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1 Introduction

The product of the condensation reaction between glycoluril and formaldehyde was first

reported in a thesis by Eberhard Meyer in 1904,1 then published by Behrend et al. in

1905,2 however, it wasn’t until 1981 that a product was successfully crystallized from the

reaction: a macrocycle consisting of 6 glycoluril units bound together by 12 methylene

bridges (see Figure 1).3 The macrocycle was named cucurbituril, given its resemblance

to a pumpkin (which belongs to the cucurbitaceae family), yet often abbreviated as CB[6],

highlighting the 6 glycoluril building blocks that constitute the macrocycle.

During the 1980s and 1990s, interest in crystal engineering and non-covalent interac-
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Figure 1: Top: The reaction between glycoluril and formaldehyde. Bottom: space-filling models of CB[5]-
CB[8] demonstrating the increasing size, yet constant height, of the CB[n] macrocycles.

tions saw the popularity of cucurbituril increase due to its ability to facilitate non-covalent

binding. This is made possible via the formation of complexes with cations through inter-

actions with the carbonyl lined portals of CB[6], along with its ability to internalize alkyl

chains within its hydrophobic cavity. Between 2000 and 2002, Kim4 and Day5,6 modified

the initial reactions conditions of Meyer and Behrend, to synthesize a variety of glycoluril

based cucurbituril macrocycles. The new additions to the cucurbituril family were named

cucurbit[5]uril, cucurbit[7]uril, cucurbit[8]uril and cucurbit[10]uril in light of them con-

taining 5, 7, 8 or 10 glycoluril units respectively. These discoveries enhanced the applica-

bility of cucurbiturils, as the bigger cavity size of the larger CBs enables them to form 1:1

binary complexes (CB[7]), and even 1:1:1 heteroternary complexes (CB[8], see Figure 2),

with aromatic compounds. A variety of CB[n] homologues have been discovered since

the work of Kim and Day, including functionalized CB[n],7–9 nor-seco-CB[10],10 inverted

CB[n]11 and many others.
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Figure 2: CB[n] inclusion and exclusion complexes.

CB[5]-CB[8] have found a variety of uses given their ability to form binary and ternary

host-guest complexes, and have therefore impacted a wide variety of scientific research

areas. Several previous reviews have specifically highlighted the synthesis, functionaliza-

tion, host-guest binding properties of CB[n]12–17 and their applications in drug delivery,18

fluorescence spectroscopy,19 catalysis20 and nanotechnology.21,22 More recently, the con-

tribution of CB[n] in self-assembly and engineering of nanomaterials has also received

attention,23 where the role of CB[n] as a capping agent to stabilize metallic nanoparticles

has been emphasized. The diversity of these reviews are evidence of the far-reaching

impact cucurbit[n]urils have had in just the past three decades.

With the vast majority of applications of CB relying on its versatility in forming dy-

namic complexes with a variety of chemical species, research efforts by the cucurbit[n]uril

community continue to be directed towards identifying and characterizing suitable guest

molecules. Indeed, designing functional systems containing CB[n] would not be possi-

ble without the knowledge of binding strengths and the kinetics of complexation and

de-complexation of the host molecule with the guests of interest. While the interactions
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of the macrocyclic host family have been reported widely, the characterization techniques

and conditions under which these are reported have not been comprehensively reviewed.

Moreover, the plethora of CB[n] guest species and their binding constants have not been

tabulated and made available in one place. The present review highlights the latest devel-

opments in the understanding and applications of the molecular recognition properties

of CB[n], with particular emphasis on materials design.

In this review, we cover the vast areas of scientific research upon which CB[n]s have

impacted, with a focus on the guest recognition properties of CB[n], largely but not

wholly concerning of their utilisation in solution phase where most applications have

arisen. To understand the binding properties of CB[n], a general overview of the ther-

modynamics of CB[n] binding is first discussed, followed by an individual analysis of

the specific binding properties of CB[5]-CB[8]. Looking towards the application of CB[n]

complexation, the areas of gas encapsulation, CB[n]s on surfaces, CB[n] mediated supramolec-

ular polymers, Molecular recognition in 3D supramolecular networks, CB[n] catalysis

and reaction templating, and CB[n] recognition in biological systems will each be dis-

cussed in turn.

Additionally, this review provides the reader with a comprehensive guide to the guest

molecules that have been studied with CB[5,6,7,8]. The tables, present at the end of this

review, cover first guests that have been demonstrated to bind with cucurbiturils, and

include the binding constants (logK) for each interaction, along with the conditions in

which the binding parameters have been reported. For the case of CB[8], tables covering

the binding constants for 1:1, 1:2 and 1:1:1 complexes have been included (see Figure 2).

The binding constants, as well as the conditions under which the binding constants are

measured, have been emphasized with the hope that this will encourage the development

of new applications for known guest molecules, as well as lead to the realization of new

guest species for CB[n] host-guest complexes.
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2 Thermodynamics of CB[n]-guest binding

Cucurbit[n]urils consist of n glycoluril molecules that are bound in a ring-like arrange-

ment via methylene bridges. This arrangement of the glycoluril sub-units is key to un-

derstanding the binding and encapsulation properties of CBs, as the number of repeat

units defines the portal size and cavity volume, and the alignment of the glycoluril units

results in a hydrophobic cavity with carbonyl-lined portals. Understanding these aspects

of CB[n] macrocycles can enable researchers to design guest species for high affinity bind-

ing, tailored towards specific applications. Each of these aspects will now be considered.

The dipolar nature of the carbonyl-fringed portals of CB[n]s make the portals highly

attractive for cation binding through the ion-dipole effect. Figure 3 shows the electro-

static potential for CB[52] - CB[8], which highlights the strength of the negative charge

associated with the portals of CB. Indeed, the first reports of CB[n] binding involved

metal cations acting as ‘lids’ bound to the portals of CB.24 Alkali metals,24,25 alkaline

earth metals,26–28 transition metals,28–30 lanthanides and actinides,28,31–33 as well as am-

monium and imidazolium ions34 have been shown to bind to CB portals, and are often

required to enhance the solubility of the less water soluble CBs. The portals have also

been suggested to provide a constrictive steric barrier towards binding, enhancing the

persistence of CB[n] complexes.35 The coordination chemistry of CB[n]s has been recently

reviewed,36 and thus will not be discussed any further here.

Whilst the portals of CB[n]s are highly electronegative, the cavities of the macrocy-

cle are encompassed by the fused rings of the glycoluril subunits, which leave no func-

tional groups or electron pairs accessible to the inner cavity. Thus, the inner cavity of

CB[n]s are remarkably hydrophobic, and show a preference towards the encapsulation

of hydrophobic compounds. Hence, alkylated ammonium and imidazolium ions bind to

CB[n]s such that the cation remains at the portal region, whilst the alkyl chains become

encapsulated within the CB cavity given its inherent hydrophobicity.37,38 It should not be

surprising then to discover that compounds with high binding constants towards CB[n]s
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Figure 3: Calculated electrostatic potential (EP) for (a) CB[5], (b) CB[6], (c) CB[7], and (d) CB[8]. Reprinted
with permission from Biedermann, F. & Scherman, O. A. J. Phys. Chem. B 116, 2842–2849 (2012). Copyright
2012 American Chemical Society.
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tend to be dicationic species where the cations are separated by an organic/hydrophobic

region. Examples of such strong binders for CB[6], CB[7] and CB[8] include cadaverine,

methylviologen and amino-adamantane, respectively, with the size of the hydrophobic

region being tailored for the specific volume of each CB cavity.

Table 1: Structural parameters for uncomplexed CB[5]-CB[8]. aAdapted with permission from Kim, J. et
al. J. Am. Chem. Soc. 122, 540-541 (2000). Copyright 2000 American Chemical Society. b Reproduced from
Ref.39 with permission from The Royal Society of Chemistry.

CB[5]a CB[6]a CB[7]a CB[8]a CB[10]b

portal diameter (Å) 2.4 3.9 5.4 6.9 9.5-10.6
cavity diameter (Å) 4.4 5.8 7.3 8.8 11.3-12.4
cavity volume (Å3) 82 164 279 479 870
outer diameter (Å) 13.1 14.4 16.0 17.5 20.0
height (Å) 9.1 9.1 9.1 9.1 9.1

Another facet to the binding of guest species within CB[n] cavities is how well a guest

physically fits within the cavity. A good predictor of CB[n] complex binding comes from

the assessment of whether the inner cavity of the host and the shape of the guest dis-

play good complementarity. The cavity volumes of CB[5]-CB[8] are shown in Table 1 and

range from 82 Å3 for CB[5], to 479 Å3 for CB[8].24 As a result of its small size, CB[5] is

mostly suitable for the encapsulation of gases (discussed in Section 7), whereas CB[6] can

bind alkyl chains, CB[7] can accommodate small aromatic compounds and CB[8] can si-

multaneously complex with two molecules, suggesting that guest size is an important fac-

tor when considering CB[n]:guest complexes. This steric aspect of molecular host-guest

recognition has been quantified by Mecozzi et al.40 and termed the packing coefficient.

Packing coefficients are defined as the ratio of guest volume to the volume of the host

cavity, and this principle has been successfully applied to predict complexation between

CB[5]-CB[8] with appropriate guest compounds.41

The distinct advantage of employing CB[n]s in host-guest molecular recognition is

that complexes involving CB[n] can be formed in water with high binding affinity. Typi-

cally, aqueous environments cause a drop in host-guest affinity, compared to organic sol-
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vents, as water can compete strongly for hydrogen bonds and efficiently solvate charged

species. CB[n]s overcome this issue via the presence of high energy water, that is present

in the CB[n] cavity, which supplies a driving force for guest complexation.42–44 The re-

lease of high energy water and its role in macrocycle complex formation has been com-

prehensively reviewed (Figure 4).45

Figure 4: Schematic illustration of the formation of CB[n] host-guest complex driven by the release of
high-energy water. Adapted with permission from Biedermann et al. J. Am. Chem. Soc. 2012 134 15318–
15323.42 Copyright 2012 American Chemical Society.

All cavities larger than a critical size contain water molecules, for entropic reasons,

even if the breaking of hydrogen bonds is necessary. Such water molecules experience a

reduced number of hydrogen bonds compared to bulk water, and are thus of high energy.

For the case of CB[n]s, the binding of a guest molecule releases the energetically frustrated

water molecules, which lowers the energy of the system, providing an enthalphic and

entropic gain in favour of complex formation. This hydrophobic effect has been studied

using molecular dynamics simulations,43 where it was determined that host-guest affinity

is higher for cases where all water molecules are removed from the cavity (related to

the packing coefficient) and where the encapsulated water is of high energy. CB[7] was

shown to result in the largest energy gain from water expulsion of the whole CB[n] family,

as it contains more water molecules than CB[5] and CB[6], and has higher energy water

molecules encapsulated than CB[8], as the cavity size of CB[8] allows for encapsulated

water to be structurally organised in a manner more closely resembling bulk water.

Ion-dipole binding, host-guest packing coefficients and hydrophobic effects all need to
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be taken into account when considering guest molecules for CB[n] complexing with high

binding affinity. As a follow up to this section, binding tables can be found in Section

14, that provide an extensive list of the guest species for CB[5]-CB[8], along with their

binding constants (logK). This material should provide the reader with an understanding

of the principles behind CB[n] complex formation, in addition to a comparative list of

CB[n] guests.

3 Specific binding properties of CB[5]

CB[5] is the smallest macrocycle in the cucurbit[n]uril family. With its synthesis and iso-

lation first reported by Kim et al. in the year 2000, it has a portal diameter of 2.4Å, and a

cavity volume of 82Å3 (which is under half the volume of CB[6]).4 As a result of its small

cavity size, CB[5] has found limited use in the encapsulation of guest molecules compared

to the larger homologues, however, the carbonyl groups of the glycoluril sub-units allow

for the binding of cationic species to the portals of CB[5].29,34,46 It has been shown that

protons can bind to the portals of CB[n]s, and indeed this is the mechanism by which the

more insoluble CBs can be dissolved through the use of aqueous acidic media.34 CB[5]

and decamethyl-CB[5] have also been shown to form portal complexes with alkali, alka-

line earth and ammonium cations,46 in addition to hexamethylenetetramine, which can

act as a lid on the carbonyl portals of CB[5].47 CB[5] and decamethyl-CB[5] form very

weak complexes with α, β and γ forms of cyclodextrin, with binding constants ranging

between logK = 0.74 and 1.34.48 CB[5] also exhibits binding with multi-charged cations

including Co2+, Ni2+, Cu2+, Pb2+, Zn2+, Cd2+, Cr2+ and Fe2+.29

CB[5] shares similar portal binding properties with larger members of the cucurbi-

turil family, however, its small internal cavity limits its ability to support host-guest com-

plex formation. Even though CB[5] is not big enough to incorporate large molecules into

its cavity, its small size gives rise to its niche: the encapsulation of gaseous molecules.
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Decamethyl-CB[5] has been demonstrated to encapsulate small gaseous species in both

aqueous environments and in solid form. Gases such as N2, O2, Ar, N2O, CO and CO2

have been shown to be encapsulated in both powdered and aqueous decamethyl-CB[5],

whilst He, Ne, H2, Kr, Xe and CH4 could only be encapsulated in an aqueous environ-

ment, with Kr, Xe and CH4 requiring heating of the sample to assist encapsulation.49 A

full discussion of the gas sorption properties of cucurbit[n]urils is offered in section 7.

4 Specific binding properties of CB[6]

CB[6] is the most abundant homologue and with a portal diameter of 3.9 Å, it is com-

monly known to form stable complexes with aliphatic amines. The insolubility of CB[6]

in organic solvents and sparing solubility in water has, however, had a limiting impact

on its applications in its unmodified form. This is evident in the different solvent con-

ditions in which the binding of CB[6] complexes are often reported. For example, Mock

and coworkers first studied the complexation of a variety of alkyl- and aryl-substituted

alkylammonium and alkyldiammonium ions in aqueous formic acid.50 The results high-

lighted the size and shape complementarity exhibited by CB[6] contributing to its selec-

tive binding properties. It is well-established that the stability of these complexes are a

result of strong interactions between the positively charged protonated amines and the six

electronegative carbonyl moieties at the portals. The hydrophobic nature of the methy-

lene groups favor their positioning inside the cavity of the CB[6] where the solvent water

molecules are excluded, adding to further stabilization of the complexes. Therefore, the

most stable complex is formed for an optimal length of the aliphatic chain such that the

amine groups are positioned in close proximity to the portal groups. As a result, CB[6]

shows strongest binding to pentano and hexano bridged α, ω-diammonium functionali-

ties. The binding properties of CB[6] with imidazolium-based guests have also been in-

vestigated widely37,38,51 and has been used in the synthesis of monofunctionalised CB[6]8
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as well as in the isolation of CB[n] homologues.52

The importance of the surroundings of the complex, however, has a major impact

on the strength of the resulting complex as demonstrated by Lee et al.53 In this cor-

relation study of the binding behavior of diammonium guests between solution phase

(50% HCOOH, ITC) and gas phase (ESI-MS) it is shown that while a correlation exists be-

tween the two phases, the stabilities of the complexes are different. They suggest that this

contrast is a result of an additional role played by the H-bonding with water molecules

in the solution phase, while only ion-dipole interactions predominantly exist in the gas

phase. In the gas phase, the guest has to undergo a structural distortion in order to maxi-

mize ion-dipole interactions with the portal. The distortion is not needed in water because

it is compensated in solution through hydrogen bonding with water.

Figure 5: Pyridinium based structures for the formation of rotaxane and pseudorotaxanes with CB[6].

The high binding affinities of CB[6] towards aliphatic amines compared to aromatic

groups has led to various rotaxane and pseudorotaxane constructs, where the alkylamines

act as an axle and the CB[6], the wheel such as with 1,8-diaminooctane.54 A 1:1:1 system
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with CB[6] and cyclodextrin using a dihexylammonium guest has also been reported.55

Threads containing pyridinium and imidazolium moieties have also been widely reported

in contructing pseusorotaxanes and rotaxanes with CB[6]. For example, a [2]pseudoro-

taxane system was reported using structure A1, where the host is located over the hex-

amethyl chain of the guest. In a dynamic rotaxane derived from a CB[6] complex with a

bispyridinium guest (A2), CB[6] is able to shuttle between the two pyridinium groups.56

Self-assembly of pseudorotaxanes constructed with A3·CB[6]57 and A4·CB[6]58 have been

reported to form infinite hydrogen-bonded one-dimensional and two-dimensional net-

works. Other high order rotaxane-based structural frameworks have also been reported,59

including polypseudorotaxanes.60,61 He et al. have reported the formation of pseudoro-

taxanes with a series of bis-pyridinium compounds (see A5 in Figure 5), where the bind-

ing site of CB[6] could be tailored by increasing length of the chains at the two ends of the

guest.62

Several [3]rotaxanes have been reported based on imidazolium containing structures

(A664 and A765). Recently, photo-responsive dithienylethene-based rotaxanes (A8) were

constructed with CB[6].66 CB[6] has also been used to form water soluble [5]rotaxane

and [5]pseudorotaxane using a meso-tetraphenyl porphyrin (see A9 in Figure 6) with pH

driven switchable properties.63

These selective recognition properties of CB[6] were first ultilized by Kim and co-

workers in order to construct a fluorescent molecular switch based on a pseudo-rotaxane

structure.67 Various fluorescent sensors have been reported using the indicator-displacement

strategy with dye molecules derivatized with diamino-alkyl derivatives (see A10-A13 in

Figure 7), whereby the alkyl moiety anchors strongly inside the CB[6] cavity.68–70 Re-

cently, the fluorescence emission of pyrene was reported to get enhanced in the presence

of CB[6] as a result of external supramolecular interactions between pyrene and CB[6].71

CB[6] has also been used for the detection of 3,4-methylenedioxymethamphetamine, the

active constituent in ecstasy samples, using cyclic voltammetry.72
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Figure 6: Representative structures for the formation of rotaxane and pseudorotaxanes with CB[6].63

15



Figure 7: Alkyldiammonium-dye conjugates used for fluorescence sensor designs with CB[6]67–70

Catecholamines such as adrenaline73 and isoprenaline74 show distinct binding behav-

ior between CB[6]. In particular, a striking transformation of the crystals of the complex

from needle-like to prismatic structures can be observed over a period of a few days (Fig-

ure 8 a-c).73 This is attributed to the formation of a 1:1 CB[6]·adrenaline complex as a

kinetic product, which slowly evolves to form a 2:1 thermodynamically favored complex

(Figure 8 d,e). Furthermore, in the same study, binding between dimerized adrenaline

and CB[6] in acidic media was also reported (Figure 8f).

Characterization of the binding parameters for CB[6] and its guests is usually chal-

lenging in water owing to the poor aqueous solubility of CB[6]. A remarkable num-

ber of crystal structures, however, have been reported for CB[6]·guest complexes, which

provide important structural insights into the complexed adduct formation. While the

binding of CB[6] with aromatic compounds is surprising because of its smaller cavity di-

ameter, it is noteworthy that arylamines with suitable substituents are known to become

encapsulated within the CB[6] cavity.50 This remarkable observation is particularly clear

in the crystallographic structures reported for CB[6]·p-xylylenediammonium ion adducts,

whereby an ellipsoidal distortion of the host molecule upon guest encapsulation is clearly

observed,75,76 however differences may exist between solid and aqueous forms of this
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complex. Although CB[6] is typically unable to accommodate six-membered aromatic

rings, five membered aromatic rings such as thiophenes50 and furans77 are able to bind

to CB[6].

Figure 8: Pictures of crystals of CB[6]·adrenaline complexes after (a) 1 hour showing needle-like crystals;
(b) 2 days both needles and prisms; (c) 1 week only prisms. Schematic representation and crystal struc-
tures of different complexation modes of CB[6]·adrenaline showing (d) 1:1 kinetic complex, (e)1:2 thermo-
dynamic complex and (f) dimerized adrenaline under acidic medium. Figure adapted with permissions
from Danylyuk et al, Chem. Commun. 2013, 49, 1859-1861; All images reproduced with permission from The
Royal Society of Chemistry.

CB[6] is widely applied in separation science. For example, in a recent study, mono-

lithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) capillary columns were in-

corporated with CB[6] monorotaxanes for application in polymer monolith microextrac-
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tion to separate and preconcentrate nitroaromatics. These monoliths were used for trace

analysis of nitroaromatic compounds in blood and water with 83 to 107 percent recov-

ery.78 In another study, a new type of stationary phase was constructed using CB[6] in

combination with guanidinium-based ionic liquid.79

The ability of CB[n] to modulate chemical reactions has been known since the first re-

port of the acceleration of 1,3-dipolar cycloaddition reaction under the catalytic influence

of CB[6] reported by Mock et al.3 Moreover, using the inclusion of bromine and iodine

were previously reported by Nau and co-workers,80 Reddy et al have shown the applica-

tion of these halogen inclusion complexes such as I2-CB[6] for catalytic reactions and Br2-

CB[6] to achieve electrophilic bromination of benzene and formation of bromohydrin.81

Figure 9: Protection and deprotection of selenocystamine achieved by controlled supramolecular com-
plexation with CB[6]. Reproduced from Ren et al, ChemPhysChem 2015, 16, 523527, with permission from
John Wiley and sons, Inc.

Recently, the role of CB[6] in the protection of selenocystamine was demonstrated

against redox stimuli (Figure 9). The Se-Se bonds were shown to be stable in the presence

of CB[6] when exposed to H2O2, a strong oxidizing agent and tris(2-carboxyethyl)phosphine,

a strong reductant. CB[6] is able to modulate the reaction of the selenocystamine by en-

capsulating the Se-Se bonds inside its cavity. Selenocystamine forms a strong host-guest

complex with CB[6] under acidic conditions (pH 5.8) with a log K value of 6.7 at 25 ◦C as
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measured by ITC. The protection behavior was shown to be applicable over a wide range

of pH values (up to 11.8). Furthermore, the reactivity of selenocystamine guest could be

fully recovered through dissociation with CB[6] by adding BaCl2.82 The ability of CB[6]

to catalyze and template reactions will be discussed in greater detail in Section 11.

Several CB[6] ion adducts have been studied recently.83–90 Cd(II)·CB[6] complexes

have been studied comprehensively in an electrochemical study through competitive

binding with acetic acid, isobutylamine and 1,5 diaminopentane.86 The use of CB[6] ion

complexes are also emerging in materials chemistry, for example, as Sr(II)·CB[6] based

polymers87 and hexachloroplatinate (IV) anion·CB[6] based porous materials have been

reported.88 Theury et al. reported the formation of La+ ammoniocarboxylate complexes

with CB[6].83 Later, the luminescent properties of CB[6] coordination compounds with

La+ (Eu,Sm,Tb and Tm) were also investigated in acidic aqueous media.89 In another

study, a new mononuclear dysprosium(III)-cucurbit[6]uril complex was synthesized and

characterized structurally and magnetically.90 Chen et al. have also reported the CB[6]-

based capture of Cs+ cations.91

The binding of ions such as alkali metals at the portals of the CB[6] have been well-

known. In a previous study investigating the properties of CB[6] as a sorptive material

for (textile) dyes, the presence of cations such as Ca2+ or Sr2+ enhanced the binding of

the dyes to CB[6].92 On the contrary, in a study with methyl viologen and CB[6], where

methyl viologen is only able to interact with CB[6] externally, the presence of salt even

hindered these weak interactions between them.93 Molecular dynamic simulations also

show evidence of the preferential formation of CB[6]·Na+ complexes in the presence of

hexamethylene diammonium cations in saline solutions.94 Therefore, while the introduc-

tion of ions is often necessary in order to enhance the solubility of CB[6] in water, their

role as an interferent between CB[6] and binding with other organic guests cannot be

ignored.
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5 Specific binding properties of CB[7]

CB[7], the third member of the macrocyclic family, is large enough to form inclusion com-

plexes with guest molecules that are typically bulkier than simple aliphatic chains and gas

molecules that are usually encapsulated by the smaller homologues, CB[5] and CB[6].15

On account of it’s larger cavity size relative to CB[6], a much wider range of guests can be

recognized by CB[7] and encapsulated within, often exhibiting highly favorable binding

parameters, see Table 5. Specifically, CB[7] has a portal diameter of 5.4 Å and cavity di-

ameter of 7.3 Å, see Table 1.95 This affords CB[7] an inner cavity volume of 279 Å3, large

enough for the inclusion of simple three dimensional molecules such as ferrocene and

adamantylamine derivatives (see Figure 10 for examples), accompanied by high binding

constants (log K > 12). This occurs through excellent cavity filling effects, expelling all

‘high energy’ water molecules from the macrocycle core.41 These particularly impressive

binding constants are undoubtedly one reason for the large number of reports in recent

literature, with over 90 individual publications in 2014 alone.

Not only does CB[7] have a cavity size amenable to the encapsulation of sizeable guest

molecules, it also has a much greater aqueous solubility relative to other members of

the CB[n] family, exhibiting a water solubility 30 mM compared to 0.01 mM for CB[8]

(also large enough to encapsulate 3D guest molecules).15 This greater solubility, coupled

with the larger cavity volume has resulted in a variety of aqueous specific applications

of CB[7], particularly in drug encapsulation as described in a recent review.18 Drug en-

capsulation is not the only biomedical area where CB[7] has been utilized, numerous

reports from Urbach and others have highlighted binding of CB[7] to peptides, proteins,

biomolecules (i.e. neurotransmitters) and dyes, demonstrating applicability to highly ac-

curate bio-sensing applications at sub-nanomolar concentrations.96–98 CB[7]’s solubility

at usual drug therapeutic levels has also leant the macrocycle toward a wide range of

toxicity assessing studies, from in vitro studies to mouse and zebrafish models.99–102 Al-

though CB[7] is not the perfect representation of biocompatibility for all other members of
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Figure 10: Examples of first guests with high binding constants for CB[7].

the CB[n] family, the good degree of tolerability demonstrated in these studies is promis-

ing.

Because of these highly favorable binding equilibria, CB[7] has found other unique

uses, ranging from the assembly of supramolecular energy transfer motifs, stimuli re-

sponsive underwater adhesives, and catalysis.17,103,104 CB[7] literature has dramatically

expanded over the past decade and potential applications of the macrocycle are contin-

uously emerging. We expect to see vast progress and efforts in the area of controlled

functionalization and attachment of CB[7] receptors to a variety of materials, whereby

the CB[7] can be isolated within a material still allowing for high affinity binding.105
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6 Specific binding properties of CB[8]

The cavity volume of CB[8] is 479 Å3, which is similar to γ-CD and 1.7 times larger

than that of CB[7], and its binding properties parallel in many ways those of CB[5]-

CB[7].15 CB[8] displays relatively strong binding affinities towards bulky amphiphilic

positively charged guests including adamantane and ferrocene derivatives C1-C5 (bind-

ing constants were determined by competition with melamine-derived guest C6 for a

limiting quantity of CB[8], see Figure 11 and Table 6).106 It can also encapsulate larger

macrocyclic guests including cyclen(1,4,7,10-tetra/-aza/-cyclo/-do/-decane) and cyclam

(1,4,8,11-tetra/-aza/-cyclo/-tetra/-decane) (C7 and C8 in Figure 11), thus allowing for-

mation of a “macrocycle within macrocycle” complex.13 Kim and coworkers were able

to metalate the bound tetraaza macrocycles with Cu (II) and Zn (II) thus yielding Rus-

sian doll type metal ion complexes.107,108 This strategy has been further exploited to pre-

pare a large number of inclusion compounds of transition metal complexes including

nickel (II).109–111 The inclusion of the dimethylated cyclen C9 (Figure 11) has also been

reported.112 CB[8] has even shown the ability to bind larger guests such as fullerene,

forming complexes with two fullerene guests bound externally to the CB[8] portals, one

being bound to each portal.113 In the presence of CB[8], alkylammonium salts equipped

with long aliphatic chains, C10-C15, (Figure 11) bend and are incorporated inside the cav-

ity of the host by adopting a U-shaped conformation.114,115 When the same guests are in

the presence of the smaller CB[7], only the signals corresponding to the methylene pro-

tons near the charged group shift in the 1H NMR of the complex while the signals of the

protons at the terminal end of the guest chain, far away from the charged group, remains

unchanged. This suggests that the CB[7] sits nearby the ammonium group with the other

end of the guest sticking out of the macrocycle cavity. On the contrary, all the methylene

proton signals are shifted when in the presence of CB[8], suggesting that the larger width

of the CB[8] cavity allows the aliphatic chain to form a U-shape so that the entire guest can

be encapsulated. The U-shaped conformation of the guest inside the cavity of CB[8] was
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supported by x-ray crystal structures and ROESY NMR. The authors suggested that van

der Waals contact between the hydrophobic chain and the cavity can be the main cause of

the significantly large enthalpic gain over compensating the entropic penalty associated

to the conformational restriction of the U-shaped aliphatic chain. It has been nevertheless

suggested that dispersion interactions inside the CB[n] cavity do not present a signifi-

cant enthalpic driving force for guest inclusion.35 Other doubly charged alkylammonium

salts including 1,4-butylidene and 1,10-decylidenedipyridinium (C16 and C17 in Figure

11) and 1,12-dodecane diammonium (C18 in Figure 11), in the presence of one equivalent

of CB[8], also exhibit the previously described U-shaped folding of C10-C15.116,117 In the

case of C18, both charged groups bind to the same CB[8] portal with one water molecule

bridging the two ammonium groups.

The encapsulation of nitroxide derivatives inside CB[8] has recently been described on

several occasions by Kaifer, Lucarini, Tordo, Ouari, Turro, Ramamurthy and others.118–127

Lucarini and coworkers reported in 2009 the encapsulation of an amino-TEMPO nitrox-

ide derivative, C19, inside CB[8] and observed changes in the nitrogen hyperfine splitting

by Electron Paramagneting Resonance (EPR), which were attributed to the formation of

a host-guest complex.118 Furthermore, cooling of an aqueous solution of CB[8]·C19 from

room temperature to 5 ◦C led to the formation of a macroscopic fibrous network, which

exhibited the characteristic EPR spectrum of a polyradical (solid fibers). The authors sug-

gested the formation of the supramolecular ternary radical CB[8]3·C193 to explain the

EPR spectrum of the fibers dissolved in a NaCl (1 mM) aqueous solution at room tem-

perature. The existence of a supramolecular ternary radical was demonstrated by Tordo,

Ouari and coworkers, who used nitroxide C20 as a probe to investigate the binding prop-

erties of CB[8].119 These authors established the concentration-dependent aggregation

behavior of CB[7]·C20 and CB[8]·C20 and the formation of a CB[8]3·C203 trinitroxide

supraradical both in solution and in the solid state. Similar conclusions were obtained by

Turro, Ramamurthy and coworkers after investigating the interactions between CB[8] and
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Figure 11: Selected guests for CB[8].
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nitroxides C21-C23.120 Kaifer and coworkers have investigated the interaction between

CB[n] and a series of cobaltocenium and ferrocene derivatives incorporating nitroxide

units into their structures (see C24 to C28 in Figure 11).121–123 Nitroxide derivative C24

exhibits a bimodal binding interaction with CB[7] and CB[8]. While CB[7] prefers to bind

to the cobaltocenium group, CB[8] interacts with the nitroxide group forming a highly

stable host-guest complex (see Table 6). On the other hand, C25 contains two nitrox-

ide radicals thus allowing the quantitative formation of a ternary CB[8]2·C25 host-guest

complex at micromolar concentrations. The binding of CB[8] imparts rigidity to the final

supramolecular structure and effectively hinders any spin exchange coupling, which re-

sults in a simple three-line EPR spectrum of the complex. The ternary complex was even

characterized by solid state by X-ray diffraction. Tordo and coworkers have recently re-

ported the reversible modulation of the spin exchange interaction in tetranitroxide C29

controlled by the allosteric complexation of CB[8].124 Addition of CB[8] to an aqueous

solution of C29 transforms the nine line spectrum of the tetranitroxide into a three line

spectrum characteristic of a mononitroxide. The noncovalent interaction between CB[8]

and C29 involves a highly cooperative asymmetric complexation (logK1 = 3.60 M; logK2

= 5.30; α = 201) whereby two CB[8] molecules bind tightly to a single C29 guest leading to

a rigid complex with remote nitroxide moieties. The authors attribute the high allosteric

interaction energy (∆∆Gallos·C29 ≈ 13 kJ·mol−1) to a combination of different factors in-

cluding the pre-organized skeleton of the multivalent guest which is multiply H-bond

donating, a potential CB[8]-induced shift of the pKa of the internal amines and the in-

trinsic conformational properties of C29. The binding of the first CB[8] molecule in this

instance induces a large conformational change in the guest, which favors the binding of

the second CB[8] molecule.

Although the smaller homologues of the CB[n] family can bind only one guest in-

side the cavity, CB[8] is unique in its ability to bind two guests, as has been shown by

Kim and others.128–132 This rather unique binding property has been exploited in a wide
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variety of applications including novel supramolecular polymeric materials,133–135 catal-

ysis20,136–138 and sensing.98,139–141 CB[8] promotes (hetero)dimerization of two π-systems

in aqueous solution and Kim and coworkers have shown that CB[8]·C30 can bind to a va-

riety of other aromatic guests including 2,6-dihydroxynaphthalene, 1,4-dihydroxybenzene,

tyrosine, dopamine and thymine, phenylalanine, tryptophan, tryptophan derivatives and

tryptophan-containing peptides.128,129,142 Based on this concept, a CB[8] heteroternary

complexation strategy to the reversible PEGylation of bovine serum albumin and protein-

protein dimer formation was developed by Scherman et al.143 Brunsveld and coworkers

have also exploited this concept in protein-protein binding and protein-to-surface attach-

ment by using methylviologen and naphthalene-functionalized fluorescent proteins and

CB[8].144,145

Figure 12: Selected guests for CB[8] that can act as a first guest for heteroternary complex
formation.

Scherman et al. has studied in detail the equilibria of a series of ternary complexes

based on CB[8]·C30 and a wide variety of aromatic second guest molecules by ITC and

ESI-MS (see Table 8 and Figure 12). The binding constants were found to be between

logK= 2.00 - 6.00. An excellent agreement between solution-based titrations (ITC) and

gas-phase studies was found when free energies of solvation are taken into considera-

tion.146 Kaifer and coworkers have reported the formation of CB[8] ternary complexes

between 2,7-dimethyldiazapyrenium, as first guest, and catechol and dopamine as sec-
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ond guests.147 In an analogous fashion, 2,7-dimethyldiazaphenanthrenium can also form

ternary complexes, in the presence of CB[8], with tryptophan and serotonin.132 Scher-

man and coworkers have also identify a group of doubly charged molecules as potential

alternatives that increase the repertoire of first guests for CB[8]. These include tetram-

ethylbenzobis(imidazolium),148 aryl-bisimidazolium salts,149 aryl viologen derivatives42

and water-soluble perylene bis(diimides).150 The binding of dicationic dyes such as 2,7-

dimethyldiazapyrenium, as first guest to CB[8], has been cleverly used by Biedermann,

Nau and coworkers to construct a chirality sensor and peptide-sequence recognition sys-

tem at micromolar analyte concentrations.45,151

Alternatively to the previously mentioned heteroternary complexes, a number of guests

have been shown to undergo double encapsulation into CB[8] including napththyl deriva-

tives,4 coumarin,152 N-phenylpiperazine,153 9-aminoacridinium,154 neutral red,155 1-[2-

methylnaphthyl]-3-methylimidazolium,156 berberine,157 p-dimethylaminobenzonitrile,158

phenylpyridinium derivatives,159,160 bipyridinium salts,161 anthracene derivatives162,163

and some specific peptide sequences containing tryptophan or phenyalanine residues164,165

Some selected radical cations can also dimerize inside CB[8] in an analogous fash-

ion to homodimer complexes. Kim and coworkers described that a high affinity CB[8]

homoternary complex can be produced when methyl viologen is reduced to its radi-

cal cation species.142 Kaifer and coworkers have shown that CB[8] can be used to ex-

ert redox control over the dimerization of dendrons. For instance, dendrons containing

a dicationic viologen group at their focal point can form stable 1:1 inclusion complexes

with CB[8].166 Upon one electron reduction, the radical cation group of the dendron-

viologen species forms a dimer inside the CB[8] cavity, in analogy to simple viologen.

This idea has been further exploited to control the structure of dimeric dendritic as-

semblies from viologen- and dialkoxybenzne-dendrons.131 Another interesting example

of a redox CB[8]-mediated switch consist of an equimolar mixture of methylviologen,

TTF derivative C60 and CB[8]. This ternary mixture results in the formation of a het-
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eroternary complex CB[8]·MV2+·C60 potentially stabilized by electron-rich electron-poor

π − π stacking interactions.167 Upon treatment with Na2S2O4, viologen is reduced to

MV+•, which results in complex disproportionation yielding CB[8]·(MV+•)2. Exposure

to O2 returns the system to the parent heteroternary complex state. On the contrary,

treatment of CB[8]·MV2+·C60 with Fe(ClO4) oxidizes C60 to C60b+•, thus resulting in a

disproportionation to yield CB[8]·(C60b+•)2 as evidenced by UV/Vis spectroscopy. This

last transformation can be reverted upon addition of ascorbic acid. The ternary complex

CB[8]·MV2+·C60 can therefore be defined as a reversible molecular switch that exists in

three different states in a stimulus-dependent manner.

Figure 13: Selected guests for CB[8] that can undergo homodimerization.

7 Encapsulation of gaseous species in CB[n]

Cucurbiturils have shown great promise in applications that include polymer and nanopar-

ticle constructs because of their ability to sequester specific molecules within their unique
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inner cavities. This, in addition to cucurbiturils’ high chemical and thermal stability, has

driven researchers to utilize cucurbiturils in the area of gas encapsulation and storage.

Sorption of gases such as CO2, CO and CH4 could lead to effective green house gas

capture technologies, in addition to being incorporated into nanoparticle structures for

advanced sensing and photochemical applications.

In the area of gas sorption research, metal organic frameworks (MOFs) have garnered

interest. Along with porous coordination polymers (PCPs), MOFs have very high sur-

face areas and have demonstrated selectivity and capacity for adsorbing gases like CO2

making them competitive candidates for gas encapsulation.168 The issues that MOFs and

PCPs face is that they can be sensitive to water, which minimizes their utility in cleaning

flue gases. Cucurbiturils, on the other hand, are stable in the presence of water and are

easily made from cheap organic molecules, paving the way toward stable and effective

alternatives in gas sorption. They have demonstrated gas uptake capacities comparable

to some of the MOFs and PCPs.169,170

On account of the small nature of gaseous molecules, gas absorption tends to be fa-

vored by the smaller cucurbiturils. This is because the smaller inner cavities of CB[5] and

CB[6] favor encapsulation of small guests as compared to the larger internal cavities of

CB[7] and CB[8]. Furthermore, the solubilities of CB[5] and CB[6] have allowed their ap-

plication in sorption of gases in different ways, with the water soluble CB[5] finding use

in aqueous phase gas sorption, and the less soluble CB[6] being favored for use in pow-

dered form geared towards the cleaning of flue gases. However, CB[6] is not limited in

its use in aqueous phase gas sorption by its low aqueous-solubility because its solubility

can be enhanced in water through the use of alkali metal ions and water soluble guest

molecules. Also, it is readily soluble in strongly acidic solutions.25,69
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7.1 CB[5] gas sorption

A permethylated form of CB[5] (decamethylcucurbit[5]uril) has been shown by Miyahara

and co-workers to encapsulate a variety of gases in both solid form and in aqueous me-

dia.171 It was found that gases of intermediate size could be encapsulated within the cav-

ity of solid decamethylcucurbit[5]uril, such as N2, O2, Ar, N2O, CO and CO2, and readily

released upon heating, with N2O and CO2 being the most readily absorbed of the gases

(crystal structures shown in Figure 14). Smaller gases (He, Ne and H2) move too freely in

and out of the portals to be absorbed, and larger gases (Kr, Xe, and CH4) could also not

be encapsulated. In the aqueous phase, however, all of the aforementioned gases could

be absorbed, with the larger gases requiring heating to 80◦C to be incorporated. This sug-

gests that the solvent molecules play a role in encouraging the encapsulation of the larger

gases, as it is unlikely that the portal size of the CB[5] would increase significantly upon

heating as a result of the rigidity of the macrocycle.171

7.2 CB[6] gas sorption

Solid CB[6] has been shown to have an affinity for CO2 encapsulation, with a sorption ca-

pacity that is comparable to that of MOFs, including HKUST-1 and [Pd(2-pymo)2]n.170 In

2010, Kim et al. studied the CO2 sorption properties of solid CB[6], precipitated from HCl

with a honeycomb like crystal structure. Gas absorption isotherms for CO2, CH4 and CO

showed a high capacity for CO2 storage, and selectivity for CO2 over both CO and CH4,

with 45 cm3g−1 absorbed at 298 K (1 bar). This could be increased to 97 cm3/g−1 at 196 K

(1 bar). X-ray analysis of CB[6] after CO2 sorption demonstrated that CO2 was not only

bound to the inner cavity of the cucurbiturils, but also externally to the CB molecules via

hydrogen bonding and dipole-quadrupole interactions with the carbonyl portals (15(a)).

This demonstrated that the selectivity of solid CB[6] towards CO2 could be useful in re-

moving CO2 from flue gases.
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Figure 14: X-ray crystal structures of decamethylcucurbit[5]uril-gas complexes: a) He
complex, b) O2 complex, c) CO2 complex, d) CH4 complex, e) Kr complex, f) Xe complex.
Reproduced from Miyahara et al. Angew. Chem. Int. Ed. 2002, 41, 3020-3023171 with
permission from John Wiley and Sons, Inc.
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Continuing on from the work of Kim et al., Tian and co-workers successfully synthe-

sized three alternate crystalline forms of CB[6], termed forms I, II and III, via the mix-

ing of ethanol into a solution of CB[6] in 6 M HCl.172 Form I crystals were shown to be

in the monoclinic point group, with the CB[6] molecules stacking into a double bilayer

structure (Figure15(b)). Form III crystals were shown to be rhombohedral in nature, with

the molecules stacking in a bilayer structure Figure (15(c)), whilst form II crystals were

unable to be characterized by X-ray crystallography owing to difficulties in growing suit-

able crystals for diffraction. Despite this, form II exhibited the best thermal stability, with

forms I and III losing crystallinity upon heating, as well as the highest surface area, with

BET isotherms yielding values of 276 m2g−1. The high surface area and thermal stability

of form II gives the material promise in gas storage applications, with 76 cm3g−1 of CO2

uptake at 298 K (1 bar). Although more focused on catalytic applications, Reddy et al.

demonstrated that solid CB[6] has a propensity to absorb I2 and Br2 vapor, leading to dis-

tinctly colored CB[6]-halogen powders.81 The catalytic properties of these materials shall

be discussed in Section 11.

Whilst pure CB[6] is generally not suitable for gas encapsulation in aqueous environ-

ments because of its inherently low solubility, it can be made soluble through the use of

metal ions, aliphatic or aromatic ammonium ions, or neutral saline aqueous solutions. In

such environments, CB[6] has been demonstrated to encapsulate Xe,173,174 SF6
175,176 as

well as gaseous alkanes and alkenes.69

El Haouaj et al. demonstrated the encapsulation of Xe by CB[6] in a 0.2 M solution

of Na2SO4, with binding constants ranging from 2.1× 102 M−1 (although 3.4× 102 M−1

has been reported for an alkylated CB[6] with higher water solubility177). The reversible

binding was confirmed through 1H and 129Xe NMR, and it was shown that pH played

little role in the sorption of the noble gas. SF6 has also been shown to be encapsulated

in aqueous CB[6], however binding constants vary.175,176 The first report of SF6 binding,

confirmed via 19F NMR, yielded a binding of 3.1× 104M−1 in 0.2 M Na2SO4, however,
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(a)

(b)

(c)

Figure 15: (a)X-ray crystal structures of CB[6]-CO2 binding at different sorption sites.
(b) Crystal structure of CB[6] arrange in the Form I lattice. (c) Crystal structure of CB[5]
arranged in the Form III lattice. (a) Reprinted with permission from Kim et al. J. Am.
Chem. Soc. 2010 132, 12200.170 Copyright 2010 American Chemical Society. (b) and (c)
reproduced from Tian et al. CrystEngComm 2013 15, 1528-1531172 with permission from
The Royal Society of Chemistry.
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binding in pure water yields a binding constant of 6.6× 105M−1.176 The higher binding

constant in pure water could be attributed to the absence of cations in the solution, which

would potentially block the carbonyl portals of the CB[6] and perturb gas encapsulation.

Figure 16: Fluorescent dye displacement method for gas sensing in aquesous solutions of
CB[6]. Reproduced from Florea et al. Angew. Chem. Int. Ed. 2011 50, 9338-934269 with
permission from John Wiley and Sons, Inc.

The difficulty of determining binding constants for gases in aqueous CB[6] systems

arises from the low solubility of CB[6] in water. 5 To overcome this, Florea et al. adopted

a dye displacement titration method for measuring the binding constants of hydrocarbon

gases (see Figure 16 for schematic).69 A compound with a putrescine moiety for binding

to CB[6], tethered to a 1-naphtylamine-5-sulphonic acid chromophore was used as the

displacement dye because of the enhancement in its fluorescence upon binding to CB[6]

and its ability to dramatically increase the solubility of CB[6] in water. The fluorescence

of the dye was monitored as gases were introduced into the aqueous system and binding

constants were calculated from the final fluorescence intensity, assuming 1:1 stoichiomet-

ric binding. Binding constants ranged from < 2M−1 for methane and neopentane up to

1300± 300 M−1 for cyclopentane (binding constants from the cited work can be found in
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Table 3).

7.3 Gas sorption in higher CB[n] homologues

To date there has only been one report on gas sorption in CB[7], which has shown a high

sorption capacity for various gases, including CO2, SO2, and H2S.169 Of the three gases,

SO2 showed the highest capacity for being absorbed, with uptake as high as 105cm3g−1,

followed by H2S (62.5cm3g−1) and CO2 (50cm3g−1). Although CH4 and N2 were tested,

low uptakes of 5.5 − 6cm3g−1 were observed. Reports of gas absorption in CB[8] and

CB[10] have not yet appeared.
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8 Cucurbit[n]urils on surfaces

The influence of the overall electrostatic potential map of CB[n] on its molecular encap-

sulation properties is evident. The high electron density at its carbonyl portals, however,

governs the external interactions of CB[n] with materials such as cations and metallic sur-

faces (Figure 17a). The latter property is increasingly drawing attention for applications

ranging from nanoparticle synthesis, assembly, catalysis and plasmon-assisted molecu-

lar sensing. In addition, CB[n] can also be localized at interfaces through interactions

with immobilized guests on surfaces (Figure 17b), as well as by covalently linking func-

tionalized homologues of CB[n] directly to a surface (Figure 17c). Although electrostatic

interactions of CB[n] are mainly limited to metallic substrates, the other two types of bind-

ing strategies are applicable to other substrates such as silica and quantum dots. These

interactions have been applied successfully to design novel sensors and reversible archi-

tectures. Progress in these fields will be discussed in this section.

Figure 17: Strategies used for immobilizing CB[n] on various substrates: (a) carbonyl portal mediated
binding electrostatic interactions (b) threading of CB[n] through guests tethered on the surface and (c) direct
linking using functionalized homologues of CB[n].

8.1 Electrostatic interactions

The direct supramolecular interaction of CB[n] with gold was first successfully character-

ized by An Q. et al. in 2008,178 where the interaction between gold nanoparticle colloids

and CB[n] was established using TEM and UV-vis characterization. CB[n] acted as a ‘glue’
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between adjacent nanoparticles, resulting in the formation of coagulates (Figure 18a,b). In

a further step, the formation of CB[7] self-assembled monolayers was achieved simply by

dipping a planar gold substrate into a saturated aqueous solution of CB[7]. The CB[7]

molecules physisorb on the gold surface. Surface characterization techniques, including

Fourier transform IR reflection absorption spectroscopy and XPS indicated that the in-

teractions between CB[7] and gold occurred through the electronegative carbonyl portals

of CB[7], where the CB[7] portals were oriented in a perpendicular fashion with respect

to the gold surface (Figure 18c). In the same study, the surface packing of CB[7] was

estimated to be > 48% using an indirect electrochemical method, nevertheless, the true

density of CB[n] molecules on flat metallic surfaces remain unascertained.

Figure 18: (a) CB[n] acts as a ‘glue’ in between gold nanoparticles forming nanoparticle coagulates, (b) the
nanoparticles are held apart by CB[n] molecules at a precise distance of 0.9 nm, (c) CB[n]s bind to metallic
surfaces through its carbonyl portals and are oriented perpendicular with respect to the gold surface.

Modification and assembly of nanoparticles with CB[n]: Despite the limited funda-

mental knowledge about CB[n] interactions with metallic surfaces, particularly in col-

loidal systems, CB[n] has been shown to be useful in the synthesis of nanoparticles,

mainly as a ‘capping agent’ or ‘stabilizing ligand’. The first synthesis of CB[n]-assisted

nanoparticles was reported by Geckeler et al., where CuO nanoparticles (diameter v5 nm)

were formed using precursor-encapsulated CB[7].179 The same group later reported a
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one-pot synthesis of silver180 and gold nanoparticles181 by the reaction of aqueous CB[7]

solutions, containing the respective precursor salts and NaOH, at room temperature. In

both cases, CB[7] acted as a stabilizing ligand and generated well-dispersed nanoparti-

cles. Since no additional reducing agents were used, the role of CB[7] as a reducing agent,

in addition to stabilizing ligand, in nanoparticle synthesis was also established. How-

ever, it should be noted that the oxidized organic species resulting from the salt reduction

remains unidentified. The same applies to the reaction mechanism.

In the same year, Scherman et al. reported the formation of dynamic aggregates of

gold nanoparticles using CB[5].182 In this case, the nanoparticles were prepared in the

presence of a reducing agent as well as CB[5], where concurrent with other reports,180,181

CB[5] was once again shown to act as a capping agent. The sizes of these aggregates

could be controlled by varying the ratio between CB[5] and the gold precursor and was

based on the interactions of one or both carbonyl portals of the CB[5] molecules. The

symmetric structure of the CB[n] is of particular importance to allow the CB[5] molecules

to bridge two nanoparticles. The aggregation process was monitored by measuring the

changes in the surface plasmon resonance of the colloidal solution. Typically, monodis-

perse gold nanoparticles absorb in the green region of the visible spectrum and appear

as red solutions. Upon aggregation, the absorbance signal undergoes a red-shift and the

solutions appear purple or blue instead. The kinetic evolution of these plasmonic modes

were reported later in greater detail.183

This was followed by another study, where CB[5], CB[7] as well as the less water

soluble homologues, CB[6] and CB[8], were also investigated as capping agents using

metastable gold nanoparticles.184 Importantly, the interparticle spacing between neigh-

boring nanoparticles was confirmed by TEM to be approximately 1 nm, which is con-

sistent with the height of CB[n] molecules. This further indicates the portal-to-metal in-

teractions between CB[n] and gold. The longer stability (v 3 months) of the resulting

nanoparticles was further attributed to the presence of sodium atoms bound to the car-
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bonyl portals of the CB[5] ligands. Once again, the aggregates exhibited reversible control

as before.

More recently, CB[7]-stabilized gold nanoparticles were synthesized in order to demon-

strate the increase in catalytic efficiency of nanoparticles free from organic ligands and

metal cations.185 The stabilization of silver nanoparticles with CB[n] homologues have

also been further investigated,186 whereby computational studies supported the assump-

tion that the stabilizing effect of CB[7] is a result of lateral interactions between the oxygen

atoms at the CB[7] carbonylated rim and the metal surface.

It is noteworthy, however, that the role of CB[n] capped gold nanoparticles is not re-

stricted to stabilization of nanoparticles. Plasmonic coupling between aggregated nanopar-

ticles affects their optical response and leads to strongly enhanced electric fields in the

gaps between them.187,188The magnitude of those fields increases near-exponentially as

the distance between the particles is reduced and is limited only by electron tunneling for

gaps below ∼0.5 nm.189–193 Owing to the symmetrical geometry of CB[n], the presence

of CB[n] in between nanoparticles ensures that they are held precisely 0.9 nm apart from

each other (Figure 18c).183 This provides both extremely high and reproducible local field

enhancements in the gap junctions194,195 while maintaining an accessible gap for small

molecules.139,141 Since such precision at these scales is not easily achievable, physicists

have to predominantly rely on theoretical simulations in order to understand the optics

at such nanoscale regimes. Therefore, CB[n] provides a support handle to experimentally

investigate the plasmon modes and near-field properties of nanoparticle clusters with

well-defined separations.196

The precise gap distances between adjacent nanoparticles produced by CB[n] has fur-

ther useful implications. For example, these CB[n]-gold nanoparticle hybrids have been

utilized to create near-identical, continuous strings of nanoparticles joined by a conduct-

ing gold thread.197 In this study, precise control over the formation of the nanomate-

rial was achieved on a large scale by irradiating the CB[n]-mediated nanoparticle assem-
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blies with a suitable femtosecond pulsed laser. As a result of high field intensities in

the gap-junctions between the nanoparticles, the surface atoms are drawn into the gap

through optical forces and non-thermal melting and form solid metal threads between

the particles. The extreme enhanced fields in the crevices of the resulting threads open

up prospects for applications of these metamaterials in photovoltaics and sensing probe

construction.

In consideration of the interesting plasmonic and electronic properties afforded by

CB[n]-mediated gold nanoparticle assemblies, sophisticated strategies have been devel-

oped in order to control the morphologies of these clusters. One such strategy allows

the well-defined growth of one-dimensional chains of gold nanospheres, spaced by CB[n]

molecules.198 This is achieved in a chamber consisting of gold nanoparticles and CB[n] so-

lution separated by a nanoporous polycarbonate membrane. The one-dimensional chains

are then formed at the membrane interface, by the electrophoretic flow of the nanoparti-

cles under an applied voltage and the electroosmotic flow of the CB[n] (Figure 19).

End-to-end gold nanorod alignments can also be formed through CB[n] linkers.199

Centrifugation of CTAB-coated gold nanorod solutions preferentially destabilizes the CTAB

bilayer at the curved {111} end facets of the nanorods. Therefore, upon subsequent addi-

tion, CB[5] is only able to interact with the nanorod ends, consequently forming nanorod

chain-like topologies. The surface plasmon resonance bands of gold nanorods can be

tuned over a wider range than those of non-anisotropic analogues, making them interest-

ing candidates for plasmonic applications.

SERS Sensing An important property of CB[n] interactions with metallic surfaces is

its ability to retain its molecular recognition properties. In other words, CB[n] can fa-

cilitate guest molecules from the bulk solution to approach the metal-liquid interface by

acting as a ‘receptor’ on the surface. Surface-dependent phenomena, such as catalysis

and surface-enhanced spectroscopic (SERS) techniques, generally require molecules to

be localized near the surfaces and often rely on the innate affinity of the molecules to-
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Figure 19: (a) Formation of one-dimensional chains of gold nanoparticles using an electrophoresis cell,
where a nanoporous polycarbonate membrane separates two compartments containing gold nanoparticles
and CB[7] respectively. (b) Nanoparticle chains are formed through synergistic electroosmotic flow of CB[7]
and electrophoretic motion of the gold nanoparticles. Reprinted with permission from Hüsken et al. Nano
Lett. 2013 13, 6016-6022.198 Copyright 2013 American Chemical Society.
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wards these surfaces. Since not all molecules of interest interact with surfaces sponta-

neously, covalent functionalization strategies are often used to immobilize them on sur-

faces. However, such strategies usually reduce the direct interactions of the molecules

with the surface, thereby interfering with the efficiency of the surface processes. There-

fore, it is evident that the ability of CB[n] to confine molecules of interest near the surface

has dramatic significance in surface-dependent mechanisms.

The molecular recognition properties of CB[n] can be harnessed for sensing with SERS.98,139–141,183,200

In brief, Raman spectroscopy is a vibrational technique, which probes the inelastic scat-

tering of photons with molecules and is able to provide a unique fingerprint for each

analyte. While this method is comparable to infrared spectroscopy, the lack of interfer-

ence from water molecules (in the fingerprint region) makes this method desirable for

probing chemical structures, particularly in aqueous environments. However, the inher-

ent weakness of Raman signals requires the use of enhancement mechanisms, such as

the use of plasmonic surfaces, to improve sensitivity. One particularly popular approach

is surface-enhanced Raman spectroscopy and the reader is referred to literature on this

topic for further details.201–204

Although Raman spectroscopy was used as an analytical method to characterize en-

capsulation of a polymer in multiple CB[n] units,205 the first report of a detailed study of

the Raman and SERS signature of CB[n] appeared in the literature 2010.206 Clearly iden-

tifiable peaks for CB[n] are observed in the fingerprint region (400 cm−1 to 2000 cm−1)

of the Raman spectra (Figure 20). Two characteristic intense signals at approximately

450 cm−1 and 830 cm−1 are attributed to complex ring breathing modes of the CB[n]

molecules. Interestingly, these signals show slight red and blue shifts, respectively, with

an increase in the ring sizes of the different CB[n] homologues. The same signals and

a similar trend in peak shifts is observed in the corresponding SERS spectra. A SERS

enhacement factor of 107-109 is achieved with CB[n]:gold nanoparticle aggregates.183,200

SERS-based sensing of a dye molecule, Rhodamine 6G (Rh6G), with the aforemen-
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Figure 20: Raman spectra of CB[n] showing characteristic signals between 400 cm−1 to 2000 cm−1. Re-
produced from Mahajan et al. Phys. Chem. Chem. Phys. 2010, 12, 10429-10433.206 with permission from The
Royal Society of Chemistry.

tioned CB[7]:gold nanoparticle constructs was first demonstrated by Scherman et al. in

2011.183 CB[7] binds to Rh6G in a 1:1 stoichiometric ratio (Ka > 5×104 M−1).207 Besides

acting as an aggregating agent to glue together adjacent gold nanoparticles, CB[n] posi-

tions the guest molecules precisely at the point of closest approach between nanoparticles,

which is where the highest field enhancement occurs, also known as a‘hot-spot’. This role

of CB[n] is particularly significant because by bringing the analyte in the hot-spot, even

molecules with low Raman cross-sections undergo tremendous enhancement. For exam-

ple, another SERS-study used neutral ferrocene with CB[7] (Figure 21).200 In addition, fer-

rocene does not have an affinity for gold surfaces but can be localized in the hot-spot using

CB[7]. In this case, a three-step approach was used to prepare the SERS substrates, where

firstly, gold nanoparticles were assembled on amino-functionalized glass. Ferrocene en-

capsulated CB[7] was then physisorbed on the substrate, followed by another layer of Au

nanoparticles. As a result, gold nanoparticle clusters, predominantly dimers and trimers,

were obtained on the glass surface with ferrocene encapsulated CB[7] in the hot-spot re-
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gions.

Figure 21: Formation of uniform hot-spots and localization of analytes in them for efficient surface-
enhanced Raman spectroscopy through aggregation of gold nanoparticles with CB[n]. Reproduced from
Tao et al. Chem. Commun. 2011 47, 9867-9869200 with permission from The Royal Society of Chemistry.

The utility of this SERS based sensor has been extended to studying CB[n] host-guest

chemistry. Computational studies had shown that CB[n], particularly CB[7], is expected

to undergo a subtle structural distortion on encapsulation of a guest.208 These struc-

tural changes are evident in the SERS specta of CB[n] complexes and are observed in

the SERS spectra as slightly shifted peaks.139 These structural changes are not as appar-

ent in the solid-state Raman spectra of the complexes. These changes, however, are more

pronounced in the Raman signals of the guest molecules.209 Not only did these results

present experimental evidence to support the outcomes of the theoretical predictions, the

shifted and unshifted signals also provided a tool to be able to distinguish the amounts

of complexed and uncomplexed CB[n]s. Therefore, the system could be used for charac-

terizing CB[n] host-guest binding parameters as well as absolute quantification of guest

analytes, such as polyaromatic hydrocarbons.139 Roldán et al. reported the use of this

strategy, using silver nanoparticles, for the detection of pH dependent changes in the

complexation behavior of diquat with CB[8].140 The system has also been used to moni-

tor the real-time photodimerzation of diaminostilbene inside the CB[n] cavity in situ.141

One of the advantages of the SERS technique is its ability to resolve analytes in a mix-

ture, which is particularly advantageous for structurally similar molecules. CB[n] com-

pliments this property of SERS by acting as a receptor for several molecular analogues.
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A recent report used this property to test the multiplexing abilities of CB[n] in sensing

structurally similar metabolites in urine.98

Figure 22: Immobilization of ferrocene ligated yellow fluorescent protein on gold surfaces through inter-
action of ferrocene guests with the CB[7] monolayer. Reproduced from Young et al. ChemBioChem 2010 11,
180-183.210 with permission from John Wiley and Sons, Inc.

Localization of ligands CB[n] adsorbed to gold surfaces have also been used as a

platform for immobilizing biomolecules.210 In this case, methyl ferrocene was function-

alized with a glycol spacer and a cysteine end-group for ligation with a yellow fluo-

rescent protein thioester (YFP) (Figure 22). The protein could then be immobilized on

SAMs of CB[7] on gold surfaces through the strong interactions with the ferrocene moi-

ety. The proteins from the surfaces could be displaced by using a competitive guest, such

as (ferrocenylmethyl)trimethyl-ammonium iodide (K = 1011 M−1). This strategy gave ac-

cess to a strong, reversible and uniform protein immobilization on surfaces. Similarly,

SNAP-fusion cyan fluorescent protein functionalized with ferrocene was immobilized

on SAMs of CB[7], generating fluorescent patterns on the surfaces.211 This method was

then developed further to immobilize cells on CB[7]-coated surfaces using cyclic RGD

peptide-ferrocene conjugates.212 The RGD peptide allows enhanced cell adhesion and

wound healing. The studies showed that the cells remained viable on the surfaces when

linked via RGD. In addition, a wound assay also showed successful cell recovery within
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8 hours.

CB[7] has also been used to physisorb unsubstituted methylviologens onto the surface

of TiO2 semiconductor nanoparticle films. The redox-active properties of the viologen

guests were further used to prepare electrochromic windows that exhibited reversible

color switching under applied potential.213

8.2 Guest-mediated interactions

Direct supramolecular interactions of surfaces with CB[n] has undoubtedly opened up av-

enues for various promising applications, but controlling these spontaneous interactions

remains challenging. One strategy, which is widely being reported to gain precise control

over the behavior of CB[n] near surfaces, is to covalently functionalize the surfaces with

molecular structures containing guest moieties. The guest mediated interaction of CB[n]

with the surfaces also provide additional handles for stimuli-responsive and reversible

architectures, and is particularly attractive for designing colloidal systems.

The earliest example of such a system was illustrated through the construction of a

pseudorotaxane self-assembled monolayer on a planar gold surface using CB[6]. The

molecular thread was anchored on a gold surface through a 1,2-dithiolane functionality,

whereas its diaminobutane unit allowed binding to CB[6] (Figure 23). The threading of

CB[6] could then be controlled by changing the pH of the system. Furthermore, the pseu-

dorotaxane acted as a gate to control the access of an electroactive species, [Fe(CN)6]3−,

to the gold surface.214 Similarly, gold nanorods decorated with a hydrophilic CB[7]-based

pseudorotaxane have also been prepared.215

In another example, this method was used to disrupt aggregation of dye molecules

on surfaces where high density Rhodamine B functionalized glass slides showed a higher

degree of heterogeneity and fluorescence quenching. The addition of CB[7] reduced the

heterogeneity and increased the emission significantly to match that of monomeric Rho-

damine B species.216 More recently, glassy carbon electrodes were modified with CB[7]
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Figure 23: Self-assembled monolayer of pseudorotaxane on gold surfaces and dethreading and rethread-
ing of molecular bead CB[6]. Adapted from Kim et al. Angew. Chem. Int. Ed., 2003, 42, 2395-2398214 with
permission from John Wiley and Sons, Inc.

in order to construct a sensor for glucose sensing using glucose oxidase as a catalyst.217

In this case, however, a graphene oxide layer on the electrode was used to enhance the

stability of the CB[7] on the surface. Ferrocenemonocarboxylic acid, the electron transfer

mediator can then be captured through molecular recognition by CB[7]. The applicability

of this sensor was demonstrated in human serum samples.

Ligand immobilization Based on the finding that CB[8] is able to induce aggrega-

tion in proteins in aqueous solutions, a layer-by-layer construction of homo- and hetero-

protein stacks on surfaces has been reported (Figure 24).218 In this study, a quartz glass

substrate was first modified with amino groups using 3-aminopropyltriethoxysilane. The

formation of multiple layers of hemoglobin was then achieved by alternately immers-

ing the substrate in solutions of CB[8] and protein. The CB[8] acted as a ‘glue’ within

the proteins stacks. The lack of need to pre-treat or modify the proteins was particu-

larly highlighted in this work by verification of this strategy with several unmodified

proteins such as catalase, glutathione-S-transferase agents and insulin. Recently, Rotello

and co-workers were able to regulate the interactions between green fluorescent protein

and monolayer coated gold nanoparticles using CB[7].219 The threading of CB[7] on the

surfaces of the nanoparticles led to an increased affinity for the proteins. The authors

consider this to be an outcome of the increased cationic charge on the nanoparticle sur-

face based on the slightly positive charge on the outer surface of the equatorial region of
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CB[7]. However, potential repulsion from the negatively charged carbonyl portals was

not accounted for in this proposed mechanism.

Figure 24: Layer-by-layer construction of protein stacks on surfaces using CB[8] ‘glue’ molecules. Repro-
duced from Yang et al. Chem. Commun. 2012 48, 10633–10635218 with permission from the Royal Society of
Chemistry.

Scherman et al. have reported the utility of viologen functionalized gold substrates

using CB[8] as a supramolecular ‘handcuff’ for patterning surfaces with polymeric col-

loids. Both 1D and 2D patterns were attained.220 The same group also described a system

where orthogonal switching was achieved controllably and reversibly by using redox-

and photo-responsive guest molecules and CB[8].221 In this system, a SAM of thiol-containing

azobenzene derivatives was immobilized on a gold substrate by micro-contact printing.

Methyl viologen conjugated with fluorescein dye could be assembled on the surface from

solution via CB[8] ‘handcuffs’ to afford spontaneously formed 2D-fluorescent patterns.

UV-irradiation of the surface converted the azobenzenes to their cis-configuration, which

in turn dissociated the second guest from the CB[8] to turn off the fluorescence. This pro-

cess could be reversed by irradiation with visible light to covert the azobenzene moieties

back to their trans-state. Redox-controlled reversibility of the ternary complex formation

provided orthogonal control over the system. In a more recent study, a facile method was

reported for the preparation of rotaxanes on gold based on CB[8] threaded onto a violo-

gen axle, Figure 25.222 These surface bound rotaxanes yielded an interlocked structure,

which prevented the dissociation of the binary complex MV2+·CB[8]. The stability of the
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functional surface was thus maintained for binding with electron-rich second guests for

CB[8] such as small molecules like dopamine and pre-functionalized colloidal particles.

Figure 25: (a) Redox-controlled ternary complexation of (MV2+·DA)·CB[8] on the Au surface and (b)
Redox-controlled and photoresponsive ternary complex formation of (MV2+·Azo)·CB[8] on the Au surface.
Adapted from Hu et al. Langmuir 2014 30, 10926–10932.222 Copyright 2014 American Chemical Society.

Self-assembled architechtures The ternary complex formation ability of CB[8] has

been used to form and control end-to-end assemblies of gold nanorods.223 This was ac-

complished by first preparing viologen end-functionalized gold nanorods. Then telechelic

linker molecules carrying second guest moieties were added to these gold nanorods in

the presence of CB[8] to form aligned chains. The rigidity of the resulting chains could

be controlled by changing the length of the linker molecules. Another example of repro-

ducible SERS with colloids was demonstrated using gold nanoparticles pre-coated with

cystamine using CB[6] as linkers to generate gold nanoparticle dimers.224

A colorimetric assay for protein detection was reported based on CB[8]-induced for-

mation of bulky aggregates of functionalized gold nanoparticles.225 This was achieved by

modifying the gold nanoparticles with peptides containing N-terminal aromatic residues,

which can be accommodated inside the CB[8] cavity. CB[8] is only able to bind to the

peptide in the absence of the target protein, inducing a visible color change in the gold

nanoparticle solution. The feasibility of this system has been shown in spiked serum

samples with a detection limit of 0.2 nM.

CB[8] has also been used to link methyl viologen functionalized polymeric nanoparti-

cles onto silica cores decorated with 4-hydroxyazobenzene moeities, to yield hybrid ‘rasp-
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berry’ colloidal structures in water (Figure 26).226 The presence of azobenzene groups

allow reversible assembly and disassembly of the constructs with photo irradiation.

Figure 26: Formation and reversible assembly of hybrid raspberry colloids through CB[8] ternary com-
plexes. Reproduced from Lan et al. Angew. Chem. Int. Ed. 2014 53, 2166–2169 with permission from John
Wiley and Sons, Inc.

Nanovalves Pioneered by Stoddart and co-workers, CB[n]-based pseudorotaxane sys-

tems on mesoporous silica has made substantial contributions in the field of gated nanochem-

istry.227–230 The release of molecular cargo from mesoporous silica nanoparticles (MNPs)

are achieved by blocking and unblocking the silica pores by using CB[n] as a gating moi-

ety. Early reports were based on pH dependent actuation of the MNPs.231 Increasing

levels of sophistication were steadily introduced to these systems by addition of fea-

tures such as tuning of the pH at which the MNPs responded,232 dual-stimuli constructs

capable of exhibiting logic233 and magnetic activation.234 Later, CB[7]-based gating be-

havior235,236 and alternative approaches to activate the nanovalves were also published.

These include competitive binding,235 enzyme-triggered systems,236 reductive chemistry

(cleavage of disulfide bonds)237 and light-response.238
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8.3 Covalent immobilization

Revefersibility in the binding of CB[n] to surfaces may not always be desirable in order

to achieve better stability and recovery of functionality of the surfaces. Evidently, among

the various strategies that have been explored to link CB[n] and surfaces, the ability to

functionalize CB[n] has been pivotal in addressing these requirements.

Covalently anchored CB[7] on gold surfaces was first reported for the construction

of a glucose sensor.239 The system was constructed by attachment of allyloxy-CB[7] on

vinyl-terminated alkanethiolate SAMs using olefin cross-metathesis. Ferrocenylated glu-

cose oxidaze (GOx) was subsequently immobilized on the surface by means of strong

Fc·CB[7] host-guest interactions. Glucose concentrations could then be monitored elec-

trochemically using this construct. The modification of quantum dots with functionalized

CB[6] using thiol linker groups has been reported to significantly improve the chemical

and physical stabilities of quantum dots.240

In another example, the utility of functionalized CB[n] on surfaces was elegantly demon-

strated by Kim and co-workers in the development of synthetic adhesives, which are

functional even under water.104 Their velcro-type system is based on a ‘hook-and-loop’

approach where a silicon surface functionalized with CB[7] was used to loop around the

guest ‘hooks’ immobilized on a second silicon surface. In order to immobilize the CB[7],

alkene functionalized monoallyloxy-CB[7] was attached to thiol-decorated Si surfaces in

a thiol-ene reaction. The guests 1,1’-bis(trimethylammoniomethyl)ferrocene (BFc) and

aminomethylferrocene (Fc) were chosen on account of their particularly high binding

affinities for CB[7] in water at 1012 and 1015 M-1, respectively. Tunability of adhesive-

ness was achieved through varying the densities of ‘hooks’ and ‘loops’ on the surfaces to

control the number of multivalent interactions between the two silicon surfaces. A rea-

sonable level of reversibility was also shown with this adhesive through both chemical

and mechanical means. It is noteworthy that water molecules often act as a contaminating

agent in conventional synthetic adhesives for use under water. On the contrary, this par-
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ticular CB[n]-based approach relies on the expulsion of water molecules in the formation

of the CB[7]-guest complexes to fabricate the desired synthetic adhesives.

CB[n]-anchored silica The use of CB[n] anchored silica has been widely reported in

separation science. The production of CB[n]-based stationary phase materials and their

use in chromatography was disclosed in patents by Kim and co-workers.241 The separa-

tion of several organic compounds, such as alkaloids, alkanes, aromatic hydrocarbons,

alcohols, esters, ketones and amines using silica gel grafted with perhydroxy-CB[6] has

been described in the literature.242,243 However, this method suffers from the presence of

excess potassium sulfate, which hinders immobilization. In order to address this draw-

back, another method to fabricate functionalized silica using perallyloxy-CB[6] has also

been developed.244 Additionally, silica-CB[n] hybrids prepared using a sol-gel approach

also yields stationary phases for efficient chromatographic separations.245–247

As an alternative to using covalently modified CB[n], another method to functionalize

CB[7] on surfaces has been reported using a photochemical reaction with azido groups

(Figure 27).248 In this strategy, silica substrates were first modified with 3-amino-propyl-

tri-ethoxy-silane to introduce amino groups on the surface. The primary amine was

then reacted with 4-azidobenzoic acid, in the presence of 1-(3-dimethylaminopropyl)-3-

ethylcarbodiimide hydrochloride at basic pH. The azido groups were then exposed to

CB[7] and reacted under UV irradiation for 10 min to form covalent linkages. While the

mechanism of the functionalization could not be elucidated, the authors propose the for-

mation of the highly reactive singlet nitrenes from the azido groups upon UV irradiation.

This is followed by their subsequent insertion into the equatorial C-H bonds of CB[7].

Lastly, functionalization of electrodes for better analytical performance has been demon-

strated using CB[n]. One such study particularly exploits the molecular recognition prop-

erties of CB[8] to enhance the selectivity and sensitivity of the electrochemical determina-

tion of tryptophan.249 In brief, the glassy carbon electrode was modified by exposing it to

a suspension of Nafion and CB[8]. The nature of interaction with CB[8] in the construction
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Figure 27: Immobilization of CB[7] on a silica substrate through photochemical reaction with azides.
(APTES) 3-aminopropyltriethoxy-silane, (PA) 4-azidobenzoic acid, (EDC) 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide hydrochloride, (AO) Acridine Orange, (Ad) 1-adamantanecarboxylic acid. Reproduced
from Zhu et al. Chem. Commun. 2013 49, 8093-8095. with permission from the Royal Society of Chemistry.

of this system, however, has not been studied and remains unclear. Studies with common

interferents such as acetylcholine (ACh), ascorbic acid (Asc) and different amino acids

namely, D-phenylalanine (Phe), L-tyrosine (L-Tyr) or L-cysteine (L-Cys), arginine (Arg)

and lysine (Lys) showed that Phe, Arg and Lys showed a decrease in the electrochemical

signal when present at a minimum of 5-fold concentrations to that of Trp, while L-Tyr

could be determined simultaneously with the concentration of Trp. The system was also

shown to work in human serum, but there remains room for improvement in the repro-

ducibility for real-life applications.

8.4 Characterization of CB[n] host-guest binding on surfaces

In the systems involving CB[n] and surfaces, the binding properties of the CB[n] is usu-

ally studied in solution and it is assumed that CB[n] retains its molecular recognition

behavior on surfaces. However, with the availability of sophisticated tools such as force

spectroscopy, these interactions can now be quantified down to the single-molecule level

even on surfaces. For example, atomic force microscopy (AFM) has been used to measure
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the rupture force between individual host-guest complexes of CB[6] covalently tethered

on gold substrates and a spermine functionalized AFM-tip.250 A rupture force value of

120 pN was obtained for this system. In another study, the interactions between self-

assembled monolayers of CB[7] and neutral adamantyl guests has also been resolved

at the single molecule level using dynamic force spectroscopy.251 It is noted from such

studies that the close proximity of a surface does not appear to significantly alter CB[n]

molecular recognition properties. Furthermore, the spontaneous adsorption of CB[6] and

CB[7] on gold have been compared by AFM.252

8.5 Outlook

Direct interactions between CB[n] and gold continues to show progress in self-assembly

of colloidal nanoparticles and sensing applications, particularly in SERS-based applica-

tions. The tunability of these systems are one of their major advantages, where the probe

can be adapted to the sample. Nonetheless, there remains a need to further explore and

elucidate the interactions of CB[n] with gold on planar surfaces. With advances in tech-

niques like AFM and STM, while this may be possible, a major challenge to be addressed

will be to understand and characterize the fundamentals of the formation of colloidal self-

assembled architectures because of their increasing complexity. It is noted that nanopar-

ticles that have been synthesized using CB[n] as the capping ligand have been limited in

their size to approximately below v 10 nm in diameter. While nanoparticles with small

diameters might be exceptionally suited for catalysis, larger nanoparticles are much more

applicable in plasmonics.

As it is evident from the wide variety of systems being reported, formation of covalent

links between CB[n] and the surfaces is moving fast towards interesting applications.

However, these strategies still often require time-consuming pre-functionalized CB[n].

Therefore, the use of host-guest interactions to immobilize CB[6] and CB[8] on surfaces

continues to be a promising strategy, where irreversibility is desirable.
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9 Supramolecular Polymers

CB[n] supramolecular polymers can be divided into two areas: (a) small-molecule based

supramolecular polymers and (b) CB-mediated bridging of polymer chains and other

macromolecular structures. There are a number of excellent reviews in the area of CB[n]

supramolecular polymers and the more general host-guest driven polymerization.253–258

In this section, we focus on summarizing the current status of research and development

towards CB[n]-supramolecular polymers and highlight some relevant examples in the

field, largely dominated by CB[8] complexes, which has attracted increasing interest in

recent years.

9.1 Small molecule based supramolecular polymers

The construction of CB[n] non-covalent polymers based on low molecular weight monomers

is analogous to a polycondensation reaction259–261 and involves the binding of small

molecule guest molecules through CB[n] host-guest interactions where CB[n] acts mainly

as a “molecular handcuff” holding together the repeating units of the supramolecular

polymer. There exist several design parameters that must be considered in order to pro-

duce systems that take full advantage of the properties of CB[n] and generate dynamic

polymeric constructs with controlled molecular weight and structure.

The degree of association of supramolecular moieties is strongly affected by both their

concentration in solution and their equilibrium constant, and is approximately propor-

tional to (Keq·C)1/2.262 Therefore, both the concentration and the binding strength be-

tween the repeating units have to be high in order to achieve a high degree of polymer-

ization. The solubility of CB[n] and their complexes varies largely across this family of

host molecules - CB[5] and CB[7] are much more water soluble than CB[6] and CB[8]15 -

and depends on a number of parameters including solvent, temperature, ionic strength

and guest. The majority of investigations on CB[n] supramolecular polymers involve
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CB[8] complexes, which typically exhibit a limited solubility in water. The advantages

afforded by the high binding constants of CB[n] complexes, however, supersede the po-

tential drawbacks from low water solubility.

Another key consideration associated to such dynamic systems is the formation of

macrocycles and the presence of ring-chain or ring-ring equilibria, which will impact the

size of the polymeric aggregates that can be obtained.263–265 As with all equilibrium poly-

merization, a percentage of the chains will be cyclized and the distribution of rings vs.

linear chains will depend on a number of factors including monomer shape, length and

flexibility, strength of the binding motif, concentration and temperature.

The third consideration is related to the binding mode between repeating units. There

is a myriad of “complementary” or “self-complementary” binding motifs that have been

utilized for the preparation of supramolecular polymers.262 Complementary motifs can

be either two-component or three-component, whereby a third moiety is required for

association. Some metal-ligand systems including 2,6-di(2-pyridyl)pyridine and 1,10-

phenanthroline constitute a three-component binding whereby two moieties of the same

type are complexed by a single metal ion. Indeed, metal-ligand interactions have been

widely exploited and have afforded a facile synthesis of linear and branched supramolec-

ular polymers.266 CB[8] is a relatively large member of the CB[n] family and can bind

two organic guests simultaneously. Kim and coworkers have shown that a stable ternary

charge-transfer complex between MV, as a first guest, and 2,6-dihydroxynaphthalene, as

a second guest, readily forms inside the cavity of CB[8].128 Furthermore, the ternary com-

plex is known to form in a stepwise manner with two subsequent equilibria. This three

component binding motif is rather unique and reflects molecular recognition of comple-

mentary moieties in the presence of a macrocyclic host molecule. In addition, CB[8]

can also accommodate two molecules of the same kind including coumarin,152 anthra-

cenyl,136 and naphthyl156 derivatives. CB[10] and nor-seco-CB[10], similarly to CB[8], can

bind two organic guests simultaneously inside their cavities and their application in the
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area of aqueous supramolecular polymerization, although with limited success, have also

been explored.267,268 Nevertheless, it is without a doubt that progress in creating novel

CB[n] mediated polymers has been so far strongly tied to the discovery of new CB[8]

complexes and novel guest design. A facile route to small molecule CB[8] guest poly-

merization involves the covalent attachment of a first guest to a second guest moiety.

Alternatively, a monomer equipped with two moieties that can be dimerized inside CB[8]

can also yield linear polymeric structures. A third option is based on an equimolar mix-

ture of two complementary divalent monomers - first and second guest dimers. We next

summarize recent research efforts in the area of CB[8] supramolecular polymers.

Kim and coworkers were the first to investigate the host-guest complex formation

between CB[8] and a guest molecule having both a first and a second guest moiety con-

nected by an organic linker. Several types of supramolecular assemblies were obtained

by this process depending on the length and flexibility of the linker between the binding

moieties. It was reported that the long and flexible trimethylene linker of D1 favors 1:1

complexation with CB[8] (Figure 28).269 A similar result was obtained for the apparently

more rigid but-2-enyloxy linker of D2 (Figure 28). The introduction of an even more rigid

p-xylylene linker D3 in Figure 28) effectively prevented 1:1 complexation inside CB[8] but

failed in promoting chain extension as only a 2:2 complex was produced.270 When CB[8]

and monomer D4 were mixed in equimolar amounts (2 mM, aqueous solution) a mixture

of a 2:2 complex and oligomeric species (3:2 ratio) was produced.271 The hydrodynamic

volume of the oligomeric, likely cyclic, species was estimated by diffusion-ordered NMR

spectroscopy and a degree of polymerization of ca. 4 was proposed. Linear supramolecu-

lar polymers were successfully grown from a gold surface functionalized with dipyridyli-

umylethylene units. A surface-anchored poly(pseudorotaxane) was grown by soaking

the functional gold surface in an aqueous solution of CB[8] and monomer D4 (1 mM,

water). After a 1 day incubation period, the poly(pseudorotaxane) reached a degree of

polymerization of 4. The surface-anchored poly(pseudorotaxane) was characterized by
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surface plasmon resonance and atomic force microscopy images. Monomer D5 contains

a naphthalene and a dipyridyliumylethylene unit connected by a methylene bridge. Al-

though the short linker prevents intramolecular complexation, the structural design again

promotes cyclization rather than linear polymer formation. An equimolar mixture of

CB[8] and D5 resulted in a stable cyclic pentamer comprising five CB[8] molecules and

five guest molecules.272

Figure 28: Structures of monomers.

In order to circumvent cyclization, Zhang and coworkers designed a monomer con-

taining up to four CB[8] binding sites in a single monomeric structure. The structure

of such a monomer contains two central viologen moieties and two terminal anthracene

groups, providing what was a called a “double handcuff” to hold repeating units to-

gether (D6 in Figure 28).273 The short methylene linker between the anthracene and the

viologen moieties avoids intramolecular complexation while the pair of central viologens
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effectively prevents the formation of 2:2 complexes - the positively charged viologens

will sit too close to each other in a cyclic 2:2 complex. When CB[8] was mixed with D6

in a 1:1 ratio the appearance of a charge-transfer band evidenced heteroternary complex

formation. The 1:1 stoichiometry of the complex was corroborated by Job’s plot analy-

sis. AFM-based single-molecule force spectroscopy analysis showed the formation of ex-

tended polymer chain formation. The force curves of the supramolecular polymer were

similar to traditional macromolecules and a Kuhn and chain length of ca. 2.2 and 60.0 nm,

respectively were determined [comparatively, the Kuhn length for DNA in water274 and

poly(tert-butyl methacrylate)275 in toluene are approximately 100 and 2 nm, respectively].

Dynamic light scattering experiments provided further evidence of polymer formation

and the Rh of the chains was determined to be on the order of 30 nm.

Inspired by the previous monomer design proposed, Scherman and coworkers inves-

tigated an analogous guest structure equipped with azobenzene instead of anthracene

moieties (D7 in Figure 28). The formation of supramolecular polymers was charaterized

both in solution and in the solid state through a combination of dynamic and static light

scattering and synchrotron SAXS and SANS, see Figure 29.276 Interestingly, the shorter

monomer D8 can also form relatively long linear structures in solution, which coexist

with the more stable 2:2 complex. These polymers can be readily depolymerized by UV

light irradiation as the E-azobenzene moieties isomerize into the Z-isomer that fully oc-

cupies the CB[8] cavity with a high binding constant. The formation of a 1:1 complex

between CB[8] and Z-azobenzene was investigated in solution by ITC and NMR. Addi-

tionally, single crystals of the polymeric structure were obtained and analysed by X-Ray

crystallography. This light-controlled formation of CB[8] complexes is substantially dif-

ferent to other light-actuated host-guest systems and may find applications in biological

and materials sciences.

Zhang and coworkers have investigated the formation supramolecular polymers based

on a wide variety of homotopic divalent monomers containing self-complementary CB[8]
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Figure 29: Side view of the X-ray crystal structure of CB[8]n·D8n. C, gray; N, blue; O, red;
H, white. Reprinted with permission from del Barrio, J. et al. J. Am. Chem. Soc. 135,
11760–11763 (2013).276 Copyright 2013 American Chemical Society.

binding moieties including naphthalene, anthracene, phenylalanine and quaternized aza-

stilbene groups (see D9-D13 in Figure 28).277–280 These moieties readily dimerized in-

side the cavity of CB[8] thus promoting polymerization. Monomers D9 and D10 contain

two naphthalene moieties in close proximity to positively charged quaternary amines.278

The flat aromatic groups can form host-guest enhanced π − π complexes in the presence

of CB[8] and the positive charges ensure the water solubility of the final polymer and

further stabilization through ion-dipole interactions with the ureidyl carbonyl portals.

While D9 only formed cyclic oligomeric species in the presence of CB[8], D10 resulted

in long, linear polymeric structures. This was attributed to the rigid, shape persistent

1,4-diazabicyclo[2.2.2]octane-1,4-diium linker, which can effectively inhibit cyclization.

The degrees of polymerization estimated by DOSY NMR spectroscopy were on the order

of 64 for the polymer based on D10 and 7 for the oligomeric species derived from D9

(1 mM, water), thus highlighting the crucial role of the monomer spacer. The same group

nevertheless showed that other monomers D12 and D13 (Figure 28) with much longer

and flexible linkers than D10 can also polymerize. One interesting example is provided

by the comparison of monomers D13 and D14. Zhang and coworkers investigated the

supramolecular polymerization of D13 in the presence of CB[8] based on MALDI-TOF

mass spectrometry and AFM-based single-molecule force spectroscopy. Both techniques
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evidenced the formation of polymers with a degree of polymerization of the order of 20-

60. Dankers and coworkers have recently investigated the binding properties of D14,

very similar to D13, through a combination of ITC, DOSY NMR spectroscopy and QTOF

and MALDI-TOF mass spectrometry and found no evidence of polymer formation.281

Data suggests that ring-chain equilibrium is in fact fully directed to ring formation (1:1

complex). The formation of this complex can by described by an overall binding con-

stant Kring = 9.0 × 106 M−1 and an effective concentration of 750 µM. The well-defined

ring structure of the cyclic dimer D14·CB[8], with a high equilibrium constant, provided

a very efficient inhibition mechanism for CB[8] protein dimerization processes as it can

readily displace phenylalanine-containing peptide sequences from different proteins.282

MALDI-TOF analysis of CB[8] polymers from both D13 and D14 revealed peaks at high

molecular weight, which were attributed to supramolecular polymer formation by Zhang

and coworkers, whereas Dankers and coworkers ascribed them to CB[8] aggregates arte-

facts.

The concept of CB[8] homoternary complexation has also been expanded towards the

preparation of hyperbranched polymer structures, networks and 2D polymer networks

from monomers equipped with at least 3 binding sites (D15, D16, D18 in Figure 28).283–287

It is noteworthy that, again, the flexibility of the monomer will determine the final struc-

ture of the polymers: monomers with flexible linkers (D15 and D16) will result in hyper-

branched polymers whereas 2D networks are produced from the more rigid monomer

D18.

Another interesting concept consists of exploiting CB[8] enhanced radical dimeriza-

tion as a driving force in supramolecular polymerization. Kim and coworkers reported in

2002 that methyl viologen binds to CB[8] in 1:1 stoichiometry with a binding constant on

the order of 105 M−1.142 When methyl viologen is reduced to the radical cation, a 1:2 com-

plex is formed exclusively. The apparent binding constant for the dimerization process is

on the order of 107 M−1. This homoternary complex is extraordinarily stable on account
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of extensive ion-dipole interactions between the ureidyl carbonyl portals of CB[8] and

MV•+. In addition, the host provides the dimer with a hydrophobic cavity of the right

size to host the couple of radical-cations. Thus, the presence of CB[8] affords a conve-

nient, simple and reversible mechanism to drive self-assembly of a variety of organic moi-

eties. Kaifer and coworkers reported in 2004 that the complexation-enhanced dimeriza-

tion of viologen radical-cations can be utilized to self-assemble Newkome-type dendrons

equipped with a MV moiety at their focal point.288 Zhan-Ting Li, Yi Liu and coworkers

have recently described the formation of 2D supramolecular organic frameworks from

shape-persistent viologen-containing trimers (monomers D19 and D20).286 The viologen

moieties of the trimers can be easily reduced in the presence of sodium dithionite thus in-

ducing self-association in water. The reduced trimer D19 stacks strongly in a face-to-face

fashion forming discrete 2+3 complexes with CB[8]. However, the presence of the bulky

bis(2-hydroxyethyl) carbamoyl groups of D20 avoids face-to-face stacking thus leading,

after reduction, to the formation of a single-layer 2D supramolecular organic framework,

which is stabilized by the strong complexation of CB[8]. The new supramolecular net-

works were characterised by UV/vis absorption, EPR, DLS, as well as solution and solid-

phase small-angle X-ray diffraction experiments. The single-layer feature of the network

was confirmed by AFM imaging as the average thickness of the supramolecular frame-

work was consistent with the diameter of CB[8]. Analogous monomeric trimers derived

from 4,4-bipyridin-1-ium (monomers D17 and D18) also self-assemble in the presence of

CB[8] in a similar fashion to the previously described reduced trimers, Figure 30.287

In 2004, Kim and coworkers described the first stable π-dimer of a tetrathiafulvalene

radical-cation encapsulated inside the cavity of CB[8].289 This was demonstrated through

a combination of NMR, UV/vis and EPR spectroscopy. TTF binds to CB[8] and is simulta-

neously oxidized to the radical-cation species forming a stable three-component complex

as a red precipitate. Although no quantitative binding study was performed, this work

demonstrated the effectiveness of CB[8] in stabilizing unstable species through molecu-
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Figure 30: Schematic representation of the self-assembly of monomer D20 and CB[8].
Reproduced from Ref.286 with permission from The Royal Society of Chemistry.

lar encapsulation. TTF radical dimerization has been shown to be extremely useful in

exerting redox control over a wide variety of polymeric structures and mechanically in-

terlocked constructs.290–294 However, supramolecular polymer formation driven by en-

capsulation of the TTF radical-cation inside the cavity of CB[8] has not been realized yet.

Supramolecular polymers constructed by orthogonal self-assembly based on host-

guest, including CB[n]s, and other dynamic covalent/non-covalent interactions are at-

tracting increasing attention.295,296 Kim and coworkers pioneered the area CB[n] orthog-

onal self-assembly by designing a wide variety of metal-organic CB[n] polyrotaxanes.297

One of these structures consists of a pseudorotaxane-prepared by a simple mixture of D21

and CB[6]- that yields a linear polymer in the presence of Cu2+ through pyridine-metal

ion coordination.298 A polycatenated 2D polyrotaxane net is formed, however, if Ag+ is

used instead of Cu2+.299 The same strategy combined with a more complex ligand D22

produces double-chained and zigzag-shaped 1D polyrotaxanes in the presence of Cd2+

and Co2+.300 The repeating units of these metal-organic structures are held together by

metal-ligand, not host-guest, interactions; however the CB[n] complex plays a crucial role

as it imparts rigidity to the organic linker. More recently, Zhang and coworkers investi-

gated the preparation of CB[8] supramolecular polymers through a combination of host-
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guest and terpyridine-Fe2+ interactions.301 Monomer D23 is a heteroditopic molecule

consisting of a naphthalene and terpyridine moiety which can be dimerized in the pres-

ence of Fe2+ forming a monomer with two terminal naphthalene moieties, [Fe·D232]2+.

This new metal-containing monomer can undergo polymerization when mixed with an

equimolar amount of CB[8] in a similar fashion to monomer D10. It was claimed that

the cationic metallic center enhances the water solubility of the complex while serving

as a rigid spacer between the CB[8] binding sites. Masson and coworkers have further

explored this concept and demonstrated that coulombic interactions between metal cen-

ters and CB[n] can actually be mediated by an organic ligand and showed that, even in

the second coordination sphere, CB[n] form strong CH· · ·O hydrogen bonds with the

ligand surrounding the metallic core.302 This recognition process is driven by a combi-

nation of favorable enthalpies (up to 20.2 kcal·mol−1) and very unfavorable entropic con-

tributions (as low as -10.2 kcal·mol−1). The recognition properties of the metal-ligand

complexes were extended to CB[8] and dynamic supramolecular oligomers were pre-

pared by mixing equimolar amounts of ligand D24 and CB[8] in the presence of Fe2+ and

Ir3+. The approximate degree of polymerization of the oligomers, based on DOSY NMR

spectroscopy, were 11 and 54 for the Fe2+ and Ir3+ polymers (1 mM, water). CB[8] can

also encapsulate 2,3,5,6-tetrafluorophenyl units and supramolecular oligomers were also

produced when mixing [Fe·D252]2+ and [Ir·D252]3+ with CB[8] in equimolar amounts

(Figure 28). Degrees of polymerization of 27 and 15 were estimated for the Fe2+ and Ir3+

polymers respectively. Also, social self-sorting was observed for an equimolar mixture

of ([Fe·D242]2+·CB[8])n and ([Ir·D252]3+·CB[8])n thus generating well-defined oligomers

with alternating Fe2+ and Ir3+ cationic centers, Figure 31. The preference for naphthyl-

tetrafluorophenyl pairing was attributed to favorable quadrupole-quadrupole interac-

tions in a similar fashion to those present in benzene-perfluorobenzene pairs.303,304 In

addition to metal-organic interactions, other types of dynamic covalent chemistries have

been combined with CB[8] host-guest interactions to produce linear supramolecular poly-
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mers. These include thiol-disulfide, diselenides and cyclodextrin host-guest interactions

(monomers D26-D28 in Figure 28).305–307 D28, as an example, comprises an azobenzene

moiety covalently attached to a phenylalanine residue. The monomer can dimerize in

the presence of CB[8] to form a 2:1 D282·CB[8] complex, which can undergo subsequent

polymerization when mixed with an equimolar amount of a β-cyclodextrin dimer.307

Figure 31: Schematic representation of the alternating polymer resulting from an equimo-
lar mixture of ([Fe·D242]2+·CB[8]n and ([Ir·D252]3+·CB[8])n. Reprinted with permission
from Joseph, R., Nkrumah, A., Clark, R. J. & Masson, E. J. Am. Chem. Soc. 136, 6602–6607
(2014).302 Copyright 2014 American Chemical Society.

The concept of CB[8]-mediated phenylalanine dimerization was also exploited by Liu

and coworkers in the design and synthesis of protein polymers.308 In this case, a homod-

imer glutathione S-transferase was selected as the building block for genetic fusion with

phenylalanine-glycine-glycine oligopeptides at each side of its N-termini. The homod-

imer protein polymerizes via homoternary complex formation between two phenylala-

nine residues and CB[8] as demonstrated by the increase of the molecular weight of the

aggregate. The protein-based polymer had a wire-shaped structure with and an average

length of 128 nm (degree of polymerization around 25) and a height of about 4.8 nm. This

protein assembly was highly stable and could even undergo separation by gel permeation

chromatography and further functionalization with glutathione peroxidase.

Finally, Zhang and coworkers have recently reported a novel polymerization method-

ology controlled by CB[8] and CB[7] self-sorting.309 The supramolecular polymerization

of a tetracationic monomer composed of p-phenylene and naphthalene moieties was pro-
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moted by the selective recognition of the central p-phenylene ring by CB[7] followed by

a CB[8] naphthalene double encapsulation. A degree of polymerization of ca. 28 was ob-

tained by asymmetric flow field flow fractionation (that conveniently bypasses the use of

GPC stationary phases) coupled to multi-angle light scattering.

9.2 CB[8] mediated supramolecular block copolymerization

Not only is supramolecular polymerization possible by CB[8] complexation of small molecules,

higher molecular weight molecules such as polymers can also be complexed at their ter-

mini, or via side chains, to other polymers, small molecules, biomolecules, etc. As the

following chapter will demonstrate, this process can lead to large and facile increases in

molecular weight, not only affording chain-extended polymers, but by relying on the spe-

cific heteroternary 1:1:1 CB[8] stabilized charge transfer complex, self sorted amphiphilic

supramolecular block copolymers can be produced allowing formation of micelles and

vesicles that can be assembled, disassembled, and reassembled using various stimuli re-

sponsive triggers.

9.2.1 Supramolecular assembly of macromolecules

Kaifer et al. first demonstrated macromolecular assembly with CB[8] by centrally and

non-covalently complexing two distinct dendrimers, one functionalized with MV (elec-

tron acceptor) and a second with para-dialkoxybenzene (electron donor).131 In this study,

dendrimers were selectively assembled on account of the guest covalently attached and

the efficiency of this process was shown to be dependant on the size of the corresponding

dendritic units. Electrochemical one-electron reduction of viologen resulted in homod-

imerization of dendrimer units on account of 2:1 complexation of the MV radical cations

to CB[8] and therefore redox switching between discrete molecular weight dynamic den-

drimer dimers was possible.

A facile methodology of block-copolymerization by supramolecular complexation is
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that of the dimerization of MV-terminated polymers to Np-terminated polymers by CB[8]

addition, Figure 32.310 This lead to the formation of linear dynamic elongated homopoly-

mers and AB-diblock copolymers, as demonstrated by Scherman et al. Dynamic am-

phiphilic polymers of PEG and cis-1,4-poly(isoprene) or octadecane were prepared and

these were also able to form larger vesicular structures in a highly versatile manner.

Ji et al. reported similar aqueous structures of a linear hyper-branched polyphosphate

with a terminal MV unit that complexed to CB[8] and poly(D,L-lactide) with terminal in-

dole units.311 This formed an amphiphilic block copolymer structure that would assem-

ble into a biocompatible micellar structure. Disassembly of these micelles was possible by

reduction of the MV units with sodium dithionite, breaking the hetero-ternary complex.

Figure 32: Host-stabilized charge transfer complexes allow for the formation of a va-
riety of macromolecular materials, from CB[8]-polymer conjugates, elongated or chain
extended linear homopolymers and AB diblock copolymers. Figure reproduced from
Rauwald et al. Angew. Chem. Int. Ed., 2008, 47, 3950-3953, with permission from John
Wiley and Sons, Inc.

Actual polymeric chain extension by CB[8] complexation at polymer termini was in-

vestigated by Jiang et al., Figure 33a.312 Low molecular weight poly(N,N-dimethylacrylamide)

and poly(N-isopropylacrylamide) with naphthyl moieties at both termini were synthe-
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sized via reversible addition-fragmentation chain-transfer (RAFT). These polymers were

then combined in solution with a viologen-dimer and CB[8] to form host-stabilized charge-

transfer complexes and higher molecular weight supramolecular polymers from the lower

molecular weight building blocks. The existence of these higher molecular weight supramolec-

ular polymers was observed using viscometry techniques. The resultant supramolecular

pNIPAm also expressed interesting LCST behavior, that was strongly dependent on con-

centration (higher concentrations are associated with lower LCSTs), unlike covalent pNI-

PAm, which exhibits very limited concentration dependence on its critical temperature.

Not only is supramolecular complexation possible at the polymer terminus, indeed

Scherman et al. also demonstrated the reversible and stimuli responsive loading of side

chains on to hydrophilic polymer chains by utilizing CB[8] ternary complexation mo-

tifs.313 A copolymer of oligoethylene glycol acrylate and a naphthol bound monomers

was synthesized via RAFT polymerization. MV derivatives were then reversibly com-

plexed to the naphthol residues. In particular, MV-bound hydrophobic residues such

as C18 chains could be “pulled” into aqueous solution using this complexation method.

Upon addition of sodium dithionite, the MV moieties were reduced from dicationic species

to radical cations, breaking the 1:1:1 heteroternary complexes. This process was in turn

reversible by bubbling air through the solution, oxidizing the MV and regenerating the

charge transfer complexes. This work holds design features amenable to controlled or

triggered release delivery devices. Monosaccharides and multivalent ligand-lectins have

similarly been non-covalently attached to such copolymers to add bio-recognition modal-

ities.314 A supramolecular glycopolymer was produced, which could bind lectins and

then be released from the copolymer backbone using redox methods. Such polymer de-

signs could be further used to probe cellular activity and biomarkers. Development of

this area has lead to the development of drug delivery applications with both Scher-

man and Ji reporting the delivery of doxorubicin, a commonly used chemotherapeutic,
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Figure 33: Higher order structures afforded through CB[8] host-guest chemistry: a) Chain
extended polymers by CB[8] complexation of terminally functionalized polymers to vi-
ologen dimers, figure adapted with permissions from Ji et al. Polym. Chem. 2014, 5,
2709-2714. b) Supramolecular assembly of amphiphilic block copolymers leads to micelle
formation which have utility in drug delivery, figure adapted with permissions from Ji
et al. Polym. Chem. 2014, 5, 1843-1847. c) Aqueous self-sorting of supramolecular poly-
mers allows for vesicle formation, figure adapted with permissions from Loh et al. Chem.
Commun. 2014, 50, 3033-3035. All images reproduced with permission from The Royal
Society of Chemistry.
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from supramolecular micellar structures. In both cases, CB[8] hetero-ternary complexa-

tion was employed to form supramolecular amphiphilic block copolymers, which would

in turn form micelles through hydrophobic interactions, Figure 33b.315,316 Scherman et al.

constructed triply stimuli-responsive micelles from temperature and chemo-responsive

CB[8], pH responsive naphthalene terminated poly(dimethylaminoethylmethacrylate) (PDMAEMA-

Np), and temperature responsive MV terminated poly(N-isopropylacrylamide) (PNIPAAm-

MV). Mixing these components in aqueous solution in an equimolar ratio resulted in mi-

celle formation in which doxorubicin was encapsulated. Changes in pH, temperature

or addition of the competitive guest, adamantylamine, resulted in disassembly of the mi-

celles and release of doxorubicin, which was shown to have a direct effect on cell viability.

Moreover, exposed cell lines exhibited good tolerance of the doxorubicin loaded micelles,

only exhibiting detrimental effects upon triggered release. Ji and coworkers reported

a similar assembly of micelles utilizing a different hetero-ternary supramolecular mo-

tif. In this example, the hydrophobic block consisted of an indole terminated poly(lactic

acid) whereby indole is an electron rich moiety utilized in the charge-transfer “hand-

cuff” motif. The hydrophilic block consisted of MV terminated PEO. Furthermore, both

poly(ethylene oxide) and poly(lactic acid) have been FDA approved for medical use and

the latter also has an excellent biodegradability profile. Again doxorubicin encapsulation

was possible within the hydrophobic core of the micelle and release could be triggered by

addition of sodium dithionite, reducing the MV and causing disassembly.

Indeed, supramolecular assembly of higher order structures is not limited to micelles

and the aqueous construction of double layer vesicles was also reported by Scherman et

al. in 2012.317 Assembly of a pyrene-GGGKKK peptide with a MV-lipid through host-

guest ternary complexation with CB[8] afforded 200 nm spherical double layered vesi-

cles, observed by DLS and TEM. Furthermore, these vesicles were readily absorbed by

cells and fluorescence imaging of the cells could be achieved by uptake of either 1,6-

dihydroxynaphthalene or adamantylamine to break the ternary complex, releasing the
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fluorescent pyrene-peptide. Supramolecular polymeric analogues of these vesicles (Fig-

ure 33b) are pertinent for use as delivery devices of large biomolecules, in particular basic

fibroblast growth factor (bFGF).318 These vesicles protected bFGF against several freeze-

thaw cycles and were effective delivery devices to cells, therefore showing good promise

as an injectable therapy. Das et al. expanded work in this area to form mixed micelles

of viologen amphiphiles and tetralkylammonium salts in water. These micelles could

then be transformed into vesicles through host-guest complexation with CB[8].319 Fur-

thermore, the rearrangement of these mixid micelles into vesicles was mechanistically

studied, appearing to progress through a stable mixed micelle stage; upon addition of

CB[8], a dynamic mixture of non-spherical mixed micelles are formed, and then on ad-

dition of naphthalene derived guests, the micelles structurally promoted into self-sorted

vesicles.320

9.2.2 Conclusion and outlook

Supramolecular block copolymerization is an exciting area with ongoing development of

facile routes towards producing multiply-responsive materials. From mechanistic studies

of formation to advancement into bio-applicable delivery of growth factors, this area is

undergoing new and extensive investigation. Supramolecular block copolymer materials

are now poised for use in real-life applications and we hope to see in vivo progression in

the near future.

10 Molecular recognition in 3D supramolecular networks

Hydrogels are becoming an important class of material on account of their high water

content, tunable properties and biocompatibility. In the example of polymeric hydro-

gels, water is encapsulated within a chemically or physically crosslinked macroscopic

network by capillary forces and their stiffness and elasticity defined by polymer loading
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and crosslink density. Hydrogels formed via molecular recognition of CB[n] for specific

chemical motifs pendant from polymer chains have become increasingly widely studied

since 2010. The fabrication of such soft materials has been reviewed specifically in recent

years, perhaps however prematurely, as the field of CB[n] crosslinked hydrogels is still de-

veloping.133–135 In the following examples, exploiting the host-guest complexes of CB[6],

CB[7] and CB[8] to form physical polymer-polymer crosslinks will be discussed and how

the dynamics and control over such crosslinking has been investigated and utilized.

10.1 CB[8] complexes crosslink guest functional polymers

Scherman and coworkers have extensively explored the formation of CB[8] stabilized

charge-transfer complexes between electron poor and electron rich species that are co-

valently bound to polymers. The random attachment of first and second guests, methyl

viologen (MV) and naphthoxy (Np), respectively, to a variety of independent synthetic

polymers was first achieved through the copolymerization of guest-bound monomers

with either neutral, cationic or anionic monomers in a ratio of 1:10.321 Upon addition of

CB[8] to a mixture of MV-polymer and Np-polymer (5 wt.%) in water, viscoelastic ma-

terials were formed that expressed a responsiveness to stress and shear on account of

the formation of multiple non-covalent ternary complexes between polymers, Figure 34.

Moreover, this work also demonstrates a wide tolerance of charge on the formation of hy-

drogels through the CB[8] recognition motif through the utility of a variety of anionic and

cationic polymers, as well as the appearance of viscoelastically-tunable supramolecular

networks through controlled CB[8] concentration.

Scherman et al. continued their exploration of these materials, focusing on the ability

to form a predominantly elastic material with minimal polymer content (0.5 wt.%).322 To

achieve this a high molecular weight polysaccharide, hydroxyethyl cellulose (HEC, MW

= 1.3 MDa), was functionalized with Np moieties to a degree of 5 mol%. The resulting

material was then combined in solution with CB[8] and a high molecular weight com-
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Figure 34: Combination of multivalent polymers bearing first guest (MV) and second
guest (either Pyr, DBF or Np) with CB[8] in water leads to supramolecular network for-
mation and viscoelastic materials. Figure reproduced from Appel et al., Angew. Chem. Int.
Ed., 2014 53, 10038–10042, with permission from John Wiley and Sons, Inc.
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modity polymer, polyvinyl alcohol (PVA, Mn = 1.5 MDa) functionalized with MV. It was

found that a range of soft material properties could be achieved and were accessible sim-

ply by modifying polymer loading. Impressively, a broad spectrum of storage moduli

spanning two orders of magnitude (10 > G’ > 1000) could be readily attained. Moreover,

these materials were also shown to have excellent shear-thinning properties (resulting

from the very low polymer loadings and non-covalent crosslinking) and also exhibited

rapid self-healing behavior. The authors exemplified this by performing step-shear rheol-

ogy experiments and demonstrated the viscosity of the material returned within seconds

upon release of the high shear rates, and that the process was also recyclable. Rapid

recognition of Np-HEC by CB[8]⊂MV-PVA complexes upon relaxation of the material

facilitates healing, whereby the dissociated complexes are quickly re-associated under

mechanical stimuli rather than the actual breaking and making of any covalent bonds

and so the properties are always 100% restored.

Furthermore, the release of small (lysozyme) and large (BSA) proteins from the HEC

hydrogels has also been demonstrated.323 In this example, polymer concentration was

altered in order to modulate the mesh size of the supramolecular network. By raising

the polymer content, the mesh size was decreased and the proteins could be released at

slower rates. Specifically, in the case of a 1.5 wt.% HEC gel, BSA release was sustained for

160 days showing excellent utility for these materials as biomedical delivery devices.

Modification of the system to use the polysaccharride chitin afforded hydrogel ma-

terials that were antimicrobial, however, have found utility as a consolidant for archae-

ological wood conservation, specifically on the Mary Rose, a 16th Century warship.324

By adding extra CB[8] binding moieties onto the chitin backbone, such as naphthalene

and dopamine derivatives, a system was produced that could not only gelate and ex-

press all previous properties of such supramolecular hydrogels, but also complex Fe3+

ions that persist in the water-logged artifacts. This system is therefore pulled into the

porous wooden artifacts, strengthening them and ‘locking’ the iron in place preventing
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its transport and therefore further degradation, as well as providing biocidal protection.

Focussing on further improving CB[8] hydrogel utility in the biomedical field, har-

nessing 2:1 binding of amino acids to CB[8] was also investigated as a route to hydrogel

formation.325 Scherman and coworkers demonstrated hydrogel formation with synthetic

cationic styrenic polymers bearing either phenylalanine or tryptophan derivatives, Figure

35A. It was shown that phenylalanine 2:1 complexation to CB[8] afforded much stronger

hydrogels than the tryptophan derived polymers, and that the material properties could

be tuned by controlling CB[8] content and therefore crosslink density. This system is in-

herently simpler than the previous hydrogels as the network is only comprised of two

components, a multivalent amino acid bearing polymer and CB[8], opposed to two dif-

ferent polymers (one bearing the first guest and the other the second guest) and CB[8].

However, the authors found that rigid polymers were required to form hydrogels as this

prevented intra-chain complexation of CB[8], as previously observed when polymers con-

taining both first and second guest formed soft nanoparticles on addition of CB[8].326 In

the future, the authors look to apply these amino acid recognition motifs to larger and

more biomedically-relevant polymers to improve water content and biocompatibility fur-

ther.

A second example of 2:1 guest to CB[8] binding facilitating hydrogel formation was

reported by Lin et al. in 2013, Figure 35B.327 Here N-(4-dimethylaminobenzyl)chitosan

(EBCS) was shown to form hydrogels of a variety of strengths upon addition of CB[8]

under various pH conditions, allowing for control of release rates of the model drug cargo

5-fluorouracil. In this case, hydrogelation likely occurs through recognition and affinity

of the protonated aminobenzyl groups by the ureido-carbonyl portals of CB[8]. Due to

protonation of the aminobenzyl groups being a necessity, weak hydrogels were formed at

pH 6.8 and strengthened at lower pH levels. Therefore, the facility to use this material in

biomedical application is quite restricted, however pH control over specific recognition

of aminobenzyl derived moieties has been clearly demonstrated.
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Figure 35: Combination of multivalent polymers bearing residues that can bind in a 2:1
fashion with CB[8] (i.e. A: phenylalanine, tryptophan, B: N-4-diethylaminobenzene, C:
anthracene) in water leads to supramolecular network formation. Figures adapted with
permissions from A: Rowland et al., J. Mater. Chem. B, 2013, 1, 2904-2910, reproduced in
part with permission from the Royal Society of Chemistry; B: Lin et al., Carbohyd. Polym.
2013, 92, 429-434, reproduced with permission from Elsevier Copyright 2013; C: Bieder-
mann et al. Polym. Chem. 2014, 5, 5375-5382, reproduced in part with permission from the
Royal Society of Chemistry.
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A further photo-responsive hydrogel construct from the Scherman group was reported

in 2014. In this study, CB[8] catalyzed photodimerization of anthracene in water was ex-

ploited in hydrogel formation, Figure 35C.45 In this system, the anthracene derived moi-

eties form 2:1 inclusion complexes with CB[8] and were conjugated to an HEC backbone

via a copper accelerated cycloaddition to azide derived HEC. The 2 anthracene : 1 CB[8]

complexation alone afforded elastic soft materials. Upon photoirradiation at 350 nm for

15 min the material experienced a hardening effect and the moduli roughly tripled in

magnitude, accounted for by the covalent dimerization of the two anthracene moieties

within the CB[8], resulting in the HEC network becoming covalently crosslinked. The

presence of CB[8] within the system was shown to rapidly catalyze the formation of the

anthracene dimers as irradiation of the same material in the absence of CB[8] did not

yield materials of the same strength. Unfortunately, the dimerization of anthracene in

this system was not shown to be reversible so the hydrogelation via this photochemical

CB[8] catalyzed crosslinking process is a seemingly permanent conversion.

10.2 Dynamics of crosslinking influences material properties

The nature of microscopic thermodynamic properties of physical crosslinks within a supramolec-

ular network can have a large impact on the material. Recognition of different small

molecule motifs by CB[8] in hydrogel formation thus have great effect on resulting hydro-

gel. In 2014, Scherman and coworkers explored the nature of the CB[8] ternary complex

crosslinking motif and how the dynamic complexation of such motifs contribute towards

defining hydrogel viscoelastic behavior.328 Investigation of different second guests be-

yond Np that have slightly different energetic binding properties to CB[8]⊂MV was un-

dertaken, Figure 34. The other second guests studied alongside Np were dibenzylfuran

(DBF) and pyrene (Pyr), which have very similar overall equilibrium constants in the

formation of the heteroternary complexes with CB[8]·MV (1.5, 1.4 and 1.3 x 104 M−1, re-

spectively), determined by stopped-flow fluorescence experiments. Despite these seem-
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ingly similar equilibrium constants, the activation energies of dissociation (Ead) of the

second guest were found to be vastly different (Np 30 kJ mol−1, DBF 54 kJ mol−1, Pyr

89 kJ mol−1). Physically crosslinked materials were prepared from multivalent poly(di-

methylacrylamide) bearing one of the second guests, polystyrene-MV and CB[8]. Re-

markably, all materials were found to have virtually identical X-ray scattering profiles,

however, frequency-dependent oscillatory rheology showed that the Pyr gels were the

“most elastic” and the Np gels the least. This was attributed to the dissociative rates of

the second guest. The authors showed that when scaling the rheology data with the value

of Ead for each second guest, the measured frequency-dependent rheology profiles over-

layed almost exactly. Therefore, the strength and viscoelastic property of the hydrogels

is not only dependent on conventional polymer physics and polymer interactions, but

also dependent on the dynamics of crosslinking, in particular the choice of second guest

used in the CB[8] ternary complex crosslinking motif, and specifically dependent on the

Ead of the second guest. In simpler terms, higher dissociative barriers of the second guest

affords longer crosslink lifetimes and therefore stronger materials.

In a subsequent study, Scherman and coworkers investigated how the dynamics of

physical crosslinking in these systems affect release of rhodamine from the supramolec-

ular network.329 Higher release constants were observed for materials bearing second

guests with lower Ead values. This was accounted for through faster crosslink dynam-

ics allowing faster diffusive rates of solvent and cargo in and out of the gel network.

Faster crosslink dynamics also led to faster erosion rates of the hydrogels as water is able

to diffuse into the hydrogel easier, facilitating erosion through swelling mechanisms. By

studying these phenomena, erosive and diffusive mechanistic contributions to rhodamine

release could be understood and material lifetimes are now potentially predictable. This

study demonstrates that crosslink dynamics play a subtle yet important role in release of

cargo from hydrogels, and that the ability to robustly fine tune release and erosive rates

is possible.
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10.3 Composite soft materials utilizing CB[8] host-guest interactions

Collaboration between the Scherman and Ikkala groups resulted in the development of

soft domain-hard domain composite hydrogels whereby homogeneous dispersions of cel-

lulose nanocrystals (hard domains, CNCs) were crosslinked with soft polymeric domains

via host-guest interactions between MV, Np and CB[8], Figure 36A.330 This was achieved

by using CNCs decorated with surface ATRP initiator moieties to graft methacrylate poly-

mers bearing multiple Np units. Mixing the functionalized CNCs with PVA-MV poly-

mers and CB[8] produced supramolecular materials that were 85 % water, extremely well

structured as exemplified by frequency dependent rheology, highly elastic (G’>>G”) and

rapidly self-healing (healing time < 6 seconds). These are combined and desirable prop-

erties of both hard and soft materials which would usually be seen to be conflicting or

unable to operate together in the same material. Moreover, materials that were cut in half

and kept separate for 4 months were pushed back together and their viscoelastic property

completely restored after just a few seconds. This property is remarkable in that the mate-

rial was not passivated even after months and did not require any activation, something

that had not been previously demonstrated in other supramolecular systems.

A followup study between the two groups led to the development of a composite

hydrogel of nanofibrillar cellulose (NFC) and HEC, again supramolecularly crosslinked

with CB[8] host-guest interactions.331 More specifically, a supramolecular HEC network,

crosslinked by heteroternary complexation to CB[8] was adsorbed onto NFC colloidal do-

mains as a sacrificial yet self-healing network, connecting stiffer NFC domains that would

usually form stiff hydrogels alone through crystalline fibril-fibril entanglements, Figure

36B. These crystalline domains however have little ability to dissipate stress and as the

materials are stiff, allow for very little yielding. By adsorbing a supramolecular network

to bridge the length scales between NFC colloidal domains, a soft material was produced

whereby the yield strain could be offset dependent on the supramolecular content of such

formulations, and materials were also self healing.
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Figure 36: Examples of composite materials. A: CNC dispersions physically crosslinked
to MV-polymers via CB[8]. B: Colloidal NFCs with length scales crossed by supramolec-
ular hydrogel adsorption to offset stress. C: Purely supramolecular double networked
hydrogel comprised of a DNA network and a cellulose/CB[8] network. All images re-
produced in part with permissions from A: McKee et al. Adv. Funct. Mater. 2014 24,
2706–2713; B: Janecek et al. Angew. Chem. Int. Ed. 2015 54, 5383–5388, Copyright Wiley
2015; C: Li et al. Adv. Mater. 2015, 10.1002/adma.201501102, with permission from John
Wiley and Sons, Inc.

Scherman, Liu and coworkers later reported a purely supramolecular double network

hydrogel comprised of one DNA hybridized system and one CB[8] host-guest system,

Figure 36C.332 This work is particularly interesting because of the multiple levels of stim-

uli responsiveness arising from the two present networks including temperature, chemi-

cal, mechanical and enzymatic responses. By mixing carboxymethyl cellulose-phe (CMC-

phe), CB[8] and DNA motifs, interpenetrating networks were afforded that did not ap-

pear to have any interaction as imaged by confocal microscopy, however, the brittleness

of the DNA gel was offset by the presence of the interpenetrating CMC-phe/CB[8] dy-

namic system, which can rapidly reorganize and heal on distortion. Ultimately, a system

was recognized that exhibited a higher than predicted mechanical strength of the com-

bined gels and also the self-healing and rapid reorganization of CB[8] gels. The material

was also shown to be responsive to excess free phenylalanine, which could compete for

the CB[8] cavities, as well as having full biodegradability profiles on account of enzyme

addition such as nuclease and cellulase. This material offers an interesting opportunity to

consider new 3D cell culture scaffolds as well as injectable delivery devices for triggered
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release of DNA motifs in novel therapies.

10.4 From monohydroxylated-CB[n] to functional materials

Kim et al. have reported preparation of CB[6] grafted hyaluronic acid (HA) via reaction

of thiol-modified HA (HA-SH) with (allyloxy)12CB[6].333 Hydrogels were formed when

HA functionalized with diaminohexane (DAH) was mixed with HA-CB[6] as a result

of the specific inclusion complexation of the DAH to the CB[6] cavity. These hydrogels

could be returned to their sol state upon addition of spermine to the material, which

displaces the DAH moieties from the CB[6] cavities based on having a 100-fold higher

binding constant, destroying the inter-chain crosslinks, suggesting gelation is promoted

by CB[6]·DAH complexation. At 2 wt.% polymer loading, these hydrogels exhibited ex-

ceptionally high storage moduli (∼ 2 kPa) and also reasonable biocompatibility. Any

remaining HA-DAH moieties were able to be capped with further CB[6] derivatives that

were tagged with biorelevant molecules such as adhesion peptides and fluorescent mark-

ers demonstrating utility in 3D cell culture and tissue engineering.

These hydrogels were later implicated in controlling chondrogenesis of human mes-

enchymal stem cells (HMSCs).334 Here, spatial control of the HMSCs was achieved by

modulating crosslink density of the hydrogel by controlling the amount of functionaliza-

tion of HA with monoallyloxy-CB[6] and differentiation of the cells controlled by release

profiles of transforming growth factors and dexamethasone bound CB[6] (Dexa-CB[6]).

Dexa-CB[6] was shown to have slower release rates from the gels in comparison to free

dexamethasone (in the order of days compared to hours) on its complexation to free DAH

residues conjugated to the polymer network.

Similarly to Kim’s work, promise of useful materials with multiple anchored CB[7]

molecules has also recently been reported by Tan and coworkers.105 In this work, the syn-

thesis of a 4-vinylbenzyloxy-CB[7] monomer is reported followed by the copolymeriza-

tion with N-isopropylacrylamide (NiPAAm). The authors found that they could copoly-
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Figure 37: Attachment of CB[6] directly to hyaluronic acid and combination with PA-HA
affords a good cell culture scaffold with further opportunity to complex cell-signalling
moieties to the hydrogel network for tissue engineering applications. Figure reprinted
from Park et al., ACS Nano, 2012, 6, 2960–2968. Copyright 2012 American Chemical Soci-
ety
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merize 0.86 mol% of 4-vinylbenzyloxy-CB[7] into NiPAAm using redox initiated poly-

merization in water with Mn = 2.10 x 105 Da and PDI of 1.69 whilst retaining thermore-

sponsive properties. Although no specific materials were produced from this copolymer,

a wide variety of guest molecules were still able to bind to a proportion of the CB[7]

residues, even in their anchored form, and thus these materials could become useful in

the construction of higher order supramolecular materials or in surface attachment appli-

cations.

10.5 Microcapsule formation through CB[8] ternary complexation

CB[8] recognition motifs have also found utility in the formation of synthetic microcap-

sules whereby complete control of the composition of the shell and also the content

is paramount. Work by Scherman et al. saw development of multi-stimuli responsive

polymer-gold nanoparticle composite materials, held together by CB[8] heteroternary

complexes.335 This later developed, through collaboration between Scherman, Abell and

coworkers, into composite gold nanoparticle-polymer microcapsules produced by mi-

crofluidic methods, Figure 38A.336 Similarly to the formation of supramolecular polymers

and hydrogels, heteroternary complexation was achieved by encapsulation of an electron

deficient first guest followed by complexation of an electron rich second-guest. To con-

trol structure formation, separate aqueous solutions of MV-functional gold nanoparticles,

Np-copolymer and CB[8] were simultaneously injected into a microfluidic device with a

fluorous-oil carrier phase perpendicular to the aqueous flow. As the oil and water phases

meet, shear-forces at the interface initiate formation of monodisperse droplets whereby

the Np-copolymer and MV-nanoparticles were crosslinked at the oil-water interface by

CB[8] (having been drawn to the interface to stabilize the water/oil surface energy), form-

ing spherical capsules upon dehydration, subsequent rehydration was carried out with

minimal rupturing of the 3D structures. The size of the microcapsules could also be con-

trolled by moderating the difference in flow rate between the oil carrier phase and the
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aqueous phases. These capsules were resistant to high temperatures and low pressures

and no capsules were formed on replacing CB[8] with CB[7] as only binary complexes can

be formed and therefore no crosslinking is achieved. Sustained encapsulation of FITC la-

belled dextran (500 kDa) was also demonstrated, the integrity of the capsule shell was not

compromised and the cargo distributed evenly throughout. Release of the cargo could

even be triggered by reduction of the MV moieties with sodium dithionite, which breaks

the CB[8] complexation causing dissolution of the capsule walls. Extra utility of the cap-

sules arose from the presence of gold nanopaticles in the shell and this allowed for the

analysis and/or detection of materials encapsulated within by surface enhanced Raman

spectroscopy (SERS) as well as mapping of the microcapsule surface.

In a followup communication, Abell and coworkers demonstrated the fabrication of

colloidosomes via analogous microfluidic methods, Figure 38B.337 Passive diffusive re-

lease of cargo from colloidosomes is highly dependent on pore sizes, which is determined

by the spacing between colloids. Therefore, the ability to control distances between col-

loids in microcapsule walls, as well as anchoring the colloids in place, is extremely de-

sirable. Similarly to the production of the aforementioned gold nanoparticle-polymer

composite capsules, polystyrene colloids were functionalized with MV and then mixed

with CB[8] and a copolymer bearing Np moieties, forming capsules, which were stable

upon dehydration. Encapsulation and passive release of various molecular weight FITC-

dextran was explored and the authors demonstrated that 150 kDa FITC-Dextran could be

encapsulated for a prolonged time period as a results of the small gap distance between

colloids. Release could also be triggered by addition of a competitive guest (adamantyl

amine, ADA) by disassembly of the crosslinks and therefore the capsule. The authors

hypothesize that the release rates could be altered by controlling the inter-colloid dis-

tance and this could be achieved by changing polymer concentrations, crosslink density

or parameters of the microfluidic device.

The latest example of microcapsule formation facilitated by the efficient recognition
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Figure 38: Microfluidic methods for supramolecular capsule formation. A: CB[8] host-
guest interactions between gold nanoparticles and multivalent guest polymers provide
entanglements strong enough to build microcapsule walls. B: Colloids cross linked with
CB[8] into polymeric microcapsule walls, controlling inter-colloid distance alters release
rates of encapsulated cargos. C: Layered assembly of polymer only microcapsules by
dissolving multivalent guest polymers in both aqueous and non-aqueous phases of the
microfluidic device whereby CB[8] facilitates complexation at the oil-water interface. Fig-
ures reproduced with permissions from A; Zhang et al. Science, 2012, 335, 690-694, Copy-
right AAAS 2012; B: Stephenson e al. Chem. Commun. 2014, 50, 7048-7051, reproduced
with permission from The Royal Society of Chemistry; C: Zheng et al. Nat. Commun.
2014, 5, 5772, Copyright NPG 2014.
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of molecular moieties by CB[8] under microfluidic conditions was shown by Scherman

et al. in 2014.338 Assembly of multiple polymer layers and crosslinking with CB[8] was

achieved at a water/chloroform interface allowing for microcapsule formation. In this

system there is no requirement for nanoparticles to direct assembly at the interface as

guest-bearing copolymers were applied to both the aqueous (MV-polymer) and oil (Np-

polymer) phases to template capsule formation along the oil/water interface and layered

assembly was demonstrated by confocal microscopy of rhodamine and fluorescein la-

belled components, Figure 38C.

Adding extra functionality to the microcapsules, the hydrophobic polymer could be

replaced with a branched dendritic polymer bearing azobenzene moieties. Incorporation

of the branched dendritic polymer system allowed small molecules to be encapsulated

within the microcapsules and the skin formation facilitated through 1:1:1 complexation of

CB[8], MV and azobenzene. Disassembly could be triggered by UV irradiation, switching

the azobenzene configuration from E to Z thereby breaking the heteroternary complexes,

facilitating cargo release. These systems have demonstrated robust assembly techniques,

excellent tuning capabilities and therefore have many potential applications in future de-

livery devices.

10.6 CB[n] crosslinked polymer networks outlook

CB[n], and specifically CB[8], have shown excellent utility in the development and for-

mation of novel materials. Robust and efficient recognition motifs allow for rapid assem-

bly of macroscopic polymer networks of which the dynamics of such ternary complexes

have been shown to have impact on material properties. In the example of supramolec-

ular hydrogels, the mere fact that polymer concentration can be retained and yet a series

of different material properties can be accessed by simply modulating CB[8] concentra-

tion and therefore crosslink density allows for a wide applicability of these hydrogels to

future technologies, e.g. 3D cell culture. This is of particular importance in biomedical
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applications whereby fast-healing materials are required as injectables, CB[8] crosslinked

hydrogels would be highly impactful on modern medicines. Manipulation of polymeric

materials by microfluidic devices has led to novel microcapsule structures with excellent

control over assembly processes and potentially excellent utility in future molecular ma-

nipulation and delivery systems.

However, the science of covalently attaching CB[8] to polymers has yet to be reported,

but is envisaged to lead to the development of extremely responsive multi-component

materials with fantastic tuning properties. Therefore, in the future we hope and expect to

see many efforts in reproducible and scalable methods to mono-functionalize CB[8] with

readily reactive groups and covalently attach such a molecule to polymer architectures.

11 Catalysis within Cucurbituril Cavities

The ability of CB[n]s to encapsulate various guest molecules has led to them being used

to catalyze and template various chemical reactions. The first report detailed the catalysis

of [3+2]-cycloadditions339 in the presence of CB[6], which paved the way for the develop-

ment of click-chemistry reactions. Since then, CB[n]s have been used to catalyse solvoly-

sis reactions,340 oxidation reactions341 and metal-ion assisted reactions.342 Furthermore,

CB[n]s have been utilized in photocatalysis and templating photochemical reactions,343

and, in contrast, have been employed in reaction inhibition through the protection of

reactive functional species by encapsulation.344 The following section will focus on key

research outcomes in the area of catalysis and reaction modulation through interactions

with CB[n] macrocycles.

11.1 [3+2]-cycloadditions catalysed by CB[6]

The first instance of CB catalysis was reported by Mock et al. in the late 1980s, whereby a

[3+2]-cycloaddition of an alkyene (E1) and an azide (E2) was shown to occur within the
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cavity of CB[6] molecules.339 In an aqueous formic acid solution at 40 ◦C, the cycload-

dition occurs slowly with the formation of substituted triazoles, however the addition

of catalytic amounts of CB[6] led to a 6× 105 increase in reaction rate with triazole (E3)

being the only isomer formed as result of the orientation of (E1) and (E2) within the 1:1:1

complex formed with CB[6]339 (see Figure 39). The catalytic rate increase of the reaction

was attributed to an overcoming of entropic constraints through optimal orientation, in

addition to strain-induced compression of the reactants within the CB[6] cavity. This pi-

oneering work inspired the development of azide-alkyene cycloadditions toward ‘click

chemistry’ reactions, with rotaxanes, polyrotaxanes and pseudorotaxanes being success-

fully synthesized from CB[6] catalyzed [3+2] cycloadditions.345–349

Figure 39: A schematic of an azide-alkyne click reaction mediated by CB[6].339

11.2 CB[n] catalysed solvolysis reactions

In 2009, Nau et al. reported the catalysis of amides, carbamates and oximes by CB[6] and

CB[7] through an acid hydrolysis reaction.340 In the presence of CB[6] or CB[7], the rate

of hydrolysis of an amide with a cadaverine moiety (E4) rose by a factor of 5 (kcat/kuncat)

at pD 0.9, whilst at pD 1.4 the reaction rate increased by a factor of 11.6. For carbamate

(E5), reaction rate increased by a factor of approximately 30 in the presence of CB[6]. For

oxime (E6) in the presence of CB[7], the reaction rate increased by factors of between 50

and 285 dependent on the pD value, which was varied between 4 and 5.8. The catalytic

effect of CBs was proposed to be through the coloumbic stabilization of the protonated

nitrogen intermediate that occurs during the hydrolysis, in addition to increasing their

apparent pKa values.

Garcia-Rio et al. investigated the hydrolysis of substituted benzoyl chlorides (E7) in
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Figure 40: (a) Acid hydrolysis of an amide (E4), a carbamate (E5) and an oxime (E6) cat-
alyzed by CB[7].340 (b) CB[n] mediated hydrolysis of benzoyl chlorides to benzoic acid.350

the presence of either CB[7] or methylated-β-cyclodextrin, with each macrocycle dis-

playing contrasting effects on the reaction.350 For the case of benzoyl chlorides substi-

tuted with electron donating groups, CB[7] showed a catalytic effect towards the for-

mation of benzoic acid (E8), whereas methylated-β-cyclodextrin inhibited the reaction.

Conversely, electron-withdrawing substituted benzoyl chlorides were inhibited by CB[7]

and catalyzed by methylated-β-cyclodextrin. The opposing effects are explained through

differences in the cavities and portals of these two macrocycles. For electron donating

substituted benzoyl chlorides, CB[7] catalyzes the reaction through stabilization of the

acylium cation intermediate by its carbonyl lined portals, lowering the energy barrier for

the reaction. For the electron withdrawing substituted benzoyl chlorides, methylated-

β-cyclodextrin shows a catalytic effect as a result of the hydroxyl groups of the portals

participating in the reaction. This work demonstrated the role that macrocycle portals

can play influencing reaction rates.
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11.3 CB[n] catalyzed oxidation reactions

In 2009, Zhu et al. demonstrated the ability of CB[8] to catalyze the oxidation of veratryl

alchohol to veratraldehyde by o-iodoxybenzoic acid,341 and then extended the approach

to the oxidation of aryl, allyl and alkyl alcohol compounds.351 The catalysis was found to

be highly dependent on temperature and moderately dependent on pH, with neutrality

favored over more extreme pH levels. Although the role of CB[8] in the catalysis was

not clear, an increase in the oxidative conversion of 16.3% was observed at 95 ◦C in the

presence of CB[8].

Reddy et al. investigated the catalysis of a series of reactions involving halogen inclu-

sion complexes with CB[6].81 Fine CB[6] powders were exposed to either I2 or Br2 vapor to

form I2-CB[6]·4H2O and Br2-CB[6]·10H2O, respectively. Reactions were then performed

in the presence of the halogen complex, or its complex with CB[6], with resulting yields

being compared. The greatest increase in yield was seen for that of the iodine-catalyzed

Prins cyclization, where the yield was 7% higher than that reported in the literature. The

remaining reactions tested all showed yields comparable to what had been demonstrated

in the literature for the the uncomplexed halogens. Nevertheless, this represents a novel

use of CB[6] complexes in halogen-catalyzed reactions.

11.4 Photocatalysis

The efficiency of photochemical reactions can suffer when performed in solvated environ-

ments and where specific molecular orientations and alignments of reactants are required.

In order to proceed effectively, such barriers need to be overcome. Molecules that have

been excited with photons can relax either radiatively or non-radiatively (via solvent colli-

sions etc.), which can drastically reduce reaction efficiency. In addition, the lack of control

over molecule orientation can lead to many products arising from a single photochemical

reaction, or indeed a reaction may not proceed at all if a particular molecular orienta-
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tion of the reactants is not met. The use of CB[n] macrocycles in photochemical reactions

may help to overcome these obstacles. CB[n]s create a reaction environment that can be

solvent free, preventing non-radiative relaxation. Also, CB[n]s allow for precise orien-

tation of guest molecules, allowing for specific stereo-selectivity of the reaction product.

Lastly, CB[n]s are transparent in the near UV and visible regions of the electromagnetic

spectrum, promoting photochemical processes within the CB[n] internal cavity.

Kim et al. demonstrated the first use of CB in the catalysis of a photochemical reac-

tion involving (E)-diaminostilbene (E9).343 2:1 complexes of stilbene:CB[8] were shown to

form in an aqueous environment as confirmed by 1H NMR. The ternary complex then un-

derwent a cycloaddition after UV irradiation (300 nm, 0.5 h), to form a [2+2] syn-adduct

(E10) within the CB[8] cavity with high selectivity over the anti-adduct (E11). The same

experiment performed in the absence of CB[8] yielded the (Z)-isomer (E12) as the ma-

jor product; a product that was not evident at all when CB[8] was present. It was also

demonstrated that the addition of base (NaOH) to the post-photoreaction complex saw

the ejection of the cyclyzed compound from the CB[8] cavity, regenerating the cucurbi-

turil catalyst as a result. This work highlighted the use of CB[8] as a template nanoreactor

that can influence regio- and stereoselectivity in photochemical reactions.

Continuing on from the work of Kim et al., Ramamurthy et al. explored the use of CB[8]

in controlling the photoreactivity of a range of olefin molecules (some of which include

E13, E14 and E15).352,353 The olefins were irradiated with UV light for 1 h, in both the

presence and absence of CB[6] and CB[8]. In the presence of CB[7], compounds E13, E14

and E15 formed their own structural variations on the (Z)-isomer (E18) and the bridged

(Z)-isomer (E19), with compound E5 also yielding the hydrolysis compound (E20). With

CB[8] present, photodimerization was favored, with the product distribution favoring

the syn-adduct (E16), with minor amounts of the anti-adduct (E17) and the bridged and

non-bridged (Z)-isomers also present. This reaction scheme was then extended to the

formation of symmetric and asymmetric cyclized dimers by localizing asymmetric olefins
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Figure 41: (a) Photodimerization of (E)-diaminostilbene in the presence of CB[8].343 (b)
Photoreactivity of trans-1,2-bis(n-pyridyl)-ethylenes and stilbazoles in the presence of
CB[8].352,353 (c) Photodimerization of cyclodextrin functionalized anthracene in the pres-
ence of CB[8] and γ-cyclodextrin.136 (d) Photodimerization of aminopyridine derivates
encapsulated in CB[7].131
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within the CB[8] cavity.353

In an effort to expand the versatility of CB[8] in enhanced photoreactions, Pember-

ton et al. reported the photodimerization of neutral and cationic coumarin species.20,354

Irradiation of an aqueous solution of a coumarin and CB[8] in a 2:1 complex led to the

formation of the head-to-tail adduct as the major product, a result that was indepen-

dent on the functional group substitution of the coumarin derivatives used. The type of

head-to-tail adduct (whether syn- or anti-) could be controlled by varying the substituents

on the coumarin moiety, with polar substituents favoring the anti-adduct, and non-polar

substituents favouring the syn-adduct.

Kim and Inoue et al. moved away from [2+2] cycloadditions to concentrate on [4+4]

cycloadditions in the presence of both CB[8] and γ-cyclodextrin (CD).136 Both anthracene,

and anthracene tethered to α-CD via an ester linkage (E21), were investigated as photoac-

tive compounds to demonstrate that the stereoselectivity of the [4+4] cycloaddition can

be manipulated via conditions outside the host cavity. Photoexcitation in the absence of

CB[8] or γ-CD led to a mixture of syn-head-to-head (HH, (E22)), anti-HH (E23), syn-head-

to-tail (HT, (E24)) and anti-HT (E25) isomers forming in roughly the same ratios (with the

HT isomers being favoured) for both anthracene and anthracene-α-CD. The presence of

CB[8] or γ-CD during photodimerization of anthracene led to a minor shift toward the

formation of HT isomers. Photodimerization of anthracene-α-CD in the presence of γ-CD

showed a larger shift towards the HT isomers, with a ratio as high as 98:2 HT:HH at -20 ◦C

and 210 MPa. The introduction of CB[8] into the anthracene-α-CD system gave rise to a

HT:HH ratio of 2:98; an extreme inversion compared to that of the γ-CD system, showing

that the α-CD attached to the anthracene, which is too large to be incorporated into the

cavities of either γ-CD or CB[8], can drastically effect the stereochemistry of the products

formed by photocycloaddition. More recently, the photodimerization of anthracene in

CB[8] has been utilized by Biedermann et al. in the ligation and cross linking of polymer

networks.162
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Whilst CB[8] has also been applied to the stereo-control of photochemical reactions

involving styryl dyes,138 cinnamic acids,355 2-naphthalenecarbonitrile and naphthoate

compounds towards the formation of cubane-like photodimers,137,356 as well as the pho-

tothydrolysis of benzoimidazole,357 CB[7] has been shown to accommodate smaller, yet

similarly designed guests for photodimerization. Macartney et al. investigated the [4+4]

photodimerization of 2-aminopyridine (E26) when encapsulated in CB[7] in a 1:2 host-

guest complex.131 In the absence of CB[7], a mixture of the syn-trans (E27) and anti-trans

(E28) photodimers formed in a 1:4 ratio. In the presence of 50 mol% CB[7], the anti-trans

dimer was formed exclusively. It was also found that CB[7] stabilized the dimer at room

temperature, preventing it from reverting back to the monomeric 2-aminopyridine.

11.5 Metal cation assisted CB[n] catalysis

Given their negatively charged carbonyl fringed portals, cucurbiturils are highly efficient

at binding to metal cations; a property that makes them useful at promoting catalysis

reactions that utilize ionic metal species. Despite cation binding to CB[n]s being a well-

established area of research,36 the idea of using such complexes for catalysis is relatively

new, and hence fairly unexplored. Demets et al. investigated the catalytic properties

of an oxovanadium(IV)-CB[6] complex towards the oxidation of various organic com-

pounds.358 It was demonstrated that pentane (E29), a linear alkane, could be oxidized to

compounds E30, E31 and E32, however, larger organic molecules such as styrene (E33)

and cyclohexane (E34) could not. This was explained through the nature of the VO2
+

binding, whereby the vanadium atom bound to the carbonyl portal of the CB[6], with the

oxygen atom pointing away from the CB[6] cavity, in a distorted square-pyramidal con-

figuration. This meant that only small molecules that can enter the CB[6] cavity could be

oxidized as the oxygen atom in the VO2
+ species blocked direct access to the vanadium

atom from the other side of the complex. In this way, Demets et al. demonstrated a size

selective heterogeneous catalyst based on CB[6] through metal ion interactions.
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Figure 42: (a) Size selective oxidation of alkanes within a oxovanadium(IV)-CB[6] com-
plex. Adapted from Demets et al.358 (b) Desilylation of trimethoxysilane compounds, cat-
alyzed by silver ions in the presence of cucurbiturils.342 (c) Photoreactivity of azoalkanes
through CB[7]-metal ion interactions in a two-phase system.359
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Masson and Lu reported a multi-step catalytic cycle for the desilylation of trimethyl-

silylalkynl containing compounds via a heteroternary complex formed with Ag+ ions and

CB[7].342 The desilylation of (E35) in the presence of CB[7] and Ag+, which led to the for-

mation of an alkyl-silver organometallic complex, was monitored through the 1H NMR

response of the trimethylsilanol byproduct (E37), complexed with the CB[7] cavity. The

mechanism proposed for the reaction begins with (E35) forming a complex with CB[7]

whereby the trimethylsilane group binds to the CB[7] cavity. A silver cation then forms

a π-complex with the triple bond of (E35) and the carbonyl portal of the CB[7]. Molecule

(E35) then undergoes a nucleophilic substitution with water, cleaving the trimethylsi-

lyl group, yielding the trimethylsilanol by-product (E37) and a alkynyl-silver complex,

which is subsequently hydrolyzed to form the desilyated alkyne (E36) and the regener-

ated silver cation.

Nau et al. extended the concept of metal-CB[n] catalysis by utilizing such complexes

to effect product formation from photoreactions involving azoalkanes in a two phase

system.359 Firstly, the formation of complexes between CB[7] and metal ions, includ-

ing Fe3+, Co2+, Cu2+, Zn2+, Ag+ and Ti+, was confirmed by noting hypsochromic shifts

and fluorescence intensity changes in optical titrations. The complexes were then tested

for their activity towards the photoreactivity of 2,3-diazabicylo[2.2.2]oct-2-ene (E38) and

diazabicylo[2.2.1]hept-2-ene (E41) in a two solvent system, consisting of water and pen-

tane. Analysis of the organic reaction mixture from a reaction of (E38) by gas chromatog-

raphy showed that product ratio of 65:35 for (E39)/(E40) in both the presence and absence

of CB[7], and a ratio of 70:30 with just metal ions present. This ratio shifted to 87:13 in

the presence of CB[7] and metal ions (Ti+, Fe3+, Co2+, Ni2+, Cu2+ and Ag+). The pref-

erential formation of the diene (E40) was theorized to have arisen from a triplet excited

state caused by heavy-atom-doped intersystem crossing. The photoreaction of (E41) re-

sulted in a 100% preferential conversion to housane (E43), over the secondary product cy-

clopentene (E42), in the presence and absence of CB[7], metal ions, and most metal-CB[7]
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complexes. A distinct change in reactivity occurred in the presence of the CB[7]-Ag+ com-

plex, where a product ratio of 59:41 for (E43)/(E42) was observed. It was postulated that a

photo-induced electron transfer was likely due to the new mechanism that led to the for-

mation of cyclopentene, a mechanism that must be supported by the CB[7]-Ag+ complex,

as no cyclopentene formed in the presence of Ag+ alone, even at concentrations as high

as 1 M. This work demonstrated the potential of CB[n]-cation complexes in promoting

otherwise unobtainable reaction products via photochemistry.

11.6 Reaction inhibition by cucurbit[n]urils

Cucurbiturils show a strong capacity to encapsulate guests within their hydrophobic cav-

ities. Whilst we have seen that this can lead to the catalysis of reactions through efficient

orientation of guests and carbonyl portal interactions, in addition to effecting reaction

products through templating, the encapsulation of guests can also lead to the inhibition

of reactions. In this way, CB[n]s can act in much the same manner as a protecting group

in organic synthesis, shielding specific molecules and functional moieties from chemical

attack.

The redox chemistry of thiol groups and disulphide bridges have been manipulated

through CB[6] binding.344 Kaifer et al. first highlighted that compounds such as cys-

teamine (E44) and cystamine (E45), and derivatives based on these compounds, can be

encapsulated within CB[6] in an orientation such that the sulphur containing groups re-

main inside the hydrophobic cavity. They then investigated the oxidation and reduction

of these compounds in the presence and absence of CB[6]. When reacted with an excess

of dithiothreitol (DTT), cystamine was shown to be reduce to the thiolated form, cys-

teamine, with the reaction coming to completion after approximately 1 h. In the presence

of CB[6], no formation of cysteamine was observed after 50 h of reaction time. Similar

results were obtained for the oxidation of cysteamine, with no formation of cystamine in

the presence of CB[6], whilst in its absence, FeCl3 was able to oxidize cystamine to cys-
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teamine to completion after approximately 6-7 h. This reduction in reactivity was also

seen when different oxidants were used, including dissolved oxygen and chloropicrin.

This work highlighted the impressive ability of CBs to not only protect a species from

chemical attack, but to also kinetically hinder both forward and reverse reactions as a

result of host-guest complex formation.

Masson et al. demonstrated the use of CB[7] in modulating the chemiluminescence of

Lucigenin (E46).360 Lucigenin undergoes chemiluminescent degradation upon the addi-

tion of sodium peroxide, which leads to the formation of dioxetane (E47). Dioxetane then

undergoes homolytic cleavage to produce singlet excited acridone (E48), which relaxes

to the ground state (E49) via photon emission. CB[7] was shown to modulate this reac-

tion by binding to various ‘R’ group substituents of Lucigenin that are present on either

side of the biacridine unit. The binding decreased dioxetane formation and dimmed the

chemiluminescent reaction. Chemiluminescence could be restored through the addition

of a competitive CB[7] guest. In this way, CB[7] can be utilized in regulating the rate of

chemiluminescent reactions.

Cong et al. reported the use of CB[6] and CB[7] in the prevention of acylation of the

anti-tuberculosis drug, isoniazid.362 For all acylating agents tested, stoichiometric addi-

tions of either CB[6] or CB[7] rendered isoniazid completely unreactive to acylation, with

the initial rate of acylation decreasing between 10-100 fold in the presence of 0.8:1 CB to

isoniazid. The mechanism for the protection was concluded to arise because of an in-

crease in the pKa value of the isoniazid, as a result of the amino protons binding to the

carbonyl portals of CB. This work demonstrates the potential for CB[n]s to be used as

drug carriers for isoniazid, increasing its bio-availability in the presence of acetylators.

CB[7] has also been shown to stabilize biologically active molecules from various

chemical degradation pathways. Biczok et al. utilized inclusion complexes with CB[7]

and sanguinarine, a natural biologically active benzophenanthridine alkaloid, to stave

off photo-oxidation and nucleophilic attack.361 The iminium form (E50) of sanguinarine
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Figure 43: (a) Inhibition of redox reactions involving thiols and disulphides through pro-
tection within CB[6] cavities.et al.344 (b) The chemiluminescent reaction of lucigenin, mod-
ulated by CB[7].360 (c) Inhibition of the photo-oxidation and nucleophilic attack of san-
guinarine by CB[7] encapsulation.361
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formed both a 1:1, and 2:1 host-guest complexes with CB[7], with binding constants of 106

M−1 and 103 M−1, respectively. The iminium form of sanguinarine is susceptible to nucle-

ophilic attack by hydroxide ions at the 6 position, leading to the uncharged alkanolamine

form (E51); a reaction that was prevented when complexed with CB[7]. The hydroxy-

lated form of sanguinarine can also form a complex with CB[7], with a binding constant

of 2.45× 102 M−1. The alkanolamine form can undergo an irreversible photo-oxidation

reaction to produce 6-oxysanguinarine. This reaction was hindered by the presence of

CB[7], likely through preventing oxygen from reaching the sanguinarine whilst encapsu-

lated within the CB cavity.

In addition to modulating the rate of chemical reactions, CB[7] has been exploited to

regulate the activity of enzymes. Ghosh et al. designed bi-functional inhibitor molecules

with affinities for both CB[7] and either bovine carbonic anhydrase (BCA) or acetyl-

cholinesterase (AChE).363 The addition of inhibitor molecules in stoichiometric ratios to

BCA saw a decrease in its catalytic activity as a result of the blocking of its active site.

The addition of CB[7] to the enzyme · inhibitor complex saw the formation of enzyme ·

inhibitor ·CB[7] complexes that underwent prompt dissociation, releasing inhibitor ·CB[7]

and reforming the active enzyme. The inhibition could then be cycled by adding a com-

petitive guest for CB[7], releasing the inhibitor molecule. Whilst BCA was shown to fol-

low the inhibition cycle mentioned, AChE did not given the formation of stable com-

plexes with both inhibition molecules and CB[7] simultaneously. This meant that CB[7]

was unable to actively dissociate the inhibitor molecule from AChE. By using tailored

inhibitor molecules with affinities for both enzymes and CB[7] macrocycles, cucurbiturils

could play an important role in allowing for dynamic manipulation over the activity of

enzymes.
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12 Recognition by CB[n] in biological systems

Molecular recognition and detection of biomolecules in aqueous solution, particularly

peptides and proteins, is an important target within biomedical sectors, especially those

focussed on sensing and separation. Research from the Brunsveld, Buschmann, Kim, Li,

Nau, Scherman and Urbach groups has brought the art of amino acid complexation and

recognition by CB[n] receptors forward to protein-protein conjugation and solution phase

structure elucidation. This area has seen a large expansion in the number of publications

on the binding of amino acids, peptides and proteins in the past 10 years and a wealth of

knowledge of binding constants and conformations has been developed through utiliza-

tion of a variety of spectroscopic and modeling techniques.

12.1 Amino acid and short peptide recognition by CB[n]

An early example of short polypeptide recognition by CB[n] was reported by Buschmann

et al. in 2005.364 This research determined binding constants for a small library of di-

or tripeptides through ion-dipole interactions between the protonated N-terminus of the

peptides and the portals of CB[6]. The authors found that there was no significant depen-

dence on peptide size to CB[6] binding, inferring that only an exclusion complex is formed

(unlike alkylamino cations), likely resulting from the polarity of the peptide bonds. Nev-

ertheless, the portal interaction is entropically favorable as two molecules of water are

released from CB[6] upon peptide complexation.

Concurrently, Urbach and coworkers essentially pioneered the art of amino acid sens-

ing when they reported the ability of CB[8]·MV to recognize and complex with tripeptides

of glycine and a single tryptophan residue (WGG, GWG, GGW) forming charge-transfer

complexes. This was monitored by UV absorption spectroscopy, fluorescence and NMR

spectroscopies as well as ITC.130 The authors found WGG had the overall highest Ka

of the three peptides (1.3 x 105 M−1, 6-fold higher than GWG and 40-fold higher than
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GGW) to CB[8]·MV and that electrostatic interactions of the C-terminus played a large

part in the binding affinity on account of repulsion between the carbonyl portals of CB[8]

and the carboxylate of the peptides. Binding of the tryptophan residue to the CB[8] cav-

ity was accompanied by charge transfer complexation with MV and consequent fluores-

cence quenching of the indole group, as well as broadening of signals in 1H NMR. This

work was later extended into recognition of multivalent peptides by self-assembled re-

ceptors.365 Here peptide scaffolds were functionalized with multiple MV units (1-3) that

each recruit one CB[8] host. This self-assembled receptor was then able to bind in a 1:1

fashion with identical peptides bearing complementary tryptophan residues in place of

the MV of the receptors, Figure 44a.

Figure 44: a) Self-assembled multivalent receptors of “MV-peptide” and CB[8] complex
aromatic residues in complementary peptides, figure reproduced in part with permis-
sions from Reczek et al. J. Am. Chem. Soc. 2009, 131, 2408-2415, Copyright 2009 Amer-
ican Chemical Society. b) Crystal structure of two FGG peptides complexed to CB[8].
Hydrogen bonding interactions between peptide backbone and CB[8] carbonyl portals
exemplified by dashed lines, figure reproduced in part with permissions from Heitmann
et al. J. Am. Chem. Soc. 2006, 128, 12574-12581, Copyright 2006 American Chemical
Society. c) 2:1 complexation of pentapeptides to CB[8] via mid-chain Phe residues, fig-
ure reproduced in part from Sonzini et al. Chem. Commun. 2013, 49, 8779-8781 with
permission from The Royal Society of Chemistry

Urbach et al. also observed 2:1 binding of aromatic amino acids to CB[8].165 Consistent

with the previous study, tripeptides consisting of 2 glycine residues and a single trypto-

phan or phenylalanine were investigated and it was again found that the distance of the

aromatic residue from the C-terminus had a large effect on binding affinity. Sequential
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binding modelling of ITC data demonstrated, in the case of WGG, the second binding

constant is a magnitude lower than the first, however, this could not be determined for

FGG due to cooperativity in binding. WGG was found to bind to CB[8] in a 2:1 fashion in

a non-cooperative manner unlike FGG whereby ITC data suggests positive cooperativity.

The authors also managed to isolate a crystal structure of FGG bound in a 2:1 fashion to

CB[8], with the aromatic residues encapsulated in a stacking geometry within the cavity,

Figure 44b. Hydrogen bonding interactions between the peptide N-H’s and CB[8] car-

bonyl portals were also apparent. Other aromatic amino acid residues were investigated

(tyrosine, histidine), however, binding to CB[8] was not observed for these derivatives.

The study of 2:1 binding of middle-chain phenylalanine residues in pentapeptides

to CB[8] has also been investigated by Scherman et al.164 This is the first example of

strong 2:1 binding in a longer peptide chain where the Phe residue is not located at the

N-terminus. The pentapeptides selected were based on the aggregation promoting region

of wild type human amyloid β (Aβ), a peptide that has been linked to the development of

Alzheimer’s disease. The Aβ fragments explored were AEFRH, LVFIA, VIFAE, of which

the latter two were overlapping regions of the Aβ sequence but with one of the F residues

exchanged for I (isoleucine). In wild type Aβ this region actually contains two neigh-

boring Phe units and the authors chose to replace one of these residues in each sequence

with isoleucine to ease synthesis and analysis of results when combined with CB[8]. 2:1

binding modes were confirmed by fluorescence and NMR spectroscopy and ITC anal-

yses and despite differing charges, hydrophobicity and steric hindrance, all sequences

formed strong homoternary complexes on the order of 109-1013 M−2, Figure 44c. This

study demonstrates CB[8] is able to access potentially hindered Phe residues in non-N-

terminal sites of peptides and may also hold advantages to the future of understanding

Aβ fibrillation mechanisms in Alzheimer’s disease.

1:1 binding of phenylalanine derivatives to CB[7] has also been investigated by Ur-

bach and coworkers. Remarkably one derivative, 4-aminomethyl-phenylalanine, was re-
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ported to have a Kd of 0.95 nM (500x stronger affinity than phenylalanine).366 However,

biomolecule detection often has to be performed at much lower concentrations. Other

chemical modifications of phenylalanine were investigated such as t-butyl and hydroxyl

groups at the 4-phenyl position, but none of these modifications provided such a stark

increase in binding affinity as the amino-methyl group. A later report by Urbach et al.

detailed nanomolar detection of peptides harnessing CB[8] complexes of tetramethyl-

benzobisimidazolium (MBBI).97MBBI·CB[8] was shown to have an intriguing response to

tripeptides Tyr-Leu-Ala and Tyr-Ala-Leu within nano-micromolar detection limits. In the

former case, a fluorescence enhancement was observed upon combination, elucidating

displacement of MBBI from CB[8], and this result was confirmed by NMR studies. In the

latter example, fluorescence was seemingly quenched by the formation of a 1:1:1 charge-

transfer inclusion complex of CB[8], Tyr-Ala-Leu and MBBI. Therefore, MBBI·CB[8] is

able to act as both a nanomolar “fluorescence-off” receptor for Tyr-Ala-Leu and “fluo-

rescence on” receptor of Tyr-Leu-Ala, simultaneously. This is the first example of highly

specific recognition of N-terminal Tyr tripeptides by CB[8], whereby in certain cases, the

peptide chain can fold and be mostly included within the CB[8] cavity (as modelled) at

the expense of dissociation of MBBI. The authors suggest that given the minimal structure

of this Tyr-Leu-Ala peptide, it could easily be engineered into recombinant proteins as an

affinity tag.

Urbach et al. also demonstrated inhibition of a nonspecific exopeptidase, porcine

amino peptidase N (APN) with CB[7] via binding of phenylalanine units present within

the peptide.367 N-exopeptidases degrade peptides by sequential cleavage of amino acids

from the N-terminus. With CB[7] bound to a Phe residue within a peptide sequence (Thr-

Gly-Ala-Phe-Met), cleavage of the amide bond was completely inhibited upon reaching

the CB7·Phe complex and therefore Phe-Met was stable to APN degradation. The authors

elude to the applicability of this system in the protection of longer peptides from APNs,

which could prolong peptide lifetimes in vitro and in vivo.
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Collaboration between the Urbach and Nau groups led to the development of a tan-

dem assay whereby discrimination of CB[7] affinity for fluorescent dyes and peptides al-

lowed for determination of protease substrate selectivity and inhibitor activities.368 In this

study, mixtures of acridine orange (fluorescent dye), CB[7], peptides (with Phe residues)

and proteases were formulated. Initially acridine orange is encapsulated by CB[7] on

account of a stronger binding constant than the mid-chain Phe residue of the peptide

and fluoresces. Upon cleavage of the peptide by proteases, the Phe unit was revealed in

the new N-terminus position, the acridine orange was displaced from the CB[7] by the

peptide and fluorescence of the dye quenched. This system was utilized to quantify the

activity of several proteases but also able to determine the activity of protease inhibitors.

This method proved to be a robust way to determine both enzyme and inhibitor activity

at nano-molar levels in a label free manner. However, it is limited to peptides that yield

products with N-terminal aromatic amino acids upon enzymatic degradation.

This area has seen excellent progression over the past decade from recognition of

amino acids by CB[8]·MV towards the development of sensitive detection assays and

dimerization of larger peptides by CB[8].

12.2 Non-covalent protein conjugation

In more recent literature, the groups of Scherman, Brunsveld and various others have

developed methods to conjugate macromolecules to larger proteins via CB[8] recognition.

An early example of non-covalent conjugation was of PEG to BSA through CB[8] ternary

complex formation, as reported by Scherman et al. in 2011, Figure 45a.143 PEGylated

proteins have distinct physicochemical properties (resistance to biodegradation, etc.) and

therefore bioconjugation of polymers in a site-specific and dynamic manner is applicable

to many biological sectors, especially therapeutic protein delivery. In this example, a BSA

fraction was functionalized with a single naphthoxy moiety at its only free thiol cystine

residue. Combining this in solution with PEG-MV and CB[8] led to ternary complex
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formation and a PEG-BSA bioconjugate was observed by DOSY NMR, DLS, UV/vis and

fluorescence spectroscopies and ITC. This work, as described in the authors conclusions,

demonstrated controlled supramolecular formation of PEG-protein bioconjugates, which

is a proof of concept for further translation or potentially protein-protein supramolecular

conjugation.

Figure 45: a) Reversible BSA PEGylation through hetero-ternay complex formation with
CB[8], figure reproduced in part from Biedermann et al. Chem. Sci. 2011, 2, 279-286.
b) Dimerization of protein FRET pairs with CB[8], figure reproduced from Uhlenheuer
et al. Chem. Commun, 2011, 47, 6798-6800 c) Controlling protein dimerization by uti-
lizing FGG-PEG-GGF polymer, figure reproduced in part from Ramaekers et al. Chem.
Commun. 2015, 51, 3147-3150. All images reproduced with permissions from The Royal
Society of Chemistry.

Protein-protein heterodimerization of MV and Np bearing proteins with CB[8] was

reported by Brunsveld et al. several months later.144 This study demonstrated the selec-

tive dimerization of two different proteins, one bearing MV to a second protein bearing

Np, following on from previous work by Brunsveld, which was limited to dimerization

of identical proteins through 2:1 complexation of FGG-protein sequences with CB[8], Fig-

ure 45b.282 In both cases protein FRET pairs could be dimerized and therefore the assem-

bly process studied by fluorescence spectroscopy. A follow-up SAXS study eluded to the
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compact nature of packing of such dimers when complexed in solution.369Collaboration

between the Brunsveld and Dankers groups saw the production of (FGGG)2penta(ethylene

glycol), which could form ring structures on the binding of its 2 FGGG units to CB[8] and

modulate protein dimerization with more control than simple competitive FGG molecules,

Figure 45c.281 CB[8] mediated homotetramerization of fluorescent proteins was later re-

ported by Brunsveld and coworkers.370 This was achieved by combining the 2:1 complex-

ation motif of FGG (encoded at the N-terminus of many proteins) to CB[8] with intrinsic

affinities between proteins, essentially producing supramolecular dimers of dimers.

Brunsveld and coworkers later reported a further study on the dimerization of inactive

enzyme monomers with CB[8] to form an active enzyme supramolecular dimer.371 Here

Caspase-9, which is only active in its dimeric form, was complexed together via recog-

nition of FGG moieties by CB[8]. Perhaps most importantly, the activity of the enzyme

was not compromized by the supramolecular elements that induce dimerization and a

great deal of molecular control over the system was achieved, i.e. CB[8] concentration

controlled the degree of dimerization and therefore activity of the Caspase solution.

In summary, significant progress has been made in the understanding of protein con-

jugation facilitated by CB[8] recognition motifs and this insight is starting to be translated

towards modulation in protein activity showing great promise for the future applicability

of this field.

12.3 Further application to biochemistry

Urbach and coworkers reported a 1:1 binding stoichiometry between CB[7] and insulin,

at the N-terminal phenylalanine of the insulin B chain.96 This is a particularly interest-

ing result as there are three Phe residues in the insulin sequence, however, replacement

experiments of these other residues confirmed that it is solely the N-terminal Phe that

binds to CB[7]. This is starkly different to other methods of recognizing proteins as no

modifications to the peptide sequence in terms of histidine tagging have been performed.
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Recognition has simply been achieved through mixing the native protein with CB[7] and

large binding constants upwards of 106 M−1 were reported.

Kim and coworkers showed that CB[7] binding to Phe residues of insulin and amy-

loid β prevented aggregation of such proteins.372 This is very important for both insulin

storage and understanding development of Alzheimer’s disease through amyloid aggre-

gation. These studies show that by masking the hydrophobic residues of Aβ or insulin

with CB[7], or at least increasing steric hindrance around these regions via complex for-

mation, significant inhibition of the aggregation process can be achieved. Through a va-

riety of biological assays and binding studies the authors demonstrate that CB[7]-Phe

complexation is much faster than protein-protein dimerization and the Phe-specific bind-

ing of CB[7] successfully modulates intermolecular interactions, preventing fibrillation

processes, and is therefore a pathway for new potential treatments for amyloid linked

diseases.

A 2011 report by Kim et al. demonstrated the gas phase host guest chemistry of

CB[6] and Lys containing peptides.373 Through collisional activation, CB[6] was found

to efficiently complex to Lys residues of model peptides in the gas phase, often result-

ing in common fragmentation products. This was used to elucidate protein structure,

specifically in the case of ubiquitin, by employing tandem mass spectrometry techniques

on CB[6]-protein complexes formed in aqueous conditions to determine solution phase

conformations. A follow-up study investigated the conformational changes of ubiqui-

tin proteins upon CB[6] complexation in the gas phase, at a variety of different charge

states, of which specific Lys residues complexed with CB[6] were able to be determined.

CB[6] complexes inhibited salt bridge formations and therefore triggered conformation

changes. This could be reversed and the protein refolded upon CB[6] detachment.374

In the future this research will hopefully be translated to other protein structures and

improve mass spectrometry techniques for determining protein structure, as well as de-

termining protein sequences that in turn determine higher order conformations.
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Inhibition of DNA restriction enzymes by CB[6] and CB[7] was reported by Pischel

and collaborators.375 In this example binding of CB[6] and CB[7] to DNA restriction en-

zymes is hypothesized to be the cause of inhibition of DNA hydrolysis, however, the

authors were unable to determine exactly which residues of the restriction enzyme were

bound by the CBs. It was shown that DNA hydrolysis could be reactivated by simple

addition of spermine, which competes for the macrocycle cavity, likely releasing the re-

striction enzymes and allowing continuation of DNA hydrolysis.

12.4 Profiling toxicity of cucurbit[n]uril

2010 saw two reports showing CB[n] type containers exhibiting good biocompatibility

profiles. Isaacs, Briken and coworkers examined the viability of HepG2 (liver derived)

and RAW264.7 (macrophage) cells after 24 h exposure to CB[5] and CB[7].100 Both cell

lines showed good tolerance to CB[5] and CB[7] up to 1 mM with cell viabilities exceed-

ing 90 %. Moreover, the internalization of CBs with encapsulated FITC by macrophages

was proven to be very efficient and treatment of mycobacteria with CB[7]-bound drug

molecules did not see any significant decrease in efficacy of the therapeutic compound.

Furthermore, acyclic analogues of CB[n] were also studied and the cells also expressed

high tolerance for such compounds beyond usual therapeutic levels.

Day, Nau and coworkers also explored the in vitro activity of CB[7] and CB[8], specifi-

cally against CHO-K1 cells (ovarian cell line from hamsters).99 An IC50 value of 0.53± 0.02 mM

was determined, which roughly corresponds to 620 mg kg−1 of cell material. The authors

also tested CB[8] toxicity and found that the macrocycle expressed no significant toxicity

within its solubility limits. Further to these results, live cell imaging of cells exposed to

non-lethal CB[7] concentrations demonstrated that there were no detrimental or adverse

effect on the cellular integrity.

Progressing towards in vivo studies on mice, intravenous injections determined a max-

imum tolerable dose of CB[7] to be 250 mg kg−1 with the mice initially losing some su-
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perficial weight but recovering within 5-8 days. For oral administration, a 600 mg kg−1

one-off dose of 1:1 CB[7]:CB[8] mixture did not give rise to any significant toxicity.

The Wheate group studied the ex vivo toxicology of CB[6] and CB[7] under more

specific circumstances, analyzing the neuro-, myo- and cardiotoxic activity of the com-

pounds.101 To study neurotoxicity, a mouse sciatic nerve (removed from between the knee

and spinal cord) was exposed to 1 mM solutions of CB[6] or CB[7] and the conductivity

of the nerve monitored for 2 h, no significant neurotoxicity was observed. Furthermore,

cisplatin·CB[7] did not show a decrease in neurotoxicity as compared to free cisplatin.

Myotoxicity was also studied by extracting biventer cervicis nerve-muscles from chicks

and their contraction response to chemical or electrical stimuli was monitored before and

after exposure to 0.3 mM CB[6] and CB[7] solutions. CB[6] caused only a very small

change in the strength of muscle contraction so can be considered relatively safe. How-

ever, CB[7] had a much greater effect on muscle contraction and the authors hypothesize

that this is due to CB[7] binding to postsynaptic nicotinic receptors, interfering with the

depolarization ability of the muscle membrane. β-cyclodextrin exposure also resulted in

small decreases in muscle contraction and was not myotoxic in vivo and may possibly also

be the case for CB[6] and CB[7]. Cardiotoxicity was examined using a similar method but

with rat heart atria. Both CB[6] and CB[7] showed significant ex vivo cardiotoxicity, exem-

plified by changes in contraction forces. However, the authors of this study conclude that

these experiments represent very high exposure levels to the macrocycles with direct con-

tact with the tissues and so may not be accurate predictions of activity in human clinical

models.

To better understand specific organ toxicity in vivo, Wang and collaborators employed

zebrafish models to further study the contribution of CB[7] exposure to neuro-, myo-

and cardiotoxicity as well as hepatotoxicity, developmental toxicity, locomotion and be-

havioral toxicity.102 Mortality studies determined an LD50 (lethal dose) to be at 750 µM

when zebrafish were incubated with CB[7] for 2 days. No morphological abnormalities
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were observed on developing zebrafish exposed to even the higher, more toxic, levels of

CB[7]. Some detrimental effects on cardioactivity were observed on zebrafish exposed

to CB[7] concentrations greater than 500 µM including elevated heart rates, thinning of

the atrium, distorted heart shape, decreased stroke volume and decreased cardiac out-

put, which is consistent with the ex vivo study by Wheate. In terms of locomotive effects,

extended exposure to higher concentrations of CB[7] significantly shortened swimming

distances of zebrafish, which could be a factor of the observed cardiotoxicity, however,

the authors reasoned that this was more likely a neurotoxic effect, conflicting with the

Wheate ex vivo study. The authors did not observe any hepatotoxicity on zebrafish em-

bryos, demonstrating a high degree of tolerability of CB[7] by the liver. This study is

promising as detrimental effects were not observed below usual therapeutic concentra-

tions of most drug compounds, suggesting a reasonable level of tolerance of CB[7] in vivo

and therefore warranting much further study in larger animal models.

12.5 Outlook

A considerable amount of work has been carried out in the area of peptide and pro-

tein supramolecular complexation with CB[n] and understanding of aromatic amino acid

residues, cavity hydrophobic interactions, hydrogen bonding to portals and cooperative

interactions in the example of CB[8] are progressing from the work of several groups. Pro-

tein dimerization is particularly exciting in terms of controlling activity and stability and

many interesting studies into other forms of bio-conjugation harnessing such host-guest

recognition are likely on the horizon. Particularly remarkable studies are those of insulin

and amyloid β and how the interactions of specific Phe residues modulates aggregation

pathways. With these reported methodical studies in hand it is not difficult to imagine

how many more CB[n]-biomolecule interactions will come to light in the near future with

new protocols to control and regulate protein activity. It is also promising that initial

studies suggesting application of CB-based materials to human clinical settings will not
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be hampered by issues of toxicity.

13 Summary and outlook

In just over three decades since the isolation and full characterization of the first cucur-

bit[n]uril homologue, this macrocyclic family has transformed from a laboratory bench

curiosity into a compound of industrial significance. The widespread number of fields

that CB[n] has found applications in is remarkable. Ranging from applications in (but

not limited to) materials design, development of next generation sensors, sophistication

of medical techniques through efficient drug delivery and encapsulation, potential in en-

ergy harnessing through its catalytic properties and green technology, CB[n] has been an

exceptional contestant in all these fields. CB[n] has also proven itself as a versatile tool

in fundamental research such as in separation science, as a precise molecular ruler for

plasmonics, and as a catalytic reagent and nanoreactor. In this review, we have intended

to focus on themes related to CB[n] that have not been presented in great detail in the lit-

erature prior to its writing. For example, we discuss the gas binding properties of CB[n]

and the interaction of CB[n] with surfaces and their interesting applications. We have

also highlighted the recent progress in various fields that have utilized the chemical and

physical properties of CB[n] in an innovative manner including polymeric materials and

networks as well as biological systems.

The exploration of the complexation capabilities of CB[n] with various guest molecules

have led to the discovery of a plethora of species that are of scientific interest. New guests

are constantly being reported providing unique insights into the understanding of the

molecular recognition properties of CB[n]. The advent of sophisticated characterization

techniques has complemented research efforts in elucidating the fundamental processes

behind CB[n] host-guest chemistry. In addition, this review on CB[n] notably presents the

first comprehensive tabulation of all the binding data that can be readily found in the lit-
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erature through the first half of 2015. The similarities as well as disparities in the binding

constants that result from different techniques and measurement conditions are unmis-

takable. Therefore, the need to standardize measurement and characterization methods

is critical underpinning the importance of reporting precise conditions in which the mea-

surements are taken.

Driven by the shortcomings exhibited by several CB[n] homologues arising from their

extremely low water solubility, various strategies to functionalize CB[n] have been pur-

sued. Additionally, the functionalized host molecules have opened up possibilities to

tether them to surfaces and polymeric materials. Although the topic has not been dis-

cussed in great detail in this review, the increasing pace of research activity and growing

interest in controlled functionalization of CB derivatives is apparent and will likely war-

rant a dedicated review itself in the next few years.
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