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Summary 

 
Assembly of the mitochondrial complex IV (CIV) or cytochrome c oxidase 

(COX) is an intricate and highly regulated process in which the three-core 

mitochondrial DNA (mtDNA) encoded subunits assemble in a coordinated way 

with the remaining eleven supernumerary nuclear DNA (nDNA) encoded 

subunits. This process requires a large number of additional factors, which are 

necessary for the correct maturation of the complex but are not part of the fully 

assembled enzyme. Studies in mutant strains of the yeast Saccharomyces 

cerevisiae have been very useful to find many assembly factors and their human 

orthologs. However, it has become evident that there are animal-specific factors 

not present in yeast, which need to be identified using other techniques. In this 

work, two of these COX assembly factors, identified through two different 

approaches, have been characterised.  

First, quantitative proteomic analysis of the subassemblies accumulated in 

a MT-CO3 deficient cell line allowed the identification of MR-1S, conserved only 

in vertebrates. The downregulation of this protein produced a COX assembly and 

enzymatic defect. In addition, it was found to interact with the highly conserved 

bona fide COX assembly factors PET100 and PET117. 

Secondly, genomic screening of patients displaying mitochondrial 

encephalopathy and COX deficiency, revealed the presence of pathogenic 

variants in APOPT1. An Apopt1 knockout (KO) mouse model was generated by 

CRISPR/Cas9 to study the role of the APOPT1 protein in relation with COX 

biogenesis. Phenotypic characterisation showed COX deficiency in all tissues, 

associated with neuromuscular impairment, similar to the features found in 

human individuals carrying mutations in APOPT1, for which two immortalised skin 

fibroblast cell lines were studied. All the analysed mouse tissues and human cells 

showed decreased levels of fully assembled COX and subassembly 

accumulation. Interestingly, APOPT1 was found to be tightly regulated at the 

post-translational level, being its turnover controlled by the cytoplasmic ubiquitin-

proteasome system (UPS), while increased oxidative stress had stabilising 

effects on the mature intramitochondrial form, which was shown to protect COX 

subunits from oxidatively-induced degradation.   
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Chapter 1 - Introduction 
 

 2 

1.1 General introduction to mitochondrial biology 

 

1.1.1 Mitochondrial origin 

 

Mitochondria are subcellular organelles, found in nearly all eukaryotic cells, 

that supply the cell with energy in form of ATP (adenosine triphosphate) 

generated by aerobic respiration. Mitochondria are thought to have evolved 2.4 

billion years ago, when oxygen (O2) started to build up in the Earth’s atmosphere 

(Cavalier-Smith, 2006). The endosymbiotic theory proposes that mitochondria 

were originally independent oxygen-utilising alpha-protobacteria that were 

engulfed by a host cell, most likely related to modern archaea (Embley and 

Martin, 2006; Martijn and Ettema, 2013). This event led to an evolutionary 

transition in which the transfer of the majority of the mitochondrial genes to the 

nucleus of the host cell, allowed the expansion and restructuration of the nuclear 

genome, a key factor for the development of more complex organisms (Lane and 

Martin, 2010). After the endosymbiotic event, mitochondria became semi-

autonomous organelles, being their function and biogenesis heavily dependent 

on the nucleus (Cavalier-Smith, 2006). However, by retaining a small genome, 

mitochondria possess the ability to synthesise key proteins of the mitochondrial 

respiratory chain in a flexible way that is able to adapt to the influx of nuclear-

encoded subunits (Richter-Dennerlein et al., 2016). 

 

 

1.1.2 Mitochondrial architecture and dynamics 

 

The term “mitochondrion” was coined in 1898 by microbiologist Carl 

Benda, who identified these organelles with a light microscope by the “threads 

dotted with grains” that appear to run across them, giving origin to the name 

“mitochondrion”, derived from the Greek “mitos”, meaning thread, and 

“chondrion” meaning grain (Ernster and Schatz, 1981). The first high resolution 

images of the mitochondrial internal structure were provided in the 1950s 

(Palade, 1953; Sjöstrand, 1953), thanks to the development of electron 

microscopy (EM) techniques (Figure 1.1). Mitochondria appeared to have two 
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membranes, evidence of the endosymbiotic theory: the outer mitochondrial 

membrane (OMM), similar to eukaryotic cell membranes, and the inner 

mitochondrial membrane (IMM), that shares many characteristics with the 

bacterial cell membrane, such as the presence of cardiolipin (Cavalier-Smith, 

2006). This double membrane architecture results in the formation of four 

morphologically and functionally distinct compartments: the outer mitochondrial 

membrane (OMM), the intermembrane space (IMS), the inner mitochondrial 

membrane (IMM) and the matrix (Figure 1.1). The OMM, which forms the 

boundary with the cytoplasm, is a relatively simple phospholipid bilayer with a 

protein:phospholipid ratio similar to the eukaryotic plasma membrane (Ernster 

and Schatz, 1981). It contains large numbers of integral membrane proteins, 

called porins, that allow free traffic of ions and small molecules (< 5 kDa) (Young 

et al., 2007). Bigger proteins need to be imported through the translocase of the 

outer membrane (TOM complex) (Ferramosca and Zara, 2013). In contrast, the 

IMM is more complex and protein-dense than the OMM (Flescher, Klouwen and 

Brierley, 1961) and presents many invaginations, called cristae, that protrude into 

the matrix space and harbour the oxidative phosphorylation (OXPHOS) system 

(Ernster and Schatz, 1981). The high folding of the IMM increases its surface, 

maximising the area available for energy production (Nunnari, 2014). This 

membrane is permeable only to O2, carbon dioxide (CO2), and water (H2O), and 

therefore sophisticated mitochondrial carriers are necessary to transport proteins 

and other molecules through this membrane. For instance, the adenine 

nucleotide translocator (ANT) exchanges ATP with ADP across the membrane 

(Klingenberg, 2008) and the translocase of the inner membrane (TIM complex) 

imports proteins into the IMM and the matrix (Rehling et al., 2003; Dolezal et al., 

2006). The tight control of the IMM permeability allows the generation and 

maintenance of an electrochemical gradient across the membrane that is 

essential not only for the synthesis of ATP (Nicholls, 1974), but also for other 

mitochondrial functions such as Ca2+ uptake through the mitochondrial calcium 

uniporter (MCU) (Baughman et al., 2008; De Stefani et al., 2014). On the other 

hand, the IMS is crucial for several mitochondrial functions, such as the exchange 

of proteins, lipids and metal ions between the matrix and the cytosol (Wiedemann, 

Frazier and Pfanner, 2004) or the activation of apoptosis (Tait and Green, 2013). 

It also contains the mitochondrial intermembrane space assembly (MIA) 
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machinery that mediates oxidative protein transport and folding (Stojanovski et 

al., 2008). Finally, the mitochondrial matrix harbours multiple copies of the 

mtDNA, the mitochondrial ribosomes and pools of ions and proteins involved in 

many different processes, such as the tricarboxylic acid cycle (TCA) (Martínez-

reyes et al., 2017), the biosynthesis of haem moieties (Ajioka, Phillips and 

Kushner, 2006) and iron-sulphur (Fe-S) clusters (Rouault and Maio, 2017), the 

synthesis and degradation of several amino acids (Guda, Guda and 

Subramaniam, 2007), etc. 

 

 

Figure 1.1 Architecture of the mitochondrion. Left to right: Subcellular location 
of mitochondria. Cartoon of a typically rod-shaped mitochondrion depicting its 
different compartments. Electron micrograph of a mitochondrion. Image extracted 
from (Lejay et al., 2007). 

 

 

Mitochondria have usually been described as individual rod-shaped 

structures (Figure 1.1) (Palade, 1953; Ernster and Schatz, 1981). However, it is 

now well established that they are dynamic organelles forming a network of tube-

like structures (Tilokani et al., 2018). The shape of this network is controlled by 

two opposing processes, fission and fusion (Twig, Hyde and Shirihai, 2008; 

Zamponi et al., 2018). Fusion maximises mitochondrial function by allowing the 

spreading of metabolites, protein and DNA throughout the network, while fission 

allows segregation of damaged components of a mitochondrion and isolation of 

dysfunctional mitochondria (Youle, Pickles and Vigi, 2018). Mitochondria can 
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adapt to different cellular metabolic demands not only by changing the shape of 

their network, but also by increasing/decreasing the number of mitochondria per 

cell and their intracellular location (Robin and Wong, 1988; Anesti and Scorrano, 

2006; Frazier et al., 2006; Campello and Scorrano, 2010). Normally, mitochondria 

concentrate in areas where high amounts of energy are required, like for example 

in skeletal muscle, where mitochondria are aligned in rows parallel to the 

contractile fibrils (Anesti and Scorrano, 2006; Frangini et al., 2013). Thus, 

mitochondrial dynamics, which includes fission/fusion, movements through the 

cytoskeleton and turnover (balance between mitochondrial biogenesis and 

mitophagy), are crucial for the regulation of mitochondrial function and quality 

(Campello and Scorrano, 2010; Suárez-Rivero et al., 2016; Tilokani et al., 2018).  

 

 

1.1.3 Mitochondrial metabolic pathways 

 

Mitochondria are commonly known as the ‘powerhouses of the cell’ 

because their main function is the generation of ATP via the mechanism called 

OXPHOS (Cavalier-Smith, 2006). The chemiosmotic theory, developed in 1960 

by the British biochemist Peter Mitchell, is the basis for understanding this 

process (Peter, 1961; Ernster and Schatz, 1981). The catabolism of 

carbohydrates, fatty acids and proteins converge in the formation of acetyl-CoA, 

which enters the TCA cycle to completely oxidise its acetyl group to CO2. During 

this process, the reducing equivalents are transferred to NAD+ (nicotinamide 

adenine dinucleotide) and FAD (flavin adenine dinucleotide), generating NADH 

and FADH2, respectively (Martínez-reyes et al., 2017). These cofactors donate 

electrons to the electron transport chain (ETC), composed of four enzymes 

(complexes I to IV; CI-IV). Two mobile electron carriers mediate the electronic 

transfer between these complexes: the lipophilic ubiquinone or coenzyme Q 

(CoQ, Q) embedded in the IMM, and the hydrophilic heme protein cytochrome c 

(cyt c), located in the IMS. The sequential redox reactions through the complexes 

are exergonic and provide energy for complexes I, III and IV to pump protons (H+) 

from the matrix to the IMS (Figure 1.2), making the latter more positive and acidic 

than the matrix (Watt et al., 2010). This creates an electrochemical gradient 

between the two sides of the IMM, which is called proton-motive force (PMF), 
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defined by two components: an electrical membrane potential (ΔΨ) and a 

chemical pH gradient (ΔpH) (Nicholls, 1974). The PMF drives H+ back across the 

IMM through the last of the OXPHOS enzymes, complex V (CV) or ATP synthase, 

generating a rotation movement that powers the synthesis of ATP from adenosine 

diphosphate (ADP) and inorganic phosphate (Pi) (see section 1.2.5 Complex V 

for more details) (Abrahams et al., 1994; Stock et al., 2000; Watt et al., 2010; He, 

Carroll, et al., 2017).   

 

 

Figure 1.2 Cartoon of the OXPHOS system. The NADH and FADH2 produced 
by the TCA cycle are oxidised by CI and CII, respectively. The electrons then flow 
to CIII and CIV, with the help of Q and cyt c, and are used to reduce O2 to H2O at 
CIV. The PMF created through the IMM powers the generation of ATP at the 
matrix side of CV. Image extracted from (Yusoff et al., 2015).  
 

 

In addition to OXPHOS, mitochondria are involved in many other metabolic 

processes. For instance, the incorporation of iron into haems and Fe-S clusters 

occurs inside this organelle (Richardson et al., 2010; Kim et al., 2013; Lane et al., 

2015). Although most of the intermediate steps of haem synthesis are cytosolic, 

the first and last reactions are catalysed in the mitochondrial matrix. Once haems 

are formed, they are incorporated into haem-containing proteins, such as 

haemoglobin and cytochromes (Ajioka, Phillips and Kushner, 2006; Richardson 
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et al., 2010; Kim et al., 2013). On the other hand, the mitochondrial matrix Fe-S 

cluster assembly (ISC) machinery coordinates the biosynthesis of Fe-S centres 

and their incorporation into apoproteins, some of which are components of 

complexes I, II and III of the ETC (Brzóska, Mȩczyńska and Kruszewski, 2006; 

Braymer and Lill, 2017; Rouault and Maio, 2017).  

Moreover, all the 20 amino acids, both ‘essential’ (need to be taken from 

food) and ‘non-essential’ (can be synthesised in humans) have metabolic 

pathways associated with mitochondria (catabolic and anabolic for the ‘non-

essential’ and only catabolic for the ‘essential’ ones) (Guda, Guda and 

Subramaniam, 2007). For instance, glutamine is deaminated to glutamate in the 

mitochondrial matrix and after a series of transamination reactions is used for the 

synthesis of proline, alanine and aspartate (Guda, Guda and Subramaniam, 

2007). Additionally, some steps of the synthesis and degradation of nucleotides 

also occur inside mitochondria. For instance, glutamate can be converted to α-

ketoglutarate, enter the TCA cycle and be oxidised to oxaloacetate (OAA), which 

can then be transaminated to aspartate and transported to the cytosol where it is 

used for nucleotide biosynthesis (Wang, 2016). Many other metabolic pathways 

have also some steps taking place inside the mitochondria, such as cardiolipin 

synthesis (Houtkooper and Vaz, 2008; Paradies et al., 2014) and quinone and 

steroid biosynthesis (Miller, 2013),  

As previously mentioned, mitochondria also have a role in Ca2+ uptake 

through the MCU  (Baughman et al., 2008; Stefani et al., 2014), which acts as a 

channel opening when the cytosolic free calcium concentration is higher than 0.5 

µM (Chem et al., 2015). Once in the matrix, where it can be stored temporarily, 

Ca2+ stimulates three dehydrogenases of the TCA cycle (pyruvate, NAD-

isocitrate, and 2-oxoglutarate dehydrogenases), increasing the production of 

NADH and therefore, the synthesis of ATP, which is particularly important during 

skeletal muscle contraction (Denton and Martin, 1972; Denton, 2009; Christoph 

Maack, 2013).  

Finally, mitochondria are also crucial in the regulation of cell fate, as they 

can activate cell death via apoptosis or via necrosis. Apoptosis, or programmed 

cell death, occurs in response to various stresses, such as DNA damage, growth 

factor withdrawal and oxidative stress, and is characterised by the 

permeabilisation of the OMM, called MOMP (mitochondrial outer membrane 
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permeabilisation), which leads to the release of several IMS proapoptotic 

proteins, such as cyt c (Tait and Green, 2013; Chen, Kang and Fu, 2018; Galluzzi 

et al., 2018). Necrosis is activated by more severe stresses, such as very high 

levels of oxidative stress and cytosolic Ca2
+ overload, and is characterised by 

permeabilisation of the IMM, called MPT (mitochondrial permeability transition), 

which leads to the dissipation of the IMM potential, ion deregulation, 

mitochondrial and cellular swelling, activation of degradative enzymes, failure of 

the plasmatic membrane and cell lysis (Halestrap, 2009; Chen, Kang and Fu, 

2018; Galluzzi et al., 2018).   

 

 

1.1.4 The mitochondrial genome 

 

Throughout evolution mitochondria have retained a small amount of 

genetic material, known as mtDNA, which in humans is a circular double stranded 

DNA molecule of 16.6 kilobases (kb) composed of a heavy strand (purine-rich; 

HS) and a light strand (pyrimidine-rich; LS). It is a very compact genome with 

contiguous genes and no introns, and it has only one small non-coding region, 

called the displacement loop (D-loop), which contains the replication origin of the 

HS (OH) and the transcription promoters for both strands (HSP and LSP) 

(Bogenhagen, 2012; Gray et al., 2012; Chinnery and Hudson, 2013). The coding 

region harbours 37 genes: 22 tRNAs (transfer RNAs), 2 rRNAs (ribosomal RNAs) 

and 13 proteins (all structural subunits of the OXPHOS system) (Figure 1.3) 

(Chinnery and Hudson, 2013). All the other structural subunits of complexes I-V 

plus all the proteins required for the normal mitochondrial physiology (assembly 

of the respiratory chain complexes, maintenance and expression of mtDNA, etc.), 

which compose the mitochondrial proteome of around 1500 proteins, are 

encoded in the nDNA (Ruiz-Pesini et al., 2007; Gray et al., 2012). This means 

that their expression has to be somehow coordinated with the mitochondrial 

genome (Couvillion et al., 2016; Richter-Dennerlein et al., 2016) and that they 

have to be translated in the cytosol and imported into the organelle through 

specific sorting, translocation and folding machineries (Wasilewski, Chojnacka 

and Chacinska, 2017). 
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Each human cell has hundreds to several thousands of mitochondria and 

every mitochondrion can carry as many as ten copies of mtDNA, which associate 

with histone-like proteins to form densely packed nucleoprotein particles, called 

nucleoids, that attach to the IMM (Robin and Wong, 1988; Kukat et al., 2011; 

Bogenhagen, 2012). The mitochondrial genome replicates independently from 

the nuclear DNA and the cell cycle (Chinnery and Hudson, 2013) and by 

mitochondria-specific factors different from those used for nuclear replication 

(Falkenberg, 2018). The replication mechanism is also different from the one in 

the nucleus. It follows a strand-displacement mechanism, in which the synthesis 

of the HS initiates at the OH and proceeds continuously and unidirectionally 

without simultaneous replication of the opposite strand, which starts from a 

distinct position, called OL, from where it also proceeds continuously and 

unidirectionally (Falkenberg, 2018). The entire mitochondrial genome is 

transcribed, also using a distinct machinery, from the HSP and LSP as 

polycistronic transcripts. According to the ‘tRNA punctuation model’, these long 

transcripts undergo several processing steps. First the different RNA species are 

cleaved, then multiple chemical modifications allow the tRNAs and mRNAs to be 

functional and the rRNAs to assemble into the mitoribosome, where the 

translation of the mtDNA-encoded OXPHOS subunits occurs (D’Souza and 

Minczuk, 2018). 
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Figure 1.3 The human mitochondrial genome. Both rRNAs (depicted orange) 
and the genes encoding proteins are located on the HS, except the ND6 gene, 
which is located on the LS. CI subunits are depicted in green, CIII in blue, CIV in 
pink and CV in purple. tRNA genes, located both in the HS and the LS, are 
depicted in yellow with single letters, such as ‘Q’ and ‘L’. OH and OL indicate the 
origins of replication and HSP and LSP indicate the transcription promoters. The 
D-loop is depicted in black. Image extracted from (Gorman et al., 2016). 
 

 

1.2 Function and biogenesis of the mammalian OXPHOS 

system 

 

 In mammals, all the components of the OXPHOS system are multimeric 

and, except for CII, composed of subunits encoded both in the mtDNA and the 

nDNA, which makes the OXPHOS system unique (Fernández-Vizarra, Tiranti 

and Zeviani, 2009; Signes and Fernandez-vizarra, 2018). Along with structural 

subunits, many other factors necessary for the correct biogenesis of OXPHOS 
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are encoded in the nDNA (Chinnery and Hudson, 2013; Richter-Dennerlein et al., 

2016). Many of these nuclear-encoded proteins are ‘assembly factors’, which are 

complex-specific proteins that assist the assembly of nascent complexes but do 

not form part of the final structure. These assembly factors, which in some cases 

outnumber the structural subunits, can be involved in a variety of functions, such 

as the incorporation and stabilisation of specific subunits and/or assembly 

intermediates or the synthesis and incorporation of prosthetic groups  

(Fernández-Vizarra, Tiranti and Zeviani, 2009; Ghezzi and Zeviani, 2018; Signes 

and Fernandez-vizarra, 2018). The assembly pathways and the known factors 

involved for each of the five OXPHOS complexes are described below. Due to 

the focus of this thesis on COX (CIV), the function and biogenesis of this complex 

will be described in greater detail.   

 

 

1.2.1 Complex I 

 

Complex I (EC 1.6.5.3) or NADH:ubiquinone reductase (H+ translocating) 

is composed of forty-five subunits and is the largest OXPHOS complex. It is an 

L-shaped enzyme composed of a hydrophilic arm protruding into the matrix, 

where the electron transfer from NADH to Q occurs, and of a proton-translocating 

hydrophobic arm. The Q binding site is at the interphase of both arms (Efremov, 

Baradaran and Sazanov, 2010; Baradaran et al., 2013). The catalytic core, 

conserved from bacteria to humans, is composed of 14 subunits: 7 are mtDNA-

encoded (ND1, ND2, ND3, ND4, ND4L, ND5, and ND6), located in the 

hydrophobic arm and involved in proton translocation (Vinothkumar, Zhu and 

Hirst, 2014); and the other 7 are nDNA-encoded (NDUFV1, NDUFV2, NDUFS1, 

NDUFS2, NDUFS3, NDUFS7, and NDUFS8), located in the hydrophilic arm and 

containing the redox active centres (one non-covalently bound flavin 

mononucleotide, FMN, and seven Fe-S clusters) (Hirst and Roessler, 2016). The 

remaining thirty subunits are ‘supernumerary’ but important for assembly and 

stability (Vinothkumar, Zhu and Hirst, 2014; Stroud et al., 2016; Zhu, Vinothkumar 

and Hirst, 2017). 
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Exhaustive research has been carried out concerning human CI assembly 

(Antonicka, Ogilvie, et al., 2003; Ugalde, Janssen, et al., 2004; Ugalde, Vogel, et 

al., 2004; Lazarou et al., 2007; Vogel, Dieteren, et al., 2007; Vogel, Smeitink and 

Nijtmans, 2007; Mimaki et al., 2012; Sánchez-Caballero, Guerrero-Castillo and 

Nijtmans, 2016). However, several recent breakthroughs have granted a much 

deeper understanding about this process. Thus, we now know the complete 

mammalian CI structure (Vinothkumar, Zhu and Hirst, 2014; Zhu, Vinothkumar 

and Hirst, 2016) and how the subunits are organised in six modules (N, Q, ND1, 

ND2, ND4 and ND5) that, with the help of specific assembly factors, are brought 

together through five distinct subassemblies (Stroud et al., 2016; Guerrero-

Castillo et al., 2017) (Figure 1.4).  

The N-module, which is the tip of the hydrophilic arm and the last one to 

be incorporated (Lazarou et al., 2007; Vogel, van den Brand, et al., 2007), results 

from the assembly of NDUFV1, NDUFV2, NDUFS1 and NDUFA2 (Guerrero-

Castillo et al., 2017) to which NDUFA6, NDUFA7, NDUFA12, NDUFS4, NDUFS6 

and NDUFV3 must be further associated to complete the module (Stroud et al., 

2016).  

The Q-module is built through the association of NDUFA5, NDUFS2 and 

NDUFS3 plus NDUFS7 and NDUFS8. The chaperones NDUFAF3/C3ORF60 

and NDUFAF4/C6ORF66 (Saada et al., 2008, 2009) remain bound to this module 

until the final assembly steps (Guerrero-Castillo et al., 2017). 

NDUFAF6/C8ORF38 (Pagliarini et al., 2008) also seems to participate in the 

assembly of the Q-module (Bianciardi et al., 2016; Stroud et al., 2016). 

NDUFAF3, 4 and 6, are necessary to maintain normal MT-ND1 synthesis 

(McKenzie et al., 2011; Zurita Rendón and Shoubridge, 2012). NDUFAF5 adds 

a hydroxyl group to Arg-73 of NDUFS7 (Rhein et al., 2016) and NDUFAF7 

dimethylates NDUFS2 in Arg-85 (Rhein et al., 2013), an essential modification 

for CI assembly (Zurita Rendón et al., 2014). NUBPL/IND1 delivers [4Fe-4S] 

clusters specifically to the N- and Q-module subunits (Sheftel et al., 2009; Calvo 

et al., 2010). 

The ND1-module builds around the Q-module with the help of 

TIMMDC1/C3ORF1 (Andrews et al., 2013; Guarani et al., 2014), which remains 

bound to the Q/ND1 subassembly until the last maturation steps. MT-ND1 joins 
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first and then NDUFA3, NDUFA8 and NDUFA13 are added (Guerrero-Castillo et 

al., 2017).  

The ND2-module is formed by an initial intermediate that contains MT-

ND2, NDUFC1 and NDUFC2 bound to NDUFAF1/CIA30 (Vogel et al., 2005; 

Dunning et al., 2007), ECSIT (Vogel, Janssen, et al., 2007) and ACAD9 (Haack 

et al., 2010; Nouws et al., 2010). Then, MT-ND3 is added together with 

TMEM126B (Heide et al., 2012), forming a larger intermediate to which subunits 

MT-ND6 and MT-ND4L bind. The latest assembly stages involve the 

incorporation of subunits NDUFA1, NDUFA10 and NDUFS5 (Stroud et al., 2016; 

Guerrero-Castillo et al., 2017). The stable association of the assembly factors 

NDUFAF1+ECSIT+ACAD9+TMEM126 was denominated Mitochondrial 

Complex I Assembly (MCIA) complex (Heide et al., 2012; Guarani et al., 2014). 

Two other chaperones were found interacting with this module: TMEM186 and 

COA1 (Guerrero-Castillo et al., 2017), the latter being a well-known CIV assembly 

factor (Mick et al., 2012; Szklarczyk et al., 2012).  

The main ND4-module intermediate binds NDUFB1, NDUFB4, NDUFB5, 

NDUFB6, NDUFB10, NDUFB11 and MT-ND4 together with FOXRED1 (Calvo et 

al., 2010; Fassone et al., 2010; Formosa et al., 2015; Zurita Rendón et al., 2016), 

ATP5SL (Ugalde, Vogel, et al., 2004; Stroud et al., 2016) and also TMEM70, 

described as a CV assembly factor (Čížková et al., 2008; Hejzlarová et al., 2014; 

Guerrero-Castillo et al., 2017).  

The ND5-module corresponds to the distal part of the membrane arm and 

it is composed of MT-ND5, NDUFB2, NDUFB3, NDUFB7, NDUFB8, NDUFB9 

and NDUFAB1 (Stroud et al., 2016; Guerrero-Castillo et al., 2017). 

DMAC1/TMEM261 is implicated in its stabilisation and/or assembly (Stroud et al., 

2016).  

The ND2- and the ND4-modules get together first, with still all the 

chaperones bound to them. Later on, the Q/ND1 and the ND5-modules join the 

nascent complex. This intermediate only lacking the N-module is stabilised by 

NDUFAF2/NDUFA12L/B17.2L (Ogilvie, Kennaway and Shoubridge, 2005; 

Vogel, van den Brand, et al., 2007; Stroud et al., 2016). In the last step, the pre-

assembled N-module becomes attached and the chaperones released 

(Guerrero-Castillo et al., 2017). 
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Figure 1.4 
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Figure 1.4 Complex I assembly model based on the bovine CI cryo-EM 
structure with Protein Data Bank (PDB) ID: 5LC5 (Zhu, Vinothkumar and Hirst, 
2017) and the models proposed in references (Sánchez-Caballero, Guerrero-
Castillo and Nijtmans, 2016; Formosa et al., 2017; Guerrero-Castillo et al., 2017). 
Red colour indicates proteins with described pathological mutations. See main 
text for details. Image extracted from (Signes and Fernandez-Vizarra, 2018). 
 

 

1.2.2 Complex II 

 

Complex II (EC 1.3.5.1) or succinate dehydrogenase (quinone) couples 

the oxidation of succinate to fumarate (step 6 of the TCA) in the matrix, with the 

reduction of Q to QH2 (ubiquinol) in the membrane. It is composed of four nDNA-

encoded subunits: SDHA/SDH1 and SDHB/SDH2, the bigger and hydrophilic 

subunits, form the catalytic domain and contain the redox active centres (one 

covalently-bound FAD cofactor, in SDHA, and three Fe-S clusters, in SDHB); 

SDHC/SDH3 and SDHD/SDH4, the smaller and hydrophobic subunits, anchor 

the enzyme to the IMM and harbour two Q binding sites and a haem b group 

(Oyedotun and Lemire, 2001; Sun et al., 2005). Although two H+ are generated 

from the oxidation of succinate, two H+ are needed for the reduction of Q to QH2, 

therefore there is no net proton pumping into the IMS (Sun et al., 2005; Oyedotun, 

Sit and Lemire, 2007).  

 CII assembly (Figure 1.5) takes place through the independent 

maturation of SDHA, SDHB and SDHC+SDHD mediated by subunit-specific 

chaperones (Van Vranken et al., 2015). SDHA is flavinylated before assembly 

into CII, and SDHAF2/Sdh5 mediates this step (Hao et al., 2009; Kim et al., 2012). 

Following FAD incorporation, SDHA binds to SDHAF4/Sdh8, which keeps the 

subunit stable and competent for assembly with SDHB, while protecting it from 

auto-oxidation (Van Vranken et al., 2014).  

 SDHB also incorporates its Fe-S clusters before joining the rest of the 

subunits. Fe-S clusters are synthesised in the mitochondrial matrix (Braymer and 

Lill, 2017; Rouault and Maio, 2017) and then transferred to the apoprotein. This 

step is mediated by SDHAF1, necessary also for SDHB stability (Ghezzi, Goffrini, 

et al., 2009; Maio et al., 2014, 2016). SDHAF3/ACN9/LYRM10 is another protein 

involved in SDHB stability and oxidative damage protection after insertion of the 

Fe-S clusters (Na et al., 2014; Van Vranken et al., 2015; Dwight et al., 2017).  
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When both SDHA and SDHB acquire their respective prosthetic groups, 

they join together, liberating SDHAF4 but keeping the binding with SDHAF1 and 

SDHAF3 (Na et al., 2014; Van Vranken et al., 2015). 

SDHC and SDHD are assembled together in the inner membrane by a yet 

unknown mechanism. The heme b group, coordinated in the interphase of both 

subunits, does not play any catalytic role but is required for their stability (Lemarie 

and Grimm, 2009; Kim et al., 2013). Another factor that influences the 

dimerization of SDHC and SDHD, as well as their stability, is the presence of both 

hydrophilic subunits (Kim et al., 2012; Na et al., 2014). 

 

 

Figure 1.5 Complex II assembly model based on the porcine CII crystal 
structure with PDB ID: 1ZOY (Sun et al., 2005) and the model proposed in 
reference (Van Vranken et al., 2015). Red colour indicates proteins with 
described pathological mutations. See main text for details. Image extracted from 
(Signes and Fernandez-vizarra, 2018). 
 

 

1.2.3 Complex III 

 

Complex III (EC 1.10.2.2) or quinol- cytochrome-c reductase performs the 

electron transfer from QH2 to cyt c coupled to proton pumping using the ‘Q-cycle’ 
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mechanism (Trumpower, 1990; Crofts et al., 2008). Structurally, it is a tightly 

bound symmetrical dimer (CIII2), being each ‘monomer’ composed of three 

catalytic core subunits (MT-CYB, CYC1 and UQCRFS1) and seven 

supernumerary subunits (Iwata et al., 1998), which are not involved in the 

catalysis but are important for correct assembly and/or stability of the enzyme 

(Haut et al., 2003; Barel et al., 2008). The 78-amino acid mitochondrial targeting 

sequence (MTS) cleaved off from UQCRFS1 was considered an extra subunit 

(Brandt et al., 1993; Iwata et al., 1998), but it needs to be cleared out to maintain 

CIII2 structural and functional fitness (Bottani et al., 2017; Fernandez-Vizarra et 

al., 2018). MT-CYB contains two b-type hemes with different redox potential as 

well as two Q binding sites. There is one [2Fe-2S] cluster inserted in the C-

terminal of UQCRFS1, and CYC1 binds a heme c1 group that transfers the 

electrons to cyt c.  

 Yeast CIII assembly (Figure 1.6) starts with the synthesis of cytochrome 

b (MT-CYB in human nomenclature) by mitochondrial ribosomes and its insertion 

into the inner membrane, mediated by Cbp3/UQCC1 and Cbp6/UQCC2 that 

remain bound to MT-CYB once it is completely synthesised. Cbp4/UQCC3 joins 

after the first heme-b (bL) but before the second one (bH) is incorporated 

(Gruschke et al., 2011, 2012; Hildenbeutel et al., 2014). Once the first structural 

subunits (UQCRB and UQCRQ) are incorporated, UQCC1-UQCC2 detach and 

go back to act as translational activators (Gruschke et al., 2011, 2012). These 

first steps in CIII assembly (Figure 3) are supposedly conserved, because the 

three factors are present in humans and mutations in UQCC2 impair MT-CYB 

synthesis (Tucker et al., 2013; Wanschers et al., 2014). 

 Maturation of CIII occurs, both in yeast and humans, with the addition of 

the Rieske Fe-S protein (Rip1/UQCRFS1) and of the smallest subunit 

(Qcr10/UQCR11) to an already dimeric pre-complex III (pre-CIII2) (Cruciat et al., 

1999; Fernandez-Vizarra et al., 2007; Conte et al., 2015). After import into 

mitochondria, UQCRFS1 is bound and stabilised in the matrix by MZM1L/LYRM7 

(Atkinson et al., 2011; Cui et al., 2012; Sánchez et al., 2013) that also mediates 

binding to the Fe-S cluster transfer complex (Maio et al., 2017). Incorporation of 

UQCRFS1 to pre-CIII2 is mediated by Bcs1/BCS1L (Cruciat et al., 1999; De 

Lonlay et al., 2001; Fernandez-Vizarra et al., 2007; Wagener et al., 2011). In 

human and mouse mitochondria, TTC19 (Ghezzi et al., 2011) binds fully 
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assembled CIII2 and favours the elimination of UQCRFS1 N-terminal fragments 

to maintain normal activity levels (Bottani et al., 2017). The intermediate steps of 

CIII2 assembly are not known in humans. However, being that the initial and the 

final stages are the same and the assembly factors involved are orthologous 

proteins, it is assumed that they will share very many similarities (Fernández-

Vizarra and Zeviani, 2015). The order of incorporation in S. cerevisiae was 

determined by creating yeast strains missing one structural subunit at a time and 

studying the stability of the remaining CIII components (Zara, Conte and 

Trumpower, 2007, 2009b, 2009a). Up to now, there are no described assembly 

factors involved in the incorporation or stabilisation of CIII2 intermediate subunits 

and transitional subcomplexes. 

 
 



Chapter 1 - Introduction 
 

 19 

 
  

Figure 1.6 Complex III assembly model based on the bovine CIII2 crystal 
structure with PDB ID: 1BGY (Iwata et al., 1998) and the models proposed in 
references (Fernández-Vizarra and Zeviani, 2015; Fernandez-Vizarra et al., 
2018). Red colour indicates proteins with described pathological mutations. See 
main text for details. Image extracted from (Signes and Fernandez-Vizarra, 
2018). 
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1.2.4 Complex IV 

 

1.2.4.1 Complex IV function and regulation 

 

Complex IV (EC 1.9.31) or COX catalyses the oxidation of cyt c and the 

reduction of O2 to H2O coupled to proton pumping across the IMM. Mammalian 

CIV from bovine heart was crystallised as a 13-subunit enzyme (Tsukihara T, 

Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, 

Nakashima R, Yaono R, 1996; Yoshikawa, Shinzawa-Itoh and Tsukihara, 1998). 

However, recent studies have demonstrated that it contains another less tightly 

bound subunit, NDUFA4 (COXFA4), which was previously thought to be part of 

complex I (Balsa et al., 2012; Pitceathly et al., 2013; Pitceathly and Taanman, 

2018). The three largest and highly hydrophobic subunits (MT-CO1, MT-CO2 and 

MT-CO3), encoded in the mtDNA, form the core of the enzyme. MT-CO1 

harbours a haem a group and a binuclear haem a3-CuB centre buried within the 

IMM, while MT-CO2 contains a CuA centre located in its globular domain facing 

the IMS (Fontanesi, Soto and Barrientos, 2008; Soto et al., 2012; Dennerlein and 

Rehling, 2015). MT-CO3, although a structural part of the core, has no prosthetic 

groups and plays no direct catalytic role (Wikström, Krab and Sharma, 2018). The 

eleven ‘supernumerary’ subunits (COX4, COX5A, COX5B, COX6A, COX6B, 

COX6C, COX7A, COX7B, COX7C, COX8 and NDUFA4), encoded in the nDNA, 

are thought to be important for the stabilisation of the catalytic core and regulation 

of its activity (Arnold and Kadenbach, 1997; Arnold, Goglia and Kadenbach, 

1998; Kadenbach and Arnold, 1999; Massa et al., 2008; Daniela Fornuskova, 

Lukas Stiburek, Laszlo Wenchich, Kamila Vinsova, Hana Hansikova, 2010; 

Pitceathly et al., 2013; Kadenbach, 2017). All these subunits contain hydrophobic 

transmembrane regions, except COX5A and COX5B that are on the matrix side 

and COX6B that is facing the IMS (Nijtmans et al., 1998; Fontanesi, Soto and 

Barrientos, 2008). Electrons from reduced cyt c are transferred to the CuA, then 

to the haem a group and finally to the haem a3-CuB. In the last step, O2 is bound 

to haem a3 and reduced to H2O (Soto et al., 2012). The free energy from each 

electron transfer is used to pump one H+ across the IMM (called “pumped 

protons”) and one H+ from the matrix to the binuclear centre (called “substrate 

protons”). Four electrons are required for the reduction of one molecule of O2, 
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which means that four “substrate protons” are taken from the matrix to synthesise 

two molecules of H2O; and four “pumped protons” are translocated from the 

matrix to the IMS, contributing to the PMF (Michel, 1998; Lu and Gunner, 2014; 

Wikström, Krab and Sharma, 2018). Two channels are well known for the proton 

uptake from the mitochondrial matrix to the catalytic core, channel D and channel 

K, named after the conserved aspartate and lysine residues located at the 

beginning of the channel, at the matrix side (Lu and Gunner, 2014). However, the 

proton exit pathway from the binuclear centre to the IMS is not well understood 

yet.  

Being the rate-limiting enzyme of the ETC, CIV is an OXPHOS key 

regulatory site, which is why its biogenesis and activity are subjected to a high 

level of regulation (Kadenbach, 2018). Indeed, CIV is the only OXPHOS complex 

in which several tissue-specific and oxygen-regulated isoforms have been found 

(Hüttemann, Kadenbach and Grossman, 2001; Sinkler et al., 2017). In mammals, 

there are six subunits with tissue-specific isoforms: COX6A1/COX6A2, 

COX7A2/COX7A1, and COX8A(2)/COX8B(1) liver/heart-specific, COX4I2 is the 

main isoform in the lung (while COX4I1 is ubiquitously expressed) and COX6B2 

and COX8C(3) are testis-specific. The heart-type isoforms are expressed in the 

heart and skeletal muscle, which are tissues with high energy demands. The liver-

type subunits are expressed in brain, liver, kidney and other tissues (Sinkler et 

al., 2017). Moreover, the hypoxia-inducible factor 1-alpha (HIF-1), which senses 

and coordinates the cellular adaptive response to hypoxia by transcriptionally 

activating the expression of key genes, has been shown to also regulate the 

catalytic activity of COX in cultured cells under hypoxic conditions by inducing the 

expression of COX subunit isoforms COX4I2 and COX7A1 (Fukuda et al., 2007; 

Hwang et al., 2015). 

In addition, COX activity seems to be also regulated by several allosteric 

inhibitors. Intramitochondrial ATP and ADP can bind COX4l1 subunit and change 

the hyperbolic COX kinetics into sigmoidal, i.e. inhibit CIV activity, at high 

ATP/ADP‐ratios (Follman et al., 1998; Arnold and Kadenbach, 1999). The thyroid 

hormone 3,5 diiodothyronine (T2) has been shown to directly bind to subunit 

COX5A and abrogate ATP mediated allosteric inhibition, activating CIV activity in 

response to hormonal stimulation (Arnold, Goglia and Kadenbach, 1998). On the 

other hand, calcium can bind a special cation binding site located in MT-CO1, 
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and inhibit CIV activity by 50–80%, which has been proposed to modulate Ca2+ 

mitochondrial uptake (Gellerich et al., 2010; Vygodina et al., 2017). Additionally, 

four different gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulphide 

(H2S) and hydrogen cyanide (HCN) have been found able to bind CIV and inhibit 

its activity. The physiological significance of this regulation has been reviewed 

somewhere else (Cooper and Brown, 2008). 

Finally, the activity of CIV can be regulated by chemical modifications via 

phosphorylation and/or acetylation of nuclear-encoded subunits (Bender and 

Kadenbach, 2000; Liko et al., 2016; Potthast et al., 2017). Between 14 and 18 

phosphorylation sites have been identified so far in CIV, although only a few have 

been characterised functionally (Klement et al., 1995; Fang et al., 2007; 

Hüttemann et al., 2007; Zhao et al., 2011; Mahapatra et al., 2017). For example, 

the allosteric ATP-inhibition of COX4l1 seems to be reversibly switched on and 

off by phosphorylation (Bender and Kadenbach, 2000). In addition, MS analysis 

identified acetylation modifications in subunits COX5B and COX4l1 (Choudhary 

et al., 2009). However, the physiological significance of these modifications 

remains unknown.  

 

 

1.2.4.2 Assembly of complex IV 

 

The first model for human COX assembly was proposed by studying the 

incorporation dynamics of the different CIV subunits after inhibition of 

mitochondrial translation in cultured cells (Nijtmans et al., 1998). This model 

proposed a linear process starting with MT-CO1 as the ‘seed’ around which the 

rest of the subunits build up, being COX4 and COX5A the first ones to join. The 

stable subassemblies created during the process were named S1 to S4, being 

S4 the fully assembled COX (Fernández-Vizarra, Tiranti and Zeviani, 2009). This 

view of the process basically still stands but more recent data have allowed to 

refine the model (Stiburek et al., 2005, 2006; Massa et al., 2008; Timón-Gómez 

et al., 2017; Vidoni et al., 2017). In particular, the proteomic identification of the 

subassemblies accumulated in a MT-CO3 mutant cybrid cell line helped to 

complete the view about COX subunit incorporation in humans, which takes place 
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in groups or “modules” that are defined by each of the three core subunits (Figure 

1.7) (Vidoni et al., 2017).  

COX biogenesis has also been extensively studied in respiratory-deficient 

mutants of the yeast S. cerevisiae, which has been fundamental for the 

understanding of COX biogenesis both in yeast and in mammals, including the 

synthesis and incorporation of prosthetic groups and the function of many of the 

assembly factors involved (Tzagoloff and Dieckmann, 1990; Barrientos, 2003; 

Fontanesi et al., 2006). However, it has become evident that there are some 

differences among species, such as the existence of assembly factors in higher 

animals that are not present in yeast (Mootha et al., 2003; Weraarpachai et al., 

2009; Melchionda et al., 2014; Vidoni et al., 2017). The study of COX assembly 

defects in mouse disease models and in patient-derived cell lines is helping to 

identify mammal-specific assembly factors (Fernández-Vizarra, Tiranti and 

Zeviani, 2009). In particular, in Chapter 3 I will describe the analyses that led to 

the identification of a new COX assembly factor, MR-1S, which is only present in 

vertebrates, and in Chapter 4 and 5 I will present the characterisation of APOPT1, 

a COX assembly factor, conserved only in animals. 

 

 

1.2.4.2.1 Initial assembly 

 

According to the modified COX assembly pathway (Figure 1.7), the initial 

COX subunits to assemble appear to be COX4I1+COX5A (Vidoni et al., 2017). 

HIGD1A, one of the human homologues of yeast Rcf1 (Hayashi et al., 2015; 

Lundin et al., 2016) is also part of this early group of proteins (Vidoni et al., 2017).  

 

 

1.2.4.2.2 Assembly of the MT-CO1 module 

 

The MT-CO1 module contains the many chaperones and assembly factors 

involved in its maturation and stabilisation. It has also been denominated 

“MITRAC” for mitochondrial translation regulation assembly intermediate of 

cytochrome c oxidase (Mick et al., 2012; Dennerlein et al., 2015). 

COX14/C12ORF62 (Szklarczyk et al., 2012; Weraarpachai et al., 2012) and 
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COA3/CCDC56/MITRAC12 (Mick et al., 2012; Richter-Dennerlein et al., 2016) 

bind nascent MT-CO1 and probably mediate its insertion into the IMM. It has been 

suggested that they are implicated in assembly regulation either by translational 

(Richter-Dennerlein et al., 2016) or post-translational mechanisms (Bourens and 

Barrientos, 2017a). In human mitochondria, MT-CO1 expression is especially 

sensitive to defects in the mitochondrial RNA-binding protein LRPPRC (Mootha 

et al., 2003; XU et al., 2004; Ruzzenente et al., 2012) and requires the specific 

translational activator TACO1 (Weraarpachai et al., 2009; Richman et al., 2016). 

Later on, CMC1, a twin CX9C protein, interacts and stabilises the early MT-

CO1+COA3+COX14 complex (before or during addition of the prosthetic groups) 

(Bourens and Barrientos, 2017a). Once in the membrane, heme a can be added, 

which is synthesized in the mitochondria in two steps: heme b conversion to heme 

o and heme o conversion to heme a, catalysed by the IMM enzymes COX10 

(Antonicka, Leary, et al., 2003; Diaz et al., 2005) and COX15 (Antonicka, 

Mattman, et al., 2003), respectively. However, the mechanism of heme a delivery 

to MT-CO1 is not clear yet. It has been suggested that COX15 could directly 

transfer it to MT-CO1 with the help of PET117, which has been shown to interact 

with COX15 in yeast and may promote its oligomerisation (Taylor et al., 2017). 

Another protein, SURF1 (Tiranti et al., 1998; Zhu et al., 1998), has also been 

proposed to be involved in heme a delivery (Timón-Gómez et al., 2017), although 

its exact molecular function is still not clear. CuB assembly requires the 

metallochaperone COX11 (Hiser et al., 2000; Banci et al., 2004), which is bound 

to the IMM and has a domain facing the IMS which contains two cysteines 

involved in copper binding and a third involved in copper delivery to MT-CO1. The 

assembly of CuB is assumed to be similar in yeast and humans due to the highly 

conserved proteins involved. COX19 (Bode et al., 2015), an IMS copper-binding 

protein with a twin CX9C motif, keeps the third cysteine of COX11 reduced, but it 

does not participate in copper delivery to COX11, which is done by COX17 

(Glerum, Shtanko and Tzagoloff, 1996; Cobine, Pierrel and Winge, 2006), 

another IMS with a twin CX9C motif that overlaps with a CCXC copper-binding 

motif. However, it is still not totally clear how copper enters the mitochondria and 

reaches COX17 (Zischka and Einer, 2018). CMC1 is released prior to the addition 

of COA1/C7ORF44/MITRAC15 (Pierrel et al., 2007; Mick et al., 2012; Szklarczyk 

et al., 2012) and SURF1. MITRAC7/SMIM20 was proposed to stabilise MT-CO1 
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bound to COX4I1+COX5A before addition of any other subunits (Dennerlein et 

al., 2015). 

 

 

1.2.4.2.3 MT-CO2 module 

 

The intermediate step in COX assembly is the joining of COX4I1+COX5A, 

MT-CO1 with the MT-CO2 module (MT-

CO2+COX5B+COX6C+COX7C+COX8A and, most probably COX7B), 

corresponding to the ‘S3’ intermediary (Nijtmans et al., 1998) without MT-CO3 

(Vidoni et al., 2017). MT-CO2 requires COX18 for membrane translocation of its 

globular domain (Bourens and Barrientos, 2017b) and COX20/FAM36A 

(Szklarczyk et al., 2013; Bourens et al., 2014) for stabilisation. Copper-binding 

proteins COX17, SCO1 and SCO2 (Leary et al., 2004, 2007, 2009) together with 

COA6 (Pacheu-Grau et al., 2015; Stroud et al., 2015; Ghosh et al., 2016) and 

COX16 (Abhishek Aich, Cong Wang, Arpita Chowdhury, Christin Ronsör, 

Pacheu-Grau1, Ricarda Richter-Dennerlein and Rehling, 1978; Carlson et al., 

2003; Cerqua et al., 2018), are involved in the assembly of the CuA centre, which 

occurs in the IMS. COX18 is released during or after SCO1 joins the complex, 

but definitely before SCO2 and COA6 are bound (Bourens and Barrientos, 

2017b). The assembly of CuA must happen before binding to the MT-CO1 

module, as MT-CO2 and MT-CO1 are tightly and strongly bound, impeding the 

accessibility to the CuA site (Soto et al., 2012). The IMS COX17 protein transfers 

copper to both SCO1 and SCO2, which are bound to the IMM and have a globular 

domain in the IMS where the CX3C motif involved in copper binding and delivery 

is located (Glerum, Shtanko and Tzagoloff, 1996; Leary et al., 2004). Then, both 

SCO proteins physically interact with COA6, an IMS soluble protein with a CX9C-

CX10C domain, and form a metallochaperone module that binds to the COX20-

MT-CO2 complex to assemble the CuA site (Bourens and Barrientos, 2017b). 

COX16, also seems to interact with MT-CO2, the SCO proteins and COA6. 

However, it was also found interacting with the MT-CO1 module, suggesting that 

it could be involved in the joining of the MT-CO1 and MT-CO2 modules (Aich et 

al., 2018). MR-1S has been found to interact with the highly conserved factors 

PET100 (Church et al., 2005; Lim et al., 2014; Oláhová et al., 2015) and PET117 
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(McEwen et al., 1993; Renkema et al., 2017) during the assembly of the MT-CO2 

module (Vidoni et al., 2017).  

 

 

1.2.4.2.4 MT-CO3 module 

 

The incorporation of the MT-CO3 module (MT-

CO3+COX6A1+COX6B1+COX7A2) completes the assembly of the thirteen 

canonical COX subunits (Vidoni et al., 2017). No specific assembly factors for 

this module are currently known.  

The last subunit to be incorporated is NDUFA4, previously thought to be 

part of complex I (Carroll et al., 2006) but recently assigned to complex IV (Balsa 

et al., 2012; Pitceathly et al., 2013).  
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Figure 1.7 Complex IV assembly model based on the bovine CIV crystal 
structure with PDB ID: 2OCC (Yoshikawa, Shinzawa-Itoh and Tsukihara, 1998) 
and the model proposed in reference (Vidoni et al., 2017). Red colour indicates 
proteins with described pathological mutations. See main text for details. Image 
extracted from (Signes and Fernandez-Vizarra, 2018). 
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1.2.5 Complex V 

 

Complex V (EC 3.6.14), H+-transporting two-sector ATPase or FoF1-

ATPase, is the enzyme that synthesises ATP using the proton-motive force 

generated by CI, III and IV. It is composed of two topological and functional 

distinct domains: membrane-extrinsic and matrix-facing F1 plus membrane-

intrinsic Fo, with a central axis and a peripheral stalk connecting them (Carroll et 

al., 2006). Subunits a (MT-ATP6) and A6L (MT-ATP8) of the Fo domain are 

encoded in the mtDNA and seem to be crucial for the stabilization of CV di- and 

oligomers, whereas all the rest of CV components are nDNA-encoded (Walker, 

2013). When H+ from the IMS pass through the F0 region driven by the PMF, it 

undergoes conformational changes that cause the rotation of the central axis 

causing the catalytic sites at the F1 portion to switch cooperatively through 

conformations in which ADP and Pi bind and ATP is formed (Stock et al., 2000). 

 Assembly of CV has been studied using subunit incorporation dynamics 

(Watt et al., 2010), analysis of mtDNA-deficient cell lines (Nijtmans et al., 1995; 

Carrozzo et al., 2006) and more recently by creating KO cell lines for specific CV 

subunits (Wittig et al., 2010; Fujikawa et al., 2015; He, Carroll, et al., 2017; He, 

Ford, et al., 2017). As depicted in Figure 1.8, this complex is also put together 

by assembling three pre-formed modules corresponding to: F1 particle, c8-ring (a 

ring composed by eight copies of the c-subunit) and peripheral stalk (Walker, 

2013).  

The F1 subcomplex, composed of three copies of the α subunit/ATP5A1, 

three β subunits/ATP5B together with the central stalk subunits γ/ATP5C1, 

δ/ATP5D and ε/ATP5E, is assembled with the assistance of chaperones 

ATPAF1/ATP11 and ATPAF2/ATP12, which bind ATP5B and ATP5A1, 

respectively (Ackerman and Tzagoloff, 1990; Wang and Ackerman, 2000; Wang 

et al., 2000; Wang, White and Ackerman, 2001; He et al., 2018).  The c8-ring, 

encoded by ATPG1, ATPG2 and ATPG3, is assembled in the membrane by still 

unknown mechanisms (Walker, 2013). A subcomplex containing subunits of the 

peripheral stalk is also pre-formed (Wittig et al., 2010; Fujikawa et al., 2015; He, 

Carroll, et al., 2017; He, Ford, et al., 2017). 

After the c8-ring and the F1 subcomplex come together, the peripheral stalk 

is incorporated in two steps: first subunits b/ATP5F1, d/ATPH, F6/ATP5J and 
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OSCP/ATP5O and then e/ATP5I, g/ATP5L and f/ATPJ2 (Walker, 2013; He, Ford, 

et al., 2017). The peripheral stalk can also join the F1 subcomplex in absence of 

the c8-ring (He, Carroll, et al., 2017; He, Ford, et al., 2017). During these initial 

steps, the inhibitor protein IF1 is bound to the intermediates, being liberated with 

the insertion of the two mtDNA-encoded subunits (Fujikawa et al., 2015; He, 

Carroll, et al., 2017; He, Ford, et al., 2017). In the cases in which a/MT-ATP6 and 

A6L/MT-ATP8 are missing, the previous assembly intermediate is readily 

accumulated (Carrozzo et al., 2006; Watt et al., 2010; He, Carroll, et al., 2017). 

The interaction of the last subunits is stabilised by 6.8L/MLQ/C14ORF2 and the 

peripheral subunit DAPIT/USMG5 is incorporated to finish CV assembly (He, 

Ford, et al., 2017).  

One of the few proteins known to be involved in CV biogenesis is TMEM70 

and although its exact function is still not known, mutations in the gene encoding 

this factor have consistently been associated to ATP synthase deficiency (De 

Meirleir et al., 2004; Magner et al., 2015). 
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Figure 1.8 Complex V assembly model based on the bovine CV cryo-EM 
structure with PDB ID: 5ARA (Zhou et al., 2015) and the model proposed in 
references (Jonckheere, Smeitink and Rodenburg, 2012; He et al., 2018). Red 
colour indicates proteins with described pathological mutations. See main text for 
details. Image extracted from (Signes and Fernandez-vizarra, 2018). 
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1.2.6 Supercomplexes  

 

The development of the BN-PAGE techniques, i.e. mitochondrial extracts 

solubilised with the mild detergent digitonin and separated through native 

electrophoresis (Schägger, 2002; Acín-Pérez et al., 2008), granted a better 

understanding of the mitochondrial respiratory chain organisation by allowing the 

separation and detection of both the individual complexes and the 

supercomplexes (associations of complexes I, III and IV). According to their 

molecular size and subunit composition, the main supercomplexes have been 

assigned the following stoichiometries: III2IV1, I1III2, I1III2IV1 defined as the 

“respirasome”, and I2III2IV1 named as “respiratory megacomplex” (Mourier et al., 

2014). Additionally, complexes IV and V can form dimers and oligomers 

(Schägger, 2002; Wittig and Schägger, 2008; Mourier et al., 2014). The 

interactions between the complexes have been extensively validated (Dudkina et 

al., 2005; Acín-Pérez et al., 2008; Davies, Blum and Kühlbrandt, 2018) and high-

resolution Cryo-EM structures of the respirasome of several mammalian species, 

including human, have already been resolved (Mourier et al., 2014; Gu et al., 

2016; Letts, Fiedorczuk and Sazanov, 2016; Wu et al., 2016; Guo et al., 2017). 

The functional relevance of CV associations seems to be related with enzyme 

stabilisation and cristae morphology definition (Strauss et al., 2008; Davies et al., 

2011). However, the functional implications of the existence of the 

supercomplexes remain unclear and several alternative views have been 

proposed to explain it. The first possibility is that they are necessary for ‘substrate 

channelling’, i.e. their association allows the formation of enclosed pools of Q and 

cyt c leading to an increased electron transfer efficiency (Acín-Pérez et al., 2008; 

Lapuente-Brun et al., 2013). In addition, the “plasticity model” proposes that the 

complexes associate and disassociate constantly to adapt to varying energy 

demands, which implies the complete formation of each of the individual 

complexes before they associate into the supercomplexes (Acín-Pérez et al., 

2008; Lapuente-Brun et al., 2013). However, substrate channelling is not 

supported by kinetic data (Trouillard, Meunier and Rappaport, 2011; Blaza et al., 

2014; Fedor and Hirst, 2018) and some evidence in the literature point out to 

subunits from different complexes co-assembling before completion of the single 

enzymes (Fernández-Vizarra, Tiranti and Zeviani, 2009). Maturation of CI has 
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been proposed to happen after CIII2 and CIV are bound to a ‘pre-CI’ scaffold 

(Moreno-Lastres et al., 2012), although recent assembly kinetic studies using 

complexome profiling with BN-PAGE suggest that CI is fully assembled 

independently of the supercomplex scaffold (Guerrero-Castillo et al., 2017). 

Interestingly, the same report describes how COA1, a well characterised CIV 

chaperone is bound to CI assembly intermediates (Guerrero-Castillo et al., 2017), 

which could reflect co-assembly of at least CI and CIV. Another hypothesis that 

has been proposed to explain the existence of the supercomplexes is that they 

could minimise ROS (reactive oxygen species) production, as measurements in 

bovine heart showed that disruption of the I1III2 supercomplex leads to increased 

superoxide formation from CI (Maranzana et al., 2013). Moreover, studies in 

neurons and astrocytes showed a correlation between ROS production and the 

levels of CI associated into supercomplexes (Lopez-Fabuel et al., 2016). Lastly, 

it has been suggested that supercomplexes could prevent aggregations among 

the individual complexes, which are likely to happen due to the high protein 

density of the IMM (Flescher, Klouwen and Brierley, 1961). This theory suggests 

that some of the supernumerary subunits may exist to protect the core of the 

enzymes from deleterious interactions and that those promoting the formation of 

supercomplexes may have been selected to this scope (Milenkovic et al., 2017). 

More studies are clearly necessary to fully understand the physiological role of 

supercomplexes.  

Regarding assembly factors that regulate the formation of these 

associations, the factors 1, 2 and 3 (Rcf1, Rcf2 and Rcf3) were proposed as 

supercomplex assembly factors in yeast (Chen et al., 2012; Strogolova et al., 

2012; Vukotic et al., 2012). However, they are also needed for CIV assembly 

(Vukotic et al., 2012) and knocking down their expression led to a decrease of 

CIV activity (Lundin et al., 2016), suggesting that their effect on supercomplex 

formation might be indirect. HIGD1A and HIGD2A are the mammalian orthologs 

of Rcf1. HIGD1A has been found to interact with early assembly intermediates of 

CIV (Vidoni et al., 2017) and knocking down its expression did not affect 

supercomplex formation (Hayashi et al., 2015). HIGD2A knock down actually led 

to a depletion of III2IV1, suggesting a true and direct role in supercomplex 

stabilisation (Chen et al., 2012). On the other hand, COX7A2L or SCAFI 

(supercomplex assembly factor 1), an orthologue of the CIV structural subunit 
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COX7A, was described as a supercomplex assembly factor in mammals because 

was deemed to be necessary for the incorporation of CIV into supercomplex 

structures (Sousa et al., 2016). However, more recent evidence has 

demonstrated a role for this protein in the formation of III2IV1 but not in the 

incorporation of CIV into the respirasomes (Mourier et al., 2014; Pérez-Pérez et 

al., 2016; Williams et al., 2016). The dynamic interchange between the three 

isoforms of COX7A proteins (COX7A2L/SCAFI, COX7A1 and COX7A2) could 

potentially determine whether CIV stays as a monomer, oligomerises or forms 

the III2IV1 supercomplex, as well as the mode of binding to CI (Cogliati et al., 

2016). In any case, the recently resolved structures of the supercomplexes did 

not reveal the presence of any of these proteins bound to the supercomplexes 

(Gu et al., 2016; Letts, Fiedorczuk and Sazanov, 2016; Wu et al., 2016). 

 

 

1.3 Mitochondrial diseases 

 

Mitochondrial diseases are a group of genetic disorders caused by 

dysfunctional OXPHOS. Although they are considered rare diseases, as a whole 

these disorders are the most frequent inborn errors of metabolism, affecting at 

least 1 in 5,000 live births (Schiff et al., 2012; Chinnery and Hudson, 2013). The 

pathophysiology of mitochondrial diseases is very complex as these disorders 

are highly heterogenous, both genetically and clinically (Gorman et al., 2016).  

From the genetic point of view, the origin can be due to mutations in either 

nuclear genes, showing mendelian inheritance, or in the mitochodrial genome, 

and therefore inherited maternally (Craven et al., 2017). Some rare cases of 

diseases caused by de novo mutations in either mtDNA or nDNA genes have 

also been found (Gorman et al., 2016). In patients with mutations in the 

mitochondrial genome, the inheritance and clinical phenotype is further 

complicated by the existance of many mtDNA copies in the same cell (Stewart 

and Chinnery, 2015). All these copies are usually identical, a situation referred to 

as homoplasmy. However, errors occurring during mtDNA replication or repair, 

can generate mutated mtDNA molecules, which can clonally expand and coexist 

with WT copies. This condition is known as heteroplasmy and the proportion 
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between mutated and WT mtDNA molecules can be variable. Cells can tolerate 

mutations in the mitochondrial genome up to a critical threshold, which is typically 

≈70%, although this depends on the type of cell and mutation. Percentages of 

heteroplasmy above the threshold result in respiratory deficiency and 

manifestation of the mitochondrial disease phenotype (Stewart and Chinnery, 

2015; Gorman et al., 2016). Moreover, different levels of heteroplasmy of the 

same mtDNA mutation result in different phenotypes. Currently, more than 250 

pathogenic mtDNA mutations have been identified (Mito-MAP database, 

www.mitomap.org) and can be classified as: large-scale rearrangements (i.e. 

partial deletions or duplications), that are usually sporadic; and point mutations, 

that are usually maternally inherited (Gorman et al., 2016; Viscomi and Zeviani, 

2017).  

Mitochondrial disorders can also be caused by mutations in any of the 

more than 1500 nuclear genes encoding the mitochondrial proteome (Calvo and 

Mootha, 2010), which can be classified as: genes encoding structural subunits or 

assembly factors of complexes I-V (Smeitink, Heuvel and Dimauro, 2001; Ghezzi 

and Zeviani, 2018), proteins responsible for mtDNA maintenance (Viscomi and 

Zeviani, 2017), factors involved in mitochondrial protein synthesis (Jacobs, 2003; 

Rötig, 2011) or mitochondrial proteins involved in other processes, such as 

mitochondrial dynamics (Suárez-Rivero et al., 2016), biosynthesis of lipids and 

cofactors (Aufschnaiter, Kohler, Diessl and Peselj, 2017), etc. In the last decades, 

genetic testing by using Sanger’s sequencing technology only allowed to test a 

few candidate genes, providing limited success and leaving many patients 

without genetic diagnosis (Carroll et al., 2014). Sanger sequencing is still used in 

laboratories to determine the sequence of short DNA fragments, however, 

sequencing the whole genome of a person by this method would take years. The 

development of next-generation sequencing (NGS) technlogies has 

revolutionised the diagnosis of genetic disorders by allowing high-throughput 

DNA sequencing and analysis of huge amounts of data, while reducing the costs 

(Henson, Tischler and Ning, 2014). This method is now frequently used in 

healthcare and research increasing the diagnostic yield in mitochondrial 

disorders and the identification of new disease genes (Craven et al., 2017; 

Stenton and Prokisch, 2018). Whole exome sequencing, which analyses only the 

exons (around 1.6 % of the total genome) allows the identification of pathogenic 

http://www.mitomap.org/
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variants in the protein-coding region of any gene, which is the most common case 

(85%). On the other hand, whole genome sequencing, which extends the analysis 

to the whole genome, is helpful to detect variations outside the exons that the 

whole exome sequencing would miss (Craven et al., 2017).  

From the clinical point of view, mitochondrial diseases are characterised 

by a wide range of symptoms, severity, age of onset and outcome (Koopman et 

al., 2012; Gorman et al., 2016). This high heterogenity makes the diagnosis very 

difficult, relying on the identification of common clinical, biochemical and 

morphological features (Craven et al., 2017). Although any organ or tissue may 

be affected, typically those with a high metabolic demand, such as the central 

nervous system (CNS) and the skeletal and cardiac muscle, are the most affected 

(Gorman et al., 2016). Common clinical presentations in these patients are 

encephalopathy and myopathy, although ophthalmoplegia, blindness, deafness 

and diabetes are also very usual. Patients with late-onset mitochondrial disease 

usually display myopathy associated with variable involment of the CNS, while in 

early childhood the most common presentation is Leigh syndrome (LS) 

characterised by severe phsychomotor delay, cerebellar and pyramidal signs, 

dystonia, seizures, respiratory abnormalities, incoordination of ocular movements 

and recurrent vomiting (Gorman et al., 2016). Imaging studies, such as computed 

tomography (CT), magnetic resonance imaging (MRI), proton and phosphorus 

MR-spectroscopy (MRS) and positron emission tomography (PET), of the most 

common affected tissues are very useful for the diagnosis (Finsterer and Zarrouk-

Mahjoub, 2018). Regarding classic biochemical features, deficiency in one or 

more OXPHOS complexes is commonly found in mitochondrial disease patients. 

These enzymatic deficiencies can be detected histo- and biochemically in tissue 

biopsies or in patient-derived cultured cells. Then, molecular analyses, such as 

Western blot and BN-PAGE, help to determine the abundance and assembly of 

each of the OXPHOS complexes and of the supercomplexes. However, these 

biochemical and molecular hallmarks may not be found when other errors of 

metabolism, such as heme synthesis or TCA cycle, or the accumulation of toxic 

substances (Di Meo, Lamperti and Tiranti, 2015) are causing the disease. 

Another common biochemical feature is the increase in lactic acid levels in blood 

and/or cerebrospinal fluid, caused by the block of pyruvate aerobic oxidation, and, 

as a consequence, reduction of pyruvate to lactate by utilising the reduced NADH 
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formed during glycolysis. Lactate is released into body fluids, and may determine 

severe metabolic acidosis (Gorman et al., 2016; Finsterer and Zarrouk-Mahjoub, 

2018). Regarding morphological alterations, the “ragged-red” transformation of 

scattered muscle segments (ragged-red fibers, RRF) due to the accumulation of 

abnormal mitochondria under the sarcolemmal membrane, is very common in 

adult mitochondrial disease patients (Finsterer and Zarrouk-Mahjoub, 2018).  

 

 

1.3.1 Disease models and therapies 

 

The conservation of many mitochondrial pathways in higher organisms, 

such as the fruit fly (Drosophila melanogaster), worm (Caenorhabditis elegans), 

zebrafish (Danio rerio) and mouse (Mus musculus), makes recombinant 

organisms, generated by genetic manipulation, important tools to study the 

molecular basis of mitochondrial disorders (Nightingale et al., 2016). The clinical 

phenotypes shown by the deficient animal models do not always phenocopy the 

human disease, although they tend to be less heterogeneous than those found 

in humans with mitochondrial disorders (Huttemann, Kadenbach and Grossman, 

2001; Spinazzola et al., 2006; Dell’Agnello et al., 2007). The use of clonally-

selected animals, which eliminates the impact of the genetic background, and the 

genetic modification of only one or a few targeted organs/tissues, which 

eliminates the implication of other organs of the body, may explain this 

phenomenon (Smeitink, Heuvel and Dimauro, 2001; El-khoury et al., 2010).  

 

 

1.3.1.1 Generation of KO mouse models using the CRISPR/Cas system 

 

The CRISPR/Cas system is an RNA-based immunological defense 

mechanism present in bacteria that recognises and degrades foreign DNA from 

invading viruses and plasmids (Garneau et al., 2010). The bacterial CRISPR 

locus contains clustered, regularly interspaced, short, palindromic repeats (hence 

the name), or spacers, each of which derives from nucleic acid of different viruses 

and plasmids that attacked the cell in the past. When bacteria need to defend, 

the Cas protein is expressed and the spacer matching with the invading virus or 



Chapter 1 - Introduction 
 

 37 

plasmids is transcribed from the CRISPR locus. The spacer then guides the Cas 

protein to the invading nucleic acid, which is cleaved and degraded. Feng Zhang 

et al established the protocol to make this system function in mammalian cells in 

order to modify specific genomic regions (Cong et al., 2013). The system requires 

two elements to be injected in the cell, a CRISPR-associated endonuclease (Cas 

protein) and a short synthetic RNA (guide RNA, gRNA). The gRNA contains a 

scaffold sequence, necessary for Cas binding, and a spacer, which is a user-

defined 20-nucleotide sequence that determines the target genomic region where 

the Cas protein will cut. In addition to the gRNA, the Cas protein also requires the 

presence of a 3-nucleotide sequence, called PAM, immediately at the 3′ end of 

the targeted DNA site (but must not be included in the synthetic gRNA construct) 

(Rath et al., 2015). The PAM sequence depends on the type of Cas protein used 

(reviewed in (Rath et al., 2015). When both elements (gRNA and Cas) are 

injected as RNAs in a cell, the Cas RNA is translated into a protein and interacts 

with the scaffold of the gRNA to form a ribonucleoprotein (cas9:gRNA complex), 

which produces a conformational change on the Cas9 allowing the spacer to start 

binding to the target DNA. Upon target binding and PAM recognition, the Cas 

enzyme undergoes a second structural change that allows its nuclease domain 

to make a double-strand break in the target DNA, ∼3-4 nucleotides upstream of 

the PAM sequence. The gaps can then be repaired by the less efficient but high-

fidelity homology directed repair (HDR) pathway or, much more commonly, by 

the efficient but error-prone non-homologous end joining (NHEJ) pathway. The 

last one, frequently causes small nucleotide insertions or deletions (indel) that 

result in amino acid deletions, insertions or frameshift mutations, many of them 

likely to be loss-of-function mutations (Rath et al., 2015). This strategy was used 

to generate an Apopt1 knock out mouse model (see Chapter 4). 

 

 

1.3.1.2 Mitochondrial treatments and therapies 

 

Despite the great advances made by using genetically modified models, a 

universal and effective therapy has not yet been found. However, some 

interesting and promising strategies, have been developed, aiming to 

compensate the alterations that play major roles in the pathogenesis of these 
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disorders, such as decreased levels of ATP or increased ROS (Garone and 

Viscomi, 2018): 

- Increasing autophagy: rapamycin is an inhibitor of mTOR, a protein with a 

central role in many cellular processes, such as protein translation, glucose 

metabolism, autophagy, etc (Saxton and Sabatini, 2018). Administration of 

rapamycin has been successful in the treatment of mitochondrial diseases in fly 

and mice (Johnson et al., 2013; Wang et al., 2016; Felici et al., 2017; Civiletto et 

al., 2018), most likely by inhibiting translation, which would reduce the energy 

demand, and by activating autophagy, which would eliminate dysfunctional 

mitochondria (Peng et al., 2015; Civiletto et al., 2018). 

- Decreasing ROS: antioxidants are routinely used in the therapy of 

mitochondrial diseases with the aim of decreasing the potentially damaging high 

levels of ROS consequence of respiratory chain dysfunction (Enns, 2014). 

Recently, a new clinical-stage drug, named KH176, has been shown to effectively 

reduce increased cellular ROS levels and protect OXPHOS-deficient human cells 

against redox perturbation by targeting the thioredoxin/peroxiredoxin system 

(Beyrath et al., 2018). However, the use of antioxidants should be carefully 

considered in patients as ROS may act as signalling compounds sustaining 

mitochondrial biogenesis (Moreno-Loshuertos et al., 2006; Dogan et al., 2018).  

- Increasing mitochondrial biogenesis: increasing mitochondrial mass and/or 

activity aiming to compensate the bioenergetic defect and increase ATP 

production is the most promising therapy for mitochondrial diseases (Nightingale 

et al., 2016; Viscomi, 2016). AICAR, an AMPK agonist that activates PGC-1α, 

which is a key co-activator of the mitochondrial biogenesis programme (Wu et al., 

1999; Vega, Huss and Kelly, 2000; Gleyzer, Vercauteren and Scarpulla, 2005), 

has been shown to successfully recover OXPHOS activity in a mouse model 

(Viscomi et al., 2011). On the other hand, NR (a NAD+ precursor) (Cerutti et al., 

2014; Khan et al., 2014) and PARP1 (an inhibitor of NAD+ consuming enzymes) 

(Cerutti et al., 2014) have been found to activate Sirt1 and other sirtuins, which 

are deacetylases that activate PGC-1α, which then stimulates mitochondrial 

biogenesis (Wu et al., 1999; Vega, Huss and Kelly, 2000; Gleyzer, Vercauteren 

and Scarpulla, 2005). 

- Shifting heteroplasmy: culture of a cybrid cell line with a large deletion in the 

mtDNA in ketogenic media deprived of glucose (ketogenic diet) led to a shift in 
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its heteroplasmy levels below the critical threshold, allowing a recovery of 

mitochondrial functions (Santra et al., 2004). The mechanism behind this 

recovery remains unclear, although a favoured selection of cells containing 

healthier mitochondria was proposed. This approach has been successful used 

also in mouse models (Sofia et al., 2010). Another strategy to modify 

heteroplasmy levels is by selectively cleaving mutated mtDNA. Mitochondrially 

targeted TALENs (transcription activator-like effector nucleases) and ZNFs (zinc-

fingers nucleases) have been shown to selectively eliminate pathogenic DNA, 

decreasing the heteroplasmy percentage in mouse models (Gammage et al., 

2018; Bacman et al., 2014 and 2018; Yahata et al., 2017). 

- Restoring the deoxynucleotide triphosphate (dNTP) pool: supplementation 

of dNTPs has been shown to be successful in several models with disorders 

characterised by defects in mtDNA synthesis or in dNTP metabolism, which 

causes a decrease in the mtDNA copy number and/or the generation of mutations 

in this genome (Camara et al., 2014; Garone et al., 2014; Barca and Garcia-diaz, 

2018). 

- Shaping mitochondria: overexpression of some proteins such as Opa1, a 

GTPase of the IMM involved in the regulation of mitochondrial fusion and 

mitochondrial cristae structure (Varanita et al., 2015), has been shown to correct 

mitochondrial ultrastructure and to ameliorate the phenotype of mice with 

defective mitochondrial bioenergetics (Civiletto et al., 2015).  

- Scavenging toxic compounds: pharmacological compounds such as N-

acetylcysteine and metronidazole (Viscomi et al., 2010) partially corrected the 

effects of increased concentration of hydrogen sulphide (H2S) in a Ethe1 KO 

mouse model and in patients with ethylmalonic encephalopathy, a fatal infant 

disease due to mutations in ETHE1 (Tiranti et al., 2009 and 2004). This gene 

encodes a mitochondrial sulphur dioxygenase involved in the removal of H2S, a 

toxic compound produced by the colonic bacterial flora (Tiranti et al., 2009).  

- Gene therapy: delivery of therapeutic genes, as well as replacement of 

mutated genes with their WT form, by using adeno-associated viral vectors 

(AAVs) targeted to specific tissues (the whole body is unrealistic) is a very 

promising strategy for some diseases (Garone and Viscomi, 2018). Although the 

achievement of therapeutic titters in tissues and safety concerns are major 

challenges, several successes have already been reported both in preclinical 
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models and in some clinical trials on patients with neurodegenerative conditions, 

for instance spinal muscular atrophy type 1 (Mendell et al., 2017; Di Meo et al., 

2017).  

- Preventing mtDNA transmission: given the complexity to find a cure for 

mitochondrial disorders, preventing the transfer of mutated mtDNA from mother 

to offspring seems a promising alternative for this kind of defects (Rai et al., 

2018). Several reproductive techniques have been developed with this aim, but 

mitochondrial replacement or ‘donation’ is the most recent and promising one. 

This strategy, which replaces all the mitochondria contained in the mother’s 

oocyte with those collected from a healthy donor’s oocyte, has already been 

approved for use in selected patients in the UK (Herbert and Turnbull, 2018). 

 

 

1.3.2 Mitochondrial COX deficiency  

 

COX deficiency is a mitochondrial disorder characterised by biochemical 

and/or assembly defects in the complex IV of the ETC (Rak et al., 2016). There 

are several types of COX deficiency with different symptoms and age of onset 

(https://rarediseases.org/rare-diseases/cytochrome-c-oxidase-deficiency/). 

However, four syndromes are probably the most prevalent among children. The 

first type is called benign infantile mitochondrial myopathy, affects mainly the 

skeletal muscles and patients tend to spontaneously recover within the first few 

years of life (OMIM # 500009). The second is known as infantile mitochondrial 

myopathy, affects the skeletal muscles and other tissues such as kidney, liver, 

brain and heart and the symptoms appear within the first few weeks after birth 

(OMIM # 551000). The third form is systemic, referred to as Leigh's disease 

(clinical presentation previously described) and usually begins between three 

months and two years of age (OMIM # 256000). The fourth is called French-

Canadian type of Leigh-like syndrome, the organs affected are skeletal muscles, 

brain and liver (kidney activity is normal) and it also has an early-onset (OMIM # 

220111). The range and severity of the symptoms varies greatly among the 

affected individuals (even within the same family), although is usually fatal in 

childhood. Mildly affected individuals can survive into adolescence or adulthood 

(Diaz, 2010).  

https://rarediseases.org/rare-diseases/cytochrome-c-oxidase-deficiency/


Chapter 1 - Introduction 
 

 41 

Isolated COX deficiency is normally caused by mutations in any of its 

structural subunits or in the assembly factors involved in its biogenesis. Mutations 

in the mtDNA-encoded subunits (MT-CO1, MT-CO2 and MT-CO3) (Manfredi et 

al., 1995; Bruno et al., 1999; Horvath et al., 2005) are associated with more than 

twenty different phenotypes, the most common being: myopathy, anaemia, ALS-

like syndrome, encephalomyopathy and MELAS (Rak et al., 2016). Mutations in 

the nDNA-encoded subunits are uncommon and until the first mutation in 

COX6B1 (Massa et al., 2008) was found, they were thought to be embryonic 

lethal. Pathological mutations in COX4I2, COX6A1, COX6B1, COX7B, COX8A 

and NDUFA4 have been found later on (Massa et al., 2008; Indrieri et al., 2012; 

Pitceathly et al., 2013; Tamiy et al., 2014; Hallmann et al., 2016). However, the 

majority of isolated COX deficiencies are due to mutations in genes encoding 

ancillary proteins necessary for COX assembly and for the biogenesis of the 

prosthetic groups (Ghezzi and Zeviani, 2018). Although many of these assembly 

factors have already been described (see section 1.2.4.2), the exact role of 

several of them is still unknown. The next table summarises all those COX 

deficiencies caused by pathological mutations in genes encoding COX assembly 

factors. 
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Table 1.2 COX assembly factors and syndromes associated to mutations in 
their genes. A brief description of their roles is also included. 
 

Assembly 
factor 

Role Clinical presentation and OMIM entry 

 

RNA stability and translation 

LRPPRC 
Mitochondrial RNA-binding protein that 
plays a role in translation or stability of 
mtDNA-encoded COX subunits 

French Canadian Leigh syndrome 
(OMIM # 607544) 

TACO1 
MT-CO1 mRNA specific translational 
activator 

Leigh syndrome (OMIM # 612958) 

   

Membrane insertion/transport 

COX20 
Required for MT-CO2 stabilisation in the 
IMM 

Ataxia and muscle hypotonia, dystonia-
ataxia (OMIM # 614698) 

 

Heme a byosynthesis and insertion 

COX10 Farnesylation of heme b 

Leigh syndrome, proximal renal 
tubulopathy, hypertrophic 
cardiomyopathy, sensorineural 
deafness, metabolic acidosis (OMIM #  
602125) 

COX15 Hydroxylation of heme o to form heme a 
Infantile cardiomyopathy, Leigh 
syndrome (OMIM #  603646) 

SURF1 
Involved in the assembly of the MT-CO1 
module; proposed to participate in heme 
a delivery  

Leigh Syndrome, CMT  (OMIM #  
185620) 

   

Copper trafficking and insertion 

 
SCO1 
 
 
 
SCO2 

CX3C proteins involved in copper binding 
and delivery to the CuA site on MT-CO2; 
non-overlapping functions 

Infantile encephalopathy, neonatal 
hepatopathy, ketoacidotic comas (OMIM 
#  603644) 
 
Infantile cardioencephalomyopathy, 
myopia, CMT (OMIM #  604272) 
 

COA6 
CX9C-CX10C protein involved in CuA 

formation on MT-CO2 
Fatal infantile cardioencephalomyopathy 
(OMIM #  614772) 

 

COX assembly 

COX14 
(C12orf62) 

Interacts with MT-CO1; involved in its 
stability and assembly 

Respiratory and neurologic distress, 
metabolic acidosis and 
neonatal death (OMIM #  614478) 

COA3 / 
MITRAC12 

Interacts with MT-CO1; involved in its 
stability and assembly 

Exercise intolerance and neuropathy 
(OMIM #  614775) 

PET100 
Involved in the MT-CO2 module 
assembly 

Psychomotor delay, seizures, hypotonia, 
and Leigh syndrome. Also can cause 
fatal infantile lactic acidosis (OMIM #  
614770) 

PET117 
Couples heme a synthase activity with 
COX assembly. Interacts with PET100 

Neurodevelopmental regression 
(Renkema et al., 2017) 

COA5 
Involved in the MT-CO1 module 
assembly 

Fatal neonatal cardiomyopathy (OMIM #  
613920) 

   

Other 

COA7 Unknown function 
Ataxia and neuropathy with cavitating 
leukodystrophy (OMIM #  615623) 

APOPT1  Unknown function 
Leukoencephalopathy (see section 
1.3.2.1) (OMIM #  616003) 
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1.3.2.1 APOPT1 

 

 Several pathogenic mutations in the APOPT1 human gene (Table 1.3) 

have been associated with infantile- or childhood-onset mitochondrial disease 

(Melchionda et al., 2014; Sharma et al., 2018). The clinical features were very 

variable, even among siblings, ranging from acute neuroregression in early 

infancy to subtle neurologic signs in adolescence. The acute presentations were: 

loss of milestones, seizures, and pyramidal signs rapidly evolving into spastic 

tetraparesis. All subjects presented profound isolated COX deficiency in skeletal 

muscle and a very peculiar brain MRI pattern, characterised by cavitating 

leukodystrophy (Melchionda et al., 2014; Sharma et al., 2018) . Interestingly, of 

the 7 reported patients, 3 had an onset of the disease after a febrile illness or 

infection.  

 

Table 1.3 APOPT1 mutations. All the subjects found to date with mutations in 
APOPT1 are listed in this table. The position of the mutation in the cDNA and the 
predicted effect in the protein sequence are specified. aNomenclature according 
to HGVS; reference cDNA sequence: RefSeq NM_032374.3. b S1 and S2 are 
sisters. 
 

Subject 
Country of 
origin 

Mutationsa 

  DNA Protein State 

S1b Italy c.235C>T p.Arg79* Homozygous 

S2b Italy c.235C>T p.Arg79* Homozygous 

S3 Turkey c.163-1G>A 
Exon 2 skipping; 
p.Val55_Lys120del 

Homozygous 

S4 Morocco Exon 3 del Ex3 del; p.Glu121 Valfs*6 Homozygous 

S5 Oman c.353T>C p.Phe118Ser Homozygous 

S6 Italy 
c.235C>T 
c.370_372del 

p.Arg79* 
p.Glu124del 

Hoterozygous 
compound 

S7 India Exon 3 del Ex3 del; p.Glu121 Valfs*6 Homozygous 

 

 

APOPT1 is evolutionarily conserved only in Animalia (multicellular 

eukaryotic organisms), including fish (Danio rerio), arthropoda (Drosophila 

melanogaster) and warm (Caenorhabditis elegans) 

(http://www.ensembl.org/index.html). The APOPT1 amino acid sequence 

alignment for the human and mouse APOPT1 is shown in Figure 1.9.  
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Figure 1.9 Mouse Apopt1 and human APOPT1 sequence alignment. The 
alignment was obtained using the CLUSTALW multiple sequence alignment 
program (https://www.genome.jp/tools-bin/clustalw). The cleavage site of the 
human APOPT1 MTS is indicated with a red arrow. * (asterisk) means identical 
amino acids, : (colon) means amino acids with strongly similar properties, . 
(period) means amino acids with weakly similar properties, no symbol means very 
different properties. Each residue in the alignment is assigned a color if the amino 
acid profile of the alignment at that position meets some minimum criteria specific 
for the residue type. Color legend: blue = hydrophobic, red = positive charge, 
magenta = negative charge, green = polar, pink = cysteines, orange = glycines, 
yellow = prolines, cyan = aromatic.  

 

 

Regarding secondary structure, the protein modelling softwares PsiPred 

(http://bioinf.cs.ucl.ac.uk/psipred/) and Phyre2 

((http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) predict with high 

confidence two main conserved blocks of 60 and 50 amino acids forming a non-

transmembrane alpha-helix each. No conserved domains were found and the 

protein is predicted to be rather hydrophilic. 

 

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
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Figure 1.10 APOPT1 secondary structure predicted by the protein 
modelling software Phyre2. Note that the two first small alpha-helix are 
predicted with low confidence. Two small beta strands are also predicted with low 
confidence. Instead, two large blocks are predicted to form alpha-helix structures 
with high confidence.  

 

 

At the transcript level, APOPT1 is ubiquitously expressed in humans, the 

highest levels being in skeletal muscle, thyroid gland and testis 

(http://www.proteinatlas.org/ENSG00000256053-APOPT1/tissue). Moreover, 

different transcripts, i.e. alternative splicing isoforms, exist, several of which are 

protein coding (https://www.ensembl.org/index.html). At the level of the protein, 

of the 14 tissues screened, it was detected only in large intestine and placenta in 

the mitochondrial proteome compendium “Mitocarta” 

(http://archive.broadinstitute.org/pubs/MitoCarta/index.html). The first N-terminal 
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39 amino acids of the protein coding sequence constitute the MTS in humans, 

but it is poorly conserved in other organisms. Proteins with an MTS are normally 

targeted to the mitochondrial matrix and imported through the TIM23 complex 

(Chacinska et al., 2009). The MTS, rich in positive charged amino acids, aids 

protein translocation across the IMM (more negative in its matrix side) and is 

cleaved upon import to the matrix. Thus, APOPT1 206 amino acid precursor gives 

rise to a 167-amino acid mature intra-mitochondrial protein upon MTS cleavage 

(Melchionda et al., 2014) (see Chapter 5 for more details).  

Although the association of mutations in APOPT1 with mitochondrial COX 

deficiency is well established, the role of the protein remained unknown. Thus, 

one of the aims of this project was to characterise the involvement of the APOPT1 

protein in COX biogenesis in both mouse and human cellular models. The post-

translational mechanisms that regulate the protein, i.e. degradation by the UPS 

in the cytosol and stabilisation by ROS, were also investigated. The results are 

presented in Chapters 4 and 5. 

 

 

1.4 Mitochondrial regulation by the UPS system 

 

The proteasome is a multi-component and dynamic system of ATP-

dependent proteases recognising and degrading ubiquitinated proteins, while 

recycling the ubiquitin tag, which is a small protein of 76 amino acids highly 

conserved in eukaryotes (Pickart and Eddins, 2004). The catalytic core of the 

proteasome is a barrel-shaped 20S particle, which can bind to the 19S regulatory 

particles to form the 2.5 MDa 26S proteasome. The 19S particles provide 

specificity to the degradation process by recognising specific ubiquitinated 

proteins, which are then transported inside the 20S structure (Finley, 2009). 

Three enzymes are required to attach the ubiquitin tag to the target protein: the 

ubiquitin-activating E1, the ubiquitin-conjugating E2 and the ubiquitin-ligase E3. 

In humans, there are around 600-1000 genes encoding different E3 enzymes 

recognising different substrates (Bragoszewski, Turek and Chacinska, 2017). 

The high specificity of this process means that the UPS can regulate cellular 

functions, like cell growth and apoptosis, by degrading key proteins (Kubbutat, 
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Jones and Vousden, 1997; Yang et al., 2000; Benard et al., 2010). The UPS can 

also regulate mitochondrial function at several levels as described below. 

First, some of the mitochondrial precursor proteins synthesised in the 

cytosol are ubiquitinated and degraded by the UPS, both to prevent their 

accumulation in the cytosol when import fails and under normal physiological 

conditions (Margineantu et al., 2007; Radke et al., 2008; Bragoszewski et al., 

2013; Wrobel et al., 2015; Itakura et al., 2016; Bragoszewski, Turek and 

Chacinska, 2017). In particular, a fraction of some IMS precursors were shown 

to be continuously degraded in the cytosol by the UPS, even when import was 

fully functional (Bragoszewski et al., 2013; Kowalski et al., 2018; Zöller, Todd 

Alexander and Herrmann, 2018), which means that the UPS can directly control 

the availability of these proteins. Although all IMS proteins have structural 

similarities, a common cytosolic factor responsible for the degradation of all these 

proteins was not found, and instead different factors were shown to be involved 

in the removal of each IMS protein (Kowalski et al., 2018). In the same study it 

was found that ubiquitinated precursor proteins cannot be imported into 

mitochondria, suggesting that mitochondrial import competes with the 

ubiquitination process under normal conditions. 

On the other hand, several studies have shown that a variety of 

mitochondrial processes can be regulated by proteasomal degradation of key 

proteins (Matsushima and Kaguni, 2012; Bezawork-Geleta et al., 2015). For 

instance, mitochondrial dynamics can be modulated by ubiquitination and 

degradation of OMM proteins involved in mitochondrial fusion and fission 

(Nakamura et al., 2006; Karbowski, Neutzner and Youle, 2007; Braschi, Zunino 

and McBride, 2009). Energy metabolism can also be regulated by degradation of 

specific OXPHOS subunits, such as SDHA, and metabolic enzymes (Lavie et al., 

2018). The UPS seems to also play a role in the metabolic adaptation to hypoxia 

by ubiquitination and degradation of α-ketoglutarate dehydrogenase (KGDH) 

(Sun and Denko, 2014).  

However, how mitochondrial proteins located in the IMS, IMM and matrix, 

i.e. not directly available to the cytosolic UPS, are retro-translocated to the cytosol 

is a process not completely understood yet (Bragoszewski, Turek and Chacinska, 

2017). IMS proteins can exit mitochondria through the TOM complex, as it has 

already been demonstrated (Bragoszewski et al., 2015), but IMM proteins would 
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need specific factors that extract them from the membrane. The AAA-ATPase 

P97 has already been shown to remove proteins from the outer mitochondrial 

membrane (mitochondrial-associated degradation, MAD) (Xu et al., 2011) and 

could also be involved in the extraction of proteins from the IMM.  

Interestingly, the UPS is also involved in the modulation of mitophagy, both 

dependent and independent of Parkin. The E3 ligase Parkin, together with PINK1 

(PTEN-induced kinase 1), both encoded by Parkinson’s disease-associated 

genes, are responsible for marking mitochondria for mitophagy. In normal 

conditions, PINK1 is imported into the IMM, where its catalytic domain is cleaved, 

translocated to the cytosol and rapidly degraded by the UPS (Poole et al., 2008). 

If the import fails, due to different mitochondrial stresses, PINK1 cannot be 

imported and it accumulates in the OMM, where it phosphorylates ubiquitin 

groups conjugated to OMM proteins (such as VDAC, TOM proteins, mitofusins 

etc.) (Sarraf et al., 2013) and to Parkin, activating its ubiquitin ligase function 

(Aguileta et al., 2015). Once activated, Parkin adds more ubiquitins to the OMM 

proteins, which are then phosphorylated by PINK1. This cycle continues, 

resulting in the formation of polyubiquitin chains in some OMM proteins, which 

are signals for mitophagy. Moreover, some of the Parkin-ubiquitinated OMM 

proteins (e.g. mitofusins) are specifically degraded by the proteasome (Tanaka 

et al., 2010), which prevents mitochondrial fusion, isolating dysfunctional 

mitochondria and facilitating their engulfment by autophagosomes (Sarraf et al., 

2013; Kocaturk and Gozuacik, 2018). On the other hand, several deubiquitinating 

enzymes (DUBs), such as USP15, USP8 and the mitochondrial USP30, can 

remove the ubiquitin tag of OMM proteins, thus counteracting Parkin activity and 

preventing excessive mitophagy (Bingol et al., 2014; Cornelissen et al., 2014; 

Durcan et al., 2014). Alternative E3 ligases, such as Mulan (MUL1) (Ambivero et 

al., 2014; Yun et al., 2014) and MITOL (MARCH5) (Nakamura et al., 2006; 

Yonashiro et al., 2006), which are located on the OMM, are involved in Parkin-

independent mitophagy. 

Finally, the mitochondrial unfolded protein response (UPRmt), which 

activates the degradation of misfolded proteins accumulated in the mitochondria 

(Jovaisaite, Mouchiroud and Auwerx, 2014; Qureshi, Haynes and Pellegrino, 

2017), may also involve the UPS, since several studies showed that UPRmt 
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activation increases the expression of UPS-related proteins, such as UBL5 

(Haynes et al., 2007) and PINK1 (Thomas et al., 2014).  

 

 

1.5 Mitochondrial ROS production  

 

1.5.1 Mitochondrial ROS production sites 

 

Although the ETC is a highly efficient system, there is a constant leakage 

of electrons escaping the system that can partially reduce oxygen forming 

reactive oxygen species (ROS) (Turrens, 2003). Indeed, approximately 90% of 

cellular ROS are generated in the mitochondria during respiration (Turrens, 2003; 

Andreyev, Kushnareva and Starkov, 2005; Nissanka and Moraes, 2018). 

Superoxide radicals (O2
·−), generated by the one electron reduction of O2, are the 

major form of ROS and are rapidly converted to hydrogen peroxide (H2O2), either 

spontaneously or enzymatically by superoxide dismutase 2 (SOD2/MnSOD) 

(Murphy, 2009). H2O2 is much less reactive and can be reduced to water by the 

peroxiredoxin/thioredoxin and mitochondrial glutathione systems (Cox, 

Winterbourn and Hampton, 2010). However, superoxide can also react with nitric 

oxide (NO•), which can diffuse into mitochondria, and generate peroxynitrite 

(ONOO−), a highly reactive and damaging radical (Murphy, 2009). In addition, 

H2O2 can be reduced by divalent metal ions (Fenton reaction) or superoxide 

(Haber-Weiss reaction) resulting in the formation of hydroxyl radicals (OH•), 

which are extremely reactive and damaging species (Pryor, 1986; Mahaseth and 

Kuzminov, 2018). Superoxide radicals are mostly released from complex I, II and 

III (Murphy, 2009; Quinlan et al., 2012). CI generates ROS mainly through 

reverse electron transfer (RET), that occurs when an over-reduced Q pool forces 

electrons back from QH2 into CI, reducing NAD+ to NADH at the FMN site 

(Murphy, 2009; Pryde and Hirst, 2011; Chouchani et al., 2016). Low levels of 

succinate in the presence of Q-site inhibitors have been shown to generate 

superoxide and H2O2 at the flavin site of complex II independently of the redox 

state of the Q pool and the activity of other respiratory chain complexes (Quinlan 

et al., 2012; Siebels and Dröse, 2013; Grivennikova, Kozlovsky and Vinogradov, 
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2017). On the other hand, complex III generates superoxide at the Qo site, most 

likely as a result of the autoxidation of ubisemiquinone, an intermediate produced 

during the Q-cycle of complex III (Boveris, Cadenas and Stoppani, 1976; Turrens, 

Alexandre and Lehninger, 1985; Trumpower, 1990). Generation of ROS from 

complex IV, a major oxygen-consuming enzyme, seems to be prevented due to 

the rapid kinetics of electron transfer to oxygen (Bourens et al., 2013). However, 

defects in its biogenesis can lead to a decrease in its activity and an accumulation 

of subcomplexes, some of which can be pro-oxidant, generating peroxide 

sensitivity in yeast cells (Khalimonchuk, Bird and Winge, 2007). Apart from the 

ETC, there are other ROS production sites in the mitochondria. For instance, the 

OMM enzyme monoamine oxidase catalyses the oxidative deamination of dietary 

monoamines, producing aldehydes and H2O2. The rate limiting TCA cycle 

enzyme α-ketoglutarate dehydrogenase complex (KGDH) and the pyruvate 

dehydrogenase complex (PDHC) in the mitochondrial matrix can also generate 

ROS (Pizzinat et al., 1999; Starkov et al., 2004). Interestingly, all mitochondrial 

ROS production sites release ROS into the matrix, whereas complex III can 

release ROS into either the IMS or the matrix (Boveris, Cadenas and Stoppani, 

1976; Muller, Liu and Van Remmen, 2004).  

 

 

1.5.2 ROS-mediated mitochondrial physiopathology 

 

The majority of ROS have a short life and are rapidly degraded by 

antioxidant and detoxification systems. However, if the antioxidant defences are 

overwhelmed or not functioning properly, ROS can accumulate and oxidise 

critical mitochondrial components, playing a role in many diseases and in aging  

(Kirkinezos and Moraes, 2001; Brieger et al., 2012). The main components that 

can be damaged by ROS in the mitochondria are fatty acids of the IMM, proteins 

and the mtDNA (Kirkinezos and Moraes, 2001). The IMM is rich in unsaturated 

fatty acids, which can be attacked by ROS through a chain of reactions 

generating lipid peroxidation products, mainly reactive aldehydes, that then 

damage other mitochondrial components (Pizzimenti et al., 2013; Ayala, Muñoz 

and Argüelles, 2014). The modification of lipid composition in the IMM can lead 

to cell death and has been associated to neurodegeneration (Ademowo et al., 
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2017; Aufschnaiter, Kohler, Diessl, Peselj, et al., 2017). For instance, in 

Alzheimer’s Disease, lipid peroxidation is increased in many regions of the brain 

(Yaoa and Brinton, 2011). On the other hand, reactions between protein amino 

acid residues, most commonly tyrosine and cysteine, and reactive oxygen or 

nitrogen species can generate protein oxidative modifications, such as protein 

carbonyl formation, loss of protein thiols, and nitrotyrosine and dityrosine 

formation, which are mostly irreversible. Several mechanisms take place for the 

removal of oxidatively modified proteins such as proteolytic degradation by 

LonP1, one of the major ATP-dependent mitochondrial proteases (Bulteau, 

Szweda and Friguet, 2006; Hamon, Bulteau and Friguet, 2015; Bulteau et al., 

2017) and proteasomal degradation (Davies, 2001; Hemion, Flammer and 

Neutzner, 2014). Specifically, LonP1 protease plays a critical role in the removal 

of oxidised aconitase, a TCA enzyme very sensitive to oxidative inactivation in 

the mitochondria matrix (Bota and Davies, 2002; Bulteau, Ikeda-Saito and 

Szweda, 2003). Failure in the elimination of oxidised proteins seems to be a 

critical component of the aging process (Nilanjana et al., 2001; Bulteau, Szweda 

and Friguet, 2006). On the other hand, superoxide can inactivate Fe-S proteins 

by oxidising their iron-sulphur clusters, which are then quickly degraded 

(Popović-Bijelić et al., 2016). Finally, the mtDNA is also a target of ROS because 

of its vicinity to superoxide production sites and because, unlike the nDNA, lacks 

protective histones (Bogenhagen, 2012). Indeed, the free radical theory of aging 

proposed that oxidative damage accumulated in the mtDNA is the main cause of 

aging (Harman, 1956; Sohal, 1996). However, although mtDNA damage 

increases in an age-related manner and an increase of ROS has been found in 

aged tissues, the link between ROS and age-related mtDNA mutations remains 

controversial (Gladyshev, 2014; Nissanka and Moraes, 2018) 

 

Interestingly, mitochondrial ROS have recently been shown to serve as 

messenger molecules that regulate many biological and physiological processes, 

suggesting a more important role for ROS in signalling than in oxidative damage 

(Schieber and Chandel, 2014). The levels of ROS produced by the ETC depend 

on the rate constants of the enzymatic reactions of the respiratory complexes and 

the mitochondrial membrane potential, which in turn depend on many other 

factors such as the concentration of oxygen or ADP availability (Murphy, 2009). 
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This means that ROS from the ETC could potentially be the major signal that links 

mitochondrial metabolism with other cellular processes. Indeed, RET has already 

been reported to contribute to the metabolic adaptation of immune cells during 

inflammation (Mills et al., 2016), the immune response to viral infection 

(Buskiewicz et al., 2016) and lifespan extension in fruit flies (Scialò et al., 2016). 

Moreover, perturbation of ROS signalling from mitochondria has been shown to 

contribute to the worsening of a disease phenotype in mice (Dogan et al., 2018). 

The transfer of mitochondrial redox signals from mitochondria to the cytosol 

implies that H2O2 can diffuse through the membrane (unlikely for oxygen radicals) 

and modify target proteins in the cytosol, either directly by redox modification of 

cysteine residues, or indirectly by facilitating redox-relay interactions with other 

redox-sensitive proteins (Herrmann and Riemer, 2012; Sobotta et al., 2015a). 

However, another option is that within the mitochondria ROS modify/activate key 

proteins that then transfer the signal outside the organelle through redox-relay 

reactions with other proteins. Changes in the redox state of thiol groups, located 

in cysteine residues, can regulate the activity, binding interactions, turnover and 

localisation of a protein (Holmström and Finkel, 2014). The oxidation of thiol 

groups by H2O2, resulting in the formation of disulphide bonds, S-acetylation and 

S-glutathionylation among other redox modifications (Paulsen and Carroll, 2013), 

can be either reversible, like in the inactivation of tyrosine phosphatases (Meng, 

Fukada and Tonks, 2002), or irreversible, such as the thiol alkylation of KEAP-1 

(Kelch-like ECH-associated protein 1) that induces nuclear translocation of NRF-

2 (nuclear factor erythroid 2-related factor 2) (Kobayashi and Yamamoto, 2006).  

 

 

1.6 Project aims 

 

The order of incorporation of the structural subunits in the human 

cytochrome c oxidase assembly pathway is nowadays a well-defined process 

(Nijtmans et al., 1998; Stiburek et al., 2006; Vidoni et al., 2017). More than 30 

assembly factors are known to be involved in the different steps of COX 

biogenesis (Timón-Gómez et al., 2017; Signes and Fernandez-Vizarra, 2018). 

Most of these ancillary proteins were identified in studies using mutant strains of 
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the yeast Saccharomyces cerevisiae (Tzagoloff and Dieckmann, 1990; 

Barrientos, 2003; Fontanesi et al., 2006). However, it has become evident that 

there are mammal-specific factors (Mootha et al., 2003; Weraarpachai et al., 

2009; Melchionda et al., 2014; Vidoni et al., 2017) that need to be studied 

specifically in mammalian systems, such as mouse disease models and human 

cell lines with COX assembly defects (Fernández-Vizarra, Tiranti and Zeviani, 

2009).  

  

 The first aim of this project was to perform quantitative proteomic analysis 

of the assembly intermediates accumulated in a cybrid cell line with a nearly 

homoplasmic frameshift mutation in MT-CO3, in order to characterise the 

composition of these subassemblies and identify potential novel COX assembly 

factors bound to them. Chapter 3 describes the identification and 

characterisation of MR-1S, a vertebrate-specific novel COX assembly factor that 

interacts with the highly conserved PET100 and PET117 proteins. 

 

 The second aim of this project was to characterise the function and 

regulatory mechanisms of APOPT1 in relation to COX biogenesis. Pathogenic 

mutations in APOPT1, a gene exclusively found in animals, have been 

determined to cause isolated mitochondrial COX deficiency and encephalopathy 

with a very characteristic MRI pattern (Melchionda et al., 2014; Sharma et al., 

2018). However, the biochemical link between APOPT1 function and COX 

remained elusive for some time. In Chapter 4 I will describe how we generated 

an Apopt1 knockout mouse model which recapitulates the biochemical hallmarks 

found in human patients, making it an optimal model to study the role of APOPT1 

in COX assembly and function in differentiated tissues. An extensive 

phenotypical and biochemical characterisation will be presented in that chapter. 

In addition, Chapter 5 describes the generation of stable human cell lines 

expressing several APOPT1 tagged isoforms used to investigate APOPT1 

localisation, turnover regulated by the UPS and stabilisation promoted by 

oxidants. To further investigate the biochemical and physiological consequences 

of APOPT1 ablation, patient-derived immortalised fibroblasts, in which COX 

content and activity is reduced by half compared to the controls, were extensively 

characterised. Complementation assays were performed in order to confirm that 
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loss-of-function mutations in APOPT1 were actually the cause of the observed 

isolated COX deficiency in these cells. Molecular analyses, i.e. Western blot of 

SDS- and BN-PAGE, were used to determine the abundance and assembly of 

COX, which helped to underpin the role of this factor in COX assembly. Finally, 

the stability of the mtDNA-encoded COX subunits and the effect of oxidative 

stress were also investigated in the APOPT1-null human cells. 
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2.1 Mouse model 

 

An Apopt1 KO mouse model in the FVB/NJ background (Jackson 

laboratories), was generated using CRISPR/Cas9 genome editing technology 

(see section 2.1.1) in order to study the effects of Apopt1 ablation in mouse 

development and physiology. All procedures were conducted under the UK 

Animals (Scientific Procedures) Act, 1986, approved by Home Office license 

(PPL: 70/7538) and local ethical review. The animals were maintained in a 

temperature- and humidity-controlled animal-care facility (Phenomics Laboratory, 

Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0PY) with a 12-hr 

light/dark cycle and free access to water and food. 

 

 

2.1.1 Generation of an Apopt1 KO mouse model  

 

 The CRISPR/Cas9 technology was used to edit the genome of mouse 

zygotes in order to generate an Apopt1 KO mouse model (Rath et al., 2015) 

(Figure 2.2). The gRNA spacer sequences, targeted to exon 2 of the mouse 

Apopt1 gene (GenBank ID: 68020), were designed using the online CRISPR tool 

(http://crispr.mit.edu/). Exon 2 was chosen in order to mutate the gene from the 

beginning of its sequence, but after the MTS (located in exon1). The spacer 

sequence with the highest quality score, which is based on features such as 

minimal homology with other genes and presence of the PAM sequence in the 3’ 

genomic end, was 5’- CTGGGGGGCCTATCCAATCA -3’. A customised forward 

primer carrying the T3 promotor sequence plus the selected spacer sequence 

and the first 20 nucleotides of the scaffold sequence (Table 2.5), as well as a 

reverse primer (Table 2.5) carrying the last 20 nucleotides of the scaffold 

sequence, were used to amplify by PCR (see section 2.3.3) the entire scaffold 

sequence from the template in the pX330-U6-Chimeric_BB-CBh-hSpCas9 

plasmid, gift from the Feng Zhang team (Addgene plasmid # 42230, 

https://www.addgene.org/). The amplified product, i.e. the complete gRNA 

sequence (spacer + scaffold) under the T3 promotor, was then cloned into the 

pCR2.1 vector using a TOPO TA cloning kit (Invitrogen) (see section 2.3.7). Then, 

http://crispr.mit.edu/
https://www.addgene.org/
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the insert was liberated from the vector by digestion with the restriction enzyme 

EcoRI (see section 2.3.6), run on a 1 % agarose gel and purified from the gel 

(see section 2.3.6). On the other hand, the commercial plasmid encoding the 

SpCas9 nuclease (Addgene plasmid # 48625, https://www.addgene.org/) 

(Figure 2.1), which has been shown successful in the literature for the genetic 

modification of mouse embryos (Fujii et al., 2013), was linearised by digestion 

with SphI (see section 2.3.6) and purified using the QIAquick PCR Purification kit 

(Qiagen) (see section 2.3.5).  

 

 

Figure 2.1 Vector encoding the SpCas9 nuclease (Addgene plasmid # 
48625). This vector was successfully used to genetically modify mouse embryos 
(Fujii et al., 2013). 

 

 

Both purified DNAs (gRNA fragment and linearised SpCas9), together with 

a positive control template (pGEM® Express Positive Control Template, 

Promega), were transcribed in vitro (Riboprobe® in vitro Transcription System, 

Promega). The reaction mix described in Table 2.1 was incubated at 37 °C for 2 
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hours. After 1 hour of incubation, 2 additional µL of T3 RNA Polymerase and 2.5 

additional µL of rNTP mix were added to the Cas9 mix to increase RNA yield. 

 

Table 2.1 In vitro transcription reaction set-up.  
 

Reagent gRNA Cas9 Control 

Transcription optimised buffer (5X)* 20 µL 10 µL  5 µL 

DTT (100 mM)* 10 µL 5 µL 2.5 µL 

Recombinant RNasin® Ribonuclease (40 U/µL)* 2.5 µL 1.2 µL 0.6 µL 

Unlabeled rNTP mix (10mM each)* 20 µL 5 µL 5 µL 

Ribo m7G Cap Analog (5mM)* - 5 µL - 

5 µg of linearised DNA template 20 µL 23 µL 0.5 µL 

T3 RNA Polymerase (17 U/µL)* 3.5 µL 2.5 µL 1 µL 

Nuclease-Free Water 24 µL  - 10.4 µL 

Total volume  100 µL  50 µL 25 µL 

 
* Reagents provided in the Riboprobe® in vitro Transcription System (Promega). 

 

 

The resulting RNAs were purified using PureLink™ RNA Mini Kit Spin 

Cartridge (Invitrogen-ThermoFisher Scientific) (see section 2.3.1). The eluted 

RNA was treated with DNase (Turbo DNA-free, Life technologies) and run in a 

denaturing 7M urea 5 % polyacrylamide gel to check RNA quality. Concentration 

and purity were estimated using a NanoDrop spectrophotometer (ND-8000, 

Labtech, UK). Aliquots of 50 ng/µL gRNA + 100 ng/ µL Cas9 were prepared and 

sent to the ‘Core Facility for Conditional Mutagenesis’ at the IRCCS Ospedale 

San Raffaele, (Milan, Italy) for microinjection into fertilised mouse one-cell 

zygotes. FVB/NJ was the mouse strain of choice because the large size of the 

pronuclei in the fertilised oocytes facilitates the injection procedure.  
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Figure 2.2 Schematic representation of the CRISPR/Cas9 technology. First 
the Cas9 protein (transcribed from the Cas9 RNA injected in the cell) interacts 
with the scaffold sequence of the gRNA to form the Cas9:gRNA ribonucleoprotein 
complex. Then, the spacer sequence of the gRNA guides the Cas9 to the target 
genomic sequence where the Cas9 will cleave the double strand DNA after 
recognition of the protospacer adjacent motif (PAM). The non-homologous end 
joining NHEJ pathway usually introduces indels during the DNA repair process. 
 

 

2.1.2 Metabolic and behavioural analysis 

 

Mice were monitored weekly to examine body condition and general 

health. The metabolic, neurological and motor phenotype was evaluated with a 

set of different tests described below. All apparatus and surfaces used were 

cleaned and disinfected after each session.  

 

 

 

GTCTCAAGATTCTGCCCTCCAAGACAGTCTTGCCATGATTGGATAGGCCCCCCAGACAAAT

GCTCAAACCTTCGTCCCGTTCATTTTCACATCCCTGAAAACGAGTCTCCCTTGGAGCAAAGACTTA

GAGAATTGAGACAAGAAACGCAAGAATGGAATCAACAGTTCTGGGCCAAGCAGAACTTGTCCTTC
AATAAG

Exon 2

(WT)

Scaffold + ACUAACCUAUCCGGGGGGUC

GTCTCAAGATTCTGCCCTCCAAGACAGTCTTGCCATGTGTTGGATAGGCCCCCCAGACAAA
TGCTCAAACCTTCGTCCCGTTCATTTTCACATCCCTGAAAACGAGTCTCCCTTGGAGCAAAGACTT

AGAGAATTGAGACAAGAAACGCAAGAATGGAATCAACAGTTCTGGGCCAAGCAGAACTTGTCCTT
CAATAAG

Exon 2
(Mutated)

CUGGGGGGCCUAUCCAAUCA + Scaffold

gRNA

CCA PAM sequence

CAG Target genomic sequence

TG InDel

Scaffold + ACUAACCUAUCCGGGGGGUCCas9:gRNA complex

Cas9

NHEJ repair pathway

CUG Spacer

Target binding + PAM recognition
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2.1.2.1 Energy metabolism 

 

The CLAMS system (Columbus Instruments, Columbus, Ohio) allows 

simultaneous, automated and non-invasive measurement of numerous metabolic 

parameters. Apopt1-/- mice and control littermates were individually placed in 

CLAMS cages and monitored over a 36-hour period. Data were collected every 

10-minutes. The following parameters were recorded: VO2 (volume of oxygen 

consumed, ml/Kg/hr), VCO2 (volume of carbon dioxide produced, ml/Kg/hr), 

locomotor activity in the xyz axis (measured as infrared beam interruptions, 

termed ‘counts’) and food and water consumption (measured as accumulated 

data in g and ml, respectively).  

 

2.1.2.2 Hindlimb clasping 

 

Hindlimb clasping is a marker of disease progression in many mouse 

models of neurodegeneration. Mice were grasp from the base of the tail, lift clear 

of all surrounding objects and their hindlimb position observed for 10 seconds. 

Normal position was defined as hindlimbs splayed outward, away from the 

abdomen, and abnormal as one or both hindlimbs retracted towards the 

abdomen. 

 

 

2.1.2.3 Gait 

 

Evaluation of mouse gait, i.e. walking movement, was used to monitor 

mice coordination and muscle function. Animals were placed in a flat surface with 

their head facing away from the investigator, allowing to observe the mouse from 

behind while it walks. Normal movement was defined as body weight being 

supported on all limbs, abdomen not touching the surface and both hindlimbs 

participating evenly. Abnormal gait was defined as tremors, limp while walking, 

lowered pelvis, etc.  
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2.1.2.4 Treadmill  

 

A treadmill apparatus (Columbus Instruments, Columbus, Ohio) was used 

to evaluate exercise capacity and endurance. Mice were forced to run to 

exhaustion over a conveyor belt with gradually increasing speed. The number of 

falls was the parameter recorded to determine exhaustion, defined as > 10 

falls/min. One trial for two consecutive days was conducted prior to testing to 

allow the mice enough time to acclimatize. The trial consisted on 10 minutes at a 

fixed speed of 13 m/min. On the test day, the treadmill was set to an angle of 

inclination of 10 °. The speed was initially set at 11 m/min for 3 minutes. Then it 

was increased 0.3 m/min up to a maximum speed of 75 m/min. Time and distance 

were recorded at the exhaustion point of each mouse. 

 

 

2.1.2.5 Rotarod 

 

A rotarod apparatus (Ugo Basile, Varese, Italy) was used to assess motor 

performance and coordination. During the test, mice had to maintain themselves 

on a rod turning at accelerating speeds. The latency to fall was recorded. One 

trial for two consecutive days was conducted prior to testing to allow the mice 

enough time to acclimatize. The adaptation trial consisted in 4 minutes static plus 

5 minutes at a fixed speed of 10 rpm/min. On the test day, three trials were 

completed setting the apparatus to accelerate from 2 to 40 rpm in 300 seconds. 

Mice were returned to their home cage during the inter-trial interval of 15 minutes.  

 

 

2.1.2.6 Y maze spontaneous alternation 

 

The Y maze test was used to assess exploratory behaviour and cognitive 

function (memory and learning) in mice. The test was conducted in a large Y-

shaped maze with three opaque, plastic and equal arms of 40 cm length, 8 cm 

width, and 15 cm height, attached at 120° angle from each other. Mice were 

placed in the centre of the maze and allowed to freely explore the three arms for 
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5 minutes (Figure 2.3). No acclimatization was required as this test evaluates the 

willingness of mice to explore new environments. 

 

 
Figure 2.3 A schematic representation of the Y maze test described in the 
text. Mice are placed in the centre and let explore the arms freely for 5 minutes. 
Each arm was labelled a, b or c. 

 

 

Healthy mice prefer to investigate a new arm of the maze (spontaneous 

alternation) rather than returning to one that was already visited. Many parts of 

the brain, including the hippocampus, septum, basal forebrain, and prefrontal 

cortex are involved in this task. The sequence of arm entries was manually 

recorded, the arms being labelled a, b or c. An actual alternation was defined as 

entry into all three arms consecutively. For example, in this sequence of arm 

entries: ABBABCABCABACBB, the total number of entries is 15, the maximum 

alternation is 13 (total number of entries minus two) and the number of actual 

alternations is 8 (only correct alternations are accounted: ABB, BBA, BAB, ABC, 

BCA, CAB, ABC, BCA, CAB, ABA, BAC, ACB, CBB). The percentage of 

alternation in this example is 61,5 %, calculated as: 

 

% 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛 = (
𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛 
) 𝑥 100 

 

 

 

 

 

a

bC
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2.1.2.7 Pole test 

 

The pole test was used to assess general proprioception. Mice were 

placed head-upward on the top of a vertical rough-surfaced pole (diameter 5 mm; 

height 50 cm) and the time to descend it was recorded (with a maximum duration 

of 60 seconds). The base of the pole was placed in the home cage. Healthy mice 

quickly orientate themselves downwards and descend the pole back into their 

home cage. Three trials for two consecutive days were conducted prior to testing 

to allow the mice enough time to acclimatise.  

 

 

2.1.2.8 Activity cage 

 

An activity cage (Ugo Basile, Varese, Italy) was used to record 

spontaneous activity in mice. Animal movements, detected as infrared beams 

interruptions, were counted and recorded by the electronic unit's internal memory. 

Mice were individually placed in the centre of the cage and horizontal and vertical 

movements were recorded in intervals of 1 minute for 30 minutes. 

Movements/minute and total movements (as accumulated data) were plotted and 

analysed. 

 

 

2.1.3 Immunohistochemistry (IHC) in mice tissues 

 

From frozen tissues 

This method is commonly used to preserve enzymes and antigen 

expression but is not recommended for histopathology analysis because the 

formation of ice crystals can negatively affect tissue structure and cellular 

morphology.  

Mice were sacrificed, and organs were quickly dissected and 

cryopreserved by immersion in isopentane cooled with liquid nitrogen. Samples 

were placed in cryovials, stored at -80 °C and analysed as soon as possible to 

prevent them from drying. Frozen tissues were sectioned in a cryostat, placed in 

slides, fixed with alcohol and washed with deionised water. The slides were 
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stained as described in (Sciacco and Bonilla, 1996). Briefly, to allow the use of 

biotinylated horseradish peroxidase H (HRP) conjugated secondary antibodies, 

the endogenous peroxidase was blocked by incubating the slides with 0.3 % H2O2 

in tris-buffered saline buffer (TBS) for 30 minutes at RT. Then, the slides were 

washed with deionised water and incubated in blocking solution: 10 % foetal 

bovine serum (FBS, Gibco) with 1 % bovine serum albumin (BSA) in TBS for 2 

hours at RT. After washing, the slides were incubated with the correspondent 

primary antibody diluted in TBS with 1 % BSA overnight at 4 °C. The slides were 

then washed, incubated for 1 hour at RT with the correspondent biotinylated 

secondary antibody diluted in TBS with 1 % BSA, washed again and incubated 

with ABC revelation reagent. After washing, the slides were incubated in 

peroxidase substrate solution until the desired stain intensity was developed. The 

slides were then dehydrated, cleared and mounted.  

 

 From fixed tissues 

Fixation of tissues with formaldehyde is recommended for 

histopathological analysis in order to better preserve tissue and cell morphology, 

to harden the samples for posterior processing, to inactivate proteolytic enzymes 

and to protect the samples against contamination and decomposition.  

Mice were anesthetised with pentobarbital, perfused with phosphate-

buffered saline (PBS) for exsanguination and then perfused with a methanol-

stabilised formaldehyde solution, NBF, which is a crosslinking fixative agent that 

creates covalent chemical bonds between proteins. In this case, the perfusion 

was performed directly through the heart, allowing a rapid and uniform fixation of 

entire organs via the vascular system. Organs were dissected and immersed in 

10 % (v/v) NBF (to ensure thorough fixation throughout the tissue), dehydrated in 

alcohol, cleared in xylene (an intermedium that can be equally well mixed with 

both alcohol and NBF) and then embedded in paraffin, which helps to harden the 

samples in order to be then sectioned in a microtome (6 μm-thick). Slides were 

deparaffinised with ethanol (paraffin can interfere with the posterior staining) and 

rehydrated. Antigen retrieval was then performed in order to expose the antigenic 

sites and allow the antibodies to bind. For that, samples were incubated with 

retrieval solution and heated in a microwave (conditions were optimised for each 
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antibody). After washing, IHC was continued as described for frozen tissues (from 

the step of blocking the endogenous peroxidase). 

 

 

2.1.4 Isolation of MEFs 

 

MEFs were derived from female mice 12.5 to 13.5 days after the 

appearance of the copulation plug. The pregnant female was sacrificed, the 

abdominal wall and uterus were cut through and embryos retrieved and placed in 

a covered 100 mm Petri dish (Corning®, Falcon®) filled with ice-cold PBS without 

Ca2+ and Mg2+ (Life Technologies, Gibco®). The Petri dish was then transferred 

to a tissue culture hood and only sterilised surgical instruments were used from 

that moment. Each embryo was separated and transferred to one well of a 6-well 

culture plate (Corning® Costar®) filled with PBS, where it was pulled out of the 

yolk sac, cleaning out all the uterine tissue. Holding the embryo with forceps, all 

the red tissue (heart and liver), limbs and tail were removed, while the head was 

cut and kept in an Eppendorf tube for posterior DNA extraction and genotyping. 

The rest of the embryo was transferred to a well of a 24-well culture plate 

(Corning® Costar®) filled with PBS, minced with scissors into 1–2 mm pieces 

and pipetted up and down several times with a 10-ml serological pipette 

(Starstedt).  The homogenate was then transferred to a 15-ml centrifuge tube 

(Sarstedt) and centrifuged 5 minutes at 200 x g and room temperature (RT). A 

second wash with PBS was done and the final pellet was resuspended in 1 ml of 

digestion solution: 40 mg of collagenase dissolved in 20 ml of culture medium: 

DMEM containing 4.5 g/L D-glucose, sodium pyruvate and GlutaMAXTM, 

supplemented with 10 % foetal bovine serum and 100 units/ml penicillin, 0.1 

mg/ml streptomycin and 25 µg/ml amphotericin B (Fungizone) (all from Life 

Technologies, Gibco®). Tubes were put at 37 °C in the water bath (Grant 

instruments, UK) for 30-90 minutes and the embryo pieces pipetted up and down 

with a P1000 micropipette every 15-20 minutes. When the tissue was completely 

disaggregated, it was washed with PBS and centrifuged for 5 minutes at 200 x g 

and RT to pellet the cells. The solution was then resuspended in 12-14 ml of 

culture medium and left 10 minutes to let undigested pieces sediment at the 
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bottom. The clean solution was plated in a 100 mm Petri dish (Corning®, 

Falcon®) and cultured under 5 % (vol/vol) CO2 and 37 ºC. 

 

 

2.2 Human cell models 

 

2.2.1 Cell lines  

 

Cultured fibroblasts derived from skin biopsies taken from two unrelated 

patients, S2 and S6, carrying pathological mutations in APOPT1 (Melchionda et 

al., 2014) were used in this project. S6 and S2 primary fibroblasts were kindly 

provided by Dr. Enrico Bertini (Ospedale “Bambino Gesu”, Rome, Italy) and Dr. 

Daniele Ghezzi (Neurological Institute “Carlo Besta”, Milan, Italy), respectively. 

S2 carries a homozygous variant in APOPT1, c.235C>T (RefSeq accession 

number NM_032374.3) that is predicted to introduce a stop codon causing the 

synthesis of a truncated protein (p.Arg79∗; RefSeq NP_115750.2). S6 has two 

heterozygous mutations, the same present in individual S2 and a three-

nucleotide deletion (c.370_372delGAA) causing the elimination of a highly 

conserved amino acid residue (p.Glu124del) (Melchionda et al., 2014). Four other 

human skin fibroblasts lines (C1, C2, C3 and C4) were used as controls. Primary 

cultures were immortalised by lentiviral transduction with the pLOX-Ttag-iresTK, 

obtained from Didier Trono (Addgene plasmid # 12246) (see section 2.2.3). 

 In addition, two cancer cell lines were used for overexpression of different 

isoforms of APOPT1 tagged with either GFP or HA: HeLa (human cervical cancer 

cells) and 143B (human bone osteosarcoma cells).  

 

 

2.2.2 Cell culture conditions 

 

The different human cell lines were grown in DMEM containing 4.5 g/L D-

glucose, sodium pyruvate and GlutaMAXTM, supplemented with 10 % FBS, 100 

units/ml penicillin and 0.1 mg/ml streptomycin (all from Life Technologies, 

Gibco®). The medium used to grow human skin fibroblasts with defects in 
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complex IV of the respiratory chain was supplemented with 50 µg/ml uridine 

(Sigma-Aldrich) to compensate the reduced synthesis of pyrimidine derivatives 

due to a decrease in the activity of the dihydroorotate dehydrogenase, which is 

an ETC-dependent enzyme that mediates the fourth step of de novo pyrimidine 

biosynthesis. After transduction with expression plasmids containing antibiotic 

selection cassettes, selective medium was prepared adding 1 µg/ml puromycin 

or 100 µg/ml hygromycin (both from Invitrogen). Cells were grown in humidified 

atmosphere at 37 °C and 5 % CO2.  

 

 

2.2.3 Lentiviral 2nd generation expression system 

 

Both gene silencing and protein overexpression were performed using a 

second-generation lentiviral expression system, which allows for stable and 

heritable integration of a specific nucleic acid sequence into the target cell 

genome. Gene silencing was achieved by inserting a short hairpin RNA (shRNA) 

sequence in the expression plasmid. Once transcribed, the shRNA produces an 

artificial double stranded RNA molecule that silences target gene expression by 

RNA interference, a biological mechanism that degrades mRNAs (Moore et al., 

2010). Different shRNA, already cloned into the pLKO.1 vector (MISSION® 

shRNA Library, Sigma-Aldrich), were used for silencing each specific target gene. 

Overexpression of tagged proteins was achieved by inserting a specific cDNA 

sequence, cloned in the pWPXLd-based expression plasmid, for each protein. 

The components required for lentiviral particle generation are: 

 

1. Transfer/expression plasmid: it encodes the insert of interest flanked by 

long terminal repeat (LTR) sequences which facilitate integration of the 

construct into the host genome and the promotors for expression in 

mammalian cells. For shRNA expression, the pLKO.1 plasmid (Addgene 

plasmid # 10878) was used, while for protein overexpression, pWPXLd-

based vectors were employed (Figure 2.4). 

2. Packaging plasmid: it encodes the proteins Gag, Pol, Rev, and Tat, 

essential for transcription and packaging of an RNA copy of the insert into 
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recombinant pseudoviral particles. The pSPAX2 (Addgene plasmid # 

12260) vector was used (Figure 2.4). 

3. Envelope plasmid: it encodes the envelope surface glycoproteins, which 

can be modified to change the cell type to be infected. In this case the 

vesicular stomatitis virus GP (VSV-G) glycoproteins were used, which 

have been shown to give lentiviral vectors a broad host-cell range (Cronin, 

Zhang and Reiser, 2005). Specifically, the pMD2.G (Addgene plasmid # 

12259) vector was used (Figure 2.4). 

4. Pseudoviral particle producer cell line: HEK 293T cells (a variant of the 

HEK 293 cells), which contain the SV40 T-antigen that allows episomal 

replication of transfected plasmids containing the SV40 origin of 

replication, leading to greater plasmid amplification and expression of the 

gene product. 
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Figure 2.4 Vectors used for the lentiviral expression system. (A) pLKO.1: for 
shRNA expression, (B) pWPXLd: for protein overexpression. In this work, the 
pWPXLd-Ires-PuroR and the pWPXLd-Ires-HygroR, which have puromycin and 
hygromycin, respectively, as a selectable marker, were used (B) psPAX2: 
plasmid encoding the polymerase and proteins for the viral capsid. (C) pMD2.G: 
plasmid encoding the proteins for the viral envelope. 

 

 

The day prior to the transfection 2x106 HEK 293T cells were seeded on a 10-

cm petri dish. The transfer, packaging and envelop plasmid mixture was prepared 

as described in Table 2.2. 

 

Table 2.2 Mixture of reagents for transfection of HEK 293T cells. 
 

Reagent Volume 

Transfer plasmid Corresponding to 10µg 

Packaging plasmid Corresponding to 6.55µg 

Envelope plasmid Corresponding to 3.5µg 

FUGENE FUGENE:DNA ratio 3:1 → 60 µl 

DMEM Adjust to 1 ml 
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The mixture was incubated for 30 minutes at RT and then added to the 

medium of the producer HEK 293T cells. After 6-8 hours the transfection medium 

was replaced with fresh culture medium. During the following 48 hours, the 

expression constructs packaged in pseudoviral particles were secreted in the 

medium, which was then collected, centrifuged at 3,000 rpm, filtered through 0.45 

µm pore size PVDF filters, mixed with 8µg/µL polybrene (to increase transduction 

efficiency) and added directly to the target cells, of which 2 x 106 cells per cm of 

dish were plated the previous day. 24 hours after the transfection, the medium 

was replaced with fresh culture medium and antibiotic, puromycin (1 µg/ml) or 

hygromycin (100 µg/ml), was added to select for the positively transduced cells. 

 

 

2.2.4 Live cell imaging 

 

Cell viability and growth were assessed using an IncuCyte HD instrument 

(Essen Bioscience,UK) and an algorithm to calculate cell confluency based on 

phase contrast microscope imaging of the plates. Images were taken every 2 

hours for a total period of 7 days.  

An IncuCyte ZOOM instrument (Essen Bioscience, UK) was used to 

monitor protein expression by detection of green fluorescence. Images were 

taken every hour for a total period of 4 days. 

 

 

2.2.5 Immunofluorescence on fixed cells 

 

Immunofluorescence labelling was used to demonstrate the presence and 

the subcellular localisation of different antigens. Cells were seeded on a collagen-

coated 2cm-diameter coverslip in a multiwell plate (Corning® Costar®). For 

visualisation of the mitochondrial network, MitoTracker®RedCMXRos 

(Invitrogen) was added to the culture medium at a final concentration of 50 nM 

and incubated during 20-30 minutes at 37 ºC. Cells were then washed with PBS, 

fixed with 4 % (wt/vol) paraformaldehyde (PFA) for 15 minutes at 37 ºC, washed 

again and permeabilised for 5 minutes at RT with 0.3 % (vol/vol) Triton X-100 

(Fisher Bioreagents) dissolved in 5 % FBS in PBS. After washing the coverslips, 
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one hour of blocking at RT was performed with 5 % FBS in PBS followed by 

incubation with the different primary antibodies, either for 2 hours at RT or 

overnight at 4 ºC. After washing, the coverslips were incubated with fluorescently 

labelled secondary antibodies for 1 hour at RT, washed again and let dry while 

protected from light. Slides were mounted using ProLong Gold antifade with 4',6-

diamidino-2-phenylindole dihydrochloride (DAPI, Invitrogen). The fluorescence 

was detected in a confocal laser microscope (A1/A1R Confocal Microscope 

System, Nikon, UK). 

 

 

2.3 General DNA-based methods 

 

2.3.1 Retrotranscription of RNA 

 

Total RNA was extracted from mice tissues or cultured cells using the 

TRIzol Plus RNA Purification System (Invitrogen-ThermoFisher Scientific). 

Briefly, the TRIzol® reagent was used to lyse the cells, chloroform was then 

added to the homogenate and samples were centrifuged. The RNA, contained in 

the upper aqueous phase, was then bound to the clear silica-based membrane 

in the PureLink™ RNA Mini Kit Spin Cartridge. Contaminants were washed, and 

RNA was eluted in RNase-Free water. Purified RNA was then treated with DNase 

(Turbo DNA-free, Life technologies) to remove any DNA traces and 

retrotranscribed with the Omniscript® Reverse Transcription kit (Qiagen) to 

obtain complementary DNA (cDNA) (Table 2.3). 
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Table 2.3 In vitro transcription reaction set-up.  
 

Reagent Volume/reaction 
Final 

concentration 

Transcription buffer (10X)* 2 µL  1 X  

dNTP mix (5mM each)* 2 µL 0.5 mM each  

Oligo-dT primer (10 µM)*2 2 µL 1  µM  

Random hexamer*3 0.2 µL 0.6 µM 

RNase inhibitor (10 U/µL)*4 1 µL 10 U 

RNA template variable Up to 2 µg 

Omniscript Reverse 

Transcriptase (4 U/µL)* 
1 µL 4 U 

RNase-Free Water to  20 µL  - 

 
* Reagents included the Omniscript® Reverse Transcription kit (Qiagen). 
*2 Oligo ordered from Sigma-Aldrich. 
*3 Reagent from Thermo Fisher Scientific. 
*4 RNasin® from Promega. 

 

 

2.3.2 Real-time reverse transcription PCR 

 

To perform a relative quantification of gene expression levels, real-time 

reverse transcription-PCR, using pre-tested and validated specific Gene 

Expression TaqMan assays (Thermo Fisher Scientific) for each of the transcripts 

of interest (Table 2.5), was used. Reaction volumes were typically 20 µL, 

containing 1X TaqMan® Gene Expression Assay, 1X TaqMan® Gene 

Expression Master Mix, cDNA template (40 to 100 ng), and adjusted with RNase-

free water. Each 20 µL amplification reaction mix was transferred into one well of 

a 96-well reaction plate, which was sealed and load in a Real-Time PCR System 

(Applied Biosystems 7900HT, Thermo Fisher Scientific, USA) for the 

amplification reaction following the cycling conditions described in Table 2.4. For 

each cDNA sample, three technical replicates were added to the plate. The 

reactions are set for the target and for the reference sequences, usually a house-

keeping gene such as GAPDH, used as an internal standard for expression level 

normalisation.  
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Table 2.4 Real time PCR thermocycling conditions. 
 

Step Temperature Time Cycle 

Initial denaturation 95 ºC 10 minutes 1 

Denaturation 95 ºC 15 seconds 
40 

Annealing/Elongation 60 ºC 1 minute 

 

 

Table 2.5 Gene expression TaqMan assays used in this project. 
 

Gene Target species TaqMan Assay ID 

APOPT1 Mouse Mm00509619_m1 

COX4 Human Hs00971639_m1 

COX6b Human HS01086739_g1 

Gapdh Mouse Mm9999915_g1 

GAPDH Human Hs02758991_g1 

Mt-Co1 Mouse Mm04225243_g1 

MT-CO1 Human Hs02596864_g1 

MT-CO2 Human Hs02596865_g1 

Nd1 Mouse Mm04225274_s1 

PET100 Human Hs00418278_g1 

PET117 Human Hs01550880_g1 

 

 

TaqMan probes contain a 6-carboxyfluorescein (FAM) fluorophore 

covalently attached to the 5’-end and a tetramethylrhodamine (TAMRA) quencher 

at the 3’-end. As long as the fluorophore and the quencher are close enough, the 

fluorescence is quenched. However, when the probe binds the specific DNA 

region, the Taq polymerase synthesise the new strand and degrades the probe, 

liberating the fluorophore and allowing fluorescence. The amplification cycle at 

which the fluorescence becomes measurable, i.e. crosses the background 

threshold, is called the threshold cycle (CT) or crossing point (Figure 2.5). The 

CT value is then used to calculate relative gene expression in target and 

reference samples using the Double Delta Ct analysis, detailed in (Livak and 

Schmittgen, 2001).  
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Figure 2.5 Graphical representation of real-time PCR data. Fluorescence is 
plotted against PCR number of cycles. The point in which fluorescence increases 
above the threshold (black dashed line) is called CT (green line). Image extracted 
from https://bitesizebio.com/. 
 

 

2.3.3 PCR 

 

 PCR was used to generate multiple copies of the sequence of interest 

through three steps: 1) denaturation, in which the template DNA is denatured to 

single stranded molecules; 2) annealing, in which the designed oligonucleotide 

primers anneal to the complementary DNA sequences; and 3) extension, in which 

the DNA is extended from the primers, by the DNA polymerase enzyme. 

All PCR reactions were performed using a thermocycler (TRIO 

Thermocycler, Biometra, Germany) and the amplification products were analysed 

by agarose gel electrophoresis (see section 2.3.4). 
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2.3.3.1 PCR primer design 

 

 PCR primers were designed manually (Table 2.6). Good primer design is 

essential for a successful PCR reaction. The most important factors considered 

were: 

 

-Length: ideally between 19 and 21 bp, long enough to provide good 

specificity but short enough so it can easily bind the target DNA at the 

annealing temperature. 

-Melting temperature (Tm): ideally between 55 and 80 ºC. Tm is defined as 

the temperature at which one half of the DNA dissociates to single strands. 

Both primers (forward and reverse) should have a very similar Tm. The 

formula used to calculate it was: 

 

Tm = 4 x (G + C) + 2 x (A + T) 

  Where 

G + C is the sum of guanine and cytosine bases 

  A + T is the sum of adenine and tymine bases 

 

-GC content: the number of G’s and C’s in the primer as percentage of the 

total bases should be around 50 %. 

-GC clamp: the presence of G or C bases in the 5’ and 3' end of the primer 

helps specific binding due to the stronger bonding of G and C bases.  

-Secondary structures, hairpins and cross dimers: should be avoided 

because they affect primer-template annealing and thus, amplification 

yield.  

-Cross homology: primers designed for a sequence must not amplify other 

genes in the mixture. Homology of the primer to other genomic regions 

was checked using the BLAST software available in the NCBI website 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). 
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Table 2.6 List of primers used in this project. 
 

Name Sequence (5’ -> 3’) 

APOPT1 cDNA Fw AATGCTGCCGTGCGCCGC 

APOPT1 cDNA Rv TGCTTCCTGTGGAAACCTGG 

APOPT1-M1-PmeI-Fw GTTTAAACCATGCTGCCGTGCGCCGCG 

APOPT1-M14-PmeI-Fw GTTTAAACCATGGTGGTCTTGCGGGCGG 

APOPT1-201-HA-Rv TCAAGCGTAATCTGGAACATCGTATGGGTAGTT
GCTCCTCTTCTTTTGTTTC 

APOPT1-203-HA-Rv TCAAGCGTAATCTGGAACATCGTATGGGTAATG
TTGCTTTCTGACCTTAC 

APOPT1-201-GFP-pCR-NdeI-Rv CATATGGTTGCTCCTCTTCTTTTGTTTC 

APOPT1-203-GFP-pCR-NdeI-Rv CATATGATGTTGCTTTCTGACCTTAC 

Apopt1_Ms_Exon2_Fw CATAGAGTAAGGTGATGAGG 

Apopt1_Ms_Exon2_Rv CCAAAACCCGCATCAGAAAG 

CRISPR_T3_gRNA-scaffold_Fw AATTAACCCTCACTAAAGGTGTGAAAATGAACG
GGACGAGTTTTAGAGCTAGAAATAGC  

CRISPR_scaffold_Rv AGCACCGACTCGGTGCCACT 

MR1S-PmeI-Fw GTTTAAACACCATGGCGGCGGTGGTAG 

MR1S-HA-Rv GGTCAAGCGTAATCTGGAAC 

PET100-Fw GAACTGGCTTTGTTGACCGG 

PET100-FLAG-Rv TCACTTGTCGTCATCGTCTTTGTAGTCGGAGTT
CTGCTGGGCGTCGC 

PET117-Fw CAGCGTGGGGATGTCTAGG 

PET117-FLAG-Rv TCACTTGTCGTCATCGTCTTTGTAGTCTGATTTT
TGAGATCCTTTTG 

 

 

2.3.3.2 PCR for mouse genotyping 

 

Mouse genomic DNA was extracted from ear punch samples using The 

Maxwell® RSC Tissue DNA Kit in combination with the Maxwell® RSC 

Instrument (Promega). The extracted DNA was then used for PCR amplification 

of Apopt1 exon 2 (primers in Table 2.6). The reactions were performed using the 

GoTaq® DNA Polymerase kit (Promega). The 5X Green GoTaq® Reaction Buffer 

contains two dyes (blue and yellow) that separate during electrophoresis to 

monitor migration progress. It also contains MgCl2 at a concentration of 7.5 mM. 

PCR reaction set-up and thermocycling conditions are detailed in the next table.  
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Table 2.7 PCR amplification using the GoTaq® DNA Polymerase kit. 

(a) PCR amplification reaction set-up 

Reagent 
Final  

volume 

Final 

concentration 

Green GoTaq® Reaction Buffer (5X)* 5 µL 1X (1.5 mM MgCl2) 

PCR nucleotide Mix, 10 mM each 0.5 µL 0.2 mM each dNTP 

Apopt1_Fw_MouseExon2 (100 µM) 1 µL 2 µM 

Apopt1_Rv_MouseExon2 (100 µM) 1 µL 2 µM 

DNA template (25 ng/µL) 2 1ng/µL 

GoTaq® DNA polymerase (5 u/µL)* 0.25 µL 1.25 U 

Nuclease-Free Water to 25 µL   

 

* Reagents included in the GoTaq® DNA Polymerase kit (Promega). 

 

(b) Thermocycling conditions 

Step Temperature Time Cycle 

Initial denaturation 95 ºC 10 minutes 1 

Denaturation 95 ºC 30 seconds 

30 Annealing 56 ºC 45 seconds 

Elongation 72 ºC 1 minute 

Final elongation 72 ºC 5 minutes 1 

Hold 4 ºC ∞ 1 

 

The presence or absence of the Apopt1 mutation in the mouse biopsies 

was detected by Sanger sequencing of the purified PCR products (see sections 

2.3.5 and 2.3.10).  

 

 

2.3.3.3 PCR for cloning 

 

PCR amplifications for cloning purposes were performed using the 

BIOTAQ™ DNA Polymerase kit (Bioline). PCR reactions were set up as detailed 

in Table 2.8 and the thermocycling conditions (annealing temperature and 

extension times) were optimised for each specific reaction (Table 2.8). 
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Table 2.8 PCR amplification using the BIOTAQ™ DNA Polymerase kit. 

(a) PCR amplification reaction set-up 

Reagent Volume/reaction 
Final 

concentration 

BIOTAQ™ Reaction Buffer (10X)* 5 µL 1X  

MgCl2 50mM* 2.5 µL  2.5 mM 

PCR nucleotide Mix, 10 mM each 1 µL 0.2 mM each dNTP 

Forward primer (10 M) 2 µL 0.4 M 

Reverse primer (10 M) 2 µL 0.4 M 

Template gDNA (50 ng/µL) or 

cDNA template 
1 µL (4 µL) 

1ng/µL 

BIOTAQ™ DNA polymerase  

(5 u/µL)* 
0.25 µL 

1.25 U 

Nuclease-Free Water to 50 µL   

 

* Reagents included in the BIOTAQ™ DNA Polymerase kit (Bioline). 

 

(b) Thermocycling conditions 

Step Temperature Time Cycle 

Initial denaturation 95 ºC 3 minutes 1 

Denaturation 95 ºC 30 seconds 

30 
Annealing 50-60 ºC 30 seconds-2 

minutes 

Elongation 72 ºC 1 minute/kb 

Final elongation 72 ºC 5 minutes 1 

Hold 4 ºC ∞ 1 

 

 

2.3.4 Agarose gel electrophoresis 

 

Agarose gel electrophoresis was used for the separation of DNA 

fragments of varying sizes. 1 % agarose gels were used for general applications, 

0.7-0.8 % when resolving plasmids (>5 kb) and 1.5 % for smaller fragments (<0.5 

kb). Gels were cast with the appropriated percentage [w/v] of agarose (Thermo 
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Scientific) dissolved in 50 ml Tris/Borate/EDTA (TBE) buffer (89 mM Tris-borate, 

100 mM boric acid, 2 mM ethylenediaminetetraacetic acid (EDTA) and 5 μL of 

SYBR Safe dye (10,000X, Invitrogen). TBE buffer was also used as the running 

buffer. DNA samples were mixed with loading dye (6X) at a 5:1 volume ratio and 

were always run alongside the 1kb Plus DNA ladder (Invitrogen). Gel 

electrophoresis was performed at voltage of 100 V (EM100, Mini Gel Unit, 

Engineering & Design Plastics, UK). An ultraviolet (UV) light transilluminator (Gel 

Doc™ Imaging System, Bio-Rad, UK) was then used to visualise the separated 

DNA fragments. 

 

 

2.3.5 PCR-amplified DNA purification  

 

PCR-amplified DNA was purified from reaction mixtures using the 

QIAquick PCR Purification kit (Qiagen). Briefly, a high-salt binding buffer is added 

to the PCR sample. The mixture is then applied to the QIAquick spin column, 

where DNA binds to the membrane. Impurities are then washed, and the DNA is 

eluted using a low-salt buffer.  

  

 

2.3.6 DNA digestion 

 

DNA plasmids were digested at 37 ºC for 2-4 hours with the restriction 

enzymes: PmeI, BamHI, EcoRI, SphI or BbsI, (New England Biolabs) according 

to manufacturer’s instructions. Reaction volumes were either 10 or 20 µL. After 

digestion, all vectors were dephosphorylated (to avoid self-ligation) by adding 1 

µL of phosphatase for each 10 µL of reaction volume and incubating at 37 ºC for 

30 minutes. DNA fragments were then separated on 1 % (w/v) agarose gels. The 

band corresponding to the fragment of interest (either the linearised vector or the 

insert) was excised from the gel and purified using the QIAquick Gel extraction 

kit (Qiagen). Briefly, gel slices are dissolved at 50 ºC in a high-salt binding buffer. 

The mixture is then applied to the QIAquick spin column, where DNA binds to the 

membrane. Impurities are then washed, and the DNA is eluted using a low-salt 

buffer.  



Chapter 2 - Materials and methods 
 

 81 

2.3.7 DNA ligation 

 

PCR products were cloned directly into the pCR2.1 vector using the TOPO 

TA cloning kit (Invitrogen), which has a linearised and Topoisomerise I-activated 

pCR2.1 vector with 3´-T overhangs that allow quick ligation (10 minutes at RT) 

with the A overhangs added by the Taq polymerase at the 3’ ends of the PCR 

products. 

 

The restriction enzyme digested (see section 2.3.6) inserts and vectors, 

were ligated using T4 DNA ligase (New England Biolabs). Ligation reactions of 

10 μL containing 1X reaction buffer and 6 U/μL of ligase were set up at a 1:3 

vector:insert ratio and incubated at 16 °C overnight. 50 ng of linearised vector 

were used and the amount of insert required was determined using the following 

equation: 

 

𝑛𝑔 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 =
3

1
 𝑥 

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛 𝑘𝑏

𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝑘𝑏
 𝑥 50 𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟 

 

T4 DNA ligase was then heat inactivated at 65°C for 5 minutes. Ligation 

products were kept at -20°C until used for transformation into DH5-alpha 

chemically competent E. coli cells (see section 2.3.8). 

 

 

2.3.8 Plasmid preparation 

 

2.3.8.1 Transformation of E. coli chemically competent cells 

 

2 µL of the ligation reactions (section 2.3.7) were added to a 100 μl aliquot 

of Subcloning Efficiency™ DH5α™ Competent Cells (Invitrogen).  A heat shock 

of 45 seconds was performed in a thermoblock (AccuBlock Digital Dry Baths, 

Labnet, UK) at 42 ºC. Cells were recovered by adding 300 μl of SOC medium (2 

% tryptone, 0.5 % yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 

mM MgSO4, and 20 mM glucose) and incubation at 37 ºC for 1 hour with shaking 

at 225 rpm. 150 µL of the transformed cells were plated onto a LB (10 g/L 



Chapter 2 - Materials and methods 
 

 82 

tryptone, 5 g/L yeast Extract, 5 g/L NaCl) agar plate with 100 µg/ml ampicillin and 

incubated at 37 ºC overnight.  

 

 

2.3.8.2 Colony replication and plasmid DNA isolation 

 

Single white positive colonies, i.e. with the sequence of interest inserted in 

the vector interrupting the coding region of the lacZ enzyme and therefore lacking 

the ability to metabolise X-gal substrate that produces an insoluble blue dye 

(negative blue colonies), were picked and grown overnight in 5 ml LB-medium 

supplemented with 100 μg/ml ampicillin at 37 ºC with shaking at 225 rpm. DNA 

plasmids from the overnight cultures were isolated using the QIAprep Spin 

Miniprep kit (Qiagen). Briefly, bacterial cultures were lysed and the cellular debris 

was separated by centrifugation. Cleared lysates were then applied to the 

QIAprep 2.0 column, where DNA binds to the membrane. Impurities were washed 

and pure DNA was eluted in elution buffer. 

 

 

2.3.9 Long-term storage of E. coli transformed cells 

 

Microbank™ vials (Pro-Lab Diagnostics), containing porous beads and 

cryopreservative fluid, were used for the long-term storage of E. coli transformed 

cells. A young colonial growth (18-24 hours) picked from a pure culture was used 

to inoculate the beads and fluid of the vial which was then stored at -80 °C. 

 

 

2.3.10 DNA sequencing 

 

PCR products and cloned plasmids were always verified by DNA Sanger 

sequencing (Source Bioscience UK Ltd., Cambridge, UK) and analysed by 

sequence alignment using Basic Local Alignment Search Tool (BLAST) online 

(accessible at https://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequencing primers are 

listed in Table 2.5.  

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.3.11 Cloning of MR-1S, PET100, PET117 and APOPT1 cDNA 

 

 For the amplification of MR-1S, PET100, PET117 and APOPT1 cDNA, 

total RNA was extracted and retrotranscribed (see section 2.3.1) from HeLa and 

HEK293T cells. Approximately 200 ng of cDNA were used as templates for the 

PCR amplification (see section 2.3.3.3) of MR-1S, PET100, PET117 and 

APOPT1 using specific primers (see section 2.3.3.1). C-terminal hemagglutinin 

(HA) tags were added to APOPT1 and MR-1S as well as FLAG tags were added 

to PET100 and PET117 by PCR amplification. The GFP tag was added to 

APOPT1 by cloning a stop codon-less APOPT1 cDNA in frame with EGFP 

already inserted into pCR2.1. The PCR generated fragments, cloned into the 

pCR2.1 TA-cloning vector (Invitrogen) (see section 2.3.7), were checked for 

mutations by Sanger sequencing (see section 2.3.10). Then, the cDNA encoding 

the tagged version of each gene was excised by restriction enzyme digestion with 

PmeI and BamHI (see section 2.3.6), purified (see section 2.3.6) and ligated into 

pWPXLd-ires-PuroR and pWPXLd-ires-HygroR lentiviral expression vectors (see 

section 2.2.5), modified versions of the pWPXLd lentiviral expression vector 

(Addgene #12258), using T4 DNA ligase (see section 2.3.7).  

 

 

2.4 Protein-based methods 

 

2.4.1 SDS-PAGE 

 

Cells were harvested by trypsinisation (Trypsin-EDTA 0.5 %), washed 

twice with PBS and lysed with 2 % n-dodecyl-β-D-maltoside (DDM) in PBS with 

the addition of protease inhibitors (Complete™ Mini EDTA-free Protease Inhibitor 

Cocktail, Roche). Lysates were mixed for 15 minutes and 4 ºC in a mini lab rotator 

(PTR-35, Grant Bio™, UK) and then centrifuged for 20 minutes at 20,000 x g and 

4 ºC. Cleared supernatants were collected and protein concentration was 

determined (see section 2.4.2). 

Small pieces of around 50 mg of frozen mice tissue were homogenised in 

10 volumes of 50 mM Tris-HCl, 1 % Triton X-100, 1mM DTT pH 7.6 with protease 
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inhibitors (Complete™ Mini EDTA-free Protease Inhibitor Cocktail, Roche) in a 

Dounce-type glass homogeniser using a manually-driven glass pestle (10-15 

strokes, depending on the tissue). The homogenate was left on ice for 15 minutes 

and then centrifuged at 16,900 x g for 10 minutes at 4 °C.  Cleared supernatants 

were collected and protein concentration was determined (see section 2.4.2). 

Between 5 and 50 µg of protein were mixed with 2X Laemmli sample buffer 

(126 mM Tris-HCl pH 6.8, 20 % glycerol, 4 % sodium dodecyl sulfate (SDS) and 

0.02 % bromophenol blue) and run through a polyacrylamide 4-12 %, 10 % or 12 

% SDS-PAGE gel (NuPAGE® Novex® Bis-Tris gels, Thermo Fisher Scientific) at 

a fixed voltage of 130 V for 90 minutes. The running buffer used for optimal 

separation of medium- to large-sized proteins was NuPAGE® MOPS SDS 

Running Buffer (1X: 50 mM MOPS, 50 mM Tris Base, 0.1 % SDS, 1 mM EDTA, 

pH 7.7). For the best separation of small proteins, the buffer of choice was 

NuPAGE® MES SDS Running Buffer (1X: 50 mM MES, 50 mM Tris Base, 0.1 % 

SDS, 1 mM EDTA, pH 7.3.  

 

 

2.4.2 Protein concentration determination 

 

Protein concentration was determined using a modified version of the 

Lowry protein assay (DC™ Protein Assay, detergent compatible, Bio-Rad). In this 

biochemical assay, a change in the colour of the sample solution (chemistry of 

the assay detailed in (Lowry et al., 1951), which is proportional to the total protein 

concentration, is measured using a spectrophotometer. The absorbance of the 

protein sample with unknown concentration and of six BSA standards in a 

concentration range from 0 to 2 mg/ml were measured at =750 nm on a 

SpectraMax Plus384 plate reader (Molecular Devices, Sunnyvale, CA, USA). The 

absorbance vs. concentration of the known standards was plotted and the 

resulting calibration curve was used to determine the concentration of the protein 

sample of interest by interpolation of its absorbance value.  
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2.4.3 Blue-Native-Gel Electrophoresis (BN-PAGE)  

 

BN-PAGE was used for the separation of mitochondrial complexes in non-

denaturing conditions, i.e. solubilisation of the mitochondrial membranes using a 

neutral mild detergent such as DDM or digitonin (Schägger and Von Jagow, 

1991).  

Cells were permeabilised with 8 mg/ml digitonin and then washed twice 

with PBS by centrifugation at 10,000 x g for 5 minutes at 4 ºC. The pellet, enriched 

in mitochondria, was resuspended in 1.5 M aminocaproic acid, 50 mM Bis-

Tris/HCl pH 7 and 1 % DDM or 2 % digitonin), incubated for 5 minutes on ice and 

centrifuged at 18,000 x g for 30 minutes at 4 ºC (Klement et al., 1995; Nijtmans, 

Henderson and Holt, 2002).  

Small pieces of around 50 mg of frozen mice tissue were homogenised in 

10 volumes of Medium A (320 mM sucrose, 1mM EDTA, 10mM Tris-Hcl, pH 7.4) 

in a Dounce-type glass homogeniser using a manually-driven glass pestle, 5-15 

strokes. The homogenate was centrifuged at 800 x g for 5 minutes at 4 ºC to 

remove nuclei and debris. The supernatant was collected and centrifuged at 

9,000 x g for 10 minutes at 4 ºC to obtain an enriched mitochondrial fraction. The 

obtained pellet was then resuspended in Medium A. Protein concentration was 

determined and the samples were centrifuged again at 9,000 x g for 5 minutes at 

4 ºC. The pellet was resuspended in the appropriated amount of 1.5 M 

aminocaproic acid, 50 mM Bis-Tris/HCl pH 7 to obtain a protein concentration of 

10 mg/ml. Samples were solubilised with 1.6 mg DDM/mg protein, incubated in 

ice for 5 minutes and centrifuged at 18,000 x g for 30 minutes at 4 ºC. 

Cleared supernatants from the high-speed centrifugations were mixed with 

sample buffer (750 mM aminocaproic acid, 50 mM Bis-Tris, 0,5 mM EDTA and 5 

% Serva Blue G-250) and run through a 3-12 % Native-PAGE gel (NativePAGE™ 

Novex™ Bis-Tris Gels, Thermo Fisher Scientific) at 10 mA. The cathode buffer 

was 50 mM Tricine, 15 mM Bis-Tris, 0.02 % Serva blue G-250, pH 7.4 and the 

anode buffer 50 mM Bis-Tris, pH 7.4. The cathode buffer requires a constant 

supply of negative charges (from the Serva blue G-250) to keep the proteins 

negatively charged, which ensures their electrophoretic mobility and their 

separation in the gel according to molecular weight differences. 
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After first dimension (1D), run in native conditions, a denaturing second 

dimension (2D) can be performed to separate the different subunits from the 

native complexes. For that, each lane was cut, denatured with 1 % SDS and 1 % 

β-mercaptoethanol for 1 hour at RT and then run through a 4-12 % SDS-PAGE 

gel (NuPAGE® Novex® Bis-Tris Protein Gels, 1.0 mm, 2D-well, Thermo Fisher 

Scientific). 

 

 

2.4.4 Western blot (WB) 

 

Proteins separated both through SDS-PAGE and BN-PAGE gels were 

electroblotted to methanol activated PVDF membranes (Immobilon-P Membrane, 

Merck Millipore) using a wet transfer system (Mini-PROTEAN® Tetra Cell, Mini 

Trans-Blot® Module, Bio-Rad, UK). Transfer of SDS-PAGE was performed at 4 

ºC and 100 V for one hour in transfer buffer (25 mM Tris-HCl, 192 mM Glycine, 

20 % methanol (v/v) and 0.025 % SDS). Blotting of BN-PAGE was done at 4 ºC 

and 300 mA for one hour in bicarbonate transfer buffer (10 mM NaHCO3, 3 mM 

NaCO3). 

 

 

2.4.5 Immunodetection 

 

PVDF membranes, with immobilised proteins, were blocked with 5 % milk 

in PBS with 0.1 % Tween 20 (PBS-T) either for one hour at room temperature or 

overnight at 4 ºC, washed three times for 10 minutes with PBS-T and 

immunodecorated by incubation with different specific antibodies diluted at the 

appropriate concentrations in 3 % BSA in PBS-T (Table 2.9). 

 

 

 

 

 

 

 



Chapter 2 - Materials and methods 
 

 87 

Table 2.9 List of antibodies used in this project. 

 

Antigen Type Incubation 
conditions 

Company Catalog number 

ACO2 Mouse 
monoclonal 

1:10,000 
 o/n, 4 ºC 

Abcam 6F12BD9 

APOPT1 Rabbit polyclonal  1:1,000 
o/n, 4 ºC 

Proteintech 27300-1-AP 

APOPT1 Rabbit polyclonal  1:1,000 
o/n, 4 ºC 

ProteoGenix 8992-A01 

APOPT1 Chicken  1:1,000 
o/n, 4 ºC 

Agrisera 2218 

APOPT1 Rabbit polyclonal  1:1,000 
 o/n, 4 ºC 

Antibodies Online ABIN1492361 

AIF Mouse 
monoclonal 

1:1,000 
 o/n, 4 ºC 

Santa Cruz sc-13116 

AK2 Rabbit 
monoclonal 

1:3,000, o/n, 4 
ºC 

Abcam ab166901 

COX4 Mouse 
monoclonal 

1:3,000 
o/n, 4 ºC 

Abcam ab14744 

COX5A Mouse 
monoclonal 

1:1,000 
 o/n, 4 ºC 

Abcam ab110262 

COX5B Mouse 
monoclonal 

1:1,000 
 o/n, 4 ºC 

Abcam ab110263 

COX6B Mouse 
monoclonal 

1:1,000 
 o/n, 4 ºC 

Abcam ab110266 

GAPDH Mouse 
monoclonal 

1:5,000 
 o/n, 4 ºC 

Abcam ab8245 

GFP Mouse 
monoclonal 

1:10,000 
 o/n, 4 ºC 

Abcam ab1218 

HA Rat monoclonal 1:1,000 
 o/n, 4 ºC 

Roche 11 867 431 001 

HIF-1 Mouse 
monoclonal 

1:500 
o/n, 4 ºC 

BD Science BD 610959 

HSP70 Mouse 
monoclonal 

1:1,000 
 o/n, 4 ºC 

Abcam ab2787 

MTCO1 Mouse 
monoclonal 

1:3,000 
 o/n, 4 ºC 

Abcam ab14705 

MTCO2 Mouse 
monoclonal 

1:10,000 
 o/n, 4 ºC 

Abcam ab110258 

MTCO2 Rabbit polyclonal  1:2,000 
o/n, 4 ºC 

Abcam ab91317 

MTCO3 Mouse 
monoclonal 

1:5,000 
o/n, 4 ºC 

Abcam ab110259 

NDUFS1 Rabbit polyclonal 1:1,000 
o/n, 4 ºC 

Abcam ab102552 

PNKD (MR-1S) Rabbit polyclonal 1:1,000 
o/n, 4 ºC 

Atlas Antibodies HPA010134 

SDHB Mouse 
monoclonal 

1:10,000 
 o/n, 4 ºC 

Abcam ab14714 

SOD2 Mouse 
monoclonal 

1:2,000 
 o/n, 4 ºC 

Abcam ab16956 

BETA-TUBULIN Mouse 
monoclonal 

1:10,000 
 o/n, 4 ºC 

Sigma T5201 

TOM20 Rabbit 
monoclonal 

1:10,000 
 o/n, 4 ºC 

Abcam ab186734 

UBIQUITIN Mouse 
monoclonal 

1:2,000 
o/n, 4 ºC 

Invitrogen 13-1600 

UQCRC2 Mouse 
monoclonal 

1:2,000 
 o/n, 4 ºC 

Abcam ab14745 
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After the incubation with the primary antibodies, the membranes were 

washed three times at room temperature. For the detection, either anti-mouse, 

anti-rabbit, anti-chicken (all from Promega) or anti-rat (Santacruz) secondary 

antibodies conjugated to the enzyme horseradish peroxidase (HRP) and diluted 

1:1,000 to 1:10,000 in 5 % milk were incubated for one hour at room temperature. 

The membranes were incubated with ECL Western Blotting Detection Reagent 

(GE Healthcare, Chalfont St Giles, UK) according to manufacturer’s instructions. 

Protein bands were then visualised on X-ray films (Fujifilm, Tokyo, Japan) at 

different exposure times, and developed using an X-ray film processor 

(ECOMAX, Protec, Germany). 

 

 

2.4.5.1 Development of an antibody against APOPT1 

  

 Four different antibodies were tested against the human APOPT1 protein 

(see results in Chapter 5). Two were commercially available: one raised against 

the C-terminal of the human APOPT1 protein: 

KEFLSKNFQKHMYYNRDWYKRNFAITFFMGKVALERIWNKLKQKQKKRSN 

(ABIN1492361, Antibodies Online); and one raised against the full-length human 

APOPT1 protein (anti-C14orf153) by Proteintech (27300-1-AP). The other two 

were custom-made antibodies. In the first case, the antibody was produced by 

Agrisera (228) in hens immunised against the human APOPT1 peptide: 

LRTESGQKATLNAEEMAD. In the second case, the antibody was produced by 

ProteoGenix (8992-A01) in rabbits immunised against the full-length human 

APOPT1 protein (anti-C14orf153). The purified antibodies were then tested. 

 

 

2.4.6 Mitochondria isolation for localisation studies 

 

Mitochondrial isolation was performed as described in Fernandez-Vizarra 

et al. (Fernández-vizarra et al., 2010) by differential centrifugation. About 4x108 

cells were harvested and washed with cold PBS. The pellet was resuspended in 

hypotonic homogenisation buffer (IB 0.1X: 3.5 mM Tris-HCl, pH 7.8, 2.5 mM 

NaCl, 0.5 mM MgCl2) to facilitate the breakage of the cells by homogenisation 
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with a motor-driven Teflon pestle. Immediately after this, 1/10 of the initial volume 

of cells of hypertonic buffer (IB 10X) was added to make the medium isotonic. 

The homogenate was transferred to a 15-ml Falcon tube and centrifuged at 1,000 

x g for 5 minutes at 4 °C in order to pellet unbroken cells, debris and nuclei. The 

supernatant was transferred to a clean tube and the remaining pellet was 

homogenised again. The second supernatant obtained was added to the first 

supernatant and these were centrifuged again in the same conditions to remove 

any remaining debris. The supernantant was transferred to four 1.5 ml Eppendorf 

tubes and mitochondria were then isolated by centrifugation at 13,000 rpm in a 

refrigerated microfuge for 2 minutes at 4 °C (‘mitochondrial fraction’). The pellets 

were washed several times, transferring the material into a single tube, using 

homogenisation medium (0.32 M sucrose, 1 mM EDTA, and 10 mM Tris-HCl, pH 

7.4). The supernatant obtained after the first high-speed centrifugation (‘post-

mitochondrial fraction’) was kept for posterior analysis.  

 

 

2.4.6.1 Mitochondrial subfractionation and carbonate extraction 

  

Soluble and membrane mitochondrial fractions were separated by 

resuspending the mitochondrial pellet in PK buffer (20 mM Potassium Phosphate 

pH 7.8; 150 mM KCl), followed by sonication (3 pulses of 10 seconds at 10 % 

amplitude) and centrifugation at 100,000 x g at 4°C for 30 minutes to separate 

the supernatant containing the soluble proteins (‘mitochondrial soluble fraction’) 

and the membrane-associated proteins in the pellet (mitochondrial membrane 

fraction’). To split the peripherally bound from the integral membrane proteins, 

the pellets obtained in the previous centrifugation step were resuspended in a 

buffer containing 0.1 M Na2CO3, pH 10.5, 0.25 M sucrose and 0.2 mM EDTA; 

incubated for 30 min on ice and then centrifuged at 100,000 x g for 30 minutes at 

4 °C to separate the pellet (‘Na2CO3 pellet fraction) from the supernatant 

containing the loosely-bound membrane proteins (‘Na2CO3 soluble fraction’). The 

presence or absence of the proteins of interest was analysed by SDS-PAGE, WB 

and immunodetection in the total homogenates and in each of the fractions. 
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2.4.6.2 Sub-mitochondrial localisation 

 

For sub-mitochondrial localisation, mitochondria were isolated as 

described in section 2.4.6 and split in aliquots of 0.5 mg of protein. 

Digitonin treatment: Mitochondria were treated with increasing amounts of 

the detergent digitonin (from 0 to 1200 µg), which disrupts the OMM, for 10 

minutes at 4 °C followed by incubation with 50 µg/ml trypsin for 30 minutes at RT. 

Samples were centrifuged at 9,000 x g for 10 minutes at 4 °C and only the pellet 

was kept for SDS-PAGE, WB and immunodetection analysis. 

Hypotonic shock: Mitochondria were then incubated with a hypotonic 

buffer solution (5 mM sucrose, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA), which 

produces osmotic swelling in the mitochondrial space, for 5 and 15 minutes on 

ice. Since the IMM has a larger surface area than the OMM, upon osmotic 

swelling of the matrix, the IMM can expand until it physically breaks the OMM. 

Samples were then incubated with 50 µg/ml trypsin for 30 minutes at RT. 

Samples were centrifuged at 9,000 x g for 10 minutes at 4 °C and both the pellet 

and the supernatant were kept for SDS-PAGE, WB and immunodetection 

analysis. 

Both treatments disrupt the OMM, generating ‘mitoplasts’, which contain 

only the IMM and the matrix. Thus, proteins in the IMS or IMM facing the IMS 

become more and more accessible to proteolysis after treatment with increasing 

concentrations of digitonin or hypotonic shock. Instead, IMM proteins facing the 

matrix and matrix proteins should remain undigested during all treatments. A 

positive control for proteolysis was done treating with trypsin and 1 % Triton X-

100 for maximum solubilisation of membranes.  

 

 

2.4.7 Oxidative stress treatment in cell cultures  

 

H2O2 was added once (‘bolus’) to the culture medium at a concentration of 

100 µM. The exact concentration of the H2O2 solution stock was determined by 

measuring the absorbance at  = 240 nm in an UV-visible spectrophotometer and 

a quartz cuvette. The molar extinction coefficient was considered to be  = 43.6 
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M-1cm-1. Cells were harvested 5 and 10 minutes and 3, 6, 10 and 20 hours after 

the addition of H2O2 to the medium.  

On the other hand, to generate ROS continuously and selectively within 

mitochondria, Mitoparaquat (MitoPQ) was used (Robb et al., 2015). 143B cells 

overexpressing APOPT1HA or APOPT1GFP plus WT, mutated and APOPT1GFP 

complemented fibroblasts were treated with 5 µM MitoPQ. Cells were harvested 

10 and 30 minutes and 3, 6 and 20 hours after the addition of MitoPQ. 

The effect of oxidative stress in the proteins of interest at different time 

points was analysed by SDS-PAGE, WB and immunodetection. 

 

 

2.4.8 Proteasome inhibitor treatment in cell cultures 

 

To investigate APOPT1 degradation by the UPS, 143B cells transduced 

with the ‘empty vector’ or APOPT1HA were treated with 10 µM MG132, a potent 

proteasome inhibitor, for 2 and 6 hours. The effect of proteasomal inhibition in 

the precursor and mature forms of APOPT1 was analysed by SDS-PAGE, WB 

and immunodetection. 

 

 

2.4.9 Immunoprecipitation assay to assess protein ubiquitination 

 

For isolation of APOPT1HA, an immunoprecipitation assay using an anti-

HA antibody was performed. 1x107 143B cells transduced with the ‘empty vector’ 

or APOPT1HA were incubated with 10 µM MG132 for 2 hours and then lysed in 

RIPA buffer (50 mM Tris pH 7.4, 0.1 % SDS, 1 % NP40, 0.5 % Na deoxycholate, 

150 mM NaCl) with the addition of protease inhibitors (Complete™ Mini EDTA-

free Protease Inhibitor Cocktail, 100 mM NEM and 100 mM IAA). Untreated cells, 

from the same two cell lines, were used as controls. Lysates were centrifuged at 

16,900 x g for 10 min. The clear supernatant was centrifuged at 50,000 rpm for 1 

hour, before samples were pre-cleared using sepharose CL4B for (1 hour, 4 °C). 

Samples were then incubated with 10 μL EZviewTM Red Anti-HA beads (Sigma-

Aldrich) overnight at 4 °C. Resins were washed 5 times with RIPA buffer and the 

bound proteins were eluted using 40 μL 100 μg/ml HA peptide (Sigma-Aldrich) 
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(in 0.5 % NP40 with protease inhibitors) for 1 hr at 4 °C. Protein samples in 

loading buffer were heated at 75°C for 10 minutes. The presence or absence of 

ubiquitinated APOPTHA in the eluate was analysed by SDS-PAGE, WB and 

immunodetection with an anti-ubiquitin antibody. 

 

 

2.4.10 FLAG immunoprecipitation 

 

For isolation of PET100FLAG and PET117FLAG, immunopurification using an 

anti-FLAG antibody was performed. 1x107 PET100G48∗ fibroblasts transduced 

with the ‘empty vector’, PET100FLAG or PET117FLAG were resuspended in lysis-

buffer: PBS with 10 % (w/v) glycerol, protease inhibitor (Complete™ Mini EDTA-

free Protease Inhibitor Cocktail), 1X lipid stock (10X stock: 0.9 mg/ml 1-palmitoyl-

2-oleoyl-glycero-3-phosphocholine (POPC), 0.3 mg/ml 1-hexadecanoyl-2-(9Z-

octadecenoyl)-sn-glycero-3-phosphoethanolamine (POPE), 0.3 mg/ml 1-

palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), Avanti Polar 

Lipids) and 1.5 % (w/v) DDM, and incubated for 30 minutes at 4°C. Lysates were 

centrifuged at 16,900 x g for 15 min. Clear supernatants were filtered using spin-

X-columns (Costar). The samples were incubated with anti-FLAG-M2-agarose 

(Sigma-Aldrich) overnight at 4°C in rotation. The unbound material was collected 

and affinity resins were washed 8-10 times with buffer containing 0.05 % DDM. 

Bound material was eluted using 5 mg/ml FLAG peptide (Sigma-Aldrich). The 

presence or absence of FLAG-tagged and other proteins in the eluate was 

analysed by SDS-PAGE, WB and immunodetection. 

 

 

2.4.11 Quantitative SILAC mass spectrometry (MS)  

 

The two cell lines to be compared by SILAC MS were grown in ‘heavy’ 

DMEM containing 15N- and 13C- labelled arginine and lysine and in ‘light’ DMEM 

containing 14N and 12C arginine and lysine (Sigma-Aldrich). Equal portions of the 

differentially labelled H and L cells were mixed and solubilised with 4 mg/ml 

digitonin and then washed twice with PBS by centrifugation at 10,000 x g for 5 

minutes at 4 ºC. The pellet, enriched in mitochondria, was then treated with 4 
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mg/ml digitonin to break the mitochondria. Insoluble material was removed by 

centrifugation at 16,900 x g for 10 min and the clear supernatant was filtered 

using spin-X-columns (Costar). Affinity purifications were performed using anti-

HA-agarose (Cell Signalling), anti-FLAG-agarose (Sigma-Aldrich) or CIV 

immunocapture kit (Abcam) beads incubated overnight at 4 °C in rotation. The 

unbound material was collected and affinity resins were washed 8-10 times with 

buffer containing 0.05 % DDM. Bound material was eluted depending on the 

affinity resin used: proteins bound to HA were eluted with Laemmly sample buffer, 

CIV immunocaptured proteins were eluted with 0.1 M glycine pH 2.8, and proteins 

isolated by anti-FLAG agarose were eluted with 5 mg/ml FLAG peptide (Sigma-

Aldrich). Eluted samples were prepared for MS by reducing and alkylating the 

cysteine residues. Reduction was done by adding tris(2-carboxyethyl)phosphine 

(TCEP) (5 mM final concentration, Sigma-Aldrich) dissolved in gel sample buffer 

(GSB): 40 % (w/v) glycerol, 200 mM Tris pH 9, 4 mM EDTA pH 8, 4 % (w/v) SDS, 

and incubating at 37 °C for 30 min. Samples were brought to RT and alkylation 

was performed by adding iodoacetamide (15 mM final concentration) and 

incubating in dark at RT for 30 minutes. Then dithiothreitol (DTT) (25 mM final 

concentration, Melford Stores) was added to quench the excess of 

iodoacetamide. Proteins were then resolved by SDS-PAGE electrophoresis and 

the gel was cut in slices, which were then digested with trypsin. After peptides 

were extracted from the gel matrix, salts and detergents were removed and the 

tryptic peptides were analysed by liquid chromatography mass spectrometry (LC-

MS) employing an LTQ XL-Orbitrap system (Thermo Fisher Scientific) essentially 

as described in (Rhein et al., 2013, 2014). Proteins were identified by Andromeda 

and quantification of heavy to light (H/L) ratio was calculated with MaxQuant (Cox 

and Mann, 2008). Ratio was based on reciprocal labelling duplicate SILAC 

experiments. The median peptide ratio was taken to be the protein ratio, using at 

least two ratio counts for each peptide. The ratios from each experiment were 

plotted on horizontal and vertical axes, respectively, of a ‘scatter plot’ as the log 

base 2 value, where each protein is represented by a point. Proteins unaffected 

by experimental conditions cluster around the origin as a ratio of 1 corresponds 

to two raised to the power of zero. Those proteins with a consistent increase or 

decrease in abundance occur in the top right or bottom left quadrants, 

respectively. Points in the two other quadrants represent proteins where the 



Chapter 2 - Materials and methods 
 

 94 

differences are irreproducible in the replicate experiments. Those in the top left 

quadrant contain exogenous contaminants. A diagonal line from the top right to 

bottom left represents a perfect correlation between the two experiments. 

Statistically significant proteins (P < 0.05) in one or both orientations of labelling 

were identified with Perseus (Wagner et al., 2011; Tyanova, Temu and Cox, 

2016). The significance of the enriched proteins was calculated based on 

significance B with permutation-based False Discovery Rate (FDR) control 

(Benjamini and Hochberg, 1995), considering a Benjamin-Hochberg FDR < 5 %. 

 

 

2.4.12 In vivo [35S]-L-methionine labelling of mitochondrial translation 

products  

 

 Pulse-labelling was performed as described in (Chomyn, 1996). Briefly, 

cytosolic translation was irreversibly inhibited with 100 µg/ml emetine (Sigma-

Aldrich) and labelling of mitochondrial proteins was performed for 1 hour using 

[35S]-L-methionine (L-Methionine, [35S]-Cell Labelling Grade, PerkinElmer) in 

fibroblasts non-transduced or transduced with the GFP protein alone or 

APOPT1GFP.  

 

For the pulse-chase experiments, cells were incubated overnight with 40 

µg/ml chloramphenicol to reversibly inhibit mitochondrial translation, which was 

washed out before starting the experiment the next morning. In this case, the 

specific labelling of the mitochondrial peptides with [35S]-L-methionine was 

performed for two hours in the presence of 100 µg/ml anisomycin (Sigma-

Aldrich), a reversible inhibitor of cytosolic translation. Labelled medium was then 

replaced with fresh culture medium containing non-radioactive methionine. Cells 

were harvested 0, 1.5, 3, 6.5 and 20 hours after the addition of fresh medium. 

Samples were lysed and centrifuged (see section 2.4.1) and the clear 

supernatants were run through a 18 % Tris-Glycine gel (Novex™ 18 % Tris-

Glycine Protein Gels, Thermo Fisher Scientific). The gel was fixed with 20 % 

methanol, 10 % acetic acid solution and dried for 2 h at 80 °C. Phosphor screens 

(GE Healthcare's Life Sciences) were exposed to the radioactive gels for several 



Chapter 2 - Materials and methods 
 

 95 

days at room temperature. The signal was detected using a laser scanner 

(Amersham Typhoon, GE Healthcare's Life Sciences, UK). 

 

 

2.5 Respiratory chain functional assays 

 

2.5.1 Mitochondrial respiratory chain (MRC) complex enzymatic activity  

  

 Harvested cells were solubilised in Buffer A (20mM MOPS, 250mM 

sucrose, pH 7.4) and 0.2 mg/ml of digitonin. The homogenate was kept on ice for 

5 minutes and centrifuged at 5,000 x g at 4°C for 3 minutes. The supernatant 

(cytosolic fraction) was discarded and the pellet (enriched in mitochondria) was 

resuspended in Buffer B (Buffer A + 1mM EDTA), kept in ice for 5 minutes and 

centrifuged at 10,000 x g at 4 °C for 3 minutes. The pellet was frozen at −80 °C 

until use. Once thawed, pellets were resuspended in 10 mM potassium 

phosphate buffer pH 7.4 and the suspensions were frozen in liquid nitrogen and 

thawed at 37°C three times, for appropriate disruption of the mitochondrial 

membranes. Protein concentration was determined as described in section 2.4.2 

Small pieces of around 50 mg of frozen mice tissue were homogenised in 

15 volumes of medium A in a Dounce-type glass homogeniser using a manually-

driven glass pestle, 10-15 strokes. The homogenate was centrifuged at 800 x g 

for 5 min at 4 °C and the supernatant was frozen in liquid nitrogen and thawed at 

37°C three times. Protein concentration was determined as described in section 

2.4.2. 

 

Kinetic spectrophotometric measurement of complex I was performed in 

mouse homogenates or cell suspensions incubated in a final volume of 200 µL of 

the mixture described in Table 2.10 in 96-well plates at 30 °C by following the 

NADH oxidation (disappearance) as the change in the absorbance at = 340 nm, 

for 2 minutes. εNADH340nm = 6.81 ml/nmol*cm. 
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Table 2.10 Complex I mixture. 

Compound Final concentration 

PK buffer pH 8 20 mM 

NADH  0.2 mM 

Sodium azide (NaN3) 1 mM 

BSA (in EDTA 10 mM pH 7.4) 1 mg/ml 

CoQ 50 M 

Rotenone 5 M 

 

 

Kinetic spectrophotometric measurement of complex II was performed in 

mouse homogenates or cell suspensions incubated in a final volume of 200 µL of 

the mixture described in Table 2.11 in 96-well plates at 30 °C by following the 

DCPIP (electron acceptor) reduction as the change in the absorbance at = 600 

nm, for 2 minutes. εDCPIP600nm = 19 ml/nmol*cm. 

 

Table 2.11 Complex II mixture. 

Compound Final concentration 

PK buffer pH 7 50 mM 

Potassium cyanide (KCN)  1.5 mM 

2,6-Dichlorophenolindophenol (DCPIP)  0.1 mM 

Succinate 16 M 

CoQ 50 M 

 

 

Kinetic spectrophotometric measurement of complex III was performed in 

mouse homogenates or cell suspensions incubated in a final volume of 200 µL of 

the mixture described in Table 2.12 in 96-well plates at 30 °C by following the 

cytochrome c (electron acceptor) reduction as the change in the absorbance at 

= 550 nm, for 2 minutes. εNADH340nm = 21 ml/nmol*cm. 
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Table 2.12 Complex III mixture. 

Compound Final concentration 

PK buffer pH 7.4 50 mM 

NaN3 2 mM 

BSA (in EDTA 10 mM pH 7.4) 1 mg/ml 

Cytochrome c 50 M 

Decylubiquinone (DBH2) 50 M 

 

 

Kinetic spectrophotometric measurement of complex IV was performed in 

mouse homogenates or cell suspensions incubated in a final volume of 200 µL of 

the mixture described in Table 2.13 in 96-well plates at 37 °C by following the 

cytochrome c (electron donor) oxidation as the change in the absorbance at = 

550 nm, for 2 minutes. εCytc550nm = 18.5 ml/nmol*cm. 

 

Table 2.13 Complex IV mixture. 

Compound Final concentration 

90-95 % reduced cytochrome c in 50 
mM KP buffer pH 7  

50 mM 

 

 

Kinetic spectrophotometric measurement of the Krebs cycle enzyme 

citrate synthase (CS) was performed in mouse homogenates or cell suspensions 

incubated in a final volume of 200 µL of the mixture described in Table 2.14 in 

96-well plates at 30 °C by following the appearance of TNB, proportional to the 

amount of liberated CoA, as the change in the absorbance at = 412 nm, during 

2 minutes. εTNB412nm = 13.8 ml/nmol*cm. 

 

Table 2.14 CS mixture. 

Compound Final concentration 

Tris-HCl buffer pH 8 75 mM 

5,5-dithio-bis-(2-nitrobenzoic acid (DTNB) 0.1 mM 

Triton X-100 0.1 % 

Acetyl-CoA 0.4 mM 

Oxalacetate 0.5 mM 
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The specific activity, that is the units (µmoles of substrate consumed per 

minute) normalised by protein amounts, of each enzyme was calculated using 

the Lambert–Beer law:  

 

Specific activity  =   
∆𝐴𝑏𝑠 ∗𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑚𝑙)

ԑ ∗Sample volume(ml)∗[prot](
mg

ml
)∗ℓ(cm)

 

 

 The specific activity of each of the respiratory chain enzymes was 

normalised to that of the CS, the standard marker of mitochondrial volume.  

 

 

2.5.2 COX and SDH enzymatic activity in mouse frozen tissues 

 

The histochemical method for the microscopic demonstration of SDH 

activity was performed on 8-mm-thick cryostat sections from mouse frozen 

tissues incubated for 20 minutes at 37 °C with 10 ml of the mixture described in 

Table 2.15. 

 

Table 2.15 SDH mixture. 

Compound Final concentration 

Phosphate buffer pH 7.4 5 mM 

EDTA 5 mM 

KCN 1 mM 

Phenazine methosulfate (PMS) 0.2 mM 

Succinic acid 50 mM 

Nitro blue tetrazolium chloride (NBT) 1.5 mM 

 

 

The histochemical method for the microscopic demonstration of COX 

activity was performed on 8-mm-thick cryostat sections from mouse frozen 

tissues incubated for 1 hour at 37 °C with 10 ml of the mixture described in Table 

2.16. 
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Table 2.16 SDH mixture. 

Compound Final concentration 

Phosphate buffer pH 7.4 5 mM 

3'-Diaminobenzidine (DAB) 0.1 % 

Cytochrome c 0.1 % 

 

 

2.5.3 In-gel activity assays 

 

The in-gel activity assays followed the principles described by Zerbetto 

1996 (Zerbetto, Vergani and Dabbeni-Sala, 1997). Samples were run through 1D 

BN-PAGE (see section 2.4.3). The gel was then washed and incubated for 2 

hours at RT with 10 ml of the complex I assay: 0.1 M Tris-HCl pH 7.4, 0.14 mM 

NADH, 1 mg/ml Nitro blue tetrazolium (NBT, Sigma-Aldrich), or the complex IV 

assay: 50 mM PK buffer pH 7.4, 1 mg/ml DAB (Sigma-Aldrich), 24 U/ml catalase 

(Sigmal-Aldrich), 1 mg/ml cytochrome c (Sigma-Aldrich), 75 mg/ml sucrose 

(Acros Organics). Gels were then washed with water and scanned using a 

professional scanner (EPSON Expression 1680 Pro, EPSON, UK). 

 

 

2.5.4 H2O2 production in mice isolated mitochondria 

 

Mitochondria were isolated from brain and heart as described (Fernández-

vizarra et al., 2010). Briefly, mice were sacrificed, and the brain and heart were 

extirpated. The heart was placed in medium AT (0.075 M sucrose, 0.225 M 

sorbitol, 1 mM Ethylene Glycol Tetraacetic Acid (EGTA, Sigma-Aldrich), 0.1 % 

fatty acid-free BSA, and 10 mM Tris–HCl, pH 7.4), cut in small pieces and 

homogenised in 10 ml medium AT per g of heart in a glass Elvehjem potter using 

a motor-driven Teflon pestle with 10 up and down strokes at 600 rpm. The brain 

was also placed in AT medium and cut in small pieces but was homogenised in 

5 ml medium AT per g of brain in a Dounce-type glass homogeniser using a 

manually-driven glass pestle with 10-15 strokes. Both homogenates were then 

centrifuged at 1,000 x g for 5 min at 4 °C to pellet unbroken debris and the 

resulting supernatants were transferred to a clean tube and centrifuged again at 

9,000 x g for 10 min at 4 °C. The supernatant from each organ homogenate was 
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then transferred to eight 1.5 ml-Eppendorf tubes, which were centrifuged at 

15,000 x g for 2 min at 4 °C. The supernatant of each tube was removed, carefully 

eliminating all the fat that can be seen on the top of the darker pellet containing 

the mitochondria. The contents of two Eppendorf tubes were combined into a 

single one and resuspended together in 1.5 ml of medium AT. Samples were then 

centrifuged, washed and combined again until only one Eppendorf tube 

containing all mitochondria from one organ is left.  

H2O2 production rate was measured at 37°C using 130 μg of mitochondrial 

protein diluted in 2 ml of mitochondrial respiration buffer (120 mM sucrose, 50 

mM KCl, 20 mM Tris–HCl, 4 mM KH2PO4, 2 mM MgCl2, 1 mM EGTA, 1 mg/ml 

fatty-acid-free BSA, pH 7.2) in an Oxygraph-2k using O2k-Fluo LED2-Module 

(Oroboros instruments, Innsbruck, Austria). The oxidation of the fluorogenic 

indicator Amplex Red Reagent (Life Technologies, A12222) was monitored in the 

presence of horseradish peroxidase (Sigma-Aldrich, P8250). The final 

concentrations of Amplex Red and horseradish peroxidase in the incubation 

medium were 10 μM and 4 U/ml, respectively. H2O2 production was initiated by 

the complex II substrate succinate (final concentration 10 mM). 1 mM ADP was 

then added to the Oxygraph-2k chambers followed by 1 μM of antimycin to inhibit 

complex III. In a separate experiment, a standard curve was obtained by adding 

amounts of H2O2 with known concentration to the assay medium in the presence 

of all the reactants. The H2O2 production rate was determined from the slope of 

a plot of the fluorogenic indicator versus time. 

 

 

2.6 Statistical analysis 

 

Data analysis was performed with GraphPad Prism 5.0. All numerical data 

are expressed as mean ± standard error (SEM). Results (n ≥ 3) were analysed 

by unpaired, one-tailed t-tests (2 groups) or two-way analysis of variance 

(ANOVA) (> 2 groups), typically with Sidak’s multiple comparison post-hoc test. 

P-values <0.05 were considered statistically significant. 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER 3 
Identification and characterisation of MR-1S, a 

vertebrate-specific COX assembly factor 
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3.1 Introduction  

 

A m.9536_9537insC frameshift mutation in MT-CO3, predicted to produce 

a prematurely truncated protein (p.Gln111Profs∗113), was identified in an 11-

year-old girl affected by a progressive neurological disorder characterised by 

symmetric necrotic lesions of putamina, similar to those observed in LS (Tiranti 

et al., 2000). The mutation was homoplasmic in both muscle and skin fibroblasts 

and was associated with a profound isolated COX deficiency. A cybrid cell line, 

generated by fusing the patient’s cytoplasts with mtDNA-less (rho-zero, ρ0) 

derivatives of 143B.206 human osteosarcoma cells (143B.206-ρ0) (Lqj et al., 

1989) was used to study the biochemical consequences of this mutation. 

Although MT-CO3 transcript levels were normal compared to control cells, the 

protein was absent when in vivo mitochondrial translation assays were 

performed. Fully assembled COX was not detectable by BN-PAGE (Figure 3.1A) 

and many accumulated MT-CO1-containing assembly intermediates were shown 

by Western-blot analysis (Tiranti et al., 2000). We hypothesised that COX 

assembly factors must remain associated to these accumulated intermediates.   

In this chapter, I describe how we used the aforementioned MT-CO3 

mutated cybrid cell line for MS studies, in order to characterise the composition 

of the accumulated COX subassemblies. The identification of MR-1S, which was 

bound to these subassemblies, and the confirmation of its involvement in COX 

assembly demonstrated the success of this strategy. 

 

 

3.2 Results 

 

3.2.1 Identification of MR-1S, a potential novel COX assembly factor 

 

The numerous subassembly species accumulated in the MT-CO3 mutant 

cybrid cell line (MT-CO3mut) were detected by WB analysis of DDM-treated 

mitochondrial fractions run through 1D BN-PAGE (Figure 3.1A).  
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Figure 3.1 COX assembly intermediates in cybrids carrying a MT-CO3 
mutation. Mitoplasts isolated from WT and MT-CO3 mutant cybrids analysed by 
1D BN-PAGE and WB using an anti-MT-CO1 antibody. Arrows indicate MT-CO1 
in mature COX (cIV), subassembly intermediates (Sub-cIV), COX dimer (cIV2), 
and the cIII2 + cIV supercomplex. Sara Vidoni performed this experiment. 

 

 

A comparison of COX immunopurified from mitoplasts of WT and mutant 

cybrid cell lines was then carried out by quantitative SILAC MS in order to identify 

proteins associated with the assembly species in greater abundance in the MT-

CO3mut cells relative to the WT cybrid line. This experiment was performed in 

duplicate with reciprocal isotopic labelling between mutant and WT cell lines. 

After analysing the MS results, we found a cluster of proteins with mutant/WT 

log2 ratios of ∼0.75–1 (i.e. 1.5–2 times more abundant in the mutant line than in 

the WT cells), in which four already known COX assembly factors were identified: 

COA3 (CCDC56 or MITRAC12) (Clemente et al., 2013), PET100 (Lim et al., 

2014; Oláhová et al., 2015) and the human orthologs of the yeast Pet117 

(McEwen et al., 1993; Szklarczyk et al., 2012) and Cmc2 (Horn et al., 2010) 

(Figure 3.2). Within this group there was a protein named myofibrillary-related 

protein 1 short isoform (MR-1S; also known as PNKD isoform 3; Uniprot: 

Q8N490-2) (Ghezzi, Viscomi, et al., 2009), which we decided to further 

investigate as a putative COX assembly factor (Figure 3.2). All the other entries 

in the cluster were non-mitochondrial proteins according to two mitochondrial 

specific proteome databases: Mitocarta 

(http://archive.broadinstitute.org/pubs/MitoCarta/index.html) and Mitominer 

(http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/begin.do). These non-
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mitochondrial proteins were not considered relevant for this study. A number of 

COX structural subunits was found significantly less abundant in the mutant line 

than in the WT cells and are therefore clustered in the bottom left quadrant of the 

graph (Figure 3.2). 

 

 

Figure 3.2 Quantitative SILAC MS analysis. Bi-directional Heavy (H) and Light 
(L) mitoplasts from both cybrid cell lines were isolated, mixed, and subjected to 
COX immunocapture. Each data point represents a specific protein. All of the 
identified COX subunits were located in the bottom left quadrant. A group of 
proteins known to be involved in COX assembly, in which MR-1S was found, is 
also shown in detail in the top right quadrant. The values in the x axis correspond 
to the log2 heavy-to-light (H/L) ratio of the peptides detected in experiment 1, 
where the heavy (H)-labelled MT-CO3 mutant and unlabelled (L) WT cells were 
mixed. The values in the y axis correspond to the inverted log2 H/L ratio (−log2 
H/L) of the peptides detected in experiment 2, where the unlabelled (L) MT-CO3 
mutant and the labelled (H) WT cells were mixed. Erika Fernandez-Vizarra, Sara 
Vidoni and Sujing Ding performed and analysed these experiments. 
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3.2.2 Confirming the role of MR-1S in COX assembly 

 

The paroxysmal non-kinesigenic dyskinesia (PNKD) gene, only found in 

vertebrates, encodes three different proteins, MR-1L, MR-1M and MR-1S (L for 

long, M for medium and S for short) formed by alternative splicing (Figure 3.3A). 

MR-1S, composed of 142 amino acids (Figure 3.3B), is encoded by the PNKD-

201 transcript, which has 3 coding exons and 2 introns. MR-1L (transcript PNKD-

203) and MR-1S contain the same exon 1, which encodes a MTS and are 

therefore located in the mitochondria, whereas MR-1M (transcript PNKD-202) 

shares the same C-terminal functional domain as MR-1L but is targeted to the 

Golgi apparatus (Ghezzi, Viscomi, et al., 2009).  

  
Figure 3.3 (A) PNKD gene annotation. Image taken from www.ensembl.org. The 
gene is predicted to encode four protein coding transcripts but only three have 
been experimentally confirmed (depicted in yellow). PNKD-203 transcript 
encodes the MR-1L protein composed of 385 amino acids, PNKD-202 transcript 
encodes the MR-1M protein composed of 361 amino acids and PNKD-201 
transcript encodes the MR-1S protein composed of 142 amino acids. (B) Amino 
acid sequence of MR-1S. Uniprot code: Q8N490-2. Image taken from 
www.uniprot.org. 

 

 

To confirm the role of MR-1S in COX assembly, RNA interference (RNAi) 

was performed through lentiviral transduction of three small hairpin RNAs 

(shRNAs) specific for PNKD-201 (shMR-1SRNA1,2,3). From WT cybrids treated 

A 

B 

http://www.ensembl.org/
http://www.uniprot.org/
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with shMR-1SRNA1, two clones (shMR-1SRNA1−7 and shMR-1SRNA1−11), which 

showed the virtual absence of MR-1S (Figure 3.4A), were selected for further 

analysis. Both cell lines displayed 30% reduction in COX enzyme activity (Figure 

3.4B) compared with cells transduced with the ‘empty vector’, i.e. with no open 

reading frame cloned in it, or with an shMR-1SRNA1−3 clone, which showed MR-

1S levels similar to the control (Figure 3.4A).  

 

  

 

                   

Figure 3.4 COX functional defect after MR-1S knockdown. (A) SDS-PAGE 
and WB analysis showing MR-1S steady-state levels in three different clones 
(clones shMR-1SRNA1−3, 7, and 11), isolated after lentiviral transduction of WT cybrids 
with pLKO.1 containing a shRNA sequence specifically targeting the MR-1S 
isoform, in comparison with cells transduced with the pLKO.1 empty vector (E.V.). 
Tubulin (TUB) was used as the loading control. (B) COX enzyme activity 
normalised to citrate synthase (CS) activity of the shMR-1SRNA1−3, 7, and 11 clones 
and of the WT cells transduced with the empty vector (E.V.). Data are presented 
as mean ± SD (n = 4). *** p < 0.0005, ** p < 0.005 (unpaired Student’s t-test). 
Sara Vidoni and Erika Fernandez-Vizarra performed these experiments. 
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Furthermore, the shRNA cells displayed a reduction in the amount of MT-

CO1 incorporated into mature COX and into the advanced intermediates (‘S3’) 

when analysed by 1D BN-PAGE (Figure 3.5). Taken together these results 

demonstrate the involvement of MR-1S in COX biogenesis and activity. 

 

   

Figure 3.5 COX assembly defect after MR-1S knockdown. 1D BN-PAGE and 
WB analysis of the shMR-1SRNA1−7 and 11 clones and of the WT cells transduced 
with the empty vector using an anti-MT-CO1 antibody. CS was used as a 
normalization and molecular weight (MW) standard signal. The densitometric 
quantification of the MT-CO1 signal, normalised to the CS signal and expressed 
as the percentage of the normalised control signals, is shown on the right. Data 
are presented as mean ± SD (n = 3). Sara Vidoni and Erika Fernandez-Vizarra 
performed these experiments. 
 

 

3.2.3 MR-1S Interacts with PET100 and PET117 

  

To further define the role of MR-1S in COX assembly, WT and MT-CO3mut 

cybrid cell lines were transduced with a C-terminal HA-tagged recombinant MR-

1S cDNA (MR-1SHA) and with the pWPXLd-ires-HygroR ‘empty vector’. The 

protein interactions of HA-tagged MR-1S were then investigated by quantitative 

MS of SILAC-labelled anti-HA immunoprecipitates from both WT and MT-CO3mut 

cybrids. The specific interactors consistently detected by these analyses included 

several COX structural subunits, belonging to the early (COX5A, COX4l1) and 

intermediate (MT-CO2, COX5B, COX6C) assembly groups, and two COX 

assembly factors, i.e., PET100 (Church et al., 2005; Lim et al., 2014; Oláhová et 

al., 2015) and PET117 (McEwen et al., 1993; Soto et al., 2012; Szklarczyk et al., 

2012) (Figure 3.6). 
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Figure 3.6 MR-1S binds COX structural subunits and assembly factors. 
Scatterplots showing the log2 and −log2 H/L ratios obtained after mass 
spectrometry analysis of anti-HA co-immunoprecipitation fractions of bi-
directional SILAC of WT (upper graph) or MT-CO3 mutant (lower graph) cybrid 
cells expressing MR-1SHA, combined with material from cybrid cells transduced 
with the empty vector. Only the upper right quadrants of the plots, showing the 
statistically significant interactions (based on significance B, Perseus analysis 
platform; Cox and Mann, 2008, Tyanova et al., 2016), are displayed. Sara Vidoni 
and Sujing Ding performed these experiments. 
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3.2.4 MR-1S interaction with COX assembly intermediates is affected by 

the absence of PET100 

 

In order to further investigate the interaction of MR-1S with PET100, we 

used primary fibroblasts carrying a truncating homozygous p.Gly48∗ mutation in 

PET100 (PET100G48∗) (Oláhová et al., 2015). Neither fully assembled COX nor 

subassembly intermediates were found in this cell line when analysed by 1D BN-

PAGE (Figure 3.7). Interestingly, the MR-1S-containing supramolecular 

structures observed in WT cells were also absent in the PET100 mutant 

fibroblasts (Figure 3.7), suggesting that the stability and interaction of MR-1S 

with COX assembly intermediates is disrupted in the absence of PET100.  

 

 

Figure 3.7. COX assembly defect in PET100G48∗ mutant cells. (A) 1D BN-
PAGE, WB, and immunodetection analysis showing the absence of fully 
assembled COX, detected with anti-MT-CO2, and of the MR-1S supramolecular 
complexes, detected with anti-MR-1S, in the PET100G48∗ primary fibroblasts, 
kindly donated by R.W. Taylor from Newcastle University, UK. SDHB was used 
as a normalization and MW standard signal. Erika Fernandez-Vizarra performed 
these experiments. 

 

 

To confirm that these defects were specifically due to the absence of 

PET100 and also to explore its possible interaction with PET117, both WT and 
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vector’. Very high expression of recombinant PET117FLAG was found in both lines, 

whereas the amounts of PET100FLAG were much lower (Figure 3.8).  

 

  

Figure 3.8 Overexpression of PET100FLAG and PET117FLAG. SDS-PAGE, WB, 
and immunodetection using anti-FLAG of PET100FLAG and PET117FLAG in the WT 
and PET100G48∗ immortalised fibroblasts transduced with the empty vector (E.V.), 
PET100FLAG or PET117FLAG. Actin was used as a loading standard. Longer 
exposures than usual were necessary to visualise the PET100FLAG band. 
Experiment performed by myself. 

 

 

However, despite the very low protein levels of PET100FLAG, its mRNA 

levels were clearly overexpressed according to analysis by quantitative PCR 

(Figure 3.9). Interestingly, the levels of PET100 transcripts were also increased 

when PET117 was overexpressed both in WT and PET100G48∗ immortalised 

fibroblasts (Figure 3.9), suggesting that PET117 requires the presence of 

PET100. 
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Figure 3.9 Transcript levels of PET100 and PET117. Relative mRNA 
expression of PET100 and PET117, normalised to the expression of GAPDH and 
expressed as percentage of the control, in the WT and PET100G48∗ patient 
immortalised fibroblasts transduced with either the empty vector (E.V.), 
PET100FLAG or PET117FLAG. N = 1. Experiments performed by myself. 
 

 

The low protein levels of PET100FLAG were sufficient to rescue the 

phenotype as COX activity levels, measured by in-gel activity, were found normal 

in the mutant fibroblasts transduced with PET100FLAG, whereas no recovery was 

observed in mutant cells transduced with the ‘empty vector’ or the PET117FLAG 

(Figure 3.10B). Complex I activity was unchanged in all the analysed cell lines 

(Figure 3.10A). 
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Figure 3.10 COX activity is rescued by overexpression of PET100FLAG. 1D 
BN-PAGE and in-gel activity of complex I (A) and complex IV (B) in the control 
fibroblasts (WT) or the PET100 mutated fibroblasts (PET100G48∗) transduced 
either with the empty lentiviral expression vector (E.V.), PET100FLAG or 
PET117FLAG. The arrows indicate the in-gel activity of complex IV (IV), free 
complex I (CI) and complex CI in the supercomplexes (SC). Experiments 
performed by myself. 
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recovered to normal WT-levels when transduced with PET100FLAG (Figure 3.11). 

The same was found for MR-1S protein levels, confirming that this protein is 

affected by the absence/presence of PET100. 

 

 

 

 

Figure 3. 11 
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Figure 3.11 COX and MR-1S protein levels rescued by overexpression of 

PET100FLAG. (A) Steady-state levels of proteins visualised by SDS-PAGE, WB, 

and immunodetection in the PET100G48∗ patient and in the WT immortalised 

fibroblasts transduced with either the empty vector (E.V.) or PET100FLAG. (B) 

Densitometric quantification of the immunodetection signals. The signal 

intensities expressed as percentage of the control (WT_E.V.) of MT-CO2, MT-

CO1, and MR-1S normalised to tubulin are plotted in the graph (mean ± SD; n = 

2). (C) Signal intensities expressed as percentage of the control (WT_E.V.) of 

MT-CO2 and MT-CO1 normalised to the MR-1S signal (mean ± SD; n = 2). 

Experiments performed by myself. 

 

 

3.2.5 PET100 also mediates the interaction of PET117 with MR-1S and 

COX subunits 

 

To confirm that PET117 interacts with MR-1S, the reciprocal experiment 

was performed. WT cybrid cells were transduced with PET117FLAG and with the 

pWPXLd-ires-HygroR ‘empty vector’. Then, PET117 interactors were investigated 

by quantitative MS of SILAC-labelled anti-FLAG co-immunoprecipitates from the 

cybrids transduced with PET117FLAG and with the ‘empty vector’ as the control. 

The same COX structural subunits that co-immunoprecipitated with MR-1S 

(COX5A, COX4l1, MT-CO2, COX5B and COX6C), were also found to interact 

with PET117 (Figure 3.12). MR-1S and COX11, another human ortholog of a 

yeast COX assembly factor (Carr, George and Winge, 2002), also co-

immunoprecipitated with PET117FLAG (Figure 3.12). Yeast Cox11 is a Cu(I)-

binding protein essential for cytochrome c oxidase assembly (Carr, George and 

Winge, 2002).  
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Figure 3.12 PET117 interacts with COX subunits, MR-1S and COX11. 
Scatterplots and heavy-to-light (H/L) ratio table obtained after MS analysis of anti-
FLAG co-immunoprecipitation fractions of bi-directional SILAC labelling of cybrid 
cells transduced with PET117FLAG, combined with material from cybrid cells 
transduced with the empty vector. Only the top right quadrant of the plot and the 
statistically significant interactions are shown (significance B, Perseus analysis 
platform; (Cox and Mann, 2008; Tyanova, Temu and Cox, 2016). Sara Vidoni and 
Sujing Ding performed these experiments. 

 

 

To further analyse the role of the interactions among MR-1S, PET100 and 

PET117, anti-FLAG immunopurification of PET100G48∗ fibroblasts transduced 

with the ‘empty vector’, PET100FLAG or PET117FLAG was carried out in non-

labelled cells. MR-1S, together with MT-CO1, MT-CO2, COX5A, and COX5B 

were contained in the immunopurified eluted fraction of the mutant cells 

transduced with PET100FLAG (Figure 3.13). However, no co-immunoprecipitation 

of any of these proteins was obtained in the same cell line transduced with the 

‘empty vector’ or PET117FLAG (Figure 3.13). These results demonstrate that 

PET117 interaction with MR-1S and COX structural elements requires the 

presence of PET100. 
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Figure 3.13 PET117 interaction with MR-1S and COX subunits is mediated 
by PET100. SDS-PAGE, WB analysis and immunodetection of the co-
immunoprecipitation fractions using anti-FLAG in PET100G48∗ immortalised 
fibroblasts transduced with the empty vector (E.V), PET100FLAG or PET117FLAG. 
TOT: total mitoplast lysate before immunoprecipitation. FT: flow-through fraction 
with the unbound proteins. WASH1 and WASH9: fractions obtained after the first 
and ninth washes of the anti-FLAG-M2-agarose resin. ELUTE: eluted fractions of 
the material bound to the resin after treatment with the specific FLAG peptide. 
Experiments performed by myself.  
 

 

3.3 Conclusions 

 

• MS studies of mutated cell lines with accumulated COX subassemblies 

can be useful to identify new COX assembly factors. By using this strategy, 

we found MR-1S bound to the COX subassemblies accumulated in a MT-

CO3 (Tiranti et al., 2000) cybrid cell line. 

 

• Knockdown of MR-1S expression had functional consequences on COX 

activity and assembly, confirming its involvement in COX biogenesis. 
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• MR-1S interacts with COX structural subunits belonging to the early 

(COX5A, COX4l1) and intermediate (MT-CO2, COX5B, COX6C) 

assembly groups. 

 

• MR-1S interacts with the highly conserved PET100 (Church et al., 2005; 

Lim et al., 2014; Oláhová et al., 2015) and PET117 (McEwen et al., 1993; 

Soto et al., 2012; Szklarczyk et al., 2012) COX assembly factors.  

 

• Human skin fibroblasts with a truncating homozygous p.Gly48∗ mutation 

in PET100 (PET100G48∗) (Oláhová et al., 2015) showed absence of fully 

assembled COX and profoundly reduced steady-state levels of COX 

structural subunits and MR-1S. 

  

• Overexpression of PET100FLAG rescued COX assembly and activity as 

well as MR-1S protein levels, confirming that the interaction of MR-1S with 

COX assembly intermediates requires the presence of PET100. 

 

• PET117FLAG, expressed in wild-type (WT) cells, co-immunoprecipitated 

with MR-1S and several COX structural subunits belonging to the early 

(COX5A, COX4l1) and intermediate (MT-CO2, COX5B, COX6C) 

assembly groups. 

 

• PET100FLAG co-immunoprecipitated with MR-1S and several COX 

structural subunits belonging to the early (COX5A) and intermediate (MT-

CO1, MT-CO2, COX5B) assembly groups. 

 

• Neither MR-1S nor COX subunits co-immunoprecipitated with 

PET117FLAG overexpressed in fibroblasts carrying mutations in PET100, 

indicating that the interaction of PET117 with MR-1S and COX structural 

subunits is mediated by PET100. 

 

 





 

 

 

 

 

 

 

 

 

CHAPTER 4 
Generation and characterisation of an Apopt1 KO 

mouse model  
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4.1 Introduction 

 

As described in previous chapters, loss-of-function mutations in the human 

APOPT1 gene have been associated with mitochondrial encephalopathy, 

characterised by cavitating leukodystrophy with a very distinctive MRI pattern 

(Melchionda et al., 2014; Sharma et al., 2018). Biochemically, these mutations 

were also associated with isolated COX deficiency in skin and muscle biopsies 

(Melchionda et al., 2014). However, although the genetic association of APOPT1 

pathogenic variants with COX deficiency was well established, the link with CIV 

biogenesis and function remained unclear. In an attempt to validate this 

association, APOPT1 expression was knocked down by RNAi in different human 

cells (Melchionda et al., 2014). Although APOPT1 mRNA levels were significantly 

reduced in the interfered cell lines, COX activity and assembly were unaffected, 

possibly due to residual normal APOPT1 transcripts still being translated. In 

addition, acute shRNA treatment in control immortalised fibroblasts induced cell 

death, an unexpected phenomenon since APOPT1-null patient fibroblasts 

showed normal growth in standard culture conditions (Melchionda et al., 2014).  

In this chapter, I describe how a KO mouse model with a targeted 

disruption of the Apopt1 gene was generated. This model was used to clearly 

validate the role of this protein in COX biogenesis and to study the physiological 

effects of the ablation of Apopt1 at the whole-organism level and the biochemical 

consequences in post-mitotic tissues. 

 

 

4.2 Results 

 

4.2.1 Generation of the Apopt1 KO mouse model 

 

CRISPR/Cas9 was used for genome editing in order to generate an 

Apopt1 KO mouse model. To this end, RNA encoding the SpCas9 plus a 

customised gRNA targeting Apopt1 exon 2 (see Chapter 2 for more details) were 

injected into FVB/NJ one-day zygotes (Core Facility for Conditional Mutagenesis 

at the IRCCS Ospedale San Raffaele, Milan, Italy). The edited embryos were 
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then transferred into pseudo-pregnant females. Genotyping of the resulting pups 

allowed the identification of four founder mice (F0), each one of them carrying 

several indel modifications. This chimerism could be attributed to gene editing 

taking place in some nuclei after the first embryonic mitotic division (Li et al., 

2017). To ensure germline transmission and allow allele segregation, one F0 

male mouse was bred with a WT FVB/NJ female mouse. Genetic analyses of the 

resulting pups (F1) confirmed the presence of different heterozygous mutations 

in four individuals. Of these different mutations, we selected two: Mutation #1 and 

Mutation #4, and established two different Apopt1 KO mouse lineages, each 

carrying one of the mutations. Mutation #1 was a substitution of one A for TG in 

Apopt1 exon 2 (c.188delAinsTG, considering the reference mRNA sequence 

GenBank NM_026511). This indel predicts a frameshift and the appearance of a 

stop codon leading to a truncated protein of only 75 amino acids 

(p.Asp55Valfs*20) (Figure 4.1), whereas the WT protein is composed of 192 

amino acids. Mutation #4 was a deletion of 11 nucleotides in Apopt1 exon 2 

(c.184_195delCATGATTGGAT, considering the reference mRNA sequence 

GenBank NM_026511). This deletion also predicts the translation of a truncated 

protein of only 84 amino acids (p.His54Glnfs*30) (Figure 4.1). Both selected 

mutations were considered for the creation of the KO mouse model as they would 

lead to the complete absence of the Apopt1 protein. The other two mutations 

(Mutation #2 and Mutation #3) were predicted to not change the reading frame 

and were therefore not appropriated for the generation of a KO mouse model.  
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Figure 4.1 Generation of the Apopt1 KO mouse model. CRISPR/Cas9 was 
employed for the targeted disruption of mouse chromosome 12 Apopt1 coding 
exon 2. The Apopt1 gene, mRNA and mutated protein products are displayed. 

 

 

Skeletal muscle extracted from homozygous individuals from both mutated 

mouse lines (carrying mutation #1 or mutation #4) showed exactly the same level 

of COX deficiency (Figure 4.2). Thus, in order to minimise the number of animals 

used in this project (following the principles of the 3Rs: replace, reduce and refine 

the use of animals in research and testing), the subsequent analyses were carried 

out using only the KO mouse lineage carrying mutation #1.  

 

 

Figure 4.2 COX activity in skeletal muscle. COX (CIV) enzymatic activity 
normalised to the activity of citrate synthase (CS) measured in skeletal muscle 
from three-month-old mice. Data are presented as mean ± SEM (n = 5 mice per 
genotype). **** p < 0.0001 (two-way ANOVA Sidak’s multiple comparisons test). 
WT: homozygous wild type mice. Mut 1: homozygous Apopt1 KO mice carrying 
mutation #1. Mut 4: homozygous Apopt1 KO mice carrying mutation #4. 
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To determine the effects of Mutation #1 on Apopt1 expression, total RNA 

from skeletal muscle and liver was extracted. Direct sequencing of the cDNA 

confirmed that the mutation was present in the transcripts of heterozygous and 

KO animals. No traces of the WT sequence were detected in the KO cDNA 

sample, demonstrating that all the mRNA was carrying the indel change (Figure 

4.3A), whereas a mix of the mutated and WT sequences was detected in the 

cDNA sample from heterozygous mice (not shown). Quantitative PCR was used 

to determine the relative abundance of the Apopt1 mRNA, which was strongly 

reduced in both skeletal muscle and liver from Apopt1-/- animals compared with 

WT Apopt1+/+ mice (Figure 4.3B). The amount of Apopt1 mRNA in the 

heterozygous mice (Apopt1+/-) was between those of the +/+ and -/- genotypes 

(Figure 4.3B). This decrease of Apopt1 mRNA transcripts carrying a premature 

stop codon is a phenomenon known as nonsense-mediated mRNA decay (NMD) 

(Brogna and Wen, 2009). NMD serves as a surveillance mechanism that reduces 

the expression of genes carrying nonsense mutations by eliminating the aberrant 

mRNAs and avoiding the translation of a shorter and mutated protein, which may 

lead to a loss, switch or gain of protein function (Brogna and Wen, 2009).  
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Figure 4.3 Apopt1 mutation at the transcriptional level. (A) Chromatograms 
generated by Sanger sequencing of Apopt1-/- (homozygous KO) and Apopt1+/+ 
(homozygous WT) cDNA from skeletal muscle highlighting the mutated position 
in comparison with the WT sequence. (B) Relative Apopt1 mRNA expression in 
skeletal muscle and liver from three-month-old animals normalised to the 
expression of GAPDH and expressed as percentage of the WT. Data are 
presented as mean ± SEM (n = 5 mice per genotype; measurement repeated 3 
times). *** p < 0.0005, ** p < 0.005, * p < 0.05 (two-way ANOVA Sidak’s multiple 
comparisons test). Apopt1+/+: homozygous WT mice, Apopt1+/-: heterozygous 
mice, Apopt1-/-: homozygous Apopt1 KO mice. 
 

 

We then attempted to confirm the absence of the Apopt1 protein in the KO 

mice tissues by Western blot and immunodetection using two antibodies raised 

against the full-length human APOPT1 (see Chapter 2 for more details), which 
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two sequences divided by the total number of amino acids and multiplied by 100) 

and 86% homology (calculated as: amino acids that match exactly plus those with 

similar characteristics divided by the total number of amino acids and multiplied 

by 100) to the mouse Apopt1 protein. The predicted MW of the WT mouse Apopt1 

precursor is 22.7 kDa and of the mature protein 19.5 kDa. As shown in Figure 

4.4, no specific signal corresponding to the predicted size for Apopt1, which 

should be present in the WT and absent in the KO samples, was detected in the 

mouse tissue and cell lysates.   
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Figure 4.4 Apopt1 immunodetection trials. (A) SDS-PAGE (12% NuPAGE 
Bis-Tris, Thermo Fisher Scientific) and WB analysis of homozygous WT (+/+) and 
homozygous KO (-/-) mouse isolated mitochondria from heart, brain and liver, 
using an anti-APOPT1 primary antibody (Proteintech 27300-1-AP). 30 µg of total 
protein lysates were loaded. (B) SDS-PAGE (4-12 % NuPAGE Bis-Tris, Thermo 
Fisher Scientific) and WB analysis of homozygous WT (+/+) and homozygous KO 
(-/-) MEFs, using a custom-made anti-APOPT1 primary antibody (ProteoGenix 
8992-01). 30 µg of protein were loaded. 
 

 

To propagate the mutated mouse lineage, heterozygous individuals were 

crossed. The litters (F2) showed Mendelian ratios of homozygous WT (+/+), 

heterozygous (+/-) and homozygous Apopt1 KO (-/-) (Table 4.1). These groups 

of animals were subsequently used for phenotypic and biochemical 

characterisation.  

 
Table 4.1 Mendelian ratios of pups (N=50) born from Apopt1+/- mice 
interbreeding. 
 

Genotype Expected Observed 

+/+ 25 % 20 % 

+/- 50 % 56 % 

-/- 25 % 24 % 

 

 

All animals carrying at least one WT allele presented the same phenotypic 

characteristics. Therefore, animals from both genotypes were used as controls 

(termed as Apopt1WT) for many of the behavioural and biochemical analyses 

shown in the following sections. 

 

 

4.2.2 Apopt1-/- mice did not show major alterations on energy metabolism  

   

To determine the impact of Apopt1 ablation on energy metabolism we used 

a CLAMSTM system, that measures several metabolic parameters including food 

and water intake, oxygen consumption and carbon dioxide production. In 

addition, the mice were weighted every 30 days. Oxygen consumption and 

carbon dioxide production (Figure 4.6A and 4.6B) are used as variables by the 
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CLAMSTM software for the indirect calorimetry or respirometry calculations of heat 

production, which is directly related to energy expenditure and was unchanged in 

Apopt1-/- compared with Apopt1WT mice (Figure 4.6D). The respiratory exchange 

ratio (RER) is the ratio between the amount of carbon dioxide produced and 

oxygen consumed and is directly related to the type of substrates metabolised to 

produce energy, which can switch from glucose to fat in the case of metabolic 

alterations. Therefore, a RER of 0.7 indicates that the main fuel used is fat, a 

RER of around 0.85 means that both fat and carbohydrates are being used and 

a RER of 1.0 or above means that the source of energy is mainly carbohydrates. 

Mice in both experimental groups showed normal RER of around 0.85 (Figure 

4.6C).  
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Figure 4.6 Energy metabolism at three months of age. (A) Volume of oxygen 
(ml/kg/hr) consumed in female and male animals at 3 months of age. (B) Volume 
of carbon dioxide (ml/kg/hr) produced in female and male animals at 3 months of 
age. (C) Respiratory exchange ratio (RER) in female and male animals at 3 
months of age. (D) Heat (Kcal/hr) produced by female and male animals at 3 
months of age. Data measured in the CLAMS™ system. Data are presented as 
mean ± SEM. * p < 0.05 (two-way ANOVA Sidak’s multiple comparisons test). 
Apopt1WT (n = 10): control group composed of Apopt1+/+ and Apopt1+/- individuals. 
Apopt1-/- (n = 5): homozygous Apopt1 KO mice. 
 

 

In addition, no differences were found in either food or water intake (data 

not shown) and, consequently, Apopt1-/- male and female mice did not display 

any differences in weight at 3, 6 or 12 months of age (Figure 4.7). 

 

Figure 4.7 Weight at 3, 6 and 12 months of age. Female and male mice weight 
at 3-, 6- and 12-months of age. Data are presented as mean ± SEM. Apopt1WT 
(n = 10): control group composed of Apopt1+/+ and Apopt1+/- individuals. Apopt1-

/- (n = 10): homozygous Apopt1 KO mice. 
 

 

4.2.3 Apopt1-/- mice displayed impaired motor performance  

 

Mutations in the human APOPT1 gene are associated with neuromuscular 

disorder, with symptoms noticeable from a young age, characterised by spastic 

tetraparesis (i.e. muscular weakness and stiffness affecting all four extremities). 

In some of the cases, a mild to severe cognitive impairment was also observed 

(Melchionda et al., 2014). To determine whether the mutated mice presented a 

similar clinical phenotype, motor performance and coordination were evaluated 

using the treadmill and rotarod tests at different ages. Both male and female 
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early adulthood (three months old), reflecting an early onset of muscular 

weakness (Figure 4.8A). Their difficulty to use the four extremities was 

noticeable also during the rotarod test, assessing coordination, in which Apopt1 

KO mice also performed worse at three months of age (Figure 4.8B). In order to 

assess the progression of the phenotype, the rotarod test was repeated with six- 

and twelve-month-old mice and the treadmill test was repeated at twelve months 

of age. No significant changes were observed in their motor performance as they 

aged (Figure 4.8A and B), similar to the clinical course observed in patients, 

which also tended to stabilise (Melchionda et al., 2014). 

 

 

Figure 4.8 Motor performance and coordination. (A) Distance run by the 
tested female and male mice on the treadmill at three and twelve months of age. 
(B) Time in seconds spent by the female and male mice on the Rotarod cylinders 
before falling at three, six and twelve months of age. < 0.005, * p < 0.05 (two-way 
ANOVA Sidak’s multiple comparisons test). Apopt1WT (n = 10): control group 
composed of Apopt1+/+ and Apopt1+/- individuals. Apopt1-/- (n = 5): homozygous 
Apopt1 KO mice. 
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4.2.4 Age-related impairment of spontaneous activity and exploratory 

behaviour in Apopt1-/- mice 

 

The CLAMS™ system also makes it possible to monitor changes in 

spontaneous activity (including locomotor and exploratory behaviour) to assess 

mouse cognitive function. Total, ambulatory and rear movements were monitored 

in this way in three-month-old mice. Total movements were defined as all infrared 

beam interruptions detected (all counts). When mice broke a series of infrared 

beams in sequence, meaning that they were moving deliberately (like traversing 

the cage), counts were defined as ambulatory movements. Movements that 

broke the same infrared beam repeatedly, for example when grooming or 

scratching, were not counted as ambulatory movements. All beam interruptions 

detected in the y-axis, i.e. when mice were standing upright on the hind-legs in 

order to visually explore their environment, were counted as rear movements. No 

significant differences in total, ambulatory or rear movements were observed 

between control and KO mice at three months of age (Figure 4.9). 
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Figure 4.9 Movements at three months of age. (A) Total movements of female 
and male animals at three months of age. (B) Ambulatory movements of female 
and male animals at three months of age. (C) Rear movements of female and 
male animals at three months of age. Data measured in the CLAMS™ system. 
Data are presented as mean ± SEM. Apopt1WT (n = 10): control group composed 
of Apopt1+/+ and Apopt1+/- individuals. Apopt1-/- (n = 5): homozygous Apopt1 KO 
mice. 

 

 

 Spontaneous activity was re-assessed at twelve months of age. In this 

case, horizontal and vertical movements of mice placed in a new environment 

were monitored for 30 minutes in an ‘activity cage’. This test allows the evaluation 

of the exploratory behaviour, i.e. the tendency of mice to investigate and acquire 

information about a new environment. Horizontal movements were found strongly 

reduced in KO animals indicating that they were less motivated than WT mice to 

investigate their environment (Figure 4.10). A decreasing tendency was 
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observed also for vertical movements, meaning that Apopt1-/- mice spent less 

time obtaining visual information about their environment (Figure 4.10).  

 

 

Figure 4.10 Movements at twelve months of age. (A) Total spontaneous 
horizontal and vertical movements of twelve-month-old mice measured in an 
activity cage for 30 minutes. (B) Same data represented as horizontal movements 
per minute (left) and vertical movements per minute (right). Data are presented 
as mean ± SEM. **** p < 0.0001 (two-way ANOVA Sidak’s multiple comparisons 
test). Apopt1WT (n = 5): control group composed of Apopt1+/+ and Apopt1+/- 
individuals. Apopt1-/- (n = 5): homozygous Apopt1 KO mice. 
 

 

The decrease in exploratory behaviour was also evident when running the 

Y maze test. The total number of entries (count of the arms explored in 5 

minutes), although not significantly reduced at three months, was much lower in 

Apopt1-/- mice than in the WT littermates at six and twelve months of age (Figure 

4.11). 
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Figure 4.11 Number of arms explored in the Y maze test. Number of entries 
in each arm of the Y maze performed at different ages. Data are presented as 
mean ± SEM. **** p < 0.0001 (two-way ANOVA Sidak’s multiple comparisons 
test). Apopt1WT (n = 12): control group composed of Apopt1+/+ and Apopt1+/- 
individuals. Apopt1-/- (n = 7): homozygous Apopt1 KO mice. 

 

 

4.2.5 Other neurological indicators were normal in the Apopt1-/- mice 

 

The Y maze test was also used to investigate the contribution of Apopt1 to 

spatial learning and memory in mice. However, the percentage of alternation was 

the same for all animals at all ages measured, which means that Apopt1 KO mice 

were able to recognize the last arm explored and choose a new one to visit 

(Figure 4.12).  

 

 

Figure 4.12 Results of the Y maze alternation test. Percentage of alternation 
scored in the Y maze by the female and male mice at different ages. Data are 
presented as mean ± SEM. Apopt1WT (n = 12): control group composed of 
Apopt1+/+ and Apopt1+/- individuals. Apopt1-/- (n = 7): homozygous Apopt1 KO 
mice.  
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Spastic tetraparesis is associated with clumsy movements and walking 

difficulties, which was observed in several APOPT1 patients (Melchionda et al., 

2014). However, Apopt1 KO mice showed normal gait and posture at all ages 

(data not shown) and did not display feet clasping either, a common sign of 

neurological conditions in mouse models (Figure 4.13). 

 

 

Figure 4.13 Feet clasping. Photographs of the typical posture of six-month-old 
homozygous WT mice (Apopt1+/+) compared to homozygous KO mice (Apopt1-/) 
when were suspended by the tail. 

 

 

We then used the pole-test to measure proprioception, which involves 

sensory neurons from the inner ear (motion and orientation) and from the stretch 

receptors in the muscles and the joint-supporting ligaments (stance). However, 

similarly to Apopt1WT littermates, Apopt1-/- mice required less than 10 seconds to 

descend the pole, which is the expected time for healthy normal mice, and did 

not fall of it regardless of the age (Figure 4.14).  
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Figure 4.14 Pole-test motor ability test. Time in seconds spent by female and 
male mice to descend a pole at different ages. Data are presented as mean ± 
SEM. Apopt1WT (n = 8): control group composed of Apopt1+/+ and Apopt1+/- 
individuals. Apopt1-/- (n = 8): homozygous Apopt1 KO mice. 
 

 

4.2.6 Skeletal muscle showed no histological alterations in Apopt1-/- mice 

 

Hematoxylin and eosin (H&E) staining in skeletal muscle showed normal 

fibre morphology and size in Apopt1-/- animals at three (Figure 4.15A) and twelve 

months of age (data not shown). No centralised nuclei, which represent 

degenerative-regenerative fibres commonly observed in several types of 

myopathies (Folker and Baylies, 2013), were detected either (Figure 4.15A). 

When muscle was stained with the modified Gömöri trichrome stain, no ragged 

red fibres, which are a common marker for mitochondrial myopathies (Nardin and 

Johns, 2001), were observed (Figure 4.15B).  
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Figure 4.15 Histological examination of mouse skeletal muscle. (A) 
Representative H&E staining in skeletal muscle of three-month-old individuals. 
(B) Representative modified Gömöri trichrome staining in skeletal muscle of 
three-month-old individuals. Apopt1+/+: homozygous WT mice, Apopt1-/-: 
homozygous Apopt1 KO mice. Raffaele Cerutti performed these experiments. 
 

 

4.2.7 Lack of histopathological alterations in Apopt1-/- mice brains  

 

For the evaluation of neurodegeneration, neuronal nuclear protein (NeuN) 

was used as a marker of neuronal differentiation (NeuN is not present in immature 

neural progenitor cells) and neuronal death (disappearance of NeuN 

immunoreactivity). Immunostaining of NeuN in Apopt1-/- mice in the frontal and 

occipital cortex showed neither undifferentiated neurons nor neuronal loss 

(Figure 4.16). The same was found when analysing the hippocampus, the basal 

ganglia and the mesencephalon (data not shown).  
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Figure 4.16 NeuN immunohistochemical staining. Representative NeuN 
staining of the frontal cortex (A) and occipital cortex (B) of three-month-old mice. 
Apopt1+/-: heterozygous Apopt1 mice, Apopt1-/-: homozygous Apopt1 KO mice. 
Raffaele Cerutti performed these experiments. 

 

 

Neuronal necrosis and degeneration were examined using the cresyl violet 

(CV) staining. However, no brain damage was found neither in the frontal nor in 

the hippocampus (Figure 4.17), nor in the occipital cortex (data not shown) of 

Apopt1 homozygous KO mice. 

 

 

 

 

 

 

 

 

 

F 5240 
APOPT1 -/-NeuN IHC

Apopt1 +/- Apopt1 -/-

100 μm
100 μm

1
0

0
 μ

m
1

0
0

 μ
m

A 

B 



Chapter 4 – Apopt1, mouse model 
 

 138 

 

Figure 4.17 Cresyl violet immunohistochemical staining. Representative CV 
staining of the frontal cortex (A) and hippocampus (B) of three-month-old mice. 
Apopt1+/-: heterozygous Apopt1 mice, Apopt1-/-: homozygous Apopt1 KO mice. 
Raffaele Cerutti performed these experiments. 

 

 

4.2.8 Apopt1-/- mice showed pan-tissue isolated COX deficiency 

 

Histochemical analyses were used to determine the impact of Apopt1 

ablation on COX activity in post-mitotic tissues. As shown in Figure 4.18, COX 

staining was clearly reduced in skeletal muscle, in several regions of the brain 

and in kidney from three-month-old mice, whereas succinate dehydrogenase 

(SDH) staining was normal in all the analysed tissues. The same COX reduction 

was observed in tissues from one-year-old mice (data not shown). 
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Figure 4.18 
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Figure 4.18 Histochemical analysis in mouse tissues. Representative 
histochemical reactions specific to COX and SDH in skeletal muscle (A), in 
cerebellar cortex and the pons region of the brainstem (B and C, respectively) 
and in kidney (D) of three-month-old individuals. Apopt1+/+: homozygous WT 
mice, Apopt1-/-: homozygous Apopt1 KO mice. Raffaele Cerutti performed these 
experiments. 
 

 

To quantify the extent of the COX deficiency in the Apopt1-/- tissues, kinetic 

measurements of COX enzymatic activity were performed in tissue 

homogenates. The activity was reduced by 40 to 60% of controls in skeletal 

Pons

Apopt1+/+ Apopt1-/-

COX

SDH

50 μm50 μm

50 μm 50 μm

Kidney

Apopt1+/+ Apopt1-/-

100 μm

COX

SDH

100 μm

100 μm100 μm



Chapter 4 – Apopt1, mouse model 
 

 141 

muscle, kidney, heart, brain and liver of three-month-old Apopt1-/- mice compared 

with Apopt1+/+ or Apopt1 +/- controls, in which COX activity was indistinguishable 

(Figure 4.19). One-year old skeletal muscle, liver and brain still showed 

significant COX deficiency compared with age matched WT animals (Figure 

4.19).  

 

 

Figure 4.19 Biochemical analysis in mouse tissues. COX (CIV) enzymatic 
activity normalised to the activity of citrate synthase (CS) measured in kidney (K), 
heart (H), skeletal muscle (SM), cerebellar cortex (B) and liver (L) from three- and 
twelve-month-old mice. Data are presented as mean ± SEM (n = 5 mice per 
genotype). **** p < 0.0001 (two-way ANOVA Sidak’s multiple comparisons test). 
Apopt1+/+: homozygous WT mice, Apopt1+/-: heterozygous mice, Apopt1-/-: 
homozygous Apopt1 KO mice, Apopt1WT: control group composed of Apopt1+/+ 
and Apopt1+/- individuals. 
 

 

The activities of other respiratory chain complexes and of citrate synthase 

were the same as controls in all the analysed tissues, except for complexes I and 

III, which were slightly reduced in the Apopt1-/- liver samples and complex II 
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activity, which was slightly increased in the skeletal muscle and kidney of Apopt1-

/- mice (Figure 4.20).  

 

 

Figure 4.20 Biochemical analysis in mouse tissues. Complex I (CI), succinate 
dehydrogenase (SDH), complex II (CII) and complex III (CIII) enzymatic activities 
normalised to the activity of citrate synthase (CS) measured in kidney, heart, 
skeletal muscle, cerebellar cortex and liver from three-month-old mice. Data are 
presented as mean ± SEM (n = 3 mice per genotype). *** p < 0.0005, ** p < 0.005 
(two-way ANOVA Sidak’s multiple comparisons test). Apopt1+/+: homozygous WT 
mice, Apopt1+/-: heterozygous mice, Apopt1-/-: homozygous Apopt1 KO mice. 
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4.2.9 COX subunit steady-state levels were reduced in the Apopt1-/- mice 

tissues 

 

 Considering the COX enzymatic deficiency, we then checked the steady-

state protein levels of several structural COX subunits, which were all found 

decreased in Apopt1-/- liver, whereas subunits of complex I (Ndufs1) and complex 

III (Uqcrc2) were unchanged (Figure 4.21). Interestingly, the late (Mt-Co3 and 

Cox6b) and intermediate (Mt-Co2 and Cox5b) assembly subunits, as well as Mt-

Co1, were more decreased than the subunits that assemble earlier (Cox4 and 

Cox5a) (Figure 4.21, graph), suggesting that the assembly defect is 

predominantly affecting the middle to last steps of the COX assembly pathway 

(Vidoni et al., 2017). 
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Figure 4.21 Reduced COX subunits protein levels in mouse liver. Western 
blot and immunodetection analysis of SDS-PAGE of total lysates from liver from 
the indicated genotypes, each lane showing the results for one animal. The graph 
shows the densitometric quantification of the signal intensities normalised to 
tubulin signal. Data are presented as mean ± SEM. *** p < 0.0005 (two-way 
ANOVA Sidak’s multiple comparisons test). Apopt1+/+ (n = 2): homozygous WT 
mice, Apopt1+/- (n = 2): heterozygous mice, Apopt1-/- (n = 3): homozygous Apopt1 
KO mice. 
 

 

COX structural subunit protein levels were also decreased in Apopt1-/- 

skeletal muscle and brain, as well as in cultured MEFs (Figure 4.22), confirming 

the specific reduced amounts of COX components in all the analysed mouse 

tissues and cells. 
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Figure 4.22 Reduced COX subunits protein levels in brain, skeletal muscle 
and MEFs. Western blot and immunodetection analysis of SDS-PAGE of total 
lysates from skeletal muscle, brain and mouse embryonic fibroblasts (MEFs) from 
the indicated genotypes, each lane showing the results for one animal. Apopt1+/+: 
homozygous WT mice, Apopt1+/-: heterozygous mice, Apopt1-/-: homozygous 
Apopt1 KO mice. 
 

 

In order to exclude the possibility that the COX defect in Apopt1-less 

tissues could be due to a role of Apopt1 in transcription of COX subunits, the 

transcript levels of mtDNA-encoded Mt-Co1 (CIV subunit) and Mt-Nd1 (CI 

subunit) were measured in skeletal muscle of three-month-old animals. No 

significant changes were detected in mRNA levels between WT and KO mice 

(Figure 4.23), suggesting that the reduction in protein levels occurs either at the 

translational or post-translational level. 

 

 

Figure 4.23 Quantification of mt-mRNA levels. Relative mRNA expression of 
one COX (CIV) subunit (Mt-Co1) and one CI subunit (Mt-Nd1) in skeletal muscle 
from three-month old WT and KO mice, normalised to the expression of Gapdh 
and expressed as percentage of the WT. Data are presented as mean ± SEM. 
Apopt1WT (n = 12): control group composed of Apopt1+/+ and Apopt1+/- individuals. 
Apopt1-/- (n = 6): homozygous Apopt1 KO mice. 

 

 

4.2.10 Impaired COX assembly in the Apopt1-/- mice 

 

BN-PAGE combined with Western blot and immunodetection was used to 

analyse the levels of fully assembled COX and of the other protein complexes of 

the respiratory chain. Complex IV amounts were significantly lower in skeletal 

muscle from Apopt1-/- mice of three (Figure 4.24A) and twelve (Figure 4.24B) 
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months of age. The assembly defect was specific for COX, as respiratory 

complexes I, II and III were unaffected. 

 

 

 

 

 

Figure 4.24 COX assembly in skeletal muscle – 1D. Western blot analysis of 
1D BN-PAGE of mitochondria from skeletal muscle from three-month-old mice 
(A) and twelve-month-old mice (B) from the indicated genotypes, each lane 
showing the results from one animal. Complex I (cI), II (cII), III dimer (cIII2) and 
IV (cIV) were visualised immunodetecting against subunits Ndufs1, Sdhb, Uqcrc2 
and mt-Co1/mt-Co2/mt-Co3, respectively. Apopt1+/+: homozygous WT mice, 
Apopt1+/-: heterozygous mice, Apopt1-/-: homozygous Apopt1 KO mice. 
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Low levels of fully assembled complex IV were also observed in cultured 

MEFs by 1D BN-PAGE, indicating that COX biogenesis is profoundly affected 

also in Apopt1-deficient proliferating cells (Figure 4.25). 

 

 

Figure 4.25 COX assembly in MEFs. Western blot analysis of 1D BN-PAGE of 
mitochondria from MEFs from the indicated genotypes, each lane showing the 
results from one animal. COX was visualised immunodetecting against subunit 
Mt-Co1. Sdhb was used as a normalization and MW standard signal. Apopt1+/-: 
heterozygous mice, Apopt1-/-: homozygous Apopt1 KO mice. 
 

 

To evaluate the assembly status of the residual COX, 2D BN-PAGE, 

Western blot and specific immunodetection against COX subunits assembling in 

different modules was performed. This analysis revealed an accumulation of 

subcomplexes containing Mt-Co1 and an accumulation of free Cox5a in skeletal 

muscle from three-month-old Apopt1-/- mice (Figure 4.26).  
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Figure 4.26 COX assembly status in skeletal muscle – 2D. Western blot 
analysis of 2D BN-PAGE of mitochondria from skeletal muscle (three-month-old 
mice) from the indicated genotypes, each lane showing the results from one 
animal. COX was visualised immunodetecting against subunits Cox5a, mt-Co1, 
mt-Co2 and mt-Co3. Sdhb was used as a normalization and MW standard signal. 
Red arrows point to the accumulation of subcomplexes containing Mt-Co1 and to 
the accumulated free Cox5a in Apopt1-/- mice. Apopt1+/-: heterozygous mice, 
Apopt1-/-: homozygous Apopt1 KO mice. 
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4.2.11 ROS production and antioxidant defences were unaffected in 

Apopt1-/- mice 

 

 Absence of APOPT1 was suggested to contribute to higher ROS 

production in APOPT1-null patient cultured skin fibroblasts stressed with H2O2 

(Melchionda et al., 2014). In addition, yeast strains displaying COX defects 

showed increased sensitivity to H2O2, which was attributed to the presence of 

pro-oxidant Cox1p-containing assembly intermediates (Khalimonchuk, Bird and 

Winge, 2007). Therefore, we hypothesised that ROS production might be 

increased in Apopt1-/- mouse tissues due to the accumulation of Mt-Co1-

containing subassemblies, which may have pro-oxidant activity. To investigate 

this, we measured H2O2 production in isolated brain and heart mitochondria from 

three-month-old mice by monitoring the oxidation of the fluorogenic indicator 

Amplex red in the presence of horseradish peroxidase using the fluorometry 

module fitted to the O2k-respirometer (see Chapter 2 for more details). The H2O2 

production was initiated by addition of succinate without ADP (resting state or 

state 4), which produces high amounts of ROS at the level of complex I by the 

so-called reverse electron transfer (RET) (Tretter, Patocs and Chinopoulos, 

2016). The ADP-induced stimulation of respiration (state 3) led to a pronounced 

reduction of the H2O2 flux. Complex III was then inhibited by adding antimycin a, 

which led again to an increase in ROS production (Tretter, Patocs and 

Chinopoulos, 2016). However, the H2O2 rate produced by brain and heart Apopt1-

/- isolated mitochondria was not significantly different from that of the WT in any 

of the respiratory states (Figure 4.27). 
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Figure 4.27 ROS production in mouse tissues. H2O2 production flux in isolated 
brain and heart mitochondria from 3-month-old mice determined by monitoring 
the oxidation of Amplex red in an Oroboros instrument. Measurements were 
calculated after addition of succinate (Succ), ADP and the complex III inhibitor 
antimycin a (AA). Data are presented as mean ± SEM (n = 2 mice per genotype). 
Apopt1+/+: homozygous WT mice, Apopt1-/-: homozygous Apopt1 KO mice. 
 

 

The fact that no changes were found in ROS production does not 

necessarily indicates a lack of increased oxidative stress in the Apopt1-/- tissues, 

as this could be compensated by enhanced ROS scavenging. The mitochondrial 

superoxide dismutase (Sod2) catalyses superoxide into oxygen and hydrogen 

peroxide and its expression is rapidly activated under oxidative stress conditions, 

thus being commonly used as an antioxidant defence marker (Murphy, 2009). On 

the other hand, the mitochondrial aconitase (Aco2) activity is inhibited by H2O2 

due to the presence of Fe-S clusters in its catalytic centre, which is why it is used 

as a marker of oxidative damage (Yan, Levine and Sohal, 1997). Sod2 and Aco2 

steady-state levels were tested in in mouse liver, brain and skeletal muscle, 
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however, no significant differences were found between control and mutated 

mice (Figure 4.28).  

    

 

   

Figure 4.28  
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Figure 4.28 Protein levels of oxidative stress markers in mouse tissues. 
Western blot and immunodetection analysis of SDS-PAGE of total lysates from 
liver, brain and skeletal muscle (three-month-old mice) from the indicated 
genotypes, showing the signal for aconitase 2 (ACO2) and superoxide dismutase 
2 (SOD2). Apopt1+/+: homozygous WT mice, Apopt1+/-: heterozygous mice, 
Apopt1-/-: homozygous Apopt1 KO mice. The graph shows the densitometric 
quantification of the signals obtained for WT mice (n = 8): control group composed 
of Apopt1+/+ and Apopt1+/- individuals and for KO mice (n = 6): homozygous 
Apopt1 KO mice.  
 

 

4.3 Conclusions  

 

• The homozygous Apopt1 KO mice, generated by CRISPR/Cas9, showed 

markedly reduced levels of Apopt1 mRNA transcripts carrying Mutation 

#1, an indel producing a frameshift and a premature stop codon. 

 

• The breeding of Apopt1 heterozygous individuals generated Mendelian 

ratios of homozygous WT, heterozygous and homozygous Apopt1 KO 

mice, confirming the autosomal recessive inheritance observed in patients 

(Melchionda et al., 2014).  

 

• Apopt1 KO mice presented significantly impaired motor endurance and 

coordination skills in the treadmill and rotarod test, respectively.   

 

• Apopt1-/- mice showed a decrease in spontaneous and exploratory 

behaviour at six and twelve months old, indicating a decline of some 

cognitive functions with age. 

 

• More complex cognitive tasks, such as memory (assessed by the Y maze), 

were not affected in the Apopt1 KO mice at any age.  

 

• Normal gait and posture and no feet clasping were observed in the Apopt1 

KO mice. 
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• The pole-test results were normal in the Apopt1 KO mice at any age 

analysed, suggesting that their sensory nervous system was not 

damaged. 

 

• No histological alterations, such as centralised nuclei or ragged red fibers, 

were found in the skeletal muscle of three- and twelve-month-old Apopt1-

/- mice. 

 

• The histopathological study performed in the brain of three-month-old 

Apopt1-/- mice showed no neuronal loss, necrosis or any other brain 

histological abnormality. 

 

• Apopt1-/- mice showed global, isolated COX deficiency and reduced 

steady-state levels of COX structural subunits, which was not caused by 

a transcriptional defect.  

 

• Apopt1-null tissues presented defective COX assembly, which involved 

the accumulation of early assembly subunits (Cox4 and Cox5a) and of the 

Mt-Co1 module (or MITRAC complex), suggesting that Apopt1 must play 

a role in the intermediate steps of COX assembly. 

 

• Normal levels of ROS production and antioxidant defences were found in 

Apopt1-less mouse tissues. 

 
 

 

 

 

 

 

 

 

 





 

 

 

 

 

 

 

 

 

CHAPTER 5 
Characterisation of the APOPT1 protein in cellular 

models 
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5.1 Introduction 

 

The work presented in this chapter builds up from data produced in the 

preliminary characterisation of APOPT1 pathological role (Melchionda et al., 

2014). Similar to what is described in Chapter 4 for mouse tissues, absence of 

APOPT1 in patient-derived fibroblasts was associated with reduced COX activity 

and a decrease of fully assembled complex IV (Melchionda et al., 2014). 

However, complementation assays in these cells were complicated since the 

expression systems used could not maintain a stable expression of the 

recombinant wild-type APOPT1. Indeed, APOPT1HA expression was only 

detectable when cells were stressed with H2O2 or treated with the proteasome 

inhibitor MG132 (Melchionda et al., 2014).  

In this chapter, I describe how several APOPT1 alternative splicing 

isoforms tagged with C-terminal HA and GFP sequences were delivered and 

successfully expressed in control and patient-derived cells by using a second-

generation lentiviral system. These cellular models were then used for 

complementation assays, as well as for investigating the subcellular and sub-

mitochondrial localisation of APOPT1 and the post-translational mechanisms that 

regulate its protein levels in the cytosol and in the mitochondria. 

 

 

5.2 Results 

 

5.2.1 Overexpression of HA- and GFP-tagged APOPT1 did not affect cell 

survival 

 

In order to identify which isoforms of APOPT1 are actually expressed in 

human cells, APOPT1 cDNA was amplified from two cell lines: HeLa and HEK 

293T. Two different isoforms were detected after cloning and sequencing the 

PCR fragments. The first isoform was the transcript containing five coding exons, 

annotated as APOPT1-201 in Ensembl (www.ensembl.org) with Transcript ID 

ENST00000409074.6, encoding the full- length protein (Uniprot Q96IL0). The 

second isoform was APOPT1-203, lacking exon 3 and with Transcript ID 

http://www.ensembl.org/
http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000256053;r=14:103562962-103607523;t=ENST00000409074
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ENST00000458117.5, encoding a truncated protein (Uniprot H7C2Z1). To better 

characterise these two isoforms, we cloned them starting from each of the two 

putative ATG start codons present in the open reading frame: M1 and M14. The 

resulting four different cDNAs were fused to GFP in the C-terminus and 

expressed in three different human cell lines: HeLa, 143B osteosarcoma cells 

and immortalised control skin fibroblasts. Cells transduced with the pWPXLd-ires-

PuroR ‘empty vector’ or the GFP protein alone were used as controls. APOPT1-

201-M1GFP and APOPT1-201-M14GFP produced the same size mature protein 

(Figure 5.1 and Table 5.1), detected at a position corresponding to a size of 

approximately 40 kDa in all cell lines tested (as shown for 143B cells in Figure 

5.1). APOPT1-203-M1GFP and APOPT1-203-M14GFP also produced the same 

band corresponding to the mature protein (Figure 5.1 and Table 5.1), detected 

at a size corresponding to 30 kDa in all cell lines tested (as shown for 143B cells 

in Figure 5.1). The GFP protein was detected at around 27 kDa (Figure 5.1). 

 

 

 

Figure 5.1 GFP-tagged APOPT1 constructs overexpressed in 143B cells. 
SDS-PAGE (4-12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB 
analysis of total lysates from 143B cells transduced with either the pWPXLd-ires-
PuroR empty vector (E.V.), the GFP protein alone (GFP), APOPT1-201-M1GFP, 
APOPT1-201-M14GFP, APOPT1-203-M1GFP or APOPT1-203-M14GFP. 20 µg of 
protein were loaded. 
 

 

 

http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000256053;r=14:103562962-103607523;t=ENST00000458117
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Table 5.1 APOPT1 predicted molecular mass. The table below indicates the 
molecular mass for the precursor and mature form of each of the APOPT1 
versions, with and without including the molecular mass of the GFP protein (27 
kDa). 

 

APOPT1  

construct 

MTS 

processing 

Predicted 

molecular 

mass 

Predicted 

molecular mass 

with the GFP 

tag 

APOPT1-201-M1 Precursor 24.2 kDa 51.2 KDa 

Mature 20.1 KDa 47.1 KDa 

APOPT1-201-M14 Precursor 23.0 KDa 50.0 kDa 

Mature 20.1 KDa 47.1 KDa 

APOPT1-203-M1 Precursor 14.3 KDa 41.3 KDa 

Mature 10.2 KDa 37.2 KDa 

APOPT1-203-M14 Precursor 13.1 KDa 40.1 KDa 

Mature 10.2 KDa 37.2 KDa 

 

 

 In order to investigate the cellular localisation of the proteins encoded in 

these four constructs, immunofluorescence on fixed cells was performed. All four 

APOPT1 proteins showed mitochondrial localisation (Figure 5.2A and B), 

whereas the signal of the GFP protein alone was spread around all the cell 

(Figure 5.2C). However, since the constructs starting from the second putative 

ATG start codon (APOPT1-201-M14GFP and APOPT1-203-M14GFP) produced a 

protein perfectly able to translocate to the mitochondria, we concluded that the 

actual starting methionine must be M14, as proposed previously (Melchionda et 

al., 2014), and that the sequence before that ATG codon corresponds to the 

APOPT1 mRNA 5’-UTR.  
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Figure 5.2 
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Figure 5.2 Immunofluorescence assays in 143B cells. Confocal images 
comparing the signal of GFP (C), APOPT1-201-M1GFP (A), APOPT1-203-M1GFP 
(A), APOPT1-201-M14GFP (B) or APOPT1-203-M14GFP(B), immunostained with 
primary anti-GFP antibody (Abcam) and secondary Alexa fluor 488 anti-rabbit 
(Invitrogen), to that of MitoTracker®RedCMXRos (Invitrogen), used to visualise 
the mitochondrial network. The pattern of all GFP-tagged APOPT1 constructs 
shows co-localisation with that obtained with MitoTracker Red. Bars (A): 10 µm; 
(B and C): 50 µm. 

 

Moreover, and contrary to the original report on the identification of 

APOPT1 (Yasuda et al., 2006), no induction of cell death or effect on cell survival 

were observed after transduction of the GFP-tagged APOPT1 versions in any of 

the cell lines tested, including HeLa (used in that report). Some of the images 

taken by the IncuCyte ZOOM instrument (Essen Bioscience, UK), monitoring the 

cell growth and protein expression of HeLa cells immediately after transduction 

of the APOPT1-201-M1GFP construct, are shown in Figure 5.3.  

 

Figure 5.3 
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Figure 5.3 Normal cell growth and protein expression after transduction 
with APOPT1-201-M1GFP. An IncuCyte ZOOM instrument (Essen Bioscience, 
UK), was used to monitor cell confluency and GFP expression by detection of 
green fluorescence. The images shown were taken 0, 14, 19, 24, 33 and 58 hours 
after transduction of HeLa cells with the APOPT1-201-M1GFP construct. 10X 
magnification. All the images collected were compiled in several videos (available 
upon request). 
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In addition to the GFP tag, a C-terminal HA tag was added to the APOPT1-

201-M1 and APOPT1-203-M1 cDNA sequences previously described, which 

were then transfected into 143B cells. The M1 constructs were used in order to 

keep what we assumed was the APOPT1 mRNA 5’-UTR, which could help 

maintain a more physiological structure and possibly expression of the protein. 

Cells transduced with the pWPXLd-ires-PuroR ‘empty vector’ were used as 

controls. By using the anti-HA antibody in optimal conditions, i.e. at a high 

concentration and long exposure of the X-ray films, we were able to 

immunovisualise two bands for the APOPT1-201-M1HA construct, most likely 

corresponding to the mature form, with a molecular mass of approximately 21 

kDa, and the precursor form, of around 25 kDa (Figure 5.4 and Table 5.2). Note 

that the HA-tagged protein expression was hardly detectable in HeLa and 

fibroblasts when tested previously (Melchionda et al., 2014). The protein product 

of APOPT1-203-M1HA was undetectable (Figure 5.4), which led to the conclusion 

that the APOPT1-203 isoform was not functional. This idea was reinforced by the 

fact that deletion of APOPT1 exon 3 causes the pathological phenotype of COX 

deficiency and encephalopathy (Melchionda et al., 2014; Sharma et al., 2018). 

Therefore, we decided not to continue using the HA- and GFP-tagged APOPT1-

203 constructs in further experiments and to designate the APOPT1-201-M1HA 

and APOPT1-201-M1GFP proteins as APOPT1GFP and APOPT1HA. 
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Figure 5.4 HA-tagged APOPT1 constructs overexpressed in 143B cells. 
SDS-PAGE (4-12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB 
analysis of total lysates from 143B cells transduced with either the pWPXLd-ires-
PuroR empty vector (E.V.), APOPT1-201-M1HA or APOPT1-203-M1HA. 40 µg of 
protein were loaded.  
 

 

Table 5.2 APOPT1 predicted molecular mass. The table below indicates the 
molecular mass for the precursor and mature form of each of the HA-tagged 
APOPT1 versions, with and without including the molecular mass of the HA tag 
(10 kDa). 
        

APOPT1  

construct 

MTS 

processing 

Predicted 

molecular 

mass 

Predicted 

molecular 

mass with the 

HA tag 

APOPT1-201-M1 Precursor 24.2 kDa 25.2 KDa 

Mature 20.1 KDa 21.1 KDa 

APOPT1-203-M1 

 

Precursor 14.3 KDa 15.3 KDa 

Mature 10.2 KDa 11.2 KDa 

 

 

Immunofluorescence on fixed cells validated the mitochondrial localisation 

of the APOPT1-201-M1HA protein and the absence of signal for the APOPT1-203-

M1HA isoform (Figure 5.5). However, we noticed that the protein expression 

levels of the APOPT1 tagged with HA were much lower than those of the 

APOPT1 tagged with GFP, confirming the intrinsic instability of the HA-tagged 

protein previously reported by Melchionda et al., which is somehow corrected in 

the GFP chimeric variants. 
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Figure 5.5 Immunofluorescence assay in 143B cells. Confocal images 
comparing the signal of APOPT1-201-M1HA or APOPT1-203-M1HA, 
immunostained with primary anti-HA antibody (Roche) and secondary Alexa fluor 
488 anti-rat (Invitrogen), to that of TOM20, immunostained with primary anti-
TOM20 antibody (Abcam) and secondary Alexa fluor 594 anti-rabbit (Invitrogen). 
Nuclei were stained with DAPI. The pattern of APOPT1-201-M1HA coincides 
perfectly with that obtained for TOM20, which was used as a marker for the 
mitochondrial network. Bars: 10 µm. 
 

 

The effect of APOPT1HA overexpression in the growth and survival of 143B 

cells was also investigated by generating growth curves right after the 

transduction with the lentiviral vectors. However, no changes in cell viability were 

observed (Figure 5.6). 
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Figure 5.6 Normal cell growth after transduction with APOPT1HA. An 
IncuCyte ZOOM instrument (Essen Bioscience, UK), was used to monitor cell 
confluency to calculate the growth curves of 143B cells transduced either with the 
empty vector or APOPT1HA. Data are presented as mean ± SD (n = 4). 

 

 

5.2.2 Human APOPT1 immunodetection trials  

 

Detection of the endogenous APOPT1 protein was attempted with four 

different antibodies (see Chapter 2 for more details). APOPT1is synthesized as 

a 22.9 kDa precursor including a mitochondrial targeting sequence of 26 amino 

acids that is cleaved off when imported (Melchionda et al., 2014), producing a 

mature protein with a predicted molecular mass of 20.1 kDa,. Two antibodies 

were commercial: one raised against a synthetic human APOPT1 peptide 

(Antibodies Online), which detect neither the endogenous nor the overexpressed 

protein (data not shown); and one raised against the full-length human APOPT1 

(anti-C14orf153) by Proteintech, which we were allowed to test before it was 

available for the general public and detected both the endogenous and 

overexpressed protein (Figure 5.7). To demonstrate this, immortalised 

fibroblasts derived from patients S2 and S6, carrying homozygous p.Arg79* and 

heterozygous p.Arg79*/p.Glu124del truncating mutations, respectively 

(Melchionda et al., 2014), were immunostained with the Proteintech antibody. A 

drastic reduced signal of the band corresponding to the size of mature APOPT1 

(22.9 kDa), was observed (Figure 5.7). However, the presence or absence of the 
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endogenous precursor protein was impossible to determine as an intense 

unspecific band of the same electrophoretic mobility as pre-APOPT1 cross-reacts 

with the anti-APOPT1 antibody (Figure 5.7). The bands corresponding to the 

precursor and mature forms of APOPT1HA were also detected by this antibody, 

as shown in Figure 5.7. 

 

 

Figure 5.7 Immunodetection of APOPT1 with the Proteintech antibody. 
SDS-PAGE (12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB analysis 
of total lysates from 143B cells transduced with APOPT1HA and of patient-derived 
(S2 and S6) and control (C1) immortalised fibroblasts. 50 µg of protein were 
loaded. The left blot was immunodetected with an antibody raised against the full-
length human APOPT1 (Proteintech 27300-1-AP). The right blot was 
immunodetected with anti-HA (Roche). Tubulin was used as a loading control. 
  

 

The other two tested antibodies were custom-made: one raised against a 

synthetic human APOPT1 peptide (Agrisera), which only detected the GFP-

tagged overexpressed protein (Figure 5.8); and one raised against the full-length 

human APOPT1 mature protein (ProteoGenix), which detected both the 

endogenous and the overexpressed protein. However, the obtained pattern 

showed even a higher number of unspecific bands than the one made available 

by Proteintech (data not shown). 
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Figure 5.8 Immunodetection of APOPT1 with the Agrisera antibody. SDS-
PAGE (4-12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB analysis of 
total lysates from 143B cells 2 days (2) and 15 days (15) after transduction with 
either the ‘empty vector’, the GFP protein alone, APOPT1-201-M1GFP or 
APOPT1-203-M1GFP, immunodetected with an antibody raised against a 
synthetic human APOPT1 peptide (Agrisera 2218). 30 µg of protein were loaded. 
The arrows indicate the signal for APOPT1-201-M1GFP (around 40 kDa) and 
APOPT1-203-M1GFP (around 30 kDa). The strong signal at around 22 kDa, which 
could correspond to the endogenous APOPT1 protein, was found to be a 
cytosolic protein when subcellular studies were performed later on. 
 

 

5.2.3 APOPT1 is an inner mitochondrial membrane protein that does not 

stably interact in a high-molecular weight complex 

 

To determine the subcellular and sub-mitochondrial localisation of the 

endogenous and overexpressed tagged APOPT1, mitochondria were isolated 

from HEK293 human cells and from 143B cells expressing either APOPT1HA or 

APOPT1GFP. First, APOPT1 association to the mitochondrial membranes was 

tested separating the soluble and membrane fractions by sonication and 

ultracentrifugation. Virtually all the endogenous, as well as the HA- and GFP-

tagged APOPT1 species, were found exclusively in the mitochondrial membrane 

pellet fractions (Figure 5.9). However, a large proportion of the protein was 

released to the supernatant after alkaline carbonate extraction (Figure 5.9). 
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These results indicate that APOPT1 is associated with but not integral to the 

mitochondrial membranes. 

 

 

Figure 5.9 Subcellular localisation of APOPT1. SDS-PAGE (4-12 % NuPAGE 
Bis-Tris, Thermo Fisher Scientific) and WB analysis of different fractions from (A) 
non-transduced HEK cells, (B) 143B cells transduced with APOPT1HA and (C) 
143B cells transduced with APOPT1GFP. Tot: total lysate. C: post-mitochondrial 
fraction (cytoplasm). Mt: isolated mitochondria. Mt sol: Soluble mitochondrial 
fraction. Mt memb: mitocondrial membranes. CO3

2- pellet: Pellet after carbonate 
extraction with 0.1 M Na2CO3, pH 10.5 for 30 minutes. CO3

2- sol: soluble fraction 
after the carbonate extraction. Proteins located in different cellular compartments 
were immunostained: TOM20 in the outer mitochondrial membrane, aconitase 
(ACO2) in the mitochondrial matrix, MT-CO1 in the inner mitochondrial 
membrane and tubulin in the cytosol. 
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devoid of the OM, testing the sensitivity of the APOPT1 proteins to trypsin in 
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membrane (IM), intermembrane space (IMS) and outer membrane (OM). AIF 

(apoptosis inducing factor), which is a protein bound to the inner mitochondrial 

membrane but protruding towards the intermembrane space, and AK2 (adenylate 

kinase 2), which is an IMS soluble protein, were partially sensitive to trypsin when 

mitoplasts were generated exposing the mitochondria to increasing 

concentrations of the detergent digitonin (Figure 5.10). Aconitase 2 (ACO2), a 

matrix protein, and COX4, an IMM protein, seemed to be protected to trypsin 

treatment, except at very high digitonin concentrations, which were probably 

enough to disrupt the IMM (Figure 5.10). Endogenous APOPT1 and APOPT1HA 

showed a sensitivity pattern similar to both AIF and ACO2 (Figure 5.10). These 

results indicate that APOPT1 is clearly an IMM-bound protein, but the exact 

topology is not well defined.  

 

 

Figure 5.10 Sub-mitochondrial localisation of APOPT1 – digitonin 
treatment. SDS-PAGE (4-12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) and 
WB analysis of isolated mitochondria from (A) non-transduced HEK cells and (B) 
143B cells transduced with APOPT1HA exposed to increasing amounts of 
digitonin (expressed in μg) and 50 μg/ml trypsin. Proteins located in different 
mitochondrial compartments were immunostained: TOM20 in the outer 
mitochondrial membrane, aconitase (ACO2) in the mitochondrial matrix, MT-
CO1/COX4 in the inner mitochondrial membrane and AIF and AK2 in the 
intermembrane space. 
 

 

To further validate whether the IMM-bound APOPT1 is facing the IMS or 

the matrix, mitoplasts were then generated by incubating mitochondria in 
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hypotonic buffer solution, which should not affect the IMM in any way, followed 

by trypsin treatment. The sensitivity of APOPT1HA to proteolysis was compared 

to markers located in the intermembrane space (AK2), inner membrane facing 

the IMS (SCO2) and inner membrane (COX4). AK2 was found in the supernatant 

fractions after hypotonic shock and was fully degraded by trypsin (Figure 5.11), 

confirming that it is a soluble IMS protein. The sensitivity pattern of the mature 

APOPT1HA protein was similar to COX4, an IMM, while SCO2 was more sensitive 

to trypsin and a soluble peptide of around 19 kDa was detected in the supernatant 

fractions under these conditions (Figure 5.11). No soluble APOPT1 was found in 

the supernatant fractions after trypsin treatments (Figure 5.11). These results 

suggest that APOPT1, bound to the IMM, has its C-terminus protruding to the 

matrix. 

 

   

Figure 5.11 Sub-mitochondrial localisation of APOPT1 – hypotonic shock. 
SDS-PAGE (4-12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB 
analysis of the pellet and supernatant fractions of isolated mitochondria from 
143B cells transduced with APOPT1HA incubated with hypotonic buffer (5 mM 
sucrose, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA) for 5 and 15 minutes, and with 
(+) or without (-) 50 μg/ml trypsin. Proteins located in different mitochondrial 
compartments were immunostained: COX4 in the IMM, AK2 in the 
intermembrane space and SCO2 in the IMM facing the IMS. Experiment 
performed by Erika Fernandez-Vizarra. 

 

 

In order to analyse whether APOPT1 interacts with other proteins in a high-

molecular complex, I performed Western-blot of 2D BN-PAGE of samples 
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solubilised with the two commonly used neutral detergents, DDM and digitonin. 

In both conditions, the two tagged proteins (APOPT1HA and APOPT1GFP) 

migrated to the bottom of the gel (Figure 5.12), indicating no interaction with other 

proteins including the COX assembly intermediates containing MT-CO1 or MT-

CO2.  

  

 

Figure 5.12 APOPT1 is not part of a high molecular weight complex. Western 
blot analysis of 2D BN-PAGE of DDM-treated mitochondrial fractions from 143B 
cells transduced either with APOPT1HA or APOPT1GFP. Fully assembled COX 
was immunovisualised with antibodies recognizing MT-CO1 and MT-CO2. SDHB 
was used as a normalization and molecular weight standard signal.  

 

 

5.2.4 Stable expression of wild-type APOPT1 complemented the COX 

defect in patient-derived fibroblasts  

 

 In order to further investigate the function of APOPT1 in COX assembly, 

we took advantage of the availability of cultured skin fibroblasts from patients S2 

and S6 (described in Melchionda et al.). After both cell lines were immortalised 

by lentiviral transduction with pLOX-Ttag-iresTK (see Chapter 2 for more details), 

they continued to display the same COX deficiency, of around 50% of the 

controls. These cells, were then transduced with APOPT1HA and APOPT1GFP 

lentiviral constructs. Although APOPT1HA was always detectable in both patients, 

its amounts gradually decreased with time (Figure 5.13A). Consequently, 

although expression of APOPT1HA rescued COX activity in the S6 cells, the 

complementation in S2 was only partial (Figure 5.13B). 
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Figure 5.13 APOPT1HA complementation assays. (A) SDS-PAGE (4-12 % 
NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB analysis of total lysates from 
S6 and S2 patient-derived immortalized fibroblasts transduced with either the 
empty vector (E.V) or the APOPT1HA-expressing plasmid. The expression levels 
of APOPT1HA were tested at different days after transduction. (B) COX (CIV) 
enzymatic activity normalised to the activity of citrate synthase (CS) measured in 
control fibroblasts (C1 and C2) and patient cells (S6 and S2) either non-
transduced (naïve) or transduced with the empty vector (E.V) or the APOPT1HA 
construct. Data are presented as mean ± SEM (n = 3). ** p < 0.005, * p < 0.05 
(two-way ANOVA Sidak’s multiple comparisons test).  

 

 

On the other hand, the expression of APOPT1GFP was much more robust 

and stable and therefore, transduced S2 and S6 patient cells showed full recovery 

of COX subunit levels (Figure 5.14A) and COX enzymatic activity (Figure 

5.14B). 
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Figure 5.14 APOPT1GFP complementation assays. (A) SDS-PAGE (4-12 % 
NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB analysis of total lysates from 
control fibroblasts (C2) and S6 and S2 patient cells either non-transduced (naïve) 
or transduced with the empty vector (E.V), the GFP protein alone (GFP) or the 
APOPT1GFP construct. (B) COX (CIV) enzymatic activity normalised to the activity 
of citrate synthase (CS) measured in control fibroblasts (C1 and C2) and patient 
cells (S6 and S2) either non-transduced (naïve) or transduced with the empty 
vector (E.V), the GFP protein alone (GFP) or the APOPT1GFP construct. Data are 
presented as mean ± SEM (n = 3). *** p < 0.0005, ** p < 0.005, * p < 0.05 (two-
way ANOVA Sidak’s multiple comparisons test). 

 

 

 BN-PAGE was then used to analyse the native protein complexes of the 

respiratory chain. The amounts of fully assembled complex IV were considerably 

lower in the S2 and S6 patient cells compared to control immortalised fibroblasts 

(Figure 5.15).  Moreover, accumulation of subassemblies of the MT-CO1 module 

(MITRAC) were also observed in the mutated human cells (Figure 5.15). 
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Figure 5.15 Reduced fully assembled CIV and subassembly accumulation 
in APOPT1-deficient cells. Western blot analysis of 2D BN-PAGE of mitoplasts 
from control fibroblasts (C1) and patient cells (S2 and S6). Fully assembled COX 
was immunovisualised with antibodies recognizing MT-CO1, and MT-CO2. The 
presence of the assembly intermediate ‘MITRAC’ was also detected (arrow). 
SDHB was used as a normalization and molecular weight standard signal.  

 

 

Interestingly, the assembly defect in S2 and S6 cells not only led to an 

accumulation of MITRAC but it also affected the late COX intermediate composed 

of subunits COX4 and COX5A plus the MT-CO1 and MT-CO2 modules (also 

known as ‘S3’ (Nijtmans et al., 1998; Vidoni et al., 2017), which was markedly 

reduced in APOPT1-less cells (Figure 5.16). The assembly defects observed in 

patient-derived fibroblasts transfected with the ‘empty vector’ or the GFP protein 

alone were reverted by expression of wild-type APOPT1GFP (Figure 5.16).  
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Figure 5.16 COX assembly defect in APOPT1-less cells rescued by 
APOPT1GFP expression. (A) Western blot analysis of 1D BN-PAGE of mitoplasts 
from control fibroblasts (C1) and patient cells (S2 and S6) transduced with either 
the empty vector (E.V.), the GFP protein alone (GFP) or the APOPT1GFP 
construct. (B) Western blot analysis of 2D BN-PAGE of mitoplasts from patient 
fibroblasts (S2) transduced with either the GFP protein alone (GFP) or the 
APOPT1GFP construct.  
Fully assembled COX was immunovisualised with antibodies recognising MT-
CO1, MT-CO2 and COX5A. The presence of the assembly intermediates 
‘MITRAC’ and ‘S3’ was also detected (indicated with arrows). SDHB signal was 
used for loading normalisation and molecular weight standard. Anti-GFP 
immunodetection revealed the presence of APOPT1GFP migrating at low 
molecular weight positions in the 1D gel. 
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5.2.5 Decreased stability of the mtDNA-encoded COX subunits in APOPT1-

less cells 

 

The possibility that the COX defect in APOPT1-less cells could be due to 

a role of APOPT1 in transcription of COX subunits was evaluated by measuring 

mRNA levels of several of them. However, no changes were detected in either 

mtDNA-encoded MT-CO1 and MT-CO2 or nuclear-encoded COX4I1 and COX6B 

mRNA levels (Figure 5.17). 

 

 

Figure 5.17 Normal COX subunits mRNA levels in patient cells. Relative 
mRNA expression of several COX subunits (MT-CO1, MT-CO2, COX4 (isoform 
1) and COX6B) in control fibroblasts (C1) and patient cells (S2 and S6), 
normalised to the expression of GAPDH and expressed as percentage of the 
control. Data are presented as mean ± SEM (n = 3 for MT-CO1, n = 1 for the 
rest). Each of the biological replicas was measured in triplicate. * p < 0.05 (two-
way ANOVA Sidak’s multiple comparisons test). 
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cells were significantly lower than in the controls after only three hours of culture 

in ‘cold’ medium (without L-[35S]-Met), whereas MT-CO1 protein levels were 

clearly decreased after six hours (Figure 5.18). The differences became even 

more significant at subsequent time points. 
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Figure 5.18 Decreased stability of mtDNA-encoded COX subunits in 
APOPT1-deficient patient cells. L-[35S]-Methionine pulse-chase labelling of 
mtDNA-encoded proteins in control fibroblasts (C1 and C2) and patient cells (S2 
and S6) transduced with either the GFP protein alone (GFP) or the APOPT1GFP 
construct. After a two-hour exposure with the radioactive label (pulse), cells were 
cultured in cold medium for the indicated chase times. The graphs below show 
the densitometric quantification of the signal intensities of MT-CO1 (upper graph) 
and MTCO2+MT-CO3 (bottom graph) normalised to the ATP6 signal over the 
indicated time points. Data are presented as mean ± SEM (n = 3). **** p < 0.0001, 
*** p < 0.0005, ** p < 0.005, * p < 0.05 (two-way ANOVA Sidak’s multiple 
comparisons test). 
 

 

5.2.6 APOPT1 cytoplasmic levels are regulated by ubiquitination and 

proteasome degradation 

 

  APOPT1HA was stabilised following treatment with the proteasome 

inhibitor MG132 (Melchionda et al., 2014). In order to further explore this finding, 

the newly transduced 143B cells, expressing detectable amounts of APOPT1HA 

in basal conditions, were treated with 5µM MG132 for different times.  An increase 

in the precursor protein and a corresponding decrease of the mature cleaved 

form were observed after 2 and 6 hours of treatment (Figure 5.19), confirming 

that the precursor of APOPT1 is degraded by the UPS. 

 

 

Figure 5.19 The precursor of APOPTHA is accumulated after proteasome 
inhibition. SDS-PAGE (4-12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) and 
WB analysis of total lysates from 143B APOPT1HA cells untreated (UT) and 
treated with 5µM MG132 for 2 and 6 hours. The graph represents the 
densitometric quantification of the signals for the precursor and mature protein. 

 

143B 

APOPT1HA

TUBULIN

HA

50KDa-

25KDa-

20KDa-

M
G

1
3
2
 2

h
M

G
1
3
2
 6

h

U
T

0

50

100

150

200

Untreated MGM132-2h MGM132-6hR
e
la

ti
v
e

 b
a
n

d
 i
n
te

n
s
it
y

APOPT1HA

mature precursor   
  

%
 o

f 
s
ig

n
a

l/
tu

b
u

lin
 s

ig
n

a
l 



Chapter 5 – APOPT1, cellular models 
 

 179 

In addition, higher molecular mass HA-immunoreactive bands appeared 

after proteasome inhibition, which corresponded to ubiquitinated forms of 

APOPT1, as confirmed by immunoblotting for ubiquitin of immunoprecipitated 

APOPT1HA (Figure 5.20).  

 

Figure 5.20 APOPT1HA ubiquitinated forms accumulate after proteasome 
inhibition. The upper part of the panel (Input) shows Western blot analyses of 
total lysates from 143B cells transduced with either the empty vector (E.V) or 
APOPT1HA, untreated (-) and treated with MG132 (+). Higher molecular mass 
bands appeared upon longer exposure in the samples treated with the 
proteasome inhibitor. The bottom part of the panel (Purified fractions) shows the 
analysis of fractions from the same cells immunoprecipitated with anti-HA. The 
higher molecular weight species (arrows) are cross-reacting with both anti-HA 
and anti-ubiquitin. Experiments performed by Anna S. Dickson (Cambridge 
Institute for Medical Research, CIMR, Cambridge, UK). 
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5.2.7 Mature APOPT1 is stabilised in oxidative stress conditions 

 

 APOPT1 was also stabilised when H2O2 was added to the cells directly in 

the culture medium, suggesting a role for APOPT1 in oxidative stress response 

(Melchionda et al., 2014). To further explore this phenomenon, we stressed 143B 

cells overexpressing APOPT1HA and APOPT1GFP with 100 µM H2O2, the lowest 

concentration that has been shown to produce oxidative stress both in the cytosol 

and in the mitochondria (Hinchy et al., 2018). The levels of both APOPT1HA and 

APOPT1GFP increased five to ten minutes after starting the treatment. Tagged 

APOPT1 amounts continued to be increased after three hours and returned to 

the initial levels at the six-hour time point (Figure 5.21), most likely due to the 

total elimination of extracellular H2O2 by the peroxide-removal systems in the cell 

(peroxiredoxins, glutathione peroxidases, catalases, etc.) (Chance, Sies and 

Boveris, 1979; Wagner et al., 2013). Conversely, other mitochondrial proteins, 

including structural subunits (NDUFS1, UQCRC2, MT-CO1) and assembly 

factors (MR-1S), or proteins involved in the cytoplasmic heat-shock protein 

response (HSP70) did not increase under these conditions (Figure 5.21).  
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Figure 5.21 APOPT1 is stabilised by H2O2. SDS-PAGE (4-12 % NuPAGE Bis-
Tris, Thermo Fisher Scientific) and WB analysis of total lysates from 143B cells 
overexpressing tagged APOPT1 (as indicated) untreated (UT) and exposed to 
100 μM H2O2 for the indicated times. The upper graphs represent the 
densitometric quantification of the tagged APOPT1 signal normalized to the 
HSP70 signal at each time point. The graph inset shows that the increase of 
APOPT1 occurs in the first minutes after the exposure to H2O2. 
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 To test whether this effect could be reproduced when ROS were 

selectively generated within mitochondria, we used MitoPQ (kindly provided by 

Michael Murphy and Elizabeth Hinchy), which is specifically imported into the 

organelle and generates superoxide (O2•-) within the mitochondrial matrix (Robb 

et al., 2015). ROS generated within the organelle could directly or indirectly affect 

intramitochondrial APOPT1. On the other hand, it has been shown that the ROS 

produced by MitoPQ do not reach the cytosol (Hinchy et al., 2018). However, the 

oxidative signal generated within the mitochondria could still be transferred to the 

cytosol through redox-relay reactions among redox-sensitive proteins that 

eventually interact with the target protein, in this case the cytosolic APOPT1 

precursor (Herrmann and Riemer, 2012; Sobotta et al., 2015a). Treatment with 5 

µM MitoPQ in 143B cells overexpressing APOPT1HA and APOPT1GFP also 

promoted the rapid stabilisation of the mature APOPT1 form after only ten 

minutes (Figure 5.22), which continued for the first hours. APOPT1 amounts 

went back to the initial, or even lower, levels after 6 to 20 hours of treatment 

(Figure 5.22).  Again, other mitochondrial proteins, including structural subunits 

(NDUFS1, UQCRC2, MT-CO1) and assembly factors (MR-1S), or proteins 

involved in the cytosolic heat-shock protein response (HSP70) did not increase 

under these conditions (Figure 5.22). 
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Figure 5.22 APOPT1 is stabilised by oxidative stress produced by MitoPQ. 
SDS-PAGE (4-12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB 
analysis of total lysates from 143B cells overexpressing tagged APOPT1 (as 
indicated) untreated (UT) and exposed to 5 μM MitoPQ for the indicated times. 
The upper graphs represent the densitometric quantification of the tagged 
APOPT1 signal normalized to the HSP70 signal at each time point. The graph 
inset shows that the increase of APOPT1 occurs in the first minutes after 
exposure to MitoPQ. 
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2014), since pharmacological proteasome inhibition clearly led to the preferential 

accumulation of the APOPT1 precursor (Figure 5.19), whereas addition of H2O2 

and MitoPQ increased the amounts of the mature species (Figure 5.21 and 

5.21). We further confirmed this by analysing the ubiquitinated protein levels in 

stressed and non-stressed cells. However, we did not find an increase in general 

ubiquitination in 143B cells overexpressing APOPT1HA and APOPT1GFP under 

exposure to 100 µM H2O2 or 5 µM MitoPQ (Figure 5.23). 
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Figure 5.23 Ubiquitination analysis of cells stressed with oxidants. SDS-
PAGE (4-12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB analysis of 
total lysates from 143B cells overexpressing tagged APOPT1 (as indicated) 
untreated (UT) and treated with (A) H2O2 or (B) MitoPQ for the indicated times. 
No increase in ubiquitinated proteins was observed with any of the treatments. 
 

 

5.2.8. APOPT1 protects COX subunits from oxidatively-induced 

degradation  

 

In order to analyse the possible effect of APOPT1 on COX under oxidative 

stress conditions, control fibroblasts and patient-derived cells transduced either 

with the GFP protein alone or the APOPT1GFP construct, were treated with 5 µM 

MitoPQ for different times. Similar to what was observed in 143B cells, 

APOPT1GFP levels increased around 4-fold in the complemented fibroblasts after 

10 minutes from the start of MitoPQ treatment, reaching a maximum of 8-fold 

after 30 minutes to eventually decrease to pre-treatment levels after 20 hours of 

incubation (Figure 5.24). Interestingly, the addition of MitoPQ to the culture 

medium of APOPT1-deficient cells resulted in a gradual decrease of the levels of 

MT-CO2 and MT-CO1, being the reduction in the latter statistically significant 

after 20 hours of MitoPQ exposure (Figure 5.24). Conversely, wild-type 

immortalized fibroblasts and APOPT1GFP-complemented patient cells showed no 

decrease in the amounts of MT-CO1 and MT-CO2, or even a slight increase, 

following MitoPQ treatment (Figure 5.24). The levels of a complex III structural 

subunit (UQCRC2) were unaffected, while complex I NDUFS1 was clearly 

reduced at the 20 h point, although this was independent on the presence or 

absence of APOPT1 (Figure 5.24). 
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Figure 5.24 Effects of MitoPQ treatment in the absence or presence of 
APOPT1. (A) SDS-PAGE (4-12 % NuPAGE Bis-Tris, Thermo Fisher Scientific) 
and WB analysis of total lysates from control fibroblasts (C1) and patient cells 
transduced with the GFP protein alone (S6 GFP) or the APOPT1GFP construct 
(S6 APOPT1GFP), untreated (UT) or treated with 5 μM MitoPQ at the indicated 
times. (B) Densitometric quantification of the APOPT1GFP signal during the 
treatment in two biological replicas. (C) Densitometric quantification of the MT-
CO1 signal in the non-complemented APOPT1-less cells (S6 GFP) vs. the 
complemented cells (S6 APOPT1GFP). Three biological replicas and two 
technical replicates were carried out for each cell line. The signals in UT S6 
APOPT1GFP were considered 100% in each independent experiment. (D) 
Densitometric quantification of the MT-CO2 signal in the non-complemented 
APOPT1-less cells (S6 GFP) vs. the complemented cells (S6 APOPT1GFP). 
Three biological replicas and two technical replicates were carried out for each 
cell line. The signals in UT S6 APOPT1GFP were considered 100%. Data are 
presented as mean ± SEM. * p < 0.05 (unpaired two-tailed Student’s t-test). 
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2 and 5 hours, respectively, confirmed the cellular adaptive response to hypoxia 

(Figure 5.25).  

 

      

 

Figure 5.25 Hypoxia-induced APOPT1 degradation. SDS-PAGE (12 % 
NuPAGE Bis-Tris, Thermo Fisher Scientific) and WB analysis of total lysates from 
confluent 143B cells overexpressing tagged APOPT1 (as indicated) and cultured 
under normoxia (21% O2; 5% CO2) or hypoxia (5% O2; 5% CO2) for 2, 6 and 29 
hours in an INVIVO2 300 hypoxia chamber (Ruskinn, Pencoed, UK). 
 

 

5.3 Conclusions 

 

• The transcript containing five coding exons, annotated as APOPT1-201 in 

Ensembl (www.ensembl.org) with Transcript ID ENST00000409074.6, 

encodes a functional protein able to complement the COX defect in 

APOPT1-null human cells. 
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• No cell death or growth arrest were observed when overexpressing 

APOPT1 in three different human cell lines, including HeLa transduced 

with APOPT1 tagged with a C-terminal GFP, as originally reported 

(Yasuda et al., 2006).  

 

• APOPT1 does not stably interact in a high-molecular weight complex, 

including COX subassembly intermediates. 

 

• Stable translation of wild-type human APOPT1HA and APOPT1GFP in 

different human tumour cell lines and immortalised fibroblasts was 

achieved by using a second-generation lentiviral expression system.  

 

• The mature APOPT1 protein is an IMM-bound protein apparently 

protruding to the matrix.  

 

• Defective APOPT1 is undoubtedly the cause of isolated COX deficiency in 

patients S2 and S6. 

 

• APOPT1-deficiency is associated with reduced levels of fully assembled 

COX, characterised by the accumulation of MT-CO1 containing 

subassemblies and reduced levels of the ‘S3’ intermediate. This suggests 

that APOPT1 participates in the intermediate steps of COX assembly, 

most likely in the joining of MITRAC to the MT-CO2 module in order to 

form the ‘S3’ intermediate.  

 

• Absence of APOPT1 compromises the stability of the mtDNA-encoded 

COX subunits.  

 

• A significant proportion of newly synthesized APOPT1 is ubiquitinated and 

degraded by the proteasome under normal conditions. 
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• Oxidative stress conditions, induced by direct addition of H2O2 or MitoPQ 

in the cell culture medium, rapidly increase the amounts of mature 

APOPT1. 

 

• APOPT1-null cells showed reduction in COX subunit levels in oxidative 

stress conditions. The presence of APOPT1 protected COX from this 

damage.  

 

• APOPT1 protein levels decrease in long-term hypoxia. 

 

 

Figure 5.26 Visual summary of APOPT1-related findings. The cartoon depicts 

APOPT1 opposite regulation by UPS and ROS, as well as its potential intra-

mitochondrial localisation in the IMM facing the matrix and its main function 

assisting the intermediate steps of COX assembly. It also shows the effect of 

oxidative stress in the absence of APOPT1, which results in enhanced 

degradation of COX structural subunits. 
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6.1 Discussion 

 

COX biogenesis and regulation has been extensively studied owing to its 

fundamental role as the terminal oxidase of the mitochondrial respiratory chain. 

Studies in Saccharomyces cerevisiae have been fundamental to understand the 

assembly process of this enzyme. Saccharomyces cerevisiae is easy to be 

genetically manipulated and is a facultative anaerobic organism; both these 

features make it an ideal model organism for mitochondrial research. Indeed, the 

availability of an extensive collection of COX-defective mutant strains has allowed 

the identification of many assembly factors (Tzagoloff and Dieckmann, 1990; 

Barrientos, 2003; Barrientos et al., 2009). The search for homologues of these 

factors in human cells resulted in the identification of several genes encoding the 

corresponding human proteins and eventually the discovery of pathological 

mutations associated with COX deficiency  (Petruzzella et al., 1998; Barrientos, 

2003; Barrientos et al., 2009; Szklarczyk et al., 2012). During the past few years, 

more sophisticated genetic diagnostic approaches have allowed the identification 

of factors involved in COX biogenesis encoded by genes present only in animals 

without any obvious orthologs in yeast, such as LRPPRC (Mootha et al., 2003), 

TACO1 (Weraarpachai et al., 2009), APOPT1 (Melchionda et al., 2014) and 

COA7 (Lyons et al., 2016). This could be related to the fact that COX assembly 

and regulation is more complex in higher organisms and, therefore, requires the 

existence of animal-specific and even vertebrate-specific assembly factors. New 

strategies aimed to identify these specific proteins relevant to human disease 

must be implemented by using mammalian systems in our research. Two 

complementary strategies, proteomics and genomics, allowed us to identify the 

two animal-specific COX assembly factors discussed in this dissertation, MR-1S 

and APOPT1.  

 

 For the identification of novel factors in human cells, we performed 

quantitative proteomic analysis of the subassemblies accumulated in a MT-CO3 

mutant cybrid cell line (Tiranti et al., 2000). As a starting point, we reasoned that 

some assembly factors may remain associated to the partially assembled species 

and that this strategy would unravel their identity (Andrews et al., 2013). As a 
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result of these analyses, MR-1S was picked out as a putative COX assembly 

factor encoded by PNKD, a vertebrate-specific gene that is transcribed into three 

different isoforms (MR-1L, MR-1M and MR-1S). Knock-down expression of MR-

1S in human cells resulted in decreased respiration and COX activity as well as 

defective assembly of the enzyme (Vidoni et al., 2017), confirming its role in COX 

assembly and/or stability. Furthermore, we found that MR-1S interacts with COX 

structural subunits belonging to the early and intermediate assembly groups 

(Nijtmans et al., 1998; Vidoni et al., 2017) and that the advanced subcomplex ‘S3’ 

and fully assembled COX were less abundant in the MR-1S knockdown cells. 

Taken together, these results suggest a role for MR-1S in the intermediate 

assembly steps of COX. In addition, we found that MR-1S co-immunoprecipitates 

with PET100, a known COX assembly factor (Church et al., 2005; Lim et al., 

2014; Oláhová et al., 2015), and vice versa. Yeast Pet100 is necessary for COX 

assembly and has been reported to form a subcomplex with Cox7 (COX7A), 

Cox7a (COX6C), and Cox8 (COX7C) (Church, Chapon and Poyton, 1996; 

Church et al., 2005). Interestingly, two of the human ortholog subunits (COX6C 

and COX7A2) were present in the same fractions as PET100 when MR-1SHA was 

immunoprecipitated. Human skin fibroblasts deficient in PET100 (PET100G48∗) 

show profoundly reduced COX levels (Lim et al., 2014; Oláhová et al., 2015). In 

these cells MT-CO2 was found drastically reduced, whereas MT-CO1 was also 

low, but to a lesser extent (Oláhová et al., 2015). In fibroblasts carrying the only 

other PET100 pathological mutation ever described (PET100M1?) the turnover of 

MT-CO2 and MT-CO3 was much higher than in control cells (Lim et al., 2014). 

This is totally consistent with the idea that PET100 is important for the formation 

and/or stabilisation of the intermediate steps of COX assembly, i.e. the 

subassembly structure produced when the COX4I1 + COX5A and the MT-

CO1 module joins the MT-CO2-containing modules, before the incorporation of 

MT-CO3 and its partners. This is the same step in which we propose that MR-1S 

binds the COX subassemblies. In addition to PET100, MR-1S co-

immunoprecipitated with PET117, a human ortholog of the yeast Pet117, also 

necessary for COX assembly (McEwen et al., 1993; Szklarczyk et al., 2012). The 

involvement of PET117 in COX biogenesis in human cells was never described 

before. Interestingly, by using the PET100G48∗ mutant cells, we were able to 
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determine that the interactions among MR-1S, PET117, and COX structural 

subunits require the presence of PET100.  

Regarding pathogenic variants found in the PNKD gene, mutations in exon 

1, encoding the MTS of the two mitochondrially-targeted proteins (MR-1S and 

MR-1L), have been associated with the autosomal-dominant neurological 

disease paroxysmal non-kinesigenic dyskinesia (PNKD) (Ghezzi, Viscomi, et al., 

2009). Lower oxygen consumption rate was found in fibroblasts from one of the 

patients with mutations in the MTS of MR-1S and MR-1L (mutation c.26C>T 

resulting in an amino acid change p.Ala9Val, reference sequence NM_015488.4) 

(Ghezzi et al., 2015). However, the molecular pathogenic mechanisms of PNKD 

remained elusive, since mutations in the MTS were shown to affect neither 

mitochondrial import nor protein maturation of MR-1S and MR-1L (Ghezzi, 

Viscomi, et al., 2009). The function of both MR-1L, which localises to 

mitochondria and is only expressed in the brain, and MR-1M, which localises to 

the Golgi apparatus and endoplasmic reticulum, remains unknown but is likely 

not related to the COX-specific chaperone role that we have demonstrated for 

MR-1S, since the C-terminal sequences and functional domains of the MR-1L are 

the same of those of MR-1M, and completely different from those of MR-1S. 

 

Genomic screening of mitochondrial encephalopathy patients, showing a 

characteristic MRI pattern and isolated COX deficiency, allowed the identification 

of pathogenic mutations in APOPT1 (Melchionda et al., 2014; Sharma et al., 

2018). Although the genetic association was well established at the time, the 

biochemical link between APOPT1 and COX was unclear. APOPT1 was firstly 

described as an apoptosis-inducing factor identified as overexpressed at the 

mRNA level in smooth muscle cells from atherosclerotic plaques of 

Apolipoprotein E-deficient mice (Yasuda et al., 2000). Exogenous expression of 

the mouse Apopt1 protein fused to GFP at its C-terminus revealed mitochondrial 

localisation (Yasuda et al., 2006). However, overexpression of both the wild-type 

and the tagged protein was shown to induce apoptosis in cultured vascular 

smooth muscle and HeLa cells in a time frame of less than 24 hours after 

transfection (Yasuda et al., 2006; Sun et al., 2008). These contradictory findings 

and the inability to prove the biochemical link with COX in cultured cell models, 

due to difficulties in re-expressing the WT protein in patient-derived fibroblasts 
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(Melchionda et al., 2014), prompted us to generate an Apopt1 KO mouse model 

to study the function of APOPT1. The CRISPR/Cas9 technology was chosen for 

the genomic modification of mouse embryos. This system presents a great 

advantage over other genome editing technologies also based on nucleases, 

such as TALENs and ZNFs. The target specificity of those technologies relies on 

protein/DNA recognition, which means that the DNA-binding motif of the nuclease 

enzyme, encoded by large DNA fragments of 500-1500 bp, must be modified for 

each target, which is a very laborious task (Wood et al., 2011). Instead, 

CRISPR/Cas9 can easily be adapted to new targets by just changing the 20 

nucleotides spacer sequence, while the Cas protein remains unchanged (Rath et 

al., 2015). The traditional transgenic mouse generation system based on 

embryonic stem cells (ESCs) and homologous recombination is extremely time-

consuming, less efficient and much more complex (Capecchi, 1989; Hall, Limaye 

and Kulkarni, 2009). Generation of the construct plus target and validation of 

selected clones can take many months. Moreover, this technique requires 

manipulation of established ES cell lines, limiting the availability of strains for the 

initial engineering. Although this problem can be overcome by performing gene 

editing on a strain for which mouse ES cells already exist, followed by 

backcrosses to the desired background, the process would take more than a year 

(Liu et al., 2017). Finally, engineering of multiple loci cannot be accomplished by 

this approach, unless knock‐in individuals are selected through serial crosses or 

laborious manipulations (Liu et al., 2017). 

The availability of an Apopt1 KO mouse model, allowed us to 

unequivocally establish the association of this protein with COX biogenesis. All 

the analysed tissues showed isolated COX deficiency with reduced enzymatic 

activity, low steady-state levels of structural subunits and defective assembly of 

COX, whereas the rest of the complexes of the respiratory chain were spared. 

The in vivo mouse model was also exploited to evaluate the impact of Apopt1 

deletion on the metabolic, neurological and motor phenotypes. Although Apopt1 

genetic ablation had no major metabolic effects, Apopt1-/- mice showed 

significantly impaired motor coordination and endurance. This was an indication 

of neurological and muscular involvement in the clinical phenotype similar to that 

found in human patients (Melchionda et al., 2014), therefore confirming APOPT1 

as a mitochondrial disease gene. The pathological phenotype was expressed in 
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mice from a very young age and no worsening was observed when the analyses 

were repeated in one-year-old animals. Similarly, the disease has a childhood 

onset in humans with a clinical course that tends to stabilise and even recover 

over time. Some of these patients also presented sensorimotor polyneuropathy, 

which affects both sensory neurons (which convert external stimuli into 

centripetal action potentials) and motor neurons (which are responsible for 

muscle contraction and generation of movement) (Melchionda et al., 2014). 

However, the pole-test results were negative at any age analysed, suggesting 

that, at least, proprioceptive sensory neurons were not damaged in the 

recombinant mice. Although mutations in the human APOPT1 gene were also 

characterised by cognitive involvement in some patients, such as learning 

difficulties (Melchionda et al., 2014), mice memory and spatial learning (assessed 

by the Y maze), were not affected at any age. However, Apopt1-/- mice showed 

reduced motivation to move and explore their environment, reflecting partial 

neurological impairment. A brain histopathological study, performed on three-

month-old mice, showed neither morphological abnormalities nor neuronal loss 

or necrosis. The possibility that only the peripheral nerves, and not the brain, are 

affected in mutated mice cannot be ruled out, as some of the patients did present 

peripheral neuropathy (Melchionda et al., 2014). It is also possible that brain 

histopathological lesions appear in ageing mice, although the motor and 

behavioural tests failed to clearly indicate a progressive deterioration of the 

clinical phenotype.  

The initial characterisation of APOPT1 function and regulation was not 

possible due to the inability to re-express wild-type functional APOPT1 in cultured 

cells (Melchionda et al., 2014). This was most probably due to the transfection 

and transduction systems used, which did not allow the stable expression of the 

HA-tagged APOPT1 protein in human fibroblasts. By optimising the transduction 

and expression systems with different lentiviral vectors and recombinant 

constructs, we were able to obtain stable translation of WT human APOPT1HA 

and APOPT1GFP in different human cell lines: standard tumour cells (HeLa and 

143B) and immortalised fibroblasts, from both control subjects and patients. 

When overexpressing APOPT1 in human cells and contrary previous reports 

(Yasuda et al., 2006; Sun et al., 2008), we did not observe any cell death or 

growth arrest, including HeLa transduced with APOPT1 tagged with a C-terminal 
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GFP, similarly to what was used in the original report. The stable expression of 

the APOPT1 tagged versions, and the development of polyclonal antibodies 

recognising the endogenous human protein, enabled us to determine APOPT1 

mitochondrial and sub-mitochondrial localisation as a protein associated to the 

inner membrane with its C-terminal most likely protruding into the matrix. In 

addition, transduction of WT APOPT1 in immortalised fibroblasts derived from 

two unrelated patients, S2 and S6 (Melchionda et al., 2014), rescued the 

enzymatic and assembly COX defect. Altogether, these results allow us to clearly 

establish a role for APOPT1 in COX biogenesis and exclude its involvement in 

apoptosis, at least in the cells and tissues considered in our study. Therefore, we 

propose to change its name into cytochrome c oxidase assembly factor (COA) 8 

and add it to the collection of already known COX assembly factors named COA 

1-7.  

The assembly defect shown by all the APOPT1-null models analysed, i.e. 

Apopt1-/- tissues as well as patient-derived immortalised fibroblasts, involves the 

global down-regulation of COX with an accumulation of subcomplexes including 

early assembly subunits (COX4 and COX5A) and the MT-CO1 module (MITRAC 

complex). Consistent with this observation, COX4, COX5A and MITRAC steady-

state levels were less reduced than those of the MT-CO2 and MT-CO3 modules, 

involved in later steps of COX assembly (Timón-Gómez et al., 2017; Vidoni et al., 

2017). Moreover, the ‘S3’ subassembly, containing the MT-CO1 and MT-CO2 

modules together, is markedly reduced in the patient-derived cells. Thus, 

APOPT1/COA8 must play a role in joining or stabilising the MT-CO2 module to 

COX4-COX5A and MT-CO1. Absence of APOPT1/COA8 did not affect the 

synthesis of any of the mtDNA-encoded COX subunits. However, the stability of 

COX subunits was severely compromised, being probably actively degraded 

owing to impaired incorporation into the nascent complex. The same 

phenomenon has been consistently observed when different COX assembly 

factors, such as SCO1, COX20, CMC1 or COX18, are mutated or absent in 

human cells, determining the stalling in the assembly of the MT-CO1 module 

(Leary et al., 2009; Bourens et al., 2014; Bourens and Barrientos, 2017b, 2017a). 

Accordingly, it has been shown that COX deficient S. cerevisiae strains showing 

high sensitivity to hydrogen peroxide and an accumulation of subassemblies 

containing haemylated Cox1 (Khalimonchuk, Bird and Winge, 2007; Veniamin et 
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al., 2011) display a faster turnover of unassembled COX subunits, which is 

mediated by the ATPase Afg1 (Khalimonchuk, Bird and Winge, 2007). 

Interestingly, LACE1, the human orthologue of Afg1, is also involved in the 

degradation of nuclear-encoded COX subunits (Cesnekova et al., 2016). These 

lines of evidence strongly suggest that there is a regulatory mechanism of COX 

assembly that links the accumulation of MT-CO1 containing subassemblies with 

faster degradation of unassembled COX subunits.  

Concerning the regulation of APOPT1/COA8, the results presented here 

indicate active ubiquitination and proteasome-mediated degradation of the 

APOPT1/COA8 precursor in the cytoplasm under normal conditions and before 

mitochondrial import. Proteasome-mediated degradation of mitochondria-

targeted proteins, especially those of the IMS, has been proposed as a regulatory 

mechanism aiming to prevent the accumulation of precursor proteins in the 

cytoplasm when import fails and to modulate their availability under physiological 

conditions (Bragoszewski et al., 2013; Wrobel et al., 2015). Therefore, the UPS 

could be involved in the mechanisms regulating COX assembly and function 

through APOPT1/COA8.  

Short-term and mild oxidative stress, induced by direct addition of H2O2 in 

the cell culture medium or via MitoPQ, seem to enhance APOPT1/COA8 import 

or stabilisation inside mitochondria, since the amounts of mature APOPT1/COA8 

increase in these conditions. This phenomenon cannot be attributed to direct 

proteasome inhibition by H2O2 (Livnat-Levanon et al., 2014; Segref et al., 2014) 

as we did not observe signs of accumulation of ubiquitinated proteins or 

increased heat-shock protein response. Moreover, pharmacological inhibition of 

the proteasome produced the preferential accumulation of APOPT1/COA8 

precursor and not of the mature protein, as we observed under oxidative stress 

conditions. It has been shown that MitoPQ continuously and cumulatively 

generates ROS within mitochondria by redox cycling at the flavin site of complex 

I (Robb et al., 2015), but that these ROS do not diffuse to the cytosol (Hinchy et 

al., 2018). This could indicate that oxidants only have an effect on the 

intramitochondrial APOPT1/COA8, i.e. stabilise the mature form of 

APOPT1/COA8 without affecting its import. Addition of MitoPQ to the cell culture 

medium induces the redox-dependent dimerisation of mitochondrial matrix 

peroxiredoxins, which is reversed after 6 to 20 hours (Hinchy et al., 2018), the 
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same time-frame in which we observed the return of APOPT1/COA8 to basal 

levels. Thus, an interesting possibility, worth testing in the future, is that the 

stabilisation of APOPT1/COA8 could be mediated by the matrix pool of 

peroxiredoxins, which are peroxidase enzymes in which the catalytic site contains 

two well conserved redox active cysteines involved in cellular redox homeostasis 

(Rhee, 2016). Indeed, it has already been shown that thiol peroxidases are 

involved in the transformation of oxidative equivalents (the peroxide) into 

transmittable signals, such as the formation of disulphide bonds in target proteins. 

This sensor-transducer mechanism has been reported in both yeast (Pflieger, 

Vinh and Toledano, 2002) and mammals (Sobotta et al., 2015b). Another 

possibility is that the oxidative signal generated within the mitochondria is 

transferred to the cytosol by redox-relay interactions among redox-sensitive 

proteins, eventually modifying the cytosolic precursor of APOPT1/COA8 and 

favouring its import. Human APOPT1/COA8 has cysteine residues eleven amino 

acids upstream and nineteen amino acids downstream of the predicted MTS 

cleavage site, which are well conserved in other mammalian species and could 

therefore be involved in redox modifications that modulate its import and/or 

stability. Another indication that the peri-MTS cysteine residues could be involved 

in the regulation of APOPT1/COA8 import comes from a bioinformatic prediction 

using the Mitofates online tool (http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi), which 

indicates that the two conserved cysteines in APOPT1/COA8 are part of or in 

close proximity to TOM20 recognition motifs (Figure 6.1). TOM20, a 20-kDa 

peripheral subunit of the TOM complex, interacts with the N-terminal MTS of 

cytosolic precursor proteins destined to the mitochondrial matrix and IMM (Söllner 

et al., 1989; Ramage et al., 1993; Rapaport, 2003) and recognises a 5–6-residue 

common motif, distinguishing them from other non-mitochondrial proteins and 

allowing their import into the organelle (Moczko et al., 1997; Obita et al., 2003). 

http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi
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Figure 6.1 
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Figure 6.1 Mitofates prediction software. The output shows the N-terminal 100 
amino acids of the mouse, bovine, pig and protein with the following features: 
predicted cleaved site, region having the maximum score of positively charged 
amphiphilicity score in N-terminal 30 residues (high and low mean that the score 
is higher and lower than the sensitivity and specificity versus cut off value, 
respectively), regions matching to known TOM20 recognition motif (ΦΧβΦΦ) and 
regions matching to any of 14 types of statistically significant 6-mers in N-terminal 
30 residues: ΦΦσβΦΦ, ΦΦβσΦΦ, ΦΦΦβσΦ, ΦΦβσΦβ, ΦβΦΦβγ, βΦΦσσσ, 
ΦΦΦββΦ, ΦΦβΦΦβ, ΦσβΦΦσ, σΦΦβσΦ, ΦβΦΦγβ, ΦΦΦΦββ, ΦΦβσΦσ, 
βσΦβΦΦ. Φ indicates hydrophobic amino acid (L, F, I, V, W, Y, M, C, A), β 
indicates basic amino acid (R, K, H), σ indicates polar aminoacid (S, T, N, Q) and 
γ indicates secondary structure breaker amino acid (P, G). 

 

 

Preliminary results shown in Chapter 5 indicate that APOPT1/COA8 

amounts decrease in long-term hypoxia, confirming that the levels of this protein 

are strongly affected by the cellular redox state. HIF-1 can directly regulate gene 

expression by binding to hypoxia response elements (HRE), which are located 

upstream of transcriptional sites of target genes (Semenza and Wang, 1992). 

However, since gene expression of APOPT1HA and APOPT1GFP is not controlled 

by the endogenous promotor, the decrease in protein levels is most likely to be 

consequence of an increased proteolytic degradation, which could be controlled 

by the UPS and/or by mitochondrial proteases. For example, the matrix LON 

protease was reported to be involved in COX turnover under hypoxic conditions 

by degradation of phosphorylated COX4I1 and COX5B subunits (Sepuri et al., 

2017). 

In the case of APOPT1/COA8 deficiency, neither the human cultured cells 

nor mouse tissues showed increased H2O2 production in non-induced conditions, 

however, when the patient-derived fibroblasts were oxidatively challenged they 

showed a significant increase in ROS production compared to the controls 

(Melchionda et al., 2014), which argues in favour of a ‘pro-oxidant state’ in the 

absence of APOPT1/COA8. Interestingly, of the seven reported patients with 

mutations in APOPT1/COA8, 3 had an onset of the disease after a febrile illness 

or infection. It is well-known that both viral and bacterial infections trigger ROS 

production, which can in turn trigger the development or manifestation of other 

diseases (Schwarz, 1996; Ivanov, Bartosch and Isaguliants, 2017). In line with 

oxidative stress worsening the clinical phenotype of the patients, these same 

APOPT1-null cells showed further reduction in COX levels when oxidants were 
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added to the culture medium. The presence of APOPT1/COA8 in control cells 

(both complemented patient and control fibroblasts) protected COX from this 

damage. These observations underscore the association of APOPT1/COA8 

function with COX assembly and stabilisation, as well as with the protection of 

the nascent enzyme from oxidative damage, which leads to degradation of its 

structural components.  

 

In summary, we have demonstrated that quantitative proteomic analysis 

of subassemblies accumulated in cells with defective COX assembly, is a useful 

tool to identify new assembly factors that remain associated to the intermediates. 

In this way, we found MR-1S, a vertebrate-specific protein that interacts with COX 

subunits and the highly conserved PET100 and PET117 assembly factors. On 

the other hand, we have clearly demonstrated that genetic ablation of APOPT1 

is directly related to COX deficiency and mitochondrial disease. Moreover, we 

propose a mechanism of modulation of COX assembly that is mediated by 

regulating the levels of APOPT1/COA8, first in the cytoplasm by degrading it 

through the ubiquitin-proteasome system and secondly by ROS, which increases 

its intramitochondrial form to promote COX assembly at intermediate steps by 

stabilising and/or protecting the COX subassemblies from oxidative damage.  

 

 

6.2 Future aims 

 

• Characterisation of the function of human PET117 by knocking-down 

and/or knocking out its expression and evaluating the effect on COX 

activity and assembly. Additional studies, such as sub-mitochondrial 

localisation and PET117 protein levels upon knocking-down MR-1S or 

COX11, would be very useful to better understand the role of this protein 

in the intermediate steps of human COX maturation. 

 

• To study the possible histopathological alterations in ageing Apopt1-/- 

brains, as differences in exploratory behaviour, which are related to 

cognitive functions, became evident in six-month old and older mice. 
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• Further characterisation of the neurological phenotype of Apopt1 KO 

ageing mice by using more sophisticated behavioural tests such as 2-

object novel object recognition, which measures the spontaneous 

tendency of mice to spend more time exploring new objects than familiar 

ones, or the visual acuity test, which assesses visual discrimination and 

clarity. 

 

• Investigation of the Apopt1-/- mice phenotypical and biochemical changes 

induced by oxidative stress. The mice could be treated with 

acetaminophen, which has been shown to induce oxidative stress in liver 

(Jaeschke, McGill and Ramachandran, 2012), or MitoPQ, which has not 

been tested in vivo yet. Since human APOPT1/COA8 protects COX from 

oxidatively-induced degradation, a worsening of the phenotype in Apopt1 

KO mice is expected. 

 

• Measurement of the H2O2 levels produced in mouse isolated mitochondria 

from oxidatively stressed tissues in vivo and the effects of direct addition 

of oxidants to the isolated mitochondria.  

 

• Investigation of the APOPT1/COA8 interactome by immunoprecipitation of 

the tagged proteins using anti-HA and anti-GFP affinity agarose beads. 

Quantitative mass spectrometry using SILAC could be used to compare 

patient-derived fibroblasts mock-transfected and overexpressing 

APOPT1GFP. In addition, cells could be stressed with H2O2 or MitoPQ prior 

to the immunoprecipitation, in order to investigate whether APOPT1/COA8 

interacts with other proteins, such as COX assembly factors or COX 

subunits, under these conditions. 

 

• BN-PAGE-based kinetic studies of the incorporation of newly synthesised 

radio-labelled mtDNA-encoded COX subunits to understand exactly in 

which point COX assembly is disrupted in APOPT1-null cells and whether 

the structural subunits are degraded after being incorporated (due to an 
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unstable fully-assembled COX) or if they are accumulated and degraded 

before joining the nascent complex. 

 

• A significant proportion of the APOPT1/COA8 precursor seems to be 

ubiquitinated and degraded by the proteasome under normal conditions. 

However, complementary experiments, such as WB analysis of the 

potential gradual degradation of APOPT1/COA8 by the UPS after cytosolic 

protein synthesis inhibition, need to be performed in order to validate this 

observation. 

 

• Further analysis of the effect of oxidants on the COX in APOPT1-null cells, 

such as BN-PAGE analysis and COX enzymatic activity, are necessary in 

order to better understand the role of this protein in COX maturation under 

oxidative stress. 

 

• Investigation of the role of the cysteines proximal to the APOPT1/COA8 

MTS in relation to the import and/or intramitochondrial stabilisation of the 

protein. These specific residues will be substituted by alanines by site-

directed-mutagenesis in order to investigate whether they are involved in 

direct post-translational modifications by H2O2 or by interaction with other 

redox-sensitive proteins. Furthermore, the redox state of the cysteines will 

also be investigated by electrophoretic mobility shift assays in which the 

redox-modified cysteine residues are tagged with a large group, such as 

a polyethylene glycol (PEG) polymer (van Leeuwen et al., 2017). In 

addition, the APOPT1/COA8 MTS will be replaced by a classic MTS (with 

no cysteine residues) and the functionality and localisation of the protein 

will then be analysed in transfected cells with this hybrid construct. Also, 

the effect of oxidants on the regulation of this protein lacking the natural 

APOPT1/COA8 MTS will be investigated.  

 

• Expand the analysis of APOPT1/COA8 protein levels in hypoxia. This 

preliminary observation will be confirmed by replicating the experiment 

and analysing APOPT1/COA8 protein levels at more time points. The 
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implication of the hypoxic signalling pathways in the observed effect will 

be analysed (Clerici and Matthay, 2000; Pham et al., 2002). The proteolytic 

pathways leading to APOPT1/COA8 decrease in hypoxic conditions will 

also be investigated.  
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