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Coding and regulatory variants are associated with
serum protein levels and disease
2
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Circulating proteins can be used to diagnose and predict disease-related outcomes. A deep
serum proteome survey recently revealed close associations between serum protein net-
works and common disease. In the current study, 54,469 low-frequency and common
exome-array variants were compared to 4782 protein measurements in the serum of 5343
individuals from the AGES Reykjavik cohort. This analysis identifies a large number of serum
proteins with genetic signatures overlapping those of many diseases. More specifically, using
a study-wide significance threshold, we find that 2021 independent exome array variants are
associated with serum levels of 1942 proteins. These variants reside in genetic loci shared by
hundreds of complex disease traits, highlighting serum proteins’ emerging role as biomarkers
and potential causative agents of a wide range of diseases.
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expanded our knowledge of the genetic basis of complex
disease. As of 2018, approximately 5687 GWASs have been
published revealing 71,673 DNA variants to phenotype
associations!. Furthermore, exome-wide genotyping arrays have
linked rare and common variants to many complex traits. For
example, 444 independent risk variants were recently identified
for lipoprotein fractions across 250 genes?. Despite the overall
success of GWAS, the common lead single nucleotide poly-
morphisms (SNPs) rarely point directly to a clear causative
polymorphism, making determination of the underlying disease
mechanism difficult>-6. Regulatory variants affecting mRNA and/
or protein levels and structural variants like missense mutations
can point directly to the causal candidate. Alteration of the amino
acid sequence may affect protein activity and/or influence tran-
scription, translation, stability, processing, and secretion of the
protein in question’~?. Thus, by integrating intermediate traits
like mRNA and/or protein levels with genetics and disease traits,
the identification of the causal candidates can be enhanced3-°.
Proteins are arguably the ultimate players in all life processes in
disease and health, however, high throughput detection and
quantification of proteins has been hampered by the limitations
of available proteomic technologies. Recently, a custom-designed
Slow-Off rate Modified Aptamer (SOMAmer) protein profiling
platform was developed to measure 4782 proteins encoded by
4137 human genes in the serum of 5457 individuals from the Age,
Gene/Environment Susceptibility Reykjavik Study (AGES-RS)!0,
resulting in 26.1 million individual protein measurements. Var-
ious metrics related to the performance of the proteomic platform
including aptamer specificity, assay variability, and reproduci-
bility have already been described!?. We demonstrated that the
human serum proteome is under strong genetic control!?, in line
with findings of others applying identical or different proteomics
technologies! 112, Moreover, serum proteins were found to exist
in regulatory groups of network modules composed of members
synthesized in all tissues of the body, suggesting that system-level

Large—scale genome-wide association studies (GWASs) have
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coordination or homeostasis is mediated to a significant degree by
thousands of proteins in blood!3. Importantly, the deep serum
and plasma proteome is associated with and prognostic for var-
ious diseases as well as human life span!014-20,

In this work, we regressed levels of 4782 proteins on 54,469
low-frequency and common variants from the HumanExome
BeadChip exome array, in sera from 5343 individuals of the
deeply phenotyped AGES-RS cohort. Further cross-referencing of
all significant genotype-to-protein associations to hundreds of
genetic loci for various disease endpoints and clinical traits,
demonstrated profound overlap between the genetics of circu-
lating proteins and disease-related phenotypes. We highlight how
triangulation of data from different sources can link genetics,
protein levels, and disease(s), with the intention of cross-
validating one another and pointing to the potential causal rela-
tionship between proteins and complex disease(s).

Results

Using genotype data from an exome array (HumanExome
BeadChip) enriched for structural variants and tagged for many
GWAS risk loci (Methods), the effect of low-frequency and
common variants on the deep serum proteome was examined.
Quality control filters?! and exclusion of monomorphic variants
reduced the available variants to 76,891. Additionally, we exclu-
ded variants at minor allele frequency (MAF) <0.001 as they
provide insufficient power for single-point association analysis?2.
This resulted in 54,469 low-frequency (54%, MAF < 0.05) and
common variants (46%, MAF > 0.05) that were tested for asso-
ciation to each of the 4782 human serum protein measurements
using linear regression analysis adjusted for the confounders age
and sex (Methods). The current platform targets the serum
proteome arising largely from active or passive secretion, ecto-
domain shedding, lysis, and/or cell death!%23. Figure 1 highlights
the classification of the protein population targeted by the
aptamer-based profiling platform, showing over 70% of the
proteins are secreted or single-pass transmembrane receptors.
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NH receptors
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21%

Fig. 1 Classification of the target protein population. The pie chart shows the relative distribution (percentage) of the different protein classes targeted by
the present proteomics platform (4137 unique proteins), with secreted proteins (38.4%) and single-pass transmembrane (SPTM) receptors (32.2%)
dominating the target protein population. Protein classes were manually curated based on information from the SecTrans, Gene Ontology (GO), and Swiss-
Prot databases, and were composed of secreted proteins (e.g., cytokines, adipokines, hormones, chemokines, and growth factors), SPTM receptors (e.g.,
tyrosine and serine/threonine kinase receptors), multi-pass transmembrane (MPTM) receptors (e.g., GPCR, ion channels, transporters), enzymes
(intracellular), kinases, nuclear hormone receptors (NH receptors), structural molecules, transcriptional regulators and signal transducers.
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Fig. 2 A graphical representation of all pQTL discoveries in the current study. The Manhattan plot in the top panel uses precise two-sided P-values as
—log(P-value) for the association (linear regression) of low-frequency and common exome array variants to 4782 proteins in serum. The bottom panel
shows the genomic locations of all study-wide significant pQTLs (linear regression, P<1.92 x10~10, two-sided), also shown in Supplementary Data 1,

where the start position of the protein-encoding gene is shown on the y-axis and the location of the pSNP at the x-axis. Cis acting effects, using a 300 kb
window, appear at the diagonal while trans acting pQTL effects including trans hot spots show up off-diagonally. The genetic loci highlighted across the

x-axis are trans-acting hotspots.

Applying a Bonferroni corrected significance threshold of
P<1.92 x 10710 (0.05/54469/4782) we detected 5451 exome array
variants that were associated with variable levels of 1942 (2138
aptamers) serum proteins (Supplementary Data 1 and Fig. 2), of
which 2021 exome variants were independent affecting 1942
(2135 aptamers) proteins (Supplementary Data 2). Supplemen-
tary Data 1 lists all associations at P-value <1 x 107, or 10,200
exome array variants affecting 2780 (3104 aptamers) human
proteins. These protein quantitative trait loci (pQTLs) were cis
and/or trans acting including several trans acting hotspots with
pleiotropic effects on multiple co-regulated proteins (Fig. 2).
Secreted proteins were enriched for pQTLs (P-value < 0.0001) as
compared to non-secreted proteins using 10,000 permutations to
obtain the empirical distribution of the x? test of equality of
proportions (Supplementary Fig. 1). This implies that secreted

proteins are subject to different, and possibly stronger, genetic
control than other proteins identified by the current platform.
Supplementary Data 3 summarizes various pathogenicity pre-
diction scores for all independent study-wide significant pQTLs
in Supplementary Data 2, using the Ensembl Variant Effect
Predictor (VEP)?%25, Next, we cross-referenced all the 5451
study-wide significant pQTLs with a comprehensive collection of
genetic loci associated with diseases and clinical traits from the
curated PhenoScanner database®, revealing that 60% of all
PQTLs were linked to at least one disease-related trait (Supple-
mentary Data 4). We have shown in our previous studies that
genetic loci affecting several serum proteins exhibit pleiotropy in
relation to complex diseases'?. An example of a possible pleio-
tropic effect mediated by the variant rs2251219 within the gene
PBRM1 affecting multiple proteins and sharing genetics with
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Fig. 3 Pleiotropy of rs2251219 affects many proteins and disease traits. The Circos plot highlights the effect of the variant rs2251219 (Supplementary
Data 1 and 2) on 13 proteins acting in cis or trans and sharing genetics with various diseases of different etiologies. Only study-wide significant
(P<1.92x 10719, two-sided) genotype-to-protein associations (linear regression) are shown. Lines going from rs2251219 show links to genomic locations
of the protein-encoding genes associated with the variant while numbers refer to chromosomes. The arrow points to disease-related traits that have

previously been linked to rs2251219.

various diseases and clinical features is illustrated in Fig. 3.
Supplementary Figure 2 depicts the relationship between all
proteins and some quantitative traits associated with rs2251219.
Table 1 highlights a selected set of pQTLs that share genetics with
diseases of different etiologies including disorders of the brain,
metabolism, immune, cardiovascular system, and cancer. In the
sections that follow, we give examples of serum pQTLs that
overlap disease risk loci and demonstrate how different data
sources can cross-validate one another. Although data triangu-
lation can be used to infer directional consistency, it cannot tell
whether the relationship is causal or reactive to a given outcome.
As a result, we used two-sample Mendelian randomization (MR)
analysis on highlighted examples to test support for a protein’s
causality to an outcome.

Variable levels of the anti-inflammatory protein TREM2 were
associated with two distinct genomic regions (Fig. 4a, Supplemen-
tary Fig. 3). This included the missense variant rs75932628
(NP_061838.1: p.R47H) in TREM2 at chromosome 6 (Fig. 4b),
known to confer a strong risk of late-onset Alzheimer’s disease
(LOAD)??. The variant was also associated with IGFBPL1
(P=3x10"18) in serum (Supplementary Data 1), a protein recently
implicated in axonal growth?3. Intriguingly, the region at chromo-
some 11 associated with soluble TREM2 levels harbors variants
adjacent to the genes MS4A4A and MS4A6A including rs610932
known to influence genetic susceptibility for LOAD?® (Table 1 and
Fig. 4a, b). The variant rs610932 was also associated with the pro-
teins GLTPD2 and A4GALT (Supplementary Data 1). The alleles
increasing the risk of LOAD for both the common variant rs610932
and the low-frequency variant rs75932628 were associated with low
levels of soluble TREM2 (Fig. 4b). Consistently, we find that the
high-risk allele for rs75932628 was associated with accelerated
mortality post-incident LOAD in the AGES-RS (Fig. 4¢). It is of note

that the levels of TREM2 in the cerebrospinal fluid (CSF) reflect the
activity of brain TREM2-triggered microglia®3%, while high levels of
CSF TREM2 have been associated with improved cognitive
functioning®!. Supplementary Figure 4 highlights the correlation
(Spearman rank) between the different proteins affected by the
LOAD risk loci at chromosomes 6 and 11. The accumulated data
show a directionally consistent effect at independent risk loci for
LOAD converging on the same causal candidate TREM2. Further-
more, a two-sample MR analysis using genetic instruments across
the TREM2 and MS4A4A/MS4A6A loci and GWAS associations for
LOAD in Europeans as outcome? provided evidence that variable
TREM?2 protein levels are causally related to LOAD (P = 5.3 x 107°)
(Fig. 4d and Supplementary Data 5). The instrument rs7232
(Fig. 4d), an independent variant associated with TREM2 (Supple-
mentary Data 2), is a missense variant in MS4A6A that has pre-
viously been linked to LOAD (Supplemental Data 4), but the MS4A
cluster has recently been shown to modulate the production of
soluble TREM233. This could imply that the variant is directly
involved in the pathogenesis of LOAD. In summary, these results
demonstrate that the effect of genetic drivers on major brain-linked
diseases like LOAD can be readily detected in serum to both inform
on the causal relationship and the directionality of the risk med-
iating effect. This would also suggest that serum may be an acces-
sible proxy for microglia function, and cognition.

Variable levels of the cell adhesion protein SVEPI are associated
with variants located at chromosomes 1 and 9 (Supplementary
Data 1, Fig. 5a and Supplementary Fig. 5). Genetic associations to
SVEP1 levels at chromosome 9 include the low-frequency missense
variant rs111245230 in SVEP1 (NP_699197.3: pD2702G) (Fig. 5b),
which was recently linked to coronary heart disease (CHD), blood
pressure, and type-2-diabetes (T2D)3% In total, we found four
conditionally independent missense mutations in SVEPI that were
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Table 1 Selected examples of exome array variants affecting serum protein levels and complex disease.
Disease class Disease trait PMID or pQTL GWAS lead Function Mapped #Proteins Example of cis and/or
database SNP(s)? pSNPb GWAS affected trans affected
locus® proteinsd
Cardiovascular
CHD 28714975 rs12740374  rs12740374 3'-UTR CELSR2 8 C1QTNF1, IGFBP1
VTE UKBB, rs2343596  rs16873402, Intron ZFPM2 7 VEGFA, DKK1
28373160 rs4602861
Stroke 26708676 rs653178 rs653178 Intron ATXN2 2 THPO, CXCLT
Metabolic
T2D 22885922 rs7202877  rs7202877 Intergenic CTRB1 5 CTRB1, PRSS2, CPB1
VAT 20935629 rs9491696  rs9491696 Intron RSPO3 1 RSPO3
Triglyceride 21386085 rs2266788  rs2266788 3'-UTR APOAS5 5 APOAS5, PCSK7,
ANGPTL3
CNS
LOAD 21460840 rs610932 rs610932 3'-UTR MS4A6A 3 TREM2, GLTPD2
Parkinson 21738487 rs6599389  rs6599389 Intron GAK 1 IDUA
Schizophrenia 25056061 rs3617 rs3617 Q315K ITIH3 8 ITIH3, JAKMIP3
Inflammatory
SLE, T1D 26502338 rs2304256  rs2304256 V362F TYK2 2 ICAM1, ICAM5
Crohn’s, IBD 21102463 rs11209026 rs11209026 R381Q IL23R 1 IL23R
AMD 2355636 rs10737680 rs10737680 Intron CFH 22 CFH, CFHR1, CFB
Cancer
Colorectal 24836286 rs2241714 rs1800469 MM TMEMO1 B3GNT2, TGFB1
Lung 18978787 rs3117582 rs3117582 Intron APOM 10 MICB, 1SG15
Melanoma 18488026 rs910873 rs910873 Intron PIGU ASIP
CHD coronary heart disease, VTE venous thromboembolism, CKD chronic kidney disease, T2D type 2 diabetes, VAT visceral adipose tissue, LOAD late-onset Alzheimer's disease, SLE systemic lupus
erythematous, IBD inflammatory bowel disease, AMD age-related macular degeneration, N/A not applicable. All reported pQTL effects are genome-wide significant, using linear regression, at
P<1.92 %1010 (two-sided).
2Protein QTLs overlapping GWAS lead SNPs using the PhenoScanner database?3. No SNP proxies were applied except when the lead pSNP was not in the query then we used the best proxy (12> 0.8
between markers).
bThe functional annotation of pQTLs was obtained from the PhenoScanner database?3.
CReported causal candidates are from the GWAS Catalog and reaching genome-side significance (P <5 x 108, two-sided)”".
dThe definition of cis vs. trans effects is somewhat arbitrary depending on the window size chosen across the protein gene in question. In this case, however, all affected proteins located at other
chromosomes than the pQTL location were considered trans acting and are highlighted in bold letters. All significant pQTLs are listed in Supplementary Data 1 and 2, and the overlap with GWAS risk loci
is summarized in Supplementary Data 4.

associated with SVEPI1 serum levels (Supplementary Data 2). The
CHD and T2D risk allele (C) of rs111245230 were associated with
elevated levels of SVEP1, and SVEP1 levels were elevated in T2D
patients (OR =1.20, 8 x 107%) and predictive of incident CHD
(OR=1.21, 8 x 1077) (Fig. 5c). Furthermore, high SVEP1 levels
were positively associated with systolic blood pressure (= 0.266,
P=4x10"% (Fig. 5c), but not with diastolic blood pressure
(8=0.028, P=0.535) (Fig. 5¢). Consistently, higher serum levels
of SVEP1 were associated with increased mortality post-incident
CHD in the AGES-RS (HR =128, P=3x10"?) (Fig. 5d). The
variants at chromosome 1 linked to SVEP1 levels (Fig. 5a), have
not previously been linked to any disease. Given the currently
available GWAS summary statistics, a two-sample MR analysis
using cis-variants on chromosome 9 for SVEP1 as instruments and
GWAS associations for T2D3 support a causal relationship of
SVEP1 with the disease (P =5.7 x 1079) (Fig. 5e, Supplementary
Data 5), but not with CHD3 or systolic blood pressure3” (P > 0.05)
(Supplementary Data 5). Our data triangulation and causal tests
integrating genetics, serum protein levels, and disease(s), indicate
that SVEP1 may be a therapeutic target for T2D.

The ILMN exome array contains several tags related to pre-
vious GWAS findings®3, including many risk loci for cancer. For
example, 21 loci have been associated with melanoma3® and 50
loci with colorectal cancer??. The exome array variant rs910873
located in an intron of the GPI transamidase gene PIGU was
previously linked to melanoma risk*!. The reported candidate
gene PIGU is the gene most proximal to the lead SNP rs910873
and maybe a novel candidate gene involved in melanoma.
However, a more biologically relevant candidate is the agouti-
signaling protein (ASIP) gene that is located 314 kb downstream

of the lead SNP rs910873. ASIP is a competitive inhibitor of
MCI1R*? and is thus strongly biologically implicated in melanoma
risk#3. We found that the melanoma risk allele for rs910873 was
associated with elevated ASIP serum levels (P=5x10"179)
(Fig. 6a, Table 1), while the variant had no effect on other pro-
teins measured with the current proteomic platform (Supple-
mentary Data 1). Interestingly, the pQTL rs910873 is also an
eQTL for ASIP gene expression in skin*4, showing the direc-
tionally consistent effect on the mRNA and protein. Importantly,
we found that serum ASIP levels were supported as causally
related to malignant melanoma (P= 1.1 x 10717) using a two-
sample MR analysis on the protein-to-outcome causal sequence
of events (Fig. 6b, Supplementary Data 5). Our data point to the
ASIP protein underlying the risk at rs910873, thus providing
supportive evidence for the hypothesis that ASIP mediated
inhibition of MCIR results in suppression of melanogenesis and
increased risk of melanoma%>. An additional example is the
susceptibility variant rs1800469 for colorectal cancer®, which is a
proxy to the pQTL rs2241714 (r> = 0.978) (Table 1 and Fig. 6c¢).
While the TMEMO91 gene was the reported candidate gene for the
colorectal cancer risk at the rs1800469 (Table 1), we find that the
risk variant affected three proteins in either cis (B3GNT8 and
TGFB1) or trans (B3GNT2) (Fig. 6¢, d). Intriguingly, all three
proteins have previously been implicated in colorectal
cancer?%, Due to a lack of available and powered GWAS
summary statistics data, we were unable to formally test the
causality of these proteins to colorectal cancer. In conclusion,
while we cannot rule out PIGU as a candidate gene for malignant
melanoma, these findings point to an alternate, and possibly more
biologically relevant candidate, ASIP.
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chromosomes 6 and 11 associated with TREM2 have been independently linked to risk of LOAD including the rs75932628 (NP_061838.1: p.R47H) in
TREM?2 at chromosome 6 and the variant rs610932 at chromosome 11. b The boxplot to the left shows that carriers with the p.R47H mutation, which is
linked to LOAD, are associated with low TREM2 levels. The boxplot on the right shows the trans effect of the well-established GWAS risk variant rs610932
for LOAD on TREM2 serum levels, where the LOAD risk allele C (highlighted in bold) is associated with lower levels of TREM2. The x-axis of each box plot
shows the genotypes for the corresponding protein-associated SNP, while the y-axis denotes the Box-Cox transformed, age, and sex-adjusted serum
protein levels. Box plots indicate median (middle line), 25th, 75th percentile (box), and 5th and 95th percentile (whiskers). The P-values (two-sided)
shown at the top of each plot come from linear regression analysis. ¢ TREM2p.R47H carriers demonstrated lower survival probability post-incident LOAD
compared to TREM2p.R47R carriers (P = 0.04, two-sided). The vertical ticks correspond to individuals lost to follow-up. d Scatterplot for the TREM2
protein supported as having a causal effect on LOAD in a two-sample MR analysis. The figure demonstrates the estimated effects of the respective cis- and
trans-acting genetic instruments on the serum TREM?2 levels in AGES-RS (x-axis) and risk of LOAD through a GWAS by Kunkle et al.32 (y-axis), using
21,982 LOAD cases and 41,944 controls. Each data point displays the estimated effect as beta coefficient = log(odds ratio), along with 95% confidence
intervals for the SNP effect on disease (vertical lines) or SNP effect on the protein (horizontal lines). The broken line indicates the inverse variance
weighted causal estimate (= —0.240, SE = 0.059, P = 5.3 x 105, two-sided), while the dotted line shows the MR-Egger regression (see Supplementary
Data 5 for more details).

We outlined the construction of the serum protein network in
our previous report and identified common genetic variants
underlying the network structure!0. This included a targeted
study of the effects of common cis and cis-to-trans acting variants
on levels of serum proteins. Previously, we discovered that 80% of
cis pQTL effects and 74% of trans pQTL effects were replicated
across different populations and proteomics platforms measuring
common variants!0. We estimated the novelty of pQTL findings
reported in the present study at both SNP-protein and locus-
protein levels (see Supplementary Note 1 for details). In brief,
using all conditionally independent study-wide significant

associations (Supplementary Data 2) and a linkage disequilibrium
(LD) threshold of 72<0.5 for novel associations, the current
study’s SNP-protein associations are 76.8% novel compared to
Emilsson et al.l% 75.5% novel compared to Sun et al.!l, and
59.3% novel compared to all published pQTL studies (Supple-
mentary Fig. 6A, Supplementary Data 6 and Supplementary
Note 1). Similarly, in comparison to our companion GWAS
paper®? and using the same LD threshold for novel associations,
we find that 48.4% were exome-array-specific (Supplementary
Fig. 6B, Supplementary Note 1). By combining all unique and
common SNP-protein signatures from both companion studies,
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Fig. 5 Variants affecting SVEP1 levels are associated with CHD, blood pressure, and T2D. a The Manhattan plot reveals variants at chromosomes 1 and
9 associated with serum SVEP1 levels. Study-wide significant associations (linear regression, P<1.92 x 1010, two-sided) are indicated by the horizontal
line. The y-axis shows the —(log;o) of the P-values for the association of each genetic variant on the exome array present along the x-axis. b One of the
variants associated with SVEP1 levels and underlying the peak at chromosome 9 is the low-frequency CHD risk variant rs111245230 (NP_699197.3:
pD2702G). The CHD risk allele C (highlighted in bold) is associated with increased serum SVEP1 levels. The x-axis of the box plot shows the genotypes for
the protein-associated SNP, while the y-axis denotes the Box-Cox transformed, age, and sex-adjusted serum protein levels. The P-value (two-sided) shown
at the top of the plot is derived from linear regression analysis. Box plots indicate median (middle line), 25th, 75th percentile (box), and 5th and 95th
percentile (whiskers). ¢ Serum levels of SVEPT were associated with incident CHD (P =8 x 10~9) and T2D (P = 8 x 10~>). The P-values (two-sided) at the
top of each boxplot for CHD and T2D come from logistic regression. The comparison of protein quintiles of the SVEP1 levels in serum with systolic (SBP) or
diastolic (DBP) show a significant positive correlation with SBP (8=0.210, P=4x 10-12, two-sided) but not with DBP (P> 0.05, two-sided). The
relationship between the top and bottom quintiles of serum SVEP1 levels and blood pressure is depicted in the right-most panel. The x-axis of the box plots
shows the health status of individuals, while the y-axis denotes the Box-Cox transformed, age, and sex-adjusted serum protein levels. Box plots indicate
median (middle line), 25th, 75th percentile (box), and 5th and 95th percentile (whiskers). d Consistent with the directionality of the effects described
above, we find that elevated levels of SVEP1 were associated with higher rates of mortality post-incident CHD. The Kaplan-Meier plot calculates the hazard
ratio (HR) by comparing the 75th and 25th percentiles of SVEP1 serum levels. The vertical ticks correspond to individuals lost to follow-up while the shaded
areas indicated the 95% confidence intervals. The P-value (two-sided) and HR are shown at the top of the plot. e Scatterplot for the SVEP1 protein
supported as having a causal effect on T2D in a two-sample MR analysis. The figure demonstrates the SNP effect on serum SVEP1 levels (x-axis) and T2D
from a GWAS in Europeans3> (y-axis), with 74,124 T2D patients and 824,006 controls. Each center data point displays the estimated effect as beta
coefficient = log(odds ratio), along with 95% confidence intervals for the SNP effect on disease (vertical lines) or SNP effect on the protein (horizontal
lines). The broken line indicates the inverse variance weighted causal estimate (8= 0.104, SE=0.023, P=5.7 x10~%, two-sided), while the dotted line
demonstrates the MR-Egger regression (see Supplementary Data 5).
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Box-Cox transformed, age, and sex-adjusted serum protein levels. Box plots indicate median (middle line), 25th, 75th percentile (box), and 5th and 95th
percentile (whiskers). The P-value (two-sided) shown at the top of the plot is from linear regression analysis. b Scatterplot for the ASIP protein supported
as having a causal effect on malignant melanoma in a two-sample MR analysis. The figure demonstrates the estimated effects of the respective genetic
instruments on the serum ASIP levels in AGES-RS (x-axis) and risk of melanoma in GWAS by UK biobank data (UKB-b-12915)¢7 (y-axis), that included
3598 melanoma cases and 459,335 controls. Each center data point displays the estimated effect as beta coefficient = log(odds ratio), along with 95%
confidence intervals for the SNP effect on disease (vertical lines) or SNP effect on the protein (horizontal lines). The broken line indicates the inverse
variance weighted causal estimate (f=0.0024, SE=0.0003, P=1.1x10"1, two-sided), while the dotted line shows the MR-Egger regression (see
Supplementary Data 5). ¢ The pQTL rs2241714 is a proxy for colorectal cancer-associated variant rs1800469 (r2=0.978) (Supplementary Data 2),
located within the gene B9D2 and proximal to TMEM91 which is the reported candidate gene at this locus (see Table 1). The gene encoding TGFBT, a protein
linked to rs2241714 in cis, is also nearby. d The variant rs2241714 (and rs1800469) is associated with the serum proteins TGFB1 (in cis), B3GNT8 (in cis),
and B3GNT2 (in trans). The P-values (two-sided) shown at the top of each plot are from linear regression analysis. The x-axis of each box plot shows the
genotypes for the corresponding protein-associated SNP, while the y-axis denotes the Box-Cox transformed, age, and sex-adjusted serum protein levels.
Box plots indicate median (middle line), 25th, 75th percentile (box), and 5th and 95th percentile (whiskers). The chromosomes indicated at the top of each
graph correspond to the location of the gene that encodes the protein of interest.

we obtain 6362 SNP-protein associations, of which 60.0% (at LD We report here that many of the measured serum proteins

threshold of 72 < 0.5) are novel when compared to external pQTL
datasets (Supplementary Note 1, Supplementary Fig. 6C). Finally,
when estimating novelty at the locus—protein level, we find that
321 out of 881 loci and 762 out of 3103 locus—protein associations
identified in the current study are novel compared to our com-
panion paper? (Supplementary Data 7, Supplementary Note 1).
When the two companion studies were combined, they yielded
404 new loci and 1950 new locus-protein associations, which
were not found in previous pQTL publications (Supplementary
Data 6, Supplementary Data 7, and Supplementary Note 1).

8

under genetic control share genetics with a variety of clinical
features, including major diseases arising from various body tis-
sues. This is in line with a recent population-scale survey of
human-induced pluripotent stem cells, demonstrating that
pQTLs are 1.93-fold enriched in disease risk variants compared to
a 1.36-fold enrichment for eQTLs!2, underscoring the added
value in pQTL mapping. We reaffirm widespread associations
between genetic variants and their cognate proteins as well as
distant trans-acting effects on serum proteins and demonstrate
that many proteins are often involved in mediating the biological
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effect of a single causal variant affecting complex disease. Protein
coding variants may cause technical artifacts in both affinity
proteomics and mass spectrometry®:>2. Systematic conditional
and colocalization studies have shown, however, that pQTLs
powered by common missense variants being artefactual are not a
common event using the aptamer-based technology!!>3, how-
ever, given the enrichment of missense variants in the present
study, it may occur in some cases.

We note that with the ever-increasing availability of large-scale
omics data aligned with the human genome, cross-referencing
different datasets can result in findings that occurred by sheer
chance. Hence, a systematic colocalization analysis has been
proposed for identifying shared causal variants between inter-
mediate traits and disease endpoints®. This is, however, not
feasible for the application of the exome array given its sparse
genomic coverage. Instead, multi-omics data triangulation to
infer consistency in directionality, the approach used in the
present study, can enhance confidence in the causal call and offer
insights and guidelines for experimental follow-up studies. In fact,
the causal calls for TREM2 (LOAD), SVEP1 (T2D), and ASIP
(malignant melanoma) were validated, using a two-sample MR
analysis. These analyses found no evidence of horizontal pleio-
tropy (Supplementary Data 5), nor did they demonstrate that the
causal estimates were dependent on a single genetic instrument
(Supplementary Fig. 7). We previously asserted that serum pro-
teins are intimately connected to and may mediate global
homeostasisi®. The accumulated data show that serum proteins
are under strong genetic control and closely associated with
diseases of different aetiologies, which in turn suggests that serum
proteins may be significant mediators of systemic homeostasis in
human health and disease.

Methods

Study population. The AGES-RS® was approved by the NBC in Iceland (approval
number VSN-00-063), and by the National Institute on Aging Intramural Insti-
tutional Review Board, and the Data Protection Authority in Iceland. AGES-RS is a
single-center prospective population-based study of deeply phenotyped subjects
(5764, mean age 75+ 6 years) and survivors of the 40-year-long prospective Rey-
kjavik study (N ~18,000), an epidemiologic study aimed to understand aging in the
context of gene/environment interaction by focusing on four biologic systems:
vascular, neurocognitive (including sensory), musculoskeletal, and body compo-
sition/metabolism. Descriptive statistics of this cohort as well as the detailed
definition of the various disease endpoints and relevant phenotypes measured have
been published!0->5,

Genotyping platform. Study samples were processed on the exome-wide geno-
typing array Illumina HumanExome BeadChip v1.0 (San Diego, CA, USA) for all
AGES-RS participants at the University of Texas Health Science Center at Houston
genotyping center as previously described®®. The exome array was enriched for
exonic variants selected from over 12,000 individual exome and whole-genome
sequences from different study populations3® and includes as well tags for pre-
viously described GWAS hits, ancestry informative markers, mitochondrial SNPs,
and human leukocyte antigen tags3®. A total of 244,883 variants were included on
the exome array. Genotype call and quality control filters including call rate,
heterozygosity, sex discordance, and principal component analysis outliers were
performed as previously described®2!. Variants with call rate <90% or with
Hardy-Weinberg P values < 1 x 10~7 were removed from the study. Totally, 76,891
variants were detected in at least one individual of the AGES-RS cohort. Of these
variants, 54,469 had a MAF > 0.001 and were examined for association against each
of the 4782 human serum protein measurements (see below).

Protein measurements. Each protein has its own detection reagent selected from
chemically modified DNA libraries, referred to as SOMAmers>’. The design and
quality control of the SOMApanel platform’s custom version to include proteins
known or predicted to be present in the extracellular milieu have been described in
detail elsewherel?. Briefly, though, the aptamer-based platform measures 5034
protein analytes in a single serum sample, of which 4782 SOMAmers bind speci-
fically to 4137 human proteins (some proteins are identified by more than one
aptamer) and 250 SOMAmers that recognize non-human targets (47 non-human
vertebrate proteins and 203 targeting human pathogens)!0. Consistent target spe-
cificity across the platform was indicated by direct (through mass spectrometry)
and/or indirect validation of the SOMAmers!?. Both sample selection and sample

processing for protein measurements were randomized, and all samples were run
as a single set to prevent batch or time of processing biases.

Statistical analysis. Prior to the analysis of the proteins measurements, we applied
a Box-Cox transformation on all proteins to improve normality, symmetry and to
maintain all protein variables on a similar scale®®. In the association analysis, we
obtained residuals after controlling for sex, age, potential population stratification
using principal component (PCs) analysis®®, and for all single-variant associations
to serum proteins tested under an additive genetic model applying linear regression
analysis (protein ~SNP + age + sex + PC1 4 PC2 + ....PC5). We report both
variants to protein associations at P <1 x 10~ for suggestive evidence and Bon-
ferroni correction for multiple comparisons by adjusting for the 54,469 variants
and 4782 human protein analytes where single variant associations with

P <1.92x 10710 were considered study-wide significant (Supplementary Data 1).
P-values corresponding to the estimated effect size and standard errors of the
genotypes were recalculated to increase accuracy. Independent genetic signals were
found through a stepwise conditional and joint association analysis for each protein
analyte separately with the GCTA-COJO (v1.92.4beta2) software®®6l, We condi-
tioned on the current lead variant listed in Supplementary Data 1, defined as the
variant with the lowest P-value, and then kept track of any new variants that were
not in LD (the default GCTA-COJO option 12 < 0.9 for co-linearity) with pre-
viously chosen lead variants and reported findings at P< 1 x 1076 (Supplementary
Data 2). In the joint model, all conditionally significant SNPs for each protein
analyte were combined in the regression model.

Supplementary Data 3 summarizes, through the use of VEP (v104.0)2425,
various pathogenicity prediction scores for all independent study-wide significant
pQTLs in Supplementary Data 2, including the Likelihood Ratio Test®2, Variant
Effect Scoring Tool®3, MutationAssessor®, and MutationTaster®.

To test whether the percentage of secreted proteins among pQTLs is equal to
the percentage of secreted proteins among non-pQTLs, 10,000 permutations were
performed to obtain the empirical distribution of the y? test of equality of
proportions. Our null and alternate hypotheses were:

Hy: P(pQTL | Secreted) = P(pQTL | Not Secreted) and H;:

P(pQTL | Secreted) > P(pQTL | Not Secreted) The test statistics calculated from our
data was compared to the quantiles of this distribution to obtain P(Data | Hy)
(Supplementary Fig. 1).

We applied the “TwoSampleMR” R package® to perform a two-sample MR
analysis to test for causal associations between protein and outcome (protein-to-
outcome). For different outcomes, we used GWAS associations for LOAD in
Europeans®2, malignant melanoma in European individuals from the UK biobank
data (UKB-b-12915)%7, T2D in Europeans®®>, CHD in Europeans®®, and systolic
blood pressure in Europeans®’. Genetic variants (SNPs) associated with serum
protein levels at a genome-wide significant threshold (P <5 x 10~8) identified in
the AGES-RS dataset and filtered to only include uncorrelated variants (r2<0.2)
were used as instruments. More to the point, genetic instruments within the cis
window for each aptamer were then clumped such that variants in high LD
(r2>0.2) within a 10 Mb region were combined using the LD structure of the
AGES-RS population. The inverse variance weighted (IVW) method®® was used for
the MR analysis, with P-values < 0.05 considered significant. For sensitivity
analyses, we used the intercept term from MR Egger regression® to determine
whether there was evidence of horizontal pleiotropy, and Cochran’s Q-statistic’ to
evaluate heterogeneity of genetic instruments. A leave-one-out analysis was also
performed to see the effect of individual SNPs on the causal estimate. A bi-
directional MR analysis was also attempted but not concluded as there were no
overlapping SNPs between the exome GWAS and the GWAS’ for LOAD,
malignant melanoma, and T2D after we had filtered them for significant
associations.

For the associations of individual proteins to different phenotypic measures, we
used linear or logistic regression or Cox proportional hazards regression,
depending on the outcome being continuous, binary, or a time to an event. Given
the consistency in terms of sample handling including time from blood draw to
processing (between 9 and 11 am), same personnel handling all specimens, and the
ethnic homogeneity of the population we adjusted only for age and sex in all our
regression analyses. All statistical analysis was performed using R version 3.6.0 (R
Foundation for Statistical Computing, Vienna, Austria) and RStudio (v1.1.456).

We compared our pQTL results to 19 previously published proteogenomic
studies (Supplementary Data 5), including the protein GWAS in the INTERVAL
study!!, and we previously reported genetic analysis of 3219 AGES-RS cohort
participants!?. In the previous proteogenomic analysis of AGES-RS participants,
one cis variant was reported per protein using a locus-wide significance threshold,
as well as cis-to-trans variants at a Bonferroni corrected significance threshold. Due
to these differences in reporting criteria, we only considered the associations in
previous AGES-RS results that met the current study-wide P-value threshold. For
all other studies, we retained the pQTLs at the reported significance threshold. In
addition, we performed a lookup of all independent pQTLs from the current study
available in summary statistics from the INTERVAL study, considering them
known if they reached a study-wide significance in their data. We calculated the LD
structure between the reported significant variants for all studies, using 1000
Genomes v3 EUR samples, but using AGES-RS data when comparing to previously
reported AGES-RS results. We considered variants in LD at 72> 0.5 to represent
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the same signal across studies. The comparison was performed on protein level, by
matching the reported Entrez gene symbol from each study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The custom-design Novartis SOMAscan is available through a collaboration agreement
with the Novartis Institutes for BioMedical Research (lorijennings@novartis.com). Data
from the AGES-RS study are available through collaboration
(AGES_data_request@hjarta.is) under a data usage agreement with the IHA. All-access
to data is controlled via the use of a subject-signed informed consent authorization. The
time it takes to respond to requests varies depending on the nature and circumstances of
the request, but it will not exceed 14 working days. All data supporting the conclusions of
the paper are presented in the main text and freely available as a supplement to this
manuscript (Supplementary Information and Supplementary Data).
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