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Abstract 

A method for under-sampling and compressed sensing of 3D spatially-resolved propagators is 

presented and demonstrated for flow in a packed bed and a heterogeneous carbonate rock. By 

sampling only 12.5% of q,k-space, the experimental acquisition time was reduced by almost an order 

of magnitude. In particular, for both systems studied, a 3D image was acquired at 1 mm isotropic 

spatial resolution such that 134,400 local propagators were obtained. Data were acquired in ~1 h and 

~11 h for the packed bed and rock, respectively. It is shown that spatial resolution and under-sampling 

using this implementation retains the quantitative nature of the propagator measurement, and 

differences between implementation of this measurement in two and three dimensions are identified. 

The potential for 3D spatially-resolved propagators to provide new insights into transport processes in 

porous media by characterisation of the statistical moments of the propagators is discussed. 
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1 Introduction 

Pulsed field gradient (PFG) magnetic resonance imaging (MRI) is an invaluable tool for 

understanding fluid transport through porous media. It can be used to spatially map average fluid 

velocities throughout a porous medium of interest [1], or, alternatively, to spatially resolve ensemble-

average displacement propagators [2-4]. Although spatially-resolved propagators provide a 

comprehensive characterisation of fluid motion, which includes contributions from flow, dispersion 

and self-diffusion, their measurement is costly in terms of experimental time, because images need to 

be acquired for a range of q-values. Alternatively, a velocity map can be derived from only two 

images acquired at different q-values, which constitutes a much quicker measurement, although with 

this methodology accuracy of the flow measurement may be compromised if there is a high degree of 

asymmetric dispersion in the local flow field [5]. To reduce data acquisition times for spatially-

resolved propagators, it is possible to acquire only a subset of data points in q,k-space. However, 

direct Fourier transformation of under-sampled data leads to image artefacts due to violation of the 

Nyquist sampling rate. It has previously been shown that compressed sensing (CS) can be used for 

artefact-free recovery of magnetic resonance  data [6,7] and recently, application to the measurement 

of a 2D spatially-resolved propagator from under-sampled q,k-data has been demonstrated [2]. In this 

paper the extension of this work to include a third spatial dimension is described. The method is then 

demonstrated with respect to the acquisition of a 3D spatially-resolved propagator of flow through a 

packed bed of spheres and hollow cylinders, and a heterogeneous carbonate rock core. 

 

As is well known, displacement propagators are probability distributions of molecular displacements 

�̅�(𝐫, Δ), where �̅� is the probability that a spin moves over a distance 𝐫 in an observation time Δ. 

Pulsed-field gradient (PFG) NMR is routinely used to acquire spatially-unresolved displacement 

propagators. The signal intensity 𝐴 is measured as a function of q=
γδg

2π
, where g is a vector describing 

the intensity and direction of the applied gradient pulses, δ the time for which the pulses are applied, 

and γ the gyromagnetic ratio. 𝐴(𝐪)  is related to the propagator, for a given Δ , via Fourier 

transformation (FT): 

 

�̅�(𝐫, Δ) = ∫ 𝐴(𝐪)𝑒−2𝜋𝑖𝐪∙𝐫d𝐪.         (1) 

 

In order to acquire spatially-resolved displacement propagators, the q-encoding PFG NMR 

experiment needs to be coupled to an imaging experiment to acquire k-space. The spatially-resolved 

propagator is then obtained by Fourier transformation of the whole q,k-space. 
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The results presented here extend recent work in which a 13-interval Alternating Pulsed Gradient 

Stimulated Echo (APGSTE) PFG NMR experiment [8] was combined with a Rapid Acquisition with 

Relaxation Enhancement (RARE) MRI experiment [9] for spatially resolving the displacements to 

produce spatially-resolved propagators in 2D slice sections within a porous medium. In the present 

work, a 4-dimensional q,k-space (q-space 1-dimensional, k-space 3-dimensional) is sampled 

according to a quasi-random under-sampling pattern so that the propagators are spatially resolved in 

all 3 spatial dimensions. The propagators, which are encoded in q, can be measured in any arbitrary 

spatial direction. The under-sampling APGSTE-RARE MRI experiment imposes some boundary 

conditions on the sampling pattern, but as will be outlined below, it can accommodate essentially any 

degree of sampling and imposes no restrictions on the position in kphase of the points sampled. In 

contrast to the 2D spatially-resolved propagators, in which a phase-encoded, a frequency-encoded, 

and a slice-selective dimension were used for spatial encoding, for the 3D spatially-resolved case 

there is no slice-selective dimension, but an additional phase-encoded dimension. The additional 

phase-encoded dimension can be under-sampled, allowing for greater freedom in the design of the 

sampling pattern relative to the 2D spatially-resolved case. 

 

2 Experimental design 

In this section, the experimental acquisition of under-sampled 3D spatially-resolved propagators is 

described. First, the APGSTE-RARE pulse sequence used to acquire the 4-dimensional under-

sampled q,k-data is described. Second, the under-sampling scheme used in combination with this 

experiment is shown. Differences between acquisitions of 3D and 2D spatially-resolved propagators 

are highlighted. 

 

2.1 APGSTE-RARE experiment 

A schematic of the pulse sequence used to acquire 3D spatially-resolved propagators is shown in Fig. 

1. As described in our earlier work [2], the 13-interval APGSTE sequence was used for displacement 

(q) encoding, because it partially compensates for the effects of internal gradients that are expected to 

be present in many of the porous media of interest [8]. The RARE experiment was used for spatial (k) 

encoding. In the 3D spatially-resolved RARE experiment, one dimension, kread, is frequency encoded, 

and two dimensions, kphase1
 and kphase2

, are phase encoded. Throughout this work, displacements 

were measured along z-direction, i.e., q = qz, parallel to kread. For the acquisition of 3D spatially-

resolved propagators, all r.f. pulses were hard and rectangular, and a second phase-encoded dimension 

replaced the slice-selective dimension used in the 2D spatially-resolved case. Spatially-resolved 

propagators were acquired employing XY phase cycling [10] rather than conventional CPMG phase 

cycling [11,12] on the RARE inversion pulse train . It has been shown previously that the application 

of an XY phase cycle, and the resulting need to acquire individual, identical data sets in the odd and 
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even echoes that are recombined during post-processing, has no significant influence on the quality of 

propagator measured on packed beds and rock samples [2,13]. However, due to the need to acquire 

individual data sets in the odd and even echoes, the factor by which the experimental time is reduced 

does not equal the number of echoes (Nech) as in conventional RARE, but rather ½Nech. 

 

2.2 Sampling pattern design 

For the case of an APGSTE-RARE acquisition of 3D spatially-resolved propagators, three of the four 

data dimensions can be under-sampled. Only the readout dimension, kread, is always fully sampled, 

which does not come at a significant cost in terms of acquisition time. For the kphase and q dimensions, 

the sampling scheme employed follows that used in previous work [2,14,15]. To minimise coherent 

artefacts in the CS reconstructions due to under-sampling, pseudo-random patterns are generated on 

the basis of a polynomial probability density function (pdf) [16]: 

 

pdf=(1-r)
n
,           (2) 

 

where r ∈ 0 < r < 1 is a measure of distance from the centre of reciprocal space. The central point in 

q,k-space and a finite region around the central point, where the amplitude of the Fourier coefficients 

is particularly high, is always sampled fully. The choice of exponent n influences the CS 

reconstruction quality, and is typically chosen such that the shape of the pdf qualitatively resembles 

the Fourier amplitude distribution in reciprocal space. 

 

The potentially different distribution of the intensities of the Fourier coefficients in the q and k-

dimensions was adjusted for by varying exponent n of the pdf in Eq. 2 cyclically between the two 

phase encoded dimensions, kphase1
 and kphase2

, and the q dimension as: 

 

𝑛q,kphase
= 𝑛q + (𝑛kphase

− 𝑛q) (
|kphase1

+kphase2
|

|kphase1
+kphase2

+q|
)

2

,       (3) 

 

where kphase1
, kphase2

 and q are vectors, and 𝑛kphase
 and 𝑛q are the exponents along the kphase- and q-

directions, respectively. A single value for 𝑛kphase
 is used for both phase directions because the packed 

bed and rock core used in this work are structurally isotropic with respect to these directions. 

Constraints imposed on the under-sampling scheme generated on the basis of this pdf are the same as 

in the case of 2D spatially-resolved propagators [2]. 

 

Figure 2 shows the sidelobe-to-peak ratios (SPR) for a range of different pseudo-random q,kphase-

sampling patterns, which are calculated from their density-compensated point-spread functions [16], 
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for different values of Nech and degrees of sampling. It is of interest to note that, in contrast to similar 

data presented for the acquisition of 2D spatially-resolved propagators [2], the SPR is not as sensitive 

to Nech. The reason is that at higher Nech, the impact of the constraint that the number of kphase-points 

sampled per point in q should always be a multiple of ½Nech becomes lower, because those points can 

be accommodated in the additional dimension in a more incoherent fashion. The order in which the 

kphase points in the sampling pattern are acquired experimentally within the RARE echo train is 

governed by their distance to the centre of k-space, as described by Ramskill et al. [14].  

 

 

2.3 Data reconstruction 

2.3.1 Fully-sampling and Fourier transformation 

As in the case of 2D spatially-resolved propagators [2], for the case of fully-sampling, the data were 

Fourier-transformed in the k- and q-dimensions. As described in that work, data from the odd and 

even echoes were separated, and either one was flipped in the q-dimension. A zeroth-order phase 

correction was applied according to the central point in q,k-space. The data from the odd and even 

echoes were then recombined. A window function was then applied in all k-dimensions in order to 

suppress truncation artefacts due to the presence of sharp interfaces in the spatial domain, which also 

affect the quantitative nature of the per-voxel propagators. Because the window function is not 

applied in the q-dimension, the propagators themselves are not broadened. In the case of processing 

the 3D spatially-resolved propagators, a sine window, as used in the 2D spatially-resolved case, was 

found not to be powerful enough to suppress the truncation artefacts. Instead, a Gaussian window 

function is used such that if the central point of k-space is sampled at the point with index 𝑚 = 𝑚k0
, 

the Gaussian window w in each k-dimension is defined as: 

 

𝑤(𝑚) = 𝑒
−

1

2
(

𝑚−𝑚k0
𝑀𝑚k0

)

2

,           (4) 

 

where M is a positive number. The standard deviation of the window equals 𝑀𝑚k0
 lattice units of 

width Δk. It was found that adequate suppression of the truncation artefacts was achieved by using 

M ≥ 0.5. As a final step, after Fourier transformation, the resulting spatially-resolved propagator was 

phase corrected in first order. 

 

2.3.2 Under-sampling and compressed sensing reconstruction 

For the case of under-sampled data, two methods of reconstruction were implemented: zero-filling 

prior to Fourier transformation, and compressed sensing reconstruction using total variation (TV) 

regularisation. The latter reconstruction has been described elsewhere [2], and is summarised as 

follows. Let u denote a spatially-resolved propagator, ℱ the Fourier-transform operator, and S the 
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sampling pattern; the under-sampled (noisy) data y and the (noisy) spatially-resolved propagator u are 

then related through: 

 

y = Sℱu.            (5) 

 

Compressed sensing employs prior knowledge about u to find a better solution, which is denoted uCS. 

This prior knowledge relates to u having a sparse representation in a certain transform domain. Using 

this knowledge, a solution for uCS is determined subject to the optimisation: 

 

𝒖CS ∈ arg min𝒖 {
1

2
‖𝑆𝐹𝒖 − 𝒚‖2

2 + 𝛼𝐽(𝒖)},       (6) 

 

where 
1

2
‖𝑆ℱ𝒖 − 𝒚‖2

2 is a fidelity term that ensures consistency with the acquired data, and 𝛼𝐽(𝒖) is a 

Tikhonov-regularisation term. 𝐽(𝒖) is a regularisation functional by which a measure of the transform 

sparsity of 𝒖 is incorporated into the optimisation problem and the choice of 𝐽(𝒖) is based on the 

compressibility of 𝒖 in that transform domain. The fidelity and regularisation terms are balanced by 

the regularisation parameter 𝛼 , which is always a positive number. In this paper, total variation 

regularisation (TV) is used for the reconstruction of 3D spatially-resolved propagators, as this was 

found to be an effective regulariser for 2D spatially-resolved propagators [2]; TV regularisation is 

based on finite-differencing of 𝒖, and is defined as: 

 

𝐽(𝒖) = 𝑇𝑉(𝒖) = ‖∇𝒖‖𝟐,𝟏,          (7) 

 

where ‖∇𝒖‖𝟐,𝟏  is the 𝓁1-norm of the 𝓁2-norm of the finite-difference approximation of the local 

gradient ∇𝒖, with zero Neumann boundary conditions. In this application, the 𝓁2-norm of the local 

gradient, ‖∇𝒖‖𝟐, is calculated isotropically (i.e. in all four of the k and q dimensions), as in our 

previous work [2], as it was found to be an effective regulariser for both the k and q domains. An 

appropriate estimate for regularisation parameter 𝛼 was chosen on the basis of Morozov’s discrepancy 

principle [17]. Before reconstruction, as for the fully-sampled case, a Gaussian window (Eq. 4) was 

applied to the under-sampled data to counteract truncation artefacts at sharp interfaces in the spatial 

domain. The CS reconstructions were then performed using a primal-dual hybrid gradient method as 

described in detail elsewhere [18-20]. 

 

3 Material and methods 

3.1 Experimental setup 

Packed bed of spheres and hollow cylinders. As a simple model system for a heterogeneous rock core, 

a cylindrical random-packed bed was prepared consisting of polyoxomethylene (POM) spheres 
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(Simply Bearings Ltd) and hollow cylinders (Bülte Plastics). The use of POM, which has a relatively 

small difference in magnetic susceptibility relative to water [21], minimises the magnetic field 

gradients within the bed, which have an adverse effect on the NMR experiments. The bed was packed 

with an approximately 1:1:1 mix of spheres of 4.0 mm diameter, and cylinders of two different 

lengths, 4.0 and 6.0 mm, the outer and inner diameter of both being 4.0 and 2.6 mm, respectively. The 

internal diameter and length of the bed were 37 mm and 69 mm, respectively. The total porosity, 

determined from the cylindrical volume of the bed, the total mass of the POM elements, and the 

density of POM (1.41 g cm
–3

), was 54.0 ± 1.0%. Uniform flow at the entrance and exit was promoted 

by using porous polyethylene distributor plates (SPC Technologies Ltd) at either end of the bed. After 

loading the elements into the cylindrical column, the packed bed was imbibed with deionised water 

through vacuum saturation. The packed bed was connected into a closed flow loop, and a constant 

flow rate of water of 10 mL min
–1

 was imposed using a Quizix QX-1500HC dual-cylinder syringe 

pump. 

 

Edwards Brown carbonate rock. A cylindrical plug of a heterogeneous carbonate rock (“Edwards 

Brown”; Kocurek Industries Inc.), of diameter and length 38.1 mm (1.5 in) and 6 cm, respectively, 

was used. The total porosity, determined gravimetrically by imbibition of deionised water by vacuum 

saturation was 37.6 ± 0.4%. The core was then placed in a cylindrical Ergotech PEEK rock core flow 

cell and a confining pressure of 2 MPa was applied using 3M Fluorinert FC-43, which is NMR silent 

in typical 
1
H chemical shift ranges. The cell was contained in a closed-loop system with a back-

pressure regulator, and the confining pressure was maintained using a Gilson model 307 pump. A 

constant flow rate of water of 10 mL min
–1

 was imposed using a Quizix QX-1500HC dual-cylinder 

syringe pump. 

 

3.2 Magnetic resonance experiments 

All NMR measurements were made using a Bruker BioSpin AV spectrometer in combination with a 

horizontal-bore superconducting magnet with a static field strength B0 of 2 T (85 MHz 
1
H resonance 

frequency) and a birdcage r.f. coil of 60 mm diameter. An Agilent SGRAD MkIII 205/120/HD tri-

axial gradient system with a maximum gradient amplitude gmax of 0.107 T m
–1

 in the three orthogonal 

x-, y- and z-directions was used. The z-direction was defined as the direction of superficial flow 

through the sample.  

 

3.2.1 Packed bed of spheres and hollow cylinders 

As a ground truth to benchmark the performance of the CS reconstruction of under-sampled data, a 

fully-sampled 3D spatially-resolved propagator was acquired for water flow through the packed bed. 

Rectangular r.f. pulses were used at a nutation frequency of 13 kHz. The field-of-view (FOV) in the 

kread dimension was 88.2 mm, and in both kphase dimensions 42 mm. The number of points acquired in 
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the read dimension was 84, and in the phase dimensions 40, thereby giving an isotropic spatial 

resolution of 1.05 mm × 1.05 mm × 1.05 mm. Thus, local propagators were obtained for each of the 

134,400 voxels in the 3D spatially-resolved propagator. The number of echoes in the RARE loop, 

Nech, was 40 with an echo time, τe, of 2.5 ms. For the APGSTE block, the length of a pair of flow-

encoding gradients δ was set to 7.4 ms, and a total of 65 q-points were sampled by applying flow-

encoding gradients between –9.6×10
–2

 and 9.6×10
–2

 T m
–1

 (90% of gmax) in equidistant steps; i.e., 

symmetrically around the centre of q-space, with the 33
rd

 point at q = 0 m
–1

. These settings lead to a 

FOV in the displacement domain of 1.0 mm. Displacements were measured along the superficial flow 

direction, i.e. z-direction. The displacement-observation time Δ was 200 ms. Four signal averages 

were used with a time between excitations of 0.9 s, resulting in a total acquisition time of 7 h. 

 

Under-sampled spatially-resolved propagators of the same sample were acquired using the same pulse 

sequence settings as for the fully-sampled experiment, except that the sampling pattern was generated 

using the method described in Section 2.2 based on the pdf defined in Eqs. 2 and 3, with 𝑛kphase
 = 7 

and 𝑛q = 4, and with the diameter of the fully-sampled spherical region being at least 4 points in 

reciprocal space. The generated sampling scheme sampled 12.5% of all q,k-space data points. The 

resulting acquisition time was 50 min (using 4 averages and a recycle delay 0.9 s). The displacement-

observation time was again 200 ms, and the spatial resolution remained 1.05 mm × 1.05 mm × 1.05 

mm. 

 

3.2.2 Edwards Brown carbonate rock 

The same approach as used for the model packed bed was employed except that the number of echoes 

in the RARE loop Nech was reduced to 16, because of the faster T2 relaxation characteristics of the 

fluid in the rock relative to the model system. The FOV for the displacement domain was enlarged to 

accommodate the larger displacements observed in the rock relative to the model system at the given 

flow rate and observation time. To this end, in the APGSTE block, the length of a pair of flow-

encoding gradients δ was shortened to 4.6 ms, leading to a FOV of 1.6 mm in the displacement 

domain. All other experimental settings remained the same. A sampling pattern was generated based 

on the same pdf as described in Section 3.2.1 but taking into account the lower Nech. By acquiring 8 

averages at a recycle delay 1.5 s, the acquisition time for the fully-sampled experiment was 86 h, and 

for the under-sampled experiment 11 h. 

 

4. Results and discussion 

As a metric for the quality of the CS reconstruction of the under-sampled data with respect to the 

Fourier transform of the fully-sampled data, the peak signal-to-noise ratio (PSNR) is used, which is 

defined as: 
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PSNR(𝒖CS, 𝒖FS) = 20log
10

(
max(uFS)

‖uCS,uFS‖𝟐
𝟐/Nq,k

),       (8) 

 

where Nq,k is the total number of elements in 𝒖. PSNR is expressed in units of dB; a higher value is 

indicative of a better reconstruction quality. For a perfect reconstruction, PSNR = ∞ dB. 

 

Using a truncated training data set obtained from a fully-sampled experiment, it was verified that for 

3D spatially-resolved propagators, the dependency of the reconstruction quality on Nech, and hence the 

dependency on the SPR associated with the underlying the sampling patterns, is not significant for the 

patterns that form the basis of Fig. 2. This result implied that higher values for Nech could be used for 

the experiments on the bead pack than on the carbonate rock to exploit the slower T2 relaxation of 

water in the packed bed, without compromising on reconstruction quality. As an illustration of the 

sampling patterns used, Fig. 3 shows the one used for the data acquisition on the carbonate rock (Nech 

= 8). The three cross-sections in Fig. 3a–c are taken through the centre of q,kphase-space. In all three 

cross-sections it can be seen that a region around the central point is fully sampled. In the pattern in 

Fig. 3a, which represents the central point in q-space, the number of points sampled is a multiple of 

½Nech. In Figure 3b and c it can be seen that the patterns are symmetrical in the centre of q-space, 

which is necessary to allow recombination of the odd- and even-echo data sets during post-

processing.  

 

For completeness it is further noted that as with the case of 2D spatially-resolved propagators [2], TV 

regularisation significantly outperforms nuclear norm (NN) regularisation; this is most likely because 

of the widely different shapes that the propagators take when considering flow in these highly 

heterogeneous porous systems.  

 

Given the large amount of data (i.e., local propagators) acquired it is necessary to characterise the 

heterogeneity of these systems using quantitative statistical descriptors. Here we use only the mean 

displacement (𝜇), and standard deviation of the displacement (𝜎), which is given by the square root of 

the variance of the propagator:  

 

𝜇 =
∫ �̅�(𝐫,Δ) 𝐫 d𝐫

∫ �̅�(𝐫,Δ) d𝐫
,          (9) 

 

𝜎 = √
∫ �̅�(𝐫,Δ)(𝐫−𝜇)𝟐 d𝐫

∫ �̅�(𝐫,Δ) d𝐫
,         (10) 
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where r is the displacement along the flow-encoded direction over observation time Δ. 

       

4.1 Spatially-resolved propagators within the packed bed 

The quantitative nature of the acquisition of 3D spatially-resolved propagators within the packed bed 

is demonstrated in Fig. 4. In Fig. 4a, a comparison is shown between the spatially-unresolved 

propagator obtained using four different approaches, namely: (1) an APGSTE-based spatially-

unresolved propagator experiment; (2) a fully-sampled, Fourier-transformed 3D spatially-resolved 

propagator of which all local propagators have been summed; (3) an under-sampled, zero-filled and 

Fourier-transformed 3D spatially-resolved propagator of which all local propagators have been 

summed; and (4) an under-sampled, CS-reconstructed 3D spatially-resolved propagator of which all 

local propagators have been summed. It is seen that the lines associated with (1), (2), and (4) are 

indistinguishable, whilst the zero-filled FT solution (3) deviates significantly and contains significant 

artefacts due to violation of the Nyquist sampling rate. This comparison confirms the quantitative 

nature of the 3D APGSTE-RARE acquisition relative to an established spatially-unresolved 

acquisition, and furthermore that for the under-sampled experiment, the zero-filled FT solution is 

inadequate and that CS reconstruction finds a better solution. Indeed, the PSNR of the CS-

reconstructed spatially-resolved propagator is 48.4 dB, significantly higher than the 34.5 dB for the 

zero-filled FT solution.  

 

In Figure 4b-f, the 3D spatially-resolved propagator is explored on the per-voxel level. Figure 4b 

shows an x,y-slice through a 3D intensity image which was acquired at three times higher spatial 

resolution than the spatially-resolved propagator, i.e. 350 μm isotropic spatial resolution. In this 

image, the constituent spheres and cylinders of different lengths and in different orientations, ranging 

from parallel to orthogonal to the superficial flow direction, are seen. Four locations are indicated 

with red circles, located at the tip of each arrowhead. The local propagators associated with voxels 1, 

2, 3, and 4 are shown in Fig. 4c, d, e, and f, respectively; in each of these figures a comparison is 

made between the fully-sampled FT, and the 12.5% sampled zero-filled FT and compressed sensing 

results. Figure 4c shows that the flow within this hollow cylinder, which lies perpendicular to the 

direction of superficial flow, is characterised by a propagator of Gaussian form centred around a mean 

displacement 𝜇  of only ~1 μm with a standard deviation 𝜎  of 30 μm, i.e. the flow is essentially 

stagnant within the orthogonally aligned hollow cylinder. This is confirmed by calculating the mean-

square displacement of water molecules due to self-diffusivity, √2DΔ, where D is the self-diffusion 

coefficient (2.3×10
–9

 m
2
 s

–1
 for water at 298 K) and Δ = 200 ms, which is found to be 30 μm, in 

agreement with the propagator data. Voxel 2 (Fig. 4d) lies within a region of high shear rate, adjacent 

to the interface of three different cylinders, and the propagator is characterised by 𝜇 = 87 μm and 𝜎 = 

85 μm, indicative of significant additional flow dispersion in addition to molecular self-diffusion. Fig. 
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4e shows the propagator associated with voxel 3, which lies at the centre of a cylinder which is 

aligned parallel to the superficial flow direction. This propagator has a broader, top-hat shape, typical 

of a propagator characterising laminar flow of a Newtonian fluid through a pipe. For this location, 𝜇 = 

211 μm and 𝜎 = 123 μm, showing significant flow dispersion. Finally, Fig. 4f shows the propagator 

associated with voxel 4, which lies within a cylinder oriented at an oblique angle relative to the 

superficial flow direction. For this propagator, a significant (negative) skew rather than a top-hat 

shape is observed. The associated parameters are 𝜇 = 124 μm and 𝜎 = 56 μm. 

 

As was the case for the spatially-unresolved result presented in Fig. 4a, for the local propagators in 

Fig. 4c–f, the fully-sampled FT and under-sampled CS-results are in excellent agreement. For 

reference, the zero-filled FT results are also shown, which suffer from significant artefacts from 

under-sampling and do not agree with the fully-sampled FT result, demonstrating the level of 

enhancement in quality obtained through CS reconstruction of the under-sampled data. Further, the 

data in Fig. 4e, in particular, show that the distortions to the shape of the propagator when using the 

zero-filled FT approach leads to propagators which are too distorted to yield useful information on the 

transport processes occurring.  

 

In order to further demonstrate the quality of the CS reconstructions relative to the fully-sampled (FS) 

FT result, a voxel-by-voxel comparison of the mean and standard deviation derived from both data 

sets is shown in Fig. 5. Intensity thresholding was employed to filter out those voxels which contained 

no observable flow (i.e., contained predominantly solid matrix) thereby leaving ~80×10
3
 voxels for 

which propagator data are shown. The mean and standard deviation of the local propagators were 

calculated using Eq. 9 and 10 and plotted in Fig. 5a and b, respectively. The result for each pair of 

local propagators is represented by a single point. Ideally, all points should lie on the red diagonal 

line, in which case the statistics for the CS and FS results are identical. Excellent agreement is indeed 

observed. A small deviation from the diagonal can be seen in Fig. 5a only at higher mean 

displacements, where the mean displacement from the CS-reconstructed local propagators is lower 

than the mean displacement derived from the fully-sampled local propagators. The data shown in Fig. 

5 confirm that the statistical moments obtained from the spatially-resolved propagators can be used to 

characterise the 3D flow field in heterogeneous porous media.  

 

4.2 Spatially-resolved propagators within the carbonate rock core 

The characteristics of the 3D spatially-resolved propagators acquired for the carbonate rock core are 

shown in Fig. 6. In Fig. 6a, a comparison of the spatially-unresolved propagator obtained by the same 

four approaches as in Fig. 4a is shown. Although the zero-filled FT solution is clearly of lower 

quality, the agreement between the other propagators is very good. This result is relevant for two 

reasons. First, it is expected that within a rock, significant internal gradients and effects from the 
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presence of paramagnetic impurities shorten the relaxation time significantly relative to the model 

system. However, the result in Fig. 6a, shows that the effects of relaxation can be kept to a minimum 

during the RARE pulse train. Furthermore, the superficial flow velocity derived from the spatially-

unresolved propagator is found to be 350 μm s
–1

, which compares well to the 389 μm s
–1

 calculated 

from the gravimetric porosity of the rock sample at the given flow rate. This result also shows that 

that total propagator adequately represents the flow within the rock despite the presence of internal 

gradients and relaxation sinks. Second, it shows that CS reconstruction of the spatially-resolved 

propagator also works well in the rock. This is particularly reassuring because the solid-liquid 

interfaces within the rock are not resolved as well as in the model system at the acquired spatial 

resolution, which could potentially have adversely affected the performance of the TV regularisation 

since TV promotes reconstruction of interfaces. For completeness it is noted that in terms of PSNR, 

the CS reconstruction (66.6 dB) of the spatially-resolved propagator is of significantly higher quality 

than the zero-filled FT solution (52.5 dB). 

 

In Figure 6b-f, the 3D spatially-resolved propagator is again explored on the per-voxel level. Figure 

6b shows an x,y-slice through a 3D intensity image acquired at three times higher spatial resolution 

than the spatially-resolved propagator, i.e. 350 μm isotropic spatial resolution. The structural 

heterogeneity across the rock is clearly observed. Four locations have been indicated with red circles, 

located at the tip of each arrowhead. The local propagators associated with voxels 1, 2, 3, and 4 are 

shown in Fig. 6c, d, e, and f, respectively. For each of the local propagators, a comparison is made 

between the fully-sampled FT, and the 12.5% sampled zero-filled FT and compressed sensing results. 

Because the structural features of the rock that underlie the apparent flow behaviour are often smaller 

than the spatial resolution, it is not possible to rationalise the shape of the propagator from the 

location of the voxel within the image, as was possible for the local propagators within the model 

system. As expected, the local propagators reveal a wide range of flow behaviour, ranging from near-

stagnant to significant flow and dispersion. The mean displacement 𝜇 and standard deviation 𝜎 of the 

propagators shown are 4 and 30 μm; 36 and 77 μm; 225 and 234 μm, and 207 and 212 μm for voxels 

1, 2, 3, and 4, respectively.  

 

5 Conclusions 

The opportunity to increase under-sampling when employing compressed sensing reconstruction 

when the dimensionality of the data is increased is exploited in acquiring 3D spatially-resolved 

propagators. The data are acquired as a 4-dimensional data set; with 3 spatial dimensions (k) and a 

displacement (q) dimension. Implementation of an under-sampled APGSTE-RARE experiment for 

acquiring 3D spatially-resolved propagators was described. It was shown that spatially-resolved 

propagators with 134,400 voxels, each containing a local propagator of 65 points, can be acquired 

using a sampling rate of 12.5%, thereby reducing the acquisition time by almost an order of 
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magnitude. A very high reconstruction quality was achieved for propagators acquired on a packed bed 

model system and on a carbonate rock, showing that still more under-sampling is possible whilst 

retaining an acceptable reconstruction quality. 
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Figure captions 

 

Figure 1: Pulse sequence to acquire 3D spatially-resolved propagators, which consists of a 13-

interval APGSTE sequence followed by an XY-phase cycled RARE sequence. In the RARE 

sequence, an XY-16 phase cycle is used for the 180° inversion pulses. Each successive pair of odd 

and even echoes is identically phase-encoded in kphase, so that two separate spatially-resolved 

propagators are acquired that can be added together during post-processing. The directions of 

displacement (q) and spatial (k) encoding can be chosen independently; in this work, the read 

direction and the direction of flow encoding were both parallel to the superficial flow direction z. 

 

Figure 2: Sidelobe-to-peak ratio for a range of different pseudo-random q,kphase-sampling patterns to 

be used with the APGSTE-RARE experiment, for different values of Nech and degrees of sampling:          

( ● ) 25%, ( ■ ) 12.5%, ( ▼ ) 6.25%, ( ▲ ) 3.125%. The patterns had sizes of 

𝐤𝑝ℎ𝑎𝑠𝑒1
 × 𝐤𝑝ℎ𝑎𝑠𝑒2

 × q = 40 × 40 × 65 points, and were generated on the basis of a pdf as in Eq. 2 and 

3 with 𝑛kphase
, 𝑛q = 7 and with a fully-sampled spherical region of 4 points in diameter; 5,000 random 

sampling patterns were generated from which the pattern with the lowest SPR was selected. A lower 

SPR corresponds to greater incoherence in the sampled data. 

 

Figure 3: Three cross-sections of the sampling patterns used in this study. The white pixels 

correspond to the positions at which a line in the readout dimension kread is sampled fully. In (b) and 

(c) it can be seen that the patterns are symmetrical in the centre of q-space
 
to allow for addition of the 

odd and even echoes during post-processing. 

 

Figure 4: Propagators for water flow through the packed bed of spheres and hollow cylinders 

(observation time Δ = 200 ms). (a) Comparison of the total displacement propagator in the packed bed 

obtained by four different methods: A spatially-unresolved APGSTE experiment (⎯  ⎯  ⎯); summation 

of the individual, per-voxel propagators from a fully-sampled, Fourier-transformed 3D spatially-

resolved experiment (⎯⎯⎯); summation of the individual, per-voxel propagators from a 12.5% 

sampled, zero-filled, and Fourier-transformed 3D spatially-resolved experiment (⎯ · ⎯); summation of 

the individual, per-voxel propagators from the same 12.5% sampled, 3D spatially-resolved 

experiment reconstructed using TV-regularised compressed sensing (- - -). (b) A transverse (x,y) 

image slice taken from a 3D intensity image acquired at 350 μm isotropic spatial resolution. Arrows 

indicate four voxels (1–4) for which local propagators are shown (c-f). A comparison is made 

between local propagators obtained from fully-sampled, Fourier-transformed data (⎯⎯⎯), with data 

acquired at 12.5% sampling followed by: zero-filling and Fourier transformation (⎯ · ⎯), and the TV-

regularised CS reconstruction (- - -). 
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Figure 5: Voxel-by-voxel comparison of (local) propagator moments calculated for the fully-sampled 

(FS), Fourier-transformed data and the compressed sensing (CS) reconstruction. Shown are 

comparisons of the (a) mean (𝜇) and (b) standard deviation (𝜎); each dot represents one of 79,845 

local propagators. The red line is the diagonal, shown for reference. 

 

Figure 6: Propagators for water flow through the Edwards Brown carbonate rock plug (observation 

time Δ = 200 ms). (a) Comparison of the total displacement propagator in the packed bed obtained by 

four different methods: A spatially-unresolved APGSTE experiment (⎯  ⎯  ⎯); summation of the 

individual, per-voxel propagators from a fully-sampled, Fourier-transformed 3D spatially-resolved 

experiment (⎯⎯⎯); summation of the individual, per-voxel propagators from a 12.5% sampled, zero-

filled, and Fourier-transformed 3D spatially-resolved experiment (⎯ · ⎯); summation of the individual, 

per-voxel propagators from the same 12.5% sampled, 3D spatially-resolved experiment reconstructed 

using TV-regularised compressed sensing (- - -). (b) A transverse (x,y) image slice taken from a 3D 

intensity image acquired at 350 μm isotropic spatial resolution. Arrows indicate four voxels (1–4) for 

which local propagators are shown (c-f). A comparison is made between local propagators obtained 

from fully-sampled, Fourier-transformed data (⎯⎯⎯), with data acquired at 12.5% sampling followed 

by: zero-filling and Fourier transformation (⎯ · ⎯), and the TV-regularised CS reconstruction (- - -). 
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