
Supporting information for 

A 17O Paramagnetic NMR Study of Sm2O3, 

Eu2O3, and Sm/Eu-substituted CeO2 
 

Michael A. Hope,1 David M. Halat,1,2 Jeongjae Lee,1 Clare P. Grey1 

1. Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW (UK) 

2. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 

CA 94720, United States. 

1 Summary of NMR Parameters 

Table S1: Summary of experimental NMR parameters 

Sample 
Field 

/T 

Rotor 

Size 

/mm 

MAS 

/kHz 

Recycle 

delay /s 

RF 

power 

/kHz 

Acquisition 

Time 
Notes 

Sm2O3 

monoclinic 
9.40 1.9 30 0.05 104 10min – 1.5h π/2, π/6 & VT 

Eu2O3 

monoclinic 

4.70 

1.3 60 

0.1 222 5d  

9.40 0.2 or 1 119 2d – 4d 
π/2 vs. π/6 and 

quantification 

9.40 1.9 
40 or 

35 

0.1, 1 

or 2 
104 1d – 3.5d 

SI: VT, T1 & T2 

comparisons 

Sm2O3 

cubic 
9.40 

1.9 40 

0.05 

104 2 min Room temperature 

4 10 109 1.5 min Low VT 

7 4 48 7 min High VT (laser) 

Eu2O3 

cubic 

7.05 1.3 40 

0.15 

167 12.5 min 
Room temperature, 

Avance III 

9.40 
4 10 109 1 min Low VT 

7 3 or 4 48 10 min – 1h High VT (laser) 

Sm-CeO2 
7.05 1.9 40 1 132 30 min Avance 

4.70 4 14 –  85 1h – 8h VT T1 

Eu-CeO2 7.05 

1.3 

60 1 or 0.1 

167 

9h Avance III 

40 – 1h – 4.5h 
Avance III, higher 

VT & T1 

4 14 – 69 1.25h 
Avance III, lower 

VT T1 

H2O 

(natural 

abundance) 

9.40 1.9 – 0.06 104 1.5 h 
Enrichment 

quantification 

  

  



2 XRD Data and Rietveld Refinements 

 

Figure S1: XRD pattern and Rietveld refinement for Sm2O3 after 17O enrichment at 1200 oC.   

 

Figure S2: XRD pattern and Rietveld refinement for Eu2O3 after 17O enrichment at 1200 oC.   

 



 

Figure S3: XRD pattern and Rietveld refinement for Sm2O3 prepared by decomposing Sm(OH)3 at 750 oC followed by 17O-

enrichment at 750 oC.  

 

 

Figure S4: XRD pattern and Rietveld refinement for Eu2O3 after 17O enrichment at 1000 oC.   



 

Figure S5: XRD pattern and Rietveld refinement for 15 at% Sm-substituted CeO2 

 

Figure S6: XRD pattern and Rietveld refinement for 15 at% Eu-substituted CeO2 

  



3 Supplementary NMR Data 

 

 

Figure S7: 17O NMR spectra of monoclinic Eu2O3 recorded at 9.40 T and 40 kHz MAS using a Hahn echo pulse sequence 

(π/2-τ-π-τ-acquire), scaled by the number of scans. Isotropic resonances are marked with dashed lines, although there is 

significant overlap of the isotropic resonances and spinning sidebands. a) shows a comparison of spectra recorded with echo 

delays (τ) of either 1 or 2 rotor periods (r.p.) and a 0.1 s recycle delay: there is no significant difference in intensity, indicating 

that there is not significant T2 relaxation during the echo. b) shows a comparison of spectra recorded with an echo delay of a 

single rotor period and recycle delays of 0.1, 1.0 or 2.0 s: this shows that spectra recorded with a recycle delay of 0.1 s are not 

quantitative, but those with at least 1.0 s are. Furthermore, the T1 constants appear to be longer for the higher frequency 

resonances (consistent with these resonances being less paramagnetically shifted); however, the intensity of the lowest 

frequency resonance is still too great to be ascribed to a single crystallographic site, even accounting for the different T1 

constants. 

 

 

Figure S8: 17O NMR spectra of monoclinic Eu2O3 at two different temperatures, recorded at 9.40 T using a Hahn echo pulse 

sequence and a recycle delay of 0.1 s. At lower temperature, the magnitude of the paramagnetic shifts increases yielding more 

negative shifts. Unfortunately, this causes the signals at −2780 ppm and −3260 ppm in the higher temperature spectrum to be 



spaced by the spinning speed in the lower temperature spectrum so that the sidebands overlap. Nevertheless, it can still be seen 

that the −3260 ppm resonance does not split into two resonances at the lower temperature. 

 

 

Figure S9: 17O NMR spectrum of monoclinic Eu2O3 recorded at 9.40 T and 60 kHz MAS with a quantitative recycle delay of 

1 s using a Hahn echo pulse sequence (π/2-τ-π-τ-acquire). Sidebands are marked with asterisks and the signal from the ZrO2 

rotor is indicated.  

 

Table S2: Calculating the relative integrations of the signals in the 17O NMR spectrum of monoclinic Eu2O3, recorded at 60 

kHz MAS and 9.05 T. The integrated intensity with an approximately quantitative recycle delay (d1) of 1 s is weighted by the 

ratio of the amplitudes of each signal recorded with π/2 and π/6 pulses, but with recycle delays of 0.2 s, to account for the non-

quantitative excitation of π/2 pulses.  

Shift 

/ppm 

Relative 

integration 

π/2, d1 = 1 s 

Amplitude 

π/2, d1 = 0.2 s 

/Arbitrary Units 

Amplitude 

π/6, d1 = 0.2 s 

/Arbitrary Units 

Ratio of 

π/6:π/2 

Amplitudes 

Corrected 

relative 

integration 

−3260 50% 97.5 14.3 0.15 38% 

−2780 20% 20.1 2.8 0.14 14% 

−1850 15% 13.6 4.2 0.31 24% 

−1300 15% 19.1 5.6 0.30 24% 



 

Figure S10: 17O NMR spectrum of cubic Sm2O3 recorded at 9.40 T and 40 kHz MAS using a 0.05 s recycle delay and a Hahn 

echo pulse sequence. Spinning sidebands are marked with asterisks. 

 

 

Figure S11: 17O NMR spectrum of cubic Eu2O3 recorded at 7.05 T and 40 kHz MAS using a 0.15 s recycle delay and a Hahn 

echo pulse sequence. Spinning sidebands are marked with asterisks. 

 



 

Figure S12: 17O NMR spectra of 15 at% Sm-substituted CeO2 at two different temperatures, recorded with a Hahn echo pulse 

sequence and a 1 s recycle delay. The high temperature spectrum was recorded at 7.05 T and 40 kHz MAS, while the low 

temperature spectrum was recorded at 4.70 T and 14 kHz MAS with liquid nitrogen cooled bearing gas. The evolution of 

chemical shift of the resonances is highlighted and there is also variation in the intensity of the two signals at highest frequency 

due to changes in the T1 constants (see main text).  



 

Figure S13: 17O NMR spectra of 15 at% Eu-substituted CeO2 at two different temperatures, recorded at 7.05 T with a 1 s 

recycle delay using a Hahn echo pulse sequence. The higher temperature spectrum was recorded at 60 kHz MAS and the lower 

temperature spectrum at 40 kHz MAS with the application of cooled nitrogen gas. The evolution of the chemical shifts is 

highlighted, although there is a significant error in determining the position of the lowest frequency isotropic resonance due 

to overlapping sidebands.  

4 17O Enrichment Quantification 

To estimate the degree of 17O enrichment for the samples, a quantitative 17O NMR spectrum of natural 

isotopic abundance H2O was recorded at 9.40 T with a 1.9 mm probe, allowing a comparison to be 

made with the samples which were recorded using the same combination. From the ratios of the total 

integrated spectral intensities, the enrichments were estimated as shown in Table S3. Due to the 

averaging of the 𝐶𝑄 of H2O in the liquid state by molecular tumbling, the central and satellite transitions 

are coincident, whereas for the solid samples the satellite transitions are anisotropically broadened and 

not all of the intensity is measured experimentally; consequently, the enrichment is likely to be 

underestimated to some extent by this method.  

As can be seen, the enrichment of the cubic Sm2O3 sample, which was enriched at 750 oC, is nearly 

ideal within the error in the quantification (the gas is 70% enriched, and there are approximately equal 

amounts of oxygen in the sample and the gas, resulting in a factor of half). The monoclinic samples 

which were enriched at 1200 oC, on the other hand, have almost two orders of magnitude lower levels 

of enrichment. This can be ascribed to exchange of the 17O with the 16O in the quartz tube at this high 

temperature and suggests that an alternative methodology should be developed to improve the 

efficiency of high temperature enrichment. Nevertheless, isotopic enrichment of at least an order of 

magnitude is achieved, permitting the 17O NMR spectra of the high temperature phases to be recorded 

and assigned, which would not have been feasible at natural abundance.  



Table S3: Approximate 17O enrichment level for different lanthanide oxide samples.  

Sm2O3 

Monoclinic 

Eu2O3 

Monoclinic 

Sm2O3 

Cubic 

0.8% 0.3% 40% 

 

5 DFT Calculations 

The 17O NMR parameters for the monoclinic Y2O3 phase (isostructural to monoclinic Sm2O3 and 

Eu2O3)1 were calculated with the CASTEP code using a 700 eV energy cut-off and a <0.03 Å-1 

Monkhorst-Pack k-mesh sampling.2–4 On-the-fly pseudopotentials with the PBE functional were used. 

The structure was fully relaxed using the CASTEP default convergence criteria and a 10-5 eV energy 

convergence limit. The calculated chemical shieldings were converted to chemical shifts using the 

previously determined relation δiso = 223.7 − 0.888×σiso.5 The calculated chemical shifts and 

quadrupolar coupling constants (Table S4) are in good agreement with the experimental values of 

Florian et al.,1 with the exception that the experimental assignment of O2 and O4 appears to be incorrect 

and should be reversed; this assignment by Florian et al. was tentatively based on the trend in average 

Y–O bond length, as it was not possible to calculate chemical shifts at the time, so this minor error is 

not unexpected.    

Table S4: DFT-calculated 17O chemical shifts and quadrupolar coupling constants of oxygen sites in monoclinic Y2O3. 

Experimental values are from Florian et al.1 

Site δiso (calc) 

/ppm 

δiso (exp) 

/ppm 

CQ (calc) 

/MHz 

CQ (exp) 

/MHz 

Coordination 

O1 323.5 313 2.0 1.8 Square pyramidal (5) 

O2 375.3 383 0.7 0.6 ~Tetrahedral (4) 

O3 356.0 346 1.0 1.2 Trigonal pyramidal (4) 

O4 382.2 377 0.5 0.7 ~Tetrahedral (4) 

O5 255.5 242 0.9 0.8 ~Octahedral (6) 

 

Table S5: Lattice parameters of experimental and DFT-relaxed monoclinic structures of Sm2O3 and Eu2O3. Experimental 

structures were obtained from the ICSD with collection codes 34291 (Sm2O3)6 and 8056 (Eu2O3)7. 

 Expt Hyb20 Hyb35 

Monoclinic Sm2O3 

a / Å 14.177 14.198 14.163 

b / Å 3.633 3.659 3.648 

c / A 8.847 8.880 8.861 

β / deg 99.96 99.36 99.34 

Monoclinic Eu2O3 

a / Å 14.111 14.173 14.122 

b / Å 3.602 3.621 3.615 

c / A 8.808 8.864 8.826 

β / deg 100.037 99.597 99.532 

 

  



Table S6: DFT-calculated isotropic hyperfine coupling constants (Aiso), quadrupolar coupling constants (CQ), and the 

quadrupolar asymmetry parameter ηQ for the monoclinic phase of Sm2O3. 

 

Table S7: DFT-calculated isotropic hyperfine coupling constants (Aiso), quadrupolar coupling constants (CQ), and the 

quadrupolar asymmetry parameter ηQ for the monoclinic phase of Eu2O3. 

 

The computed values of CQ for Sm2O3 and Eu2O3 show a reasonable agreement to the size predicted 

from structural arguments (and also from the nutation behaviour): for Sm2O3, O2, O4, and O5 all show 

small values of CQ (0.67, 0.26, and 0.15 MHz, respectively) whereas O3 and O1 show larger values of 

1.34 and 1.09 MHz, A similar result is observed for Eu2O3, although the calculated CQ for O3 is arguably 

smaller than expected (as compared to Sm2O3). Notably, in both systems Hyb20 gives a smaller 

dispersion of the computed CQs; based on the lattice parameters and the structural considerations as 

described in the main text, we conclude that the Hyb35-determined values are likely to be closer to the 

real values. The magnitude of the calculated hyperfine coupling constants Aiso is approximately correct 

(c.f. −2.206 MHz for cubic Eu2O3 from variable temperature NMR measurements, see main text), 

although the calculated values are slightly too large. There are also some differences in the predicted 

ordering of Aiso for each site between Sm2O3 and Eu2O3, but for both phases the O2 and O4 sites are 

predicted to be the most paramagnetically shifted.  

6 Theoretical Shift Predictions 

The temperature dependence of the paramagnetic shifts for cubic Sm2O3 and Eu2O3 was predicted by 

calculating the electron spin per unit field using the method of Golding and Halton.8 First the 

contribution for each J level was calculated using 

〈𝑆𝑧〉𝐽

𝐻
= −𝜇𝐵 [

𝑔𝐽(𝑔𝐽 − 1)𝐽(𝐽 + 1)

3𝑘𝑇
+

2(𝑔𝐽 − 1)(𝑔𝐽 − 2)

3𝜆
], (S1) 

where 𝐻 is the magnetic field, 𝜇𝐵 is the Bohr magneton, 𝑘 is the Boltzmann constant and 𝜆 = 𝜁/2𝑆 is 

the spin–orbit coupling constant, for which the values presented in Golding and Halton were used. 

These two terms represent the Curie and Van Vleck contributions, respectively, which are derived in 

§8. The Landé g-factor is given by 

Monoclinic Sm2O3 

 Hyb20 Hyb35 

Site Aiso / MHz CQ / MHz ηQ Aiso / MHz CQ / MHz ηQ 

O1 (4i) −3.78 1.04 0.14 −3.48 1.34 0.31 

O2 (4i) −4.92 0.74 0.28 −4.44 0.67 0.35 

O3 (4i) −3.60 1.19 0.74 −3.36 1.09 1.00 

O4 (4i) −4.38 0.18 0.08 −4.02 0.26 0.91 

O5 (2e) −2.22 0.25 0.89 −2.04 0.15 0.24 

Monoclinic Eu2O3 

 Hyb20 Hyb35 

Site Aiso / MHz CQ / MHz ηQ Aiso / MHz CQ / MHz ηQ 

O1 (4i) −2.16 1.38 0.38 −2.04 1.57 0.41 

O2 (4i) −4.68 0.12 0.69 −4.02 0.37 0.41 

O3 (4i) −3.12 0.45 0.42 −2.64 0.67 0.79 

O4 (4i) −3.24 0.48 0.78 −3.18 0.46 0.38 

O5 (2e) −2.16 0.42 0.43 −2.04 0.17 0.29 



𝑔𝐽 =
3

2
+

𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
, (S2) 

except when 𝐽 = 0, as is this the case for the 7F0 ground-state of Eu3+, for which 𝑔𝐽 = 𝐿 + 2 (see §8.2). 

The overall spin for the system was then found by a Boltzmann weighting of the levels: 

〈𝑆𝑧〉

𝐻
=

∑
〈𝑆𝑧〉𝐽

𝐻
(2𝐽 + 1) exp (−

𝐸𝐽

𝑘𝑇
)

∑(2𝐽 + 1) exp (−
𝐸𝐽

𝑘𝑇
)

, (S3) 

where 𝐸𝐽 = 𝜆𝐽(𝐽 + 1)/2. 

 

Figure S14: Calculated electron spin as a function of temperature and reciprocal temperature for Sm3+. 

 

Figure S15: Calculated electron spin as a function of temperature and reciprocal temperature for Eu3+. 

The temperature dependences of the calculated spin for Sm3+ and Eu3+ are shown in Figure S14 and 

Figure S15, respectively; these reproduce the features observed in the variable temperature 17O NMR 

experiments performed on cubic Sm2O3 and Eu2O3 (see main text). In particular, for Sm3+, a minimum 

in the spin is predicted at ~1000 K, which is significantly higher than the minimum in the susceptibility 

(~400 K). This occurs because the Curie and Van Vleck paramagnetic terms can have different 

coefficients as well as different signs in the expressions for the magnetic susceptibility and the electron 

spin, respectively; paramagnetic shifts are only proportional to the magnetic susceptibility in the case 
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that only Curie(–Weiss) paramagnetism is present. For Eu3+, on the other hand, the spin approaches a 

constant value below ~70 K due to the temperature-independent Van Vleck paramagnetism of the 

ground state, as expected.  

7 Pseudo-contact Shift in Sm2O3 

To determine whether a pseudo-contact shift could cause the observed discrepancies between the 

experimental shifts and calculated spin for Sm2O3, an estimate for the pseudo-contact shift was made 

using the Bleaney expression:9,10 

𝛿𝑃𝐶𝑆 = −
𝜇0𝜇𝐵

2 𝑔𝐽
2𝐽(𝐽 + 1)(2𝐽 − 1)(2𝐽 + 3)

120𝜋𝑟3(𝑘𝑇)2
〈𝐽||𝛼||𝐽〉 

       × [(3 cos2 𝜃 − 1)𝐴2
0〈𝑟2〉 + sin2 𝜃 cos 2𝜙 𝐴2

2〈𝑟2〉], 

(S4) 

where 𝜃 and 𝜙 are the angles relating the internuclear (Ln–O) vector and the principal axes of the crystal 

field splitting tensor, 𝐴2
0〈𝑟2〉 and 𝐴2

2〈𝑟2〉 give the axial and rhombic components of the crystal field 

splitting tensor in units of energy, and 〈𝐽||𝛼||𝐽〉 is the rank-2 spherical tensor operator reduced matrix 

element, which depends on 𝑆, 𝐿 and 𝐽, but is independent of 𝑀𝐽. These factors have been tabulated for 

the ground levels of the lanthanides.11,12 This formula only applies in the limit that the magnetic moment 

can be considered as a point dipole, which is undoubtedly invalid given the short Ln–O distance, 

however it is sufficient for a first approximation.  

For the ground state of Sm3+, the constant values are given by   

𝜇0𝜇𝐵
2 𝑔𝐽

2𝐽(𝐽 + 1)(2𝐽 − 1)(2𝐽 + 3)

120𝜋𝑘2
〈𝐽||𝛼||𝐽〉 =  1.42 × 10−9 m3 K2 J−1, 

and the total pseudo-contact shift can be written as a sum of the contributions from different Sm nearest 

neighbours: 

𝛿𝑃𝐶𝑆 = −1.42 × 10−9
𝑊(𝑇)

𝑇2
∑

1

𝑟3
[(3 cos2 𝜃 − 1)𝐴2

0〈𝑟2〉 + sin2 𝜃 cos 2𝜙 𝐴2
2〈𝑟2〉]. (S5) 

𝑊(𝑇) is an additional temperature-dependent factor determined by Bleaney due to the low-lying excited 

electronic states of Sm3+, given by10 

𝑊(𝑇) = 1 + 𝑎
𝑘𝑇

Δ𝐸
+ 𝑏 (

𝑘𝑇

Δ𝐸
)

2

+
𝑐(𝑘𝑇)2

Δ𝐸Δ𝐸′
, (S6) 

where Δ𝐸 is the energy separation of the ground state and the first excited state, and Δ𝐸′ is the energy 

separation of the first and second excited states. For Sm3+, 𝑎 = −11.25, 𝑏 = −3 and 𝑐 = 4.5, resulting in 

a negative 𝑊(𝑇) above 122 K and hence a change in the sign of the pseudo-contact shift. Equation (S5) 

is only valid up to around room temperature, above which the thermal population of excited states must 

also be considered, complicating the analysis significantly.  

In cubic Sm2O3 (𝐼𝑎3̅) there are two different samarium sites at Wyckoff positions 8b and 24d: the former 

has three-fold symmetry, while the latter has two-fold symmetry. Each oxygen, in the general position 

48e, has one 8b and three 24d Sm nearest neighbours.13 The Sm–O distances and the crystal field 

splitting parameters, determined from optical measurements of single crystals of Ln-doped isomorphic 

cubic Y2O3, are shown in Table S8. 

The crystal field tensor orientation for the 8b site is unambiguously determined by the three-fold 

symmetry axis, which is aligned at 8o to the Sm–O bond, yielding a pseudo-contact shift at 300 K of 

+42 ppm from equation (S5). The contributions from the 24d sites are more difficult to calculate, 

because the only requirement of the crystal field splitting tensor is that one principal axis is parallel to 

the two-fold symmetry axis, and as a result it is not possible without further experiments or calculations 



to determine the angular factors in equation (S5). The maximum possible contribution from each of the 

three 24d Sm3+ nearest neighbours is ca. ±40 ppm, although the magnitudes are more likely to be 

significantly lower, especially as the axial and rhombic contributions can oppose. Without knowing the 

orientation of the 24d site crystal field splitting tensor, it is thus not possible to determine even the sign 

of the pseudo-contact shift, but nevertheless it can be seen that a pseudo-contact shift with a comparable 

magnitude to the experimentally observed chemical shifts (see main text) is feasible.  

Table S8: Sm–O distances13 and crystal field splitting parameters for the two Sm sites in cubic Sm2O3. The crystal field splitting 

of the 8b site is for Eu/Y2O3,14 and that of the 24d site is for Sm/Y2O3.15 The rhombic splitting of the axial 8b site is necessarily 

zero. 

 r /Å 𝐴2
0〈𝑟2〉 /cm-1 𝐴2

2〈𝑟2〉 /cm-1 

8b 2.311 586 – 

24d 2.293, 2.445, 2.363 −105 −892 

8 Derivation of the Lanthanide Spin 

In the presence of low-lying electronic states, which are mixed into the ground state, the electron spin 

can be calculated using perturbation theory.16,17 The wavefunction of a given level with total angular 

momentum quantum numbers 𝐽 and 𝑀 is, to first order, 

𝜓𝐽𝑀 = |𝐽𝑀⟩ − ∑
⟨𝐽𝑀|𝐻̂(1)|𝐽′𝑀′⟩

𝐸𝐽′𝑀′ − 𝐸𝐽𝑀
𝐽′𝑀′≠𝐽𝑀

|𝐽′𝑀′⟩, (S7) 

where |𝐽𝑀⟩ are the unperturbed wavefunctions and 𝐸𝐽𝑀 their energies. The perturbing Hamiltonian due 

to the applied field, 𝐻, which is assumed to be aligned along z, is given by 

𝐻̂(1) = 𝜇𝐵(𝐿̂𝑧 + 2𝑆̂𝑧)𝐻 = 𝜇𝐵(𝐽𝑧 + 𝑆̂𝑧)𝐻. (S8) 

Because the states are eigenfunctions of 𝐽𝑧, this term does not contribute to the off-diagonal matrix 

elements in (S7) and the perturbed wavefunction can be written 

𝜓𝐽𝑀 = |𝐽𝑀⟩ − 𝜇𝐵𝐻 ( ∑
⟨𝐽𝑀|𝑆̂𝑧|𝐽′𝑀′⟩

𝐸𝐽′𝑀′ − 𝐸𝐽𝑀
𝐽′𝑀′≠𝐽𝑀

|𝐽′𝑀′⟩). 

(S9) 

The spin of this level can then be calculated by 

〈𝑆𝑧〉𝐽𝑀  = ⟨𝐽𝑀|𝑆̂𝑧|𝐽𝑀⟩ − 𝜇𝐵𝐻 ( ∑
|⟨𝐽𝑀|𝑆̂𝑧|𝐽′𝑀′⟩|

2

𝐸𝐽′𝑀′ − 𝐸𝐽𝑀
𝐽′𝑀′≠𝐽𝑀

). 

(S10) 

The first term can be derived by projecting the spin onto the total angular momentum. This is performed 

in §8.1 and yields 

〈𝑆𝑧〉𝐽𝑀
(0)

= ⟨𝐽𝑀|𝑆̂𝑧|𝐽𝑀⟩ = (𝑔𝐽 − 1)𝑀, (S11) 

where the Landé g-factor is given in equation (S2). 

The non-zero off-diagonal matrix elements can be shown to be16,18 

⟨𝐽𝑀|𝑆̂𝑧|(𝐽 + 1) 𝑀⟩ = 𝑓(𝐽 + 1)√(𝐽 + 1)2 − 𝑀2 

⟨𝐽𝑀|𝑆̂𝑧|(𝐽 − 1) 𝑀⟩ = 𝑓(𝐽)√𝐽2 − 𝑀2 

(S12) 



𝑓(𝐽) = √
[𝐽2 − (𝐿 − 𝑆)2][(𝐿 + 𝑆 + 1)2 − 𝐽2]

4𝐽2(4𝐽2 − 1)
. 

Consequently, only adjacent states can be mixed, and only levels with the same 𝑀. (S10) can therefore 

be written with two terms for mixing of the higher and lower states respectively, noting that if either 

state does not exist, the corresponding value of 𝑓(𝐽) will be zero: 

〈𝑆𝑧〉𝐽𝑀 = (𝑔𝐽 − 1)𝑀 − 𝜇𝐵𝐻 (
𝑓(𝐽 + 1)2[(𝐽 + 1)2 − 𝑀2]

𝜆(𝐽 + 1)
−

𝑓(𝐽)2[𝐽2 − 𝑀2]

𝜆𝐽
) 

              =  〈𝑆𝑧〉𝐽𝑀
(0)

+ 〈𝑆𝑧〉𝐽𝑀
(1)

, (S13) 

where 𝜆 is the spin–orbit coupling constant. The expectation value of the spin for a state 𝐽 is then found 

by a Boltzmann weighting over the levels, 𝑀: 

〈𝑆𝑧〉𝐽 =
∑ 〈𝑆𝑧〉𝐽𝑀exp (

−𝑀𝑔𝐽𝜇𝐵𝐻
𝑘𝑇

)
+𝐽
−𝐽

∑ exp (
−𝑀𝑔𝐽𝜇𝐵𝐻

𝑘𝑇
)

+𝐽
−𝐽

. (S14) 

In the paramagnetic regime, 𝑘𝑇 ≫ 𝑔𝐽𝜇𝐵𝐻, so that the denominator is approximately 2𝐽 + 1, and the 

exponential term in the numerator can be expanded to first order: 

〈𝑆𝑧〉𝐽 =
1

2𝐽 + 1
∑ (〈𝑆𝑧〉𝐽𝑀

(0)
+ 〈𝑆𝑧〉𝐽𝑀

(1)
) (1 −

𝑀𝑔𝐽𝜇𝐵𝐻

𝑘𝑇
)

+𝐽

𝑀=−𝐽

 

          =
1

2𝐽 + 1
∑ (〈𝑆𝑧〉𝐽𝑀

(0)
−

𝑀𝑔𝐽𝜇𝐵𝐻〈𝑆𝑧〉𝐽𝑀
(0)

𝑘𝑇
+ 〈𝑆𝑧〉𝐽𝑀

(1)
+

𝑀𝑔𝐽𝜇𝐵𝐻〈𝑆𝑧〉𝐽𝑀
(1)

𝑘𝑇
)

+𝐽

𝑀=−𝐽

. (S15) 

 

The first and last terms sum to zero because they contain only odd powers of 𝑀. The second term is 

1

2𝐽 + 1
∑ (−

𝜇𝐵𝐻𝑔𝐽(𝑔𝐽 − 1)𝑀2

𝑘𝑇
)

+𝐽

𝑀=−𝐽

= −
𝜇𝐵𝐻𝑔𝐽(𝑔𝐽 + 1)

3𝑘𝑇
𝐽(𝐽 + 1), (S16) 

using the fact that ∑ 𝑀2+𝐽
−𝐽 =

1

3
𝐽(𝐽 + 1)(2𝐽 + 1). This is the Curie contribution to the spin. 

Performing the same summations on the third term in (S15), 

1

2𝐽 + 1
∑ 〈𝑆𝑧〉𝐽𝑀

(1)

+𝐽

𝑀=−𝐽

= −𝜇𝐵𝐻 [
𝑓(𝐽 + 1)2 [(𝐽 + 1)2 −

1
3 𝐽(𝐽 + 1)]

𝜆(𝐽 + 1)
−

𝑓(𝐽)2 [𝐽2 −
1
3 𝐽(𝐽 + 1)]

𝜆𝐽
] 

= −
𝜇𝐵𝐻

3𝜆
[𝑓(𝐽 + 1)2(2𝐽 + 3) − 𝑓(𝐽)2(2𝐽 − 1)] 

= −
𝜇𝐵𝐻

3𝜆
{

[(𝐽 + 1)2 − (𝐿 − 𝑆)2][(𝐿 + 𝑆 + 1)2 − (𝐽 + 1)2](2𝐽 + 3)

4(𝐽 + 1)2(2𝐽 + 1)(2𝐽 + 3)

−
[𝐽2 − (𝐿 − 𝑆)2][(𝐿 + 𝑆 + 1)2 − 𝐽2](2𝐽 − 1)

4𝐽2(2𝐽 + 1)(2𝐽 − 1)
} 

= −
𝜇𝐵𝐻

3𝜆

1

4𝐽2(𝐽 + 1)2(2𝐽 + 1)
{ [(𝐽 + 1)2 − (𝐿 − 𝑆)2][(𝐿 + 𝑆 + 1)2 − (𝐽 + 1)2]𝐽2 

− [𝐽2 − (𝐿 − 𝑆)2][(𝐿 + 𝑆 + 1)2 − 𝐽2](𝐽 + 1)2} 



= − 
𝜇𝐵𝐻

3𝜆

1

4𝐽2(𝐽 + 1)2(2𝐽 + 1)
[(𝐿 − 𝑆)2(𝐿 + 𝑆 + 1)2 − 𝐽2(𝐽 + 1)2][𝐽2 − (𝐽 + 1)2] 

= − 
𝜇𝐵𝐻

3𝜆

1

4𝐽2(𝐽 + 1)2
[(𝐿 − 𝑆)2(𝐿 + 𝑆 + 1)2 − 𝐽2(𝐽 + 1)2] 

= −
𝜇𝐵𝐻

3𝜆

[(𝑆 − 𝐿)(𝐿 + 𝑆 + 1)]2 − [𝐽(𝐽 + 1)]2

4𝐽2(𝐽 + 1)2
 

= −
𝜇𝐵𝐻

3𝜆

[𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)]2 − [𝐽(𝐽 + 1)]2

4𝐽2(𝐽 + 1)2
  

= −
𝜇𝐵𝐻

3𝜆

[𝑆(𝑆 + 1) − 𝐿(𝐿 + 1) + 𝐽(𝐽 + 1)][𝑆(𝑆 + 1) − 𝐿(𝐿 + 1) − (𝐽 + 1)]

[2𝐽(𝐽 + 1)]2
 

= −
𝜇𝐵𝐻(𝑔𝐽 − 1)(𝑔𝐽 − 2)

3𝜆
 

where, in the penultimate step, the numerator is a difference of two squares. This is the Van Vleck, 

temperature-independent contribution to the spin. Once again, the expression in terms of 𝑔𝐽 is 

essentially fortuitous, rather than reflecting the fundamental importance of the Landé g-factor.   

8.1 Calculating ⟨Sz⟩JM 

The Fermi contact shift is dependent on the z component of the spin, 〈𝑆𝑧〉𝐽. When both spin, 𝑺, and 

orbital, 𝑳, angular momenta are present, in the Russell–Saunders coupling limit, they couple to give a 

total angular momentum, 𝑱. The 𝑺 and 𝑳 can then be considered to be processing rapidly about 𝑱, so 

that only their projection along 𝑱 remains. To calculate 〈𝑆𝑧〉𝐽, first the projection of 𝑺 along 𝑱 must be 

calculated: 

𝑺̂𝑱 = (
𝑺̂. 𝑱̂

|𝑱̂|
) (

𝑱̂

|𝑱̂|
) 

      = (
𝑺̂. 𝑱̂

|𝑱̂|
2) 𝑱̂. 

(S17) 

Then to find 𝑺̂. 𝑱̂, consider (𝑺̂ + 𝑱̂)
2
, 

(𝑺̂ + 𝑱̂)
2

= 𝑺̂2 + 𝑱̂2 + 2𝑺̂. 𝑱̂ 

𝑺̂. 𝑱̂ =
1

2
[(𝑺̂ + 𝑱̂)

2
− 𝑺̂2 + 𝑱̂2]. 

(S18) 

Using 𝑱̂ = 𝑳̂ + 𝑺̂, 

(𝑺̂ + 𝑱̂)
2

= (𝑳̂ + 2𝑺̂)
2

= 𝑳̂2 + 4𝑺̂2 + 4𝑳̂. 𝑺̂, (S19) 

and, finding 𝑳̂. 𝑺̂ from 

𝑱̂2 = (𝑳̂ + 𝑺̂)
2

= 𝑳̂2 + 𝑺̂2 + 2𝑳̂. 𝑺̂ 

𝑳̂. 𝑺̂ =
1

2
[𝑱̂2 − 𝑳̂2 − 𝑺̂2], (S20) 

then, substituting (S20) into (S19) and then into (S18), 

𝑺̂. 𝑱̂ =
1

2
[𝑱̂2 + 𝑺̂2 − 𝑳̂2]. (S21) 

Substituting (S21) into (S17) and replacing the squared operators by their eigenvalues, 



𝑺̂𝐽 =
𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
𝑱̂ = (𝑔𝐽 − 1)𝑱̂. 

(S22) 

As shown, this is typically written in terms of the Landé g-factor, equation (S2), although it should be 

stressed that this is simply for convenience, and does not imply that the spin arises from the magnetic 

moment given by 𝑔𝐽.  

The z component of the spin is then found by projecting along z: 

𝑆̂𝑧 = 𝑺̂𝑱. 𝒛 = (𝑔𝐽 − 1)𝑱̂. 𝒛 = (𝑔𝐽 − 1)𝐽𝑧 

〈𝑆𝑧〉𝐽𝑀 = (𝑔𝐽 − 1)〈𝐽𝑧〉𝐽𝑀 = (𝑔𝐽 − 1)𝑀 
(S23) 

8.2 The Landé g-factor when J = 0 

When 𝐽 = 0, for instance in the ground state of Eu3+, the Landé g-factor has an undefined value using 

the usual formula: 

𝑔𝐽 =
3

2
+

𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
. (S24) 

However, by exploiting the fact that it is only possible to have 𝐽 = 0 if 𝐽 = 𝑆 − 𝐿, the formula can be 

rewritten,12 and by refactorising the numerator, this allows cancellation of the division by zero: 

𝑔𝐽 =
3

2
+

𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2(𝑆 − 𝐿)(𝑆 − 𝐿 + 1)
 

𝑔𝐽 =
3

2
+

(𝑆 − 𝐿)(𝑆 + 𝐿 + 1)

2(𝑆 − 𝐿)(𝑆 − 𝐿 + 1)
 

𝑔𝐽 =
3

2
+

(𝑆 + 𝐿 + 1)

2(𝑆 − 𝐿 + 1)
 

𝑔𝐽 = 2 + 𝐿, (S25) 

where in the last step 𝐿 = 𝑆 is used, which must also be the case if 𝐽 = 0. 
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