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E N G I N E E R I N G

Organic neuromorphic electronics for sensorimotor 
integration and learning in robotics
Imke Krauhausen1,2, Dimitrios A. Koutsouras1, Armantas Melianas3,4, Scott T. Keene5, 
Katharina Lieberth1, Hadrien Ledanseur1, Rajendar Sheelamanthula6, Alexander Giovannitti3, 
Fabrizio Torricelli7, Iain Mcculloch6,8, Paul W. M. Blom1, Alberto Salleo3*,  
Yoeri van de Burgt2*, Paschalis Gkoupidenis1*

In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic 
sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimo-
tor merging and processing on a robot that is placed in a maze. While the robot is exposed to external environ-
mental stimuli, visuomotor associations are formed on the adaptable neuromorphic circuit. With this on-chip 
sensorimotor integration, the robot learns to follow a path to the exit of a maze, while being guided by visually 
indicated paths. The ease of processability of organic neuromorphic electronics and their unconventional form 
factors, in combination with education-purpose robotics, showcase a promising approach of an affordable, versatile, 
and readily accessible platform for exploring, designing, and evaluating behavioral intelligence through decen-
tralized sensorimotor integration.

INTRODUCTION
In all living organisms, the sensory and motor systems coordinate 
with each other, forming a unified entity (1–4). In this sensorimotor 
integration, the processing of senses in the sensory system occurs 
jointly with motor behaviors while, simultaneously, motor actions 
are under continuous sensory guidance. For instance, the action-to-
sense direction can occur in vision (move of the body or saccadic eye 
movements to actively visualize the environment) and in olfaction 
(active sampling with sniffs to perceive a smell) (5). In the opposite 
direction of sense to action, sensory stimuli trigger motor actions, 
e.g., the presence of an object in the visual field initiates and guides 
movement (6). Even simple invertebrate organisms such as insects 
(e.g., drosophila, locust, etc.), whose neuronal circuits are easily trace-
able, exhibit a repertoire of intelligent behaviors due to sensorimotor 
integration (7). These behaviors are either hardwired and predefined 
(reflex-like) or learned as sensorimotor associations that are context 
dependent. More complex behaviors and learning build upon low- 
level reflexes and sensorimotor associations. A simplified mecha-
nistic yet insightful version of sensorimotor integration was proposed 
by Braitenberg (8), with vehicles as a metaphor. In these hypothetical 
vehicles, primitive forms of intelligence that are found in low-level 
species such as exploratory, avoidance, and escape behavior emerge 
by coupling sensory signals and motor commands via excitatory/
inhibitory and ipsilateral/contralateral connections (8–12). On top 
of this hardwired coupling, behavioral learning is promoted by 
adaptable sensory-to-motor connections, thus forming sensorimo-
tor associations that represent a simple and generalized mechanism 

for behavioral emergence. Although conceptually primitive, these 
vehicles represent a prominent platform to develop and assess neu-
romorphic circuits for learning sensorimotor processes and behav-
ioral tasks in robotics, as well as for energy-efficient and distributed 
data handling/processing (13–15).

Neuronal computation can be directly emulated in the analog- 
digital domain on neuromorphic circuits, thereby providing real- 
time communication between the analog world, accessed by the 
sensorimotor system and the digital unit(s) of robotic platforms 
(13, 16–18). Nevertheless, these neuromorphic circuits are usually large 
scale and implemented in custom-made robotic systems (13, 16–19). 
For example, the silicon-based SpiNNaker engine, which has been 
used for sensorimotor learning, consists of 48 chips and 18 processors 
per chip (16, 17). Despite the notable demonstrations of high com-
plexity, an in materio computing perspective may provide elegant and 
simplified solutions in robotics. Emerging materials and devices, for 
instance, have novel properties and can unlock circuit functionalities 
unattainable by conventional electronics, as they are able to emulate 
directly bioinspired and biorelevant functionalities such as synaptic 
plasticity, neuronal functions, homeostasis, and self-healing ability, 
without needing complex circuitry (20). Moreover, the mechanics of the 
embodiment (i.e., physical body) are crucial in robotics, for instance, 
the use of inertia for energy-efficient locomotion and morphological 
adaptation for locomotion in unstructured or complex environments 
(19, 21, 22). Small-scale (i.e., simple and consisting of limited compo-
nents) neuromorphic circuits for sensorimotor control and optimization 
of the utmost simplicity are thus of great importance for understanding 
the fundamental relationships between the sensory and motor systems. 
Only recently, small-scale neuromorphic circuits based on metal oxide 
neuromorphic devices have been used for local computation and con-
trol in robotic systems. Improved balance with low-latency and adaptive 
behavior in mobile robotics has been achieved with memristor-based 
adaptive filters and arrays (23, 24). Robotic arm control that is tolerant 
to damages has also been demonstrated with metal oxide transistors 
(25). Nevertheless, in the above cases, learning is either offline (23) 
or outside the sensorimotor loop (24), and the implementation re-
quires many conventional silicon components (23–25).
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Organic electronic materials have recently emerged for neuro-
morphic electronics because of excellent tuneability, high stability, 
and low-voltage, low-power operation (26–31). Organic materials 
are soft, can be solution-processed or printed at relatively low ther-
mal budget, and can be integrated on large-area, rigid, as well as 
conformal substrates (32, 33). The flexible and biocompatible nature 
and the mixed ion-electronic conduction of semiconducting polymers 
also allow for enhanced connections with biological and biohybrid 
systems (34, 35). Despite these notable demonstrations, organic 
neuromorphic circuits have only been assessed so far for their train-
ability and adaptability in on-bench applications such as small-scale 
artificial neural networks, logic gates, and sensors (35, 36), all sys-
tems that perceive the external stimuli without any behavioral con-
text and outcome. However, building and evaluating intelligent 
systems require a holistic approach with embodiment, with agents 
that perform actions to explore the environment and perceive 
in real time the corresponding consequences (4, 14, 37). Creating 

sensorimotor associations in locally trained organic neuromorphic 
circuits with ease of fabrication and unconventional form factors 
(i.e., solution processable, printable, large-area integration, and me-
chanical conformity) can lead to optimized systems with “on the 
edge” decentralized/distributed learning and reduced communica-
tion latencies (via large-area integration in flexible/stretchable sub-
strates), fault tolerance due to redundancy or self-repairing (via 
large-area integration and self-healing ability), versatility, and low-
power consumption (via low-voltage operation).

In this work, we introduce sensorimotor integration and local 
learning in a target behavioral task that requires mobility, which is 
enabled by a simple and low-voltage organic neuromorphic circuit. 
A standalone robot learns to navigate itself in a two-dimensional 
maze by following a planned path, after training its organic neu-
romorphic circuit with direct and real-time feedback from the 
sensorimotor system (Fig. 1A). Through online learning within the 
sensorimotor loop, the organic neuromorphic circuit establishes an 

Fig. 1. Path-planning robot with an organic neuromorphic circuit for sensorimotor integration. (A) An autonomous robot gradually learns to navigate in a maze by 
following navigation cues to the exit. Processing and learning toward the target task are achieved locally with an organic neuromorphic circuit. (B) Detailed schematic of 
the robotic system. Static, low-level control of the sensorimotor system is carried out by a central unit in the digital domain. The sensorimotor system and the organic 
neuromorphic circuit operate in the analog domain, and a real-time, sensorimotor loop is established between the control unit (digital domain) and the sensorimotor 
system/neuromorphic circuit (analog domain). The neuromorphic circuit consists of organic synaptic transistors: a volatile (OECT) and a nonvolatile (MEM) device. While 
operating within the loop, the neuromorphic circuit receives optomechanical sensory signals (at the gates of the devices GOECT and GMEM) to perceive (adapt) the (to the) 
environmental stimuli and sends motor commands (VM) to the actuators of the robot for locomotion. With its trainability and adaptivity, the circuit forms sensorimotor 
associations through training that are necessary for accomplishing the target task. (C) The turning behavior of the robot at a maze intersection is influenced nondeter-
ministically and in real time by the output voltage VM of the neuromorphic circuit.
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association between the robot’s sensory and motor units. This asso-
ciation is necessary for accomplishing the navigation task. Specific 
motor actions are triggered by visual stimuli that function as navi-
gation cues. This sensorimotor integration, which happens locally 
and in the analog domain, guides the robot to the exit. The robot, its 
sensors/actuators, and the neuromorphic circuit are battery-powered 
and operate autonomously. The work showcases the use of organic 
neuromorphic electronics as local and decentralized learning circuitry 
for mobile applications in environments with energy restrictions.

RESULTS
The robotic system consists of two parts: the sensorimotor system 
along with organic neuromorphic circuit that operates in the analog 
domain and the robotic controller in the digital domain (Fig.  1B 
and fig. S1); both systems operate autonomously and locally on the 
robot. The robotic system senses the environment by collecting op-
tical and mechanical signals with its reflectance and touch sensors, 
while locomoting in the quasi–two-dimensional maze with its two, 
left and right, servomotors. The maze consists of black-lined, hex-
agonal unit cells arranged in a honeycomb-like pattern. The digital 
control unit of the robot, a LEGO MINDSTORMS EV3 brick (38), op-
tically traces the lined maze by means of reflectance and forwards actu-
ation commands to the motors. The digital unit is controlled by a 
static, low-level line follower algorithm (i.e., stereotyped, reflex-like 
behavioral response), which ensures that the robot stays on the straight 
tracks of the maze between the intersections. Motor commands are 
continuously driven by optomechanical sensory signals (i.e., from the 
reflectance and touch sensors), while, simultaneously, motor actions 
modulate the sensory processes. A real-time sensorimotor loop is 
therefore formed. An analog and trainable neuromorphic circuit 
intervenes locally within the loop and provides learning through 
adaptive sensorimotor associations. The neuromorphic circuit consists 
of a nonvolatile and a volatile organic synaptic transistor [indicated 
as MEM (memory) and OECT (organic electrochemical transistor) 
devices, respectively; Fig. 1B], which are connected in series and, 
in essence, form a trainable voltage divider. The output voltage VM 
depends on the resistance ratio between the two synaptic devices, as 
well as on their sensory input signals.

The algorithm of the digital unit is static and thus creates a fixed 
behavioral frame when the robot approaches a maze intersection. 
The algorithm alone has no agency on the actual direction of turning 
but can favor left or right steering depending on its input variable(s) 
that temporally modifies the motor power distribution (section S1 
and fig. S2). The input variable(s) is provided by the organic neuro-
morphic circuit in real time, as analog voltage VM. VM is then digitized 
with a 12-bit-resolution analog-to-digital converter to be handled 
by the algorithm that is executed at the control unit. While providing 
the output voltage VM to the control unit, the neuromorphic circuit 
receives optical sensory signal from the reflectance sensor at the gate 
GOECT and mechanical sensory signal from the touch sensor at the 
gate GMEM. The reflectance signal is used for sensing the maze track, 
and the mechanical signal of the touch sensor represents the envi-
ronmental stimulus for reinforced learning. The sensory signals are 
conditioned and downscaled by an additional analog hardware unit 
to match with the low-operation voltages of the synaptic devices 
(≤0.5 V; section S2 and figs. S1 and S3).

As the robot follows a straight line in the maze and approaches 
an intersection, the actual turn outcome depends on the instantaneous 

power distribution between the left and right motors. This instanta-
neous distribution is temporarily driven by the output voltage VM 
of the organic neuromorphic circuit, as it receives the optomechan-
ical sensory inputs. Because of the oscillatory-like scanning of the 
maze track with the robot by means of the line follower algorithm 
(fig. S2), the steering direction in an intersection is nondeterminis-
tic with probability that depends on the voltage VM (Fig. 1C).

The organic neuromorphic circuit is made of 2-m-scale synaptic 
devices based on OECTs (Fig. 2A and fig. S4). The channel material 
of the transistors, an organic mixed ionic-electronic conductor, is 
gated via an electrolyte, and an ionic gate current can modulate 
the electronic current that flows through the channel (34, 39). 
Both devices are fabricated using the solution-processed polymer 
poly(2-(3,3′-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2′- 
bithiophen]-5-yl) thieno [3,2-b] thiophene) [p(g2T-TT)] as a 
channel material. An ionic gel [1-ethyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) with polyvinylidene 
fluoride-co-hexafluoropropylene (PVDF-HFP)] between the chan-
nel and the gate serves as the electrolyte of the device (40). p(g2T-
TT) exhibits mixed conduction, as it is an organic hole-transporting 
semiconductor and also an ion-conducting material. p(g2T-TT) has 
been chosen as a channel material in both volatile and synaptic elec-
trochemical transistors as it yields properties that are necessary for 
the device elements of the neuromorphic circuit, such as a wide dy-
namic range of resistance tuning (~100× analog memory window), 
high transconductance (~S to mS), and endurance (~108 write-
read events) at low-voltage operation (∣V∣ < 0.5 V) (30, 41). The 
differentiation between volatility and nonvolatility depends on 
the probing conditions of the devices. Nonvolatility is induced by 
enforcing gate-to-channel open-circuit potential condition via an an-
alog switch (i.e., the touch sensor), while probing the gate electrode 
directly incites volatile behavior (29, 30). Therefore, monolithic 
integration of both transistor functionalities (volatile/nonvolatile) 
with the same channel and electrolyte materials is achievable for 
the implementation of the organic neuromorphic circuit, thus no-
tably simplifying the fabrication process and material selection 
(fig. S4).

The volatile synaptic part of the trainable neuromorphic circuit 
resembles an OECT. Transistor characteristics that demonstrate re-
liable switching behavior at ultralow operation voltages are ob-
tained (Fig. 2B and fig. S5). For instance, in the OECT-only case, 
operation voltages of the transfer (ID versus VG,OECT) and output 
(ID versus VD,OECT) characteristics are <0.4 V, with ID as the drain 
current and VG,OECT and VD,OECT as the gate and drain voltage, re-
spectively. The transconductance gm,OECT (=dID/dVG,OECT), which 
defines the efficiency of the device to amplify a sensory input signal 
(VG,OECT) at the output (ID), depends monotonically on the drain 
voltage VD,OECT (section S3). By connecting a variable load resistor 
RMEM in series to the OECT in a voltage divider topology, the voltage 
partition VM (or equivalently VD,OECT) and thus gm,OECT depend on 
the ratio of the OECT to load resistance, ROECT/RMEM (Fig. 2C and 
section S3). A ratio in the range of ROECT/RMEM = 1 to 100 is suffi-
cient to modify VM from VSUPP/2 to 0 V and to amplify or even com-
pletely suppress a VG,OECT signal (in Fig. 2C shown as gm,OECT). In the 
time domain response of the circuit (inset of Fig. 2C), ROECT/RMEM 
defines both the baseline VM level (no sensory input signal; VG,OECT = 0) 
and its amplification (for a sensory perturbation; VG,OECT). The re-
sponse time of the neuromorphic circuit is compatible with the os-
cillatory scanning of the maze track (fig. S6).
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A trainable neuromorphic circuit is realized with an organic 
artificial synapse (MEM) that exhibits tunable and nonvolatile 
conductance states, according to the circuit topology displayed in 
Fig. 2A. The conductance of the synaptic device is modulated re-
versibly by a series of voltage pulses VG,MEM at the gate electrode 
through an analog switch (i.e., the touch sensor). The synaptic de-
vice exhibits a high-memory window of >100× and stable, multiple 
memory states (Fig. 2D and fig. S7). The memory window of the 
synaptic device is sufficient to change the voltage partition VM of the 
trainable voltage divider and therefore the OECT transconductance 

gm,OECT. At the trainable circuit topology, the MEM gate receives 
training voltage pulses VG,MEM (1 V for ~1 s) that modulate the 
baseline level of VM, and the OECT gate is biased with real-time 
sensory signal VG,OECT (−0.25 V for ≳20 ms) from the maze track 
(Fig. 2E). The characteristics of the neuromorphic circuit are accu-
rately modeled in fig. S8. The neuromorphic circuit is simulated 
in static and transient conditions as a function of the sensory and 
training signals. The OECT exhibits a tunable sensitivity that de-
pends on the resistance ratio of the two channels, ROECT/RMEM (at 
~60 s; Fig. 2E). When ROECT/RMEM ≫ 1, the baseline of the voltage 

Fig. 2. Organic neuromorphic circuit for adaptive sensorimotor processing and control. (A) The organic neuromorphic circuit consists an OECT and an organic arti-
ficial synapse (MEM), forming a trainable/adaptive voltage divider (VSUPP = −0.5 V). (B) Transfer (ID versus VG,OECT) and output (ID versus VD,OECT) characteristics of the 
transistors. (C) Calculated output voltage VM of the organic neuromorphic circuit and OECT transconductance gm,OECT as a function of the OECT-to-MEM resistance ratio, 
ROECT/RMEM. A ratio ROECT/RMEM~100 is necessary to modulate VM from 0 to VSUPP/2 (blue line) and suppress/enhance gm,OECT (red line). The change of ratio ROECT/RMEM affects 
the baseline of VM (inset, blue) and the amplification of signals through gm,OECT (inset, red). The RMEM is emulated with a variable load resistor. The device model and its 
parameters used for calculations are shown in section S3. (D) Adaptability of the organic artificial synapse (MEM). Conductance levels of the device channel for a series of 
mechanosensory voltage pulses VG,MEM, applied at the gate electrode (VG,MEM = 1 V, t~1 s). A memory window of ~100× is achieved. The number of states and their 
spacing depends on the pulsing conditions. (E) Output voltage VM of the organic neuromorphic circuit over time, as the circuit receives optomechanical sensory signals; 
VG,OECT, optical tracking of the maze (VG,OECT = −0.25 V, for ≳20 ms); VG,MEM, touch sensor for reinforced learning (VG,MEM = −1 V, for ~1 s). The turn behavior of the robot 
depends on the instantaneous state of VM.
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partition is VM~0 V, and the OECT sensitivity for tracking the maze 
is minimum; through training, ROECT≈RMEM, and the sensitivity in-
creases significantly (fig. S9). VM is digitized and forwarded to the 
control unit in real time as input for the static line follower algo-
rithm. The static algorithm is executed by receiving dynamic input 
from VM that depends on the external sensory signal stream. The 
dynamic input temporally modifies the motor power distribution 
and therefore the steering at a maze intersection. Depending on the 
VM state, right (∣VM∣ ≤ 150 mV) or left (∣VM∣ ≥ 350 mV) steering 
is favored at an intersection, with a nondeterministic transitional 
region in between (sections S1 and S5 and fig. S10).

The navigation of the robot in the maze is achieved by gradually 
forming a visuomotor association between a visual cue and a motor 
action through training, which results in a behavioral outcome 
(visualized in a unit cell intersection at Fig. 3A). Before the training 
phase, visuomotor association is yet to be established. Although 
visual cues for navigation are present, the neuromorphic circuit is 
initialized in a way that its electric response toward the cues is low 
without inducing any behavioral outcome. The robot turns right at 

every intersection (VM response in light blue; Fig. 2E). During train-
ing, the association is reinforced by an external mechanical stimulus 
(i.e., noxious stimulus or punishment) when the robot fails to 
execute the target behavior (i.e., when moving off the planned path 
toward the exit or falsely reaching the boundaries of the maze). The 
external stimulus is applied via the touch sensor (by an external trainer 
or when the robot hits the maze boundaries) at the MEM gate, GMEM, 
while the robot is optically exploring the maze through the sensory 
signal of the OECT gate, GOECT. With each training step, the behav-
ioral adaptation is twofold: The baseline of VM is moving upward in 
the probability curve of turning and the sensitivity toward naviga-
tion cues is enhanced (VM response in medium blue; Fig. 2E). After 
training, the baseline of VM still lies in the “turn right” regime of the 
probability curve. Nevertheless, gm,OECT is now increased significant-
ly, and, in the presence of a navigation cue, VM temporally shifts 
into the “turn left” regime (VM response in dark blue; Fig. 2E). The 
visuomotor association is therefore formed, and visual cues trigger 
a behavioral outcome: no visual cue, right turn; presence of a visual 
cue, left turn. The planned path is marked by placing navigation 

Fig. 3. Training process and formation of sensorimotor association. (A) Training process of the robot showing the formation of the visuomotor association. After 
training, the robot learns to associate navigation cues with motor actions, thus displaying a behavioral outcome. (B) Temporal evolution of the output voltage VM during 
training, in respect to the probability curve of turning. Alternate colors in the VM graph correspond to sequential training steps (n = 1 to 16 training steps). (C) VM over time 
for the final training step, showing the detection of navigation cues that induces the temporal reversal of the turning probability. (D) Maze setup. The planned path is 
marked by navigation cues (#1 to #9) that indicate a left turn, otherwise a right turn.



Krauhausen et al., Sci. Adv. 7, eabl5068 (2021)     10 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 8

cues (circle arcs) in specific maze intersections that indicate a left 
turn, otherwise a right turn.

Figure 3B presents the temporal response of VM throughout the 
whole training process in correlation with the probability curve of 
turning (n = 1 to 16 training steps). For the specific operation/train-
ing parameters used here (i.e., time and amplitude of VG,OECT and 
VG,MEM), the robot is fully trained after ~16 steps (Fig. 3C) and thus 
is able to detect the navigation cues of the planned path (Fig. 3D). 
The evolution of the training process is depicted for the target path 
1 (Fig. 4, A and B). The data are extracted by video tracking of the 
robot trajectory (section S4 and movie S1). The robot makes gradual 
progress in completing the target path in accordance with the tem-
poral response of VM (Fig. 3B). For n = 16, the robot is fully trained 
and exits the maze via the planned path. More detailed statistics of 
the training process is shown in fig. S11. After forming the visuo-
motor association, the robot is able to follow an entirely unknown 
path universally and exit the maze. In Fig. 4C, the robot is placed at 
the entrance of target path 2 and follows the newly planned path 
to the exit immediately. This generalization of learning through the 
sensorimotor association is shown in movie S2 in the case of navi-
gation in target path 2.

DISCUSSION
Inspired by the biological process of sensorimotor integration, 
we demonstrated a standalone robot that learns with a simple yet 
effective neuromorphic circuit. An organic neuromorphic circuit is 
used as a low-voltage, analog computing core of the sensorimotor 
loop in robotics made of education-purpose components. While 

the robot explores the environment, real-time sensorimotor signals 
are merged in the organic neuromorphic circuit, and, through 
local/decentralized training on the circuit, a visuomotor association 
is gradually formed. With this sensorimotor integration, the robot 
learns to associate navigation cues with behavioral outcome and is 
able to follow a planned path to the exit of a maze. Once the senso-
rimotor association is established, the robot is able to navigate in-
side the maze toward the exit through unknown paths.

This demonstration shows how low-voltage and easy-to-tune 
organic devices can function as adaptive elements capable of form-
ing multimodal associative links for autonomous learning. It high-
lights the ease of fabrication, integration, and training of organic 
neuromorphic circuits for decentralized sensorimotor integration 
and paves the way for sophisticated systems that include a plethora 
of sensory streams to allow more complex behaviors, advanced 
learning in circuits, or even in materio sensing, computing, and 
actuating with high-performing organic materials. By integrating 
sensory, actuating, learning, and self-repairing primitives in materio, 
intelligence can be distributed and incorporated in the fabric of agents. 
The combination of organic neuromorphic electronics with education- 
purpose robotics will also lead to a versatile platform for physical model-
ing and rapid prototyping of intelligent, real-world systems.

MATERIALS AND METHODS
Device fabrication
Standard microscope glass slides (75 mm by 25 mm) were cleaned 
in a sonicated bath, first in soap solution [Micro-90 (Sigma-Aldrich)] 
and then in a 1:1 (v/v) solvent mixture of acetone and isopropanol. 

Fig. 4. Navigation in the maze toward the exit. (A) Training evolution inside the maze, visualized as path trajectories. After each training step (n = 1 to 16), the robot gradually learns to follow 
a target path through the navigation cues toward the exit of the maze. (B) Completion of target path 1 inside the maze, once the visuomotor association has been established (training step 
n = 16). (C) Generalization of the learning process in another, arbitrary path (example of target path 2). Photo Credit: Imke Krauhausen, Max Planck Institute for Polymer Research.



Krauhausen et al., Sci. Adv. 7, eabl5068 (2021)     10 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 8

Gold electrodes for source, drain, and gates were photolitho-
graphically patterned [with positive MICROPOSIT S1813 Photoresist 
(Dow)] on the cleaned glass slides. A chromium layer was used to 
achieve better adhesion of the gold. Each glass slide contains four 
circuits consisting of one OECT and one neuromorphic device. The 
channel dimensions of the neuromorphic device are as follows: W × 
L = 80 m by 240 m with a lateral gate of the same size (80 m by 
240 m) and 450-m distance between the gate and the channel. 
The OECT has the following dimensions: W × L = 80 m by 480 m 
with a lateral gate of 2000 m by 2000 m and 450-m distance be-
tween the gate and the channel. The complete layout is depicted in 
fig. S4A. Two layers of parylene C [Specialty Coating Systems (SCS) 
coatings] were deposited. Soap [Micro-90 soap solution, 1% (v/v) in 
deionized water] was used for separation between the layers, allowing 
the peel-off of the upper layer. An adhesion promoter [silane A-174 
(-methacryloxypropyltrimethoxysilane) (Sigma-Aldrich)] was added 
to the lower layer of parylene C to prevent detachment. This layer 
insulates the gold electrodes. In a second photolithography step 
[with positive photoresist AZ 9260 Microchemicals (Cipec Spécialités)], 
the channel and lateral gate dimensions of the devices are defined. 
Reactive ion etching with O2/CF4 plasma was used to carve out the 
channel and corresponding gates. The semiconducting polymer 
p(g2T-TT) was synthesized according to (41) and prepared and ap-
plied following the procedure in (30, 41). p(g2T-TT) was solved in 
chloroform (3 mg/ml) inside an N2-filled glove box and spin-cast 
under ambient conditions at 1000 rpm for 1 min, resulting in a 
thickness of 40 nm. The devices were baked at 60°C for 1 min. The 
sacrificial upper parylene C was peeled off to confine the polymer 
inside the gate and channel regions. Excess soap was rinsed off with 
de-ionized water. An ionic gel was prepared as electrolyte according 
to (40). An ionic liquid EMIM:TFSI and the copolymer PVDF-HFP 
were solved in acetone inside an N2-filled glove box in the following 
proportions: 17.6 weight % (wt %) ionic liquid, 4.4 wt % polymer, 
and 76 wt % acetone. The solution was stirred for at least 2 hours at 
40°C inside the glove box. The ionic gel was drop-cast with a pipette 
onto each channel and gate under ambient conditions and dried 
overnight (fig. S4B).

Measurements
For measurements of the nonvolatile device (MEM), a Keithley 2604B 
SourceMeter was used. A switch (i.e., a binary-state touch sensor) in 
series with a resistance RG = 100 MΩ was added between the gate of 
the device GMEM and the measurement system to induce analog 
memory phenomena. The touch sensor forces open-circuit poten-
tial condition between the gate and channel, while the gate resistor 
RG downscales and limits the gate current in the range of nano-
amperes. The measurements of the volatile device (OECT) and the 
complete neuromorphic circuit were performed with a Keithley 
4200 semiconductor characterization system with up to 5 source 
measure units.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abl5068
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