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We investigate the structure of the loss function landscape for neural networks sub-

ject to dataset mislabelling, increased training set diversity, and reduced node con-

nectivity, using various techniques developed for energy landscape exploration. The

benchmarking models are classification problems for atomic geometry optimisation

and hand-written digit prediction. We consider the effect of varying the size of the

atomic configuration space used to generate initial geometries and find that the num-

ber of stationary points increases rapidly with the size of the training configuration

space. We introduce a measure of node locality to limit network connectivity and

perturb permutational weight symmetry, and examine how this parameter affects

the resulting landscapes. We find that highly-reduced systems have low capacity

and exhibit landscapes with very few minima. On the other hand, small amounts of

reduced-connectivity can enhance network expressibility and can yield more complex

landscapes. Investigating the effect of deliberate classification errors in the training

data, we find that the variance in testing AUC, computed over a sample of minima,

grows significantly with the training error, providing new insight into the role of the

variance-bias trade-off when training under noise. Finally, we illustrate how the num-

ber of local minima for networks with two and three hidden layers, but a comparable

number of variable edge weights, increases significantly with the number of layers,

and as the number of training data decreases. This work helps shed further light

on neural network loss landscapes and provides guidance for future work on neural

network training and optimisation.
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I. INTRODUCTION

In this report we analyse the structure of the loss function landscape for neural net-

works. Here, the landscape refers to the loss as a function of the trainable parameters (node

weights), and we exploit computational tools developed for exploration of energy landscapes

in molecular science.1 The principal focus is on the organisation of local minima of the loss

function, which correspond to the isomers of a molecule. This organisation is defined by the

pathways between local minima mediated by transition states, which are stationary points of

Hessian index one, with precisely one negative Hessian eigenvalue.2 The connection between

a molecular energy landscape (EL) and a loss function landscape has been developed in

previous work, as summarised below. We have previously referred to the loss function land-

scape (LFL) as a machine learning landscape (MLL), and we will employ these descriptions

interchangeably in the present contribution.

Unfortunately, direct analysis of the loss landscape is challenging due to issues of com-

putational complexity.3 The high dimensionality employed in deep learning representations

produces poorly conditioned problems for optimisation, and leads to slow convergence. Fur-

thermore, the number of stationary points grows exponentially with the dimensionality of

the problem,4 as in molecular science.5,6 Nevertheless, the power and utility of recent ma-

chine learning techniques is remarkable, and part of the motivation for the present work is

to understand these advances in terms of the underlying loss function landscape.

Choromanska et al. have previously considered the performance of various local minima

for neural networks.7 A good performance, by their metric, corresponds to high accuracy for

both an independent training and test set. They show that theoretically, subject to a number

of assumptions of independence, neural network optimisation reduces to minimising the

energy of the spin-glass Hamiltonian from statistical physics.7 Based on the spin-glass model,

bounds can be derived, suggesting that there exists a tight band of local minima, bounded

above the global minimum, characterized by low training and testing errors. Furthermore, in

this model it is exponentially less likely to find a minimum with relatively high testing error as

the dimensionality of the neural network grows.7 These results suggest that almost any local

minimum that is found via standard optimisation techniques should perform comparably to

any other local minimum on an unseen test set.7

Wu et al. agree with the conclusion that the majority of local minima solutions of the loss
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landscape tend to have properties similar to that of the global minimum.8 This work suggests

that neural networks may generalize well because they yield simple solutions (minima) with

small Hessian norm. A theoretical analysis of two-layer networks indicates that these simple

solutions occur because the volumes of the basins of attraction for minima with high test

error are exponentially dominated by the volumes of the basins of attraction for minima

with low test errors. In other words, good solutions lie in large, flat regions of parameter

space and bad solutions lie in small, sharp regions.8

Li et al. proposed a filter-wise normalisation scheme to preserve scale invariant prop-

erties of neural networks, which allows for comparison between different architectures and

landscapes.9 Low-dimensional 2D contour plots were created to investigate the loss function

along random directions near chosen minima. By studying a variety of different architec-

tures on the CIFAR-10 dataset, Li et al. suggest that flat minima tend to generalize better

than sharp minima. Furthermore, shallow, wide neural networks have contour surfaces with

a convex appearance, which might make them more generalizable. Nguyen et al. agree with

this description, and showed that if a network has a pyramid-like structure following a very

wide layer, then local minima are very close the global minimum and the surface is much

easier to navigate.10

Some of the assumptions made in the above theoretical models are quite restrictive, and

may not hold for examples of practical interest. Furthermore, low-dimensional represen-

tations of the landscape can misrepresent the underlying non-convexity present in higher

dimensions. In addition, it is possible to manipulate the dataset and optimisation prob-

lem to create solutions with very high training accuracies but with arbitrarily low testing

accuracies. This scenario can be achieved by adding a tunable attacking term to the cost

function and deliberately misassigning labels during training.8 Furthermore, it is possible to

create datasets in which specific initialisation schemes will either not converge or converge

to high-lying loss solutions.11

To avoid the problems of low-dimensional projection and restrictive theoretical as-

sumptions, the present work builds on previous considerations of the LFL as an energy

landscape.12–15 Energy landscapes (EL) in molecular science,12,13,16–18 are defined in terms

of the potential energy (PE), with minima corresponding to physically stable structures

which can interconvert via transition states. Minima are defined geometrically, as station-

ary points with non-negative Hessian eigenvalues. Transition states are defined as stationary
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points with exactly one negative Hessian eigenvalue (index one saddle points);2 the Murrell-

Laidler theorem guarantees that the pathway with the lowest barrier between two minima

involves only transition states, and not higher index saddles.1,2 By investigating the corre-

spondence between a potential energy surface (PES) and the neural network loss function,

where the atomic configuration space becomes the neural network parameter space, many

of the tools developed in EL research can be used to study neural network landscapes.12,13

We have recently compared the landscapes for neural networks with one, two and three

hidden layers for a similar number of fitting parameters.18 In principle, a single hidden

layer with enough nodes is sufficient to fit a well-behaved function,19 although the required

number of hidden nodes scales exponentially with the number of parameters.20 In the present

contribution we report new results for the properties of such networks to investigate the

structure of the underlying LFL. In particular, we consider the effect of systematically

removing certain edges from the network to reduce the connectivity, and the effects of

training set mislabelling. In addition we present some results for neural networks with

multiple hidden layers for comparison.

Our goal in this research is to understand the behavior of relatively small neural networks,

where the underlying solution landscape can be properly characterised. We hope that the

resulting insight will carry over to large networks, where there may be too many parameters

to locate even a single local minimum.
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II. DEFINING THE NETWORK

We begin with a standard single hidden-layer neural network architecture21 containing

input, output, and hidden nodes, plus a bias added to the sum of edge weights used as input

to the activation function for each hidden node, wbh
j , and each output node, wbo

i . For the

classification problem described in §IV the inputs correspond to interatomic distances for

starting point geometries in a triatomic cluster, and there are Nout = 4 possible outputs,

corresponding to the four local minima that the cluster can adopt, as in previous work.13,14,22

Each training or test data item α comprises Nin inputs written as xα = {xα
1 , . . . , x

α
Nin

}, and
a set of Ndata input data is written as X = {x1, . . . ,xNdata}.

The outputs, yi, were calculated as

yi(W;xα) = wbo
i +

Nhidden
∑

j=1

w
(1)
ij tanh

[

wbh
j +

Nin
∑

k=1

w
(2)
jk x

α
k

]

, (1)

for a given input data item xα, and weights w
(1)
ij between hidden node j and output i, w

(2)
jk

between input k and hidden node j, and bias weights wbh
j and wbo

i collected into the vector

W. Softmax probabilities, pc(W;xα) were obtained from the outputs to reduce the effect

of outliers

pc(W;xα) = eyc(W;xα)/

(

Nout
∑

i

eyi(W;xα)

)

. (2)

The loss function, which defines local minima and transition states of the machine learning

landscape, was written as the sum of a cross-entropy, and an L2 regularisation term with

coefficient λ > 0:

E(W;X) = − 1

Ndata

Ndata
∑

α=1

ln pc(α)(W;xα) + λW2, (3)

where c(α) is the known outcome for input data item α in the training set. The regularisation

term biases against large values for the weights and shifts any zero eigenvalues of the Hessian

(second derivative) matrix, which would otherwise complicate transition state searches.15,23

To accelerate computation of the potential, a GPU version24 of the loss function and gradient

was also implemented and is available in the public domain GMIN and OPTIM programs.25–27
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III. CHARACTERISATION OF THE LOSS FUNCTION LANDSCAPE

To train each network we minimise the loss function, E(W;X), with respect to the vari-

ables w
(1)
ij , w

(2)
jk , w

bh
j and wbo

i , written collectively as a vector of weights W. Basin-hopping

global optimisation was used28–30 to search for the global minimum, and all the distinct

minima obtained during these searches were saved for later comparison. In this approach

we take steps between local minima of the loss function, accepting or rejecting moves ac-

cording to a simple Metropolis criterion31 based upon the change in loss function, scaled

by a parameter that plays the role of temperature. Downhill moves are always accepted,

and the probability of accepting an uphill move depends on the fictitious temperature.28–30

For the machine learning landscapes considered in the present work locating the global

minimum is usually straightforward, and the choice of basin-hopping parameters is not crit-

ical. A customised LBFGS optimisation routine was employed for local minimisation, based

on the limited memory version32,33 of the quasi-Newton Broyden,34 Fletcher,35 Goldfarb,36

Shanno,37 BFGS procedure.

Transition state candidates were determined using the doubly-nudged38,39 elastic band40,41

(DNEB) approach, which involves optimising a series of intermediate atomic configurations

(images) connected by a harmonic potential. The transition state candidates were then

refined using hybrid eigenvector-following,42–44 which involves systematic energy maximisa-

tion along just one Hessian eigenvector. Having determined a candidate transition state,

the connected minima are located by minimisation following small displacements along the

eigenvector corresponding to the unique negative eigenvalue. This method can be em-

ployed to create databases of connected local minima,45 which are analogous to kinetic

transition networks.46–49 Visualization of the landscape was performed using disconnectiv-

ity graphs.50–52 This approach segregates the energy landscape into disjoint sets of minima

that can interconvert within themselves below each energy threshold. Using this topological

method, an undirected tree is constructed.53 For the machine learning analysis, the vertical

axis represents the neural network training loss. The branches of the graph correspond to

the minima of the loss function. More specifically, each branch represents the vector of pa-

rameters containing the node-connectivity weights for the neural network, and terminates at

a height on the vertical axis corresponding to the training loss function. The branches join

together at regularly spaced intervals on the vertical axis when they can interconvert via
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pathways mediated by index one saddle points (transition states). At the highest threshold

all the minima lie in the same group because there are no infinite barriers on the landscape,

and only one vertical branch remains in the graph.

Analytic first and second derivatives were programmed for E(W;X) in the public domain

GMIN and OPTIM codes for exploration of the corresponding loss function landscapes.25–27 Fur-

ther details are provided elsewhere, including a review of the energy landscapes perspective

in the context of machine learning.12 Performance of the neural networks was measured us-

ing standard area under curve (AUC) metrics. The AUC metric ranges from 0 to 1, with an

AUC = 0.5 signifying random performance. If the AUC value is < 0.5, the model performs

worse than than a random guess and if the AUC is > 0.5, it performs better. The AUC

is calculated by determining the true positive and false positive statistics for the machine

learning problem as a function of the threshold probability, P , for predicting convergence to

one of the outcomes. Details are provided in the Supplementary Information (SI).

For the single-layered architectures, we use a short-hand [A,B,C,D,E], to refer to the num-

ber of inputs, hidden nodes, outputs, training data and regularization constant, respectively.

For example, in the geometry optimisation classification problem the [2,10,4,1000,0.0001]

architecture corresponds to 74 optimisable parameters (two input bond lengths, 10 hid-

den nodes and 4 output classes with 1000 training points and a regularization constant of

0.0001), and for the MNIST dataset the [784,10,10,1000,0.1] architecture corresponds to

7960 optimisable parameters.

IV. APPLICATION TO PREDICTION OF GEOMETRY OPTIMISATION

OUTCOMES FOR AN ATOMIC CLUSTER

The first classification problem that we consider involves predicting the outcome of local

minimisation for a triatomic cluster, as in previous reports.13,14,22 Here we emphasise that

we are not using machine learning to perform the optimisation,54–56 but instead to predict

the outcome from a given starting configuration.

The potential energy surface for the cluster is defined by a two-body Lennard-Jones57

potential and a three-body Axilrod–Teller58 term, weighted by a coefficient Z. The total
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potential energy for this LJAT3 cluster for particle positions ri, and separations rij is then

V = 4ε
∑

i<j

[

(

σ

rij

)12

−
(

σ

rij

)6
]

+ Z
∑

i<j<k

[

1 + 3 cos θ1 cos θ2 cos θ3
(rijrikrjk)3

]

, (4)

where the internal angles of the triangle defined by atoms i, j and k are θ1, θ2 and θ3. We

choose Z = 2, for which the molecular potential energy surface has an equilateral triangle

minimum and three linear minima with each of the three atoms in the centre position. In

all the AUC calculations for this problem we chose to refer the threshold probability P to

the outcome corresponding to the equilateral triangle minimum.

This cluster, denoted LJAT3, defines a multinomial logistic regression problem. Local

minimisation for any starting configuration will terminate in one of the four minima, and

we seek to predict this outcome given inputs corresponding to the initial geometry. The

configuration is uniquely specified by the three interatomic distances r12, r13, and r23, and

given sufficient training data in this three-dimensional space a large enough neural network

can make accurate predictions by learning the basins of attraction1,59 of the four minima.

Here, however, we limit the inputs to two of the three distances, namely r12 and r13. The

basins of attraction of the equilateral triangle and the linear minimum with atom 1 in the

middle overlap in the space defined by the missing coordinate, r23. Hence the best predictions

possible should correspond to networks that learn the marginal probabilities for the different

outcomes in the lower dimensional space.

We note that this sort of classification problem is not only a convenient benchmark, but

also has practical applications. Knowledge of the relative configuration volumes for the

catchment basins of different minima can be used to calculate thermodynamic properties,60

and predicting outcomes without running local minimisation to convergence would provide

a way to save computational resources.61

Two databases (D1 and D2) of initial configurations and outcomes were considered, as

in previous work.18 Starting geometries were generated by randomly distributing the three

atoms in a cube of side length L. The datasets involved 200,000 minimisations for cube

lengths of L = 2
√
3 σ (D1) and L = 1.385σ (D2). A third dataset, D3, with L = 2

√
2 σ

(D3) was also created; results for this dataset are reported in the Supplementary Information

(SI). In each case the data was divided into two halves for training and testing purposes.

All the local minimisations, which define the outcome and classification label for each data

item, consisting of the initial r12 and r13 values, were performed using the customised LBFGS

8



algorithm32,33 described above. The convergence condition on the root mean square gradient

was 10−10ε/σ.

A. Landscapes Subject to Dataset Mislabelling

Many real datasets of interest have significant label noise,62,63 arising from difficulties in

the data cleaning and acquisition processes, or simply from ambiguous class differentiation

criteria. Additionally, to reduce acquisition loss, many practitioners prefer to obtain large

amounts of low-quality data, rather than small amounts of high-quality data. While this

scenario allows for the creation of a much larger labelled training set, it also has the potential

to greatly deteriorate the quality of the dataset.62–65 In light of the positive advantages of

acquiring cheap data, much effort has been dedicated to improving the robustness of training

neural networks under noise. Previously, it has been demonstrated that neural networks can

perform well under uniform label noise,62,64 even retaining predictive capability in regimes

where the the ratio of noisy data to clean data exceeds 100 to 1. One possible explanation is

that this phenomenon is a result of a filtering effect due to favourable gradient cancellation.62

On the other hand, it is known that neural networks perform poorly for more sophisticated

noise models, including both stochastic,64 and adversarial type noise.66

Here we have analysed the uniform mislabelling case to see if the landscape approach

can provide insight into how neural networks learn under noise. To study this problem, we

permuted a fixed percentage of training outcomes for 1000 input data items. In this scenario,

an outcome i would be mapped to any other outcome j with probability 1
N−1

, where N is

the number of output classes. Specifically, for the D1 and D2 datasets (four outputs), class i

could be mislabelled to that of any class j 6= i with equal probabilities of 1
3
. Similarly, for the

MNIST dataset,67 each of the ten output classes has nine possible options for mislabelling

with corresponding probabilities of 1
9
. It is important to note that the mislabelling procedure

was applied only to the training data set in order to study relevant properties on a clean

unseen testing set.

Previous work by Rolnick et al. used a fixed amount of correct training data rather than

a total error percentage (fixed total training data). In our analysis, we opt for an error

percentage formulation, as the number of stationary points decreases with the amount of

training data,18 complicating the interpretation of our disconnectivity graph analysis. Here,
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we note that the distribution of outcomes varies with the size of the configuration space. For

example, the more compact dataset (D2) contains a larger number of equilateral triangle

minima (class 0). Since we cannot uncouple the outcome distribution from the choice of

configuration space in an unbiased manner, we studied all the relevant properties using the

size of the configuration space as an extra variable parameter.

For the D1 and D2 datasets, we were able to perform a (near) exhaustive search of the

low-lying minima for landscapes with fixed error percentages of 0, 10, 50 and 100% for the

[2,10,4,1000,0.0001] neural network architecture. Results for the D3 dataset are presented

in the SI.

Training Testing

Error (%) Min Ts
Gmin

AUC, Loss

AUC, σ(AUC)
Incorrect

AUC, σ(AUC)

Correct

AUC, σ(AUC)

Gmin

AUC, Loss

AUC, σ(AUC)

0 122 592 0.749, 0.850 0.746, 0.0035 - 0.746, 0.0035 0.732, 0.891 0.733, 0.0025

10 266 960 0.727, 1.000 0.724, 0.0036 0.509, 0.015 0.747, 0.0034 0.720, 0.726 0.726, 0.0043

50 394 1474 0.639, 1.291 0.638, 0.0029 0.539, 0.0079 0.760, 0.0072 0.706, 1.131 0.699, 0.0083

100 490 1395 0.589, 1.321 0.591, 0.0061 0.591, 0.0061 - 0.336, 1.918 0.340, 0.013

TABLE I: Summary of results for the D1 dataset. Min and Ts refer to the number of

minima and transition states, while Gmin refers to the minimum with the lowest loss value.

Training Testing

Error (%) Min Ts
Gmin

AUC, Loss

AUC, σ(AUC)
Incorrect

AUC, σ(AUC)

Correct

AUC, σ(AUC)

Gmin

AUC, Loss

AUC, σ(AUC)

0 6 20 0.810, 0.519 0.810, 0.00033 - 0.810, 0.00033 0.797, 0.552 0.796, 0.00031

10 13 66 0.730, 0.791 0.728, 0.0021 0.190, 0.019 0.809, 0.0023 0.791, 0.622 0.791, 0.0020

50 26 155 0.604, 1.285 0.602, 0.0018 0.398, 0.010 0.779, 0.0054 0.741, 0.994 0.739, 0.0030

100 20 148 0.772, 1.236 0.768, 0.0047 0.768, 0.0047 - 0.242, 2.771 0.245, 0.0043

TABLE II: Summary of results for the D2 dataset. Min and Ts refer to the number of

minima and transition states, while Gmin refers to the minimum with the lowest loss value.

The number of minima and transition states (Min and Ts), as well as the loss associated
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with the training global minimum (Gmin Loss), are shown in Tables I-II. All training set

distributions are available in the SI.

We found that, on average, the number of local minima and transition states increased

with the percentage of mislabelled data for both datasets (Tables I-II). This observation

suggests that a larger number of local minima reflect many competing values for the param-

eters of the model, and thus produce higher uncertainty in the statistical fit. Based on this

reasoning, it is unsurprising that noisier datasets lead to greater uncertainty in fitting the

training data. The loss value of the global minimum also increased with the percentage of

mislabelled data (Tables I-II).

In addition, we observed that the larger the molecular configuration space (D1 > D2), the

greater the number of minima and transition states; this trend also holds for D3 (SI). This

result is expected as there should be greater uncertainty in predicting final outcomes from

more diffuse initial molecular configurations. In other words, the diversity of the dataset

depends on the size of the configuration space. This interpretation is further supported by

the observation that the loss of the global minimum increases with configuration space size.

To study generalization, we used the AUC value corresponding to the training global

minimum (Gmin AUC) as a metric to characterise the performance of the neural network

on the D1 and D2 datasets (Tables I-II). In both geometry optimisation datasets (D1 and

D2), as the percentage of mislabelled data increased, the training and testing AUC for

global training minimum decreased (Tables I-II). This trend is consistent with expectations,

as randomising labels should increase the generalization error.65 For 0% error, we observe

relatively high AUC values for both training and testing; in particular, for the D1 and

D2 datasets, the training AUCs outperform the corresponding testing AUCs, as expected.

Interestingly, however, for 10% and 50% error, the testing AUCs outperform the training

AUCs for the global training minimum (Tables I-II). This result implies that the neural

network learns the structure of the correct data and filters out the noise.62 Thus, since the

training AUC is calculated on the mislabelled dataset, the neural networks perform poorly

(since they have actually learned the correct structure). However, since the testing AUC is

calculated on a correctly labelled dataset, the neural networks perform significantly better.

Note that when the error rate is increased to 100%, the training error is relatively low,65

as the network overfits to noise. However, the testing AUC decreases precipitously. This

decrease is unsurprising as the neural network is fitted to noise, and thus cannot possibly
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generalize to an unseen dataset.

In addition to studying the properties of the training global minimum, we also calculate

the average (AUC) and standard deviation (σ(AUC)) of the AUC values computed over

all the training local minima in our database (Tables I-II). For the case of 0% error, we

observe a tight band of low-lying local minima with high testing accuracies, which agrees

with previous work.7,8 For increasing error percentages, we also observe the same trends for

the average AUC values as those obtained using the training global minima, suggesting a

general filtering mechanism for single-layered perceptrons under uniform label noise (Tables

I-II). We also find that the variance of the testing AUC increases significantly with the

percentage of training error (Tables I-II).

To further analyse these effects, we investigated the performance of the network on the

mislabelled and correctly labelled entries of the (mislabelled) training dataset (Tables I-II).

For both datasets (D1 and D2), the training AUC values for the correctly labelled compo-

nents exceeded the corresponding testing AUC values (Tables I-II). From these results, it is

clear that, even at high training errors, the network can distinguish clean data from noisy

data.

To study the structure of the loss function landscapes for single-layered perceptrons under

uniform noise, we produced the corresponding disconnectivity graphs,50,51 coloured by both

training and testing AUC values, for the D1 and D2 datasets (Figures 1-4).
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0% 10%

50% 100%

FIG. 1: Disconnectivity graphs for dataset D1, 1000 training points, λ = 0.0001, coloured

by training AUC as a function of % label errors, as marked.
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0% 10%

50% 100%

FIG. 2: Disconnectivity graphs for dataset D1, 1000 training points, λ = 0.0001, coloured

by testing AUC as a function of % label errors, as marked.

14



0% 10%

50% 100%

FIG. 3: Disconnectivity graphs for dataset D2, 1000 training points, λ = 0.0001, coloured

by training AUC as a function of % label errors, as marked.
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0% 10%

50% 100%

FIG. 4: Disconnectivity graphs for dataset D2, 1000 training points, λ = 0.0001, coloured

by testing AUC as a function of % label errors, as marked.
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Interestingly, single-funnelled energy landscapes are observed in each case. Since even

the graphs at 100% error have a funnelled appearance, the structure likely arises due to the

single-layered feed-forward architecture, not the input data. These results are consistent

with previous work on the appearance of single-layered neural network landscapes,8,12,13

as well as previous suggestions that noisy landscapes are no harder to train than clean

landscapes.65

As expected, for all error thresholds, low-lying minima correspond to high training AUCs.

Furthermore, the training and testing AUC values are reasonably correlated for 0% error.

This result is also unsurprising, as the premise of neural network training is that low-lying

minima generalize well to unseen training sets. Interestingly, as the mislabelling percentage

increases, the better testing AUC minima (in the graphs, green-blue) are found at higher

loss values, and the low-lying minima can have relatively low testing AUC values. This

result highlights the bias-variance trade-off between over-fitting and generalization. Some

low loss minima overfit to noise, leading to high training AUCs and low testing AUCs.

However, some high loss training can filter the noise more effectively and thus generalise

well (i.e. higher AUC values for testing). These results are consistent with the hypothesis

that it can sometimes be better to converge to local minima, rather than the global minimum,

to prevent overfitting.7 Together, these results help explain why the testing variance for the

AUC increases with the percentage of mislabelled training data.

For MNIST data, a similar pictures emerges after mislabelling various fixed percentages

of the training data. Since the architecture used here, [784,10,10,1000,0.1], has nearly 8000

optimisable parameters, our results are based on samples of low-lying minima (i.e. not

exhaustive searching). These calculations were much more computationally expensive, and

we used a GPU accelerated implementation for basin-hopping global optimisation.24 Unlike

the D1 and D2 datasets, we do not obtain higher testing accuracies relative to training

accuracies as the error threshold is increased (Table III). However, analysis of neural network

performance, average over database minima on the the correct and incorrect portions of the

mislabelled dataset, shows that the networks still perform significantly better on the clean

segment of the training data, even with large amounts of noise (Table III).
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Training Testing

Error AUC, σ(AUC)
Incorrect

AUC, σ(AUC)

Correct

AUC, σ(AUC)

AUC, σ(AUC)

0 0.9996, 0.0027 - 0.9996, 0.0027 0.9687, 0.010

10 0.9783, 0.0070 0.7747, 0.050 0.9997, 0.0014 0.9645, 0.012

25 0.9545, 0.013 0.8011, 0.044 0.9991, 0.0025 0.9472, 0.018

40 0.9429, 0.015 0.8440, 0.032 0.9976, 0.0042 0.9304, 0.022

50 0.9390, 0.016 0.8707, 0.029 0.9950, 0.0062 0.9197, 0.024

60 0.9310, 0.017 0.8893, 0.026 0.9891, 0.010 0.8940, 0.031

75 0.9281, 0.020 0.9164, 0.024 0.9729, 0.019 0.7716, 0.061

100 0.9509, 0.015 0.9509, 0.015 - 0.2333, 0.072

TABLE III: Summary statistics for MNIST dataset.

It is again worth highlighting that, similar to the D1 and D2 case, there is a systematic

trend towards increased testing AUC variance with the increase in dataset error, which

indicates a change in the structure of the underlying landscape. Thus, while we do find

good minima,62,64 we also find many bad minima (Figure 5).
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(a) Training AUC for various percentages of mislabelled data.

(b) Testing AUC for various percentages of mislabelled data.

FIG. 5: Box-plots for training (a) and testing (b) AUC values for various error percentages

on the MNIST dataset. The box extends from the first (Q1) to third (Q3) quartiles (25th

to 75th percentiles, range Q3 −Q1 = IQR, the interquartile range) with a band at the

median.
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Based on these numerical results it appears that the relatively tight band of local minima

above the global minimum7,8 no longer exists for the mislabelled case. Furthermore, in

almost every example, the variance of the average testing AUC is greater than the variance

of the average training AUC. Thus, while it is possible to obtain high testing accuracies

under uniform random error,62,64 the landscape perspective indicates that the probability of

finding such solutions diminishes as the error percentage increases. These results indicate

that it might be valuable to further analyze the properties of the subset of minima that

perform well under high training error. This approach might be particularly helpful in

designing new optimisers to preferentially find good solutions when training under noise.

V. LANDSCAPES WITH REDUCED CONNECTIVITY

To investigate the effect of reduced connectivity between the layers of a network we

defined locality via a simple distance metric. The nodes in each of the three layers were

mapped onto a unit line at positions 0, 1/(Nβ − 1), 2/(Nβ − 1), . . . , (Nβ − 2)/(Nβ − 1), 1,

defining Nβ sites separated at intervals of 1/(Nβ − 1). The distance between hidden node h

and an input node i or output node o was then defined as

∣

∣

∣

∣

h− 1

Nhidden − 1
− i− 1

Nin − 1

∣

∣

∣

∣

, or

∣

∣

∣

∣

h− 1

Nhidden − 1
− o− 1

Nout − 1

∣

∣

∣

∣

, (5)

for 1 ≤ h ≤ Nhidden, 1 ≤ i ≤ Nin and 1 ≤ o ≤ Nout. The distances were sorted and

the weights w
(1)
ij and w

(2)
jk corresponding to a specified number of nearest neighbours were

retained. Weights corresponding to connections outside the neighbour cutoff were frozen at

zero, with all bias weights retained. When it was necessary to choose between neighbours

at the same distance we simply selected the input or output node with the lowest index i or

o.

This scheme is related to the dropout procedure, where nodes are randomly removed

during training.68,69 Dropout helps to prevent overfitting in large networks, and also reduces

the problem of local regions of the network coadapting, which can degrade the predictive ca-

pabilities in testing. The present formulation is closer to the DropConnect procedure, which

removes connections rather than nodes.70 However, unlike both DropOut and DropConnect,

the architecture remains fixed during training in our analysis. Furthermore, the connections

are not removed at random, but instead are omitted to define a locality in the network. This
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construction is similar to previous work by LeCun et al. who systematically reduced network

connectivity using a weight saliency metric based on second derivative information.71 The

present analysis is designed to test whether the global connections between adjacent layers

of the network are responsible for the single-funnelled appearance of the MLL, which has

been observed in previous studies.13,14,17 The potential energy landscapes of atomistic sys-

tems generally exhibit more local minima and transition states for short-range forces.72–75

Introducing reduced connectivity based on locality might have a systematic effect on ma-

chine learning landscapes, and we wish to investigate this possibility for the present setup.

Our formulation also gives an indication of how reducing the capacity of a neural network

is manifested in the underlying landscape.

The potential defined in terms of neighbourhood connectivity described above was

used to generate databases of minima and transition states for the D1 dataset with the

[2,10,4,1000,0.0001] and [2,5,4,1000,0.00001] single-layered architectures; this dataset was

chosen because it has a relatively large number of minima. Landscapes for 1, 2, 3 nearest-

neighbours, and the fully-connected [2,10,4,1000,0.0001] model, corresponding to 40, 20, 10

and 0 frozen weights, were created and visualized using disconnectivity graphs. To study

generalisability, all the minima obtained were coloured by testing AUC (Figure 6).
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FIG. 6: Disconnectivity graphs for 1 (top left), 2 (top right) and 3 (bottom left)

nearest-neighbours for the D1 dataset, compared to the fully-connected architecture

(bottom right). The colouring runs from red (low testing AUC) to blue (high testing AUC).
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For two and three nearest-neighbours, the number of stationary points increased signifi-

cantly from the fully connected reference. This situation is consistent with previous results

for interatomic potentials with short-range forces in molecular systems.72–75 The present

analysis also suggests that strong locality can induce more complex machine learning land-

scapes. This conjecture is supported by recent results for two- and three-layered perceptrons,

which can have more locality than the single-layered perceptrons, and exhibit more local

minima for a similar number of edge weight variables.18

Local minima for the two- and three-neighbour networks performed reasonably well on

an unseen testing set, with two nearest-neighbours even outperforming the fully-connected

model (Figure 6). One possible reason for this phenomenon is the DropOut argument; i.e. the

reduced neural network minimises the problem of local regions of network coadaptation, and

instead produces a small number of connections, which are independently good at predicting

the correct class.69,71 Another possibility is that the new network has broken symmetry and

therefore no longer has highly degenerate solutions arising from parameter permutation,

which may facilitate expression of more complex fitting functions.76 This perspective is at

least partially substantiated by the observation of much more complicated landscapes for

reduced connectivity (Figure 6). Interestingly, however, only two poorly performing minima

were found for the one nearest-neighbour model. This observation likely reflects the fact that

the architecture has significantly reduced capacity, since more than half the trainable weights

are zero. Overall, our results suggest that in terms of the landscape, optimal architectures

may balance sparsity and expressiveness to perform well on unseen testing sets.

Although the reduced-connectivity landscapes obtained for the [2,10,4,1000,0.0001] ar-

chitecture were significantly more frustrated than the fully-connected model, they were

still relatively single-funnelled (Figure 6). To determine whether we could obtain glassy or

multi-funnelled landscapes, we visualized disconnectivity graphs for two and three nearest-

neighbours and significantly reduced regularization (10-fold) architecture [2,5,4,1000,0.00001]

(Figure 7).
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0.001 0.001 0.001

FIG. 7: Disconnectivity graphs for 2 (left) and 3 (middle) nearest-neighbours with reduced

connectivity for the D1 dataset, compared to the fully-connected architecture (right).

These results are for five nodes in the hidden layer and λ = 0.00001.

Since the regularization term is a convex L2 penalty, it is possible that part of the

single-funnelled appearance of the reduced-connectivity networks is due purely to regulariza-

tion; i.e. higher L2 regularization convexifies the landscape.15 Again, for the fully-connected

case, we observed a single-funnelled appearance, substantiating our previous suggestion that

this type of landscape is architecture dependent. However, for the two and three nearest-

neighbour models, we observe that some additional sub-funnel structure starts to emerge

(Figure 7). This result highlights the strong effect of locality on single-layered architectures.

VI. LANDSCAPES FOR TWO AND THREE HIDDEN LAYERS

Here we present some results for the D1 dataset obtained with neural networks containing

two (2HL) and three (3HL) hidden layers, to provide comparisons with the single hidden

layer results. we consider 2HL with five nodes in each hidden layer, and 3HL with four nodes

in each hidden layer, giving 69 and 72 training variables, respectively, for the D1 dataset

obtained for the LJAT3 classification problem. Disconnectivity graphs that focus on the

lower-lying region of the landscape are shown in Figure 8, and the corresponding stationary

point databases are described in Table IV. These results illustrate two trends, namely, the
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growth in the number of stationary points with increasing hidden layers, and with decreas-

ing training data, for a comparable number of variable edge weights. The corresponding

databases are far from complete for Ndata = 100, but should provide a reasonable coverage

of the low-lying region, which is the focus of interest here.

Comparing the lower panels of Figure 8 for Ndata = 1000, with the top panels for Ndata =

100, we see than the uphill barriers corresponding to pathways that lead to the global

minimum are significantly smaller. Further analysis also shows that the minima span a

wider range of loss function values for the 3HL architecture. These effects are maintained

when more training data is included; a systematic analysis will be presented elsewhere.18

100 1000

Hidden layers (%) D1 (Min,Ts) D1 (Min,Ts)

2 65591, 90622 3630, 3197

3 193036, 540962 13298, 20777

TABLE IV: Number of minima (Min) and transition states (Ts) for machine learning

landscapes with two and three hidden layers, λ = 0.0001, for 100 and 1000 training data

drawn from the D1 dataset.
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FIG. 8: Disconnectivity graphs obtained with 100 (top) and 1000 (bottom) training data

for the D1 dataset λ = 0.0001 and neural networks with two (left) and three (right) hidden

layers.
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VII. CONCLUSIONS

Using custom generated high-quality geometry optimisation training data we showed that

increasing training diversity (in this case, configuration space volume for an atomic cluster)

leads to landscapes with many more stationary points and higher loss values. These results

suggest a correspondence between the number of local minima and the statistical uncertainty

of the loss function landscape.

In our mislabelling analysis, we found that neural networks can correctly filter uniform

noise for very high levels of dataset poisoning and these results remain (empirically) true for

averages over the database local minima. We also find that for mislabelling, a tight band

of minima around the global minimum does not occur. Instead, the variance of the testing

AUC increases significantly with the training error. Furthermore, we observe that many

high loss training minima perform well on unseen testing input, as they do not overfit to

noise, highlighting a bias-variance type trade-off. In future work we aim to consider other

types of noise. Much of the realistic (and difficult) noise in machine learning datasets is

not uniform, but instead highly feature dependent or adversarial.66,77 As a first step, we

plan to see whether a landscape analysis might reveal why it is more difficult to train under

stochastic permutation noise than uniform random noise. We would also like to compare

our noise analysis to neural networks with more than one hidden layer, which may be more

resilient to labelling noise.62

We have also explored the landscapes of neural networks with reduced connectivity. For

two and three nearest-neighbours, the networks retained sufficient expressive capacity. In

particular, the network for two nearest-neighbours systematically outperformed the fully-

connected case on unseen testing data. The networks with reduced connectivity are sig-

nificantly more complex, due to the effects of stronger locality and the symmetry-broken

architecture. For very limited connectivity (one nearest-neighbour), we found only a few

minima with poor predictive capability, reflecting the reduced capacity of the network.

Furthermore, as we reduced the regularization (convexity) of the landscape, the reduced-

connectivity architecture produced much loss function landscapes with emerging subfunnel

structure. These results may be helpful in understanding the difference between the perfor-

mance of deep networks and shallow networks, and in determining architectures to obtain

optimal capacity for neural networks (sparseness versus expressible trade-off). Future work
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in this area will likely include a generalised systematic scheme for reduced-connectivity of

deep neural networks. In particular, the trends observed for loss function landscapes as a

function of the number of hidden layers, the number of training data, and the presence of

mislabelling, should be investigated to test whether we can legitimately extrapolate to large

networks where a detailed analysis of the landscape is not feasible.
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