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Abstract
Mode-localized sensors have attracted attention because of their high parametric sensitivity and first-order
common-mode rejection to temperature drift. The high-fidelity detection of resonator amplitude is critical to
determining the resolution of mode-localized sensors where the measured amplitude ratio in a system of coupled
resonators represents the output metric. Operation at specific bifurcation points in a nonlinear regime can
potentially improve the amplitude bias stability; however, the amplitude ratio scale factor to the input measurand in
a nonlinear regime has not been fully investigated. This paper theoretically and experimentally elucidates the
operation of mode-localized sensors with respect to stiffness perturbations (or an external acceleration field) in a
nonlinear Duffing regime. The operation of a mode-localized accelerometer is optimized with the benefit of the
insights gained from theoretical analysis with operation in the nonlinear regime close to the top critical bifurcation
point. The phase portraits of the amplitudes of the two resonators under different drive forces are recorded to
support the experimentally observed improvements for velocity random walk. Employing temperature control to
suppress the phase and amplitude variations induced by the temperature drift, 1/f noise at the operation frequency
is significantly reduced. A prototype accelerometer device demonstrates a noise floor of 95 ng/√Hz and a bias
instability of 75 ng, establishing a new benchmark for accelerometers employing vibration mode localization as a
sensing paradigm. A mode-localized accelerometer is first employed to record microseismic noise in a university
laboratory environment.

Introduction
Coupled microelectromechanical resonators have been

extensively researched1–4 and integrated into devices for
various engineering applications5,6. In the sensing field, a
technical approach to high parametric sensitivity has been
realized by employing the principle of vibration mode
localization in coupled resonators7–13. Principally, for
mode-localized sensors based on two weakly coupled
resonators with structurally symmetric parameters, a

symmetry-breaking perturbation introduced to one of the
coupled subcomponents will result in drastic shifts in the
mode shape, which can be monitored by measuring the
amplitude ratio (AR) of the resonators. Thus, the external
measurand that induces the perturbation can be sensed. In
contrast with the conventional resonant sensing method of
monitoring the frequency readout, the AR readout method
has been experimentally shown to provide improvement in
parametric sensitivity by over two orders of magnitude in
comparison7,11. Furthermore, mode-localized sensors have
exhibited benefits with respect to intrinsic first-order
immunity to environmental temperature drift14,15. Based
on this promising transduction approach, various mode-
localized microelectromechanical system (MEMS) sensors
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have been developed, such as mass sensors7, electro-
meters10, accelerometers15–19, and magnetic field sensors20.
Mode-localized accelerometers have demonstrated applic-
ability for seismic monitoring13. Further improvements in
the noise floor and stability of mode-localized accel-
erometers are expected to enable further applications,
including MEMS gravimetry21,22.
Optimization of the amplitude noise floor and stability

are critical for the resolution of mode-localized sensors.
The sensor output metric can be defined by a motional
amplitude ratio for the two resonators. Therefore, in
contrast to frequency-modulated sensors, the amplitude
signal-to-noise ratio (SNR) of each resonator is of more
specific interest for mode-localized sensors. It is known
that frequency and amplitude stabilities are highly sensi-
tive to the oscillation amplitude23–25, and an increased
actuation force can improve the SNR, whereas there is a
high possibility that the resonator is driven into a non-
linear Duffing regime. In the nonlinear regime, the fre-
quency response is reshaped by conservative or dissipative
nonlinearities, and the vibration amplitude of the reso-
nator at a specific frequency is determined by the previous
state, resulting in nonidentical forward and backward
frequency responses26. Consequently, the amplitude-to-
frequency effect is evident in the nonlinear regime. The
so-called bifurcation points (top or bottom bifurcation
points) where the frequency (f) and phase (φ) fulfill the
criterion of ∂f/∂φ= 027 result in reduced sensitivity to
phase noise. Consequently, the bias instability can be
improved, which has been experimentally demon-
strated28,29. Experimental studies have indicated that the
input-referred AR noise floor can be improved by oper-
ating in this regime to a certain extent30.
A theoretical study on the nonlinear sensitivities of the

amplitude ratio of the coupled resonators was previously
shown31 for the special condition of AR~1, i.e., around the
veering point. However, the AR sensitivity13,32 with
respect to the stiffness perturbation and its resolution33

vary with changes in amplitude ratio (or stiffness pertur-
bation). Further analysis is thus necessary to provide
expressions applicable for operation in linear and non-
linear regimes. Moreover, the assumptions in ref. 31 did
not support the scenario of ultraweak coupling (cases
where the quality factor is not high enough to be ignored),
which is specifically needed for high-resolution mode-
localized sensors33,34, and further work, including
experimental verification, is necessary to probe the con-
clusion that the resolution will be improved by con-
tinuously increasing the vibration amplitude.
In this paper, we discuss the AR scale factor for large

vibration amplitudes in linear and nonlinear Duffing
regimes. A general expression of the backbone nature (fre-
quency-amplitude effect) and the AR scale factor of the
coupled resonators suitable for both linear and nonlinear

cases are derived and experimentally demonstrated. The AR
scale factor remains relatively constant in the linear regime,
whereas it drops considerably when the resonator enters the
nonlinear regime. The optimal operation amplitude is
shown to be close to the critical amplitude, where the sensor
demonstrates the best noise floor and stability. A further
increase in the drive amplitude in the nonlinear regime will
not result in continuous improvement of the noise floor and
stability. This insight enables optimization of device per-
formance with a prototype demonstrating a noise floor of
95 ng/√Hz and a bias instability of 75 ng, allowing for the
first recording of a low-frequency microseismic background
using a mode-localized MEMS accelerometer.

Results and discussion
Device description
The mechanical element of the mode-localized accel-

erometer consists of two spring-supported masses and
two structurally symmetric double-ended-tuning-fork
(DETF) resonators fixed to the same center anchor, as
shown in Fig. 1a. The proof mass is mechanically con-
nected to one end of the DETF resonator through a lever
mechanism for inertial force amplification. An optical
image of the coupled resonators is shown in Fig. 1b, and
the fabrication cross-section can be found in ref. 21.
Dimensions of the device are provided in Supplementary
Table I. For the lower-order vibration modes (i) and (ii) in
Fig. 1c and the higher-order modes (v) and (vi) in Fig. 1e,
the two DETF tines move in a parallel direction, and the
coupling forces arising from the DETF vibrations are
transmitted to the anchor as shear forces, resulting in
small in-plane deformations of the coupler, which is three
orders of magnitude smaller than that of the tines. Energy
transfer (mode coupling) between Res 1 and Res 2 is thus
realized through coupler in-plane deformation35. In con-
trast, when the two tines move in opposite directions, the
shear force at the end of the tines is largely reduced so
that the two resonators cannot be effectively coupled
together, as shown by modes (iii) and (iv) in Fig. 1d, in
which only one resonator is in obvious vibration so that
these two modes are not of interest. The degree of modal
coupling (coupling factor) can be set practically by
adjusting the diameter of the anchor coupler. The reso-
nators are capacitively actuated and sensed through the
electrodes on either side of the DETF tines. A 10 V DC
voltage is applied to the central anchor as the bias voltage.
The motional current is translated to a voltage via trans-
impedance amplifiers. A variable voltage is applied to the
tuning electrode integrated with Res 2 to provide elec-
trostatic negative stiffness perturbations to Res 2 so that
the AR operation point can be manually adjusted. The test
setup can be found in Supplementary Material Fig. S1.
The amplitude-frequency responses of Res 1 (the pri-

mary resonator that is directly driven) in the lower-order
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and higher-order modes of interest with different drive
AC amplitudes are shown in Fig. 1f, g, respectively. Modes
(i) and (ii) indicate linear resonant frequencies of f1 ≈
122,703 Hz and f2 ≈ 122712 Hz. A frequency split
of ~9 Hz is observed, demonstrating a coupling factor36 of
κ ≈ (f2 – f1)⧸f1= 7.4 × 10−5) and a Qκ value of ~3.0, as the
Q factor is estimated to be 39 k. For the higher-order
modes, the coupling factor is 10.3 × 10−5. With the
increase in the drive AC signal, the response magnitudes
will increase and enter a nonlinear Duffing regime if the
AC signal is higher than a critical value. The responses of
Res 2 can be found in Supplementary Material Fig. S2. To
explore the optimized operation amplitude of the coupled
resonators, the AR scale factor expression with respect to
the stiffness perturbation will be theoretically derived in
the following section.

Theoretical model
For a two-degree-of-freedom weakly coupled resonating

system, it is normally assumed that the two resonators
have identical initial structural parameters, i.e., identical
mass: m1=m2=m:, stiffness: k1= k2= k and damping:
c1= c2= c in a lumped mechanical model36,37, and only
one resonator is driven by the harmonic force. The dis-
sipative nonlinearity and the cubic nonlinearity of the
coupler can be ignored because no significant amplitude-
dependent damping is observed for our device, and the
deformation of the coupler is very small. The nonlinear
springs for the two resonators are defined as k1 ¼
k 1þ γx21
� �

, and k2 ¼ k 1þ γx22
� �

, where γ is the cubic
nonlinear coefficient, which is assumed to be identical for

the two resonators. The nonlinear dynamic equations of
the coupled resonators are given by:

€x1 þ ω0

Q
€x1 þ ω2

0 1þ κ þ γx21
� �

x1 � κω2
0x2 ¼ f =m

ð1aÞ

€x2 þ ω0

Q
€x2 þ ω2

0 1þ κ þ δ þ γx22
� �

x2 � κω2
0x1 ¼ 0

ð1bÞ
where x1and x2 are the displacements of the two
resonators, ω0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
is the initial natural frequency,

δ=Δk/k is the stiffness perturbation to Res 2, Q ¼ mω0=c
is the quality factor, and f ¼ Fsin ωdt þ θð Þ is the force
applied to Res 1. The displacements are written as:

x1 ¼ X1ðtÞsinðωtÞ ð2aÞ
x2 ¼ X2ðtÞsinðωt þΦðtÞÞ ð2bÞ

where X1(t), X2(t), and Φ(t) are slow variables with time
scales much slower than 2π/ω. According to (2a) and (2b),
we have the following expressions:

_x1 ¼ ωX1cos ωtð Þ þ _X1sinðωtÞ ð3aÞ
€x1 ¼ �ω2X1sin ωtð Þ þ 2ω _X1cos ωtð Þ þ €X1sin ωtð Þ

ð3bÞ

x31 ¼ X3
1 sin

3 ωtð Þ ¼ X3
1

4
3sin ωtð Þ � sin 3ωtð Þ½ � ð3cÞ
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Fig. 1 Device description and characterization. a Schematic of the mode-localized accelerometer. b Optical image of the coupled resonators.
c–e The simulated vibration modes of the two resonators. Modes in c and e are of interests in this paper. f Frequency responses of Res 1 (the primary
resonator that is directly driven) in the lower-order and g the higher-order modes of interests with different drive AC signals, with the initial AR value
in the linear regime close to the veering point (AR~1)
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_x2 ¼ ωþ _Φ
� �

X2cos ωt þΦð Þ þ _X2sinðωt þΦÞ ð4aÞ

€x2 ¼ � ωþ _Φ
� �2

X2sin ωt þΦð Þ þ 2 ωþ _Φ
� �

_X2cos ωt þΦð Þ
þ €X2sinðωt þΦÞ

ð4bÞ
x32 ¼ X3

2 sin
3 ωt þΦðtÞð Þ

¼ X3
2
4 3sin ωt þΦðtÞð Þ � sin 3 ωt þΦðtÞð Þð Þ½ �

ð4cÞ

By substituting (3a) to (4c) into the dynamic Eqs. (1a) and
(1b), ignoring the higher-order term (3ωt) and using the
harmonic balance principle8,31, the following equations
are trivially obtained:

€X1 þ ω0
Q

_X1 þ X1 �ω2 þ 1þ κð Þω2
0 þ 3

4ω
2
0γX

2
1

� �
� κω2

0X2cosΦ ¼ F
m cosθ

ð5aÞ

2ω _X1 þ ω0

Q
ωX1 � κω2

0X2sinΦ ¼ F
m
sinθ ð5bÞ

€X2 þ ω0

Q
_X2 þ X2 � ωþ _Φ

� �2þω2
0 1þ κ þ δð Þ

h i
� κω2

0X1cosΦþ 3
4
γω2

0X
3
2 ¼ 0

ð5cÞ

2 ωþ _Φ
� �

_X2 þ ω0

Q
ωX2 þ κω2

0X1sinΦ ¼ 0 ð5dÞ

The first-order ( _X1, _X2) and second-order (€X1, €X2)
differential terms have little influence on the steady-
status amplitudes and thus can be ignored. According to
(5b) and (5d) and by ignoring _Φ in the steady-state (X1, X2

and _Φ changes very slowly compared to the resonant
frequency), the phase difference is given by:

sinΦ ¼ ±
ω

κQω0

1
AR

� ±
1
AR

� 1
κQ

ð6aÞ

cosΦ � ± 1� 1
2

1
AR

� 1
κQ

� �2
 !

ð6bÞ

where AR is defined as X1/X2. The phase difference
between resonators is inversely proportional to the
amplitude ratio and the value of κQ. Normally, Φ= 0
indicates the in-phase mode and Φ ¼ π indicates the out-
of-phase mode. The weakly coupled resonators operate in
the exact in-phase mode or out-of-phase mode only in the
case of AR >> 1. Otherwise, the coupled resonators will
demonstrate specific phase delays compared to the
standard in-phase or out-of-phase mode. Equations (5a)

and (5c) can be rearranged as:

�ω2

ω2
0
þ 1þ κð Þ þ 3γX2

1

4
� κX2cosΦ

X1
¼ Fcosθ

ω2
0mX1

ð7aÞ

�ω2

ω2
0
þ 1þ κ þ δð Þ þ 3γX2

2

4
� κX1cosΦ

X2
¼ 0 ð7bÞ

According to (7a) and (7b), giving θ a value of 90° so
that the resonator vibrates at the top bifurcation point of
the 1st mode30, a comprehensive expression between the
resonant frequency (ω), stiffness perturbation (δ), ampli-
tude (X1), and amplitude ratio (AR= X1/X2) is obtained:

ω2

ω2
0
¼ 1þ κ þ δ

2

� �þ 3γX2
1

8 1þ 1=AR2
� �

� κ
2 1� 1

2
1
AR � 1

κQ

	 
2� �
1
AR þ AR
� � ð8Þ

Based on (8), the backbone nature (frequency-amplitude
response) of the nonlinear resonance is also dependent on
the amplitude ratio. Furthermore, the AR expression can
be derived from (7a) and (8):

AR� 1
AR

� �
1� 1

2
1
AR

� 1
κQ

� �2
 !

¼ AR� 1
AR

� 1

2 κQð Þ2ARþ 1

2 κQð Þ2AR3

ð9Þ

The generalized AR scale factor to the stiffness per-
turbation (δ) in both the linear and nonlinear regimes is
thus given by:

∂AR
∂δ

¼ 1

κ 1þ
1þ 1

2 κQð Þ2

	 

AR2 � 3

2 κQð Þ2AR4

0
@

1
Aþ 3γX2

1

2AR3

ð10Þ

In some special cases where κQ≫ 1, which is normal for
researchers pursuing mode-localized sensors, the term

1
2

1
AR � 1

κQ

	 
2
in (9) is negligible, i.e., Φ ≈ 0; thus, the AR

sensitivity with respect to δ is simplified as:

∂AR
∂δ

����
nonlinear

¼ 1

κ 1þ 1
AR2

	 

þ 3γX2

1

2AR3

ð11Þ

Expression (11) provides a simplified expression for AR
sensitivity to stiffness perturbation. As our device shows a
value of κQ~3, there would be a slight estimation error
between the simplified expressions (11) and (10). How-
ever, the estimation error is small and is on the order of
<3% if AR > 2, which is an acceptable approximation.
Therefore, the simplified expression (11) is considered in
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the following numerical analysis. In a linear regime, the
cubic nonlinear parameter can be set as γ= 0, which
trivially leads to an expression of the AR sensitivity in the
linear regime:

∂AR
∂δ

����
linear

¼ 1

κ 1þ 1
AR2

	 
 ð12Þ

which is in good alignment with our previous theoretical
work on mode-localized sensors operating in a linear
regime33.
According to (10), the AR scale factor with respect to the

stiffness perturbation in a nonlinear regime is determined
by the coupling factor κ, the vibration amplitude of Res 1
(X1), and the amplitude ratio. The contour plot of the AR
scale factor with different X1 and κ values can be seen in
Fig. 2a. The AR operation regime can be separated into two
regimes, i.e., a coupling factor dictated zone (the blue
dashed block) and an amplitude-determined zone (the
violet dashed block). In the coupling factor dictated zone, it
is evident that a lower coupling factor results in a higher
scale factor. However, in the amplitude-determined zone,
the AR scale factors are similar to various κ values. This
indicates that too large a vibration amplitude in the non-
linear regime could result in a reduced performance for the
scale factor of mode-localized sensors.
Once the coupling factor is confirmed, which is the

normal case for mechanically coupled resonators10–13, the
AR scale factor will only be defined by the vibration
amplitude of the driven resonator (X1) and the amplitude
ratio. The contour plot in Fig. 2b shows that there is a
higher AR scale factor with a larger amplitude ratio, in
good correspondence with previously reported cases in
the linear regime13. Again, the scale factor drops con-
siderably when the vibration amplitude is higher than a
threshold value. If we set decreasing to 95% of the initial
AR scale factor as the threshold, this vibration amplitude
can be derived based on (11):

X2
threshold ¼

2ð ffiffiffi
2

p � 1Þ AR3 þ AR
� �

κ

3γ
ð13Þ

Nonlinear characterization in an open-loop configuration
The detailed amplitude-frequency responses (sweep-

up) of Res 1 in the lower-order vibration modes (i) and
(ii) with variable drive AC signals at different initial AR
values were recorded (Fig. 3a, b) to investigate the
critical amplitude and backbone nature. The linear and
nonlinear regimes can be clearly differentiated. The
backbone curve is shown by the dashed line. In Fig. 3a,
the initial amplitude ratio is 1.1, and Res 1 goes into the
nonlinear regime when the drive AC is higher than

3 mV. When the initial amplitude ratio is much higher
than 1, for instance, AR= 4.2, which can be obtained
by tuning the voltage applied to Res 2, as shown in
Fig. 3b, it can be seen that the resonator goes into the
nonlinear regime when the drive AC is higher than
2 mV (not 3 mV as when AR= 1.1 in Fig. 3a). Note that
the vibration energy of the coupled resonators is more
likely confined in Res 1 when the system is asymmetric
(AR >>1). Correspondingly, both mode (i) and mode
(ii) in Fig. 3a illustrate backbone characteristics, while
only mode (i) in Fig. 3b demonstrates similar
amplitude-to-frequency dependence. It can also be
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derived by (8) that the nonlinear shift in resonant fre-
quency is influenced by the AR value. The contour
plots of the frequency responses of Res 2 are provided
in Supplementary Fig. S3.

Nonlinear scale factor characterization in closed-loop
configuration
To verify the proposed theory on AR sensitivity, we

manually tune the perturbation voltage applied to Res 2
in a closed-loop configuration to obtain electrostatic
stiffness perturbations while the sensor is mounted
horizontally, i.e., without any external acceleration
input. The closed-loop configuration is realized by
controlling Res 1 to vibrate at a specific phase through
the phase-lock-loop function integrated as part of the
Zurich MFLI lock-in amplifier (see Supplementary Fig.
S1 for more details). The vibration amplitudes of the
two resonators at resonance are demodulated and
recorded. The amplitude ratio is then calculated based

on the collected amplitudes. To obtain different
amplitude ratios, the voltage (Vpert) applied to Res 2 is
tuned from −4.7V to −5.7 V. The net stiffness pertur-

bation is kpert ¼ �ε0A Vpert � Vbias
� �2

=g3, and con-
sidering the initial softening effect from the bias voltage

kneg ¼ �ε0A Vbiasð Þ2=g3, the normalized stiffness per-
turbation is δ ¼ �ε0AVpert Vpert þ 2Vbias

� �
=g3=k, where

k is the stiffness of the DETF resonator, ε0 is the per-
mittivity, A is the electrode area, and g is the gap
between coupling electrodes. As expected, an increased
drive AC signal results in a lower AR scale factor, which
can be read from the curve slopes in Fig. 3c. The AR
scale factor for the stiffness perturbation is calculated
using the gradients of the AR fitting curves in Fig. 3c.
The contour plot of the AR scale factor versus the
amplitude ratio with different drive AC values is shown
in Fig. 3d, which perfectly reproduces the theoretical
prediction in Fig. 2b.
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The mode-localized accelerometer in the lower-order
mode
Previous theories and experiments have provided clear

evidence that continuously increasing the vibration
amplitude to move the resonator into the nonlinear
regime will result in AR scale factor reduction. However,
there are plenty of theoretical and experimental results
showing improvements in the amplitude and frequency
noise floor with a large drive amplitude in the nonlinear
regime28,38,39. In this section, we will explore the input-
referred AR noise floor and stability of the mode-localized
accelerometer in low- and large-amplitude operation
regimes to determine the optimal operation amplitude for
mode-localized sensors.
To test the AR sensitivity with respect to the external

acceleration, the device is placed on a high-precision
tilting platform40 so that there is a component of grav-
itational acceleration acting along the sensitive axis of the
accelerometer resulting in differential stiffness perturba-
tions to Res 1 and Res 2. The chip and the front-end
electronics are housed in a shielded box to prevent
external electromagnetic interference for the stability
measurement. The experiments are operated under two
conditions: (a) at room temperature without any tem-
perature control and (b) with temperature control.
Although mode-localized sensors have demonstrated the

property of common-mode rejection to the temperature
drift, temperature control employed here is to control the
stability of the electronics, such as the feedback resistors
of the trans-impedance amplifiers. Furthermore, as a
phase-locked loop is selected for realizing the closed-loop
configuration, the phase-locking precision is important
for the final resolution of the mode-localized sensors,
which performs better in a thermally stable environment.
Two-level temperature control is implemented, i.e., a
chamber level that is used to control the temperature of
the surrounding environments in the shield within ±1mK
with a setpoint of 35 °C and a chip level to regulate the
chip/board temperature to ±5mK with a setpoint of 45 °C.
The measured AR values in the lower-order mode (i) as

a function of the external acceleration under different
drive AC voltages are shown in Fig. 4a, and the AR scale
factors are shown in Fig. 4b. The amplitudes of the two
resonators were collected for 2 h with a sampling rate of
209.3 Hz. The input-referred Allan deviation of the
accelerometer in the lower-order mode (i) under the
conditions of no temperature control and chamber-level
temperature control can be found in Fig. 4c, d. Each curve
is obtained with a fixed acceleration input, a constant
voltage perturbation to Res 2, and varying drive AC
amplitudes when the AR value is ~1.5. The dotted lines in
the Allan deviation curves with a slope of τ−1/2 indicate
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the net thermal noise38,41, which involves thermo-
mechanical noise and readout electronic noise.
The results under the condition of resonators working

at room temperature in the lower-order mode (i), shown
in Fig. 4c, suggest that white noise can be suppressed by
enlarging the drive amplitude. The results show sig-
nificant 1/f noise for integration times between 1 and 10 s,
setting a limit to the measured bias instability. Increasing
the drive amplitude results in an improvement in the bias
instability, and this behavior is consistent with previous
observations in MEMS gyroscopes42. The bias instability
is improved from 250 ng with a drive level of 200 μV to
130 ng with a drive level of 9 mV.
The results under the condition of the resonators

working in the lower-order mode (i) with chamber-level
temperature control, shown in Fig. 4d, again indicate the
effectiveness of enlarging the drive amplitude to suppress
the detection noise. There will be no further improvement
on the noise floor when the drive amplitude is higher than
3mV, which is the drive amplitude that results in the
critical vibration amplitude according to Fig. 3a. Although
1/f noise still appears within the integration time between
1 and 10 s, it is much lower than that in the condition of
no temperature control, and further enlarging the drive
amplitude does little to decrease the 1/f noise. Further-
more, it can be seen that the lower bound limit of the
Allan deviation cannot be much improved by increasing
the drive amplitude.
The two quadratures (Vx, Vy) of the voltage output of

Res 1 were extracted using a lock-in amplifier. The nor-
malized X and Y components with varying drive ampli-

tudes are calculated with the formulae Vx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

x þ V2
y

q
and

Vy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

x þ V2
y

q
, respectively, and are shown in Fig. 4e. The

area of this phase portrait represents the amplitude noise
level or SNR of the resonator38,42. In good correspon-
dence with what has been observed in the Allan deviation
curves, the noise level will decrease (phase portrait area)
as the drive amplitude increases. Furthermore, we can see
in Fig. 4f that the SNR almost linearly increases when the
drive amplitude is lower than 2mV and demonstrates no
obvious further improvement when the drive amplitude is
higher than 2mV, which can be used to explain the noise
characteristics in Fig. 4c, d.

Spectrally portraying the microseismic background in the
higher-order mode
Compared to the lower-order mode, the higher-order

mode shows a lower AR scale factor with respect to the
acceleration because of the higher coupling factor43, as
demonstrated in Fig. 1g. The measured AR scale factors in
mode (v) can be found in Fig. 5a, b. Board-level and
chamber-level temperature control were employed in this

measurement. The input-referred Allan deviation curves
under different drive amplitudes are shown in Fig. 5c. A
similar effect of improvement on the noise limit when
increasing the drive amplitude is observed in this higher-
order mode. Benefiting from the implementation of
board-level temperature control, 1/f noise is further sup-
pressed, and a bias instability of 75 ng is obtained when
the drive level is 5 mV. The input-referred noise power
spectral densities (NPSD) of the accelerometer in mode
(v) with varying drive amplitudes can be found in Fig. 5d.
Prominent peaks with a magnitude of ~300 ng√Hz at a
frequency of 0.1–0.3 Hz are observed when the drive
amplitude is higher than 3 mV, which is attributed to the
microseismic background21,44 in the university laboratory.
This measurement is a good reproduction of our previous
report (Fig. S10 in ref. 21) using a frequency-modulated
accelerometer. The best-collected NPSD is 95 ng√Hz at
1 Hz when the drive amplitude is 5 mV. In the nonlinear
regime with a drive amplitude higher than 5 mV, the noise
floor will not be further improved or degraded. The peaks
arising at frequencies between 20 and 30 Hz are coupled
from mode (vi)30, which limits the device bandwidth to
<10 Hz.

Linearity error in the nonlinear Duffing regime
Due to the variations in the AR sensitivity, as shown in

Figs. 4b and 5b, the AR readout is not constantly a linear
function of the external acceleration. There are lower
linearity errors when the amplitude ratio is far away from
the veering zone where AR~145; however, the resolution
and stability will drop in this relatively linear regime
(AR >> 1)33,35. In this paper, we set the working point at
AR ≈ 1.5 to approach the best resolution even associated
with the tradeoff of worse linearity. We take the higher-
order mode (v) as an example to evaluate the quasi-linear
sensing range around the working point, as shown in
Fig. 6. The quasi-linear sensing range (with maximum
linearity < 1%) around the working point is limited to
~2.15 mg regardless of whether the resonator is operating
in the nonlinear Duffing regime.
Although the mode-localized accelerometer reported in

this paper demonstrates a limited linear sensing range due
to the inherent characteristics, there are several ways to
realize an extended dynamic range. For instance, the
previous work13 has demonstrated an extended linear
sensing range using a differential amplitude ratio readout.

Discussion
This paper investigates the optimal operation ampli-

tude for mode-localized accelerometers. It is found that
increasing the drive amplitude can significantly improve
the noise floor and velocity random walk if the vibration
of the resonator is not higher than the critical Duffing
amplitude. In a nonlinear Duffing regime, the AR
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readout demonstrates a similar performance as that
around the critical amplitude regardless of the value of
the drive amplitude. By employing two-level temperature
control, the 1/f noise can be suppressed, and the bias
instability is improved by a factor of ~2. While working
in the higher-order mode, a bias instability of 75 ng and
noise floor of 95 ng/√Hz are obtained. These results are
the best-collected metrics for accelerometers employing
the mode-localization paradigm to date, and they are
also comparable with state-of-the-art frequency-
modulated resonant accelerometers21,46. Further work
on optimizing electronic noise, e.g., the power source
noise that contributes to the Lorentzian profile of the
resonator via bias and perturbation voltages, can be con-
ducted to approach the ultraprecise level for the applica-
tion of MEMS gravimeters47,48. This mode-localized

accelerometer is the first to practically display the micro-
seismic background in the frequency interval 0.1–0.5 Hz
with a level of 300 ng/√Hz.
However, as the frequency split between the two modes

of interest is very low <50Hz (~9Hz for the lower-order
mode and ~27Hz for the higher-order mode) to achieve a
lower coupling factor, the noise of the neighboring mode
will be coupled to the working mode, resulting in a rela-
tively low working bandwidth and higher short-term Allan
deviation. To solve this problem, one potential solution is to
increase the frequency split, which means that the natural
frequency should be enlarged to maintain a low coupling
factor. At the same time, the inertial force-induced stiffness
sensitivity should not be significantly decreased, thus
introducing a challenge for mechanical design. The other
solution is to use the noise of the neighboring mode to
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calibrate the noise of the working mode49. It should be
noted that the theory in this paper is limited by the
assumptions inherent in the model, and the mode-
localization phenomenon is still evident. In addition, there
is a possibility to design special resonator structures to
lower mechanical nonlinearity so that the operational
vibration amplitude can be enlarged and the sensor per-
formance can be consequently improved.
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