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1 Notes on theory

Our theoretical description 1 is based on the following infinite tight-binding chain Hamiltonian,

H =
∑
j,σ,σ′

d†jσ

[
(Vj + 2τ)δσσ′ − 1

2
(σ ·B)σσ′

]
djσ′ (1)

+
∑
j,σ,σ′

[
d†j+1σ

(
−τ0δσσ′ +

iα

2
(σy)σσ′

)
djσ′ + h.c.

]
+
∑
j

Ujd
†
j↑dj↑d

†
j↓dj↓,

where djσ and d†jσ annihilate and create an electron with spin σ ∈ {↑, ↓} at site j, respectively,

and σσσ = (σx, σy, σz) is a vector of Pauli matrices. The external magnetic field B and spin orbit

parameter α are constant throughout the chain. The effective mass of the charge carrier is m =

~2/2τa2 with τ =
√
τ 2

0 + α2, where τ0 is the hopping between sites in the discrete model and a

is the spacing between sites. We keep τ fixed when varying α, in order to ensure that the effective

mass in the discrete model matches the physical effective mass. This is equivalent to matching the

bandwidth.

In our calculations the QPC region consists of 101 sites centered around j = 0 and thus

has overall length L = 2Na with N = 50. Sites j < −N and j > N represent two leads with

bandwidth 4τ . The QPC barrier potential,

Vj = V (ja) = (Vg + µ) exp

[
− (2ja/L)2

1− (2ja/L)2

]
, (2)

and the (on-site) electron-electron interaction,

Uj = U(ja) = U exp

[
− (2ja/L)6

1− (2ja/L)2

]
, (3)
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are nonzero only in the QPC region. Both the barrier potential and interaction are symmetric

around the center and vanish smoothly at the boundary of the QPC region. The barrier potential is

quadratic around the central site j = 0, representing the lowest QPC subband. The barrier height

Vg, measured w.r.t. the chemical potential µ = 2τ , mimics the role of the gate-voltage. If Vg is

swept downwards through zero, the linear conductance g increases from 0 to 1.

In the main paper we discuss results for the following physical quantities at zero temperature:

the local density of states (LDOS), Aσj=0, at the central site of the system (with U = 0) and the

linear conductance, g. The former is given by

Aσj (ω) = −ImGσσjj (ω)/πa, (4)

where Gσσ′

jj′ is the retarded propagator from site j′ with spin σ′ to site j with spin σ. Due to SOI,

Gσσ′
jj is not spin-diagonal, but at j = 0 its off-diagonal elements are negligible compared to the

diagonal ones. The linear conductance can be calculated via 2

g = g1 + g2 ∝ Tr(t†t) =
∑

eig(t†t), (5)

where tσσ′
= Gσσ′

−N,N(µ) is the transmission matrix of the QPC. The eigenvalues of t†t, which yield

the conductance, are independent of N .

The non-interacting system (U = 0) can be solved exactly. In the presence of electron-

electron interactions, we calculate the conductance at zero temperature with the functional Renor-

malization Group technique in the one-particle irreducible version 3–7 using the coupled ladder

approximation, which was presented in Ref [8] for a model without SOI.
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Note on T = 0 calculations and finite T experiments

The T = 0 fRG theory captures the behaviour of the 0.7 anomaly at finite magnetic field, in good

agreement with experimental data. This is the regime in which the key physics of spin gap is ob-

served, and is the regime we concentrate on in this work. The agreement between the calculations

and measurement is less good at low B, where finite T effects become more significant. Here the

T = 0 theory appears to show a suppression of the 0.7 anomaly at low B, which does not occur

in experiment. This suppression is a limitation of the fRG technique used to solve the 1D model;

finite T calculations using second order perturbation theory do not show a suppression of the 0.7

anomaly at T > 0, B = 0, but do not fully capture the electron-electron interactions, as discussed

in Ref. [9].
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2 Subband properties and calculation ofR for QPCs

Summary of QPC parameters

Here we summarise the gate dimensions, charge density, spin polarisation and provide and estimate

of the magnitude of R for each QPC device in Supplementary Tables 1 and 2. The method for

calculating these values including is provided below, along with discussion about the challenges

of obtaining an accurate value ofR.

Device Wafer no. 2DEG/2DHG

depth (nm)

l × w (nm) n2D (1011cm−2) ∆p/p R ∆ESOI

(µeV)

Electron QPC 1 [W639] 160 60× 350 1.5 0 0 0

Hole QPC 1 2 [W713] 85 300× 300 1.2 0.10 0.7+0.41
−0.34 580

Hole QPC 2 3 [W917] 60 100× 300 2.5 0.46 1.6+0.36
−0.19 450

Hole QPC 3 3 [W917] 60 100× 300 2.5 0.46 1.6+0.36
−0.19 480

Hole QPC 4 1 [W639] 160 200× 800 2.5 0.29 1.8+0.30
−0.35 250

Hole QPC 5 4 [B13180]† 200 400× 400 1.5

Hole QPC 6 5 [W918] 60 350× 350 2.1 0.40 2.5+0.18
−0.03 960

Supplementary Table 1. Summary of measured spin populations and spin-orbit parameter R cal-

culated from ∆p/p and l for each device. † Characterisation of Rashba SOI via Shubnikov-de Haas

oscillations were not performed for this wafer. No value for ∆p/p orR available.
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Device Wafer no. 2DEG/2DHG

depth (nm)

l × w(nm) Ωy(µeV) Ωx(µeV)

Electron QPC 1 [W639] 160 60× 350 1900 600

Hole QPC 1 2 [W713] 85 300× 300 490 150

Hole QPC 2 3 [W917] 85 100× 300 475 180

Hole QPC 3 3 [W917] 85 100× 300 500 190

Hole QPC 4 1 [W639] 160 200× 800 290 75

Hole QPC 5 4 [B13180] 200 400× 400 240 110

Hole QPC 6 5 [W918] 60 350× 350 520 150

Supplementary Table 2. Summary of subband spacings Ωy and Ωx for each device.

CalculatingR via ∆p/p and QPC length l

The value of R can be obtained from the measured strength of the spin-orbit interaction in the

2DEG/2DHG system and the length of the QPC. The Rashba interaction in 2D systems derived

from the Luttinger Hamiltonian is:

H =
1

2me

((
γ1 +

5

2
γ2

)
p2 − 2γ2(p · S)2

)
(6)

The 2D potential is applied to restrict motion in the z-direction. At experimental densities, we have

〈p2
z〉 � p2

F = p2
x + p2

y, so that the dominant terms in (1) are proportional to p2
zS

2
z and are diagonal

in a basis of states with definite Sz. States with Sz = ±3
2

(heavy holes) are split in energy from

S-7



states with Sz = ±1
2

(light holes). The light holes are higher in energy by a splitting equal to

∆HH−LH = −2γ2〈p2
z〉

me

≈ 10 meV, (7)

so that the low energy sector consists of a doublet of heavy holes.

The remaining terms containing Sx,Sy introduce mixing between heavy and light hole states.

Accounting for a correction in third order perturbation theory due to the terms

− γ

me

((pxSx + pySy)
2 + {pxSx + pySy pzSz}) (8)

we find that the interaction is of the form

HR =
ia

2
(p3

+σ− − p3
−σ+) (9)

where a is a numerical coefficient depending on the shape of the well. Due to parity selection rules,

a = 0 for a symmetric well.

The Rashba interaction splits the 2D bands. The dispersion has the form

ε±p =
p2

2m
± αp3. (10)

Magnetotransport experiments in 2D hole systems show two Fermi surfaces with carrier densities

p+ and p− that are typically different by a factor of two, although this factor may be as large

as twenty. The strength of the Rashba interaction may be extracted in a straightforward manner.

Introducing the parameter

p =
√

2mEF (11)
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we can characterise the spin-orbit interaction in terms of the dimensionless constant

αp3

EF
= 2mαp ≈

αp3
+

EF
≈
αp3
−

EF
(12)

This can be solved given knowledge of p+, p−

EF =
p2

+

2m
− αp3

+ =
p2
−

2m
+ αp3

− → 2mαp = p
p2

+ − p2
−

p3
− + p3

+

(13)

For QPC 4 (a typical experimental situation), the densities p− and p+ are in the ratio 0.29 : 0.71.

Writing

p2
+ = 0.71(2p2), p2

− = 0.29(2p2) (14)

we can substitute into (8) and find

2mαp =
(2p2) · p(0.71− 0.29)

(2p2)
3
2 (0.71

3
2 + 0.29

3
2 )

= 0.28 (15)

The large value of this dimensionless size of the spin-orbit interaction reflects the fact that,

in inversion asymmetric 2D hole systems, the Rashba interaction is a considerable proportion of

the kinetic energy.

In a QPC, an additional harmonic potential is applied to the confine the electrons to a 1D

channel. Therefore momentum along the y-direction is quantized. We can make the substitution

〈p2
y〉 → 2mEF , 〈py〉 = 0. Then expanding the 2D Hamiltonian we obtain

HR → −3ap2
ypxσy + ap3

xσy (16)

Near the top of the barrier, px → 0 and the first term dominates. We may write it in the form

HR → −αpxσy, a = 3αp2
y = 6mαEF (17)
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The dimensionless parameter R is defined to be the ratio of α to the velocity scale determined by

the shape of the parabolic barrier inside the channel, U(x) ≈ U0 − mΩ2
xx

2

2

R =
α

v
= α

√
m

Ωx

(18)

From the expression for the Fermi energy EF inside the parabolic potential

EF =
mΩ2

xl
2

8
→ Ωx =

√
8EF
ml2

(19)

we can expressR in terms of the 1D channel length

R2 =
mα2

Ωx

=
mα2

2

√
ml2

2EF
=

(mα)2

2

√
l2

2mEF
=
lp

2

(
mα

p

)2

(20)

Using a density of 2.5×1011cm−2 and length l = 300 nm as typical values, and the value of 2mαp

found in equation (10), we find

mα

p
= 3map =

3

2
(2mαp) = 0.42 (21)

This yields a final value ofR2 = 3.3→ R ≈ 1.8.

The main limitation of using equation (20) to estimate R is the uncertainty in the true QPC

length felt by the first harmonic, which will likely be longer than the lithographic gate length. The

QPC length felt by the first 1D subband is determined by the electrostatic profile of the surface

gates when the QPC is being squeezed, which is determined by the dimensions of the surface gates

and the depth of the 2DHG. The method above provides a reasonable estimation of R. However

we argue that the form of the first 1D subband in magnetic field (i.e., the absence of Zeeman

spin-splitting) is the most reliable indicator ofR > 1.
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3 Further evidence of dependence of first subband with spin-orbit interaction

in magnetic field

In this section we include Zeeman spin-splitting measurements on additional QPCs, source-drain

bias, and additional analysis in the small energy limit B̃ and higher subbands.

Additional Zeeman spin-splitting measurements

Additional Zeeman spin-splitting measurements on hole QPCs have been presented here to provide

further evidence for the first 1D hole subband behaviour in magnetic field described in the main

text.

Supplementary Figure 1 shows the conductance waterfall plots and transconductance colour

maps for hole QPCs 4-6 evolving in magnetic field. The data is shown for subbands n = 1..3. Sub-

bands n = 2, 3 spin split in magnetic field, while subband n = 1 has a 0.7 anomaly that evolves to

0.5× 2e2/h in magnetic field in field B > 5 T [indicated by the green arrows in panels (a,c,e)]. In

transconductance, subbands n ≥ 2 Zeeman spin-split, while the first subband remains unaffected

by the magnetic field [panels(b, d, f)]. The 0.7 anomaly is indicated by the black arrows on the

right side of panels(b, d, f).

Supplementary Figure 2 shows the angular response of the first subband in 8 T of magnetic

field in hole QPC 2. Similarly to Fig. 4f, the data has been trimmed and reflected around ϕ/π = 0

for easy comparison with theory. The 0.7 anomaly is broadest around ϕ/π = 0, and narrows at
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ϕ/π = ±0.5 (indicated by the white arrows). The spin gap structures in the top corners of the

figure (indicated by the red arrows) are greatly suppressed in QPC 1 due to the small 1D subband

spacing and spin-split subband n = 2.

Supplementary Figure 1: (a, c, e) Waterfall plots of the conductance of 1D holes in hole QPCs 4-6 respectively, showing the evolution of the

quantization from 2e2/h at B = 0T (black trace) to e2/h in in-plane B ⊥ BSOI magnetic field up to 10T (red trace). Traces are offset in VSG

for clarity. The 0.7 anomaly is indicated with the black arrow for theB = 0T trace, and evolves in 0.5×G. (b, d, f) Experimental transconductance

colour maps of the Zeeman spin splitting of the first three 1D hole subbands for three different QPC devices. In all cases subbands 2 and 3 spin-split

linearly in magnetic field, whereas the first hole subband is only weakly affected by the magnetic field.
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Supplementary Figure 2: Measured transconductance of the first

1D hole subband in hole QPC 2 as a function of magnetic field

angle ϕ where the magnitude of the magnetic field is fixed at B =

8 T. Vertical axis is gate voltage scaled by Ωx, and horizontal axis

is magnetic field angle with respect to BSOI . The white arrows

indicate the breadth of the 0.7 anomaly. The red arrows indicate the

transconductance structures corresponding to the spin gap emerging

in the top corners of the figure.

The Zero-Bias Anomaly

The zero-bias anomaly (ZBA) is intimately linked to the 0.7 anomaly 9, 10. To confirm that the

feature observed in the hole QPCs has the same origin as the 0.7 anomaly in electron QPCs we

show the non-linear differential conductance as a function of source-drain bias for hole QPCs in

Supplementary Figure 3. At low conductances G < 0.7× 2e2/h, there is a peak centred around

zero bias, consistent with the 0.7 anomaly and zero bias peak reported in electron QPCs10.

Supplementary Figure 3: Non-linear differential conductance G as a function of dc voltage Vdc for a range of side-gate bias values (or QPC width)

for hole QPCs 1-4. In each QPC device there is a conductance peak centered around Vdc = 0 that splits into two peaks where 0.7 × (2e2/h) >

G > (2e2/h).
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Limit of small energy B̃

Modelling of the first 1D electron subband in Ref [9] using (SOPT) yields the following prediction:

that for fixed values of side gate voltage Vsg, or 1D confinement, the leading dependence of the

non-linear conductance on B̃ is quadratic. The quadratic relation takes the form

gnl(B̃, T̃ , Ṽsd)

gnl(0, 0, 0)
≈ 1− B̃2

B̃2
∗
− T̃ 2

T̃ 2
∗
− Ṽ 2

sd

Ṽ 2
sd∗

(22)

where B̃/B̃∗ � 1 and B̃∗, T̃∗ and Ṽsd∗ are Vsg dependent crossover scales that govern the strength

of the 0.7 anomaly for finite exchange interaction energies. We demonstrate here that the relation-

ship holds for the hole 0.7 anomaly with SOI in Supplementary Figure 4.
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Supplementary Figure 4: g(B)/g(0) as a function of B for a range of top gate voltages (densities) for hole QPCs 1-4 in (a-d) respectively. Vertical

axis is normalised conductance g(B)/g(0) plotted against logarithmic B scale. Insets: logarithmic conductance 1 − g(B)/g(0) plotted against

logarithmic B, following the quadratic relation in equation (22).
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Proximity of the second subband to the first subband

In the main text we discuss the absence of a spin gap minima on the first 1D hole conductance

plateau for the traces shown in Figures 1f-g and Supplementary Figure 1a,c,e with reference

to the transconductance colour maps in Figure 4. Here we directly compare the calculated con-

ductance with the measured conductance for both electrons and holes as a function of scaled gate

voltage Vg/Ωx in Supplementary Figure 5.

The calculated conductance is shown for electrons in Supplementary Figure 5a, where U =

0.1 and R = 0 for magnetic field B = 0 T and B = 4 T(≈ 0.4Ωx). The measured conductance for

1D electrons is shown in Supplementary Figure 5b for magnetic field B = 0 T and B = 4 T(≈

0.4Ωx). The model in Supplementary Figure 5a is purely 1D and describes only one subband,

while Supplementary Figure 5b shows two conductance plateaus over the same energy scale.

Particular care must be taken when comparing the purely 1D model to measured conductance

in the case of 1D holes with SOI and 0.7 anomaly. In Supplementary Figure 5c, the calculated

conductance at R = 1.26 shows the 0.7 anomaly structure (indicated by the green arrow), and the

spin gap structure (indicated by the blue arrow) on the first plateau. The first ‘riser’ containing

the 0.7 structure extends over a gate range of ∆Vg/Ωx ∼ 1, while the spin gap structure extends

over a much further range of ∆Vg/Ωx ∼ 3. We compare the calculated conductance with our

(scaled) measured conductance in Supplementary Figure 5d and find that the second n = 2

subband riser emerges right where we expect the spin gap conductance minima to occur based on

Supplementary Figure 5c.
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Supplementary Figure 5: (a) Calculated conductance of the first 1D subband for weakly interacting electrons with no SOI. When the magnetic field

is increased a half step forms in the conductance trace (red) that crosses the zero-field conductance trace (black). (b) The experimental conductance

trace where the spin-resolved conductance trace crosses the zero-field trace similarly to the theoretical model in (a). (c) Calculated conductance of

the first 1D subband for strongly interacting holes with strong SOI. The spin-resolved conductance trace (red) does not cross the zero-field trace

(black). The 0.7 anomaly is evident at low energy and an emerging dip in the conductance at higher energy is indicative of the opening of the spin

gap. (d) The experimental conductance trace where the spin-resolved conductance trace does not cross the zero-field conductance trace, consistent

with the theoretical model in (c). The 0.7 anomaly is also evident (indicated by the green arrow). A second shoulder in the conductance above the

0.7 anomaly (indicated by the black arrow) suggests the weak emergence of a dip in conductance due to the opening of the spin gap.
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Anisotropy of the in-plane hole g-factor

In the main text we make note that the anisotropy of the first 1D hole subband ‘splitting’ (that is,

the ‘size’ of the 0.7 anomaly in gate voltage (energy)), has the opposite anisotropy to the Zeeman

spin-splitting of the higher 1D hole subbands. In Supplementary Figure 6 we present for the

reader’s verification the complete transconductance colour map of n = 1..7 subbands as a function

of magnetic field angle with respect to the spin-orbit field BSOI (or QPC channel). The first

subband has a broad (in VSG) 0.7 anomaly at ϕ/π = 0, 1.0 (or B ‖ BSOI); in contrast subbands

n = 2..7 have minimal spin splitting. When ϕ/π = 0.5 (or B ⊥ BSOI), the opening of the spin

gap coincides with the 0.7 anomaly becoming narrower, while subbands n = 2..7 are Zeeman

spin-split.
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Supplementary Figure 6: Complete transconductance map (of data pre-

sented in Figure 4 in the main text) plotted against VSG and magnetic

field angle ϕ (angle in degrees provided on top axis), where |B| = 4 T.

Magnetic field orientation with respect to the spin-orbit field BSOI , and

the corresponding x, y-directions, are indicated at the bottom of the colour

map. Subbands are labelled 1..7 in white just above the subband at the

point of minimal spin-splitting on the left side of the colour map.
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Zeeman spin-splitting of the first 1D hole subband in the out-of-plane z-direction

The theory in Ref [1] assigns the direction of the spin orbit field BSOI to in-plane perpendicular

with the QPC (y-direction). The field will couple to BSOI when the applied magnetic field has a

component either parallel to the QPC (x-direction) and/or aligned out of the plane of the 2DHG

(z-direction). In the main text of the paper we examined the first subband in the plane of the

of the 2DHG (x, y-directions). Here we briefly comment on the first subband in an out-of-plane

(z-direction) field.

The quantisation axis for holes confined to a 2D plane is along the z-direction; light-hole-

heavy-hole (LH-HH) mixing leads to a small in-plane component. The out-of-plane tensor com-

ponent gzz has been measured to be in the range of 5− 7.2 11, 12, consistent with theory 13–15. (The

in-plane g-factors are an order of magnitude smaller, with gxx ≈ 0.5 and gyy generally too small to

resolve in measurements 16.

In Supplementary Figure 7, the measured transconductance is shown for B ⊥ 2DHG, the

out-of-plane field direction. At relatively low magnetic field B < 1 T, the large out-of-plane gzz-

factor gives rise to large Zeeman spin-splitting. This field orientation also couples to the orbital

momentum of the subbands, resulting in an upward curvature of the subbands. As B increases,

the magnetic length of the holes shrinks and eventually becomes smaller than the width of the 1D

constriction, and the higher subbands one by one enter the quantum Hall regime.

When the magnetic field is oriented along the out-of-plane z-direction, it is also B ⊥ BSOI
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and should open a spin-gap in the first 1D hole subband. This opening of the spin-gap is consistent

with the absence of spin-splitting in the first 1D hole subband up to 0.9 T Supplementary Figure

7. This behaviour has also been observed in Ref [17] where there is an absence of spin-splitting up

to ∼ 3 T, and in Ref [11] up to ∼ 2 T. At higher field, the first 1D hole subband abruptly begins to

spin-split, and the size of the spin-splitting becomes large quickly.

At low magnetic field, the spin-orbit energy ESOI is larger than the Zeeman energy EZ , and

the first subband is insensitive to magnetic field. The sudden transition to large spin-splitting occurs

when EZ > ESOI . In this regime, the spin gap in the dispersion relation has become so large as

to resemble the usual parabolic dispersion relation once more, and the bands become sensitive to

magnetic field once more (see Supplementary Figure 8).

Once the Zeeman energy overwhelms the spin-orbit gap, gµBB � ESOI , we expect the first

1D hole subband to Zeeman spin-split. In our 1D hole QPCs, ESOI ≈ 500 µeV and gzz ∼ 5 12.

We therefore do not expect to observe Zeeman spin-splitting of the first 1D hole subband until

B > 1.7 T. This is a higher magnetic field than was accessible in our experiments for this work.
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Supplementary Figure 7: Transconductance colour map of

Zeeman spin-splitting of the 1D subbands in hole QPC 4

in magnetic field aligned perpendicular to the QPC and out

of the 2DHG plane (see schematic above panel). The sub-

bands n = 2..6 strongly spin split in magnetic field, while

the first subband in both panels remains unchanged. The

position of the 0.7 anomaly is indicated by the black ar-

rows.

Supplementary Figure 8: (a) 1D parabolic dispersion relation spin-split in k due to SOI. (b) Applied magnetic field results in spin gap opening in

1D dispersion relation at k = 0. ESOI > EZ . (c) Large applied magnetic field results in EZ > ESOI and the bands resemble the generic 1D

dispersion relation again.
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4 Fabrication and measurement methods

The following includes information on the device fabrication and electrical set-up for the measure-

ments presented in the Main Text and Supplementary Information.

Electron QPC device AuGe was used for the ohmic contacts to the 2DEG. A 20 nm thick layer

of Al2O3 was used to insulate the Ti/Au top gate electrode from the ohmic contacts. Electrical

measurements were performed at a temperature of 300 mK using standard AC lock-in techniques

with an excitation voltage of 50 µV at a frequency of 7 Hz. QPC electron densities, surface gate

dimensions and 2DEG depth are summarised in Supplementary Table 1.

Hole QPC devices AuBe was used for the ohmic contacts to the 2DHS. A 20 nm thick layer

of Al2O3 was used to insulate the Ti/Au top gate electrode from the ohmic contacts. Electrical

measurements were performed at a temperature of 40 mK using standard AC lock-in techniques

with an excitation voltage of 100 µV at a frequency of 7 Hz. QPC hole densities, surface gate

dimensions and 2DHG depth are summarised in Supplementary Table 1. QPC 1 has hole mobility

of µ = 0.1× 106cm2 V−1 s−1. QPCs 2-6 have hole mobilities µ = 0.5× 106cm2 V−1 s−1
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