Bayesian Optimization, 2016.

[10] Y. Lecun and C. Cortes. The MNIST database of handwritten digits.

[11] B. C. Lee and D. M. Brooks. Accurate and efficient regression modeling
for microarchitectural performance and power prediction. ASPLOS, 2006.

[12] H.-Y. Liu and L. P. Carloni. On learning-based methods for design-space
exploration with high-level synthesis. DAC, 2013.

[13] H. Y. Liu, M. Petracca, and L. P. Carloni. Compositional system-level
design exploration with planning of high-level synthesis. In DATE, 2012.

[14] C. E. Rasmussen. Gaussian processes for machine learning. 2006.

[15] B. Reagen, Y. S. Shao, G.-Y. Wei, and D. Brooks. Quantifying acceler-
ation: Power/performance trade-offs of application kernels in hardware.
ISLPED, 2013.

[16] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernndez-Lobato, G.-Y. Wei, and D. Brooks. Minerva: Enabling low-
power, highly-accurate deep neural network accelerators. ISCA, 2016.

[17] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings
of the IEEE, 2016.

[18] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A pre-
rtl, power-performance accelerator simulator enabling large design space
exploration of customized architectures. ISCA, 2014.

[19] S. C. Smithson, G. Yang, W. J. Gross, and B. H. Meyer. Neural networks
designing neural networks: Multi-objective hyper-parameter optimization.
ICCAD, 2016.

[20] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization
of machine learning algorithms. In NIPS, 2012.

[21] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach. IEEE Transactions
on Evolutionary Computation, 1999.

[22] M. Zuluaga, A. Krause, P. Milder, and M. Piischel. Smart design space
sampling to predict pareto-optimal solutions. LCTES, 2012.

https://github.

