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Abstract

This paper presents a multi-compartment population balance model for wet

granulation coupled with DEM (Discrete Element Method) simulations. Method-

ologies are developed to extract relevant data from the DEM simulations to

inform the population balance model. First, compartmental residence times

are calculated for the population balance model from DEM. Then, a suit-

able collision kernel is chosen for the population balance model based on

particle-particle collision frequencies extracted from DEM. It is found that

the population balance model is able to predict the trends exhibited by the

experimental size and porosity distributions by utilising the information pro-

vided by the DEM simulations.
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model, discrete element method, majorant kernel

1. Introduction

Wet granulation is a manufacturing process to produce granules with de-

sired properties from small particles and binders, using equipments such as

high-shear mixers, rotating drums and fluidised beds. Models for granulation

can be broadly separated into particle level models and models which simu-

late the process at the unit operation level [1, 2]. Models at the particle level

are developed to predict inter-particle forces using fundamental physics and

a review of such models can be found in [3]. At the other end of the scale,

models at the unit operation level are used to predict the overall behaviour

of granulation processes and this paper focuses on this aspect. Modelling

approaches for wet granulation processes at the unit operation level can be

loosely separated into two categories: population balance modelling and Dis-

crete Element Method (DEM).

The population balance approach tracks the change in the particle pop-

ulation with time through birth and death processes: for applications in

granulation, these processes are usually the coalescence and breakage of par-

ticles [4]. Traditionally, population balance models are one-dimensional with

particle size as the focus. However, one-dimensional models are insufficient

to describe granulation processes accurately [5]. Hence, over the last decade,

population balance models published in the literature have been at least

two-dimensional with liquid and solid concentrations as the properties in-

cluded [6, 7, 8] and some models also include particle pore volume [9, 10, 11].

The main advantage of the population balance approach is that it is capa-
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ble at considering detailed physical models for processes such as coalescence

[9, 10, 12, 7], nucleation [11, 6] and breakage [13]. Population balance mod-

elling is also suitable for long time scale studies because of its low compu-

tational effort, but it requires certain knowledge of the system in order to

include the appropriate processes.

In DEM simulations, the motion of each particle is computed simulta-

neously using Newtonian equations of motion [14]. It is pointed out in [1]

that models at the unit operation level often neglect the flow heterogeneity

of powder mixing processes and the DEM approach seems to be the ideal

solution to bridge this gap. However, DEM is computationally expensive

and it does not consider aggregation of granules and other processes such as

solidification of granules [8].

Nonetheless, it is possible to include particle flow in population balance

models. This is done by dividing the simulation domain into multiple com-

partments with each of them having its own population balance equation.

Thus, each compartment is considered to be perfectly mixed but the pro-

cess rates can differ between the compartments. A main drawback of this

approach is that the flux rates between the compartments are unknown but

these can be determined by coupling DEM to population balance models.

Population balance models that involve DEM simulations generally fall into

three categories: Models that use post-processed flux rates from preliminary

DEM simulations [15, 16, 17, 18, 19], models that utilise DEM to develop

appropriate aggregation kernels [20, 21], and models that are directly coupled

with DEM [22, 23, 8]. The work carried out in this paper falls into the first

two categories.
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The main purpose of this paper is to improve an existing multi-compartment

population balance model for a batch ploughshare mixer [24, 25] with post-

processed information from DEM simulations. Previously, the residence

times of the compartments were unknown and they were tuned to fit an

experimentally measured size distribution. Besides that, the existing model

uses a size independent collision kernel and it is found that it is inappropriate

for granulation systems [20]. In this paper, DEM simulations are performed

to determine the appropriate residence times for the compartments and also

to implement a size dependent collision kernel.

This paper is organised as follows: A brief description of the population

balance model is given in Section 2. Then, Section 3 outlines the DEM sim-

ulations carried out in this work. Section 4 describes the stochastic particle

method used to solve the population balance model, in particular the adap-

tation of the majorant technique [26, 27, 28, 29] to accelerate the simulation

of collision events. Finally, the ability of the population balance model to

predict a set of experimental results is assessed in Section 5.

2. Multi-compartment population balance model

The experimental system considered in this work is the wet granulation

of lactose powder with deionised water carried out in a ploughshare mixer

depicted in Figure 1 and its full description can be found in [30]. It is mod-

elled as a series of well-mixed continuous-stirred tank reactors (CSTRs) to

account for spatial inhomogeneity and each reactor in the network is given

a characteristic residence time, τ . The configuration of the compartmental

model is shown in Figure 2. As previous studies showed that radial disper-
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sion is significantly quicker compared to axial dispersion [31, 32, 33], the

mixer is compartmentalised in the axial direction in the model. The multi-

compartment population balance model was developed in [24, 25], but the

residence times of the compartments were not known and the values were

tuned to fit an experimentally measured particle size distribution. In this

work, the residence times of the compartments are determined using DEM

and the methodology is presented in Section 3.1.

In the model, particles take positions in a domain of compartments, Z =

{z1, z2, z3}. Throughout this work, the residence times of z1, z2, and z3 are

denoted as τ1, τ2, and τ3 respectively. In order to capture the spreading

of binder liquid which is often regarded as a crucial stage in granulation

processes [34, 3, 35], the middle compartment z2 is defined as the spray zone

where liquid addition occurs. With the exception of liquid addition, each

compartment simulates the same particle processes described in Section 2.2,

but at different rates to capture the spatial inhomogeneity of the process.

Figure 1: CAD drawing of the mixer. The radial direction refers to direction in which

the blades rotate and the axial direction refers to the direction along the shaft.
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z1 z2 z3

τ1 τ2 τ3

Spray zone

Figure 2: Configuration of the compartmental model. The mixer (Figure 1) is compart-

mentalised in the axial direction. Each compartment has the same size.

2.1. Type-space

The type-space is the mathematical description of a particle. In this

model, the type-space X = {so, sr, le, li, p} has five independent non-

negative variables which describe a granule. They are original solid volume

so, reacted solid volume sr, external liquid volume le, internal liquid volume

li, and pore volume p.

For a particle of type x = (so, sr, le, li, p), the following derived proper-

ties are defined in terms of its internal variables:

• Particle volume: The volume is calculated as:

v(x) = so + sr + le + p. (1)

• Size: Assuming that the particles are spherical, the radius is:

R(x) =
3

√
3

4π
v(x) (2)

and the diameter d(x) is simply 2R(x).
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• Mass: Assuming that the densities of the liquids and the reacted solids

are the same:

ρle = ρli = ρsr , (3)

the particle mass is calculated as:

m(x) = ρso × so + ρle × [sr + li + le], (4)

where ρso and ρle are input parameters. Further explanation regarding

this assumption is given at the end of Section 4.

• Porosity:

ε(x) =
p

v(x)
. (5)

• External surface area ae and internal surface area ai: Assuming

spherical shape:

ae = π1/3(6v(x))2/3 (6)

ai = Cp2/3. (7)

The constant C is an input parameter. Higher values of C indicate

more tortuous pores. The value C = 15 which gave good results in [4]

is used.

2.2. Particle processes

In this model, particles may be created and evolved through several dif-

ferent processes. Most of the processes are described briefly here. For the full
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description of the model and the reasoning behind the submodels, readers

can refer to [4, 36, 37, 38, 39, 40].

Liquid addition: Liquid droplets are introduced into the particle en-

semble in the form of

xdroplet = (0, 0, le, 0, 0),

at the rate

rz, droplet =


V̇l

Vdroplet
, if z = z2,

0 , otherwise,

(8)

where V̇l is the volumetric flow rate of the binder (experimental condition)

and Vdroplet is the droplet volume.

Breakage: The current model considers a binary breakage process [36,

37]:

(xi)→ (xj), (xi − xj), (9)

and each particle xi breaks at the frequency

rz, break(xi) =

 kz, break U
2
imp (p+ le) , if v(xi) ≥ vparent,min,

0 , otherwise.
(10)

with input parameters kz, break (breakage rate constant which may differ in

different compartments) and Uimp (impact velocity between the particles and

impeller blades). vparent,min is the smallest parent particle that can undergo

breakage.
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Chemical reaction: The liquid components (le and li) are transformed

into reacted solid, sr, at the rates

rz, reac,e(x) = kz, reac ae(x)
le

le + sr
, for le → sr, (11)

rz, reac,i(x) = kz, reac ai(x)
li

li + sr
, for li → sr, (12)

where ae and ai are the external and internal surface areas respectively. kz, reac

is the reaction rate constant which may differ in different compartments.

This work studies the granulation of lactose powder with deionised water.

Without the presence of lactase, the only reaction is the hydration of lactose

by water [41].

Penetration: This process refers to the diffusion of external liquid into

the pores, i.e. transformation of le into li, and occurs at the rate

rz, pen(x) = kz, penη
−0.5le(p− li), (13)

where kz, pen is the penetration rate constant which may differ in different

compartments and η is the viscosity of the binder.

Particle transport: Each particle leaves its current compartment z at

the rate

rz, transport =
1

τz
, (14)

where τz denotes the residence time of compartment z.

Collision: The rate of collision between the particles xi and xj is defined

by the kernel:

Kz(xi, xj) = ωimpeller kz, col C(di, dj), (15)
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where ωimpeller is the impeller speed, kz, col is the collision rate constant which

may differ in different compartments, and C(di, dj) is the collision rate func-

tion which defines the collision frequency between particles with diameters

di and dj. It is assumed that the collision rate function is independent of the

impeller speed. In the original model [4, 36, 37], the collision kernel is inde-

pendent of size and the collision rate function is first introduced in this work.

In Section 3.1, a suitable size dependent collision rate function is determined

with collision rates extracted from a DEM simulation.

Each collision leads to the compaction of the colliding particles and the

change in porosity is described by

∆ε(x) =

 kz, comp(ε(x)− εmin) , if ε(x) ≥ εmin,

0 , otherwise,
(16)

where kz, comp is the compaction rate constant which may differ in different

compartments and εmin is the minimum porosity. However, the success of

coalescence is controlled by the collision efficiency K̃ calculated based on the

Stokes criterion [42, 36] which compares the kinetic energy of collision to the

dissipation energy provided by the binder:

K̃(xi, xj) =

 1, (successful coalescence),

0, (unsuccessful coalescence).
(17)

Depending on the value of K̃(xi, xj), a collision between the particles xi and

xj has the following outcomes

(xi), (xj)→ Tcomp(xi + xj), if K̃(xi, xj) = 1,

(xi), (xj)→ Tcomp(xi), Tcomp(xj), if K̃(xi, xj) = 0,
(18)
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where Tcomp represents the compaction process (16).

The coalescence efficiency K̃ is a function of the viscous Stokes number

and the critical Stokes number, with

K̃(xi, xj) =


1, if ecoag(xi, xj) = 0,

0, if ecoag(xi, xj) > 0 and St∗v(xi, xj) ≥ Stv(xi, xj),

0, otherwise.

The coefficient of restitution is defined as the geometric average of the

coefficients of restitution of the single particles xi and xj,

ecoag(xi, xj) =
√
e(xi) · e(xj). (19)

The coefficient of restitution of each particle is

e(x) =

 0.2, if so + sr > 0,

0, otherwise x = xdroplet.

The value 0.2 is obtained from experimental measurements and further

details of the measurements can be found in Section 3.

The viscous Stokes number is computed as

Stv(xi, xj) =
m̃(xi, xj)Ucol

24πηR̃(xi, xj)2
,

with input parameters Ucol (collision velocity) and η (binder viscosity). The

collision velocity is calculated as 10% of the impeller speed [37]:

Ucol = 0.1(2πωimpellerrimpeller) (20)

At the operating conditions used in this paper, the value derived from the

DEM simulations is very close to the value calculated with Equation (20).
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The harmonic mass of xi and xj is

m̃(xi, xj) =
2m(xi)m(xj)

m(xi) +m(xj)
.

The harmonic radius computes as

R̃(xi, xj) =
2R(xi)R(xj)

R(xi) +R(xj)
.

The critical Stokes number is defined by

St∗v(xi, xj) =

(
1 +

1

ecoag(xi, xj)
ln

(
hbinder(xi, xj)

ha
,

))
with the input parameter ha = 2.09 × 10−7m (characteristic length scale of

surface asperities, within the range measured in [45]). The thickness of the

binder layer hbinder(xi, xj) is defined as the combined binder thickness of the

particles xi and xj,

hbinder(xi, xj) =
hbinder(xi) + hbinder(xj)

2
,

with the thickness of the binder layer of a particle with the properties x

calculated by

hbinder(x) =
1

2
3

√
6

π

[
3
√
v(x)− 3

√
v(x)− le

]
.

3. DEM

The DEM implementation in this paper uses the Hertz-Mindlin model

for the calculations of both the particle-particle and particle-wall contact.

For more details regarding the implementation, readers can refer to [43].
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The geometry used in the DEM simulations is constructed to match the

laboratory mixer and the CAD drawing is shown in Figure 1.

Dry spherical particles are used in the simulations and the effects of the

binder liquid are ignored. DEM simulations are carried out in this work to

provide two crucial information needed by the population balance model.

The first piece of information is the residence times of the compartments

and the second piece of information is the collision rates between particles

as a function of size. The computational cost of a DEM simulation varies

according to the simulation time required, number of particles and the range

of particle size. In order to obtain reliable estimates of the residence times, it

is necessary to perform the simulation for a long period of time. On the other

hand, it is required to include a wide range of particle sizes to estimate the

collision rate function but long simulation time is unnecessary. Therefore, two

separate simulations with different specifications are performed to balance

between what is achievable within reasonable computational costs and the

quality of data obtainable.

The first DEM simulation is performed to estimate the residence times of

the compartments. Uniformly sized large particles (2.6 mm) are used so that

it is possible to simulate the system long enough. The number of particles

is adjusted to match the bed volume in the experiments and this results in

approximately 80,000 particles. In Section 3.1, it will become evident that a

long simulation time is necessary to obtain enough data points to estimate

the residence times accurately.

The second DEM simulation is carried out to estimate the collision rate

function. The collision frequency between a pair of particle sizes is considered
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a single data point. Therefore, a wide range of particle sizes is necessary for

this simulation to obtain sufficient data points to estimate the collision rate

function. Since it is unnecessary to simulate the system for that long, it is also

possible to increase the number of particles in the expense of CPU time for

this simulation. The particles for this simulation are generated according to

a measured size distribution obtained from the same experimental conditions

described later in Section 5. To limit the number of particles, it is required to

apply a lower cut off size of 1 mm and this resulted in approximately 200,000

particles. The reduced size distribution used in this DEM simulation is shown

in Figure 3.

53 212 850 3350 22000

size [7m]

0

0.05

0.1

0.15

0.2

f m
[-
]

Full experimental PSD
Reduced PSD used in DEM

Figure 3: Reduced particle size distribution used in the DEM simulation compared to the

experimental size distribution.

Figure 4 shows the initial states of the simulations. For both cases, the

number of particles is adjusted to approximate the experimental bed volume.
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(a) DEM with uniform particles. (b) DEM with particle size distribution.

Figure 4: Initial states of the DEM simulations. Particles are tagged with colours [red,

green, blue] for the uniform case to determine the residence times in Sec-

tion 3.1.

Both case studies are simulated at the same impeller speed (2 rev/s) as the

experimental system we are modelling (described later in Section 5) and

the material properties used for the simulations are summarised in Table 1.

Among the properties, the density, coefficient of restitution and Young’s

Modulus are experimentally measured, and the rest are extracted from the

literature. Dried lactose granules are used for the measurements and the

effects of the binder are ignored. The coefficient of restitution of dried lactose

granules is measured using an optical technique described in [44] and an

average value of 0.2 is obtained from the measurements. In the experiments, a

high-speed camera was used to record the impact and rebound of the granules

as they were dropped onto a glass plate. The coefficient of restitution of the

granules were determined by comparing the impact and rebound velocities

from the images.
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The Young’s Modulus is calculated from single granule compression tests

described in [45]. An average value of 1.7× 107 Pa is used for the simulation

with uniform particles and the values used in the simulation with the exper-

imental particle size distribution are shown in Figure 5 where the Young’s

Modulus is set according to the particle size.

Table 1: Material properties used in DEM. Values shown are for both simulations with

uniform particle and PSD unless otherwise stated.

Property Value

Density of lactose 1545 kg m−3

Coefficient of restitution 0.2

Coefficient of friction (particle-particle) 0.2

Coefficient of friction (particle-wall) 0.35

Poisson ratio [46] 0.3

Young’s Modulus of lactose (uniform size) 1.7× 107 Pa

Young’s Modulus of lactose (PSD) Refer Figure 5

Young’s Modulus of steel [46] 2.15× 1011 Pa

3.1. Compartmental residence times

This section describes the methodology to estimate the residence times

of the compartments using the DEM simulation with uniform particles (Fig-

ure 4a). The easiest way to calculate the residence time for a compartment

is to evaluate the average duration a particle spends in the compartment

before it exits the compartment. However, this approach is not suitable to
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Figure 5: Young’s Modulus, E, used in the DEM simulation for the estimation of the

collision rate function.

derive representative residence times for the compartments because the fre-

quency distribution of residence times is very wide as shown in Figure 6 for

the compartment z1. To obtain the frequencies for the respective residence

times, each time a particle passes through the boundary between z1 and z2,

the time spent by the particle in z1 before returning to z2 is recorded. The

enormous frequencies recorded for short residence times are contributed by

the particles oscillating at the border between z1 and z2. From the plot,

it can also be observed that there are particles which stayed in the same

compartment for almost the entire simulation (system is simulated for 200

seconds). Therefore, it is not possible to calculate a reliable average residence

time by tracking the actual residence times of the particles.

Instead, the compartmental residence times are estimated by considering

the evolution of particle concentrations in the compartments and assuming
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Figure 6: Residence time distribution for the compartment z1.

each compartment is well-mixed. This is done by tagging the particles in

each compartment with colours (z1: red, z2: green, z3: blue) as shown in

Figure 4a at the beginning of the simulation. Then, the volume fraction of

the colour c in compartment z at time t is calculated by

ν̂z,c(t)DEM =
Vparticle(t, z, c)∑
c Vparticle(t, z, c)

, (21)

where Vparticle(t, z, c) is the total volume of particles of the colour c in com-

partment z at time t and
∑

c Vparticle(t, z, c) is the total volume of all the

particles which is located in compartment z at time t.

The evolutions of the volume fractions in each compartment are fitted

to a model which assumes an idealised reactor network. In the model, each

compartment is assumed to be perfectly mixed with a tertiary particle colour

system initially loaded as [red, green, blue]. It assumes that the separation

between compartment boundaries is sufficiently large and the time step be-

tween analysis frames is sufficiently small such that particles cannot ‘skip’
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over compartments (e.g. from z1 directly to z3). The model assumes constant

mass, constant particle density and constant particle size in each compart-

ment hold-up throughout the mixing process. The model was solved for the

evolution of particle volume fraction ν̂ for each colour c in each compartment

z to yield four unique model equations:

ν̂1,red(t)model =

[
1

2
exp

(
− t

τ1

)
+

1

6
exp

(
−3t

τ1

)
− 2

3

]
, (22)

ν̂2,red(t)model =

[
−1

3
exp

(
−3t

τ1

)
+

1

3

]
, (23)

ν̂3,red(t)model =

[
−1

2
exp

(
− t

τ1

)
+

1

6
exp

(
−3t

τ1

)
+

1

3

]
, (24)

ν̂2,green(t)model =

[
2

3
exp

(
−3t

τ1

)
− 2

3

]
, (25)

similar to the residence times, the subscripts 1, 2, and 3 correspond to the

compartments z1, z2, and z3.

Due to the symmetrical nature of both the mixture operation and loading

it is known that in an ideal system:

ν̂1,blue(t) = ν̂3,red(t), (26)

ν̂2,blue(t) = ν̂2,red(t), (27)

ν̂3,blue(t) = ν̂1,red(t), (28)

ν̂1,green(t) = ν̂3,green(t) = ν̂2,red(t) = ν̂2,blue(t), (29)

and

τ1 = 2τ2 = τ3. (30)

Equations (22 - 30) form a complete set of equations to describe the volume

fraction evolution of each particle colour in each compartment of the ideal
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system. For the full derivation of the model, readers can refer to Appendix

A.

The compartmental residence times are then determined by fitting the

volume fractions measured from the DEM simulation to the ideal model and

Figure 7 shows the results for the compartment z1. The results for the other

compartments are determined in a similar manner and they are summarised

in Table 2. The average value, τ1 = 56 s, is used for the compartmental

population balance model. The values of τ2 and τ3 are determined according

to Equation (30).

0 50 100 150 200

time (s)

0

0.2

0.4

0.6

0.8

1

8̂
(t
)

8̂1;red(t)DEM
8̂1;red(t)model, =1 = 64:97 s
8̂1;green(t)DEM
8̂1;green(t)model, =1 = 49:13 s
8̂1;blue(t)DEM
8̂1;blue(t)model, =1 = 73:96 s

Figure 7: Ideal model fitted to the measured volume fractions in z1.

3.2. Collision rate function

Results presented in this section are obtained using the DEM simulation

carried out with the experimental particle size distribution (Figure 4b). As

mentioned in Section 2.2, DEM is used to determine a suitable collision rate
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Table 2: Fitted residence times.

compartment, z particle type, c ν̂z,c(0) τ1 (s)

1 red 1.0 64.97

1 green 0.0 49.13

1 blue 0.0 73.96

2 red 0.0 45.10

2 green 1.0 51.44

2 blue 0.0 60.52

3 red 0.0 70.61

3 green 0.0 33.09

3 blue 1.0 55.12

τ̄1 ≈ 56

function C(di, dj) for the population balance model. This is done by fitting

the collision frequencies extracted from the DEM simulation to a list of known

collision rate functions in the literature.

The collision frequency normalised by the number of particles in DEM is

calculated as [20]:

C(di, dj) =
Ncol(di, dj)

Npart(di)Npart(dj)∆t
, (31)

where Ncol(di, dj) is the number of collisions between particles with the di-

ameters di and dj during the time interval ∆t, and Npart(di) is the number

of particles with diameter di. In this case, particle-particle collisions are

recorded over a period of 1 second and a total of 2.8 × 107 collisions are

considered.
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Table 3: Collision rate functions in the literature. Assembled by [20].

Name Collision rate function

Size independent [4] C(di, dj) = 1

Equipartition of kinetic energy (EKE) [21] C(di, dj) ∝ (di + dj)
2

√
1

di
3 +

1

dj
3

Equipartition of translational momentum (ETM) [47] C(di, dj) ∝ (di + dj)
2

√
1

di
6 +

1

dj
6

Perikinetic or Brownian motion [20] C(di, dj) ∝
di + dj
didj

Orthokinetic or induced shear [20] C(di, dj) ∝ (di + dj)
3

Each of the rate functions in Table 3 is fitted to the frequencies calculated

from DEM and the results are plotted in Figure 8. Figure 8a shows the

collision frequencies in DEM calculated with Equation (31) and it can be

observed that the majority of collisions in the simulation are between the

large and small particles. Particles of similar sizes collide with each other

much less frequently than with particles of different sizes, as shown by the

drop in collision frequencies along the axis of symmetry. Figures 8b - 8f show

the collision rate functions in Table 3 fitted to the normalised frequencies

calculated from DEM. From these plots, the collision rate functions which

show similar patterns are the EKE and ETM kernels (Figures 8c and 8d).

In order to decide between the EKE and ETM kernels, their relative errors

with respect to the collision frequencies from DEM are compared. For each
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data point available, the relative error is calculated as:

εrel(di, dj) =
|CDEM(di, dj)− CEKE/ETM(di, dj)|

CDEM(di, dj)
. (32)

Figure 9 compares the relative errors for the EKE and ETM rate functions

compared to the DEM extracted frequencies. The plots here show the point-

by-point comparison between the DEM extracted frequencies in Figure 8a

with the values in Figures 8c (EKE) and 8d (ETM). Based on the plots,

it can be observed that the ETM rate function completely fails to predict

the collision frequencies as the relative errors for most of the points exceed

1. For the EKE rate function, the average relative error over the points

considered is 0.38. Considering that particles below 1 mm are ignored in the

DEM simulation and the various idealised assumptions made in the EKE rate

function, the overall fit of the EKE rate function to the collision frequencies

from DEM can be considered excellent.

4. Numerical method for the population balance model

As the population balance model is five-dimensional, the stochastic ap-

proach is the only viable method to solve it. There are two popular stochastic

particle methods, which are the Direct Simulation Algorithm (DSA) and the

Stochastic Weighted Algorithm (SWA) [25, 24, 48, 27, 26, 49, 50, 51]. In

DSA, each computational particle represents the same number of real par-

ticles. SWA differs from DSA in that a statistical weight is attached to

each computational particle and this weight is proportional to the number

of real particles represented by the computational particle. As pointed out

in [24, 25], DSA is unsuitable for compartmental models because of the high

statistical noise observed, hence only SWA is used in this work.
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For the population balance model described in Section 2, each compart-

ment z is simulated with a system of stochastic particles:

Qz(t) = (z, xi, wi), i = 1, . . . , Nz(t), (33)

where z ∈ Z, xi ∈ X, wi ∈ (0, wmax] is the statistical weight and Nz(t) is the

number of computational particles at time t. Each compartment z is scaled

by a normalisation parameter nz and it can be interpreted as the computa-

tional sample volume [25]. The number concentration of the particles of type

xi located in z is given by wi/nz.

The sequence of random processes (33) approximates the concentration

measures c(t, z, dx) as nz →∞:

1

nz

Nz(t)∑
i=1

wiϕ(z, xi) −−−−→
nz→∞

∫
X
ϕ(z, x)c(t, z, dx), (34)

where ϕ is some suitable test function. Further details regarding the conver-

gence properties of the stochastic algorithm can be found in [27, 25]. The

normalisation parameter nz is initialised such that

1

nz

Nz(0)∑
i=1

wi ≈
∫
X
c(0, z, dx) ≈ Nz(0)

Nreal

. (35)

Nreal = 6.5× 109 is the approximated number of real particles in the system.

As the parameter Nreal only affects the value nz, the choice for this value is

not significant because nz is merely a scaling parameter for the stochastic

algorithm.

The number of initialised particles, Nz(0), is set at 0.75Nmax. The param-

eter Nmax controls the maximum number of particles in each compartment

by rescaling the ensemble when the ensemble is full [25].
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The particle processes described in Section 2.2 are either implemented as

jump processes or continuous processes. For this model, the jump processes

include liquid addition, collision, breakage and particle transport, whereas

the continuous processes include chemical reaction and penetration. In this

section, the jump mechanisms and rates in the context of SWA for each of the

particle processes are described, followed by the overall simulation algorithm.

4.1. Liquid addition

At the rate given by

Rz, droplet =


3× nz

Vreactor

V̇l
Vdroplet

, for z = z2,

0 , for z = z1, z3,

(36)

liquid particles of the form (z, xdroplet, 1) are introduced into the system.

Vreactor is the volume of the mixer and the term nz/Vreactor scales the rate

according to the normalisation parameter.

4.2. Breakage

The total breakage jump rate in a compartment z is

Rz, break =

Nz(t)∑
i=1

rz, break(xi). (37)

The index i of the particle to break within a compartment z is selected with

probability

rz, break(xi)

Rz, break

, (38)

and the jump process takes the following form

(z, xi, wi)→ (z, y, γbreak(xi, wi, y)). (39)
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The fragment y takes the following forms with different probabilities:

y = xj , with probability =
m(xj)

m(xi)
,

y = xi − xj , with probability = 1− m(xj)

m(xi)
.

(40)

The breakage weight transfer function γbreak is defined to conserve total mass:

γbreak(xi, wi, y) = wi ×
m(xi)

m(y)
. (41)

Full details regarding the breakage algorithm for weighted particles including

its convergence properties can be found in [25].

4.3. Particle transport

At the rate

Rz, transport =
Nz(t)

τz
, (42)

a particle is uniformly selected in compartment z to undergo the following

jump processes which depend on the initial location:

• z = z1

(z1, xi, wi)→ (z2, xi, wi); (43)

• z = z3

(z3, xi, wi)→ (z2, xi, wi); (44)

• z = z2

(z2, xi, wi)→ (z1, xi, wi), with probability = 0.5,

(z2, xi, wi)→ (z3, xi, wi), with probability = 0.5.
(45)

Full details regarding the implementation of particle transport in stochastic

particle frameworks can be found in [52, 24, 25].
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4.4. Collision

The outcome of a collision jump process depends on the coalescence effi-

ciency K̃:

(xi, wi), (xj, wj)→ (Tcomp(xi + xj), γcoal(xi, wi, xj, wj)), (xj, wj), if K̃(xi, xj) = 1,

(xi, wi), (xj, wj)→ (Tcomp(xi), wi), (xj, wj), if K̃(xi, xj) = 0.

(46)

The second particle, xj, is left unchanged in order to achieve the correct

convergence properties for SWA [25, 27, 26]. The weight transfer function

for coalescence γcoal is defined to conserve total mass:

γcoal(xi, wi, xj, wj) = wi
m(xi)

m(xi) +m(xj)
. (47)

Other mathematically valid weight transfer functions are investigated in [27].

A key challenge in implementing the collision process is the efficient cal-

culation of the total rate. The collision kernel for the particle pair (xi, wi)

and (xj, wj) in the context of SWA is [27]:

Kz, SWA(xi, wi, xj, wj) = Kz(xi, xj)wj

= ωimpeller kz, col C(di, dj)wj. (48)

In order for the rate to be calculated efficiently, it is necessary for the kernel

to be in the form:

Kz, SWA(xi, wi, xj, wj) = h
(1)
1 (xi, wi)h

(1)
2 (xj, wj) + h

(2)
1 (xi, wi)h

(2)
2 (xj, wj)+

. . .+ h
(nh)
1 (xi, wi)h

(nh)
2 (xj, wj), (49)
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so that its sum can be factorised as

Nz(t)∑
i 6=j

Kz, SWA(xi, wi, xj, wj) = λ
(1)
1 λ

(1)
2 −H(1) + λ

(2)
1 λ

(2)
2 −H(2) + . . .+ λ

(nh)
1 λ

(nh)
2 −H(nh)

(50)

where λ and H are defined as

λ
(k)
l =

Nz(t)∑
i=1

h
(k)
l (xi, wi), l = 1, 2, k = 1, 2, . . . , nh, (51)

H(k) =

Nz(t)∑
i=1

h
(k)
1 (xi, wi)h

(k)
2 (xi, wi), k = 1, 2, . . . , nh. (52)

Note that the termsH(k) are subtracted from λ
(k)
1 λ

(k)
2 to remove self-collisions.

In this form, the quantities h
(k)
l and h

(k)
1 h

(k)
2 can be stored in a binary tree

which enable rapid calculation of the sums λ
(k)
l and H(k) [27, 53].

The selection of the particle pair (xi, wi) and (xj, wj) depends on Equation

(50) which can be interpreted as the sum of nh individual rate terms. So,

with probability

λ
(k)
1 λ

(k)
2 −H(k)∑Nz(t)

i 6=j Kz, SWA(xi, wi, xj, wj)
, (53)

the index, i and j, of the colliding particles are chosen according to the

respective probabilities

h
(k)
1 (xi, wi)

λ
(k)
1

and
h
(k)
2 (xj, wj)

λ
(k)
2

, with i 6= j. (54)

It is determined in Section 3.2 that the EKE collision rate function is the most

suitable rate function for the high-shear granulation system. The collision

rate function only affects the rate and the collision jump mechanism (46)

remains unchanged.
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The collision kernel using the EKE rate function is

KEKE
z, SWA(xi, wi, xj, wj) = ωimpeller kz, col(di + dj)

2

√
1

di
3 +

1

dj
3 wj. (55)

The calculation of the rate becomes complicated for this kernel due to its

complex form. In order to calculate the exact rate, it is necessary to loop

through each pair of particle and this is computationally expensive. There-

fore, the majorant technique which provides computationally efficient imple-

mentations of the kernel K is applied [26, 27, 28, 29].

To arrive in the form shown by Equation (50), the kernel (55) is estimated

by the majorant kernel:

K̂EKE
z, SWA(xi, wi, xj, wj) = kmaj ωimpeller kz, col(di

2 + dj
2)

(
1

di
1.5 +

1

dj
1.5

)
wj

(56)

such that K ≤ K̂ and kmaj = 1.42 is the majorant scaling factor required to

maintain the inequality. The value of kmaj is calculated by determining the

maximum point of the ratio K/K̂ and solving it such that the ratio equals

to one. This ensures that the majorant kernel is as efficient as it could be.

The total majorant collision jump rate in compartment z can then be
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expressed as:

R̂z, col =
1

nz

Nz(t)∑
i 6=j

K̂EKE
z, SWA(xi, wi, xj, wj)

=
kmaj ωimpeller kz, col

nz

{N(t)∑
i=1

di
0.5

N(t)∑
j=1

wj −
N(t)∑
i=1

di
0.5wi


+

N(t)∑
i=1

di
2

N(t)∑
j=1

dj
−1.5wj −

N(t)∑
i=1

di
0.5wi

+

N(t)∑
i=1

di
−1.5

N(t)∑
j=1

dj
2wj −

N(t)∑
i=1

di
0.5wi


+

N(t)∑
i=1

1

N(t)∑
j=1

dj
0.5wj −

N(t)∑
i=1

di
0.5wi

}. (57)

Note that the term
∑
di

0.5wi is subtracted from the terms to exclude self-

collisions. The particle selection properties and the partial sums for this

majorant kernel are summarised in Table 4.

Table 4: Particle selection properties based on Equation (57).

k Equation λ
(k)
1 λ

(k)
2 h

(k)
1 (xi, wi) h

(k)
2 (xj, wj)

1
[∑

di
0.5∑wj −

∑
di

0.5wi

] ∑
di

0.5 ∑
wj di

0.5 wj

2
[∑

di
2∑ dj

−1.5wj −
∑
di

0.5wi

] ∑
di

2 ∑
dj
−1.5wj di

2 dj
−1.5wj

3
[∑

di
−1.5∑ dj

2wj −
∑
di

0.5wi

] ∑
di
−1.5 ∑

dj
2wj di

−1.5 dj
2wj

4
[∑

1
∑
dj

0.5wj −
∑
di

0.5wi

] ∑
1

∑
dj

0.5wj 1 dj
0.5wj

When a majorant kernel is used, it is necessary to introduce fictitious

jumps in order to achieve the correct convergence properties [28]. Once the

colliding pair (xi, wi) and (xj, wj) in a compartment z is chosen according

to the selection properties in Table 4, the collision jump process (46) is
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performed with probability

KEKE
z, SWA(xi, wi, xj, wj)

K̂EKE
z, SWA(xi, wi, xj, wj)

, (58)

otherwise the jump is fictitious, i.e. nothing happens in this step but time

moves forward.

4.5. Simulation algorithm

The waiting time twait is generated from an exponential distribution [28]

Prob{twait ≥ s} = exp(−Rtotal s) , s ≥ 0, (59)

with the parameter

Rtotal =
∑
z=Z

[
Rz, droplet +Rz, break +Rz, transport + R̂z, col

]
. (60)

A particle process (inception, breakage, transport, or collision) in a compart-

ment z is chosen according to the probabilities

Rz, droplet

Rtotal

,
Rz, break

Rtotal

,
Rz, transport

Rtotal

,
R̂z, col

Rtotal

.

Rz, droplet, Rz, break, Rz, transport, and R̂z, col are given by Equations (36), (37),

(42), and (57). Since there are three compartments, there are 12 jump pro-

cesses considered in total. Once a particle process in a specific compartment

is selected, the respective jump mechanisms described in Sections 4.1 - 4.4

are performed.

In between jump processes, the components of the particles change ac-

cording to the following system of ordinary differential equations using the
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Linear Process Deferment Algorithm [54]:

dso
dt

= 0 ,
dsr
dt

= rz, reac,e(x) + rz, reac,i ,

dle
dt

= −rz, reac,e(x)− rz, pen(x) ,
dli
dt

= −rz, reac,i(x) + rz, pen(x),

dp

dt
= −rz, reac,i(x) . (61)

In Section 2.1, it is stated that the densities of reacted solid and liquid are

assumed to be the same and the main justification of this assumption is that

it simplifies the system of ODEs shown because the only contribution to sr is

from le and li. The reaction submodel can be further improved by considering

the solubility of lactose in water and the contribution of so. However this

is not the focus of this work and it is decided to keep the model simple by

assuming that the densities of reacted solid and liquid are equal.

5. Application

The population balance model is simulated as closely as possible to a set of

experimental conditions chosen from [30, Experiment B1]. The experimental

conditions and several key model parameters are listed in Table 5. For the

purpose of validating the population balance model, measurements of particle

size distribution [30] and porosities [45] are available from the same set of

experimental conditions.

The ability of the population balance model to predict the experimen-

tal measurements is investigated in this section, in particular the difference

observed when the new compartmental model is used as opposed to using a
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single compartment. Here, the rate parameters described in Section 2.2 are

optimised to fit the simulated responses to the experimental measurements

using the software MoDS (Model Development Suite) [55]. The model con-

tains five rate parameters (kz, break, kz, reac, kz, pen, kz, col, and kz, comp) which

are allowed to vary between different compartments. By assuming the rates

of the particle processes are the same in z1 and z3, there are 2 × 5 = 10

parameters to consider for the three-compartment model. This assumption

also conforms to the symmetrical geometry of the mixer (Figure 1). For the

single-compartment model, there are only 5 parameters to consider.

For each model evaluation, the compartments are initialised with a set of

non-porous particles of the form:

x = (so, 0, 0, 0, 0)

following the measured size distribution of the initial lactose powder (µpsd =

38.93 µm, σpsd = 1.6 µm). Once the solid particles are initialised, liquid

droplets of the form

x = (0, 0, Vdroplet = 1.8× 10−13 m3, 0, 0),

are added at the rate defined by Equation (36) and stopped after 120 seconds.

The volume of the droplets follows the specification of the nozzles used in the

experiments. The simulation is then allowed to continue for 300 seconds after

the liquid addition phase and this refers to the wet massing time in Table 5.

Each model evaluation consists of a number of independent stochastic runs

and the results are averaged over the runs.

The quality of the stochastic simulations depends on the number of com-

putational particles and the number of stochastic runs at the expense of CPU
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time. In a preliminary convergence test, it is determined that Nmax = 2048

particles per compartment and 8 stochastic runs are sufficient to achieve

convergence for this system. Using these numbers, a model evaluation takes

about a few minutes for the single-compartment model and about an hour

for the three-compartment model.

To quantify the agreement between the model and experiment, the sum

of squares objective function is used:

OF =
Y∑
i=1

(ysimi − yexpi )2, (62)

where ysim denotes the model response, yexp denotes the experimental re-

sponse and Y is the total number of responses.

Optimisation of the objective function is carried out in two stages. The

first stage involves a quasi-random global search using a Sobol low-discrepancy

sequence [56]. This is followed by a local optimisation starting from the best

point using the Hooke and Jeeves’ algorithm [57].

The objective function includes a particle size distribution and also parti-

cle porosities. The particle size distribution is represented by mass fractions,

fm, of 19 size classes. On the other hand, only porosities for 15 particle size

classes are included in the objective function as opposed to 19 due to lim-

itations of the experimental measurements. Considering both sets of data,

there are 34 observation points in total.

In order to highlight the importance of considering the heterogeneity of

our granulation process, two versions of the population balance model which

differ in the number of compartments (one and three) are investigated. The

optimisation of the objective function is carried out for both models and the
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Table 5: Model physical parameters.

Description Symbol Value

Known process settings

Material density ρso 1545.0 kg/m3

Binder density ρle 998.0 kg/m3

Binder viscosity η 1.0× 10−3 Pa s

Reactor volume Vreactor 3.0× 10−3 m3

Impeller speed ωimpeller 2 rev/s

Binder flow rate V̇l 1.25× 10−6 m3/s

Wet massing time - 300 s

Binder to powder ratio - 150 ml:1000 g

Model parameters – approximated

Powder size distribution; location µpsd 38.93 µm

Powder size distribution; shape σpsd 1.6 µm

Droplet volume Vdroplet 1.80× 10−13 m3

Particle-particle collision velocity Ucol 9.11× 10−2 m/s

Minimum particle porosity after compaction εmin 0.25

Breakage; minimum fragment volume vfrag,min 5.236× 10−13 m3

Breakage; particle-impeller impact velocity Uimp 0.82 m/s

optimised rate parameters are shown in Tables 6 and 7. For both models,

a total of 10,000 Sobol evaluations and a few hundred additional evalua-

tions for the local optimisation are performed to arrive at the optimised rate

parameters.
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Figures 10 and 11 show the best fit size distribution and porosities re-

spectively from the population balance model. Looking closely at Figure 10,

it can be observed that the multi-compartment model is able to describe the

process more accurately as the generated size distribution is much closer to

the experimental data. By using three compartments instead of one, the

model is able to generate a wider range of particle sizes compared to the size

independent kernel.

As for the porosities (Figure 11), the value 0 is given when there are no

particles of that size. Similar to the size distribution, the values generated

with the multi-compartment model are also much closer to the experimental

data partly because the model is not able to generate any particles above

850 µm with a single compartment. It may be observed that the confidence

interval for the porosity of particles with the size 850 µm is very large but

this is should not be a concern because there are very few particles in this

size class as shown in the corresponding size distribution.

Table 6: Optimised rate parameters and objective function when the single-compartment

model is used.

Rate parameter Units Value

kz, break s m−5 2.07× 105

kz, reac m s−1 3.17× 10−11

kz, pen kg0.5s−1.5m−3.5 3.77× 103

kz, col m3 5.37× 10−13

kz, comp - 5.24× 10−2

Objective function - 1900
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Table 7: Optimised rate parameters and objective function when the multi-compartment

model is used.

Rate parameter Units z1/z3 z2

kz, break s m−5 5.18× 1010 3.56× 103

kz, reac m s−1 1.21× 10−16 2.10× 10−14

kz, pen kg0.5s−1.5m−3.5 8.85× 103 1.22× 101

kz, col m3 7.60× 10−15 2.77× 10−9

kz, comp - 1.00× 100 3.61× 10−1

Objective function - 326

6. Conclusions

This paper presents how DEM simulations can be coupled to a population

balance model to model a batch granulation process. As both approaches

have different capabilities, they are used to complement each other in this

work.

DEM is used to analyse flow patterns in the mixer and the simulations

reveal two crucial findings. First, it is found that segregation of particles

is inherent especially in the axial direction and this justifies the usage of

multiple compartments in the population balance model. Second, the results

suggest that the collision frequencies between particles are size dependent and

this should be reflected in the population balance model. Even though DEM

is able to provide detailed information regarding the movement of particles,

it is computationally expensive and unsuitable for long time scale studies.
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On the other hand, population balance models are computationally cheap.

However, they often require some prior knowledge of the system. For exam-

ple, the residence times of the multi-compartment model and the rate of

collision between particles are unknown. Hence, methodologies are devel-

oped to determine the compartmental residence times and also a suitable

collision rate function for the population balance model from DEM.

Based on the particle-particle collision frequencies extracted from DEM,

it is determined that the EKE kernel is the most appropriate kernel to use

in the population balance model. In order to use it in a stochastic particle

framework, the majorant technique is adapted to this kernel to enable rapid

calculation of the collision rate.

Then, the performance of the multi-compartment model developed in

this paper is assessed by comparing the generated particle size distributions

and porosities with a set of experimental data. Our results suggest that

it is important to consider the heterogeneous behaviour of powder mixing

processes in order to achieve good agreement with our experimental data.

Despite the improvement observed, there are noticeable weaknesses in the

model especially in predicting the properties of the larger particles. Hence,

an immediate future work will involve a detailed sensitivity analysis to de-

compose the effects of the model parameters on the model responses. This

should reveal further insights on the behaviour of the model.
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Appendix A. Derivation of three compartment mixing model

A model for each particle volume fraction evolution in each compartment

is derived by considering an idealised reactor system as shown in Figure A.12.

Here, a tertiary particle colour system is initially loaded as [red, green, blue]

and each compartment is perfectly mixed. Such a construction assumes that

the separation between compartment boundaries is sufficiently large and the

time step between analysis frames is sufficiently small such that particles

cannot ‘skip’ over compartments (e.g. from C1 directly to C3). The volume

flow rate from compartment k to p can then be written as the sum of the

time-dependent component volume flow-rates Q
[j]
k→p(t) as:

Qk→p = Q
[red]
k→p(t) +Q

[green]
k→p (t) +Q

[blue]
k→p (t). (A.1)

Since the mixer is being operated at a constant speed we expect the volume

transfer rate (driven by the energy supplied by the motor) to be constant

with respect to time (neglecting the time taken to establish any potential

particle flow channels). Assuming constant volume hold-up within each com-

partment (no net movement between compartments was observed during the

experiment) it follows that, for compartments connected to a single other

compartment (compartment 1 and 3 in Figure A.12),

Qk→p = Qp→k. (A.2)

Furthermore, mixer symmetry dictates that:

Q1→2 = Q3→2, (A.3)
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and thus:

Q1→2 = Q2→1 = Q2→3 = Q3→2. (A.4)

If particles have a uniform density across the system then the corresponding

mass flow rates Ṁ may be written as:

Ṁ1→2 = Ṁ2→1 = Ṁ2→3 = Ṁ3→2. (A.5)

By definition the average residence time τ of a compartment is given by:

τi =
Vi,T
Qi,out

, (A.6)

where Vi,T and Qi,out are the total particle volume and volumetric flow-rate

out of compartment i, respectively. The compartments are defined such that

V1,T = V2,T = V3,T and Q1,out = Q2,out/2 = Q3,out, and so:

τ1 = 2τ2 = τ3. (A.7)

Again, assuming constant particle density, a dynamic component balance

over the red particles in C1 may be written as:

dV1,red(t)

dt
= Q

[red]
2→1 −Q

[red]
1→2 (A.8)

If half of the red particles in C2 are assumed to exit into C1 and half through

to C3 (again this assumes that C2 is well mixed) then it follows from (A.8)

that:

V1,T
dν̂1,red(t)

dt
=
V2,red
2τ2

− V1,red
τ1

→ dν̂1,red(t)

dt
=

1

τ1
(ν̂2,red(t)− ν̂1,red(t)) . (A.9)
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A similar argument applied to C2 and C3 yields:

dν̂2,red(t)

dt
=

1

τ1
(ν̂1,red(t) + ν̂3,red(t)− 2ν̂2,red(t)) , (A.10)

dν̂3,red(t)

dt
=

1

τ1
(ν̂2,red(t)− ν̂3,red(t)) . (A.11)

Equations (A.9), (A.10) and (A.11) form a system of ordinary differential

equations with initial conditions ν̂1,red(0) = 1 and ν̂2,red(0) = ν̂3,red(0) = 0.

The solutions to the system are then:

ν̂1,red(t) =
1

2
exp

(
− t

τ1

)
+

1

6
exp

(
−3t

τ1

)
+

1

3
, (A.12)

ν̂2,red(t) = −1

3
exp

(
−3t

τ1

)
+

1

3
, (A.13)

ν̂3,red(t) = −1

2
exp

(
− t

τ1

)
+

1

6
exp

(
−3t

τ1

)
+

1

3
. (A.14)

Due to the symmetrical nature of both the mixture operation and loading it

is known that in an ideal system:

ν̂1,blue(t) = ν̂3,red(t),

ν̂2,blue(t) = ν̂2,red(t),

ν̂3,blue(t) = ν̂1,red(t).

Furthermore, from the definition of volume fraction we have:

ν̂i,green(t) = 1− ν̂i,red(t)− ν̂i,blue(t)

for each compartment i. Again acknowledging the mixer symmetry, it follows

that:

ν̂1,green(t) = ν̂3,green(t) = ν̂2,red(t) = ν̂2,blue(t), (A.15)

ν̂2,green(t) =
2

3
exp

(
−3t

τ1

)
+

1

3
(A.16)
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Figure 8: Normalised collision frequencies.
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Figure 9: Relative error between the DEM extracted frequencies with the two closest col-

lision rate functions - EKE and ETM.
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Figure 10: Best fit particle size distributions.
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Figure 11: Best fit porosity distributions.

Figure A.12: Idealised compartmental mixer in which particles travel at a constant rate

through pre-defined channels. Each compartment acts as a well-mixed

CSTR.
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