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Abstract In 2017, it was 200 years since James Parkinson
published ‘An Essay on the Shaking Palsy’ and 20 years since
o-synuclein aggregation came to the fore. In 1998, multiple
system atrophy joined Parkinson’s disease and dementia with
Lewy bodies as the third major synucleinopathy. Here, we
describe the work that led to the identification of «-
synuclein in Lewy bodies, Lewy neurites and Papp—Lantos
bodies. We also review some of the findings reported since
1997.
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Introduction

In 1817, James Parkinson (1755-1824) of Hoxton Square,
East London, described the ‘Shaking Palsy’ (Parkinson
1817), a disease that was subsequently named after him
(Sanders 1865; Charcot 1875). At the time, the involvement
of the substantia nigra and the presence there of Lewy pathol-
ogy were not known.

Paul Blocq (1860—1896) and Georges Marinesco (1863—
1938) of the Salpétriére Hospital in Paris reported a patient

P4 Maria Grazia Spillantini
mgsl1@cam.ac.uk

>< Michel Goedert
mg@mrc-Imb.cam.ac.uk

! Department of Clinical Neurosciences, Clifford Allbutt Building,
University of Cambridge, Cambridge, UK

2 MRC Laboratory of Molecular Biology, Cambridge, UK

Published online: 08 November 2017

with left-sided parkinsonian tremor who, at autopsy, had an
enucleated tuberculoma the size of a hazelnut in the right
substantia nigra (Blocq and Marinesco 1893). They also al-
luded to a case from Jean-Martin Charcot (1825-1893) with
hemiparkinsonism caused by a tumour that compressed the
cerebral peduncle. This led Edouard Brissaud (1852—-1909),
Charcot’s successor at the Salpétriere, to propose, in 1894, that
a lesion of the substantia nigra was the anatomical substrate of
Parkinson’s disease (PD) (Brissaud and Meige 1895).

In 1919, at the Salpétriere, Constantin Trétiakoff (1892—
1956) reported pathological inclusions that he named ‘corps
de Lewy’ in the substantia nigra in PD (Trétiakoff 1919) [sim-
ilar inclusions had been identified in other brain areas of PD
by Fritz Jakob Heinrich Lewy (1885-1950) (Lewy 1912;
Goedert et al. 2013)]. Trétiakoff also showed degeneration
of the substantia nigra and postulated a link between nerve
cell loss, rigidity and tremor. Rolf Hassler (1914—-1984) con-
firmed Trétiakoff’s findings and showed that the ventrolateral
tier was the most severely affected part of the substantia nigra
(Hassler 1938). He did most of this work at the Kaiser
Wilhelm Institute for Brain Research in Berlin, which was
directed by Oskar Vogt. Following their dismissal in 1936,
Vogt and his wife Cécile built up a new Institute in Neustadt
in the Black Forest, where Hassler worked for a number of
years. Science is often a young person’s game. Lewy,
Marinesco, Trétiakoff and Hassler were 30 years old or less
when they made these discoveries.

In 1997, the ordered assembly of o-synuclein came to the
fore (Polymeropoulos et al. 1997; Spillantini et al. 1997).
Polymeropoulos et al. described a causative mutation
(AS3T) in SNCA, the x-synuclein gene, in the Contursi kin-
dred and three smaller Greek families with PD, whereas
Spillantini et al. reported the presence of x-synuclein in
Lewy bodies and Lewy neurites of idiopathic PD and demen-
tia with Lewy bodies (DLB). These findings linked the genetic
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cause of a rare form of PD with the inclusions in all cases of
the disease. They were conceptually similar to those previous-
ly obtained in Alzheimer’s disease (AD) (Glenner and Wong
1984; Goate et al. 1991) and some human tauopathies
(Pollock et al. 1986; Poorkaj et al. 1998; Hutton et al. 1998;
Spillantini et al. 1998a) and helped to underscore the view
expressed by William Harvey (1578-1657) and reiterated by
Archibald Garrod (1857-1936), that the study of rare forms of
disease can inform the more common cases (Garrod 1928). In
his letter of April 24, 1657, to John Vlackveld, Harvey wrote:
“Nature is nowhere accustomed more openly to display her
secret mysteries than in cases where she shows traces of her
workings apart from the beaten path; nor is there any better
way to advance the proper practice of medicine than to give
our minds to the discovery of the usual law of nature, by the
careful investigation of cases of rarer forms of disease.”
(Harvey and Willis 1847).

o-Synuclein and Lewy pathology

Our findings on «-synuclein (Jakes et al. 1994) grew out of
work on tau, which we found to be an integral component of
the paired helical and straight filaments of AD in 1988
(Goedert et al. 1988; Wischik et al. 1988a, b). In August
1997, together with Ross Jakes, Marie-Luise Schmidt,
Virginia Lee and John Trojanowski, we showed that the
Lewy pathology from the substantia nigra of six patients with
idiopathic PD and four patients with DLB was strongly im-
munoreactive for «-synuclein (Fig. la—c) (Spillantini et al.
1997). The same was true of the Lewy pathology from the
cingulate cortex of DLB. Antibodies specific for the amino-
and carboxy-termini of a-synuclein stained the inclusions,
consistent with the presence of the whole molecule. An anti-
body specific for (3-synuclein failed to label the inclusions of
PD and DLB.

In May 1998, we reported that Lewy neurites were more
abundant in PD and DLB than hitherto believed (Spillantini
etal. 1998b). The staining of intraneuritic Lewy bodies helped
to reinforce the view that the Lewy pathology is not benign.
Prior to this work, ubiquitin staining had been the most sensi-
tive means of detecting Lewy pathology but it lacked in spec-
ificity, because inclusions made of other proteins can also be
ubiquitinated. We showed that staining for x-synuclein was
more extensive than staining for ubiquitin, indicating that the
assembly of a-synuclein precedes ubiquitination. Similar
findings were subsequently reported by others (Hasegawa
et al. 2002; Sampathu et al. 2003).

We confirmed that (3-synuclein did not accumulate in the
Lewy pathology and showed that y-synuclein was not present
either. Of the three mammalian synucleins, only x-synuclein
is found in the Lewy pathology. We then studied sarkosyl-
insoluble filaments extracted from the cingulate cortex of
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patients with DLB by immunoelectron microscopy. An anti-
body specific for the carboxy-terminal region of x-synuclein
labelled filaments with a diameter of 5—-10 nm and a length of
200-600 nm. An antibody specific for the amino-terminal
region only labelled one end of each filament, suggesting that
a-synuclein filaments are polar structures. We subsequently
reported similar findings on filaments from the substantia
nigra of PD patients (Fig. 1d—g) (Crowther et al. 2000).

o-Synuclein and Papp-Lantos bodies

Multiple system atrophy (MSA) is a neurodegenerative dis-
ease characterised by a combination of autonomic, cerebellar,
parkinsonian, pyramidal and cognitive symptoms (Goedert
2015). It is divided into parkinsonian (MSA-P) and cerebellar
(MSA-C) variants. A rarer cortical variant (MSA-FTLD) has
also been described. In most countries, MSA-P is the most
common form. MSA comprises what used to be called
olivopontocerebellar atrophy, striatonigral degeneration and
Shy—Drager syndrome.

Inclusions in the cytoplasm of oligodendrocytes (Papp—
Lantos bodies) are the major histological hallmark of MSA
(Papp et al. 1989). Less often, nuclear inclusions are present,
as are neuronal cytoplasmic and nuclear inclusions. Together
with Nigel Cairns and Peter Lantos at the Institute of
Psychiatry of King’s College London, we showed that glial
and neuronal inclusions of MSA contain «-synuclein
(Fig. 2a—c) (Spillantini et al. 1998c). The inclusions were
stained by antibodies recognising the amino- and carboxy-
termini of o-synuclein. By double-labelling, staining for o-
synuclein was more extensive than staining for ubiquitin, in-
dicating that the aggregation of x-synuclein preceded
ubiquitination. Antibodies against 3- and y-synuclein failed
to stain the inclusions. Similar results were reported by others
at about the same time (Wakabayashi et al. 1998; Tu et al.
1998).

Filaments from MSA brains had a diameter of 5—18 nm and
were strongly labelled by an antibody specific for the carboxy-
terminus of -synuclein (Fig. 2d, e) (Spillantini et al. 1998c).
An amino-terminal antibody only labelled one filament end,
as was the case in PD and DLB (Fig. 2f, g). This work re-
vealed a molecular link between MSA and Lewy pathology
disorders. However, unlike PD and DLB, where o-synuclein
filaments are mostly present in the cytoplasm of nerve cells in
the form of Lewy bodies and Lewy neurites, in MSA, they are
found in the cytoplasm and nuclei of both nerve cells and glial
cells. Since 1998, PD, DLB and MSA have frequently been
called ‘synucleinopathies’ (Goedert and Spillantini 1998).
Filaments assembled from bacterially expressed human oc-
synuclein are structurally and antigenically similar to those
extracted from DLB and MSA brains (Fig. 3) (Crowther
et al. 1998; Conway et al. 1998). However, higher-resolution
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Fig. 1 The «-synuclein pathology of Parkinson’s disease. Lewy
pathology in the substantia nigra and several other brain regions defines
Parkinson’s disease at the neuropathological level. This is shown by light
microscopy, labelled by «-synuclein antibodies (a—c). Using
immunoelectron microscopy, filaments extracted from the Lewy
pathology were decorated by «-synuclein antibodies (d—g). a Two
pigmented nerve cells, each containing an x-synuclein-positive Lewy
body (red arrows); Lewy neurites (black arrows) are also
immunopositive. Scale bar 20 um. b Pigmented nerve cell with two -

techniques, such as cryogenic electron microscopy, may re-
veal structural differences between these filaments in the
future.

Twenty years of synucleinopathies

Lewy pathology is also the defining feature of several rarer
diseases, including pure autonomic failure, in which «-
synuclein aggregates in the peripheral sympathetic nervous
system are the major neuropathological hallmark (Arai et al.
2000). In PD, abundant Lewy pathology is present in the
enteric, peripheral and central nervous systems. Some patients
presenting clinically with pure autonomic failure go on to
develop PD or DLB (Kaufmann et al. 2004). In incidental
Lewy body disease, which may be a preclinical form of PD,
Lewy pathology is present in the absence of clinical motor
symptoms (Iwanaga et al. 1999; Del Tredici et al. 2002;
Dickson et al. 2008; Beach et al. 2008). Similarly, cases with
oligodendroglial «-synuclein inclusions in the absence of

synuclein-positive Lewy bodies. Scale bar 8 pm. ¢ «-Synuclein-positive
extracellular Lewy body. Scale bar 4 um. d—g Isolated filaments from the
substantia nigra of patients with Parkinson’s disease are decorated by an
antibody directed against the carboxy-terminal (d, e) or the amino-
terminal (f, g) region of a-synuclein. The gold particles conjugated to
the second antibody appear as black dots. Note the uniform decoration (d,
e) and the labelling of only one filament end (f, g). Scale bar 100 nm.
From Goedert (2001)

clinical symptoms, akin to preclinical MSA, have been de-
scribed (Parkkinen et al. 2007; Fujishiro et al. 2008).

The clinical Parkinson’s syndrome is defined as bradykine-
sia that worsens over time, in conjunction with at least one of
three additional features: rigidity, resting tremor or gait distur-
bance (Jenner et al. 2013; Postuma et al. 2015). At the time of
diagnosis, around 30% of dopaminergic neurons in the
substantia nigra and 50-60% of their axon terminals have
been lost (Cheng et al. 2010), consistent with a centripetal
mechanism of aggregate formation and neurodegeneration.

Physiological function of x-synuclein

The physiological function of «-synuclein is incompletely
understood. It binds to acidic phospholipids through its
amino-terminal repeats (Davidson et al. 1998; Jensen
et al. 1998), when it multimerizes and becomes «-
helical (Chandra et al. 2003; Ulmer et al. 2005; Jao
et al. 2008). About 3500 «-synuclein molecules co-exist
with 300 synaptic vesicles in individual synaptic boutons
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Fig. 2 The o-synuclein pathology of multiple system atrophy. Glial
cytoplasmic inclusions in several brain regions define multiple system
atrophy. Similar inclusions are also present in the nuclei of some glial
cells, as well as in the cytoplasm and nuclei of some nerve cells and in
nerve cell processes. Inclusions labelled by «-synuclein antibodies are
shown by light microscopy (a—c). Using immunoelectron microscopy,
filaments extracted from the inclusions were decorated by «-synuclein
antibodies (d—g). a a-Synuclein-immunoreactive cytoplasmic
oligodendrocyte inclusions (red arrows) in pontine fibre tracts. b o-
Synuclein-immunoreactive nuclear oligodendrocyte inclusion (red
arrow) and cytoplasmic nerve cell inclusion (black arrow) in grey

from rat brain (Wilhelm et al. 2014). The presence of «-
synuclein in nerve terminals has suggested a role in neu-
rotransmitter release. It has been reported that it promotes
dilation of the exocytic fusion pore (Logan et al. 2017).
Mitochondria fragment upon «-synuclein expression
(Kamp et al. 2010; Nakamura et al. 2011), despite the fact
that in nerve cells «-synuclein is concentrated in nerve
terminals, whereas most mitochondria localise to nerve
cell bodies and dendrites (Bendor et al. 2013).

Loss of SNCA does not lead to a neurodegenerative pheno-
type (Abeliovich et al. 2000). The existence of three
synucleins raised the possibility that redundancy might ac-
count for the relatively mild SNCA knockout phenotype.
Mice lacking -, 3- and y-synucleins were subsequently pro-
duced (Greten-Harrison et al. 2010; Anwar et al. 2011). They
showed an increase in striatal dopamine release beyond that of
single knockouts, probably because synaptic vesicles fused
more with presynaptic membranes. However, the overall phe-
notype was relatively mild. No synuclein homologues are
found in C. elegans or D. melanogaster.
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matter of frontal cortex. ¢ «-Synuclein-immunoreactive nuclear nerve
cell inclusion (black arrow) in grey matter of pons. Scale bars (a)
5 um, (b) 50 pm, (¢) 30 um. d—g Isolated filaments from the frontal
cortex and cerebellum of patients with multiple system atrophy are
decorated by antibodies specific for the carboxy-terminal (d, e) and
amino-terminal (f, g) regions of «-synuclein. The gold particles
conjugated to the second antibody appear as black dots. Note the
uniform decoration in (d, e) and the labelling of only one filament end
in (f, ). A twisted filament is shown in (d), whereas (e) shows a straight
filament. Scale bar 100 nm. Adapted from Goedert (2001)

o-Synuclein inclusions

The core of an «-synuclein filament, which is the sequence
required for a filament from human brain to look like a fila-
ment by electron microscopy, extends over approximately 70
amino acids (residues 30-100) (Miake et al. 2002; Der-
Sarkissian et al. 2003). The crystal structure of residues 68—
78 of human «-synuclein showed paired {3-sheets with paral-
lel 3-strands in each sheet and anti-parallel 3-strands between
the sheets. The zipper structure that marked the region be-
tween paired sheets was longer than in other peptide struc-
tures, and each pair of 3-sheets contained two water mole-
cules (Rodriguez et al. 2015). Upon assembly, full-length -
synuclein adopts structures rich in (3-sheets (Serpell et al.
2000). Recombinant o-synuclein that had been aggregated
using a seed from PD brain was studied by solid-state nuclear
magnetic resonance, scanning transmission electron micros-
copy and X-ray diffraction (Tuttle et al. 2016). The core of the
filament (residues 44-97) consisted of parallel in-register [3-
sheets with the topology of a Greek key.
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Fig. 3 Filaments extracted from
the brains of patients with
dementia with Lewy bodies (a),
multiple system atrophy (b) or
assembled from bacterially
expressed human a-synuclein (c)
were decorated by an anti-ot-
synuclein antibody. The gold
particles conjugated to the second
antibody appear as black dots.
From Goedert and Spillantini
(2012)

Assembly of a-synuclein is nucleation-dependent.
Deletion of residues 71-82 abolished the ability to assemble
into filaments (Giasson et al. 2001); these residues are located
in the innermost (3-sheet of the core (Tuttle et al. 2016).
Deletion of residues 66—74 also prevented assembly (Du
et al. 2003), whereas the absence of the carboxy-terminal re-
gion promoted assembly (Crowther et al. 1998).

Genetics of SNCA

Seven dominantly inherited missense mutations in SNCA have
been described as the cause of familial PD (Fig. 4). Besides
AS53T, they include A30P (Kriiger et al. 1998), E46K (Zarranz
et al. 2003), H50Q (Appel-Cresswell et al. 2013; Proukakis
et al. 2013), G51D (Kiely et al. 2013; Lesage et al. 2013),
AS53E (Pasanen et al. 2014; Martikainen et al. 2015) and
AS53V (Yoshino et al. 2017). The age of disease onset can be

variable, even within families but mutations G51D, A53E
and AS53T give rise to the earliest onset. Experimentally, mu-
tations E46K, H50Q and AS3T increase o-synuclein inclusion
formation (Serpell et al. 2000; Choi et al. 2004; Ghosh et al.
2013), whereas mutations A30P, G51D and A53E (Narhi et al.
1999; Bilal-Fares et al. 2014; Ghosh et al. 2014; Rutherford
et al. 2014) reduce aggregation rates. Mutations A30P, G51D
and AS53E also lead to a reduced ability of mutant «-synuclein
to interact with acidic phospholipids (Chandra et al. 2003;
Bilal-Fares et al. 2014; Ghosh et al. 2014; Ysselstein et al.
2015). These findings are consistent with work that has sug-
gested an antagonistic relationship between lipid binding of «-
synuclein and aggregation into cytotoxic species (Burré et al.
2015; Iljina et al. 2016; Cremades et al. 2012).

Dominantly inherited duplications and triplications of the
chromosomal region that contains SNCA have also been found
to cause PD (Fig. 4) (Singleton et al. 2003; Chartier-Harlin

@ Springer



Cell Tissue Res

a
1 140

b Allele 1 Allele 2

Gene

doenas - - H -

Cc
7
GLSKAKEGVVA
AAEKTKQGVAE D

P-— | >

K e AAGKTEKEGVLY >F/T/V
VGSKTKEGVVHGVAT
VAEKTKEQVTN
VGGAVVTGVTA
VAQKTVEGI-\GSS7

H T
L fHH

ution -+

mutation

Fig.4 Human «-synuclein and its disease-causing mutations. a Diagram
of the 140 amino acid human o«-synuclein. The seven amino-terminal
repeats are shown as blue bars. b A dominantly inherited increase in
gene dosage (duplication or triplication) of the chromosomal region
containing SNCA gives rise to Parkinson’s disease and dementia with
Lewy bodies. Homozygous duplications have also been described. In

et al. 2004; Ibanez et al. 2004). A homozygous duplication of
SNCA has been described (Ikeuchi et al. 2008). The sequence
of «-synuclein was wild-type, showing that an increase in
protein levels rather than a change in its properties is sufficient
to cause PD. Heterozygous duplications of SNCA gave rise to
a form of PD that was similar to the sporadic disorder in terms
of age of onset and symptoms but triplication caused a more
severe phenotype, with an earlier age of onset and prominent
cognitive impairment.

Individuals with the A53T mutation in SNCA developed a
severe form of PD that was often accompanied by dementia. A
clinical picture resembling DLB was characteristic of a family
with the E46K mutation, whereas individuals from the family
with the A30P mutation developed late-onset PD and had only
mild dementia. Neuropathologically, some individuals, in par-
ticular those with mutations G51D and A53E, had features of
both PD and MSA. This overlap of clinical and neuropatho-
logical characteristics supports the view that the aetiologies of
PD, DLB and MSA are closely related.

Heterozygous mutations in the gene encoding leucine-rich
repeat kinase 2 (LRRK?2) are the most common cause of dom-
inantly inherited PD (Paisan-Ruiz et al. 2004; Zimprich et al.
2004). LRRK2 is a multidomain protein of 2527 amino acids
with two enzymatic activities (guanosine triphosphatase and
protein kinase) and multiple protein—protein interaction do-
mains. G2019S, the most common mutation, increases
LRRK2’s kinase activity 2- to 3-fold. Disease penetrance is
incomplete. Some Rab GTPases are prominent LRRK?2 tar-
gets (Steger et al. 2016) and their increased phosphorylation
may result in disturbed vesicle trafficking. Moreover, muta-
tions in the gene encoding TMEM230, a transmembrane pro-
tein of synaptic vesicles, give rise to inherited PD (Deng et al.
2016). The resulting impairment of vesicle trafficking may

@ Springer

addition, missense mutations in SNCA cause dominantly inherited
forms of Parkinson’s disease and dementia with Lewy bodies. ¢ The
repeats (residues 7-87) of human o-synuclein are shown, with disease-
causing mutations (A30P, E46K, H50Q, G51D, A53E, A53T and A53V)
given as blue letters. Amino acids that are identical in at least five of the
seven repeats are shaded in blue

impair the degradation of «-synuclein, resulting in a net effect
not unlike that of gene dosage mutations.

Genome-wide association studies (GWAS) of risk in
idiopathic PD showed that SNCA makes the largest contri-
bution. The implicated polymorphisms lie outside the cod-
ing region and thus probably affect mRNA expression,
resulting in increased expression of a-synuclein (Satake
et al. 2009; Simon-Sanchez et al. 2009; Nalls et al.
2014). Variability in LRRK2, GAK (cyclin G-associated
kinase) and MAPT (microtubule-associated protein tau)
has also been implicated. Variants in SNCA and MAPT
have been reported as risk factors for MSA (Scholz et al.
2009; Al-Chalabi et al. 2009; Vilarino-Giiell et al. 2011).
However, a GWAS of risk in MSA failed to confirm these
findings (Sailer et al. 2016). None of the studied variants
were statistically significant. The estimated heritability of
MSA is lower than that of PD (Federoff et al. 2016).

The most common genetic risk factor for idiopathic PD and
DLB, missense mutations in one or both alleles of GBAI, the
glucocerebrosidase gene, was not discovered using GWAS
but through clinical studies (Neudorfer et al. 1996; Aflaki
et al. 2017). GBAI encodes glucocerebrosidase, which de-
grades glucosylceramide into glucose and ceramide.
Homozygous loss-of-function mutations in GBAI cause
Gaucher’s disease, a lysosomal storage disorder.
Approximately 7% of patients with PD carry mutations in
GBA1. Conversely, 5-7% of patients with Gaucher’s disease
develop PD before the age of 70. The mechanistic links be-
tween glucocerebrosidase and «-synuclein are unclear but
there appears to be an inverse correlation between the levels
of glucocerebrosidase and o-synuclein (Mazzulli et al. 2011).
Experimental evidence supports a direct interaction between
o-synuclein and glucocerebrosidase (Yap et al. 2011).
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Mutations in GBA I may also predispose to MSA (Mitsui et al.
2015).

Propagation of x-synuclein aggregates

Evidence for the existence of prion-like mechanisms in dis-
eased human brain has come from the development of
scattered Lewy pathology in foetal human midbrain neurons
that were therapeutically implanted into the striata of patients
with advanced PD (Li et al. 2008; Kordower et al. 2008).
Lewy pathology was detected in 2—5% of grafted cells 10 or
more years after transplantation, approximately the same per-
centage as that of neurons with Lewy pathology in the pars
compacta of the substantia nigra in PD. After 24 years, 11—
12% of grafted dopaminergic neurons exhibited x-synuclein-
and ubiquitin-positive inclusions (Li et al. 2016).

Over the past 8 years, experimental studies have shown that
the intracerebral injection of «-synuclein assemblies from dis-
eased human brains or recombinant proteins induces nerve
cells to form intracellular inclusions at the injection sites, from
where they can spread to distant brain regions (Goedert 2015;
Shimozawa et al. 2017). Moreover, the peripheral injection of
a-synuclein aggregates assembled from recombinant protein
caused a-synuclein pathology and neurodegeneration in the
central nervous system of transgenic but not wild-type, mice
(Breid et al. 2016; Ayers et al. 2017). Using long-term in vivo
imaging, aggregated recombinant «-synuclein was shown to
seed the ordered assembly of expressed «-synuclein in brain
(Osterberg et al. 2015). Inclusion-bearing neurons
degenerated, demonstrating that inclusion formation was
linked to cellular toxicity. In the substantia nigra from PD
patients, the proportion of Lewy body-containing neurons is
approximately 4%. The inclusions are probably degraded
when the neurons that bear them die. In a model in which
neurons are killed by the Lewy pathology, it has been estimat-
ed that the mean survival time of an eosinophilic Lewy body is
of the order of 6 months (Greffard et al. 2010).

Some morphological differences between disease-
associated «-synuclein filaments have been described
(Spillantini et al. 1998b). Lewy pathology was positive by
Campbell-Switzer silver but not Gallyas—Braak silver
(Uchihara et al. 2005a). The same has been shown to be the
case of inclusions made of tau isoforms with 3 repeats
(Uchihara et al. 2005b). By contrast, the glial cytoplasmic
inclusions of MSA were positive by both Campbell-Switzer
and Gallyas—Braak silver, like inclusions made of all 6 tau
isoforms. Inclusions made of tau isoforms with 4 repeats are
only positive with Gallyas—Braak silver. Brain extracts from
MSA patients propagated in heterozygous mice transgenic for
human A53T «-synuclein, in contrast to brain extracts from
PD patients (Woerman et al. 2015; Prusiner et al. 2015).
However, unlike in MSA, «-synuclein inclusions were exclu-
sively neuronal.

Despite an increased understanding of the pathogenesis of
MSA, the origin of glial x-synuclein aggregates is still un-
clear. Ordered assembly is concentration-dependent and, until
recently, it was believed that mature oligodendrocytes did not
express «-synuclein. However, a study based on single-cell
capture and quantitative real-time PCR has challenged this
view (Asi et al. 2014). It pointed to the possibility that oc-
synuclein aggregates characteristic of GCIs might be of oligo-
dendroglial origin. Cell-to-cell transfer might also play a role,
since oligodendrocytes have been shown to take up «-
synuclein assemblies (Kisos et al. 2012; Reyes et al. 2014).
It remains to be seen if MSA is a primary gliopathy with
neurons involved secondarily, or if it is a primary neuronal
problem with glial cells affected secondarily.

Polymorphs of recombinant aggregated x-synuclein in the
form of ribbons and fibrils have been described (Bousset et al.
2013). When injected into the rat substantia nigra, the ribbons
gave rise to Lewy pathology, whereas the fibrils, which did not
seed Lewy pathology, led to the loss of dopaminergic neurons
(Peelaerts et al. 2015). It remains to be seen if ribbons and fibrils
have their counterparts in human synucleinopathies. In a sepa-
rate work, some «-synuclein filaments seeded both tau and -
synuclein aggregation, whereas others only seeded o-synuclein
aggregation (Guo et al. 2013). These conformers of aggregated
o-synuclein exhibited different properties after proteinase K di-
gestion. They were similar to prion strains, in that they showed
structural variations, differences in seeding properties and heri-
tability of phenotypic traits.

Conclusion

The ordered assembly of «-synuclein has proved to be central
to PD, DLB and MSA. Understanding disease aetiology and
pathogenesis will probably be necessary for the development
of safe and effective mechanism-based therapies that are su-
perior to what is currently available. This is a tall order for PD,
where L-DOPA has proved to be a good symptomatic therapy
for the motor symptoms, at least for some time during the
course of the disease. Perhaps future treatments aimed at
slowing down or arresting the progression of PD will be com-
plementary to L-DOPA. Although the diagnosis of PD relies
on the motor effects of a deficient function of the substantia
nigra, there are also non-motor symptoms, such as hyposmia
(Ansari and Johnson 1975), REM sleep behaviour disorder
(Schenck et al. 1986), depression and constipation, which
can precede the motor symptoms by several years (Schapira
and Tolosa 2010). The presence of early non-motor features
has given rise to the concept of prodromal PD (Berg et al.
2015). The hope is that in the future it will become possible
to identify those who are in the preclinical phase of PD, with
some «-synuclein inclusions but no symptoms. If so, preven-
tive strategies, when available, could be tried.
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