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Abstract 19 

Replication of eukaryotic genomes is highly stochastic, making it difficult to determine the 20 

replication dynamics of individual molecules with existing methods. We now report a 21 

sequencing method for the measurement of replication fork movement on single molecules 22 

by Detecting Nucleotide Analogue signal currents on extremely long nanopore traces 23 

(D-NAscent). Using this method, we detect BrdU incorporated by Saccharomyces cerevisiae to 24 

reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a 25 

pulse labelling period. Under conditions of limiting BrdU concentration, D-NAscent detects 26 

the differences in BrdU incorporation frequency across individual molecules to reveal the 27 

location of active replication origins, fork direction, termination sites, and fork 28 

pausing/stalling events. We used sequencing reads of 20-160 kb, to generate the first whole 29 

genome single-molecule map of DNA replication dynamics and discover a new class of low 30 

frequency stochastic origins in budding yeast. 31 

 32 

  33 
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Introduction 34 

Genomic methods have provided insights into DNA replication and genome stability1-3. Within 35 

a population of cells, these methods mask heterogeneity in both replication origin usage and 36 

replication fork dynamics; what happens in each individual cell is difficult to ascertain4. A high-37 

throughput single-molecule approach is needed to reveal the heterogeneity in DNA 38 

replication dynamics. In addition, such an approach has the potential to identify origins used 39 

in organisms with very high levels of heterogeneity, in particular mammalian cells, for which 40 

population analysis is less useful. 41 

Current single-molecule techniques to study DNA replication have provided valuable 42 

insight, but have limitations. DNA combing relies on antibody detection of nucleotide 43 

analogues incorporated on the nascent strand and can be used to determine the pattern of 44 

origin activation and fork progression in single molecules5. However, this approach is low-45 

throughput and provides limited temporal and spatial resolution: combed molecules are 46 

anonymous unless genomic positions are identified by probe hybridization, which is 47 

particularly challenging for large metazoan genomes. Alternative methods use nanochannels 48 

to stretch DNA molecules, which has led to increases in throughput and can help to reveal 49 

genomic location, but the temporal and spatial resolution are limited by analogue pulse length 50 

and image-based detection, respectively6, 7. Recently, in vitro systems have been established 51 

that use single-molecule imaging to monitor replication protein kinetics on DNA8, 9 . Visualizing 52 

individual, fluorescently-tagged proteins provided novel mechanistic insights into replication 53 

origin licensing and initiation. However, in vitro systems are presently limited to small DNA 54 

molecules (replicated from a single origin) and so cannot recapitulate in vivo replication 55 

dynamics. 56 
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Here, we present a nanopore-based sequencing method that can measure replication 57 

fork movement by Detecting Nucleotide Analogue signal currents on extremely long nanopore 58 

traces (D-NAscent) in nascent DNA. We demonstrated that presently available nanopore 59 

sequencing platforms can reliably distinguish base analogues from natural bases. We have 60 

developed software that detects BrdU on individual nanopore sequencing reads: When BrdU 61 

is incorporated by replication forks, D-NAscent can detect these regions of incorporation. We 62 

demonstrated the power of D-NAscent in S. cerevisiae (the eukaryote in which genome 63 

replication is best characterized). A pulse-chase experiment revealed the regions replicated 64 

during the pulse, providing information comparable to that from DNA combing, but at a 65 

genomic scale and with sequence-level information. We validated D-NAscent by comparison 66 

to mass-spectrometry and population-level sequencing data. In experiments where BrdU was 67 

limiting, we showed that D-NAscent can detect the changes in BrdU incorporation frequency 68 

to reveal the direction of replication forks and identify the location of replication origins on 69 

individual molecules. Using this approach, we have created a whole-genome profile that 70 

reveals the replication fork dynamics and origin firing on each of over 100,000 molecules 20-71 

160 kb in length. 72 

  73 
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Results 74 

Nucleotide analogues produce a distinct signal in nanopore sequencing 75 

Oxford Nanopore Technologies’ (ONT) MinION instrument determines a base sequence from 76 

the electrical readout produced as DNA passes through a protein pore (Fig. 1a). During 77 

sequencing, the double stranded DNA substrate is unwound and a single strand enters the 78 

pore, causing a characteristic disruption to the ionic current signal. Each short DNA sequence 79 

within the nanopore can be identified by the magnitude of the characteristic signal it 80 

produces. To simplify analysis, it is typically assumed that the observed signal only depends 81 

on a short fixed-length sequence, which is termed a k-mer. The current signal for each k-mer 82 

can be modelled by a Gaussian distribution. For consistency with the data released by ONT, 83 

we used a k-mer length of six. We and others have previously demonstrated that signal-level 84 

events can distinguish methylated from unmodified bases10, 11. We hypothesised that 85 

nanopore sequencing might also distinguish nucleotide analogues from natural bases, and 86 

thus reveal genomic regions synthesised during analogue pulse-chase experiments (Fig. 1b 87 

and 1c). To test this hypothesis, we sequenced DNA substrates where thymidine (at various 88 

fixed positions) had been substituted by different synthetic analogues. We observed clear 89 

differences in the event distributions between thymidine and 5-bromodeoxyuridine (BrdU) 90 

using an earlier pore version (R9 pore at a sequencing rate of 250bp/s; discontinued 2016) 91 

and the presently available chemistry (R9.5 pore at 450bp/s; Fig. 1d and 1e). (Similar 92 

observations were made with the previously available generation of the pore, R7.3 – data not 93 

shown.) The shift in signal depended on the particular analogue, the sequence context, and 94 

the position of the analogue within the 6-mer; the greatest shift was observed when the 95 

analogue was substituted for thymidine at the fourth base from the 5’ end of the 6-mer (Fig. 96 
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1d-e and Supplemental Fig. S1). These observations indicated that MinION sequencing has 97 

the potential to detect nucleotide analogues in genomic DNA. 98 

Identifying the characteristic nanopore signal of BrdU in genomic DNA 99 

BrdU is a commonly used thymidine analogue with limited cytotoxicity compared to EdU or 100 

FdU12-15. Thus, we sought to determine the distribution of nanopore signal events for any 101 

BrdU-containing 6-mer in genomic DNA. A Saccharomyces cerevisiae strain, which is 102 

dependent upon exogenous thymidine16 was grown in various proportions of thymidine and 103 

BrdU (media with 100 µM (BrdU + dT) consisting of 0, 40, 60, 80 or 100% BrdU; see Online 104 

Methods). Genomic DNA was prepared and analysed by MinION sequencing. As a control, 105 

BrdU incorporation was quantified by mass spectrometry and immunoprecipitation followed 106 

by Illumina sequencing (BrdU-seq; Supplemental Fig. S2, S3 and summarised in Supplemental 107 

Table S1)17. The mass spectrometry data revealed that in our five genomic DNA samples the 108 

percentage of thymidines substituted by BrdU was 0%, 15%, 26%, 49% and 79%, respectively. 109 

Nanopore sequencing signal events were aligned to the genomic reference using 110 

nanopolish18. These data revealed many thymidine-containing 6-mers where the distribution 111 

of signal events was bimodal; while one population matched the ONT model, there was a 112 

distinct second population (Fig. 2a). The relative proportions of the two populations reflected 113 

the concentration of incorporated BrdU. By contrast, 6-mers that did not contain thymidine 114 

were mono-modal and matched the ONT model (data not shown). We fit a bimodal Gaussian 115 

mixture model to the signal events from the 49% BrdU sample that aligned to each thymidine-116 

containing 6-mer (Fig. 2b; see Supplemental Fig. S11 for results using other incorporation 117 

rates). We used the Kullback-Leibler (KL) divergence, which measures the average log-118 

difference between two probability distributions, to quantify the difference between the ONT 119 
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model and each of the two fit distributions. One distribution (fit 1) was close to the ONT model 120 

(only ~1% of 6-mers had a KL-divergence >0.5) while the second distribution (fit 2) was farther 121 

away from the ONT model (~62% 6-mers had a KL-divergence >0.5) and corresponded to the 122 

BrdU concentration-dependent population (Fig. 2b and c). We concluded that the second 123 

distribution represented the BrdU signal. 124 

We note that even at high BrdU substitution levels 6-mers featuring multiple 125 

thymidines gave only a bimodal distribution of signal events (Fig. 2a). This is consistent with 126 

our previous observation that BrdU predominantly shifts the signal event when present at the 127 

fourth base from the 5’ end of the 6-mer (Fig. 1b and Supplemental Fig. S1). To assess this 128 

further, we examined the subset of 6-mers containing a single thymidine and observed the 129 

greatest shift in signal event when BrdU is the third or fourth base from the 5’ end (Fig. 2d). 130 

These data indicated that it will be possible to distinguish BrdU from thymidine in genomic 131 

DNA. 132 

Detection of BrdU incorporated in vivo 133 

Detection relied on two thresholds: those 6-mers for inclusion in the model and a certainty 134 

above which a position is called as BrdU. Including only those 6-mers where BrdU caused a 135 

KL-divergence from the ONT model >2 (N=159; Fig. 2c) allowed assessment of BrdU 136 

incorporation on average every 21 nucleotides across the yeast genome (Supplemental Fig. 137 

S4a). Each time one of these 6-mers occurred in our sequencing reads, we used a Hidden 138 

Markov model (HMM) to compute the log-likelihood that the 6-mer contained a BrdU 139 

(Supplemental Fig. S5). A position in a read was classified as BrdU if the log-likelihood 140 

exceeded a threshold (Fig. 2e); this threshold was determined by testing the HMM on unused 141 

training data and on an equivalent thymidine-only sample to determine true and false positive 142 



Page 8 

rates (Fig. 2f and Supplemental Fig. S4b). We set this threshold at log-likelihood >2.5 which 143 

gave a true positive rate of ~60% for a false positive rate of ~3%. We achieved a similar true 144 

positive rate using a DNA sample with an intermediary BrdU concentration (26% 145 

incorporation) that was unrelated to the training material.  146 

To further test our detection strategy, we generated hemi-BrdU substituted yeast 147 

genomic DNA, by synchronizing a strain prototrophic for thymidine19 and passing it through 148 

one S phase in media containing a high concentration (400 g/ml) of BrdU. Material was 149 

validated by mass spectrometry (Supplemental Fig. S2) and BrdU-seq to reveal any 150 

incorporation bias (Supplemental Fig. S6). The cell cycle synchrony was confirmed by flow 151 

cytometry of DNA content (Supplemental Fig. S7). MinION sequencing was performed and 152 

positions of BrdU incorporation were determined as described above. As anticipated, we 153 

observed reads with either low or predominantly high density of BrdU calls over the entire 154 

read, consistent with parental and nascent strands, respectively (Fig. 3a). To quantify the 155 

frequency of BrdU calls in each read, we fit the number of positive BrdU calls in non-156 

overlapping 2 kb windows to a binomial distribution (see Online Methods). This allowed us to 157 

compare the number of positive BrdU calls in each window to what we would expect if the 158 

window was BrdU-positive (determined from mass spectrometry data and the true-positive 159 

rate). Computing the z-score of positive BrdU calls in each window against this binomial 160 

distribution revealed a bimodal density: One population was centered around the mean, 161 

indicating these windows had a BrdU frequency consistent with our expectation for a BrdU-162 

positive window; the other population was centered ~5 s.d. below the mean, indicating these 163 

windows had significantly fewer positive BrdU calls than we expect if the window was BrdU-164 

positive (Fig. 3b). We conclude that these two populations correspond to BrdU-containing 165 

windows and thymidine-only windows, respectively. These results indicated that our model 166 
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can distinguish parental DNA from nascent DNA containing BrdU. We call our method 167 

Detecting Nucleotide Analogue signal currents on extremely long nanopore traces (D-168 

NAscent). 169 

Single-molecule detection of replication origin activity in hydroxyurea 170 

DNA synthesis can be slowed by the addition of hydroxyurea (HU), which inhibits 171 

ribonucleotide reductase, thereby restricting BrdU incorporation to locations proximal to 172 

early activating replication origins20-22. To investigate the pattern of origin usage on single-173 

molecules, we released cells synchronously from G1 into S phase in the presence of HU and 174 

BrdU (40 g/ml). After 60 minutes, cells were chased out of HU, with excess thymidine (400 175 

g/ml), into nocodazole (to prevent entry into a second cell cycle; Fig. 3c). After completion 176 

of S phase, samples were collected for D-NAscent, mass spectrometry, and BrdU-seq. Cell 177 

cycle synchrony was assessed by flow cytometry of DNA content (Supplemental Fig. S7). BrdU 178 

detected in the MinION data was summed across all reads in non-overlapping 100 bp windows 179 

to allow comparison to the BrdU-seq data (Fig. 3d). This confirmed that an ensemble of our 180 

single-molecule data was in good agreement (Pearson correlation coefficient, R=0.76) with 181 

established short-read methods. Visualising the individual positive BrdU calls on single-182 

molecules suggested that each sequencing read fell into one of two categories: there was 183 

either an infrequent number of positive BrdU calls throughout the whole read, or the read 184 

contained short patches of frequent positive BrdU calls (Fig. 3e). We concluded that these 185 

reads likely correspond to parental and nascent strands, respectively. For each individual read, 186 

we assessed non-overlapping 2 kb windows and quantified the frequency of positive BrdU 187 

calls by computing the z-score of positive calls against a binomial distribution as before. This 188 

allowed windows to be assigned as having either high or low BrdU z-scores (Fig. 3e). For 189 



Page 10 

example, two early firing replication origins on chromosome VI both gave rise to BrdU positive 190 

regions on a single >100 kb read (read 3 in Fig. 3e), indicating that both origins activated in a 191 

single cell. 192 

To explore this more widely, we visualised the BrdU frequency z-scores for individual 193 

nascent-strand reads that spanned known replication origins (each read considered covered 194 

>4kb either side of the origin location)23. In Fig. 3f, each row represents an individual 195 

nanopore sequencing read centred upon an origin. The colour gradient indicates the 196 

frequency of BrdU calls within 2 kb windows, and reads are sorted vertically by the population 197 

average BrdU-seq data: reads that span the most active origins will be near the top. In the 198 

majority of reads, we observed the highest frequency of positive BrdU calls at the origin. Most 199 

of these nascent molecules spanned efficient, early activating origins (‘unchecked’ by the 200 

intra-S phase checkpoint) indicative of origin firing during the BrdU pulse; there were only 201 

occasional examples of molecules where we detected BrdU incorporation at less efficient, late 202 

activating origins (‘checked’ by the intra-S phase checkpoint). Computing the average for each 203 

column, the BrdU z-score for unchecked (or checked) origins showed that on average early 204 

activating origins had incorporated more BrdU than later activating origins; in both cases the 205 

signal was symmetric and centred on the origins (Fig. 3g). However, some individual molecules 206 

showed asymmetric levels of BrdU incorporation relative to the origin, indicative of different 207 

rates of sister fork progression (Supplemental Fig. S8). We note that the BrdU z-score in 208 

individual molecules is highest at replication origins and falls away as a function of distance 209 

from the origin (Fig. 3e and f). Eventually, the frequency of positive BrdU calls in a window 210 

drops below our detection threshold (z-score = -2, see Fig. 3b) and is called as a thymidine 211 

window. This implied a time-dependent drop in BrdU incorporation as the fork progressed 212 
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away from the origin. This led us to hypothesize that we might be able infer fork-direction 213 

from the gradient of BrdU z-scores. 214 

Single-molecule replication dynamics  215 

To examine replication dynamics in the absence of replication stress, we synchronised 216 

thymidine prototroph cells in G1 and released in the presence of BrdU (40 g/ml) (Fig. 4a and 217 

Supplemental Fig. S7). Samples were collected for D-NAscent, mass spectrometry, BrdU-seq, 218 

and DNA copy number measurements24. Using the D-NAscent results, we again summed all 219 

positive BrdU calls across all reads in non-overlapping 100 bp windows and found good 220 

agreement (Pearson correlation coefficient, R=0.75) with population-level BrdU-seq data (Fig. 221 

4b); both assessments confirmed that the population average level of BrdU incorporation was 222 

inversely correlated with average replication time (Supplemental Fig. S9). This is consistent 223 

with the ratio of BrdU to thymidine falling (effective BrdU concentration) as cells progress 224 

through S phase; this is likely to be a consequence of the rate of BrdU import being lower than 225 

incorporation and the activation of endogenous thymidine synthesis pathways25, 26. Within 226 

individual reads, we assessed non-overlapping 2 kb windows and computed the z-score of 227 

positive BrdU calls in each window to a binomial distribution (examples shown in Fig. 4c). We 228 

observed clear peaks of BrdU incorporation at locations near known replication origins. The 229 

extremely long nanopore sequence reads allowed the identification of multiple active origins 230 

on single molecules. The BrdU z-score either side of each origin declined, indicative of the 231 

progression of bi-directional replication forks at a time when the effective concentration of 232 

cellular BrdU is falling. As forks move further away from initiation sites, the frequency of 233 

positive BrdU calls drops below our detection threshold (red to blue in Fig. 4c). 234 
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We determined the gradient of BrdU z-scores as a proxy for replication fork direction 235 

across all nascent strand sequence reads (examples shown in Fig. 4c). We used regions of 236 

diverging replication forks to call sites where replication initiated early in S phase prior to the 237 

BrdU concentration dropping below our detection threshold. This provided a whole genome 238 

map of DNA replication origin activity on single molecules. Examining all identified replication 239 

initiation sites revealed two distinct classes (Supplemental Fig. S10). The first class were found 240 

on multiple independent sequence reads, consistent with high efficiency origins used in many 241 

cells. These sites corresponded to replication origins identified in population level analyses23. 242 

The second class were dispersed throughout the genome with each site identified in a 243 

minority of molecules. These sites did not correspond to known replication origins. We 244 

considered that these sites could represent BrdU incorporation from a DNA repair pathway 245 

prior to S phase or a sequencing/analysis artefact. However, several lines of evidence argued 246 

in favour of these sites representing genuine bi-directional replication origins. First, DNA 247 

repair synthesis prior to S phase would be confined to parental strands and synthesis would 248 

be unidirectional, resulting in a unilateral BrdU gradient; the novel initiation sites we identified 249 

were present on nascent strands and showed bi-directional synthesis evidenced by bilateral 250 

BrdU-gradients (example shown in Fig. 4c). Second, the BrdU call frequency and signal 251 

detected at novel initiation sites closely resembled that observed at previously reported 252 

origins. Third, applying more conservative criteria for origin identification (a higher z-score 253 

and a longer contiguous region of BrdU-positive 2 kb windows) reduced the number of origin 254 

calls, but did not diminish the proportion of initiation events at novel locations (data not 255 

shown). Therefore, the single-molecule resolution of D-NAscent allows the detection of 256 

replication initiation sites that are too infrequently used to be detected by population-level 257 

methods. 258 
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Identification of replication fork pausing on single-molecules  259 

Detection of BrdU incorporation differences across nanopore sequencing reads allowed us to 260 

infer replication initiation sites and fork direction. Next, we sought to determine whether this 261 

could allow the detection of replication fork pausing events. The yeast ribosomal DNA (rDNA) 262 

repeats each contain a replication origin and a programmed unidirectional replication fork 263 

barrier (RFB) that pauses one of the sister forks (Fig. 4d)27. The repetitive nature of the rDNA 264 

limits their analysis by short-read technologies, but we were able to sequence thousands of 265 

molecules that each spanned multiple repeats. An ensemble of D-NAscent data analysed 266 

across a single rDNA repeat clearly demonstrated an asymmetric peak in the BrdU average z-267 

score signal (Fig. 4d). In this ensemble analysis, the population average BrdU z-score was 268 

maximal at the replication origin. The dramatic fall in z-score to the right of the origin indicated 269 

a substantial delay to the progress of the rightward moving fork. This delay was positioned 270 

over the RFB and is consistent with unidirectional fork pausing. By contrast, the leftward 271 

moving fork showed no such delay. Analysis of single molecules (Fig. 4e) demonstrated firing 272 

of the origin in a subset of repeats and pausing of rightward moving forks at the RFB. 273 

Therefore, time-dependent reductions in BrdU incorporation frequency allowed 274 

comprehensive analysis of replication dynamics on single molecules, revealing fork direction, 275 

initiation sites, termination sites and fork pausing/stalling. 276 

Discussion 277 

We have developed a genomic single-molecule method for the detection of base analogues 278 

that we term D-NAscent. Base analogues are widely used in modern biology for the study of 279 

chromosome biology28, cell proliferation29 and gene expression30. Therefore, D-NAscent offers 280 

a powerful method for the advancement of each of these fields. Key features of nanopore 281 
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sequencing31 make D-NAscent possible: the lack of an obligatory amplification step ensures 282 

that in vivo incorporated analogues are present in the sequenced strand; the interrogation of 283 

single nucleic acid strands permits direct detection of the analogue and provides single 284 

molecule information; and the extremely long sequence read lengths (>100 kb) allow 285 

detection of long-range cis interactions. We demonstrated that the presently available ONT 286 

MinION nanopore sequencing platform gives robust detection of thymidine analogues across 287 

the full range of sequence contexts (Fig. 1 and Fig. 2). This allowed us to develop a model for 288 

the detection of in vivo incorporated BrdU that we validated against mass spectrometry and 289 

population level BrdU-seq data. Using this approach should also allow for the detection of 290 

additional analogues, such as EdU or IdU. The sensitivity of our BrdU-detection model allowed 291 

us to measure changes in BrdU incorporation frequency on nascent strands and thereby 292 

revealed the temporal order of DNA replication on single molecules. Given that replication 293 

fork velocity is ~2 kb/ min32, 33  and that we observed differences in BrdU incorporation at 2 294 

kb resolution, this indicated that D-NAscent has the potential to provide a temporal resolution 295 

of close to 1 min. 296 

DNA replication is a stochastic process and many aspects, including replication origin 297 

activity, are masked in population-based approaches. Historically, this has required the use of 298 

complex, low-throughput, and low-resolution methodologies to visualize DNA replication on 299 

single-molecules. By applying D-NAscent to the study of yeast chromosome biology, we have 300 

generated the first whole genome map of DNA replication dynamics at the single molecule 301 

level. Unexpectedly, we discovered a novel class of replication origin that could not have been 302 

discovered by established methods. While most initiation sites that we detected (~80%) were 303 

near known origins, approximately one fifth of replication initiation events occured at sites 304 

dispersed throughout the genome. Yeast replication origins were first characterized by their 305 
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ability to support plasmid replication (as autonomously replicating sequences, called ARS 306 

elements)34 and it was subsequently shown that the same sequences can support replication 307 

initiation at their endogenous chromosomal locations35. Neither the plasmid nor the 308 

chromosomal assays have the sensitivity to detect very low efficiency origins. Recent in vitro 309 

studies have demonstrated origin-dependent and independent DNA replication initiation, due 310 

to promiscuity in the binding of the origin recognition complex36, 37. Although the in vitro 311 

origin-independent replication initiation was only observed in the absence of physiological 312 

levels of competitor DNA, it is consistent with our finding that many genomic locations can 313 

function at low frequency as a replication origin. Thus, we propose that replication of the 314 

yeast genome is initiated from both well-defined, high-efficiency origins and a broadly 315 

distributed set of very low-efficiency origins, similar to the configuration observed in 316 

mammalian cells2. 317 

The D-NAscent single-molecule methodology will allow many unresolved questions in 318 

chromosome biology to be addressed. For example, the single-molecule nature will allow the 319 

identification of cis regulatory mechanisms. The power to explore cis regulatory mechanisms 320 

is enhanced by the extremely long sequencing reads; in this study we present reads <160 kb, 321 

but others have reported ultra-long reads of >1 Mb38. As such, D-NAscent complements 322 

recently developed single cell approaches for the study of DNA replication39, 40. Single cell 323 

approaches have relatively low spatial resolution, but they can provide trans information 324 

missing in single molecules. However, we and others have discovered that replication origin 325 

activity is generally regulated in cis41-44 emphasising the importance of the single molecule 326 

approach. Second, variants of the MinION sequencing method allow capture of sequence 327 

information from both DNA strands (1D2). Combining D-NAscent with 1D2 sequencing has the 328 

potential to reveal sites of conservative DNA replication, for example during recombination-329 
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dependent DNA synthesis45, 46. Third, extremely long sequencing reads allow D-NAscent to 330 

examine patterns of DNA replication in complex genomic locations (e.g. non-unique or 331 

repetitive sequences; Fig. 4d and 4e) that are abundant in mammalian genomes and generally 332 

understudied. Fourth, the ability of D-NAscent to detect nascent DNA depends on the 333 

incorporation of nucleotide analogues; achievable in many organisms and all commonly 334 

utilised model systems. This, and the gigabase throughput of nanopore sequencing platforms 335 

will allow the application of D-NAscent to many organisms, including the study of large, 336 

stochastically replicated mammalian genomes. Existing single-molecule methods, such as 337 

DNA combing, have revealed extensive variability in replication initiation site usage and in fork 338 

progression rates. However, combed molecules are generally anonymous precluding the 339 

identification of chromatin features associated with variable fork velocity or replication 340 

initiation. Applying D-NAscent to hemi-labelled human genomic DNA allowed us to 341 

discriminate nascent and parental strands based on BrdU detection frequency (personal 342 

communication, R Wilson and J Carrington). In future work, we plan to generate D-NAscent 343 

data across the human genome using the PromethION platform (up to 15 Tb data output, with 344 

3.5 Tb required for a coverage comparable to our yeast data, see Online Methods) or using 345 

MinION for very high coverage of specific, CATCH-enriched genomic regions47, 48. This will 346 

allow the genome-wide identification of mammalian replication origins by D-NAscent. 347 
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Methods  476 

Defined substrates 477 

Primers CA1218 and CA1219 (Supplemental Table S2) were annealed and extended with 478 

BIOTAQ DNA polymerase (Bioline) in the presence of dCTP, dGTP, dATP and either dTTP, 479 

BrdU-TP, FdU-TP, IdU-TP or EdU-TP (Jena Bioscience) each at 5 mM. Nanopore substrates 480 

must exceed a length of 250 bp. Thus, extended primers were digested with XmaI (NEB) and 481 

ligated to AgeI-digested DNA sequences (>350 bp). Ligation products were gel purified prior 482 

to Nanopore sequencing. 483 

Yeast DNA for model training 484 

Thymidine-auxotrophic yeast strain YLV11 was grown overnight in YPG (Formedium) 485 

supplemented with 100 M thymidine. Cells were then diluted to an OD600 of 0.06 into fresh 486 

YPG supplemented with 100 M of BrdU and/or thymidine (0%, 40%, 60%, 80% or 100% 487 

BrdU). Cells were grown at 30C for 24 hours before samples were taken for Nanopore 488 

sequencing, mass spectrometry analysis and BrdU-IP sequencing. 489 

Yeast cell cycle experiments 490 

Cell cycle experiments were performed with yeast strain E3087 (Supplemental Table S3)19. 491 

Cells were grown in YPD media and arrested in G1 phase using alpha-factor. BrdU was added 492 

to a final concentration of either 400 g/ml (hemi-labelled genomic DNA relating to Figure 493 

3a) or 40 g/ml (HU experiment and limiting BrdU concentration experiment, Figures 3c-f and 494 

4, respectively). BrdU was added 25 minutes prior to pronase-mediated release into S phase, 495 

followed by an arrest in G2/M by nocodazole treatment. For the HU experiment, 200 mM HU 496 

were added concomitantly with BrdU; cells were released into S phase for 45 minutes, then 497 
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400 g/ml thymidine was added and 15 minutes later, cells transferred into fresh YPD with 498 

thymidine (400 g/ml). Flow cytometry samples were taken at regular time intervals to assess 499 

cell cycle progression of each time course. Samples were treated with RNaseA and Proteinase 500 

K prior to DNA staining with SYTOX Green (ThermoFisher S7020) and analysis on a BD 501 

LSRFortessa X-20 cell analyser. Samples for Nanopore sequencing, mass spectrometry 502 

analysis, DNA copy number measurements and BrdU-IP sequencing were taken at defined 503 

time points in every cell cycle experiment. Genomic DNA was purified using phenol-504 

chloroform extraction, RNaseA and Proteinase K treatment followed by ethanol precipitation. 505 

Mass spectrometry validation 506 

The equivalent ratio of 1 µg of DNA in 100 µl of water was added to 200 µl of hydrolysis 507 

solution (100 mM NaCl, 20 mM MgCl2, 20 mM Tris pH 7.9, 1000 U/ml Benzonase, 600 mU/ml 508 

Phosphodiesterase I, 80 U/ml Alkaline phosphatase, 36 µg/ml EHNA hydrochloride, 2.7 mM 509 

deferoxamine). The mixture was incubated for two hours and then lyophylised by SpeedVac. 510 

The lyophylisate was resuspended in 100 µl of buffer A (10 mM ammonium acetate, pH 6) per 511 

1 ug of DNA used and half was transferred into an LC-MS vial for analysis. For the analysis by 512 

HPLC– QQQ mass spectrometry, a 1290 Infinity UHPLC was fitted with a Zorbax Eclipse plus 513 

C18 column, (1.8 µm, 2.1 mm 150 mm; Agilent) and coupled to a 6495a Triple Quadrupole 514 

mass spectrometer (Agilent Technologies) equipped with a Jetstream ESI-AJS source. The data 515 

were acquired in dMRM mode using positive electrospray ionisation (ESI1). Mass 516 

spectrometry was used for rare nucleosides and abundant nucleosides were quantified by 517 

HPLC-UV. The AJS ESI settings were as follows: drying gas temperature 230 °C, the drying gas 518 

flow 14 lmin-1, nebulizer 20 psi, sheath gas temperature 400 °C, sheath gas flow 11 l/min, 519 

Vcap 2,000 V and nozzle voltage 0 V. The iFunnel parameters were as follows: high pressure 520 
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RF 110 V, low pressure RF 80 V. The fragmentor of the QQQ mass spectrometer was set to 521 

380 V and the delta EMV set to +200. The UV quantification wavelength was 254 nm. The 522 

gradient used to elute the nucleosides started by a 5-min isocratic gradient composed with 523 

100% buffer A and 0% buffer B (composed of 100% methanol) with a flow rate of 0.4 ml/min 524 

and was followed by the subsequent steps: 5-8 min, 94.4% A; 8–9 min, 94.4% A; 9–16 min 525 

86.3% A; 16–17 min 0% A; 17– 21 min 0% A; 21–24.3 min 100% A; 24.3–25 min 100% A. The 526 

gradient was followed by a 5 min post time to re-equilibrate the column. The raw mass 527 

spectrometry data was analysed using the MassHunter Quant Software package (Agilent 528 

Technologies, version B.07.01). For the identification of compounds, raw mass spectrometry 529 

data was processed using the dMRM extraction function in the MassHunter software. 530 

Illumina population data 531 

Yeast genomic DNA samples were assessed by BrdU-seq using the NextSeq 500 (Illumina). 532 

Genomic DNA was sheared to ~300 bp using a Bioruptor. Sheared DNA was end-repaired and 533 

A-tailed using the NEBNext Ultra II end-repair module (E7546). A-tailed genomic DNA was 534 

barcoded using Illumina-compatible primers and NEBNext Ultra II ligation mix. Equal 535 

quantities of barcoded DNA samples were pooled and 20 ng of pooled DNA was reserved as 536 

“Input”. At least 1 microgram of pooled barcoded DNA was denatured and subjected to 537 

immunoprecipitation using an anti-BrdU antibody (BD 347580) and Protein-G dynabeads 538 

(ThermoFisher 10003D). Immuno-precipitated DNA was purified with AMPure XP bead. The 539 

immuno-precipitated and input DNA samples were PCR amplified separately, using Illumina-540 

compatible indexing primers and the NEBNext Ultra II Q5 Master Mix. DNA samples were 541 

sequenced (80 bp single-end) on a NextSeq 500. Illumina sequencing reads were 542 

demultiplexed and the barcode sequences were trimmed using the FASTX toolkit. Sequencing 543 
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reads were mapped to the sacCer3 genome assembly using bowtie2. Read tag counts were 544 

determined for the 5’ end of uniquely mapping reads without mismatches in 100 bp 545 

nonoverlapping regions. The ratio between IP and Input sample was calculated for each bin, 546 

excluding bins that had less than 20% of the expected number of reads in the input sample. 547 

Ratios were median-smoothed over 1 kb windows. 548 

Nanopore sequencing 549 

Samples were prepared for nanopore sequencing according to recommendations by Oxford 550 

Nanopore Technologies (ONT). The 2D library kit (SQK-LSK208) and 1D2 library kit (SQK-551 

LSK308) were used for synthetic substrates (Fig. 1), the 1D ligation-based library kit (SQK-552 

LSK109) was used for the HU (Fig. 3c-f) and BrdU-depletion experiments (Fig. 4), and the 1D 553 

Native barcoding genomic kit (EXP-NBD103 and SQK-LSK108) for yeast genomic training 554 

material (Fig. 2 and Fig. 3a,b). The yeast genomic training DNA was sheared to an average 555 

length of 8 kb using g-TUBE (Covaris, 520079). The input DNA for all other nanopore libraries 556 

was unsheared. Quantitities of input DNA were adjusted to average molecule lengths, ranging 557 

between 12 ng and 5 g for short synthetic and unsheared high-molecular weight genomic 558 

DNA, respectively. Input DNA for all libraries was end-repaired using NEBNext End Repair 559 

Module (NEB, E6050). In addition, genomic input DNA was treated with NEBNext FFPE 560 

RepairMix (NEB, M6630) to repair nicks. End-repaired samples were purified using 1x 561 

(synthetic and genomic training material) or 0.4x (HU and BrdU-depletion experiment) 562 

AMPure XP beads (Beckman Coulter, A63880). Then, ONT barcodes and/or adaptors specific 563 

to each library kit were ligated onto the samples. For 1D libraries, adapters were ligated using 564 

NEBNext Quick T4 DNA Ligase (NEB, E6065), followed by library purification using 0.4x 565 

AMPure XP beads with ONT's wash buffer enriching for long molecules. For pooled 1D 566 
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libraries, end-repaired samples were first ligated to ONT barcodes using Blunt/TA Ligase 567 

Master Mix (NEB, M0367), cleaned up using 1x AMPure XP beads and pooled in equal 568 

amounts prior to adapter ligation and final purification as above. The 1D2 library preparation 569 

included Adapter ligation using Blunt/TA Ligase Master Mix, 0.4x AMPure XP bead 570 

purification, followed by sequencing adapter ligation using Blunt/TA Ligase Master Mix and 571 

AMPure XP bead clean up with proprietary ONT ABB wash buffer. 2D library preparation 572 

included ligation using Blunt/TA Ligase Master Mix and a proprietary mix of two adapters, 573 

one linear, the other a biotinylated hairpin. For purification after adaptor and tether ligation, 574 

My-One Streptavidin C1 Dynabeads (Thermo Fisher) were used to enrich for molecules with 575 

a hairpin. Nanopore libraries were sequenced on a MinION Mk1 sequencer using flow cell 576 

versions R9 (2D library), R9.4 (1D ligation libraries) and R9.5 (1D2 library). 577 

Model training 578 

Nanopore reads sequenced from S. cerevisiae genomic material with 49% BrdU incorporation 579 

were basecalled using the Albacore basecalling software (v2.1.10) provided by ONT (see 580 

Supplemental Fig. S11 for results using other incorporation rates). We aligned the reads to 581 

the S. cerevisiae sacCer3 genome assembly using minimap2 (v2.10) with the “-a map-ont” 582 

setting49. We excluded those reads that aligned to mitochondrial DNA or ribosomal DNA, and 583 

for each remaining read that mapped uniquely to the genome (mapping quality  20), we 584 

aligned the signal events to their respective positions on the reference using nanopolish 585 

eventalign. For each thymidine-containing 6-mer in our reads, we gathered all signal events 586 

that aligned to that 6-mer; hence, the events gathered for each 6-mer were taken from a 587 

range of genomic sequence contexts. We observed that the distribution for these events 588 

sometimes had an elevated kurtosis; this broader tail can be the result of alignment artefacts 589 
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or sequence context effects. Therefore, for each of these 6-mers that had greater than 200 590 

aligned events, the signal events were filtered for outliers using a DBSCAN algorithm to 591 

eliminate any trace artefacts. The remaining events were used to fit a bimodal Gaussian 592 

mixture model. For each component of the fit mixture model, we computed the KL-593 

divergence against the ONT 6-mer pore model. The distribution that had the higher KL-594 

divergence against the ONT pore model was designated as the BrdU distribution. 595 

BrdU detection 596 

As in model training, Nanopore reads were basecalled using the Albacore basecalling software 597 

(v2.1.10) and the reads were aligned to the S. cerevisiae sacCer3 genome assembly using 598 

minimap2 (v2.10) on the “-a map-ont” setting. We found that incorporation of BrdU into 599 

nanopore reads disrupts the accuracy of Albacore basecalling (data not shown) so we 600 

designated the true sequence of the read to be the subsequence of the reference that the 601 

read aligned to. 602 

Signal events were aligned to positions on the Albacore basecall using an adaptive 603 

banded alignment50. This allowed us to use our trained BrdU pore model in the alignment to 604 

account for the presence of BrdU in the sequence while also circumventing the high space 605 

and time complexities that can result from dynamic programming-based alignment 606 

approaches. With an alignment of events to the Albacore basecall, we then aligned the events 607 

to positions on the reference using the minimap2 alignment. We used this alignment to find 608 

the signal events that corresponded to each position on the subsequence of the genome that 609 

the read mapped to. We only attempted to make a BrdU call at 6-mers for which the KL-610 

divergence between the BrdU distribution and the ONT thymidine-only distribution was 611 

greater than two. For each of these 6-mers in the aligned reference subsequence, we 612 
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computed the log-likelihood that this 6-mer contained at least one BrdU by building a hidden 613 

Markov model (HMM) for the subsequence consisting of the 6-mer of interest and the 614 

surrounding 20 bases (Supplementary Fig. S5). Each match state for this surrounding 615 

sequence was given the distribution from the ONT pore model corresponding to the 6-mer at 616 

that position. We used the forward algorithm to calculate the probability of the events aligned 617 

to this 41-mer when the match state at the central position was set to the ONT model 618 

distribution (thymidine only) and again when the match state at the central position was set 619 

to our trained BrdU distribution. Taking the log-ratio of these two probabilities specifies the 620 

log-likelihood of BrdU at this position. We considered positions where the log likelihood of 621 

BrdU exceeded 2.5 to be positive BrdU calls. 622 

Region calling and fork direction 623 

Using the detection output, for non-overlapping windows of approximately 2 kb in length, we 624 

computed both the number of positive BrdU calls (k) and the total number of sites where a 625 

call (BrdU or thymidine) was made (n). From the ROC curve analysis (see Fig. 2f) and the mass 626 

spectrometry results, we can compute the probability of making a positive BrdU call for one 627 

of the 6-mers in our trained BrdU pore model: 628 

 629 

p = true positive probability  fraction of thymidine substituted for BrdU. 630 

 631 

A binomial distribution with parameters n and p gives a model for the expected frequency of 632 

positive BrdU calls if the window actually is BrdU-containing. We computed the z-score of 633 

making k positive calls from this binomial distribution: positive z-scores indicate that there is 634 

a high frequency of positive BrdU calls in the window while negative z-scores indicate that 635 
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the frequency of positive BrdU calls is lower than expected if the window was BrdU-positive. 636 

It is possible that some regions of the genome may have fewer 6-mers from our BrdU model 637 

than expected (for example, GC-rich regions) so we required the window to include at least 638 

65 attempted calls. If a window would have included fewer calls, the window was extended 639 

beyond 2 kb until it included 65 attempted calls, though this was seldom necessary (mean 640 

window length 2035 bp; s.d. 216 bp). We considered a window to be a region of BrdU 641 

incorporation if the z-score was greater than -2 (see Fig. 3b). Fork direction was determined 642 

by smoothing the z-scores across a read with a 10 kb moving average filter and computing 643 

the central derivative of the z-score for each window. Windows that had a z-score greater 644 

than -2 (called as a BrdU window) and had a negative z-score derivative were classified as 645 

rightward moving fork windows, and windows that were called as BrdU and had a positive 646 

derivative were classified as leftward moving fork windows. Positions that had at a leftward 647 

moving fork region of at least 4 kb to the left and a rightward moving fork region of at least 4 648 

kb to the right were called as replication initiation sites. 649 

We determined the number of reads with BrdU positive windows from a substrate 650 

prepared from cells grown in the absence of BrdU. Of the 1100 reads assessed only five had 651 

a BrdU positive window. In each of these five reads only a single window was called as BrdU 652 

positive. 653 

Estimations for nanopore sequencing coverage required for large genomes  654 

From the results in our manuscript, origins ORI1622 and ORI1623 (efficiencies of 67% and 655 

90%) were detected 15 and 17 times, respectively (Fig 4c). Human replication origins tend to 656 

activate much more stochastically with approximately 30% of all origins initiating in any given 657 

S phase51-54. Combined with the average interorigin distance of ∼31 kb51, the median replicon 658 
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size in human cells (100 kb51, 55-57) is similar to that of yeast cells (75 kb 58). In a human dataset 659 

of comparable coverage to Fig 4c, an origin will be detected 4 times on average. The 660 

difference in genome size between yeast and human cells (250 fold) will require ~3.5 Tb of 661 

data to be acquired for this coverage. Such an amount of data can be collected with a single 662 

run on the ‘big brother’ of the MinION - the PromethION (up to 15 Tb of data, according to 663 

Oxford Nanopore Technologies).  664 

Alternatively, a particular genomic region can be enriched prior to nanopore 665 

sequencing. For example, enrichment of a 1.25 Mb region (e.g. the human Igh locus), followed 666 

by a typical MinION sequencing run with ~15 Gb data yield will provide 5,000x coverage of 667 

nascent strands, allowing detection of origins with firing probabilities below 1% (of note, data 668 

yields have multiplied by >3 times in the last 12 months and are likely to further increase in 669 

the near future). Methods for target enrichment include restriction enzyme digests coupled 670 

with gel extraction of anticipated fragments59 or CATCH, a recently established Cas9-671 

dependent approach that has been used in combination with nanopore sequencing47, 48 672 

(commercialised by Sage Science).  673 

Code availability  674 

The D-NAscent software is available at https://github.com/MBoemo/DNAscent.git.  675 

Data availability  676 

Raw and processed Illumina and MinION data are available from NCBI GEO under accession 677 

number GSE121941.  678 
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 708 

Figure legends 709 

Figure 1: Nanopore sequencing can distinguish thymidine from analogues. (a) Graphic 710 

representation of DNA sequencing using a MinION. A processive enzyme (green) ratchets DNA 711 

into the pore (blue), causing a change in ionic current (ions shown as black dots) that is 712 

determined by the 6-mer in the central channel (purple box). The current is recorded over 713 

time (black trace, bottom right). (b) Schematic representation of pulse-labelling early 714 

replicating regions with thymidine analogues. (c) Outline of the experimental strategy for 715 

BrdU detection by nanopore sequencing. (d, e) For example 6-mer GCCTGA, each panel shows 716 

the distribution of signal events for thymidine (blue) and various analogues: BrdU (red); FdU 717 

(green); IdU (black); and EdU (yellow). The data were generated using the ONT MinION R9 718 

and R9.5 pore with sequencing speeds of 250 bp/s (d) or 450 bp/s (e), respectively. 719 

Figure 2: BrdU can be distinguished from thymidine in genomic DNA. (a) Signal event 720 

distributions for an example 6-mer from yeast genomic DNA containing various 721 

concentrations of BrdU (0% - blue; 26% - orange; 49% - red; 79% - crimson) compared to the 722 

ONT model (grey). (b) Bimodal Gaussian mixture model fit (purple and turquoise) for an 723 

example 6-mer from genomic DNA containing 49% BrdU (red). The ONT model is shown in 724 

grey. (c) Distribution of the KL-divergence between the ONT model and Gaussian fit 1 (upper) 725 

or fit 2 (lower) for all thymidine-containing 6-mers. (For detection (Fig. 2e), we make a BrdU 726 

call for all 6-mers that have a KL-divergence >2.0; dashed line, lower plot.) (d) Distributions as 727 

in the lower plot from (c) but for the subset of 6-mers containing just one thymidine; plotted 728 

by the position of the thymidine. (e) Signal event distributions from the ONT model 729 

(thymidine; grey) and from the bimodal Gaussian mixture model fit for BrdU (red). The KL-730 
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divergence of the two 6-mers is indicated. (f) Receiver operating characteristic (ROC) curve, 731 

using all 6-mers that have a KL-divergence >2.0, specifying the true positive and false positive 732 

rates for various log-likelihood thresholds of BrdU compared to thymidine (see Online 733 

Methods). Numbers near points specify the log-likelihood threshold above which a position 734 

in a read is classified as BrdU. The dashed lines demarcate the true and the false positive rates 735 

at a log-likelihood threshold >2.5. 736 

Figure 3: Single-molecule detection of BrdU on nascent DNA. (a) Representative nanopore 737 

reads (>15 kb) showing BrdU calls in hemi-substituted yeast genomic DNA. Red ticks indicate 738 

positive BrdU calls and arrows give the read direction relative to the sacCer3 reference 739 

genome. (b) The distribution of positive BrdU call frequency measured as a z-score of a 740 

binomial distribution for non-overlapping 2 kb windows. (For later analysis we set a binomial 741 

z-score threshold >-2 for assigning a window as BrdU positive.) (c) Schematic of the 742 

experimental strategy for detection of replication origin activity in HU. At each timepoint, 743 

samples were taken for mass spectrometry, DNA copy number measurement, BrdU-seq and 744 

D-NAscent. (d) Comparison of BrdU-seq and an ensemble of D-NAscent data across 745 

chromosome II (from timepoint 4). Circles denote the location of ‘unchecked’ (yellow) and 746 

‘checked’ (blue) replication origins21. (e) Four example nanopore sequencing reads that 747 

illustrate BrdU detection on parental (read 1) and nascent strands (reads 2 – 4) mapping to 748 

the right end of chromosome VI. Each read shows BrdU calls at individual 6-mers (upper 749 

track), BrdU-positive 2 kb windows (orange; middle track), and the z-score for each window 750 

where red bars are above the detection threshold (z-score  -2) and are BrdU-positive (lower 751 

track). Confirmed replication origins from OriDB (yellow boxes) and genes (grey boxes) are 752 

shown. (f) Visualisation of D-NAscent data for 1,325 individual nanopore reads (rows) that 753 

span confirmed replication origins (OriDB), ordered by BrdU-seq data. Additional colour bars 754 



Page 34 

show population-level data for BrdU-seq, origin activation efficiency4 and whether the origin 755 

is ‘checked’ by the intra-S phase checkpoint21. (g) Ensemble BrdU z-score from D-NAscent for 756 

all ‘unchecked’ (green) and ‘checked’ (black) origins (BrdU z-scores averaged for each column 757 

in (f); shaded areas show the standard error of the mean). 758 

Figure 4: Single-molecule detection of replication dynamics. (a) Schematic of the 759 

experimental strategy for detection of replication dynamics by D-NAscent. At the indicated 760 

timepoints, samples were taken for mass spectrometry, DNA copy number measurements, 761 

BrdU-seq and D-NAscent. (b) Comparison BrdU-seq data and an ensemble of D-NAscent data 762 

across chromosome II (from timepoint t2). Origins annotated as confirmed in OriDB are shown 763 

(yellow circles). (c) An example 150 kb nanopore sequencing read showing BrdU calls at 764 

individual 6-mers (top track), the z-score for each 2 kb window where BrdU-positive window 765 

z-scores are shown in red and thymidine-only window z-scores are shown in blue (middle 766 

track), and called fork direction and replication initiation sites (lower tracks). Origin calls from 767 

all spanning nanopore reads (black bars: tall, close to known origins; short, >3.9 kb 768 

(Supplemental Fig. S10) from known origins) and origins annotated as confirmed or likely by 769 

OriDB (yellow boxes) are displayed. (d) (top) A schematic representation of a single rDNA 770 

repeat showing the origin, replication fork barrier (RFB), predominant replication fork 771 

direction (line arrows) and the major transcripts (open arrows). (bottom) An ensemble of D-772 

NAscent z-scores averaged over all nanopore sequence reads that spanned an rDNA repeat 773 

and had at least one BrdU-positive 2 kb window. (e) The D-NAscent BrdU z-scores from 774 

selected molecules aligned to multiple rDNA repeats (origin, yellow; RFB, purple). 775 



Figure 1: Nanopore sequencing can distinguish thymidine from analogues. (a) Graphic representation of DNA 
sequening using a MinION. A processive enzyme (green) ratchets DNA into the pore (blue), causing a change in ionic 
current (ions shown as black dots) that is determined by the 6-mer in the central chanel (purple box). The current is 
recorded over time (black squiggle, bottom right). (b) Schematic representation of pulse-labeling early replicating regions 
with thymidine analogues. (c) Outline of the experimental strategy for BrdU detection by nanopore sequencing. (d, e) For 
example 6-mer GCCTGA, each panel shows the distribution of signal events for thymidine (blue) and various analogues: 
BrdU (red); FdU (green); IdU (black); and EdU (yellow). The data were generated using the ONT MinION R9 and R9.5 
pore with sequencing speeds of 250 bp/s (d) or 450 bp/s (e), respectively.
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Figure 2: BrdU can be distinguished from thymidine in genomic DNA. (a) Signal event distributions for an example 
6-mer from yeast genomic DNA containing various concentrations of BrdU (0% - blue; 26% - orange; 49% - red; 79% - 
crimson) compared to the ONT model (grey). (b) Bimodal Gaussian mixture model fit (purple and turquoise) for an example 
6-mer from genomic DNA containing 49% BrdU (red). The ONT model is shown in grey. (c) Distribution of the KL-divergence 
between the ONT model and Gaussian fit 1 (upper) or fit 2 (lower) for all thymidine-containing 6-mers. (For detection (Fig. 
2e), we make a BrdU call for all 6-mers that have a KL-divergence >2.0; dashed line, lower plot.) (d) Distributions as in the 
lower plot from (c) but for the subset of 6-mers containing just one thymidine; plotted by the position of the thymidine. (e) 
Signal event distributions from the ONT model (thymidine; grey) and from the bimodal Gaussian mixture model fit for BrdU 
(red). The KL-divergence of the two 6-mers is indicated. (f) Receiver operating characteristic (ROC) curve, using all 6-mers 
that have a KL-divergence >2.0, specifying the true positive and false positive rates for various log-likelihood thresholds of 
BrdU compared to thymidine (see Online Methods). Numbers near points specify the log-likelihood threshold above which a 
position in a read is classified as BrdU. The dashed lines demarcate the true and the false positive rates at a log-likelihood 
threshold >2.5.
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Figure 3: Single-molecule detection of BrdU on nascent DNA. (a) Representative nanopore reads (>15 kb) showing BrdU 
calls in hemi-substituted yeast genomic DNA.  Red ticks indicate positive BrdU calls and arrows give the read direction 
relative to the sacCer3 reference genome. (b) The distribution of positive BrdU call frequency measured as a z-score of a 
binomial distribution for non-overlapping 2 kb windows. (For later analysis we set a binomial z-score threshold >-2 for assign-
ing a window as BrdU positive.) (c) Schematic of the experimental strategy for detection of replication origin activity in HU. At 
each timepoint, samples were taken for mass spectrometry, DNA copy number measurement, BrdU-seq and D-NAscent. (d) 
Comparison of BrdU-seq and an ensemble of D-NAscent data across chromosome II (from timepoint 4). Circles denote the 
location of ‘unchecked’ (yellow) and ‘checked’ (blue) replication origins17. (e) Four example nanopore sequencing reads that 
illustrate BrdU detection on parental (read 1) and nascent strands (reads 2 - 4) mapping to the right end of chromosome VI. 
Each read shows BrdU calls at individual 6mers (upper track), BrdU-positive 2 kb windows (orange; middle track), and the 
z-score for each window where red bars are above the detection threshold (z-score ≥ -2) and are BrdU-positive (lower track). 
Confirmed replication origins from OriDB (yellow boxes) and genes (grey boxes) are shown. (f) Visualisation of D-NAscent 
data for 1,325 individual nanopore reads (rows) that span confirmed replication origins (OriDB), ordered by BrdU-seq data. 
Additional colour bars show population-level data for BrdU-seq, origin activation efficiency4 and whether the origin is 
‘checked’ by the intra-S phase checkpoint17. (g) Ensemble BrdU score from D-NAscent for all ‘unchecked’ (green) and 
‘checked’ (black) origins (BrdU z-scores averaged for each column in (f); shaded areas show the standard error of the mean).
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Figure 4: Single-molecule detection of replication dynamics. (a) Schematic of the experimental strategy for detection of 
replication dynamics by D-NAscent. At the indicated timepoints, samples were taken for mass spectrometry, DNA copy 
number measurements, BrdU-seq and D-NAscent. (b) Comparison BrdU-seq data and an ensemble of D-NAscent data 
across chromosome II (from timepoint t2). Origins annotated as confirmed in OriDB are shown (yellow circles). (c) An example 
150 kb nanopore sequencing read showing BrdU calls at individual 6-mers (top track), the z-score for each 2 kb window 
where BrdU-positive window scores are shown in red and thymidine-only window scores are shown in blue (middle track), 
and called fork direction and replication initiation sites (lower tracks). Origin calls from all spanning nanopore reads (black 
bars: tall, close to known origins; short, >3.9 kb (Supplemental Fig. S10) from known origins) and origins annotated as 
confirmed or likely by OriDB (yellow boxes) are displayed. (d) (top) A schematic representation of a single rDNA repeat show-
ing the origin, replication fork barrier (RFB), predominant replication fork direction (line arrows) and the major transcripts 
(open arrows). (bottom) An ensemble of D-NAscent z-scores averaged over all nanopore sequence reads that spanned an 
rDNA repeat and had at least one BrdU-positive 2 kb window. (e) The D-NAscent BrdU scores from selected molecules 
aligned to multiple rDNA repeats (origin, yellow; RFB, purple).
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