
1 INTRODUCTION 
This paper discusses an automated twinning process 
to generate geometric digital twins of railway masts 
from airborne light detection and ranging (LiDAR) 
point cloud data. The authors define railways masts 
as trackside poles, either made of highly weathered 
metal or wood; which hold the overhead cables in 
place. Other pole-like objects class consists of tree 
trunks/branches, signal, traffic sign and light (road) 
poles, and columns on rail infrastructure. The au-
thors define class segmentation as the partitioning of 
the railway point cloud to clusters such as rails, 
sleepers, masts, etc. The challenge that the research 
addresses is how to efficiently generate the geomet-
ric models [referred to in this study as a geometric 
digital twin (gDT)] of railway masts such that the 
perceived benefits of the gDT outweigh the invest-
ment made to create it. This is a significant chal-
lenge because of the potential value of gDTs, that is 
expected to bring in the construction, operation and 
maintenance of railways.  

The UK has the fastest-growing railway network 
in Europe, with an increase in passenger numbers of 
40% expected by 2040 (Office of Rail and Road, 
2020). In light of this increased demand, £48 billion 
funding has been recently approved for Network 
Rail including 16% for maintenance and 34.6% for 
renewals of existing railways (Department of 
Transport, 2017). These operations often require ef-
ficient and effective record-keeping that currently 
prevails as major bottlenecks. Railway survey com-

panies have already explored the potential benefits 
of laser scanned data to support these operations. 
Yet, the resulting laser survey data are often unstruc-
tured, and do not contain any meaningful infor-
mation of the documented rail assets. The digitisa-
tion of rail infrastructure mapping from point clouds; 
generally referred to as “twinning” process is there-
fore introduced to utilise the need for high-level dig-
ital representation in a structured format. However, 
this process remains a daunting task, which takes 
years rather than months before data collected 
reaches the database in a useable format (HM 
Government, 2020). The authors argue that this es-
tablishes the need to create and maintain up-to-date 
digital twins (DT)s of rail infrastructure assets using 
quicker and more efficient approaches. An up-do-
date gDT employs advanced data tools to provide 
back-and-forth connection between the twin and its 
physical asset while describing its geometry in real-
time.  

Leading software vendors like Autodesk, Bentley, 
Trimble, AVEVA and ClearEdge3D produce ad-
vanced semi-automated commercial solutions for 
DT generation. Yet, these software are tailored for 
generic or pre-defined geometries, and far from be-
ing fully automatic (Wang, Cho and Kim, 2015; 
Agapaki and Brilakis, 2018). The authors’ previous 
work (Ariyachandra and Brilakis, 2019) reviewed 
the existing problems of twinning arbitrary geome-
tries of rail infrastructure in detail by investigating 
the entire workflow of gDT generation of rail assets 
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from point cloud data. The analysis summarised that 
the twinning of non-standardised geometries of rail 
assets require extensive manual costs to model sub-
point clusters. This demands 95% of the total model-
ling time on customising shapes and fitting them to 
the sub-point-clusters which generally lengths over 
kilometres. There is no single software that can offer 
a one-stop DT generation solution. Modellers have 
to shuttle intermediate results in different formats 
back and forth between different software packages 
during the modelling process, giving rise to the pos-
sibility of information loss. This explains why very 
few assets today have a usable DT. Hence, the au-
thors contend that there is a pressing need to create 
less labour-intensive railway modelling techniques 
that can automate the twinning process with overall 
reduced costs and timescales. 

In this paper, the authors address a core step of 
creating gDTs of rail infrastructure, i.e. the genera-
tion of gDTs of railway masts. The reliable mast 
class segmentation is extremely useful for the other 
rail assets’ class segmentation. It is the only vertical 
element which is in regular spatial offset on the 
trackbed. Hence, the segmentation of masts would 
provide the relative positional layout for the rest of 
the rail assets. Yet, automatic gDT generation of 
masts is often challenged by the presence of vegeta-
tion often surrounding them, the extremely thin 
shape of the sought object and the similar shape of 
tree trunks/branches. The following section analyses 
the state-of-the-art research methods proposed to 
streamline the mast and other pole-like objects twin-
ning processes. 

2 BACKGROUND 
The geometrical shape of the mast and other pole-
like objects in railway point clouds such as light 
poles, signal poles and traffic sign poles are quite 
similar. Hence, this section analyses both masts and 
other pole-like object class segmentation methods. 

There is only one method exists Pastucha (2016) 
for segmenting points belonging to the masts using 
three-dimensional (3D) data. The method first seg-
mented rail catenary system objects into different 
classes and then localised the mast positions relative 
to previously segmented rail catenary objects clas-
ses. However, this method used geometrical distanc-
es from the trajectory of the scanner to set the 
thresholds and required manual user inputs to speci-
fy the geometric properties of the objects. Moreover, 
they manually removed the initial vegetation and 
noise. This makes the method impractical to use, as 
the automation achieved is small compared to the 
manual work needed.  

Methods exist that can automatically remove the 
vegetation and noise of the point cloud. For exam-
ple, a two-dimensional (2D) horizontal slicing based 
method could remove tree crowns and upper/lower 

structures (i.e. signal boards, traffic lights) attached 
to vertical pole-like objects (Luo and Wang, 2008; 
Pu et al., 2011; Huang and You, 2015). Pu et al. 
(2011) used a percentile-based method to detect 
poles as pillars. Their results were a good start, 
reaching 63% precision and 60% recall. Yet, this 
method required the main pole to be an isolated 
pole-shaped object, without any structural attach-
ments. In railroads, masts are always connected to 
cables and cantilevers. Hence, rather than being an 
isolated pole-shaped object, a mast is always a part 
of a structure. On railway point clouds, trees are of-
ten closely located. Consequently, tree crowns often 
overlap and can occlude masts. This is why their 
method classified tree trunks as pole-like objects and 
did not remove them. Fukano and Masuda (2015) 
used patterns of the scan lines of Mobile Laser 
Scanning (MLS) data as a basis to segment walls, 
roads and poles separately. However, if the poles 
were closely located, the scan lines belong to the 
same class of objects represented one pole or com-
bined multiple poles. Hence, the precision was re-
duced to 76% making the results ambiguous.  

Existing semi-automated approaches can remove 
the vegetation and other noise up to a certain extent. 
Yet, these methods did not provide a clear and con-
cise approach to distinguish trees from other pole-
like objects and still depended on the scanner profile 
information. In addition, the presence of vegetation, 
ground and facades that connect every object in a 
point cluster imposed a huge computational load on 
these methods (Fukano and Masuda, 2015; Huang 
and You, 2015; Yadav et al., 2015). These limita-
tions highlighted the need for automated filtering 
and segmentation of data at the initial stages of the 
process.  

The issue has been addressed by methods that 
segment the dataset at the earlier stages of the pro-
cess (Lehtomäki et al., 2010; El-halawany and 
Lichti, 2013). El-halawany and Lichti (2013) used a 
segmentation method that employed 2D density-
based calculations for the removal of the ground 
plane. Next, they applied vertical region growing to 
extract upright objects and then merged segments 
that belonged to the same object. The major problem 
left unresolved was that their ground removal meth-
od was sensitive to point densities and to the trajec-
tory line of the scanner. This method did not per-
form well when segmenting poles surrounded by 
trees; distinguishing pedestrians from poles; seg-
menting incomplete poles and poles close to build-
ing facades.  

Li et al. (2018) addressed these limitations using 
a three-step procedure to automatically decompose 
road furniture (including poles) into different com-
ponents based on their spatial relations. This includ-
ed ground plane removal relative to the scanner pro-
file, and finally a slicing-based method, a random 
sample consensus (RANSAC) line fitting method 



and a 2D density-based method to extract vertical 
objects. However, the method required high-quality 
point clouds (35 points/m2 to 350 points/m2). There-
fore, the performance of the algorithm was not 
promising for poor quality datasets. Likewise, this 
method recognised small booths supported by pillars 
as pole-like road furniture in both test sites. The 
segmentation algorithm was not enough to discrimi-
nate the difference. The slicing-based segmentation 
steps segmented trees as poles when the trees are 
connected to the pole-like road furniture. The meth-
od did not categorize trees and road poles in separate 
groups. 

Cabo et al. (2014) and Rodríguez-Cuenca et al. 
(2015) applied 3D voxelization to isolate poles from 
other noise data. They analysed the horizontal sec-
tions of the voxelized point clouds using 2D plane 
projection analysis. Yet, the method did not perform 
well when the poles were affected (a) by severe oc-
clusions from large objects such as vehicles or large 
bins, parapets of bridges; (b) by the existence of oth-
er features such as pedestrians nearby; (c) when the 
poles were surrounded by bushes, or (d) when poles 
were too close to guardrails or walls. Li et al. (2019) 
investigated the continuity of surface roughness as a 
basis to differentiate poles from trees considering the 
various attachments of man-made poles (i.e. lamps, 
traffic lights, signboards etc.). The method was una-
ble to detect poles with linear attachments (i.e. ca-
bles in masts). Also, trees that were occluded by an-
other tree located in front of them were wrongly 
detected as poles. 

2.1 Knowledge gaps, objectives, and research 
questions 

The review provided in the previous section demon-
strated that the existing pole segmentation methods 
have been tailored for MLS data (Zhu and Hyyppa, 
2014; Arastounia, 2015; Fukano and Masuda, 2015; 
Pastucha, 2016; Li, Elberink and Vosselman, 2018), 
therefore, they cannot be directly applied to Air-
borne Laser Scanning (ALS) data. The ALS data is 
unorganised, meaning it does not contain any profile 
information; and has arbitrary position and orienta-
tion. In addition, these methods were not robust to 
occlusions and sparseness (Pu et al., 2011; El-
halawany and Lichti, 2013; Li, Elberink and 
Vosselman, 2018). Railway point clouds are noisy 
and imperfect, suffering from both occlusions and 
sparseness. Masts are thin and hence often don’t 
have many points representing them. Hence, the 
mast class segmentation is a very hard problem also 
due to the presence of vegetation and tree trunks, 
shaped like poles. These factors render existing 
methods ineffective.  

Despite the growing state-of-the-art, a fully au-
tomated railway mast twinning process is still in its 
infancy. This requires the development of a fully au-

tomated method to generate gDTs of masts from 
railway ALS data, as, in this case, no method in the 
literature meets all user requirements. To tackle this 
challenge, the authors propose an automated twin-
ning method for masts in existing railways, aiming 
to meet the following objectives: 
• Objective 1: Automatically remove the vegetation 
surrounding railways. This will be done by answer-
ing the following research question; RQ1: How to 
automatically remove vegetation and other noise da-
ta without using any additional prior information 
such as neighbourhood structures, scanning geome-
try and intensity of input data? 
• Objective 2: Automatically segment masts in the 
form of point clusters by differentiating masts from 
other pole-like objects. This will be done by answer-
ing the following research question: RQ2: How to 
automatically detect and separate masts from pole-
like objects in imperfect railway point clouds where 
occlusions and varying point density exist? 

3 PROPOSED SOLUTION 

3.1 Scope 

The proposed method twins only the typical double-
track railways because they make up 70% of the ex-
isting and under-construction railway network in the 
UK and Europe (Eurostat, 2019). The proposed 
method exploits the railway topology knowledge as 
guidance to directly extract point clusters corre-
sponding to masts. Railways are not perfectly 
straight or flat and they usually contain varying hor-
izontal and vertical elevations with curves and 
slopes. Nevertheless, railways are a linear asset type; 
their geometric relations remain roughly unchanged 
often over very long distances. Close inspection of 
railway point cloud validates this effect, with repeat-
ing railway topological features such as: (1) the ge-
ometric relationships among railway masts, catenary 
and contact cables, and rails remain fairly un-
changed along the railway corridor (Network Rail, 
2018); (2) the connections between railway masts 
and cables are placed in regular intervals (60 m in-
tervals on average); (3) the main axis of the railway 
masts (Z-axis) is roughly perpendicular to the rail 
track direction (X-axis) [error tolerance is 11° 
(Network Rail, 2018)]; and (4) railway masts are al-
ways positioned as pairs throughout the rail track. 
The study employs these four geometric features as 
railway topological relationships and uses as as-
sumptions when developing the proposed method. 
The workflow of the proposed method is illustrated 
in Figure 1. 

3.2 Step 1: Automated refinement to remove noise 

The method initially uses principal component anal-
ysis (PCA) to find the principal axis of the point 



cloud and to align the railway point cloud such that 
the horizontal alignment of the rail track is posi-
tioned roughly parallel to the global X-axis.  

This would enable one to easily exploit features 
of the point cloud using various feature extraction 
algorithms because all features to be extracted in 
further steps lie in a global coordinate system. The 
Z-axis of the data is now parallel to the global Z-
axis, yet due to the horizontally curved alignments 
and vertical elevations of the rail track, X and Y ax-
es of the track are continuously varying throughout 
the track. While PCA selects the most populated da-
ta axis parallel to the global X-axis, the track direc-
tion of the point cloud is not always parallel to the 
global X-axis. Thus, the centreline of the track does 
not reflect the true centreline of the rail track as it is 
occluded by many points specially belong to vegeta-
tion, surrounded its environment. This restricts the 
usage of the centreline of the dataset to set a distance 
threshold to remove the noise. To address this chal-
lenge, the authors used an automated segmentation 
technique to align X and Y axes of datasets parallel 
to the global reference system. The following para-
graph discusses each step in detail. 

The proposed segmentation method first automat-
ically crops the roughly aligned point cloud into 
near-straight pieces of rail track. Next, the method 
aligns these resulting pieces by computing PCA for 
each of these pieces and creates an axis-aligned 
bounding box around each in its principal direction. 
The result of this step gives a set of sub-bounding 
boxes (SBB)s, in each the track direction is now par-
allel to the global X-axis and Y and Z axes of each 
SBB are now parallel to global Y and Z axes. Prior 
to this step, the method required an optimum SBB 
count, which: (a) provides near-straight pieces of the 
rail track; (b) removes the maximum number of veg-
etation and noise points, and (c) prevents the crop-
ping of masts. The authors gauged the remaining 

number of masts as a percentage of the original 
number of masts with many SBB counts to decide 
the optimum SBB count for each dataset. This finally 
gives 24, 30 and 17 as the optimum SBB for Dataset 
A, B and C respectively. In this paper, the authors 
haven’t illustrated the graphs representing calcula-
tions for these parameters due to limited space. 

Following this step, the method gauges the mini-
mum; the maximum; and the centre point (qcentreSBB) 
of each SBB. Note that qcentreSBB is now aligned on 
the principal axes of the SBB and the width of the 
rail track (Wi) is now aligned to Y-axis. Using qcen-

treSBB, the method determines a threshold distance 
(dSBB) which is based on the Wi. Wi is used to set 
dSBB, where dSBB equals to Wi/2. The proposed meth-
od then uses dSBB to remove the vegetation and other 
noise from the rail corridor data. The method com-
putes dSBB from qcentreSBB on both sides along the Y 
direction (Figure 2) and removes the rest of the 
points of each SBB. 

3.3 Step 2: Mast and other pole-like objects class 
segmentation 

Masts are now parallel to the global Z-axis, which is 
in-line with observation 3 mentioned earlier. Hence, 
the proposed method then segments masts as lines 
parallel to the global Z-axis using the RANSAC line 
detection algorithm since it is only long vertical el-
ement remains after pre-processing and removal of 
vegetation. The proposed method allows for a devia-
tion of 11o because the masts aren’t always perfectly 
parallel with the global Z-axis according to the rail-
way design standards (Network Rail, 2018). Prior to 
the RANSAC algorithm, the method uses two-pre-
processing steps as given below to reduce the com-
putational load. 
(a) Remove the ground plane to eliminate all ground 
points - This ensures that all points around masts are 
removed prior to further calculations and significant-
ly reduces the points for faster computational per-
formance. 

Figure 1: Workflow of the proposed method 

Figure 2: Resulting SBB after vegetation removal 



(b) Divide the remaining dataset into sub-boxes - 
This further increases the speed of RANSAC due to 
the small number of points considered each time.  

The method then uses RANSAC for each SBB. 
The authors gauged the performance of the mast 
class segmentation using performance metrics preci-
sion (Pr), recall (R) and F1 score (F1) as expressed 
below (Table 1). 

• True Positive (TP): Masts were correctly de-
tected as masts;  

• False Negative (FN): Masts were not detected 
as masts and;  

• False Positive (FP): Other pole-like objects 
were detected as masts.  

 
Table 1: Performance matrices for RANSAC line detection 

Dataset 
# of 

masts 
TP FP FN Pr R F1 

A 212 134 24 78 84.8% 63.2% 72.4% 

B 172 88 50 84 63.8% 51.2% 56.8% 

C 188 69 76 119 47.6% 36.7% 41.4% 

Avg.  291 150 281 66.3% 50.9% 57.6% 

 
The segmented vertical lines at this stage represent 
both masts and other remaining pole-like objects in 
railway point clouds. As a result, the segmentation 
accuracy was fairly satisfactory (57.6% F1 score). 
This required additional research to differentiate 
masts from other pole-like objects. 

3.4 Step 3: Differentiate masts from other pole-like 
objects 

The authors incorporated two refinement algorithms 
to differentiate masts from other pole-like objects 
based on the assumptions mentioned in section 3.1. 
At this stage, the surrounding of a mast has few or 
no points as all the ground points have been already 
removed at step 2, while other pole-like objects such 
as trees, bridge piers or walls usually contain few 
points that often belong to tree leaves, bridge col-
umns and/or tree trunks. The authors used this ob-
servation to create 1st refinement algorithm which 
consists of three steps to filter masts from other 
pole-like objects.  

The 1st step is creating an inner box (IB) around 
the segmented lines, such that the point cluster of the 
segmented line (a mast or other pole-like objects) is 
tightly fit into the IB. The IB only contains points 
belongs to a mast or other pole-like object. The 2nd 
step is creating an outer box (OB) around the inner 
box such that this OB should only contain one mast 
and should not overlap with the other mast of the 
same pair. This box might contain any other points 
surrounded the pole usually caused by tree leaves, 
bushes, walls etc. The authors expect two different 
outcomes for masts and other pole-like objects as 
given below (Figure 3). 

 

(1) Since the ground plane is already removed, the 
area around the mast is sparse in terms of points. 
Almost no point should be detected in their immedi-
ate surroundings. This is the ideal point distribution 
around a mast. Therefore, the ratio of IB point count 
over the OB point count should ideally be 1. But 
even after removal of the ground plane, there might 
be points around a mast caused by other catenary 
system assets. This reduces the ratio to 0.9 or below. 
(2) There are other pole-like objects located within 
the inner and outer boxes. Hence, even after the re-
moval of the ground plane, there should be more 
points around other pole-like objects caused by other 
tree trunks and leaves. Therefore, the ratio of inner 
box point count over the outer box point count 
should be lower than outcome 1.  

The outer box width (WOB) value should not ex-
ceed the span between two masts of the same pair. In 
line with the railway design standards (Network 
Rail, 2018), the authors hypothesized WOB = 9.0 m 
and inner box width (WIB) = 1.5 m. The authors con-
firmed these values using a point-based calculation 
method for different WOB and WIB values. 

The 3rd step of the refinement algorithm is defin-
ing the threshold (RD) which satisfies 0 < RD < 1, to 
filter masts from tree trunks. The authors obtained 
the optimum RD by computing F1 scores for differ-
ent RD values. According to the results obtained, the 
optimum RD is 0.2 for all the datasets. Due to the 
limited space in this paper, the authors haven’t in-
cluded the graphs representing calculations for RD, 
WOB and WIB. Using RD, the method filters masts 
from other pole-like objects in Dataset A. However, 
for Dataset B and C, this algorithm did not perform 
well when filtering masts from other pole-like ob-
jects (Table 2). When tree trunks, walls and rail 
bridges satisfy RD this method recognises other pole-
like objects as masts.  

To remedy the resulting outcome, the authors 
used a 2nd refinement algorithm. This algorithm 
takes railway geometric observations into account 
and limits the region of search to a certain radius 
from the first pair of masts. Hence, the 2nd refine-
ment algorithm starts from the left side of the track 
and repeats over the spans between masts on the 
right side of the track as explained below (Figure 4). 
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Figure 3: Ideal point distribution around masts (1) and other 
pole-like objects (2) 



(1) The track direction is along the X-axis. Hence, 
the filtered point clusters of the previous refine-
ment algorithm are first sorted (based on the X-
coordinate) by automatically picking the leftmost 
line of the rail track being the first in the row. 

(2) The algorithm automatically picks a point (PL1) 
on the first leftmost line (l1) and searches for the 
next line, which should be located within the ra-
dius threshold (RT). There are three possible out-
comes: 

• If l1 represents a tree trunk or other pole-like 

object, presumably, there should be more 

than one line adjacent to the l1. But if l1 is a 

mast, there should be only one other line (l2) 

adjacent to l1. Hence, if there are more than 

two lines positioned within RT, the user needs 

to click the leftmost mast. This enters the co-

ordinates of the l1 into the refinement step. 

• If there is one line (l2) positioned within RT, 

the algorithm assumes that these lines (l1 and 

l2) represent the first pair of masts. 

• If there are none, this means only the leftmost 

line, l1 is positioned within the RT region. 

(3) If l1 and l2 are already found, the algorithm au-

tomatically picks the next line (l3) in the row and 

repeats Step 2 to find the next line (l4). Now, 

four lines that belong to two pairs of masts are 

selected. If only one line is detected in Step 2, 

there will be two or three lines for further pro-

cessing. 

(4) The algorithm considers points (PL1 and PL2) and 

(PL3 and PL4) on (l1 and l2 ) and (l3 and l4). Using 

PL1, PL2, PL3 and PL4, the refinement algorithm 

calculates midpoints (PC1 and PC2) between two 

masts. If only one mast is detected by each pair 

of masts, rather than calculating the centre point 

of the two lines, the algorithm takes coordinates 

of the lines as PC1 and PC2. 

(5) The refinement algorithm then connects PC1 and 

PC2 to draw a line (QL). In a case of three lines, 

i.e., l1 belongs to the first pair of masts and l2 and 

l3 are the two masts in the second pair, the start-

ing point of QL is PL1 and the ending point is the 

centre point of l2 and l3. 

(6) The algorithm defines an extend threshold (ET), 

which roughly equals to the regular intervals be-

tween two pairs of masts along the rail track (60 

m on average). 

(7) Using the coordinates of QL and ET, the algo-

rithm searches for the position of the next de-

tected lines. All the lines which are positioned 

closer than ET are discarded in this step because 

those lines represent other pole-like objects. The 

algorithm selects all lines that satisfy ET. Instead 

of searching for lines in ET along the X-axis, the 

proposed algorithm searches for a point appear-

ing at an ET radius region from the second pair of 

masts, which is positioned on the right side. 

(8) Suppose that the preceding step has discarded 

the next two lines (l5 and l6) in the row and se-

lected subsequent lines (l7 and l8). Next, the al-

gorithm picks points (PL7 and PL8) on l7 and l8. If 

one line has been detected, the algorithm picks a 

point on that line (i.e., if l7 is detected, pick PL7). 

(9) The proposed algorithm extends QL by ET along 

the rail track and gets the coordinates of the end-

point of extended QL. 

(10) Using QL, the algorithm searches for all possi-

ble lines located within the radius threshold (RT) 

from the endpoint of extended QL. 

(11) The refinement algorithm selects the two points 

that are closely positioned to the endpoint of QL. 

These points belong to the next pair of masts. If 

there is only one, pick a point on it. 

(12) The method repeats steps 5–11 using the centre 

points of two most recently detected pairs of 

masts as PC1 and PC2. 
This step gives the segmented point clusters of 

the masts, along with the position coordinates and 
heights of individual clusters. To deliver the final 
gDTs of segmented point clusters, the method uses 
implicit representation as the solid modelling ap-
proach which is based on the representation of 3D 
shapes using mathematical formulations. The meth-

Figure 4: Second refinement algorithm to differentiate masts from other pole-like objects 



od uses the shape definition of an I section and the 
resulting parameters of the 2nd refinement algorithm 
to define a mast (Figure 5). 

4 EXPERIMENTS AND EVALUATION 
An approximately 18 km-long portion of the rail 
track located between 's-Hertogenbosch and Nijme-
gen in the Netherlands served as the input of the 
proposed method. The size of the file was over 100 
gigabytes, hence, too large to process in terms of 
processor and memory capacity. The authors ad-
dressed this challenge by splitting the data file into 
three sub-point clouds, each roughly 6 km long; and 
termed as Dataset A, B, and C. 

The validation consisted of two parts. The first 
part was to experimentally define the optimal values 
of the key parameters (SBBi, RD, RT, ET) used in the 
proposed method. The second part was to assess the 
proposed method using performance metrics; preci-
sion, recall and F1 score. The authors followed the 
entire workflow of the mast twinning process as ex-
plained in (Ariyachandra and Brilakis, 2019) to 
manually generate three ground truth (GT) datasets; 
each per one railway point cloud. The authors im-
plemented the solution with the point cloud library 
(PCL) version 1.8.0 using C++ on Visual Studio 
2017, in a laptop (Intel Core i7-8550U 1.8GHz CPU, 
16 GB RAM, Samsung 256GB SSD).  

 
Table 2: Performance matrices for three data sets 

Sequence of steps Dataset Pr R F1 

RANSAC A 84.8% 63.2% 72.4% 
 B 63.8% 51.2% 56.8% 
 C 47.6% 36.7% 41.4% 
 Average 66.3% 50.9% 57.6% 
RANSAC with 1st 
refinement 

A 94.7% 75.9% 84.3% 

B 97.1% 57.6% 72.3% 
C 70.5% 55.9% 62.3% 
Average 87.4% 63.8% 73.8% 

RANSAC with 2nd 
refinement 

A 96.5% 87.9% 92.0% 
B 97.4% 81.6% 88.8% 
C 87.6% 89.7% 88.6% 

Average 93.8% 86.6% 90.1% 

 
Table 2 illustrates the results of the mast class seg-
mentation. The authors used performance metrics as 
explained in section 3.3 to gauge the performance of 
the proposed method. The average segmentation ac-
curacy for mast class was 90.1% F1 score (Table 2). 

The removal of vegetation took 12.5 sec/km to de-
liver a narrowed aligned rail corridor of each dataset. 
The RANSAC line segmentation with 1st refinement 
algorithm needed 20 sec/km while 2nd refinement 
required 3.3 sec/km. Finally, the generation of IFC 
models took 2 sec/km. Hence, the processing time of 
the proposed method was on average 37.8 sec/km.  

5 CONCLUSION 
This paper presents a novel railway topological ap-
proach to develop a fully automated railway mast 
twinning process from airborne LIDAR data. Earlier 
in the paper, the authors explained why this was an 
unsolved problem by reviewing current industry ap-
plications and state-of-the-research methods that 
have been proposed to streamline the twinning pro-
cess. The proposed method was tested on three rail-
way point cloud datasets, lengths over 18 km. The 
validation outcome showed that the method is quite 
reliable. Given the high performance of the method 
on real railway point clouds containing occlusions 
and sparseness, the authors contend that the method 
is reliable, scalable, and is independent of scanning 
technology. The method outperforms state-of-the-art 
methods and manual operations given the high seg-
mentation accuracy and low run-time performance. 
The contributions of this research are as follows: 

The proposed method: 
(1) Can deal with complex, real railway topologies, 

such as varying rail track elevations and curved 
horizontal alignments of the rail track; meaning 
this method can segment masts despite the slope 
of the track. 

(2) Can handle challenging scenarios such as occlu-
sions, extreme vegetation around the track, and 
local variable densities of points. Although some 
inputs are very noisy (i.e. dataset B and C) due 
to the extreme vegetation surrounded the track, 
the method still achieved quite good perfor-
mance in these datasets.  

(3) Drastically reduces the computational cost by 
breaking down a lengthy railway point cloud into 
sub-bounding boxes. In this way, large-scale ob-
ject detection can be significantly improved 
without sacrificing precision and manual cost.  

However, the proposed method does not intend to 
be a cure-all. More railway data with different over-

Figure 5: A close up of the resulting IFC models of masts (viewed on Solibri Model Viewer) 



head electrification structures and single and quad-
ruple tracks should be included and investigated in 
future studies. In short, this proposed method indi-
cated that it can significantly reduce the modelling 
cost and will accelerate the adoption of gDT for 
railway infrastructure mapping in existing railways. 
The future planned research will focus on overcom-
ing of abovementioned limitations and addressing 
some of the assumptions; upgrading the algorithm to 
scale up to more complex railway configurations and 
detecting of more rail asset components. 
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