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Abstract 

The electron transport behavior through a series of molecular junctions composed 

of tetracene (TC) and S/O substituted-TC (S/O-TC) has been studied using density 

functional theory (DFT) combined with the non-equilibrium Green’s function (NEGF) 

method. The unique transport behavior has been interpreted using correlated quantum 

interference and electron transport pathway models. In the TC system, two dominant 

electron transfer channels exist as demonstrated by detailed transmission pathway 

analysis. In the substituted S/O-TC systems, the electron transport behavior is regulated 

through either constructive or destructive quantum interference due to the existence of 

additional p-electrons, leading to a significant diversity of current-voltage curves. 

Compared to the TC molecule in the bias region from 0 to 1.0 V, an α-connected 

molecular junction exhibits greater current, whereas a β-connected molecular junction 

shows a smaller current. The substitution with O and S atoms shows a minor effect on 

the conductance of the molecular junctions. In order to clarify the role of heteroatoms, 

a series of artificial models designed by removing specific sulfur and carbon atoms in 

a-S-TC have been investigated in detail. The results have demonstrated that only the S 

heteroatom on one side of the molecule contributes to the junction conductivity through 

constructive quantum interference. It has been also observed that current exchange 

occurs between the two electron transfer channels. 

Keywords: Electron transport, Quantum interference, Effective electron-transport 

pathway, Heteroacene  
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Introduction  
The miniaturization of silicon-based microelectronic devices is approaching 

fundamental physical limits, therefore, single-molecule electronic devices have gained 

great attention over the past few decades1-7. Molecular electronic devices include 

switches8, 9, rectifiers10, 11, negative differential resistance (NDR)12, 13 and memories14 , 

but conducting molecular wires are of particular importance as they are the basis of the 

other functionalities. A great deal of experimental and computational work has been 

carried out to reveal the mechanisms of electronic transport within molecular wires1, 10, 

13, 15-17.These investigations have found that there are many factors, such as electrode 

material1, 18-20, interfacial structure21, 22, anchoring groups23, 24, as well as the molecule 

itself 1, 16, 17, 25 playing a role in molecular electron transport. The effect of molecular 

structure on the transport behavior has been especially concerned by chemists, since the 

delicate design of molecular structure bring diverse electron transport behaviors. For 

instance, molecules with a similar structure could display similar current-voltage 

relationships26, and the conductance can be altered by several orders of magnitude when 

molecules have different connections of anchoring groups27, 28. The effective electron-

transport pathway and quantum interference have been successfully used to explain 

these observed phenomena. 

 Quantum interference (QI) can occur when electrons tunnel through a molecule 

via more than one pathway, in which case the electron wavefunctions corresponding to 

the different pathways may be in-phase or out-of-phase with each other. Sautet and 

Joachim29 have studied interference of electrons transmitting through benzene which is 

embedded in a polyacetylene chain. It was deduced that QI significantly alters the 

electronic transmission through benzene in the meta and ortho cases, but not the para 

case. Baer and Neuhauser have investigated the application of interference for 

controlling the conductance of simple molecular devices such as polyacetylene loops 

of various lengths and a series of differently positioned polycyclic aromatic rings.30-34 

By studying the junction conductance of unsaturated carbon chains35, pyridine36, 

anthraquinone37, and azulene38, 39, the results demonstrated that the QI can be controlled 

by chemical design due to the intimate relationship between QI and the shape and 

energy of the molecular orbitals involved. The QI effect can thus be used to explain 

electron transport in molecular junctions. However, it is not as intuitive as the effective 

electron-transport pathway method. 
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The electron-transport pathway refers to the local space with the highest probability 

of electron transfer, which is based on the concept of valence bond theory. It can be 

more intuitively represented as the relationship between the transfer behavior and the 

molecular structure. In our previous work, we have shown that an electron transfer 

channel exists in organic molecules embedded between two gold electrodes, and that 

the junction conductance is strongly dependent on the effective electron-transport 

pathway.40-43 

Among various electronic materials in existence, oligoacenes and their derivatives 

are regarded as prominent organic semiconductors. These molecules have attracted 

tremendous interest due to their unique physical properties and potential applications 

in organic electronics and energy storage.44-46 Compared with these conventional 

aromatic molecules, quinoidal cyclic compounds display unique optical, electronic and 

magnetic properties44-46 because of their intrinsic open- or closed-shell diradical 

character. Many heterocyclic quinoidal compounds containing N, O, Si or S 

heteroatoms in the quinoidal unit, have been synthesized and their structural and 

electronic properties have been studied.44 These studies found that the neutral 

heteroacenes have a quinoidal-conjugated structure in the ground state, and the 

diradical character of these compounds increases with extension of the central quinoidal 

sextet-cyclic unit.46 Compared to pentacene, 5,12-dithiapentacene has increased 

HOMO energy levels and more efficient electron transfer performance, due to the 

electron-donating nature of the thioether linkage in the backbone.45 In spite of the 

potential applications for organic electronics based on the electronic properties and 

transport behavior of heteracenes, they have rarely been reported on experimentally. In 

the present work, we have used tetracene (TC) and heteroacenes containing two sulfur 

or oxygen atom as computational models, using density functional theory combined 

with the nonequilibrium Green’s function method (DFT-NEGF), to investigate the 

transport behavior of heteroacene-based junctions involving different terminal 

connections, and to illuminate the influence of QI and electron-transport pathway on 

molecular conductance properties by incorporation of heteroatoms. 
 

 

Methodology 
Incorporation of S or O heteroatoms into the acene framework will result in 

quinoidal conjugation47. The quinoidal conjugation could enhance electrical 
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characteristics of electronic materials. Scheme 1a displays the structures of the studied 

tetracene and quinoidal heteroacenes, namely O-substituted TC (O-TC) and S-

substituted TC (S-TC). In this work, by using these molecules as study models, we 

investigate the effect of heteroatom substitution and different terminal connections on 

the molecular electron transport behavior. Furthermore, in order to study the influence 

of the heteroatoms and transport pathways, five artificial models called as α-S-TC-1, α-

S-TC-2, α-S-TC-3, α-S-TC-4 and α-S-TC-5 (in Scheme 1b), are designed by removing 

specific sulfur or carbon atoms in the α-S-TC molecule. The geometries of the model 

molecules were optimized using density functional theory (DFT) at the 

B3LYP/Lanl2DZ level, as implemented in the Gaussian 09 package47. This functional 

has been used widely and proven to be accurate for optimizing the geometry of organic 

molecules.48, 49 For each model, the molecule was embedded at the hollow site of two 

small gold clusters, each of which is an equilateral triangle of Au atoms, with an Au-

Au bond length of 2.88 Å.40-43 It can provide a good electrical contact between the 

organic molecule and the metal electrode. The relative positions of Au atoms were 

frozen in each triangle, but the distances between the two clusters were relaxed during 

geometry optimization. 

 
Scheme 1 (a) The molecular structures of tetracene (TC), α- and β-connected heteroacenes; (b) the 

structures of five artificial models, which are designed by removing certain sulfur or carbon atoms; 

(c) Schematic representation of the molecular junction, while 4×4 Au atoms were used to simulate 

the electrodes. 
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Scheme 1c illustrates the representative model of the molecular junction with 

Au/molecule/Au structure, in which the heteroacene with dithiolate groups are 

sandwiched between two gold electrodes. The thiolate end group is adopted extensively 

in experimental and theoretical studies of molecular devices.1, 21, 50, 51 The optimized 

geometries and transport behaviors of molecular junctions were studied by DFT-NEGF.  

The (4×4) unit cells with periodic boundary conditions of the Au (111) surface were 

used as the metallic electrode. The generalized gradient approximation (GGA-PBE) is 

used to calculate the electron exchange and correlation. [15] The Double zeta polarization 

(DZP) basis set was employed for C, H, O and S atoms, and the single zeta polarization 

(SZP) basis set for the Au atom. In the optimization, the central organic molecule was 

relaxed completely, while the coordinates of the electrode atoms were frozen to take 

account of the known strong interaction among Au atoms. The transport properties, 

including the current-voltage (I-V) characteristic, density of states (DOS) and 

transmission spectra of the molecular junctions were calculated on the basis of the 

above optimization results. The geometry optimizations and electron transport 

computations of the molecular junctions were carried out using the Atomistix Toolkit 

(ATK) package52. 
 

 

Results and discussion 
Electron transfer behavior of the tetracene and quinoidal heteroacenes 

The strong correlation between electronic structure and electrical properties is an 

important feature in organic π-conjugated materials. The electronic structures of 

molecules can be effectively adjusted by doping with heteroatoms.1, 20, 44-46, 53-56 To 

study the impact of heteroatoms on the electronic structure nature of TC and substituted 

TC, we compared the spatial distribution of the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) for all samples in 

Figure 1a. For TC, both HOMO and LUMO are uniformly distributed over the molecule 

chain, indicating the well-conjugated and therefore delocalized electronic structure. 

Compared to carbon, sulfur and oxygen atoms have two more valence electrons that 

may take part in the conjugation together with other carbon atoms along the backbone. 

O/S-substituted TC has the quinoidal π-conjugation structure, which is different to the 

diene conjugation structure of TC.44-46 As oxygen and sulfur atoms adopt sp2-hydridized 

state in S/O-TC, one of the lone pairs of electrons is delocalized within a sextet ring.57, 
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58 Therefore, the molecular orbitals are significantly different from those within the TC 

molecule. As can be seen from Figure 1a, the HOMO and LUMO of O- and S-

substituted TC displayed a similar spatial distribution implying that these models may 

have similar transport behavior. However, the frontier molecular orbitals of the a- and 

b-connected O/S-TC showed significant differences. The HOMO and LUMO orbitals 

of a-connected TC are spread over the whole molecular chain, indicating that 

molecules with a-connection are well coupled to the gold electrodes. Compared to a-

connection, the distribution of HOMO and LUMO does not extend to the anchoring 

groups of b-connected models. Thus, a-connection is expected to result in a junction 

with higher conductance than b-connection.  

As well as having different molecular orbital distributions, the energy levels of O/S-

TC and TC display significant differences. TC has the smallest HOMO value and the 

largest LUMO value, while the S/O-TC have increased HOMO and decreased LUMO 

energy levels. That is, the heteroatom-substitution leads to decreased HOMO-LUMO 

gaps of heteroacenes. Besides, the molecular orbital levels are sensitive to the applied 

bias as shown in Figure 1b, from which we can see the variation of HOMO and LUMO 

as a function of bias. With an increase of bias, the HOMO gradually enters into the bias 

window, but the LUMO always stays out of it. At higher bias voltages, the HOMO 

enters into the bias windows contributing to the current. However, under low and 

moderate bias, the HOMO of TC is always kept out of the bias window, while the 

HOMO of heteroacences enters into the bias window contributing to the current. This 

implies that TC and O/S-TC will display diverse electron-transport behaviors.  

 
Figure 1. (a) The spatial distribution of HOMO and LUMO at the zero bias; (b) the HOMO and 

LUMO energy levels with the bias of all molecules. 

 

It has been shown that the incorporation of two heteroatoms can indeed modify 
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local electronic states of the electron transfer pathway, and modulate the transport 

behavior. Figure 2 shows the calculated I-V characteristics of all models. At low bias 

(< 0.3 V), the current through TC, α-O-TC and α-S-TC increases almost linearly with 

an increase of bias. However, at higher bias, all models show nonlinear features, similar 

to the experimental observations of fused conjugated molecules.59 The calculated I-V 

characteristic of TC is similar to that observed experimentally by Kim et al.59 Taking 

the TC molecular junction as a reference, there are there clear categories of junction 

conductivity as shown in Figure 2. The current through a-connected heteroacenes is 

largest, followed by TC, and finally β-connected heteroacenes have the smallest current. 

For example, at a bias voltage of 1.0 V, the current through a-connected S/O-TC is 

approx. 30 μA, which is six times larger than that (~5 μA) of β-connected S/O-TC. This 

implies that electron transport through a-connected molecules is significantly more 

efficient. Somewhat surprisingly, there is no significant difference between the O-

substitution and S-substitution, implying that the modulation of the junction 

conductivity may be strongly dependent on the outermost electron structure of these 

heteroatoms.  

The origin of the diversity of the electron transfer behavior of this series of  

molecules can be seen by considering the Hückel model and DFT calculations60. In TC 

and α-connected S/O-TC systems, electrons follow the effective electron-transport 

pathway, and destructive QI is absent. However, destructive quantum interference is 

present in the electron transfer behavior of the b-connected system, resulting in the 

smaller conductivity. According to a previous study, the TC system has two electron-

transport pathways with the same phase, leading to so constructive QI.26 In the present 

study, there are two electron-transport pathways in TC and the a-connected system, but 

their currents display different characteristics. This can be attributed to the properties 

such as density of states (DOS) and transmission, of these molecular junctions. 
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Figure 2. The plots of I-V curves of TC, O-TC and S-TC systems. 

 

In addition to the molecular orbital distribution, another property that may reflect 

the static feature of the system as a whole is the density of states (DOS). Since the 

molecule is sandwiched between two metallic electrodes in the device, the effect from 

the electrode cannot be simply ignored. As the contribution of the electrodes to the DOS 

is much larger than that of the molecules, the differences in molecular contributions to 

the DOS are obscured. Therefore, in order to study the effect of the molecule on the 

DOS, the projected density of states (PDOS) involving the influence of the two metallic 

electrodes, which is the DOS projected onto the molecule itself, should be taken into 

account.61, 62 Figure 3a presents the projected density of states (PDOS) of all molecules. 

It is most relevant to analyze the PDOS around the Fermi level. For TC, the closest 

peak appears at -0.4 eV with the next at 1.12 eV. They contribute less to the PDOS 

value at the Fermi level. This feature of the PDOS indicates that the conductance may 

be dominated by hole transport in TC. When TC is substituted, these peaks move 

toward the Fermi level. In particular, the peak positions are located at about -0.08 and 

0.0 eV for b-connection and a-connection, respectively. These peaks are primarily due 

to the HOMO levels of the heteroacenes. This implies that the conductance mechanism 

is electron transport for O/S-TC moelcules. The height of the peaks depends more 

strongly on the type of connection than on the type of substitution (S Vs O).  
In order to clarify the electron transfer mechanism of quinoidal heteroacene, we 

further investigated the transmission spectrum of the junction as shown in Figure 3b. 

The transmission coefficient is involved in the Landauer-Büttiker equation63, 64 that can 
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reasonably describe the junction current, 

𝐼 = #$
% ∫[𝐹)(𝜀, 𝑉.) − 𝐹1(𝜀, 𝑉.)]𝑇(𝜀, 𝑉.) 𝑑𝜀           (1) 

 
where FL(e, Vb) and FR(e, Vb) are the Fermi-Dirac distribution functions for the left and 

right metallic electrodes at energy level e with a given bias voltage Vb. T(e, Vb) is the 

transmission coefficient, which is a function of the energy level e and bias Vb.  From 

Equation (1), the transmission contributes to the total current in the junction, especially 

the transmission peak close to the Fermi level. Transmission spectra can reveal the 

details of the electron transport, which help us to understand the influence of the 

heteroatoms. In general, the transmission curve shows similar features to the PDOS. 

For instance, the transmission peak of TC below the Fermi level appears at -0.4 eV 

exactly the same as that of the PDOS. In addition, the peak height is about 0.9, 

indicating a good conductivity of the sample, which is also similar to other conductive 

molecular wires.40a, 59 When TC is substituted by O and S atoms, the transmission peaks 

shift to the Fermi level as do the PDOS peaks. Compared to the substitution effect, the 

connection position of the anchoring group dominates in the overall characteristics of 

the transmission. When the substituted molecule is connected to the electrodes with the 

b-position, the peak becomes small and narrow. However, a positive shift of the peak 

position compensates this change. Therefore, the zero-bias conductivity of TC and b-

connected models are very close. In the case of a-connection, the transmission peak 

does not only move towards the Fermi level, but also possesses a large transmission 

value close to 1. As a result, the a-connected heteroacenes will have much greater zero-

bias conductivity than TC and heteroacenes with b-connection.  

 

  
Figure 3. (a) The density of states projected on the molecular region (PDOS), (b) the transmission 
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spectra of TC, α-connected and β-connected quinodial heteroacenes. 

 

The transmission Pathway is an analysis option which splits the transmission 

coefficient into local bond contributions65. Drawing the spatial distribution of the 

transmission probability can aid our understanding of the terminal connection and 

heteroatom-substitution effect from a microscopic viewpoint. Although electrons at the 

junction can transfer through any position around the molecule, the probability of 

emergence is not the same for all paths due to differences in the local chemical 

environment. The consecutive positions with larger transmission probability provide an 

intuitive explanation of the electron-transfer pathway. Figure 4 shows the transmission 

pathway at the Fermi level of all five molecules. The transmission pathway is 

represented by the blue arrows distributed over the molecular structure with a threshold 

of 0.2. Without any substitution, the electron flows through each of two parallel routes, 

between which the weak current exchanges establish a connection. Since each parallel 

route is relatively efficient at electron transfer, TC behaves as a good conductive 

molecular wire. However, the current exchange between the two parallel routes is less 

efficient. It is thus of interest to see how the heteroatom substitution modulates the 

junction current. In the a-substitution, the heteroatoms facilitate the electron injection 

to the Route 2 as shown in Figure 4 due to the current exchange between two electron-

transport pathways. Unlike TC, the current exchange between Route 1 and Route 2 

appears to be more efficient, showing that Route 1 becomes wider and Route 2 narrower 

while the current flows to the right electrode. Finally, Route 1 becomes dominant in the 

total junction current. In this point, the right heteroatom is less effective, which will be 

further demonstrated in the following simulation. This transmission presentation also 

proposes that the system with a-connection is more conductive than TC.  

Comparing O and S substitutions in the cases of both α- and β-connected 

heteroacenes, there is no obvious difference in the spatial presentation of the 

transmission coefficient, showing that they have the same mechanism in the modulation 

of electron transfer. On the contrary, a completely different pattern can be observed in 

b-connected heteroacenes when compared to a-connection. The heteroatoms impede 

the current flow in Route 1, and we see that there is almost no transmission population 

around the left heteroatom. In Route 2, the current is observed to decay significantly 

and there is only a small transmission population on the right heteroatom. Moreover, 

the current exchange between these two routes is also less efficient. Consequently, the 
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total junction conductivity of the b-connection is rather small.  

It is interesting to compare again the role of the positions of the two heteroatoms. 

When the bias is applied from left to right, the left heteroatom plays a larger role in 

determining the current than the right one. This conclusion may be instructive for 

further design of molecular devices such as wires and rectifiers. In order to obtain a 

comprehensive understanding of the electron transfer details, we will model a series of 

analogues, in which specific electron transfer routes are blocked.   

 

 
 

Figure 4. Electron-transport pathways at the Fermi level for all molecules, where the bold red 

arrows are indicative of the direction and intensity of current transmission. 

 

Investigation on the electron-transfer pathway and QI effect 

All artificial molecules studied in the present section are designed based on a-S-

TC, by removing certain sulfur and carbon atoms. When any part of the molecule is 

removed, hydrogen saturation is employed, and only these hydrogen atoms in the 

constructed molecules are optimized. These artificial molecules can help us to 

understand better the role of heteroatoms in electron transport behavior of the six-

membered ring in an a-S-TC molecule. The analysis of the spatial distribution of 

HOMO and LUMO is instructive for understanding the influence of heteroatoms on the 

junction transport. As shown in Figure 1a, the sulfur atoms make a significant 

contribution to the well-conjugated HOMO and LUMO distribution, therefore, the 

removal of these heteroatoms may destroy the electronic conjugated structure. To  
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clarify the role of the heteroatom position, we compared a-S-TC-1 and a-S-TC-2 to a-

S-TC as shown in Figure 5. When the left S heteroatom, the one close to the positive 

electrode, is removed, the current becomes smaller in the large bias regime. Specifically, 

under a bias larger than 0.9 V, the current is reduced to almost the half of the original 

a-S-TC molecule. This result indicates that the left S heteroatom plays a positive role 

in the junction transport at large bias. As also seen from Figure 4, after the current 

injects into the molecule, two pathways are present with one passing through the left S 

heteroatom. The current will be increased when two pathways come together 

constructively. Therefore, the left S heteroatom should contribute to the junction 

conductance through constructive QI. When it is removed, the constructive QI 

disappears and therefore, the current decreases. On the contrary, the right S heteroatom, 

which is the one close to the negative electrode, plays almost no effect on the junction 

transport. Both current-bias curves of a-S-TC and a-S-TC-2 are very close to each 

other, indicating they follow the same electron transfer manner.  

 

 
Figure 5 (a) The molecular structures of α-S-TC, α-S-TC-1 and α-S-TC-2; (b) the plots of I-V curves 

of these models; (c) the transmission spectra of these molecular junction at zero-bias, where the 

curves of α-S-TC-1 and α-S-TC-2 are the same; and (d) the transmission spectra at 1.0 V bias. 
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It is important to emphasize that the current values, i.e., the conductivities of a-S-

TC-1 and a-S-TC-2, are identical when the bias is less than 0.3 V. This indicates that 

the heteroatom effect is strongly dependent on bias. It plays a role only when the bias 

is large, i.e., the electric field across the molecule is strong enough to drive a large 

current penetrating far into the two electron transfer routes. When the electric field is 

small, i.e., under small bias, the current is small and the current streaming through the 

heteroatom is negligible. This is consistent with the data in Figure 2, showing the same 

current values at a small bias for O- and S-substitutions when they have the same 

connection position. This feature is also observed from the zero-bias transmission 

spectra in Figure 5c, in which two curves merged together for a-S-TC-1 and a-S-TC-

2. However, both of these models seem to be less conductive than a-S-TC, most likely 

due to the structural relaxation or modulation of the frontier energy levels by the 

heteroatoms.  

The transmission spectrum at large bias may give insight into the conductance 

difference between a-S-TC-1 and a-S-TC-2 in Figure 5d. This spectrum of a-S-TC has 

only a small difference when compared to the zero-bias spectrum. The transmission 

peak just above the Fermi level of a-S-TC-2 shifts positively and increases noticeably 

at 1.0 V bias. On the contrary, the transmission peak above the Fermi level of a-S-TC-

1 shifts negatively, below the Fermi level. In addition, the transmission amplitude is 

much decreased at the same bias. Obviously, the transportation behavior of the two 

models is dominated by the transmission spectra. From the current-bias curve, we can 

find that a-S-TC-1 may have negative differential resistance, which is most likely 

caused by the transmission peaks shifting across the Fermi level. 

 To estimate the current exchange between Route 1 and Route 2, we further compare 

a-S-TC-2, a-S-TC-3 and a-S-TC-4 as shown in Figure 6. The length of Route 2 is 

reduced after removing the carbon atoms from the fused benzene. The current-voltage 

curves of a-S-TC-2 and a-S-TC-3 are similar, especially at a bias less than 0.3 V, 

proving that the last two rings contribute less to the current exchange from Route 2 to 

Route 1. However, as shown by the I-V curve of a-S-TC-4, when Route 2 is broken at 

the second ring, the current is reduced to almost half of that of a-S-TC-2 and a-S-TC-

3, indicating the importance of the second ring for the current exchange between the 

two routes. The results also imply that the first and second rings have a similar 

contribution to the current exchange. Figure 6c presents the transmission spectra of the 
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three samples at zero-bias. Although the shape of the spectra is different between a-S-

TC-2 and a-S-TC-3 at energies above the Fermi level, their transmission values at the 

Fermi level are almost identical, resulting in a similar conductivity at low bias. a-S-

TC-3 and a-S-TC-4 have a similar shape of the transmission spectrum, but, the absolute 

value is much reduced for a-S-TC-4. This indicates the low conductivity of a-S-TC-4 

at low bias. Under the higher bias, for example 1.0 V, the transmission spectra of a-S-

TC-2 and a-S-TC-3 are positively shifted and increased as shown in Figure 6d. In 

contrast, the transmission wave of a-S-TC-4 has only a positive shift. Therefore, the 

current of a-S-TC-2 and a-S-TC-3 keep increasing with bias, while a-S-TC-4 stays 

relatively unchanged over a large bias region.   

 

 
Figure 6 (a) The molecular structures of α-S-TC-2, α-S-TC-3 and α-S-TC-4; (b) The plots of I-V 

curves of these models; (c) the transmission spectra of these molecular junction at zero-bias; and 

(d) the transmission spectra at 1.0 V bias. 

 

As shown in Figures 4 and 5, the heteroatom close the positive electrode appears 

to be more important than the one on the opposite side. The two heteroatoms play 

different roles in electron transfer, though they have the symmetric junction structure. 

This asymmetric dominance is of great importance as it might be used for the design of 
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molecular rectifiers. To further clarify the role of the left heteroatom, we compared a-

S-TC-4, a-S-TC-5 to the a-S-TC molecule (Figure 7). As discussed above, the left 

heteroatom plays a positive role through constructive interference, showing an increase 

in current through a-connected heteroacenes relative to TC. From the transmission 

pathway analysis as given in Figure 4, the particular point of the constructive 

interference is located at the meta-position to the heteroatom denoted by the red circle. 

However, it is not clear about the nature of the ortho-position. Comparing a-S-TC-4 

and a-S-TC, we can see that the current exchange is more important when the second 

ring is unbroken. This indicates that the constructive interference takes place at the 

meta-position, and the current flowing through Route 2 together the current exchange 

to Route 1 is the dominant mechanism. When the left heteroatom is removed from a-

S-TC-4, the quantum interference no longer exists. Therefore, there is only electron 

transfer pathway through the alternative double and single bonds, which has been 

demonstrated to be a very efficient electron transfer route40. As a result, a-S-TC-4 has 

similar conductivity to a-S-TC ]. However, they still have minor differences depending 

on the bias applied. In particular, when the bias is less than 0.7 V, a-S-TC is more 

conductive than a-S-TC-5, indicating a weak constructive interference exists at the 

meta-position. On the contrary, a slight destructive interference takes place when the 

bias is larger than 0.7 V.  
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Figure 7 (a) The molecular structures of a-S-TC, α-S-TC-4 and α-S-TC-5; (b) The plots of I-V 

curves of these models; (c) the transmission spectra of these molecular junction at zero-bias; and 

(d) the transmission spectra at 1.0 V bias. 

 

Figure 7c shows the transmission spectra at zero-bias for these samples. The 

transmission values at zero-bias follow the order of a-S-TC > a-S-TC-5 > a-S-TC-4, 

which agrees well with the conductivity as given in Figure 7b. At 1.0 V bias, the 

transmission value of a-S-TC is decreased to 90% of that at zero-bias, but the 

transmission amplitude is only slightly lower for a-S-TC-5. As a result of the integral 

nature of current in the bias window, the current of a-S-TC-5 is even larger than that of 

a-S-TC-4 at bias above 0.7 V. These results demonstrate that the heteroatom plays 

multiple roles in electron transportation, depending on the bias applied.  

 

Conclusions   
In the present work, we have studied the electron-transport behavior of tetracene 

(TC) with diene conjugation and heteroacenes (S/O-TC) with quinoidal conjugation. 

The conductivity of these molecular junctions corresponds to three categories, where 

α-connected heteroacenes have the greatest conductance, followed by TC, and β-

connected S/O-TC has the lowest. These results indicate that the quinoidal conjugation 
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with diradical character is more beneficial to electron transport compared to the diene 

conjugation. Importantly, it has been shown that the connection of anchoring groups 

can effectively regulate the conductivity of organic molecular junctions. In contrast, the 

heteroatoms have relatively little influence on the junction conductivity. Additionally, 

five artificial models (a-S-TC-1 to a-S-TC-5) have been designed and used to gain a 

better understanding of the effect of heteroatoms on electron transport of molecular 

junction. It has been found that the left S heteroatom of α-S-TC is able to contribute to 

the conductivity of junctions by constructive quantum interference, but not the right S 

heteroatoms. Furthermore, two electron transport paths have been identified in 

heteroacene, between which current exchange exists. The electron transport pathways 

involving alternative double and single bonds will tend to offer the lowest resistance. 

The effective electron transfer path could visually reflect the relationship between the 

electron transfer behavior and molecular structure. The insight gained in the present 

study on the effective electron-transport pathway helps us to have a better 

understanding of the electron transfer behavior in the complex heteroacenes system, 

and to guide the design and screening for future molecular electronic systems with 

optimized performance.  
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