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Abstract

A copula models the relationships between variables independently
of their marginal distributions. When the variables are time series, the
copula may change over time. A statistical framework is suggested
for tracking these changes over time. When the marginal distribu-
tions change, pre-�ltering is necessary before constructing the indica-
tor variables on which the tracking of the copula is based. This entails
solving an even more basic problem, namely estimating time-varying
quantiles. The methods are applied to the Hong Kong and Korean
stock market indices. Some interesting movements are detected, par-
ticularly after the attack on the Hong Kong dollar in 1997.
KEYWORDS: Concordance, contagion, exponentially weighted mov-

ing average; quantiles; signal extraction, tail dependence.
JEL Classi�cation: C14, C22

1 Introduction

Stock returns are known to be non-normal with a distribution that changes
over time. The most pervasive form of time variation is changing variance or
volatility. However, features other than scale, such as skewness or kurtosis,
may also change.
Just as the normal distribution is inadequate for modeling univariate

time series, so the bivariate normal distribution is not suitable for modeling
the relationship between two assets. As well as the asset returns not being
normally distributed, their comovements may not adequately captured by
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correlation coe¢ cients. For example, marginal distributions tend to be char-
acterized by fat tails and the probability of two markets both exhibiting a
relatively high movement (in same direction) may be much higher than can
typically be captured with a bivariate normal distribution.
A copula models the relationships between two variables independently

of their marginal distributions. It does so by means of a joint distribution
function with standard uniform marginals. Hence it gives the probability
that the observations in two series are each below certain quantiles. The
separation of the dependence structure from the marginals introduces more
�exibility into modeling.
There is evidence to suggest that copulas may sometimes change over

time; see for example, Van Der Goorbergha, Genest and Werker (2005),
Rodriguez (2007) and Patton (2006). The aim of this paper is to suggest a
way in which this might be done. The proposed method is based on the �lter
used in Harvey and Fernandes (1989) to estimate the underlying probability
in a binary series. The �lter takes the form of an exponentially weighted
moving average (EWMA). Although the construction of the �lter draws on
Bayesian technology in its use of conjugate distributions, it yields a likelihood
function that can be maximized to give an estimate of the discount coe¢ cient
in the EWMA. Smoothed estimates can also be computed by drawing on
the correspondence with the Gaussian local level model. The approach is
di¤erent from the one employed by Patton (2006). He estimates conditional
copula models in which the parameters are assumed to be functions of past
observations
Tracking the movements in di¤erent parts of the copula may point to a

variety of changes in the relationship between the two series. In particular
we may wish to focus on movements in lower (upper) tail dependence as
characterized by the probability that one series is below (above) a given
quantile, given that the other is below (above) a given quantile. If a single
measure of dependence is required, it may be appropriate to consider the
probability that both observations are below their respective medians. A
simple transformation of this measure yields Blomqvist�s beta, which, because
it lies in the range [�1; 1], is comparable with other measures of association;
see Kruskal (1958) and Fermanian and Scaillet (2003). At any point in time,
Blomqvist�s beta and measures of tail dependence are given directly from
estimates of the copula. Approximations to Kendall�s Tau and Spearman�s
rank correlation can also be obtained.
If the medians are constant over time, Blomqvist�s beta is una¤ected
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by changes in volatility. However, even if the medians are constant, which
is not necessarily the case for stock returns, other parts of the copula will
certainly be a¤ected by changes in the marginal distributions. Hence some
kind of pre-�ltering is needed. The most general solution is to try to track the
distribution functions of the marginals. This problem is a more fundamental
one than tracking the copula, but it can be solved by generalizing the �lter
for binary observations so as to deal with categorical data. The categories
correspond to parts of the distribution and the �lters for the proportions in
each category are EWMAs, as in the binary case. The discount factor, or
factors, can be estimated by maximizing a likelihood function based on the
multinomial distribution. Given these proportions, in what may be regarded
as a time-varying histogram, quantiles can be estimated by interpolation.
Indicator variables can be constructed using these time-varying quantiles
and the copula estimated.
The plan of the paper is as follows. Section 2 discusses the method for

estimating the changing probability in a binary time series and indicates its
relevance to time-varying copulas. Section 3 sets out the proposal for esti-
mating time-varying quantiles and explores the relationship of this method to
non-parametric procedures, as in Yu and Jones (1998). Another possibility,
that of estimating the density by a discounted kernel, is also discussed. Sec-
tion 4 returns to the copula and sets out a method, similar to that adopted
for computing changing proportions in univariate distributions, for simul-
taneously estimating all parts of the copula. The estimation of parametric
copulas and measures of association, such as Spearman�s rank correlation
coe¢ cient and Kendall�s Tau, is then discussed. Section 5 applies the tech-
niques to exploring the relationship between the Hong Kong (Hang Seng)
and Korean (SET) stock price indices, with special emphasis on the issue of
contagion stemming from the speculative attack on the Hong Kong dollar in
1997; see Dungey et al (2005). Tracking the copula provides a coherent de-
scription and provides some new insights. Figures 1 and 2 show daily returns1

in the two markets from 27/11/79 to 27/11/07. Three events are marked: (i)
Black Monday, October, 19th, 1987; (ii) the attack on Hong Kong dollar on
20 Oct 1997; (iii) the �high tech.� crash of 2nd October 2000. The increase
in volatility immediately after 20th October 1997 is clearly discernible.

1The Hong Kong and Korean stock price indices are in local currency - the Hong Kong
dollar and Korean won respectively.
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Figure 1: Hong Kong stock returns
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Figure 2: Returns on the Korean SET index
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2 Tracking changes in the copula

2.1 Copulas

A copula is a joint distribution function of standard uniform random vari-
ables, U1 and U2; that is

C(u1; u2) = Pr(U1 � u1; U2 � u2); 0 � u1; u2 � 1

When the variables are independent, C(u1; u2) = Pr(U1 � u1):Pr(U2 �
u2) = u1u2:
The copula gives the probability that observations on two variables, Y1

and Y2 are less than or equal to given quantiles, that is

C(� 1; � 2) = Pr(Y1 � �1(� 1); Y2 � �2(� 2)) = F (�1(� 1); �2(� 2)); t = 1; :::; T
(1)

where �i(� i) is the � i�quantile for i = 1; 2. The probability that both obser-
vations lie above their pre-assigned quantiles is known as the survival function
and it is equal to

C(� 1; � 2) = Pr(Y1 > �1(� 1); Y2 > �2(� 2)) = 1� � 1 � � 2 + C(� 1; � 2); (2)

see, for example, Cherubini et al (2004, p75) or McNeil et al (2005, p196).
Note that C(0:5; 0:5) = C(0:5; 0:5):
The copula provides a �exible way of capturing dependence. The variables

Y1 and Y2 are said to exhibit positive quadrant dependence if C(� 1; � 2) �
� 1� 2. The quadrant association, C(� 1; � 2) + C(� 1; � 2); gives a measure of
dependence in the range [0; 1]; see Kruskal (1958, p 818). It can be seen from
(2) that quadrant association is a function of C(� 1; � 2): Blomqvist�s beta,
2(C(0:5; 0:5) + C(0:5; 0:5)) � 1 = 4C(0:5; 0:5) � 1; lies in the range [�1; 1]
and is zero when the series are independent.
Lower tail dependence, C(u1; u2)=u2 = Pr(U1 � u1 j U2 � u2), is the

probability that an observation from the �rst series is below u1; given that
the observation from the second series is below u2. Upper tail dependence is
C(u1; u2)=u2: As an example, the Clayton copula is de�ned as

C(u1; u2) = (u
��
1 + u��2 � 1)�1=�; � 2 [�1;1) (3)

Lower tail dependence with respect to the ��quantile is

C(� ; �)=� =
�
2� � �

��1=�
(4)
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For � = 1, C(� ; �)=� is 0.526 for � = :10, but if � = 5 it goes up to 0.870. The
coe¢ cient (index) of lower (left) tail dependence is �L = lim�!0C(� ; �)=� ;
which for the Clayton copula with � > 0 is �L = 2�1=�: The coe¢ cient of
upper tail dependence is �U = lim�!0C(� ; �)=(1� �); which for the Clayton
copula is zero.
Figure 3 shows a scatter plot of the ranks, divided by T; of T = 200

observations generated from a Clayton copula with � = 5: The strong lower
tail dependence shows up in the concentration of points in the lower left hand
corner.
There are other characteristics of copulas apart from association. The

survival copula, denoted here as C
�
(1� u1; 1� u2); is equal to C(u1; u2) and

two variables are said to be (radially) symmetric if and only if C
�
(1�u1; 1�

u2) = C(u1; u2): Thus C(:25; :25) � C(:75; :75) and C(:10; :10) � C(:90; :90)
might give informative measures of asymmetry.

2.2 Estimation of a constant copula

The copula can be estimated by counting the number of pairs of observations
less than or equal to the relevant quantiles, and dividing by T ; the estimator
of (1) will be denoted by bC(� 1; � 2): The same estimator can be obtained from
the ranks, r1;t; r2;t; t = 1; ::; T: The scatter plot of the ranks, divided by T;
is de�ned on a lattice, in the unit square, in which each axis is broken into
T equal spaces delineated by the points i1=T and i2=T;with i1; i2 = 0; ::; T:
This forms the domain of the empirical copula, de�ned as

bC(i1=T; i2=T ) = 1

T

TX
t=1

I(r1;t � i1)I(r2;t � i2)

where I(r1;t � i1) is the indicator function. The empirical copula frequency,bc(i1=T; i2=T ); is 1=T if the ranked observations i1 and i2 are elements of the
sample, and is zero otherwise; see Nelsen (1999, p 219).
A grouped empirical copula can be constructed by �rst de�ning � 1j and � 2k

so as to partition the unit interval on the u1 and u2 axes into n sub-intervals,
0 = � 10 < � 11 < � 12 < ::: < � 1;n = 1 and similarly for � 2k; k = 0; 1; :::; n.
To simplify matters it will be assumed that the sub-intervals are equal. The
estimates of the copula for the whole grid are then given by

bC(� 1j; � 2k) = 1

T

TX
t=1

I(r1;t=T � � 1j)I(r2;t=T � � 2k); j; k = 1; :::; n;
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Figure 3: Scatter plot of 200 ranked observations from a Clayton copula with
� = 5:

with bCt(� 1;n; � 2;n) = 1 by de�nition. The grouped empirical copula frequency,bc(� 1j; � 2k); is given by the proportion of observations in each of the n2 squares.
Figure 4 shows the grouped empirical copula frequency for the scatter plot
in �gure 3. The reason for wanting to work with grouped observations will
become apparent when we estimate changing copulas.

2.3 Tracking movements in a binary series

Consider a binary series, It, taking the value 0 or 1. At any point in time

E(It) = �t; t = 1; :::; T (5)

where �t = Pr(It = 1); t = 1; :::; T: This probability may be estimated by a
�lter of the form described in Smith (1981) and Harvey and Fernandes (1989);
see also Harvey (p350-60). It is assumed that the distribution of �t�1; given
information up to and including time t�1 is beta with parameters a1;t�1 and
a2;t�1: Then the distribution of �t; given information up to and including
time t� 1; is beta with parameters

a1;tjt�1 = !a1;t�1; a2;tjt�1 = !a2;t�1; t = 1; :::; T (6)
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Figure 4: Bivariate histogram of 200 observations simulated from a Clayton
copula with � = 5:
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where ! is a discount parameter, 0 < ! � 1. When the t-th observation
becomes available, the conjugacy of the beta and binomial distributions leads
to the updating equations

a1;t = a1;tjt�1 + It; a2;t = a2;tjt�1 + 1� It; t = 1; :::; T (7)

so providing the parameters for the new beta distribution. The recursions
may be initialized with a non-informative uniform prior, which means that
a1;0 = 1 and a2;0 = 1.
The estimated proportion at time t is the mean of the conditional distri-

bution of �t; that is

E(�tjIj(�); j = 1; :::; t) = e�t = a1t=(a1t + a2t); t = 1; :::; T:

The variance is

V ar(�tjIj(�); j = 1; :::; t) =
a1;ta2;t

(a1;t + a2;t)2(a1;t + a2;t + 1)
: (8)

A more general formulation has the series recording the number of hits,
yt; from a binomial distribution with nt trials. The updating equations are
as in (7), but with It replaced by yt and 1 � It replaced by nt � yt: The
predictive distribution for yt is beta-binomial. However, with a binary series,
the predictive distribution reduces to a Bernouilli distribution and the log-
likelihood function is therefore

logL(!) =
TX
t=2

fIt ln e�tjt�1 + (1� It) ln(1� e�tjt�1)g; (9)

with e�tjt�1 = e�t�1:
The �ltered estimates are an EWMA in the indicators, that is

e�t =
t�1
�
j=0
!jIt�j + a1;0!

t

t�1
�
j=0
!j + (a1;0 + a2;0)!t

; t = 1; 2; ::: (10)

with a1;0 = a2;0 = 1 for a non-informative prior. The median lag in this
EWMA is ln(0:5)= ln! � 1 = �0:693= ln! � 1:
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The fact that the predictive distribution depends only on e�t+1jt suggests
calculating an approximation to (10), and hence e�t+1jt; from the following
EWMA2 e�t+1jt = (1� !)It + !e�tjt�1; t = 1; ::; T; (11)

with e�1j0 = 1=2: Hence, the recursions for a1;t and a2;t are unnecessary. From
(8), the MSE of e�t for large t is

MSE(e�t) ' e�t(1� e�t)(1� !)=(2� !): (12)

If �t were �xed the same MSE would be obtained with a sample size of
approximately (2� !)=(1� !): When ! is close to one, MSE(e�t) ' e�t(1�e�t)(1 � !): Thus for ! = :99; the RMSEs for � = 0:5; 0:25 and 0:1 are
approximately, .050, .043 and .030 respectively.
A two-sided smoothed estimator of �t corresponding to the EWMA �lter

may be constructed by analogy with a Gaussian random walk plus noise
model in which the signal-noise ratio, that is the variance of the disturbance
driving the random walk to the variance of the noise, is

q = (1� !)2=!:

An e¢ cient algorithm saves the �ltered estimates, e�tjt�1; and then calculates
rt�1 = !(rt + It � e�tjt�1); t = T; :::; 2;

where rT = 0: The smoothed estimates are then given by the forward recur-
sion e�tjT = !e�tjt�1 + (1� !)(rt + It); t = 1; :::; T;

with e�1jT = r1 + I1; see appendix. In the middle of a large sample
e�tjT ' 1� !

1 + !

X
j

!jjjIt+j (13)

The adoption of the recursion in (11) suggests the possibility of a change
in interpretation whereby the model is de�ned by the predictive distribution.
Such a model is said to be �observation driven�. The role of e�tjt�1 is analogous

2Although the estimates of �t obtained from (10) and the preceding recursion are
identical for small t; the notation does not distinguish between the two.
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to that of the variance in a GARCH(1,1) model.3 An advantage of this
revised interpretation is that observations may be simulated. In the earlier
setup the transition equation leading to (6) is only de�ned implicitly; see
the discussion in Smith and Miller (1986). Another advantage of letting the
predictive distribution de�ne the model is that (11) may be modi�ed to yield
di¤erent dynamics. In particular, we might consider the �lter

�t+1jt = (1� !� � !)�� + !�It + !�tjt�1; t = 1; ::; T; (14)

where the notation �t+1jt accords with that used by Andersen et al (2006)
for the variance in a GARCH model. This �lter is stable if !� + ! < 1; but
reverts to the EWMA if !�+! = 1: Estimation may be simpli�ed by setting
�� equal to the (unconditional) proportion in the sample; this is similar to
the use of �variance targeting�in GARCH estimation, as in Laurent (2007,
p25).

2.4 The changing copula

Consider two serially independent time series, with time invariant marginal
distributions, observed as y1t and y2t, t = 1; :::; T: Let Ct(� 1; � 2) denote
the copula at time t for t = 1; :::; T: The indicator variable taking the value
one if both observations are less than or equal to pre-assigned quantiles,
that is I(y1t � �1(� 1)):I(y2t � �2(� 2)); t = 1; :::; T; contains information on
changes in the copula since its expected value is Ct(� 1; � 2): If the quantiles
are unknown then the indicator is replaced by the sample indicator

It(� 1; � 2) = I(y1t � e�1(�)):I(y2t � e�2(�)); t = 1; :::; T (15)

The �lter of the previous sub-section may be applied with Ct(� 1; � 2) playing
the role of �t. Thus

Ct+1jt = (1� !)It(� 1; � 2) + !Ctjt�1; t = 1; ::; T

A suitable initialization is obtained by noting that independence implies that
C1j0(� 1; � 2) = � 1� 2:
If the copula is constant, the estimates of C(� 1; � 2) and C(� 1; � 2) sat-

isfy an identity of the form (2). This is no longer the case when �lter-
ing. This suggests the use of an estimator of C(� 1; � 2) to help to esti-
mate the movements in Ct(� 1; � 2) more accurately. The indicator de�ned by

3The notational convention adopted by Andersen et al (2006) in their review of GARCH
models is �2tjt�1; rather than simply �

2
t ;stressing that �

2
tjt�1 is a �lter.
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I(y1t > e�1(�)):I(y2t > e�2(�)) = I t(� 1; � 2) may be used to estimate Ct(� 1; � 2);
initialized with (1� � 1)(1� � 2): The modi�ed estimator of Ct(� 1; � 2) is

bCt(� 1; � 2) = eCt(� 1; � 2) + eCt(� 1; � 2)� 1 + � 1 + � 2
2

: (16)

We might proceed by estimating the quadrant association, eCQA;t(� 1; � 2) =eCt(� 1; � 2) + eCt(� 1; � 2); by adding the indicators It(� 1; � 2) and I t(� 1; � 2) and
initializing with 1� � 1 � � 2 + 2� 1� 2:
Lower tail dependence is estimated from (16) as bCt(� 1; � 2)=� 2; � 2 � 0:5:

The formula for upper tail dependence isbCt(� 1; � 2)
1� � 2

=
bCt(� 1; � 2) + 1� � 1 � � 2

1� � 2
; � 2 > 0:5

The emphasis will usually be on the movements in these measures when
� 1 = � 2: For � 1 = � 2 = 0:5 the lower and upper tail dependence measures
are both equal to the quadrant association. Note that Blomqvist�s beta is

2( eCt(� 1; � 2) + eCt(� 1; � 2))� 1 = 2 eCQA;t(� 1; � 2)� 1:
Figure 6 shows estimates of the quadrant association, eCQA(� 1; � 2); for

� = 0:25; 0:5 and 0:75 from 2000 observations simulated from a bivariate
normal distribution in which the marginals are constant but the correlation
coe¢ cient changes from zero to 0.75 half way through the sample. The dis-
count factor is set at 0.995. Figure 5 contrasts eCt(� ; �) with bCt(� ; �): It can
be seen that eCt(� ; �) is far more variable.
In �gure 6, eCQA(� ; �) hovers around 0.5 for the �rst 1000 observations,

and then with the introduction of correlation it rises to a new level of be-
tween 0.7 and 0.8, reaching 0.7 after approximately 200 observations.4 For
a bivariate Gaussian distribution, the correlation is related to the quadrant
association at � = 0:5 by the formula CQA(0:5; 0:5) = 0:5+ (1=�) arcsin �:
Thus � = 0:75; corresponds to CQA(0:5; 0:5) = 0:77:
Note that lower tail dependence is ( eCQA(� ; �)� 1 + 2�)=2� ; while upper

tail dependence is ( eCQA(� ; �) + 1� 2�)=2(1� �): A quadrant association of
0.8 yields tail dependence coe¢ cients of 0.6 for � = 0:25 and 0.75. Indeed
this will always be the case for complementary � 0s; that is � and 1�� . Recall
that for � = 0:5; tail dependence is equal to quadrant association.

4The quadrant association test statistics of Busetti and Harvey (2008) for � = :1; .25,
.5, .75 and .9 are 3.87, 5.21, 7.40, 4.20 and 2.07 respectively. All are highly signi�cant.
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Figure 5: Modi�ed estimator, bCt(� 1; � 2); in upper graph, compared with
direct estimator, eCt(� 1; � 2):
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Figure 6: Quadrant association for � = 0:25; :5 and 0.75.
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Changing asymmetry may be tracked with estimators of (C(� ; �)�C�(1�
� ; 1� �))=� for, say, � = :25 and :10: The modi�ed estimator is

eCt(� ; �) + eCt(� ; �)� eCt(1� � ; 1� �)� eCt(1� � ; 1� �)
2�

(17)

= bCt(� ; �)� � bCt(1� � ; 1� �))=�
Dividing by � means that maximum asymmetry gives a measure equal to one
(perfect lower TD and no upper TD) or minus one (perfect upper TD and
no lower TD).

2.5 Changing marginals

When the marginal distributions are symmetric about a constant mean, the
median is constant, so C(0:5; 0:5) can be tracked with no pre-�ltering. The
fact that C(0:5; 0:5) may be estimated without estimating the quantiles of
the marginals or correcting for stochastic volatility is an important advantage
over other measures of association.
If there are only changes in scale, the marginals can be standardized by

dividing by a measure of volatility. The time-varying copula can then be
�tted.
More generally, if the marginals change over time, the indicator variables

need to be de�ned in terms of changing quantiles, �1t(� 1) and �2t(� 2):

2.6 Changing joint distributions

For some purposes estimating the joint distribution rather than the copula
may be what is required; see the discussion on coexceedances in Bae, Karolyi
and Stulz (2003). Thus the estimated probabilities, bFt(�1t(� 1); �2t(� 2)) =bCt(� 1; � 2); are plotted against the (time-varying) quantiles, �1(� 1) and �2(� 2);
rather than against � 1 and � 2.
When the observations are no longer IID, the joint distribution may still

be estimated with respect to time-invariant (unconditional) quantiles. Track-
ing movements in bFt(�1(� 1); �2(� 2))= bFt(�2(� 2)) may still be useful but are no
longer the same as tail dependence in the copula. Changes in the marginals,
for example in volatility, will be re�ected in movements in bFt(�1; �2):
The joint distribution may also be plotted against the (time-varying)

quantiles, �1t(� 1) and �2t(� 2); that is bFt(�1t(� 1); �2t(� 2)) = bCt(� 1; � 2):
14



3 Tracking a univariate distribution

Changing quantiles may be estimated5 non-parametrically, as in Yu and
Jones (1998), by minimizing a local check function. De Rossi and Harvey
(2006, 2008) construct a similar estimator by assuming that �(�) follows a
time series model and show how this is related to the non-parametric estima-
tor. An advantage of the more model-based approach is that it automatically
determines a weighting pattern at the end of the sample that is consistent
with the one in the middle. De Rossi and Harvey (2006) suggest estimat-
ing parameters by cross-validation. Unfortunately this turns out to be very
time-consuming, particularly if the quantile changes relatively slowly over
time.
The approach proposed here tackles the problem indirectly. However, it

is somewhat more limited than the method in De Rossi and Harvey (2008)
insofar as it is only suitable for series, such as returns, that are station-
ary or close to being stationary. The statistical method generalizes the one
for binary series to categorical data; see Harvey (1989, p 355-6). Indicator
variables are de�ned according to whether each observation lies within a par-
ticular pre-assigned range. In the basic model, the discount factor is the same
for all groups and it may be estimated by maximizing a likelihood function
that comes from a multinomial distribution. The �lter tracks the propor-
tions in each category and, from these proportions, time-varying quantiles
are extracted. Smoothed estimates can also be computed. It follows from
the method of construction that the quantiles cannot cross. The method can
be generalized to have discount factors that vary over groups and over time.

3.1 Time-varying histograms

A changing distribution function can be estimated and tracked by �rst divid-
ing the support intoN categories, de�ned by the boundaries�1; �1; :::; �N�1;1:
Let It;j = 1 if the observation is in category j, that is �j�1 < yt � �j;
j = 1; :::; N; and zero otherwise. Then, introducing a discount factor, !; that
is common to all categories, and assuming that the proportions in each cat-
egory at time t� 1 are from a Dirichlet distribution with parameters aj;t�1;

5The simplest way of estimating time-varying quantiles is by �historical simulation�,
whereby quantiles are computed for a moving block of data ; see Andersen et al (2006).
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j = 1; :::; N; the prediction and updating recursions are

aj;tjt�1 = !aj;t�1; j = 1; :::; N; t = 1; :::; T (18)

and
aj;t = aj;tjt�1 + Ij;t; j = 1; :::; N; t = 1; :::; T (19)

with the uniform prior giving a0j = 1; j = 1; :::; N .
Solving the recursions yields

e�j;t = aj;t
�Nh=0ah;tjt�1

=

t�1
�
i=0
!iIj;t�i + !

t

t�1
�
i=0
!i + (N + 1)!t

; j = 1; :::; N; t = 1; 2; ::; T;

(20)
and each e�j;t; j = 1; :::; N is an EWMA. Note that �Ni=1e�i;t = 1 for all t =
1; ::; T as �Ni=1Ii;t = 1: Since the initial conditions are strictly positive, e�j;t > 0
for all j = 1; :::; N . Smoothed estimates can be constructed as in the binary
case.
The predictive distribution is the Dirichlet-multinomial, or Polya, when

there are several draws in each time period, but with a single draw it reduces
to the multinomial. Hence the log-likelihood function is just

lnL(!) =
TX
t=2

NX
j=0

It;j ln e�j;tjt�1 (21)

and, since e�j;t+1jt = e�j;t; it may be computed from the recursions

e�j;t+1jt = (1� !)Ij;t + !e�j;tjt�1; j = 1; :::; N; t = 1; ::; T; (22)

with e�j;1j0 = 1=N; j = 1; :::; N: The binary likelihood, (9), is obtained when
N = 2.
The �ltered proportions of observations less than or equal to �j; j =

1; :::; N are

e� j;t+1jt = e� j;t = �ji=1e�i;t; j = 1; :::; N; t = 1; :::; T (23)

Note that e�N;t = 1 and that each e� j;t+1jt; j = 1; :::; N; is also given by an
EWMA of the form (22). Plots of the e� 0j;ts or e�0j;ts may be useful in showing
how the distribution changes over time. It might also be useful to estimate
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the probability of being below a certain threshold, such as VaR, at any point
in time.
The above EWMAs may be replaced by other recursions. In particular,

recursions appropriate for stationary processes may be de�ned as at the end
of sub-section 2.3.
The EWMAs may be modi�ed to allow for explanatory variables; see

appendix B.

3.2 Time-varying quantiles

Time-varying quantiles may be extracted from the e� 0j;ts as follows. Suppose
an estimate of �t(�) is required, and that e� k�1;t � � � e� k;t for some k =
1; ::; N: Linear interpolation then yields the estimate

b�t(�) = � � e� k�1;te� k;t � e� k�1;tf�k � �k�1g+ �k�1; t = 1; :::; T (24)

where e� 0;t = 0 and e�N;t = 1: The boundaries, �0 and �N ; may need to be re-
de�ned and this requires some judgement. One possibility is to set �0 = ymin
and �N = ymax, but a more stable choice is the 1% and 99% quantiles.
By construction, e� k�1;t < e� k;t so the time series of b�t(�)0s cannot cross for

di¤erent � : Indeed they cannot even touch. Speci�cally, for �nite T;

b�t(� 1) > b�t(� 2); � 1 > � 2; t = 1; :::; T

3.3 Di¤erent discount factors

With di¤erent discount factors, !j; j = 1; :::; N; the recursions are

aj;tjt�1 = !jaj;t�1; j = 1; :::; N; t = 1; :::; T (25)

bj;tjt�1 = !jbj;t�1; (26)

and

aj;t = aj;tjt�1 + Ij;t; j = 1; :::; N; t = 1; :::; T (27)

bj;t = bj;tjt�1 + 1; (28)

with the uniform prior, a0j = 1 and b0j = N; j = 0; 1; :::; N .
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Solving the recursions shows that

b�j;tjt = aj;t
bj;t

=

t�1
�
i=0
!ijIj;t�i + aj;0!

t
j

t�1
�
i=0
!ij + (a0;0 + a1;0 + :::aN;0)!

t
j

; j = 0; 1; :::; N; t = 1; 2; :::

(29)
and so aj;t, bj;t > 0; while aj;t=bj;t is an EWMA as before. The log-likelihood
function is as in (21).
When the !0s are di¤erent, it is better to estimate the proportion in each

category by

e�j;tjt = b�j;tjt
�Ni=0b�i;tjt ; j = 1; :::; N; t = 0; 1; :::; T (30)

since �Ni=0b�j;tjt is not necessarily unity if the discount factors are di¤erent,
and similarly for e�j;t+1jt, which is no longer guaranteed to be the same ase�j;tjt: We then de�ne

e� j;tjt = �j�1i=0e�i;tjt; j = 1; :::; N; t = 1; :::; T

and similarly for e� j;t+1jt: The e� 0j;ts lie in the range [0,1] by construction. Since
aj;t > 0; as is bj;t; it follows that e�j;tjt > 0, as is e�j;t+1jt: Hence e� j;tjt > e� j�1;tjt
and, as in the constant ! case, the quantiles cannot cross.
When there many categories, allowing the discount factors to be di¤erent

is only viable if some kind of restriction is placed on them. For example, we
might assume that they fall on a quadratic, so !(�) = a + b + c� 2 and the
likelihood function is maximized wrt a; b and c: The discounting is symmetric
around the median if !i = !N�i+1; i = 0; ::; N=2 � 1; and this constraint is
easily imposed if required. (Symmetric discounting assumes that the cate-
gories are delineated symmetrically, so, for N even, the median is �N=2 and
�N�i = �i; i = 0; ::; N=2 � 1:) There may sometimes be a case for setting
! = 1 at the median. A likelihood ratio test of the null hypothesis that ! is
constant is possible.

3.4 Comparison with time-varying quantiles

Changing quantiles may be estimated non-parametrically, as in Yu and Jones
(1998), by minimizing a local check function to give an estimator, b�t; that
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satis�es
hX

j=�h

K(j=h)IQ(yt+j � e�t(�)) = 0 (31)

where K(:) is a weighting kernel, with
Ph

j=�hK(j=h) = 1; h is a bandwidth
and IQ(yt+j � �(�)) = � � I(yt+j � �(�)): If the same kernel and bandwidth
are used for di¤erent quantiles, they cannot cross (though they may touch).
De Rossi and Harvey (2007) construct a similar estimator by assuming

that �(�) follows a random walk. They obtain an estimator that satis�es

e�t(�) = 1� �
1 + �

1X
j=�1

�jjj[e�t+j(�) + �IQ(yt+j � e�t+j(�))] (32)

where � is a scaling constant and � depends on the variance of the disturbance
driving the random walk. If e�t+j in (32) is constant, it satis�es (31) with
K(j=h) replaced by �jjj so giving an (in�nite) exponential decay. The time
series model determines the shape of the kernel while the � parameter plays
a similar role to that of the bandwidth.
What is the relationship between the estimates computed from changing

proportions as in sub-section 3.1 and those obtained directly from (31)? It
follows from (20) and (23) that the �ltered estimator of the proportion of
observations less than or equal to a pre-de�ned value, �j; is an EWMA,
while, in the middle of a large sample, the associated smoothed estimator is

e� j;tjT ' 1� !
1 + !

X
j

!jjjI(yt � �j)

On the other hand, (31) implies that

hX
j=�h

K(j=h)I(yt � e�t(�)) = � :
Setting K(j=h) = [(1 � !)=(1 + !)]!j and letting h be large gives a similar
structure to e� j;tjT , with the only di¤erence being that �(�) is pre-set as �j
while � is estimated. In terms of (32), ! = �:
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3.5 Example: Hong Kong stock returns

Figure 1 showed daily Hong Kong stock returns from 27/11/79 to 27/11/07.
The time-varying quantiles estimated from �ltered proportions are shown in
�gure 7 were computed with ! estimated as 0:991: The median lag in this
case is 69; (for ! = :995 it is 138) so the response to changes is relatively
slow. Nevertheless the sharp rise in volatility after 20 Oct 1997 and, to a
lesser extent, after October 19th, 1987, is quite clear. The estimates from
smoothed proportions are shown in �gure 8. Here the change in volatility
shows up before the events of October 1997 and 1987 because of the two-sided
weighting.
Figure 9 shows how volatility is captured by the interquartile range and

the 90-10 quantile range. The ratio of the 90-10 range to the interquartile
range, shown in �gure 10 gives an indication of changing kurtosis.
The attack on Hong Kong dollar was a signi�cant event in the so-called

�Asian crisis�, the end of which is usually taken to be 31 August 1998; see
Dungey et al (2005, p19). This date has also been added to the graphs,
together with 15th July 2002, a date indicating a period when a number of
markets where in turmoil and 25 July 2007, which roughly marks the begin-
ning of the �credit crisis�in the US. The 2002 date appears to be unimportant,
but the �ltered estimates show a sharp rise after the beginning of the credit
crisis.
Both �ltered and smoothed estimates show movements in the median and

the stationarity tests of Busetti and Harvey (2007) are statistically signi�-
cant. There are also noticeable asymmetries, particularly after the specula-
tive attack on the Hong Kong dollar in 1997. This is particularly apparent
in the sharp falls in the lower quantiles. For a symmetric distribution

�t(�) + �t(1� �)� 2�t(0:5); � < 0:5

is zero for all t = 1; ::; T . Hence a plot of St(�); de�ned as the above contrast
divided by the range as measured by �t(1� �)� �t(�); shows how the asym-
metry captured by the complementary quantiles, �t(�) and �t(1��); changes
over time. Figure 10 plots St(0:25): The measure S(0:25) was originally pro-
posed by Bowley in 1920; the inter-quartile range scales the coe¢ cient so that
the maximum value is 1, representing extreme right (positive) skewness and
the minimum value is -1, representing extreme left skewness ; see Kim and
White (2004) for a recent discussion of measures of skewness and kurtosis.
During the Asian crisis St(0:25) is negative, while in the period immediately

20



0 550 1100 1650 2200 2750 3300 3850 4400 4950 5500 6050 6600 7150

­0.04

­0.03

­0.02

­0.01

0.00

0.01

0.02

0.03

0.04

0.05
10
25
75
95
20oct2000
31Aug1998
25Jul2007

15
50
90
19Oct87
20oct97
15Jul2002

Figure 7: Time-varying quantiles for Hong Kong returns calculated from
�ltered proportions

before it is strongly positive. The skewness and kurtosis measures plotted
in �gure 10 are much more stable than corresponding measures constructed
from weighted averages of third and fourth moments, as in Jondeau and
Rockinger (2003, p1722).

3.6 Smoothing the distribution

The estimated distributions may have a somewhat uneven appearance. Ker-
nel smoothing may be carried out on the time-varying histogram, smoothed
or �ltered, at any point in time. Alternatively the distribution function may
be estimated; see Azzalani (1981).
Another possibility, provided the discount factors are the same, is to give

each observation a weight of

wt;i =
!t�i + !t

t�1
�
i=0
!i + (N + 1)!t

' (1� !)!t�i; i = 1; ::::; t: (33)

Then, when the kernel is applied at time t, the kernel weight for the obser-
vation at time t � i is multiplied by (1 � !)!t�i; see appendix C. Updating
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Figure 8: Time-varying quantiles for Hong Kong returns calculated from
smoothed proportions
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Figure 9: Interquartile range and interdecile (90-10) range from �ltered (top
panel) and smoothed quantiles for Hong Kong.
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Figure 10: Ratio of interdecile range to interquartile range for Kong Hong
and Bowley coe¢ cient of asymmetry.

the weights is straightforward; multiplying the weights at time t by ! gives
the weights at t + 1. For smoothing ( as opposed to �ltering) in the middle
of the sample, weight by

wt;i =
1� !
1 + !

!jt�ij; i = 1; ::::; T:

Figure 11 shows kernel smoothing of the observations for Hong Kong
at the mid-point in the series (3652) weighted with ! = 0:99: The kernel
is Epanechnikov with the bandwidth determined by the rule of thumb in
Silverman (1986, p 45-8), given as expression (39) in appendix C. Formula
(12) suggests an e¤ective sample size for the �ltered observations of T (!) =
(2�!)=(1�!) ' 1=(1�!) when ! is close to one. For smoothed observations
the suggestion is T (!) = (1 + !)=(1 � !) ' 2=(1 � !): Figure 12 shows the
smoothed distribution at point 4300 where �gure 10 indicates that there
is strong positive skewness. Figure 13, at point 4700, shows the negative
skewness induced by the large falls following the attack on the Hong Kong
dollar.

23



­0.08 ­0.06 ­0.04 ­0.02 0.00 0.02 0.04 0.06 0.08

10

20

30

Filtered density estimate
T e q u i v . = 1 0 0 T e q u i v . = 3 0 0

­0.08 ­0.06 ­0.04 ­0.02 0.00 0.02 0.04 0.06 0.08

10

20

30 Smoothed density estimate
T e q u i v . = 2 0 0 T e q u i v . = 6 0 0

Figure 11: Kernel smoothing of weighted observations at mid-point (3652)
of Hong Kong time series using Silverman�s rule of thumb for the bandwidth
in an Epanechnikov kernel. Upper panel uses �ltered observations.
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Figure 12: Kernel smoothing of weighted observations at observation 4300
of Hong Kong time series using Silverman�s rule of thumb for the bandwidth
in an Epanechnikov kernel. Upper panel uses �ltered observations.
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Figure 13: Kernel smoothing of weighted observations at mid-point (4700)
of Hong Kong time series using Silverman�s rule of thumb for the bandwidth
in an Epanechnikov kernel. Upper panel uses �ltered observations.
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4 Estimation of copulas with time-varying mar-
ginal distributions

A time-varying copula with time-varying marginals may be estimated6 as
in section 2 by de�ning the indicator variables, (15), in terms of the quan-
tiles, estimated as described in section 3. Smoothed estimates of the copula
are computed with smoothed quantiles and �ltered estimates with �ltered
quantiles.
Busetti and Harvey (2008) propose testing for the constancy of a copula

by means of stationarity tests applied to indicators constructed from the
two series. Such indicators typically take a value of one if both observations
are below pre-assigned quantiles and zero otherwise. The tests have power
against breaks as well as slowly evolving changes. A rejection of the null
hypothesis of constancy leads one to consider tracking the copula over time.

4.1 Multivariate estimation of the copula

The copula can be estimated by using the same method adopted for univari-
ate series. The domain of the copula is broken down into a grid and indicators
are de�ned for each square. A single discount parameter can be estimated
from a multinomial distribution and when the copula is constructed from the
frequency copula the level curves7 cannot cross.
De�ne � 1j and � 2k so as to partition the unit interval on the u1 and u2

axes into n sub-intervals, 0 = � 10 < � 11 < � 12 < ::: < � 1;n = 1 and similarly
for � 2k: To simplify matters it will be assumed that the sub-intervals are
equal. The estimates of the copula for the whole grid are then denoted bybCt(� 1j; � 2k); j; k = 1; :::; n; but with bCt(� 1;n; � 2;n) = 1 by de�nition. The
corresponding estimates of the copula frequency on the squares de�ned by
� 1j; � 1;j�1 and � 2k; � 2;k�1 are given bybct(� 1j; � 2k) = bCt(� 1j; � 2k)� bCt(� 1;j�1; � 2k)� bCt(� 1j; � 2;k�1)+ bCt(� 1;j�1; � 2;k�1);
for j; k = 1; :::; n:
The copula frequency may be estimated directly by de�ning n2 indicators

It(� 1j; � 2k) = I(y1t > �1(� 1;j�1)):I(y1t � �1(� 1j)):I(y2t > �2(� 2;k�1)):I(y2t � �2(� 2;k))
6A common discount factor could be estimated by adding the two likelihood functions.
7C(�1; �2) is constant as �1 and �2 change.
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for j; k = 1; :::; n: The discount factor may be estimated as in section 3.
At any given point in time, bct(� 1j; � 2k) is an EWMA of past indictors andP

j;k bct(� 1j; � 2k) = 1: The recursions are as in (22) with bc1p0(� 1j; � 2k) = 1=n2;
for j; k = 1; :::; n; corresponding to both independence and a non-informative
prior. When there is no discounting

P
j bcT (� 1j; � 2k) =Pk bcT (� 1j; � 2k) = 1=n:

With discounting the expected values of these summations are 1=n for all
t = 1; :::; T:
The copula may be estimated (recursively if desired) from the estimates

of the copula density and modi�ed estimates, of the form (16), may be con-
structed.
Explanatory variables can be included as descibed appendix B.

4.2 Measures of association

Estimators of Kendall�s Tau and Spearman�s �S may be obtained from the
time-varying estimates of the copula and its density, bct(� 1j; � 2k). Thus for
Spearman�s �S

e�S = P
j;k bct(� 1j; � 2k)� 1j� 2k � n2(Pj bcj� 1j=n)(Pk bck� 2k=n)qP

j bcj� 21j � n2(Pj bcj� 1j=n)2:pPk bck� 21k � n2(Pk bck� 1k=n)2
where bcj =Pk bct(� 1j; � 2k) and bck =Pj bct(� 1j; � 2k):
4.3 Estimation of parametric copulas

In canonical maximum likelihood (CML), the copula parameter or parame-
ters,  ; are estimated without specifying the marginals by maximizing

lnL( ) =

TX
t=1

ln c(r1;t=T; r2;t=T ; )

where r1;t and r2;t are the ranked observations. With grouped data, the
copula parameters at time t; denoted  t; may be estimated by maximizing a
function, analogous to lnL( ); in which the value of the copula at the mid-
point of a square is weighted by the estimated proportion of observations in
that square. Thus the function to be maximized is

lnLt( t) =

nX
k=1

nX
j=1

bct(� 1j; � 2k) ln ct(� �1j; � �2k; t)
28



where � �1j = (� 1j � � 1;j�1)=2; and similarly for � �2k:

5 Applications

One aspect of contagion is dependence as measured by the copula. Such
changes are to be contrasted with changes in the joint distribution where
changes in volatility play an important role. It is conceivable that contagion
could a¤ect volatility without changing the strength or pattern of dependence
in the copula.
Rodriguez (2007), in his study of Asian and Latin American stock in-

dices, �nds evidence of changing tail dependence during periods of turmoil
and concludes as follows. �Changes in tail dependence should be taken into
account in the design of any sound asset allocation strategy. Failing to do so
can be expensive, as recent theoretical literature has demonstrated. More-
over, it is important to note that these changes are not necessarily captured
by correlation shifts.� Das and Upal (2004) highlight the costs of ignoring
regime shifts for asset allocation.
The conclusions reached by Rodriguez (2007) are based on �tting para-

metric copulas in di¤erent time periods, the dates of which are determined
by a switching model. Here the emphasis is on tracking the copula and then
relating any movements to known events.

5.1 Hong Kong and Korea

Here the relationship between the Hong Kong (Hang Seng) and Korean (SET)
stock markets is examined for the daily data, from 27/11/79 to 27/11/07,
plotted in �gures 1 and 2.
The analysis of Hong Kong returns in section 3 indicated that the median

changes over time and there are noticeable asymmetries. The same is true for
Korea. Hence correcting for changing volatility is not su¢ cient to render the
marginal distributions constant over time. Pre-�ltering is therefore carried
out using time-varying quantiles. The estimated discount factor for Korea is
0.989, very similar to the one for Hong Kong. For the copula the estimate of
omega is 0.993.
Figure 14 shows smoothed tail dependence (TD) for � = 0:10; 0:25; 0:5;

0:75 and 0:90: TD is de�ned as upper tail dependence for � > 0:5 and is the
same as quadrant association (QA) for � = 0:5: Filtered estimates for TD are
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displayed in �gure 17. The �ltered estimates are based on �ltered estimates
of the quantiles, while the smoothed estimates use smoothed estimates of the
quantiles.
Figure 15 shows the average tail dependence, that is the average of the

lower TD at .25 and the upper TD at .75, and similarly for .10 and .90. Figure
16 shows the measure of asymmetry calculated as the di¤erence between lower
TD and the complementary upper TD, for example .25 minus .75.
If series are independent, TD for .25 and .75 is .25. In other words, if an

observation from one series is in the lower quartile, there is a 0.5 chance that
the corresponding observation from the other series is in the lower quartile.
The graphs show TD for both .25 and .75 moving from near independence
before October 1997 to around .5 afterwards. TD for .10 and .90 is more
variable, as might be expected, but shows an even bigger jump from around
0.10 to around 0.4 for .90 and around 0.5 for 0.10. However, these changes do
not take place immediately. This may be due to the fact that the authorities
in Hong Kong and Korea took di¤erent measures to combat the crisis.
It is interesting that the higher dependence remains after the end of the

Asian crisis, whereas volatility returns to its pre-crisis level. Volatility peaks
around 31st August, 1998, the end of the crisis, whereas TD, and of course
QA and C(� ; �); is still increasing. By 2005 volatility is, if anything, below its
immediate pre-crisis level. TD increases until the end of 2002 and, although
it falls somewhat in 2005, mid-2006 shows a returns to the 2002 level.
In the period before October 1987, the measures of tail dependence cal-

culated with no discounting were .17, .29, .53, .27 and .15 for 0.1, 0.25, 0.5,
0.75 and 0.9 respectively. In the period between July 2002 and July 2007,
the corresponding �gures were .54, .53, .66, .52 and .47. Smoothed estimates
of the quantiles, computed as before, were used to determine the indicators.

5.2 FTSE and Dow-Jones

Tail dependence for the FTSE and Dow-Jones indices from 2/1/84 to 27/11/07
is shown in �gure 18. There are 6235 observations, starting from 3/1/84. The
date on which the UK left the ERM, that is �Black Wednesday�, 16 Sept 1992,
has been added. The 15th July 2002 was chosen because that date showed
the biggest drop in the FTSE in the summer of 2002. There is a very short-
term increase in volatility after the 87 crash. Dependence increases but the
subsequent fall back to earlier levels takes place more slowly. Dependence
levels after 1987 are at a similar level to those seen in Hong Kong and Korea
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Figure 14: Smoothed tail dependence for � = 0:10; 0:25; 0:5, 0.75 and 0.90.
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Figure 15: Average tail dependence for � = :25 and .10.
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Figure 16: Asymmetry for � = :25 and .10
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Figure 17: Filtered tail dependence for � = 0:25; 0:5 and 0.75.
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Figure 18: Tail dependence (smoothed) for FTSE and Dow-Jones

after 1998.

6 Conclusion

A time-varying histogram is estimated for a series by using simple EWMAs
to estimate the probabilities of observations being in di¤erent categories. Es-
timates of time-varying quantiles are then obtained by linear interpolation.
The discount parameter in the EWMA is estimated by maximum likelihood.
but with a criterion function for the parameters that is based on ML. The
method is therefore simply to apply and should appeal to practitioners. There
is evidence of time variation in medians, asymmetry and the tails of distri-
butions and so pre-�ltering by �tting a GARCH or SV model may not be
su¢ cient to make a distributions constant over time.
Indicator variables for two series are de�ned with respect to �ltered or

smoothed estimates of time-varying quantiles. A time-varying copula fre-
quency is then estimated by EWMAs applied to the indicator variables. The
same technique could be used to track the joint distribution (ie without
pre-�ltering). This may be useful but it does not separate volatility and de-
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pendence. Filters other than EWMAs may also be entertained; in particular
we might adopt a �lter appropriate to movements around a constant level.
The estimated copula probabilities are relatively robust. For example

if our interest is in lower tail dependence, the estimates are not adversely
a¤ected by movements in the upper tail as they might be in a misspeci�ed
model for the copula. On the other hand, estimating small probabilities is
di¢ cult without a parametric model.
Tracking the marginal distributions and copula has the advantage that no

prior decisions are made on the dating of regimes during which parameters are
assumed to be constant. Thus for Hong Kong and Korea, higher dependence
is observed but only some time after the start of the Asian crisis. The same
level of dependence then continues to the present. This behaviour contrast
with that of volatility, which immediately increases after the start of the
crisis, but then returns to its pre-crisis level.

APPENDICES

A Smoothing in the local level model

The Gaussian random walk plus noise (local level ) model is

yt = �t + "t; "t � NID(0; �2"); t = 1; :::; T

�t = �t�1 + �t; �t � NID(0; �2�);
The disturbances "t and �t are mutually independent and the notationNID (0; �

2)
denotes normally and independently distributed with mean zero and variance
�2. The signal-noise ratio is q = �2�=�

2
":

Smoothing
The smoothed estimates can be computed fromKalman �lter and smoother

for the Gaussian local level model. The �lter is

mt+1jt = (1� kt)mtjt�1 + ktyt

where kt = ptjt�1=
�
ptjt�1 + 1

�
is the gain, and

pt+1jt = ptjt�1 �
�
p2tjt�1=

�
1 + ptjt�1

��
+ q; t = 1; :::; T (34)

With a di¤use prior, m2j1 = y1 and p2j1 = 1 + q:
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The innovations and Kalman gains are saved and used in the backward
smoothing recursion

rt�1 = (1� kt)rt + (1� kt)�t; t = T; :::; 2;

where �t = yt �mtjt�1 and rT = 0; followed by

mtjT = mtjt�1 + ptjt�1rt�1; t = 1; :::T;

= mtjt�1 + kt(rt + �t)

Since r0 = (1 � k1)r1 + (1 � k1)�1, initializing with a di¤use prior will give
m1jT = (p1j0=(p1j0 + 1))(r1 + y1) which goes to r1 + y1 as p1j0 goes to in�nity.
The following forward recursion can also be used

mt+1jT = mtjT + qrt; t = 1; :::; T � 1;

with m1jT = r1 + y1; see Koopman (1993).
The algorithm in the text assumes a steady state for ptjt�1, and sets

1�kt = ! in view of the relationship between the steady state value of ptjt�1
and the smoothing constant (� = 1� !) in the EWMA; see Harvey(1989, p
175).

B Explanatory variables

Let �yt = �t=(1+exp(�x0t�j)); where (1+exp(�x0t�j))�1 is the logit function.
Let ayj;t = aj;t=(1 + exp(�x0t�j)): Then, given aj;t�1 and bj;t�1;

ayj;tjt�1 = !jaj;t�1=(1 + exp(�x0t�j)); j = 1; :::; N; t = 1; :::; T

bj;tjt�1 = !jbj;t�1; (35)

and e�ytjt�1 = ayj;tjt�1=bj;tjt�1 is used in the likelihood function. The updating
equations are

ayj;t = ayj;tjt�1 + Ij;t; j = 1; :::; N; t = 1; :::; T

bj;t = bj;tjt�1 + 1; (36)

but since aj;t = a
y
j;t(1 + exp(�x0t�j)); the �rst of these can be amended to

aj;t = aj;tjt�1 + Ij;t(1 + exp(�x0t�j)); j = 1; :::; N; t = 1; :::; T
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In other words the observation is divided by the logit. The recursions can be
implemented as an EWMA

e�j;t+1jt = (1� !)Ij;t(1 + exp(�x0t�j)) + !e�j;tjt�1; j = 1; :::; N; t = 1; ::; T;

with e�yj;t+1jt = e�j;t+1jt=(1 + exp(�x0t�j)): ML estimation requires numerical
optimization wrt the �0js are well as the !

0
js:

C Kernel density estimation

At each point y, the kernel estimator is given by

f̂t(y) =
1

h

tX
i=1

K

�
y � yi
h

�
wi; (37)

where K(:) is the Epanechnikov kernel

K(z) =

8<:
3

4
p
5

�
1� 1

5
z2
�

for �
p
5 � z �

p
5

0 otherwise.
(38)

and h is the bandwidth. The weight, wi; is as de�ned in (33).
The rule-of-thumb bandwidth suggested in Silverman (1986) is

hopt = 1:06�minf�̂;
[IQR
1:34

g � T�1=5; (39)

where �̂ is the sample standard deviation, and[IQR is the sample interquar-
tile range.
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