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We prove that Real-time GARCH (RT-GARCH) models converge to the same

type of stochastic differential equations as the standard GARCH models as the

length of sampling interval goes to zero. The additional parameter of RT-GARCH

can be interpreted as current information risk premium. We show RT-GARCH has

the same limiting stationary distribution and shares the same asymptotic properties

for volatility filtering and forecast as standard GARCH. Simulation results confirm

the current information parameter decreases with the length of sampling interval

and hence, GARCH and RT-GARCH models behave increasingly similar for high

frequency data. Moreover, empirical results show the current information risk pre-

mium has increased significantly after the 2008 financial crisis for S&P 500 index

returns.
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Introduction

Volatility of financial asset returns has been an active research in economics and finance.

There are generally two approaches to model ex-ante volatility: Most econometricians

develop models that follow Engle’s (1982) original idea of dynamic conditional variance

(ARCH models). ARCH and its general form, GARCH type models regard volatility

as past information only and share the same source of uncertainty as return process.

These models are observation driven and are easy to implement using quasi-maximum

likelihood (QML) with discretely sampled financial data. On the other hand, option

pricing (e.g. Heston (1993)) and term structure of interest rates models (e.g. Longstaff

and Schwartz (1992) and Fong and Vasicek (1991)) regard volatility as a latent variable

driven by another innovation outside the return process. Itô’s calculus provides many

elegant analytical properties for these models. However, questions regarding how well

these models fit financial data and the difficulty of estimation are the main drawbacks.

The main difference between these two approaches is whether volatility information

is generated within the model itself. Using Stroock and Varadhan’s (1979)’s diffusion

approximation theorem, Nelson (1990) derives the weak convergence of GARCH type

models to a system of stochastic differential equations (SDE). This theorem connects the

two volatility modelling approaches. In the following papers, Nelson (1992) and Nelson

and Foster (1995) provide a series of conditions under which a (possibly) misspecified

GARCH models can provide consistent filter and forecast of volatility for high frequency

data. Moreover, Nelson and Foster (1994) have developed the asymptotic filtering theory

for univariate GARCH models. Subsequent weak convergence results have been derived

for other extensions of GARCH type dynamic models (e.g. Fornari and Mele (1997),

Ishida and Engle (2002) and Hafner et al. (2017)).

Empirical studies have remarked that by not using all available internal information,

in particular the current return, ARCH type models make an inefficient use of information

for volatility forecasting (e.g. Hansen et al. (2012) and Politis (1995)). To address this,

Smetanina (2017) proposes the Real-time GARCH (RT-GARCH) model to incorporate

current return information in the volatility process. Specifically, the return and volatility

are jointly modelled as

rt = σtεt, (0.1)

σ2
t = α+ βσ2

t−1 + γr2
t−1 + ψε2t , (α, β, γ, ψ) ≥ 0, (0.2)

where rt is the (demeaned) return series, εt are i.i.d. random variables with density fε(·)
with first and second moments equal to 0 and 1, respectively. The model uses the squared

current return innovation to feedback the current level of volatility. In doing so, the

volatility process is no longer deterministic conditional on the information up to t − 1.
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However, it still retains the QML structure with conditional transition density function,

fr(r|Ft−1) =
r

d(r, bt−1, ϑ)
√
b2t−1 + 4ψr2

t

fε(d(r, bt−1, ϑ)), (0.3)

where fε(·) is the pdf of εt, ϑ = (α, β, γ, ψ)
′

and

d(r, bt−1;ϑ) = sign (r)

√√√√√b2t−1 + 4ψr2 − bt−1

2ψ
, (0.4)

bt−1 = α+ βσ2
t−1 + γr2

t−1. (0.5)

In particular, Smetanina and Wu (2019) show that the QML procedure still results in

consistent and asymptotically normally distributed estimators. RT-GARCH can also be

interpreted as a special case for discrete time stochastic volatility (SV) model where the

innovations of return and volatility are uncorrelated but from the same source.1 RT-

GARCH has additional advatages over GARCH in that it responds faster to new shocks,

captures time-varying conditional kurtosis of returns and thus, provides better fit to

financial returns (see Smetanina’s (2017)).

To formally define where in-between RT-GARCH lies with regard to other volatility

models, and in particular, how RT-GARCH behaves relative to standard GARCH when

the sampling frequency changes, the diffusion limit is needed. In this paper, we use the

techniques of Nelson’s (1990) diffusion approximation theorem to derive the diffusion limit

of RT-GARCH. In contrast to standard GARCH, the volatility process is not independent

of the return innovations and thus, cannot be separated when computing the limiting

moments. We use the asymptotic results of realised power variations of semimartinagle

due to Barndorff-Nielsen and Shephard (2003) to address this issue. As we will see, RT-

GARCH converges weakly to the same type of SDEs as the standard GARCH with the

added parameter characterising volatility risk premium of current information. It turns

out that with the length of sampling interval goes to zero, this risk premium decreases

and the RT-GARCH becomes ‘closer’ to GARCH in terms of limiting distribution and

values of persistence parameters and conditional intercepts.2 However, when using lower

frequency data, the risk premium increases and thus, the two models diverge increasingly.

The intuition is that if there is no discontinuity in price path, the volatility is almost a

constant within an infinitely small interval. It follows immediately that the additional

parameter ψ of RT-GARCH controls the scale of its limiting stationary distribution. The

consistency of GARCH estimator for filtering and forecasting volatility (Nelson (1992),

Nelson and Foster (1995)) extends directly to the case of RT-GARCH. This implies that

1Smetanina’s (2017) claims that the two innovations are correlated with ρ = 1. However, this is not
the case since E[εtε

2
t ] = 0 for symmetric returns.

2For RT-GARCH, the conditional intercept term is α + ψ and for GARCH is α. The reason we call
them conditional intercept is because this term represents the one step conditional expectation given the
lagged state variable is zero.
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the advantage of RT-GARCH lies primarily on its efficient use of current information

when volatility movement is noticeable or the discretisation of high frequency data is

non-negligible. These results also extend to RT-GARCH and RT-GARCH with student-t

innovations.

The remainder of the paper is structured as follows. In section 2, we briefly review the

main convergence results of Stroock and Varadhan (1979) and Nelson (1990). In section 3,

we derive the diffusion limit of RT-GARCH with both normal and student-t innovations,

as well as asymmetric RT-GARCH with leverage and feedback effects similar to the GJR-

GARCH and thus, extend Nelson’s (1990) diffusion approximation theorem. In section 4,

we provide simulation results with varying frequencies to demonstrate convergence results

for RT-GARCH and GARCH. We also fit both RT-GARCH and GARCH to daily, weekly

and monthly data of S&P 500 index. Section 5 concludes. All proofs and derivations are

in Appendix A and tables are in Appendix B.

1 Weak convergence of Markov processes to diffusion

In this section we present results, drawn largely from Stroock and Varadhan (1979) and

Nelson (1990), on the weak convergence of a sequence of Markov processes to a diffusion.

Define a sequence of processes: (hXkh)n×1 for integers k, which are random step functions

taking jumps at times h, 2h, 3h, and so on. Let D([0,∞], Rn) be the space of functions

from [0,∞] into Rn that are right continuous with finite left limits endowed with the

Skorohod metric. Let Fkh denote the sigma algebra generated by hX0 up to hXkh for each

h > 0 and B(Rn) the Borel sets on Rn. Let vh be a probability measure on (Rn, B(Rn))

and Πh(x, ·) be a transition function on Rn, i.e.:

(a) Πh(x, ·) is a probability measure on (Rn, B(Rn)) for all x ∈ Rn.

(b) Πh(x, ·) is B(Rn) measurable for all Γ ∈ B(Rn).

Let Ph be the probability measure on D([0,∞), Rn) such that

Ph(hX0 ∈ Γ) = vh(Γ) for any Γ ∈ B(Rn), (1.1)

Ph(hXt = hXkh, kh ≤ t < (k + 1)h) = 1, (1.2)

Ph(hX(k+1)h ∈ Γ|Fkh) = Πh(hXkh,Γ) a.s. under Ph for all k ≥ 0 and Γ ∈ B(Rn). (1.3)

At each jump time, (2.1) specifies the distribution of starting points and (2.3) the tran-

sition densities of the n-dimensional discrete time step process hXkh. (2.2) characterises

the continuous time process by making hXt a step function with jumps at h, 2h, 3h and

so on.

Finally, the limit diffusion is formed by making (hXt) ⇒ (Xt) as h ↓ 0, where Xt is
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the solution (weak) to

Xt = X0 +

∫ t

0
m(Xs, s)ds+

∫ t

0
Σ(Xs, s)dWn,s, (1.4)

where Wn,t is an n-dimensional standard Brownian motion. The convergence is achieved

by making assumptions on hXt as follows.

Assumption 1. hX0 ⇒ X0 as h ↓ 0, where X0 has probability measure v0.

Next, to match the first and second moments of the increments of discrete time process

to its continuous time counterpart, suppose mh(x) and Ωh(x) are well defined for all

x ∈ Rn:

mh(x) ≡ h−1E[hX(k+1)h − hXkh|Fkh], (1.5)

Σh(x) ≡ h−1E[(hX(k+1)h − hXkh)(hX(k+1)h − hXkh)T |Fkh], (1.6)

where the expectations are taken under Ph.
3

Assumption 2. For every η > 0,

lim
h↓0

sup
‖x‖≤η

‖mh(x)−m(x)‖ = 0, (1.7)

lim
h↓0

sup
‖x‖≤η

‖Σh(x)− Σ(x)‖ = 0. (1.8)

To ensure sample path continuity,

Assumption 3. For every η > 0 and all i = 1, 2, ..., n,

lim
h↓0

sup
‖x‖≤η

E[(hXi,(k+1)h) − hXi,kh)4|Fkh] = 0, (1.9)

where hXi,kh are the ith element of hXkh.

Assumption 4. There is a distributionally unique (weak) solution to (1.4).

Theorem 1.1 (Stroock-Varadhan). Under Assumptions 1 - 4, (hXt) ⇒ (Xt) as h ↓ 0,

where “ ⇒ ” denotes weak convergence, i.e. convergence in distribution.

To customise the theorem for GARCH models, let Xt ≡ [STt , σ
T
t ]T where St is n × 1

observed state variables and σt is m × 1 latend variables. Then a sequence of rescaled

GARCH processes (discrete) hXkh ≡ [hS
T
kh, hσ

T
kh]

T converges weakly to an SDE system

whose weak solution is Xt (see Nelson (1990)).

3Change (1.6) to centred moments will not affect the results.
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2 Main Results

2.1 Diffusion limit of RT-GARCH with Gaussian innovations

Consider a sequence of (hSkh, hσ
2
kh) that depends on the length of interval between sub-

sequent observations:4

hrkh ≡ hSkh − hS(k−1)h = hσkh · hεkh, (2.1)

hσ
2
kh = αh + βh · hσ2

(k−1)h + h−1γh · hσ2
(k−1)h · hε

2
(k−1)h + h−1ψh · hε2kh, (2.2)

P[(hS0, hσ
2
0) ∈ Γ] = vh(Γ) for any Γ ∈ B(R2), (2.3)

where hεkh are i.i.d. with mean zero and variance proportional to h and {vh}h↓0 satis-

fies Assumption 1. We first state the convergence result for hεkh normally distributed.

Consider continuous time processes {St, σ2
t } that satisfy a GARCH-type SDE system:

dSt = σtdW1,t, (2.4)

dσ2
t = (µ− θσ2

t )dt+ γσ2
t dW2,t, (2.5)

P[(S0, σ
2
0) ∈ Γ] = v0(Γ) for any Γ ∈ B(R2), (2.6)

where W1,t and W2,t are independent standard Brownian motions, independent of the

initial values (S0, σ
2
0).

Assumption 5. Let the rescaled RT-GARCH parameters αh, βh, γh and ψh satisfy

lim
h↓0

h−1(αh + ψh) = µ, (2.7)

lim
h↓0

h−1(γh + βh − 1) = −θ, (2.8)

lim
h↓0

√
2h−1/2γh = γ, (2.9)

where µ, θ and γ are the coefficients of (2.4) and (2.5), provided the limits exist and are

finite.

Theorem 2.1. Suppose the initial points of (2.1) and (2.2), (hS0, hσ
2
0) ⇒ (S0, σ

2
0),

the initial points of (2.4) and (2.5). Under Assumption 5 the RT-GARCH processes

(hSt, hσ
2
t ) ⇒ (St, σ

2
t ), where hSt ≡ hSkh, hσ

2
t ≡ hσ

2
kh for kh ≤ t < (k + 1)h, i.e. (2.1) -

(2.3) ⇒ (2.4) - (2.6) as h ↓ 0.

Theorem 2.1 shows RT-GARCH converges weakly to the same SDE system as standard

GARCH with the additional parameter ψh entering the volatility drift term via its limit

in (2.7) (see Nelson (1990) for GARCH diffusion limit). This tells us that although RT-

GARCH has nonstandard conditional density, it is still within the class of GARCH models

The intuition is that when the interval between subsequent observation (h) goes to zero,

4Here we only consider equally spaced samples.
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the volatility is almost constant if the assumption of sample path continuity holds. That

is, using the information up to time T , for every ζ > 0 and T > 0, there exists, with

probability one, a random ∆(t) > 0 such that

sup
T−∆(t)≤s<T

|σ2
s − σ2

T | < ζ. (2.10)

Thus, RT-GARCH and GARCH are asymptotically equivalent as h ↓ 0 for they share the

same diffusion limit.

The result gives ψ another interpretation, that is, the volatility risk premium of current

information. According to Girsanov theorem, change the measure of (2.5) an equivalent

martingale measure involves only changing the drift term provided the existence of such

measure and this change is called risk premium in finance literature. Specifically, let

λ(σ2
t ) =

ψ

γσ2
t

, (2.11)

then the process WR
t = W P

t −
∫ t

0
λ(σ2

s)ds is a standard Brownian motion under an equiv-

alent martingale measure R to the physical measure P of (2.5), with the Radon-Nikodym

derivative
dR
dP

= E(λ(σ2
t )), (2.12)

where

E(x) = exp (

∫ t

0
xdWP

s − 1
2

∫ t

0
x2ds) (2.13)

is the Doléans-Dade exponential. Thus, if the measure R exists, the procee σ2
t can be

expressed as

dσ2
t = (µ− ψ − θσ2

t )dt+ γσ2
t dW

R
t . (2.14)

The additional parameter ψ in RT-GARCH can be interpreted as volatility risk premium

of current information per unit standard deviation of volatility and the equivalent measure

R can be thought of as the measure under which agents do not require compensation for

not knowing the current return information and thus, this risk premium can be subtracted

from the volatility drift term. The nonnegative restriction on ψ corresponds to the fact

investors dislike uncertainty in volatility and are willing to exchange compensation for

current return information. This form of risk premium is not affine in σ2
t . However, it

falls within the specification of extended affine models defined in Cheridito et al. (2007).

Specifically, the total current information risk premium, σ2
t λ(σ2

t ), is a restricted case of

the extended affine model, σ2
t λ(σ2

t ) = λ0 + λ1σ
2
t , where λ0 = ψ/γ and λ2 = 0. Cherid-

ito et al. (2007) prove the existence of such equivalent martingale measure under the

boundary nonattainment conditions. Specifically, since the process σ2
t satisfies the non-

explosion condition defined in Nelson (1990), for a positive initial point, the existence

of equivalent measure for RT-GARCH diffusion limit is guaranteed. The information

risk premium parameter ψ can only be when fitting the data with RT-GARCH. In this
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sense, RT-GARCH’s efficient use of information is similar to the way of using options

data to incorporate market risk neutral expectation on asset returns. This is, however,

not to say the measure R is the risk neutral measure since there is no guarantee that the

instantaneous drift term of risky asset equals to risk free rate under R.5

In order to answer Smetanina’s (2017) question about how the RT-GARCH relates

to SV models, we next consider the discrete time (Euler Maruyama scheme) stochastic

volatility analogue of (2.4) and (2.5):

hrkh = hσkh · hεkh, (2.15)

hσ
2
(k+1)h = hσ

2
kh + (µ− θ · hσ2

kh)h+ γ · hσ2
kh · hz(k+1)h, (2.16)

for a sequence of h converge to 0, where hεkh and hzkh are both i.i.d. with zero mean

and variance h and independent with each other. Thus, RT-GARCH is (asymptotically)

equivalent to the discrete time SV model regardless of the correlation between innovations

(and they are both asymptotically equivalent to standard GARCH model).

2.2 RT-GJR-GARCH with Gaussian innovations

For the correlated Brownian motions case, we need to add information asymmetry in the

discrete time model similar to GJR-GARCH. Consider the rescaled sequence of RT-GJR-

GARCH processes with leverage and feedback effects:

hrkh ≡ hSkh − hS(k−1)h = hσkh · hεkh, (2.17)

hσ
2
kh = αh + βh · hσ2

(k−1)h + h−1γh · hσ2
(k−1)h · hε

2
(k−1)h

+ h−1ψh · hε2kh + h−1φh · hσ2
(k−1)h · (hε

−
(k−1)h)2 + h−1ηh · (hε−kh)2,

(2.18)

P[(hS0, hσ
2
0) ∈ Γ] = vh(Γ) for any Γ ∈ B(R2), (2.19)

where hε
−
kh are i.i.d. half normally distributed, i.e., hε

−
kh ≡ hεkh1{hεkh≤0} and 1{·} is the

indicator function. Next consider (St, σ
2
t ) that satisfy

dSt = σt(ρdW1,t +
√

1− ρ2dW2,t), (2.20)

dσ2
t = (µ− θσ2

t )dt+ γσ2
t dW1,t, (2.21)

P[(S0, σ
2
0) ∈ Γ] = v0(Γ) for any Γ ∈ B(R2), (2.22)

where W1,t and W2,t are independent standard Brownian motions, independent of the

initial values (S0, σ
2
0).

Assumption 6. Let the rescaled RT-GARCH parameters αh, βh, γh, ψh, φh and ηh satisfy

lim
h↓0

h−1(αh + ψh + 1
2ηh) = µ, (2.23)

5Note also that the market risk premium of volatility under risk neutral measure is usually negative.
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lim
h↓0

h−1(γh + βh + 1
2φh − 1) = −θ, (2.24)

lim
h↓0

h−1(2γ2
h + 2φhγh + 5

4φ
2
h) = γ2, (2.25)

lim
h↓0

h−1/2
√

2
πφh = −ω, (2.26)

where ω ≡ ργ and (µ, θ, γ, ρ) are the coefficients of (2.20) and (2.21)

Theorem 2.2. Suppose the initial points of (2.17) and (2.18), (hS0, hσ
2
0) converge to

the initial points of (2.20) and (2.21), (S0, σ
2
0) in distribution. Under Assumption 6 the

RT-GJR-GARCH processes (2.17) - (2.19) converge to (2.20) - (2.22) in distribution as

h ↓ 0.

Theorem 2.2 shows RT-GJR-GARCH further breaks down current information risk

premium into those due to negative and positive return information. Since RT-GJR-

GARCH is a generalisation of RT-GARCH, we will call both models the class of RT-

GARCH models.

2.3 Stationary distribution of RT-GARCH models

A direct consequence of Theorems 2.1 and 2.2 is the limiting stationary distribution of

RT-GARCH. Nelson (1990) has proved that in steady state, (2.21) has an inverse gamma

distribution. Since RT-GARCH and GARCH converge to the same type of SDEs as h ↓ 0,

we have

Theorem 2.3. Let σ2
t be generated by (2.21). If

(a) the distribution of σ2
0 converges to the stationary distribution of σ2

t as h ↓ 0,

(b) the sequence of parameters (αh, βh, γh, ψh, φh, ηh)h↓0 satisfies Assumption 6,

then in the discrete time system (2.17) and (2.18),

hσ
2
kh

d−→ Inverse-Gamma(1 + 2θ/γ2, 2µ/γ2), (2.27)

h−1/2
√

(2θ + γ2)/2µ · hrkh
d−→

Skew-t

(
0,

ρ2

1− 2
π

+ 1− ρ2,
ρ√

(1− 2
π )(1− ρ2)

, 2 +
4θ

γ2

)
,

(2.28)

for any constant value of kh as h ↓ 0, where Skew-t(a, b, c, n) is the skewed Student-t

distribution as defined in Azzalini and Capitanio (2003) with location parameter a, scale

parameter b, shape parameter c and degree of freedom n.

If there exists a d > 0 such that lim supE[hσ
2d
0 ] < ∞ and condition (b) is satisfied,

then

hσ
2
kh

d−→ Inverse-Gamma(1 + 2θ/γ2, 2µ/γ2), (2.29)
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h−1/2
√

(2θ + γ2)/2µ · hrkh
d−→

Skew-t

(
0,

ρ2

1− 2
π

+ 1− ρ2,
ρ√

(1− 2
π )(1− ρ2)

, 2 +
4θ

γ2

)
,

(2.30)

as h ↓ 0 and kh→∞.

Remark 2.3.1. All the parameters in RT-GARCH and its asymmetric form are restricted

to be non-negative and satisfy weak stationarity conditions, therefore the diffusion limit

parameters are also non-negative and within the support of inverse gamma distribution.

Remark 2.3.2. To our knowledge, the stationary distribution of return process hrkh for

GJR-GARCH has not been derived yet. Thus, Theorem 2.3 is novel for both GJR-GARCH

and RT-GJR-GARCH since they share the same type of diffusion limit. For the symmetric

RT-GARCH, that is ρ = 0, the distribution in (2.28) and (2.30) reduces to symmetric

Student-t distribution with 2 + 4θ/γ2 degrees of freedom as in Nelson’s (1990) Theorem

2.3.

Theorem 2.3 tells us that althougth RT-GARCH and GARCH have different condi-

tional distributions in discrete time (Smetanina, 2017), they share the same stationary

distribution as h ↓ 0. The additional parameters ψh and ηh associated with current in-

formation enter the limiting distribution through its scale parameter 2µ/γ2. That is, ψh

and ηh contribute to how spread out the volatility is in steady state: The higher the

current information risk premium, the more volatile the volatility stationary distribution

since volatility will respond more rapidly to each new information. Moreover, the skew

Student-t stationary distribution of return process implies heavy tails. Hansen (1994) first

proposes the skew Student-t distribution to model heavy tails and asymmetry in condi-

tional return distribution. RT-GARCH models therefore, can be seen as an alternative to

Hansen’s (1994) approach since RT-GJR-GARCH produces heavy tails and asymmetry in

both conditional and conditional distributions while retaining a relatively simple expres-

sion for the conditional density function. The requirement of θ > 0 is also indicative since

the second moment of skew Student-t random variable exists if and only if the degree of

freedom is larger than two.

2.4 RT-GARCH models with Student-t innovations

We next turn to RT-GARCH models with Student-t innovations due to the popularity of

using Student-t innovations for standard GARCH models. Consider again the sequence of

processes generated by (2.17) and (2.18) with hεkh i.i.d. Student-t distributed with degree

of freedom ν > 0. We require a more restricted assumption on this innovation term.
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Assumption 7. The sequence of (hεkh) are i.i.d. rescaled Student-t distributed with degree

of freedom ν > 8 and variance proportional to h, i.e., var(hεkh) = hν/(ν − 2).6

The requirement of more than 8 degrees of freedom is to ensure the limit of the first four

moments exist (see Appendix A).

Assumption 8. Let the parameters of rescaled RT-GARCH (2.17) and (2.18) αh, βh, γh,

ψh, φh and ηh satisfy

lim
h↓0

h−1[αh +
ν

ν − 2
(ψh + 1

2ηh)] = µ, (2.31)

lim
h↓0

h−1[βh +
ν

ν − 2
(γh + 1

2φh)− 1] = −θ, (2.32)

lim
h↓0

h−1 ν2

(ν − 4)(ν − 2)2
[(2ν − 2)(γ2

h + φhγh) + (5
4ν − 2)φ2

h] = γ2, (2.33)

lim
h↓0

h−1/2 2ν3/2

√
π(ν − 3)(ν − 1)

Γ((ν + 1)/2)

Γ(ν/2)
γh = −ω, (2.34)

where (ω ≡ ργ, µ, θ, γ, ρ) are the coefficients of (2.20) and (2.21) and Γ(·) is the gamma

function.

Theorem 2.4. Suppose the initial points of (2.17) and (2.18), (hS0, hσ
2
0) converge to

the initial points of (2.20) and (2.21), (S0, σ
2
0) in distribution. Under Assumptions 7

and 8 the RT-GJR-GARCH processes (2.17) - (2.19) with rescaled Student-t innovations

converge to (2.20) - (2.22) in distribution as h ↓ 0.

Theorem 2.4 is not surprising as the sum of any i.i.d. random variables with finite

second moment can be approximated by a Brownian motion in increasingly finer partitions

of a fixed interval by Donsker’s theorem. The degree of freedom of Student-t innovations

appears in both drift and diffusion terms. Thus, even in high frequency data, diffusion

limit can still take into account heavy-tails of discretely sampled data.

2.5 Diffusion approximation with RT-GARCH

In light of Theorems 2.1, 2.2 and 2.4 we generalize Nelson’s (1990) diffusion approximation

theorem to incorporate current return information. First, define the SDE system:

dSt = f(St, Yt, t)dt+ g(St, Yt, t)dW1,t, (2.35)

dYt = F (St, Yt, t)dt+G(St, Yt, t)dW2,t, (2.36)dW1,t

dW2,t

[dW1,t dW
T
2,t

]
=

 1 Ω1,2

Ω2,1 Ω2,2

 dt ≡ Ωdt, (2.37)

where W1 is a one-dimensional standard Brownian motion, W2 is an n-dimensional Brow-

nian motion and Ω is an (n+1)× (n+1) positive semi-definite matrix of rank two or less.

6See Lemma A.3 for the pdf of rescaled Student-t distribution.
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f(·, ·, ·) and g(·, ·, ·) are real-valued, continuous scalar functions and F (·, ·, ·) and G(·, ·, ·)
are real-valued, continuous n × 1 and n × n functions respectively. The initial points

(S0, Y0) are random variables with joint probability measure v0 and are independent of

the Brownian motions. Let

b(s, y, t) ≡

f(s, y, t)

F (s, y, t)

 (2.38)

a(s, y, t) ≡

 g(s, y, t)2 g(s, y, t)Ω1,2G(s, y, t)T

G(s, y, t)Ω2,1g(s, y, t) G(s, y, t)Ω2,2G(s, y, t)T

 (2.39)

be an (n+ 1)× 1 vector and an (n+ 1)× (n+ 1) matrix functions respectively.

Next define a sequence of step functions to approximate (2.35) – (2.37):

hSkh = hS(k−1)h + f(s, y, t)h+ g(s, y, t)hZkh, (2.40)

hYkh =hY(k−1)h + F1(s, y, t)h+G(s, y, t)hZ
∗
(k−1)h + F2(t)hZ

∗∗
kh, (2.41)

where hZkh are i.i.d. with E[hZkh] = E[hZ
3
kh] = 0, E[|hZkh|2δ] < O(hδ), for 0 < δ ≤ 4,7

and hZ
∗
kh and hZ

∗∗
kh are defined as:

hZ
∗
kh ≡


θ1 · hZ2

kh + φ1(hZ
−
kh)2 + γ1h

. . .

θn · hZ2
kh + φn(hZ

−
kh)2 + γnh

 , (2.42)

and

hZ
∗∗
kh ≡ [hZ

2
kh + (hZ

−
kh)2], (2.43)

such that

E

hZkh
hZ
∗
kh

 [hZkh hZ
∗T
kh ] = Ωh, (2.44)

and finally,

F = F1 + h−1F2E[hZ
∗
kh]. (2.45)

Theorem 2.5. Let hSt ≡ hSkh and hYt ≡ hYkh for kh ≤ t < (k + 1)h. If b(s, y, t) and

a(s, y, t) satisfy Assumption 4 and the starting points of (2.40) and (2.41), (hS0, hY
′

0 ),

converge to the measure v0 as h ↓ 0, then (hSt, hY
′
t )⇒ (St, Y

′
t ) as h ↓ 0.

Remark 2.5.1. F2(·) can only take deterministic values or random variables independent

of hZ
∗
kh as argument. This is to ensure the convergence of observed power variations.

Theorem 2.5 summarises the class of GARCH models (including RT-GARCH models)

as diffusion approximation. It is clear this convergence is not unique since the drift

7We require the first and third moments equal to zero to ensure the return process is a martingale
difference sequence, the even moments up to 8th power proportional to

√
h to the respective powers to

ensure the power variations converge to their expectations in L2.
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term can be separated into a constant and an innovation term scaled by a deterministic

function. As Nelson (1990) points out, the GARCH approximation requires only one

innovation term in contrast to the Euler discretisation (two innovation terms). Moreover,

we do not require global Lipschitz continuity in the diffusion parameter functions.

3 Consistent filtering and forecasting with misspeci-

fied RT-GARCH models

Another implication of RT-GARCH and GARCH sharing the same diffusion limit is that

the consistency results of GARCH models for filtering and forecasting volatility can be

extended to the RT-GARCH model. Specifically, we define the consistent filter of volatility

as in Nelson (1992), i.e. for a sequence of processes (hZkh) which is the difference between

the discretised volatility hΣ
2
t in (1.4) and the filtered volatility by RT-GARCH model

E[hr
2
kh|F(k−1)h] in (2.2). Consistent filtering requires as h ↓ 0, ‖hZt‖ → 0 in probability

for every kh ≤ t < (k + 1)h.

Formally, consider again the sequence of RT-GARCH processes (2.1) and (2.2). For

simplicity we consider only the univariate case. The data-generating process is then

St = S0 +

∫ t

0
m(Su)dt+

∫ t

0
Σ(Su)dWu, (3.1)

where Σ(·) is a real-valued continuous function and Wt is a one dimensional standard

Brownian motion. Define

hZkh ≡ Σ(hSkh)2 − E[hr
2
kh|F(k−1)h], (3.2)

and Ph(hZt = hZkh) = 1 for all kh ≤ t < (k + 1)h.

Assumption 9. for each h > 0, (3.1) generates (hSt) and satisfies Assumptions 1, 3 and

4 of section 2.

Assumption 10. for some δ > 0, lim suph↓0 E|hZ0|2+δ <∞.

Assumption 11. for every η > 0, there is an ε > 0 such that

lim
h↓0

sup
|x|<η

h−1E
[
|Σ2(hS(k+1)h)− Σ2(hSkh)|2+ε

∣∣Fkh] = 0, (3.3)

lim
h↓0

sup
|x|<η

h−1E
[
|hS(k+1)h − hSkh|4+ε

∣∣Fkh] = 0. (3.4)

Theorem 3.1. For some δ, 0 < δ < 1, let αh, βh, γh and ψh satisfy

αh = o(hδ), (3.5)

ψh = o(hδ), (3.6)

13



1− βh − γh = o(hδ), (3.7)

γh = hδγ + o(hδ) (3.8)

where αh, βh, γh and ψh are parameters in (2.1) and (2.2) and γ is independent of h.

If Assumptions 9 - 11 and Condition 3.3 in Nelson (1992) hold, then for each t > 0,

‖hZt‖ → 0 in probability as h ↓ 0.8

Remark 3.1.1. If the data-generating process (3.1) is the diffusion limit of RT-GARCH,

then all the Assumptions needed in the theorem are automatically satisfied. Nelson’s

(1992) theorem and Theorem 3.1 assumes more general diffusion process.

If, In addition, we assume (2.1) and (2.2) correctly specify the functional form of the

first two conditional moments of hSt and hΣ
2
t , then the forecast distribution generated by

(2.1) and (2.2) also consistently estimates the forecast distribution generated by the true

data generating process.9 Formally,

Assumption 12. For all (s, y) ∈ Rn+m, m̂(s, y) = m(s, y) and Σ̂2(s, y) = Σ2(s, y), where

m̂(·, ·) and Σ̂2(·, ·) are first and second conditional moments of the diffusion limit of (2.1)

and (2.2).

Theorem 3.2. If Assumptions 9 - 12 and (3.5) - (3.8) are satisfied. Then:

(a) For every 0 < τ <∞, (hSt, hσ
2
t )[τ,∞) consistently estimates the forecast distribution of

(St,Σ
2
t )[τ,∞).

(b) Let G(s1, s2, y1, y2) be a continuous function from R4 into R1 satisfying

|g(s1, s2, y1, y2)| < A+B|s1|a|s2|b|y1|c|y2|d, (3.9)

for finite, nonnegative A,B, a, b, c and d. Then the forecast moment function of RT-

GARCH

Gh(g, s, y, τ) = E[g({hSt, hσ2
t }[τ,∞))|hFt] (3.10)

consistently estimate the moment forecast function generated by (3.1).

(c) The stationary distributions of hσ
2
t and Σ2

t for each sufficiently small h > 0 exist, i.e.,

hσ
2
t ⇒ hσ

2
∞ and Σ2

t ⇒ Σ2
∞ as t→∞. Furthermore, hσ

2
∞ ⇒ Σ2

t as h ↓ 0.

Together Theorems 3.1 and 3.2 show for high frequency data, RT-GARCH perform

volatility filtering and forecasting as good as standard GARCH models in the sense that

they both achieve consistency under the same regularity conditions. This can be seen

from the one-step volatility forecast of RT-GARCH,

E[hr
2
(k+1)h|Fkh] = h · E[hσ

2
(k+1)h|Fkh] + ψh(h−1E[hε

4
kh]− h). (3.11)

8In equation (3.12) of Nelson (1992), µ(x) = 0 and Ω(x) is the Σ(x)2 here. Adding non zero drift term
to diffusion (3.1) will not change the result.

9See Nelson and Foster (1995) for detailed definition of consistent estimation of forecast distribution
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Table 1: Parameter estimations of RT-GARCH and GARCH from diffusion

RT-GARCH GARCH

αh βh γh ψh αgh βgh γgh
h = 0.004 0.0006

(0.0005)
0.9696
(0.0017)

0.0262
(0.0018)

0.0029
(0.0005)

0.0034
(0.0002)

0.9686
(0.0007)

0.0275
(0.0006)

h = 0.02 0.0033
(0.0028)

0.9396
(0.0073)

0.0371
(0.0069)

0.0152
(0.0028)

0.0174
(0.0015)

0.9285
(0.0036)

0.0518
(0.0027)

h = 0.1 0.0517
(0.0129)

0.8436
(0.0228)

0.0496
(0.0113)

0.0322
(0.0051)

0.0843
(0.0132)

0.8249
(0.0204)

0.0800
(0.0094)

Note: Parameters are estimated using data generated by diffusion limit. The
standard errors (in parentheses) are standard deviations across 100 sample paths.

If the persistence parameters of RT-GARCH and GARCH models are identical and αh+ψh

is identical to the GARCH constant term, then the one-step volatility forecasts of both

models will also be identical as long as both models start at the same initial points since

the second term of the right-hand side of (3.11) goes to zero as h ↓ 0. The same applies

to multi-step forecast since for both models

E[hr
2
(k+j)h|Fkh] = h−1E[r2] + h−1(βh + γh)

(
E[hr

2
(k+j−1)h|Fkh]− E[r2]

)
, (3.12)

for all j > 1 and E[r2] is the unconditional variance of returns.10 In other words, RT-

GARCH offers no advantage for volatility forecast over GARCH model in continuous

time with negligible discretisation errors. The same arguments apply to the forecast

distributions of both models.

This argument however, does not apply to asymptotic efficiency of filtering and fore-

casting especially when discretisation errors are not negligible. From this point of view,

RT-GARCH can be regarded as superior in its more efficient use of information and better

goodness of fit for conditional kurtosis of discretely observed data as noted in Smetanina

(2017). It will be of particular interest to develop asymptotic distribution of volatility

measurement errors under RT-GARCH similar to that of standard GARCH in Nelson

and Foster (1994) and compare the asymptotic variances of both models. This is left for

future researchers.

4 Simulations and empirical studies

4.1 Simulations

In this section we generate 100 sample paths from (2.4) and (2.5) using Euler’s scheme

for 1000 periods with discretisation interval ∆t = 1/500. The parameters are set as:

µ = 0.8, θ = 0.9 and γ = 0.7, which are typical for stock returns and sampled with three

10The unconditional variances for both models are also identical if the conditions for identical one-step
volatility forecasts are satisfied.
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Table 2: Diffusion parameters inferred by RT-GARCH and GARCH parameters

RT-GARCH GARCH

h=0.004 h=0.02 h=0.1 h=0.004 h=0.02 h=0.1

µ = 0.8 0.8738
(0.0161)

0.9251
(0.0301)

0.8392
(0.0173)

0.8557
(0.0058)

0.8678
(0.0098)

0.8430
(0.0190)

θ = 0.9 1.0379
(0.0404)

1.1668
(0.0974)

1.0684
(0.0555)

0.9702
(0.0097)

0.9830
(0.0143)

0.9510
(0.0262)

γ = 0.7 0.5862
(0.0145)

0.3710
(0.1129)

0.2217
(0.2313)

0.6144
(0.0075)

0.5183
(0.0337)

0.3576
(0.1189)

Note: Diffusion parameters are obtained by plugging the GARCH and RT-
GARCH parameters into (2.7) - (2.9). The mean squared errors are reported
in parentheses.

different frequencies, h = 1/10, 1/50 and 1/250 which roughly correspond to monthly,

weekly and daily frequencies, respectively in real world situation. We then fit GARCH

and RT-GARCH with Gaussian innovations to each sample path.

Table 1 reports the estimated RT-GARCH and GARCH parameters. The current

information parameter ψh increases with the length of sampling interval. The sum of αh

and ψh for RT-GARCH is almost identical to the αgh for GARCH at 1/250 frequency. So

are the persistence parameters (βh + γh) of both models. The differences start to increase

when the length of sampling interval increases. This confirms that when the length of

sampling interval becomes increasingly finer, RT-GARCH and GARCH are asymptotically

equivalent and only differ with the current information risk premium parameter separated

from the volatility drift term. Note the current information parameter contains the error

due to discretely sampling and thus, is still significant even for small h.

Table 2 reports the diffusion parameters inferred by both RT-GARCH and GARCH.

The mean squared errors (MSE) for both models increase with the length of sampling

interval. The MSE for RT-GARCH implied parameters are nearly twice as large as those

implied by GARCH. This is not surprising since the current information is only asymp-

totically constant when h ↓ 0. When h increases, this term becomes more stochastic and

RT-GARCH diverges faster from its diffusion limit than GARCH due to this additional

source of disturbances. This suggests RT-GARCH suffers larger discretisation bias than

GARCH. Thus, if we were to use weak convergence results to estimate the parameters

of an SV model, GARCH is preferred given its smaller MSE.11 This, however, is not to

say GARCH is superior in volatility modelling than RT-GARCH when the data generat-

ing process is its diffusion limit. Both models are essentially misspecified in this case and

each model has its own advantage. Specifically, GARCH produces more accurate diffusion

parameter estimates and RT-GARCH fits the tail distribution of the discretely observed

data better in terms of conditional kurtosis.

11Note that the weak convergence does not imply consistent estimators of diffusion parameters (Wang,
2002)
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Table 3: Parameter estimations of RT-GARCH and GARCH for S&P 500 index

RT-GARCH GARCH

α β γ ψ αg βg γg

Daily 1.3046 ∗ 10−4

(2.7135∗10−4)
0.8683
(0.0103)

0.0988
(0.0100)

0.0269
(0.0032)

0.0199
(0.0019)

0.8745
(0.0073)

0.1095
(0.0067)

Weekly 0.0245
(0.0862)

0.8108
(0.0443)

0.1138
(0.0369)

0.2633
(0.0646)

0.2608
(0.0586)

0.7610
(0.0234)

0.2027
(0.0201)

Monthly 0.8092
(0.8883)

0.7496
(0.1034)

0.1592
(0.0840)

0.6489
(0.3760)

0.9394
(0.7511)

0.7436
(0.0844)

0.2123
(0.0626)

Note: The sample size is 5030, 1043 and 239 for daily, weekly and monthly frequencies,
respectively. The standard errors, calculated numerically, are given in parentheses.

4.2 Application

We now use the returns of S&P 500 index to examine the differences between RT-GARCH

and GARCH models under different frequencies. The data spans from 04 January 2000

till 31 December 2019 and are sampled from daily, weekly and monthly frequencies. The

returns are calculated using adjusted closing price at the end of each sampling interval.

For the daily data, the persistence parameters of RT-GARCH and GARCH parameters

are almost identical. The differences start to increase from daily to weekly and monthly

data. This is consistent with our simulation results.

Similarly, we find the sum of the constant and current information parameters of RT-

GARCH is close in value to the constant term of GARCH model for daily data, and

the difference increases significantly for weekly and monthly data. Since GARCH model

does not capture the current information, it treats the missing information as a constant

term. Similar to the simulation results, the current information risk premium increases

in magnitude with the length of sampling interval.

We also split the data into pre and post 2008 financial crisis to examine the change

of current information effects on volatility. The results are presented in Table 4. Due

to small sample sizes, we only perform separate estimations on daily data. The financial

crisis is likely to have created structural breaks in volatility process as the parameters

estimated from two data sets are very different.12 Volatility is less persistent and the

current information parameter ψ doubled in value after the crisis. This implies the 2008

financial crisis has changed the volatility structure in a way that current return infor-

mation contributes to more variations in current level of volatility and the lagged level

of volatility contributes slightly less compared to before the crisis. This can be due to

investors’ increasing aversion for information uncertainty since they require more risk pre-

mium in compensation after 2008 financial crisis. The standard GARCH model can only

capture the decrease of volatility persistence but fails to account for the change due to the

increasing importance of current return information risk premium. This provides another

12Formal test on structural break of volatility process would be difficult given its latent nature.
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Table 4: RT-GARCH parameters for daily S&P 500 before and after 2008

α β γ ψ

04-Jan-2000 – 31-Jul-2008 2.1781 ∗ 10−4

(5.4772∗10−4)
0.9210
(0.0137)

0.0645
(0.0129)

0.0147
(0.0034)

01-Aug-2008 – 30-Dec-2019 4.6560 ∗ 10−6

(0.0039)
0.8264
(0.0170)

0.1250
(0.0151)

0.0351
(0.0049)

Note: The sample sizes are 2157 and 2873 for pre- and post-crisis, respectively.
The standard errors, calculated numerically, are given in parentheses.

advantage of using RT-GARCH over GARCH models in empirical applications.

5 Conclusion

In this paper, we have derived the diffusion limit of Smetanina’s (2017) RT-GARCH model

and extended Nelson’s (1990) theorem to incorporate a broader range of GARCH type

models for diffusion approximation. In doing so, we have answered the question where RT-

GARCH stands in between GARCH and SV models and provide more theoretical evidence

of advantages for using RT-GARCH to model discrete time volatility. First, since RT-

GARCH and GARCH converge weakly to the same type of diffusion process, RT-GARCH

performs at least as good as GARCH for data sampled at ultra high frequency. Moreover,

both models provide consistent filters and estimators of volatility under mild conditions.

Second, the additional parameter of RT-GARCH can be interpreted as current information

risk premium and allows us to separate it from the volatility drift term. This risk premium

also controls the scale of the limiting stationary distribution. On the other hand, if the

data generating process is the diffusion limit, RT-GARCH suffers larger discretisation

errors than GARCH and cautions need to be in place when using RT-GARCH to fit

discretely sampled data. Given these results, we can formally define RT-GARCH models

as a sub-class within the GARCH class.

GARCH type models encompass large variations and are relatively easy to implement

in practice. RT-GARCH provides an alternative way of treating volatility as a stochastic

process while retaining the elegant QML estimation procedure. While the results in this

paper contribute and complement the theory of Smetanina’s (2017) RT-GARCH and its

relation with GARCH and SV models. In order to fully justify the use of RT-GARCH

model, it would be useful to derive the asymptotic filtering theory of RT-GARCH to

understand whether this added current information parameter helps reduce asymptotic

variance of measurement error. It would also be interesting to derive the conditions under

which RT-GARCH is the asymptotically optimal filter in the sence of Nelson and Foster

(1994). These tasks await future research.
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A Proofs

In this section we provide proofs of the main theorems in this paper. We suppose kh ≤
t < (k+1)h throughout this section. It is convenient to write the innovation terms hεkh as

increments of random variables hWkh − hW(k−1)h ∼ N(0, h). By Lévy’s characterisation,

hWkh is a one dimensional standard Brownian motion.

See Stroock and Varadhan (1979) and Nelson (1990) for the proof of Theorem 1.1.

In proving the theorems in section 3, we need the following proposition:

Proposition 1. limh↓0 h
−1

hε
2
kh = 〈W,W 〉′(t) = 1,13 where W is a one dimensional stan-

dard Brownian motion and 〈·, ·〉′(t) is the time derivative of the quadratic variation of a

stochastic process.

Proof. Recall the definition of quadratic variation,

〈W,W 〉(t) ≡ lim
‖Π‖→0

n∑
i=1

(Wti −Wti−1)2, (A.1)

where Π ranges over the partition of the interval [0, t] and the norm of the partition Π

is the mesh. limh↓0 h
−1

hε
2
kh is then the time derivative of the quadratic variation of a

standard Brownian motion, which is equal to t. In other word, limh↓0 h
−1

hε
2
kh converges

to the quadratic variation of a standard Brownian motion per unit time.

Lemma A.1 (Mykland and Zhang (2006)). Let Π = t0, t1, . . . , tn be a sequence of non-

random partitions of interval [0, t] and ∆ti = ti+1 − ti, define the observed fourth-order

variation for an Itô process X with a.s. bounded drift and 〈X,X〉′

[X]4(t) =
∑
ti+1≤t

(Xti+1 −Xti)
4. (A.2)

Then as ‖Π‖ → 0,

∆̄ti
−1

[X]4(t)→
∫ T

0
3H

′
(u)(〈X,X〉′(u))2du (A.3)

uniformly in probability, where ∆̄ti is the average distance between successive observations

T/n and H(t) =
∑

ti+1≤T (∆ti)
2/∆̄ti.

Proposition 2. limh↓0 h
−2

hε
4
kh = 3

(
〈W,W 〉′(t)

)2
= 3, where W is a one dimensional

standard Brownian motion.

Proof. We assume equispaced observations throughout the paper. Thus, ∆̄ti = h and

H(t) = t. Proposition 2 follows Lemma A.1 by taking the derivative of (A.3) w.r.t t.

Remark A.1.1. The convergence can be made stronger using L2 convergence argument

for the fourth power variation of a scaled Brownian motion Wt/t
1/4.

13Here the convergence is under the meaning of L2 convergence.
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Proof of Theorem 2.1. The discrete time process (2.1) and (2.2) is a joint Markov chain.

Moreover, under mild conditions it is geometrically moment contracting and there exists

an a.s.-unique casual ergodic strictly stationary solution at its true parameters (Smetan-

ina and Wu, 2019). Thus, to prove Theorem 2.2, it suffices to check Assumptions 1–4.

Assumption 1 is already assumed in the theorem.

To verify Assumption 2, we first impose stationary conditions on the limit of the

sequence of parameters. As kh→∞,

E[r2] = hE[σ2] + 2hψh. (A.4)

Plug into the unconditional expectation of (2.2),

E[σ2] = αh + (βh + γh)E[σ2] + 2ψhγh + ψh. (A.5)

This can only hold if and only if

lim
h↓0

(βh + γh) = 1, (A.6)

lim
h↓0

(αh + ψh + 2ψhγh) = 0. (A.7)

Next we derive the limit of the increments per unit of time conditional on information

at time (k − 1)h. In contrast to standard GARCH, we have a smaller information set

since the current volatility is no longer Fk(h−1)-measurable, i.e., Fk(h−1) is the σ-algebra

generated by kh, hS0, ..., hSk(h−1), and hσ
2
0, ..., hσ

2
k(h−1).

14

E[h−1(hSkh − hS(k−1)h)|F(k−1)h] = 0, (A.8)

E[h−1(hσ
2
kh − hσ

2
(k−1)h)|F(k−1)h] = h−1[αh

+ ψh + (βh − 1 + h−1γh · hε2(k−1)h)hσ
2
(k−1)h],

(A.9)

Taking the limit and using Proposition 1 and (2.7) and (2.8) of Assumption 5,

lim
h↓0

E[h−1(hSkh − hS(k−1)h)|F(k−1)h] = 0, (A.10)

lim
h↓0

E[h−1(hσ
2
kh − hσ

2
(k−1)h)|F(k−1)h] = µ− θσ2. (A.11)

The second moment per unit time is given by

E[h−1(hSkh − hS(k−1)h)2|F(k−1)h] = αh + 3ψh + (βh + h−1γh · hε2(k−1)h)hσ
2
(k−1)h, (A.12)

E[h−1(hσ
2
kh − hσ

2
(k−1)h)2|F(k−1)h] = h−1

(
α2
h + 3ψ2

h + 2αhψh +
(
(βh − 1)2

+ h−1γ2
h · hε4(k−1)h + 2(βh − 1)γh · hε2(k−1)h

)
hσ

4
(k−1)h +

(
2(αh + ψh)(βh − 1)

+ 2αhψh + ·hε2(k−1)h + 2h−1γhψh · hε2(k−1)h

)
hσ

2
(k−1)h

)
.

(A.13)

14In standard GARCH the σ-algebra contains information up to hσ
2
kh.
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Using Propositions 1 and 2, the stationary conditions (A.6) and (A.7) and (2.9) of As-

sumption 5,

lim
h↓0

E[h−1(hSkh − hS(k−1)h)2|F(k−1)h] = σ2, (A.14)

lim
h↓0

E[h−1(hσ
2
kh − hσ

2
(k−1)h)2|F(k−1)h] = γ2σ4. (A.15)

Finally, the cross-moment is given by

E[h−1(hSkh − hS(k−1)h)(hσ
2
kh − hσ

2
(k−1)h)|F(k−1)h] = h−2ψhE[hε

3
kh · hσkh|F(k−1)h]. (A.16)

Since hεkh is symmetric around zero by assumption, cubic function is an odd function and

σ is an even function of ε. It follows automatically that ε3σ is symmetric around zero15.

It is straightforward but tidious to verify the limits of the fourth moments go to zero

since hε
6
kh = Op(h3) and hε

8
kh = Op(h4).

It remains to verify the distributional uniqueness of the diffusion limit. This follows

directly from Nelson (1990) since RT-GARCH converges to the same SDEs as GARCH

model.

To prove Theorem 2.2 we need to derive the power variations of the negative incre-

ments. We slightly modify Barndorff-Nielsen and Shephard’s (2003) limit theorem of

power variations for a semimartingale.

Lemma A.2. Let W be a standard Brownin motion, and denote(
[X]−

)r
(t) ≡

∑
ti+1≤t

(Xti+1
−Xti)

r
1{Xti+1−Xti<0},

where (ti) are sequence of non-random partitions of interval [0, t]. That is,
(
[X]−

)r
(t) is

the contribution of negative increments to the observed power variation of X. Then as

h ↓ 0, for all r > 0,

h1−r/2([hWt]
−)r(t)→ E[(u−)r]t (A.17)

uniformly in probability, where u− = u1{u<0} and u ∼ N(0, 1).

Proof. (Xti+1
− Xti)

r
1{Xti+1−Xti<0} has the same law as u−ti , where u are i.i.d. standard

normal. By symmetry, the contribution of the E[(u−)r] = 1
2
E[|u|r] for all r ≥ 0. Set

A = 0, H = 1 and H∗ =
∫ t

0
dt = t in the proof of Theorem 1 in Barndorff-Nielsen and

Shephard (2003), we obtain (
[W ]−

)r
(t)→ 1

2
E[|u|r]t.

The result follows immediately.

Remark A.2.1. Replace with standard Brownian motion in Lemma A.2, we obtain the

result in Proposition 2 since E[hε
4
kh] = 3h2.

15One can also use the fact that hε
3
kh is of order op(h3/2) and hσkh = op(h1/2) to argue the expression

goes to 0 a.s..
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Recall the moments of half normal distribution for all integer n,

E[h(ε−kh)2n] = E[hε
2n
kh], (A.18)

E[h(ε−kh)2n+1] = n!h2n+1/
√

2π. (A.19)

Then a direct application of Lemma A.2 gives us the followings:

Proposition 3. Let hε
−
kh = hε

−
kh1{hεkh<0}, then

lim
h↓0

h−1(hε
−
kh)2 = 〈W,W 〉−′(t) = 1/2, (A.20)

lim
h↓0

h−3/2(hε
−
kh)3 = −

√
2/π, (A.21)

lim
h↓0

h−2(hε
−
kh)4 = 3

(
〈W,W 〉−′(t)

)2
= 3/2, (A.22)

where 〈·, ·〉′(t) is the time derivative of quadratic variation.

Proof of Theorem 2.2. We only need to consider the moments regarding the additional

asymmetric terms and their cross terms, the rest follows the same as the proof of Theo-

rem 2.2.

In steady state, by symmetric distribution of returns, the unconditional variance is,

E[σ2] = αh + ψh + 1
2ηh + φh(ψh + 1

2ηh) + (βh + γh + 1
2φh)E[σ2]. (A.23)

Thus, covariance stationatiry imposes conditions on the limits of the sequence of param-

eters,

lim
h↓0

(βh + γh + 1
2φh) = 1, (A.24)

lim
h↓0

(αh + ψh + 1
2ηh + φh(ψh + 1

2ηh)) = 0. (A.25)

The drifts per unit time are given by

E[h−1(hSkh − hS(k−1)h)|F(k−1)h] = 0, (A.26)

E[h−1(hσ
2
kh − hσ

2
(k−1)h)|F(k−1)h] = h−1

(
αh + 1

2ψh

+
(
βh − 1 + h−1γh · hε2(k−1)h + h−1φh(hε

−
(k−1)h)2

)
hσ

2
(k−1)h

) (A.27)

Using Propositions 1 and 3 and (2.23) and (2.24) of Assumption 6,

lim
h↓0

E[h−1(hSkh − hS(k−1)h)|F(k−1)h] = 0, (A.28)

lim
h↓0

E[h−1(hσ
2
kh − hσ

2
(k−1)h)|F(k−1)h] = µ− θσ2. (A.29)

Similarly, for the second moments per unit time, we use Propositions 1 - 3, the sta-
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tionary conditions (A.24) and (A.25) and (2.25) of Assumption 6,

lim
h↓0

E[h−1(hSkh − hS(k−1)h)2|F(k−1)h] = σ2, (A.30)

lim
h↓0

E[h−1(hσ
2
kh − hσ

2
(k−1)h)2|F(k−1)h] = γ2σ4. (A.31)

Finally, by symmetric assumption of returns,

E[hσkh · hε3kh|F(k−1)h] = E[hσkh · hεkh|F(k−1)h] = 0. (A.32)

Apply stationary conditions, the cross moment is given by

E[h−1(hSkh − hS(k−1)h)(hσ
2
kh − hσ

2
(k−1)h)|F(k−1)h] =

h−2ηhE[hσkh(hε
−
kh)3|F(k−1)h] + h−2φhE[hσ

2
(k−1)h(hε

−
(k−1)h)2

hσkh · hεkh|F(k−1)h].
(A.33)

Since ηh = O(h) and E[hσkh(hε
−
kh)

3|F(k−1)h] = Op(h2), the first term goes to 0 as h ↓ 0.

For the second term, hσkh · hεkh = hσ(k−1)h · hε(k−1)h + op(h) for small h by sample path

continuity.

E[h−1(hSkh − hS(k−1)h)(hσ
2
kh − hσ

2
(k−1)h)|F(k−1)h] =

h−2φh · hσ3
(k−1)h(hε

−
(k−1)h)3 + op(h) = −

√
2/(hπ)φh · hσ3

(k−1)h + op(h),
(A.34)

where in the last equality we use Proposition 3. Combine with (2.26) of Assumption 6,

we obtain

lim
h↓0

E[h−1(hSkh − hS(k−1)h)(hσ
2
kh − hσ

2
(k−1)h)|F(k−1)h] = ωσ3. (A.35)

For the expression of the correlation between return and volatility innovations, we

take Cholesky decomposition of the covariance matrix

a(S, σ) ≡

 σ2 ωσ3

ωσ3 γ2σ4,

 (A.36)

and obtain

a(S, σ)1/2 =

 σ 0

ργσ2 γ
√

1− ρ2σ2,

 (A.37)

where ρ = ω/γ.

Proof of Theorem 2.3. See Nelson’s (1990) Theorem 2.3 for the stationry distribution of

hσ
2
kh. From (2.20), for kh ≤ t < (k + 1)h and sufficiently small h > 0, hrkh can be

approximated by

hSkh − hS(k−1)h = hσ(k−1)h[ρ(W1,kh −W1,(k−1)h) +
√

1− ρ2(W2,kh −W2,(k−1)h)], (A.38)

where W1,kh and W2,kh are innovation terms from (2.20) and (2.21). It is clear that W2,kh

and hσkh are independent while W1,kh and hσkh are not. According to Theorem 3.2 in

Nelson (1990), we can replace W1,kh by

Qkh = (1− 2
π )−1/2

k∑
j=1

(
|W1,jh −W1,(j−1)h| −

√
2/(πh)

)
, (A.39)
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This is because as h ↓ 0,

(Qkh,W1,kh)
d−→W ∗t , (A.40)

where W ∗
t is a two-dimensional standard Brownian motion. That is, even if W1,kh and

|W1,kh| are not independent, their partial sums in the limit are independent as h ↓ 0.

Hence, as h ↓ 0, we can replace W1,kh −W1,(k−1)h by

(1− 2
π )−1/2|W3,kh −W3,(k−1)h| (A.41)

where W3,kh is a standard Brownian motion indepedent of W1,kh and W2,kh. The law of

h−1/2
hrkh, as h ↓ 0, is equivalent to

σt(ρ/
√

1− 2
π |Z1|+

√
1− ρ2Z2), (A.42)

where Z1 and Z2 are bivariate standard normal random variable with zero correlation and

are independent from σt. It can be shown that ρ/
√

1− 2
π
|Z1|+

√
1− ρ2Z2 is distributed

as

Skew-N

(
0,

√
ρ2

1− 2
π

+ 1− ρ2,
ρ√

(1− 2
π )(1− ρ2)

)
, (A.43)

where Skew-N(a, b, c) is the skewed normal distribution with location parameter a, scale

parameter b and shape parameter c. Its probability density function (pdf) is

fSN (x) = 2φ(x− a; b)Φ(c(x− a)/
√
b), (A.44)

where φ(x; b) is the pdf of N(0, b) and Φ(·) is cumulative distribution function (cdf) of

N(0, 1). Since the stationary distribution of σ2
t has an inverse gamma distribution, by

standard argument, we have
γ2

4µ
σ−2 ∼ χ2

2+4θ/γ2 , (A.45)

where χ2
2+4θ/γ2 is the chi-square distribution with 2 + 4θ/γ2 degrees of freedom. Finally,

combine (A.42), (A.43) and (A.45) we have

h−1/2
√

(2θ + γ2)/2µ · hrkh ∼ V −1/2Y, (A.46)

as h ↓ 0, where

V ∼ χ2
2+4θ/γ2/(2 + 4θ/γ2), (A.47)

and Y is distributed as (A.43). (A.46) is the definition of skewed Student-t distribution

in Azzalini and Capitanio (2003), that is,

V −1/2Y ∼ Skew-t(a, b, c, n), (A.48)

where a = 0, n = 2 + 4θ/γ2 and

b =
ρ2

1− 2
π

+ 1− ρ2, c =
ρ√

(1− 2
π
)(1− ρ2)

.
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The probability density of Skew-t(a, b, c, n) is

fSt(x) = 2t(x; a, b, n)T

(
c
x− a√

b

√
n+ 1

(x− a)2/b+ n
;n+ 1

)
, (A.49)

where t(x; a, b, n) is the pdf of Student-t distribution with location a, scale b and n degrees

of freedom and T (y;n+1) is the cdf of standard Student-T distribution with n+1 degrees

of freedom. When ρ = 0 the distribution of (A.46) reduces to t(n). See Azzalini and

Capitanio (2003) for more details on skew normal and Student-t distributions.

The proof of second part of the theorem, for kh→∞ and starting point not from its

stationary distribution, follows exactly Nelson’s (1990) proof of theorem 2.3.

Lemma A.1 and Lemma A.2 hold whenever the sample path continuity is satisfied.

Thus, to extend to the RT-GARCH with Student-t innovations, we need the conditions

for its sample path continuity.

Proposition 4. Processes with Student-t increments have continuous paths if the degree

of freedom ν ≥ 3.

Proof. For a Markov process, the sample path is a continuous functions of t, if for any

ε > 0,

lim
h↓0

h−1

∫
|x−z|>ε

p(x, t+ h|y, t)dy = 0 (A.50)

uniformly in x, t and h, where p(·|·) is the transition density of random variable y. Equiv-

alently, for a symmetric, zero mean density,

lim
h↓0

h−1
(
1−

∫ ε

−ε
p(x, t+ h|y, t)dy

)
= 0. (A.51)

For Student-t distribution with ν = 1 (i.e. a Cauchy transition density),

lim
h↓0

h−1
(
1−

∫ ε

−ε

√
h

π((x− y)2 + h
dx
)

= lim
S→∞

1− 2
π arctan (ε

√
S). (A.52)

Expanding about S =∞ we have,

2
√
S

επ
(1− 1

3ε2S
+

1

5ε4S2
), (A.53)

which has a dominant term
√
S/π and the limit goes to infinity.

For ν = 2,

lim
h↓0

h−1(1−
∫ ε

−ε

√
2

4
√
h

(1 +
x2

2h
)−2/3dx) =

lim
S→∞

S(1−
∫ ε

−ε

√
2S

4
(1 +

Sx2

2
)−2/3dx) =

1

ε2
,

(A.54)

which is not zero. So Student-t increments with ν = 2 does not have continuous sample

path.
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For ν = 3,

lim
h↓0

h−1(1−
∫ ε

−ε

2

π
√

3h
(1 +

x2

3h
)−2dx) =

lim
S→∞

S
(

1−2
arctan (ε

√
3S/3)Sε2 + ε

√
3S + 3 arctan (ε

√
3S/3)

π(ε2S + 3)

)
.

(A.55)

Expanding about S →∞ shows the dominant term is 1/
√
S,

lim
S→∞

4
√

3

πε3
√
S

+
72
√

3

5πε5S3/2
+O(S−5/2) = 0. (A.56)

This limit holds for all ν ≥ 3, and with ν increases, Student-t increments behave increas-

ingly likely to Gaussian increments.

Once the sample path continuity is established, we can directly apply Barndorff-Nielsen

and Shephard’s (2003) Theorem 1 for Student-t increments.

Lemma A.3. Let hε(k+1)h = hτ(k+1)h−hτkh be a sequence of rescaled Student-t increments,

i.e. the transition density is defined as

fε(x; ν, h) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνh

(1 +
x2

νh
)−

ν+1
2 (A.57)

If ν ≥ 3, then as h ↓ 0 and kh ≤ t < (k + 1)h, for 0 < r ≤ ν,

h1−r/2[hτt]
r(t)→ E[(ε)r]t (A.58)

uniformly in probability, where ε is a standard Student-t.

Proof. By Proposition 4, sample path continuity is satisfied for Studnet-t increments. In

Theorem 1 of Barndorff-Nielsen and Shephard (2003) replace A with 0, H with 1 and W

with ε, the observed increments have the same law as uti/
√
h, where u are i.i.d. standard

Student-t. Provided the degree of freedom is such that all the moments smaller or equal

to r exist, the rest follows directly from the proof of Barndorff-Nielsen and Shephard

(2003)

Corollary A.3.1. Let hε
−
(k+1)h = (hτ(k+1)h − hτkh)1{hτ(k+1)h−hτkh<0} be a sequence of nega-

tive rescaled Student-t increments, i.e. hε
−
kh = hεkh1{hεkh<0} and hεkh/

√
h are i.i.d. stan-

dard Student-t. If ν ≥ 3, then as h ↓ 0, for all 0 < r ≤ ν,

h1−r/2([hτt]−)r(t)→ E[(ε−)r]t (A.59)

uniformly in probability, where ε− is standard half Student-t distributed.

Remark A.3.1. One can also use L2 convergence argument to prove the power variation

is proportional to square root of time to the respective power. However, we would require

ν ≥ 2r to ensure the higher moments exist and do not explode.
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We are now in the position to proof diffusion limit of RT-GARCH with Student-t

innovations.

Proof of Theorem 2.4. Using the first four moments of Student-t and half Student-t ran-

dom variables, we can establish the following uniform convergences in probability,

lim
h↓0

h−1ε2kh = 〈τ, τ〉′(t) =
ν

ν − 2
, (A.60)

lim
h↓0

h−2ε4kh =
3ν2

(ν − 4)(ν − 2)
, (A.61)

lim
h↓0

h−1/2εkh = lim
h↓0

h−2/3ε3kh = 0. (A.62)

Similarly,

lim
h↓0

h−1(ε−kh)2 = 〈τ, τ〉−′(t) =
ν

2(ν − 2)
, (A.63)

lim
h↓0

h−2(ε−kh)4 =
3ν2

2(ν − 4)(ν − 2)
, (A.64)

lim
h↓0

h−3/2(ε−kh)3 =
2ν

3
2

√
π(ν − 3)(ν − 1)

Γ(ν+1
2 )

Γ(ν2 )
, (A.65)

where Γ(·) is the gamma function. By Assumption 7, all these limits exist and are finite.

Putting (A.60) - (A.65) in place of the proof of Theorem 2.2, we obtain the uniform

convergence of first and second moments. It is straightforward but tedious to check that

the fourth moments converge to zero as long as ν ≥ 8 by Assumption 7. This is to ensure

E[hε
4
kh] exist and is finite. The rest follows the same as the proof of Theorem 2.2.

Proof of Theorem 2.5. We need only verify Assumptions 2 and 3. The drift matrix is

mh(s, y, t) =

 f

F1 + F2

 , (A.66)

Since mh(·, ·, ·) = m(·, ·, ·), (1.5) of Assumption 1 is satisfied. The diagonal elements of

diffusion matrix are hf 2 + g2 and GΩ2,2G
T . To calculate the covariance terms,

E[h−1(hSkh − hS(k−1)h)(hYkh − hY(k−1)h)T |F(k−1)h] =

hfF T1 + f · hZ∗T(k−1)hG
T + h−1f · hZ∗∗T(k−1)hF

T
2 + E[g · hZkhF T1

+ h−1g · hZkh · hZ∗T(k−1)hG
T + h−1g · hZkh · hZ∗∗T(k−1)hF

T
2 |F(k−1)h].

(A.67)

Since we assume sample path continuity, h−r/2hZ
r
kh → E[Zr

t ] and f, F1, F2, g and G are

locally bounded, as h ↓ 0,

(A.67)→ gΩ2,1G
T . (A.68)

Thus,

Σh(s, y, t)
h↓0−→

 g2 GΩ1,2g

gΩ2,1G
T GΩ2,2G

T

 . (A.69)
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Finally,

h−1E

 (hf + ghZkh)4

(hF1 +GhZ
∗
(k−1)h + F2hZ

∗∗
kh)4

∣∣∣∣∣F(k−1)h

 = Op(1), (A.70)

uniformly on compacts. All the Assumptions for Theorem 1.1 are verified.

Proof of Theorem 3.1. Under the conditions of (3.5) - (3.8), the filtering error process

(hZkh) satisfy

h−1E[hZ(k+1)h − hZkh|hSkh = s, hZkh = z] = −hδ−1γz +Op(1), (A.71)

using Condition 3.4, Lemma A.1 of Nelson (1992) and E[ψh · hε2kh] = o(hδ+1). The rest

follows directly from the proof of Theorem 3.1 of Nelson (1992).

Proof of Theorem 3.2. See the proofs of Theorems 2.4, 2.5, 2.6 and 3.1 of Nelson and

Foster (1994). If in addition, the data generating process is its diffusion limit, i.e., (2.20)

and (2.21), then Assumptions 9 - 12 are satisfied. The Lyapunov function needed to verify

Nelson’s (1992) Condition 3.3 can be ω(s, y) = K + f(s)|s|+ f(y) exp (|y|), where f(x) ≡
exp (−1/|x|) if x 6= 0 and 0 otherwise. ω(·, ·) is arbitrarily continuously differentiable,

nonnegative. To verify the partial differential inequality, use the fact that for large s

and y, ∂ω(s, y)/∂s ≈ sign(s), ∂2ω(s, y)/∂s2 = 0, ∂ω(s, y)/∂y ≈ sign(y) exp (|y|) and

∂2ω(s, y)/∂y2 ≈ exp (|y|). All the Assumptions and Conditions are verified and the results

follow immediately.
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