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Editorial: Special Issue on “Nonparametric
Inference Under Shape Constraints”

Richard J. Samworth and Bodhisattva Sen

1. INTRODUCTION

Shape-constrained inference usually refers to non-
parametric function estimation and uncertainty quan-
tification under qualitative shape restrictions such as
monotonicity, convexity, log-concavity and so on.
One of the earliest contributions to the field was
by Grenander (1956). Motivated by the theory of mor-
tality measurement, he studied the nonparametric max-
imum likelihood estimator of a decreasing density
function on the nonnegative half-line. A great attrac-
tion of this estimator is that, unlike other nonparametric
density estimators such as histograms or kernel density
estimators, there are no tuning parameters (e.g., band-
widths) to choose.

Over subsequent years, this idea has been extended
and developed in many different directions. On the ap-
plied side, there has been a gradual realisation that
nonparametric shape constraints are very natural to
impose in many situations. For instance, monotonic-
ity of a regression function arises in many contexts
such as genetics (Luss, Rosset and Shahar, 2012),
medicine (Schell and Singh, 1997) and dose-response
modelling (Lin et al., 2012). Shape-constrained proce-
dures are also commonly used in economics (Matzkin,
1991, Varian, 1984) and survival analysis, for instance
in the interval-censoring problem and hazard func-
tion estimation; see the recent book by Groeneboom
and Jongbloed (2014). Many other applications, and
further developments, including the computational
aspects of these shape-constrained estimators, are
nicely summarised in the books by Barlow et al.
(1972), Robertson, Wright and Dykstra (1988) and
Groeneboom and Wellner (1992).

On the theoretical side, it has been known since
the work of Prakasa Rao (1969) that the Grenander
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estimator exhibits nonstandard asymptotic behaviour
(more precisely, it converges at rate n~!/3, where n is
the sample size, at points at which the true decreas-
ing density is differentiable with negative derivative).
Moreover, Groeneboom (1985) obtained the limiting
distribution of the L-distance between the Grenan-
der estimator and true density. The study of the like-
lihood ratio test for monotone functions was initiated
by Banerjee and Wellner (2001), while the adaptive
behaviour of monotonicity-constrained estimators was
highlighted by Birgé (1989) and Zhang (2002), using
finite-sample risk bounds.

However, since the turn of the millennium (and the
last decade in particular) the area of shape constraints
has witnessed substantially increased activity. On the
one hand, researchers started studying systematically
the behaviour of univariate shape-constrained proce-
dures beyond monotonicity, for instance in convexity-
constrained models (Groeneboom, Jongbloed and
Wellner, 2001) and log-concave density estimation
(Diimbgen and Rufibach, 2009, Balabdaoui, Rufibach
and Wellner, 2009). On the other hand, there has
been a realisation that shape-constrained methods have
much to offer in multi-dimensional problems (e.g.,
Cule, Samworth and Stewart, 2010, Seijo and Sen,
2011, Koenker and Mizera, 2010, Han et al., 2018,
Seregin and Wellner, 2010). The scope of the field
has been broadened by the emergence of new applica-
tions, including convex set estimation (Brunel, 2013,
Guntuboyina, 2012, Gardner, Kiderlen and Milanfar,
2006, Gardner, 2006), shape-constrained dimension
reduction (Chen and Samworth, 2016, Xu, Chen and
Lafferty, 2016, Groeneboom and Hendrickx, 2018)
and ranking and pairwise comparisons (Shah et al.,
2017). New theoretical tools have been developed that
have allowed us to make progress in understanding
how shape-constrained procedures behave (Diimbgen,
Samworth and Schuhmacher, 2011, Kim and Sam-
worth, 2016, Cai and Low, 2015, Guntuboyina and
Sen, 2013). Last but not least, increased computing
power together with algorithmic advances mean that
certain estimators have become computationally fea-
sible (Koenker and Mizera, 2014, Mazumder et al.,
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2018). Four recent workshops, at the Lorentz Center
in Leiden (October, 2015), the International Centre
for Mathematical Sciences in Edinburgh (May, 2016),
the Mathematisches Forschungsinstitut Oberwolfach
in Germany (July, 2016) and the Banff International
Research Station in Canada (January, 2018) also attest
to the vitality of the area.

This unprecedented growth has signalled the need
for a special issue on shape-constrained statistical
methods and, as Guest Editors, we hope that it will
serve as a gateway to this exciting field of research. We
have eight articles, as well as one conversation piece,
written by experts in their respective sub-fields that
showcase the main shape-constrained models of inter-
est, a variety of applications of such models, and the
major recent theoretical, methodological and computa-
tional advances in some of these problems. We briefly
describe the main highlights of each of the papers ap-
pearing in this special issue.

Groeneboom and Jongbloed (2018) begin with an
article on “Some developments in the theory of shape
constrained inference”. This paper introduces some of
the common applications where monotonicity is a nat-
ural constraint, discusses the characterisation and com-
putation of the nonparametric maximum likelihood
(least squares) estimator in these regression and den-
sity estimation problems and describes some of the
key results. Potential procedures for quantifying uncer-
tainty, for example, bootstrap methods, are also consid-
ered. In recognition of the fundamental contributions,
Piet Groeneboom has made to shape constraints and
other areas, an interview with him, carried out by Geurt
Jongbloed, will appear in a forthcoming issue of Statis-
tical Science.

A central nonparametric shape constraint arising in
density estimation is log-concavity, where the loga-
rithm of the underlying probability density is concave.
Many standard probability densities (e.g., normal/
uniform and beta/gamma for certain parameter re-
gions) are log-concave. In the article “Recent progress
in log-concave density estimation”, Samworth (2018)
describes some of the attractive theoretical properties
of this class of densities and discusses the computa-
tion, consistency, and rates of convergence of the non-
parametric maximum likelihood estimator. The paper
also points to many statistical applications where these
ideas have been successfully employed.

Log-concave densities are unimodal with exponen-
tially decaying tails. Recently, there has also been fo-
cus on weaker forms of concavity constraints that al-
low heavier tail behaviour and sharper modal peaks,

and that may offer additional modelling flexibility.
Koenker and Mizera (2018) explore this area in the pa-
per “Shape constrained density estimation via penal-
ized Rényi divergence”. Their work discusses estima-
tion strategies based on the Rényi «-divergence crite-
rion. The authors show the existence, uniqueness and
continuity properties of the obtained estimator and pro-
pose tractable convex optimisation schemes to com-
pute the estimator effectively.

The field of shape constraints is starting to have sig-
nificant impact in a variety of disciplines, and the sur-
vey paper “Shape constraints in economics and oper-
ations research” (Johnson and Jiang, 2018) highlights
the utility of shape-constrained estimation in two ap-
plication areas. In the first part of the paper, applica-
tions to consumer preferences, demand functions and
production economics are described, with an empha-
sis on the relevant shape constraints and estimation
strategies. The second part deals with sequential de-
cision making where the authors describe the natural
shape restrictions that arise when enforcing structure in
(i) value function estimation, (ii) approximate dynamic
programming and (iii) optimal policy determination.

The paper “Limit theory in monotone function es-
timation” (Durot and Lopuhad, 2018) returns to the
theme of estimating monotone functions, but has a
greater focus on limiting distributions of estimators and
their derivations, both in the pointwise case and for
global L, loss functions. They also consider the prob-
lem of smoothing isotonic estimators. Guntuboyina
and Sen (2018) take a complementary perspective in
“Nonparametric shape-restricted regression”, where
they outline the oracle inequality approach to study-
ing the performance of estimators. Attractive features
of these results include the facts that it may be pos-
sible to consider simultaneously the cases of correct
and incorrect model specification, and the potential
for the results to reveal the remarkable adaptive be-
haviour that shape-constrained estimation procedures
often enjoy. The extent of this phenomenon is still
yet to be fully understood, particularly in multivari-
ate cases, but the authors give several examples where
nonparametric shape-constrained estimators can attain
near-parametric risk bounds in special cases.

Meyer (2018) introduces “A framework for estima-
tion and inference in generalized additive models with
shape and order restrictions”. Additive structures are
often appealing as methods for reducing the space of
regression functions to be considered. The author pro-
poses to model the components for continuous covari-
ates with splines, and those for ordinal covariates with
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partial orderings. In particular, it is shown that regres-
sion functions can be constrained to respect common
shape restrictions by maximising the likelihood over
appropriate convex cones.

While most of the papers mentioned above consider
the estimation of functions, Brunel (2018) considers a
dual problem in his paper “Methods for estimation of
convex sets”. Important examples include the estima-
tion of the support or level sets of a density, as well
as depth functions. As is often the case with shape-
constrained problems, the understanding of geometric
properties turns out to be key, and the interesting sta-
tistical and computational trade-off in the estimation of
convex sets is described.

This volume concludes with a conversation with one
of the doyens of shape-constrained inference, namely
Jon Wellner (Banerjee and Samworth, 2018). Jon pro-
vides a fascinating insight into his life and career, and
we are sure that readers will enjoy the challenge of try-
ing to identify him from a wonderful teenage group
photo of his scooter gang.

We hope that these papers will stimulate readers to
explore this fascinating area of nonparametric shape-
constrained estimation in more detail.
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