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Figure 1: Our system is trained exclusively on synthetic data obtained from our scene library, SynthCam3D. During testing,
per-frame predictions returned by the network are fused using the camera poses provided by the reconstruction system.

Abstract

We are interested in automatic scene understanding from
geometric cues. To this end, we aim to bring semantic seg-
mentation in the loop of real-time reconstruction. Our se-
mantic segmentation is built on a deep autoencoder stack
trained exclusively on synthetic depth data generated from
our novel 3D scene library, SynthCam3D. Importantly, our
network is able to segment real world scenes without any
noise modelling. We present encouraging preliminary re-

sults.

1. Introduction

Fully automatic understanding of 3D scenes is of par-
ticular interest for many attractive applications that demand
interaction with objects and/or primitive parts that make up
the scene [2, [14]. Such knowledge is indispensable for a
robot to be able to perform fully autonomously basic inter-
actions with its environment, like moving objects, clearing
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Figure 2: SynthCam3D is a library of synthetic indoor scenes collected from various online 3D repositories and hosted at

http://robotvault.bitbucket.org.

the clutter, stacking objects on top of others, or searching
for objects in their likely locations. These actions require
richer understanding of the scene than e.g. the per-image la-
bels from image classification approaches or object bound-
ing boxes provided by object detectors.

We believe that a key step towards whole scene under-
standing is the semantic segmentation of the scene. Our
work brings together two established directions towards the
goal of 3D scene understanding: 3D reconstruction and
deep learning-based semantic segmentation. Here, we ex-
ploit the inherent dependency between reconstruction and
segmentation — per-frame labels are fused using their re-
spective camera poses returned by the reconstruction sys-
tem. In doing so, we particularly stress the importance of
treating data coming as a video stream. On an average, seg-
mentations from different viewpoints, when fused, should
yield a result better than a segmentation from any particu-
lar view. Our system is directly related to Hermans et al.’s
work [8]], who fuse per-frame segmentations obtained with
randomised decision forests from RGB-D images; they use
2D and 3D dense CRFs [9]] to smooth the per-frame 2D
segmentations and the fused 3D segmentation, respectively.
We harness recent advances made in deep learning to ob-
tain per-frame dense predictions. Our deep architecture, in-
spired from [13]], is composed of stacked autoencoders and
trained modularly. For all our experiments, we use depth
data as the only cue for 3D scene understanding. The mo-
tivation of using depth images is twofold: firstly, depth dis-
continuities are very important for object recognition as has
been shown in [3]], and secondly, the convenience in obtain-
ing depth data. Using only depth cues spares us from the
complications of dealing with the infinite space of possible
textures and lighting setups, making it tractable to collect

a representative set of scenes in terms of scene layout and
objects distribution. The challenge in this context is to in-
vestigate if depth data is a sufficient input for semantic seg-
mentation.

We make publicly available a new library — Synth-
Cam3D - consisting of a significant number of labelled syn-
thetic 3D scenes and associated code for generating depth
maps and their corresponding annotations. The scenes be-
long to different semantic categories and have been com-
piled together from various online 3D repositories [1]], and
manually annotated. Large public repositories (e.g. Trimble
Warehouse) of 3D CAD models have existed in the past,
but they have mainly served the graphics community. It is
only recently that we have started to see emerging interest
in synthetic data for computer vision. The advantages of
synthetic 3D models cannot be overstated, especially when
considering scenes: once a 3D annotated model is available,
it allows rendering as many 2D annotated views as desired,
at any resolution and frame-rate. In comparison, existing
datasets of real data are fairly limited both in the number of
annotations and the amount of data. NYUv2 [14] provides
only 795 training images for 894 classes; hence learning
any meaningful features characterising a class of objects
becomes prohibitively hard. SynthCam3D is particularly
useful for:

e Generating potentially unlimited high-quality anno-
tated depth data for different types of scenes (Fig. [3).

e Benchmarking large scale depth-only SLAM systems
on complex scenes, by providing ground truth geome-

try [6] [7].

e Enabling training generative models similar to e.g.
[LO], to learn common scene layouts and object rela-



Figure 3: Samples of annotated images rendered at various camera poses for an office scene taken from SynthCam3D.

tionships, which can then be used to synthesize more
scenes effortlessly.

In the following, we describe SynthCam3D and briefly
outline our system trained using data generated from the
library. Preliminary results show the usefulness of the pro-
posed library for training deep architectures for semantic
segmentation of real world scenes. With a careful choice of
input features to our deep learning network and using depth
maps raycasted by the reconstruction system, we are able
to bypass the domain adaptation issues that have been ob-
served in the past i.e. the system trained on synthetic depth
data can be directly applied to segment real depth data,
without the need of noise modelling at training time.

2. SynthCam3D Library
Category Number of 3D models
Bedrooms 11
Office Scenes 15
Kitchens 11
Living Rooms 10
Bathrooms 10

Table 1: Different scene categories and the number of annotated
3D models for each category.

SynthCam3D contains 3D models from five different
scene categories: bedroom, office, kitchen, living-room,
and bathroom, with at least 10 annotated scenes per cate-
gory. Importantly, all the 3D models are in metric scale.
Each scene is composed of up to around 50-150 objects
and the complexity can be controlled algorithmically. The
granularity of the annotations can be adapted by the user
depending on the application, e.g. in our experiments on
bedroom scenes we condensed the number of classes down
to 15 for generating data and understanding only functional
categories of objects. The models are provided in .obj for-
mat, together with the code and camera settings needed to
set up the rendering using POV-Ray. A simple OpenGL
based GUI allows the user to place virtual cameras in the
synthetic scene at desired locations to generate a possible
trajectory for rendering at different viewpoints. Fig. [
shows samples of rendered annotated views of a simple of-
fice scene.

3. Rendering Engine

We use the popular ray-tracer POVRay for our render-
ing purposes, being inspired by the past work of Handa et
al. [6]]. To render depth maps with associated annotations
from the .0bj models, we first need to convert the .0bj mod-
els to their corresponding POVRay files using Poserayﬂ
Then the camera extrinsic parameters are set with a 3x4
matrix inside the main POVRay file (having the .pov ex-
tension). Eventually, a rendering trajectory can be obtained
by varying the camera parameters inside the main POVRay
file. Each rendering operation outputs an annotation file,
a depth map, and a text file containing the associated cam-
era intrinsic and extrinsic parameters. These files are parsed
with the codes available from [[7]. Since we only need depth
and annotations, the rendering procedure is fast, taking less
than one second per view on a standard desktop machine for
VGA resolution.

4. System Overview

Our system relies on reconstruction front-end running in
real-time and deep learning back-end that takes in 4D in-
put channels namely, depth, height from ground, angle with
gravity vector, and curvature (DHAC). The labels obtained
from different viewpoints are then fused together with the
classic Bayesian filtering [15] on a voxelised volume using
the camera poses returned by the reconstruction system. We
observe immediate benefits of performing 3D mapping and
semantic segmentation in parallel threads: first, at test time,
we can use depth maps raycasted from the mapping volume,
which have superior quality compared to raw depth maps;
this results in improved segmentation results. Second, we
can improve the overall segmentation of the scene by la-
bel fusion. We briefly describe reconstruction and our deep
learning architecture below.

4.1. Reconstruction

Our reconstruction system is a custom implementation
of the well-known KinectFusion algorithm [[12], wherein
depth maps are averaged with their truncated sign distance
representation on a voxelised 3D volume. For all our seg-
mentation experiments, we use raycasted depth maps and
camera poses obtained via this system module. Finally, we
align the local reference frame of the reconstruction with

Ihttps://sites.google.com/site/poseray/,
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the inertial frame, using the simple and effective optimisa-
tion proposed in [4] to obtain the required rotation matrix.
This allows us to compute features that are invariant to rota-
tion about the gravity axis, i.e. height from the ground plane
and angle with gravity vector.

4.2. Segmentation using deep learning

Our segmentation module is inspired by the deep archi-
tecture used in [[13]]. It is composed of a sequence of stacked
auto-encoders, with supervised modular training of each
layer to capture the representative features of the scene at
different scales and produce dense predictions for each pixel
in the input depth map. We use this architecture primar-
ily due to its lightweight structure, compared to e.g. [1L1]],
which has prohibitive memory requirements.

We perform preliminary experiments with this network
on simple scenes composed of chairs and tables. In all our
experiments, we segment the scene into 5 different classes:
chairs, tables, floor, ceiling, and wall. Figure |4 shows the
segmentation results on training data where a clear improve-
ment of the results is evident as layers are added progres-
sively to the network. Figure [5] and [6] show results on real
world scenes where we are able to get good segmentations;
the training was done exclusively on synthetic scenes con-
taining chairs and tables.

Video Links: http://robotvault.bitbucket.
org/results.html

5. Conclusion

We are working towards a real-time system for seman-
tic scene understanding that combines the strengths of 3D
reconstruction and semantic segmentation. We investigate
the possibilities of using only depth data for this task and
we make publicly available a new library containing the
data and the code necessary to generate high-quality anno-
tations for indoor scenes. Future work includes expanding
the repository with new synthesised scenes [3]] to learn ef-
fective models for indoor semantic segmentation.
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Figure 4: Preliminary results of our architecture demonstrate the capabilities to jointly learn pixel-wise classifiers to produce
a smooth segmentation. From top to bottom, we see how the four different layers of our architecture progressively improve
the labels. Note that these results are on training set and the colour coding of labels is different.
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Figure 5: Real data results on tables and chairs. First column shows the depth images raycasted from the tsdf volume and
second column shows the segmentation results.

Figure 6: Left: results on one chair. Right: results on multiple chairs. Note that the training was done on scenes containing
both chairs and tables.
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