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ABSTRACT
It may be generally believed that the thermoacoustic eigen-

frequencies of a combustor with fully acoustically reflecting

boundary conditions depend on both flame dynamics and geom-

etry of the system. In this work, we show that there are situations

where this understanding does not strictly apply.

The purpose of this study is twofold. In the first part, we

show that the resonance frequencies of two premixed combustors

with fully acoustically reflecting boundary conditions in the re-

gion of marginal stability depend only on the parameters of the

flame dynamics, but do not depend on the combustor’s geometry.

This is shown by means of a parametric study, where the time de-

lay and the interaction index of the flame response are varied and

the resulting complex eigenfrequency locus is shown. Assum-

ing longitudinal acoustics and a low Mach number, a quasi-1D

Helmholtz solver is utilized. The time delay and interaction index

of the flame response are parametrically varied to calculate the

complex eigenfrequency locus. It is found that all the eigenfre-

quency trajectories cross the real axis at a resonance frequency

that depends only on the time delay. Such marginally stable fre-

quencies are independent of the resonant cavity modes of the two

combustors, i.e. the passive thermoacoustic modes.

In the second part, we exploit the aforementioned obser-

vation to evaluate the critical flame gain required for the sys-

tems to become unstable at four eigenfrequencies located in the

marginally stable region. A computationally-efficient method

is proposed. The key ingredient is to consider both direct and

⇤Address all correspondence to this author.

adjoint eigenvectors associated with the four eigenfrequencies.

Hence, the sensitivity of the eigenfrequencies to changes in the

gain at the region of marginal stability is evaluated with cheap

and accurate calculations.

This work contributes to the understanding of thermoacous-

tic stability of combustors. In the same manner, the understand-

ing of the nature of distinct resonance frequencies in unstable

combustors may be enhanced by employing the analysis of the

eigenfrequency locus here reported.

INTRODUCTION
Thermoacoustic instabilities in combustion chambers of gas

turbines and rockets are persistent and intractable problems that
industry faces. Such instabilities are due to the two-way cou-
pling between the unsteady heat release rate of the flame and the
acoustic waves originated by the volumetric expansion in the re-
active region [1, 2]. If a thermoacoustic instability is triggered,
large pressure oscillations arise, which may lead to critical fail-
ure of the system. One well-known technique for the study of
thermoacoustic instabilities is based on a divide-and-conquer ap-
proach. First, the flame response to incoming acoustic pertur-
bations is evaluated either experimentally or numerically [3–6].
Second, the acoustics is calculated by Helmholtz solvers, or lin-
earized Navier-Stokes equations, or lower-order methods, such
as acoustic network models [7–10]. The flame response is thus
introduced in the acoustic equations as a source term. This re-
sults in an eigenvalue problem, where the eigenfrequencies typ-
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ically appear under nonlinear terms. The eigenfrequency pro-
vides the resonance frequency and growth rate of the thermoa-
coustic modes of interest. Attention is generally given to unsta-
ble modes, which have positive growth rate, or marginally stable
modes, which have zero growth rate. Importantly, choosing an
accurate model for the system’s damping is essential for a cor-
rect estimation of the linear stability and limit-cycle oscillations
at the marginally stable region [9, 11]

Thermoacoustic systems with fully or partially acoustically
reflecting boundary conditions that do no contain any flame dy-
namics (the gain of the flame response being zero) are character-
ized by passive thermoacoustic modes. (The mean temperature
and density are, however, still affected by the flame.) For ex-
ample, the acoustics of a duct with Neumann (closed inlet) and
Dirichlet (open outlet) boundary conditions at low frequency is
characterized by a quarter-wave thermoacoustic mode. When the
dynamics of the flame is taken into account, this mode may be
enhanced or suppressed by the interaction with the heat release
rate generated by flame. When the flame response is modeled
by an n� t model [12, 13], the thermoacoustic system is stable
when the time delay t is smaller than half of the thermoacous-
tic period [14]. Thus, considering both the flame dynamics, here
described by the n� t model, and the system’s acoustics, here
characterized by the period of the quarter-wave thermoacoustic
mode, is essential for the assessment of the thermoacoustic sta-
bility of the system.

Over the last few years, the understanding of thermoacoustic
stability has been improved by the discovery of Intrinsic Ther-
moAcoustic (ITA) instabilities [6, 15–17]. It was found that sys-
tems with anechoic boundary conditions, which do not have pas-
sive thermoacoustic modes depending on the system’s geome-
try, can be thermoacoustically unstable. The physical causes that
bring about ITA feedback loop is different from other thermoa-
coustic instabilities: Velocity fluctuations upstream of the flame
perturb the flame dynamics, hence, the heat release rate fluctuate
generating further acoustic waves. The acoustic waves that travel
upstream interfere with the velocity fluctuations at the flame’s
base, which closes the ITA feedback loop. If the interference is
constructive, ITA instabilities arise. Based on a n� t flame re-
sponse model, a stability criterion was obtained for anechoic sys-
tems by Hoeijmakers et al. [15] and Emmert et al. [16]. It was
found that ITA modes, which are characterized by a resonance
frequency f = j/(2t) (where j = 1,3,5, · · · is an odd number)
are unstable if the interaction index is larger than a critical value,
which is a function of the temperature ratio. By investigating
a turbulent swirled combustor with partially reflecting boundary
conditions and a frequency-dependent flame response, Silva et
al. [18] subsequently found that the ITA feedback loop plays an
important role not only in the stability of the system but also
in the generation of combustion noise. Moreover, when consid-
ering systems with fully reflecting conditions, it was found by
Mukherjee and Shrira [19] that the ITA resonance frequencies at

the neutral curve (when the growth rate is exactly zero) is the
same as the one associated with the ITA modes in anechoic sys-
tems f = j/(2t). Therefore, it was concluded that the resonance
frequency at the neutral curve of the ITA modes in systems with
fully reflecting acoustic boundary conditions is independent of
the system’s geometry.

Therefore, ITA instabilities may be present in systems with
anechoic, partial or fully reflecting boundary conditions.

In this paper, it is shown that, except for passive thermoa-
coustic modes, all resonance frequencies at the neutral curve,
within the frequency band considered, depend exclusively on the
flame dynamics and do not depend on the geometry. This is
shown by considering thermoacoustic systems with fully acous-
tically reflecting boundary conditions. These modes, which are
ITA modes because of their exclusive dependence on the flame
dynamics, are the only (active) thermoacoustic modes at the neu-
tral curve. Importantly, the stability of ITA modes is strongly
related to a critical gain. A computationally-efficient method-
ology is proposed to accurately calculate the critical gain of an
ITA thermoacoustic mode. By analyzing the structure of both
direct and adjoint thermoacoustic modes at the marginally sta-
ble region, we explain why some configurations exhibit critical
gains that are much larger (or smaller) than other configurations.
The methodology proposed is applied to combustors with three-
coaxial ducts and a compact flame. It can be applied to any type
of combustor’s geometry when a stability solver is available to
build the eigenvalue problem.

The paper is organized as follows. In the next section the
quasi-1D Helmholtz equation is derived. Subsequently, two pre-
mixed combustors are investigated. A locus of the eigenfrequen-
cies, which results from performing systematic variations of two
parameters of the flame response, is computed by solving the
nonlinear eigenvalue problem corresponding to the Helmholtz
equation. Afterwards, a method is proposed to compute in an ef-
ficient way the direct and adjoint eigenvectors, in addition to the
critical gain and corresponding sensitivity at the neutral curve.
Finally, the obtained results are presented and the thermoacous-
tic stability of the two combustors investigated is analyzed.

THE QUASI-1D HELMHOLTZ EQUATION

Since we are interested in thermoacoustic systems with fre-
quencies that are smaller than the cut-on frequency of transversal
modes, we focus on quasi-1D systems, where only longitudinal
acoustic modes are modeled. Additionally, if a low Mach num-
ber flow is considered, the momentum and energy conservation

2 Copyright c� 2018 by ASME



equations read, respectively

r̄ ∂u
0

∂ t
+

∂ p
0

∂x
= 0 (1)

S

r̄ c̄2
∂ p

0

∂ t
+

∂
∂x

�
Su

0� =
(g �1)

r̄ c̄2 q̇
0
S, (2)

where u, p and q̇ denote velocity, pressure and heat release rate.
The quantities r , c, g and S stand for density, speed of sound,
heat capacity ratio and cross-sectional area, respectively. The
symbols ¯[ ] and [ ]0 represent mean and fluctuating quantities.
Subtracting the spatial derivative of Eqn. (1) from the temporal
derivative of Eqn. (2) results in

1
S

∂
∂x

✓
Sc̄

2 ∂ p̂

∂x

◆
+w2

p̂ = �iw(g �1) ˆ̇q, (3)

where the harmonic transformation [ ]0 = ˆ[ ]eiwt has been applied.
By assuming that the flame is acoustically compact, i.e. the flame
length is negligible with respect to the acoustic wavelength, the
local heat release rate ˆ̇q can be expressed in terms of the global
heat release rate ˆ̇

Q as ˆ̇q = Id
ˆ̇

Q/Vf, where Vf is the volume of the
flame [9]. Id is one in the flame area and zero elsewhere. Upon
numerical discretization, Id represents a Kronecker delta. We ex-
press now ˆ̇

Q = ˆ̇
Qc + ˆ̇

Qn, where ˆ̇
Qc represents the heat release rate

coupled with upstream velocity perturbations and ˆ̇
Qn denotes the

heat release rate correlated to turbulent fluctuations. By consid-
ering that Vf = Sf lf, where lf is a characteristic flame length,
Eqn. (3) becomes
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Qn/(Sf lf).

(4)

The heat release rate associated to ˆ̇
Qc can be related to upstream

velocity perturbations at a reference position ûref by means of the
flame transfer function F (w), defined as

ˆ̇
Qc
¯̇

Q

= F (w)
ûref

ūref
. (5)

We express now the mean heat release rate as ¯̇
Q =

r̄refūrefSrefcpTuq , where cp is the specific heat capacity at con-
stant pressure and q = Td/Tu � 1 is the relative temperature in-
crement across the flame. The indices ‘u’ and ‘d’ stand for ‘up-
stream’ and ‘downstream’ (of the flame), respectively. Thus, the

quantity iw(g �1) ˆ̇
Qc can be expressed as

iw(g�1) ˆ̇
Qc = iwr̄refc̄

2
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(6)
where the momentum equation (1), re-written as û = �1

iwr̄
∂ p̂

∂x
, has

been considered. Finally, the Helmholtz equation for quasi-1D
acoustic systems reads
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(7)
where K = Idaq c̄

2
ref/lf and a = Sref/Sf. In the present study, we

are interested in the Helmholtz equation and the corresponding
eigenvalue problem. After dropping the forcing term from the
formulation, the eigenvalue problem obtained reads

(A �H F (wk)) p̂k = sk p̂k ) L p̂k = sk p̂k (8)

where p̂k denotes the kth acoustic mode and wk is the correspond-
ing complex eigenfrequency, which in turn is linked to the kth
eigenvalue by sk = �w2

k
. In the present work, the nonlinear

eigenvalue problem of Eqn. (8) is solved by means of an in-house
Helmholtz solver based on a finite-difference numerical scheme.
A methodology based on a fixed-point iteration with relaxation,
which is similar to that of Silva et al. [9], was implemented.

THE LOCUS OF THE EIGENFREQUENCIES AROUND
THE FIRST LONGITUDINAL ACOUSTIC MODE

One of the objectives of this work is to understand the
structure of both ITA and classical thermoacoustic modes at the
marginal region of stability. Before performing such an analy-
sis, we plot the locus of the eigenfrequencies given by Eqn. (8)
around the first passive thermacoustic mode. The analysis can be
performed around any other passive thermoacoustic mode.

Two premixed combustors
Two different configurations are studied. The first config-

uration (Duct), is a duct flame previously studied in the work
of Hoeijmakers et al. [15]. The second configuration (BRS) is
a premixed swirled combustor previously studied in the works
of [5, 18, 20, 21]. Figure 1 illustrates these two configurations,
and Tab. 1 shows the geometric and thermodynamic parameters
of interest. In this study, the inlet boundary condition is of Neu-
mann type, ∂ p̂/∂x = 0, whereas the outlet is of Dirichlet type,
p̂ = 0.

The first passive thermoacoustic mode p̂1p (Fig. 2) and

3 Copyright c� 2018 by ASME



3.
2

Ex
pe

ri
m

en
ta

lI
n

ve
st

ig
at

io
n

of
th

e
B

R
S

B
ur

n
er

3.
2.

2.
2

St
ab

ili
ty

M
ap

s

A
th

er
m

oa
co

us
ti

c
st

ab
ili

ty
m

ap
of

th
e

B
R

S
bu

rn
er

is
cr

ea
te

d
in

or
de

r
to

in
-

ve
st

ig
at

e
th

e
im

pa
ct

of
di

ff
er

en
ts

w
ir

le
rp

os
it

io
n

s
on

th
e

dy
n

am
ic

of
th

e
co

m
-

bu
st

io
n

sy
st

em
.A

s
th

e
fla

m
e

tr
an

sf
er

fu
n

ct
io

n
s

sh
ow

s
a

st
ro

n
g

im
pa

ct
of

th
e

ax
ia

ls
w

ir
lp

os
it

io
n

on
th

e
fla

m
e

re
sp

on
se

(s
ee

Fi
g.

3.
23

-3
.2

5)
,a

ls
o

an
im

pa
ct

on
th

e
fr

eq
ue

n
ci

es
of

th
e

in
st

ab
ili

ti
es

is
ex

pe
ct

ed
.I

n
th

is
se

ct
io

n
se

le
ct

ed
st

a-
bi

lit
y

co
m

pa
ri

so
n

s
ar

e
di

sp
la

ye
d.

In
or

de
r

to
m

ea
su

re
th

e
st

ab
ili

ty
,t

he
ba

se
co

n
fig

ur
at

io
n

of
se

ct
io

n
3.

1
of

th
e

B
R

S
bu

rn
er

is
m

od
ifi

ed
.T

he
se

tu
p

ca
n

be
se

en
in

Fi
g.

3.
26

.

S
in

te
r 

P
la

te

Fi
gu

re
3.

26
:S

et
up

fo
r

st
ab

ili
ty

m
ea

su
re

m
en

ts
.

To
m

in
im

iz
e

th
e

im
pa

ct
of

th
e

pl
en

um
,t

he
ax

ia
le

lo
n

ga
ti

on
is

ke
pt

sh
or

t.
T

hi
s

in
cr

ea
se

st
he

ei
ge

n
fr

eq
ue

n
cy

of
th

e
pl

en
um

,a
bo

ve
th

e
fr

eq
ue

n
ci

es
of

in
te

re
st

.
T

he
ar

ea
ch

an
ge

to
th

e
bu

rn
er

du
ct

is
re

co
n

st
ru

ct
ed

w
it

h
a

sm
al

la
xi

al
le

n
gt

h
w

it
h

on
ly

a
sm

al
li

n
le

t
ra

di
us

to
th

e
bu

rn
er

du
ct

.A
dd

it
io

n
al

ly
,a

po
ro

us
si

n
-

te
r

pl
at

e
is

in
se

rt
ed

in
to

th
e

pl
en

um
.T

he
po

ro
us

pl
at

e
al

lo
w

s
th

e
m

ix
tu

re
to

flo
w

th
ro

ug
h

w
hi

le
cr

ea
ti

n
g

a
de

fin
ed

bo
un

da
ry

co
n

di
ti

on
fo

r
ac

ou
st

ic
w

av
es

.
T

he
po

ro
us

pl
at

al
so

fu
n

ct
io

n
s

as
fla

m
e

ho
ld

er
in

or
de

r
to

lim
it

th
e

vo
lu

m
e

of
bu

rn
ab

le
fu

el
in

th
e

ca
se

of
a

fla
m

e
fla

sh
ba

ck
.

T
he

le
n

gt
h

of
th

e
co

m
bu

st
io

n
ch

am
be

r
is

al
te

re
d

du
ri

n
g

th
e

m
ea

su
re

m
en

ts
.

It
is

ad
ju

st
ed

to
30

0m
m

an
d

to
70

0m
m

w
it

h
an

ex
te

n
si

on
pa

rt
of

th
e

sq
ua

re
d

co
m

bu
st

io
n

ch
am

be
r.

M
ea

su
re

m
en

ts
ar

e
co

n
du

ct
ed

w
it

h
an

d
w

it
ho

ut
th

e
lo

w
re

fle
ct

iv
e

en
d

pl
at

e
(s

ee
se

ct
io

n
3.

1)
.

59

Combustion Chamber

Plenum

Combustion Chamber

Flame

l1

l2

l3

S3

S2

S1

BRS Duct

x

FIGURE 1. The two configurations under investigation. Correspond-
ing dimensions and thermodynamics parameters are given in Tab. 1.

TABLE 1. Geometric and thermodynamic parameters of the two con-
figurations under investigation.

Parameter BRS Duct

l1 (m) 0.17 0.15

l2 (m) 0.18 0.15

l3 (m) 0.336 0.2

S1 (m2) p/4 0.22 1

S2 (m2) p/4 (0.042 �0.0162) 1

S3 (m2) 0.092 1

T̄u (K) 293 293

T̄d (K) 1930 1600

r̄u (kg/m3) 1.204 1.204

r̄d (kg/m3) 0.183 0.22

c̄u (m/s) 343 343

c̄d (m/s) 881 774

the corresponding eigenfrequency w1p are obtained by solving
Eqn. (8) with F (w) = 0. On one hand, the first thermoacoustic
mode of the ‘Duct’ configuration is associated with the quarter-
wave mode of the duct with w1p = 2p · 250 rad/s. On the other
hand, the first thermoacoustic mode of the ‘BRS’ configuration
is the Helmholtz mode of the plenum with w1p = 2p ·55 rad/s.

The loci of eigenfrequencies
In this study, the flame response is modeled by an n � t

model so that F (w) = ne
�iwt , where n is the interaction index

and t denotes a characteristic time delay. Note, that a more real-
istic flame response should consider the dependence of n on the
frequency. However, the n�t model is used in this study to cap-
ture the essential features of the flame response. We carry out a
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FIGURE 2. First passive thermoacoustic mode p̂1p. (Blue) Duct,
(Black) BRS.

parametric study by varying n = [0 ! 1] for the Duct configura-
tion and n = [0 ! 4] for the BRS configuration. The time delay
is varied as t = [0 ! 2p/w1p] for both configurations. The cor-
responding eigenfrequencies, which are solutions of Eqn. (8), are
plotted in the complex plane. Figures 3 and 4 show the results
for the Duct configuration and ‘BRS’ combustor, respectively.

Although the two configurations are different, the loci ob-
tained have strong similarities. In both Duct and BRS cases
we observe a star-like structure and curvilinear trajectories. The
center of the star is given by the eigenfrequency of the passive
acoustic mode w1p. Once n is increased from zero, the eigen-
frequencies depart from w1p. These trajectories rotate counter
clock-wise as t increases. We can observe that some trajecto-
ries becomes unstable (growth rate > 0) for n > ng0 , where ng0
denotes the critical interaction index.

Let us now concentrate on the trajectories connected to the
star center w1p and defined by t = m ·2p/w1p with 0.32 < m <
0.33 (dashed lines in Figs. 3 and 4). We observe that these tra-
jectories change direction suddenly (from left to right when in-
creasing m) after a critical value mc ⇡ 0.325, which corresponds
to tc ⇡ 1.3 ms for the Duct configuration and tc ⇡ 5.9 ms for the
BRS combustors. The intersection of the trajectory mc ⇡ 0.325
is a defective eigenfrequency, which has double algebraic multi-
plicity but only one associated thermoacoustic mode (result not
shown). Although stable, this point has high sensitivity to small
changes of n and t .

From Figs. 3 and 4 it is possible to observe quasi-vertical
trajectories, the growth rates of which tend to �• as n ! 0. As
observed also by Mukherjee and Shrira [19], the resonance fre-
quency tends to real(w) = 2p · j/(2t) (with j = 1,3,5, · · · ) and
Imag(w) =�• when n approaches zero, as illustrated in Fig. (5)
for the duct configuration. The real part of this frequency corre-
sponds to ITA resonance frequencies [15, 16]. Correspondingly,
we label these trajectories as ITA trajectories.

The focus is now shifted to the resonance frequencies with
zero growth rates (marginal stability). As already pointed out
by Mukherjee and Shrira [19], this value is equal to real(w) =
2p · j/(2t) for the ITA trajectories. In addition, from Figs. 3 and
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2p/w1p]. t = m ·2p/w1p with m = 0 ! 1 and Dm = 0.05. Numbers in the plot are values of m for the closest trajectory. The growth rate is defined as
�Im(w)/2p .

4 it is observed that this is also the case for the trajectories that
belong to the star-like structure and cross the real axis (for m =
0.35, 0.4, 0.45). Indeed, it is observed in an extended plot (Fig. 5)
that the resonance frequency at zero growth rate corresponding to
all trajectories that cross the real-axis over the investigated range
of 0 < real(w) < 2p · 1000 is a function exclusively of the time
delay t . This finding is of interest for stability analysis of ther-
moacoustic systems since it establishes potential resonance fre-
quencies in unstable combustors. As shown in the next section,
this finding also allows us to efficiently compute the eigentriplet
p̂k, p̂

†
k
, wk at the neutral curve.

Solving the nonlinear eigenvalue problem (Eqn. (8)) to find
ITA trajectories is numerically more challenging. It was neces-

sary to apply small relaxation factors (around 0.005) to the fixed-
point algorithm to reach convergence.

THE INTERACTION INDEX AT THE MARGINAL REGION
OF STABILITY

So far we have observed in Figs. 3 and 4 that all trajectories
crossing the real axis exhibit a resonance frequency real(w) =
2p · j/(2t) (with j = 1,3,5, · · · ) at zero growth rate. The pur-
pose of this section is to show a computationally efficient tech-
nique that exploits this observation in order to compute the value
of the interaction index ng0 , which corresponds to the eigenfre-
quency wg0 = 2p · j/(2t) + i · 0. Subsequently, the sensitivity
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∂w/∂n|w=wg0
is evaluated with a computationally-efficient and

accurate adjoint approach [22, 23].

The direct and adjoint eigenvectors
The adjoint eigenvalue problem reads

L
†
p̂

†
k
= s†

k
p̂

†
k
, (9)

where the symbol [ ]† denotes ‘adjoint’. The adjoint eigenvalue
s† is equal to the complex conjugate of s , i.e. s† = s⇤ and
the adjoint operator L

† is the conjugate transpose of L , i.e.
L

† = L
H [24]. Furthermore, for the biorthogonality condition,

hp̂
†
k
, p̂li = ( p̂

†
k
)H

p̂l , is equal to zero for k 6= l. The direct and
adjoint eigenvectors are normalized such that (p̂

†
k
)H

p̂k = 1. Let
us now project the direct eigenvalue problem (Eqn. (8)) for a
given thermoacoustic mode p̂k on the adjoint eigenvector p

†
k
. The

new problem reads

( p̂
†
k
)H

L p̂k = ( p̂
†
k
)H

�
A �H n e

�iwkt�
p̂k = sk( p̂

†
k
)H

p̂k = sk.
(10)
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FIGURE 5. Locus of eigenfrequencies in the complex plane of the
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Therefore, an explicit expression for the interaction index n is
found

n =
(p̂

†
k
)H

A p̂k +w2
k

(p̂
†
k
)HH p̂k e�iwkt

. (11)

The calculation of the critical flame gain
In this study we calculate the value of n such that the eigen-

frequency is marginal, i.e. it is equal to wg0 = 2p · j/(2t)+ i ·0.
Therefore, in addition to A and H , we know the quantities
wk = wg0 and t . In contrast, the eigenvectors p̂k and p̂

†
k

at the
neutral curve still have to be evaluated. In principle, we must
know n in order to solve the direct and adjoint eigenvalue prob-
lems given by Eqns. (8) and (9), respectively. We circumvent this
difficulty as follows.

We re-write the active thermoacoustic system of Eqn. (8) as

A p̂k �sk p̂k = H F (w)p̂k| {z }
sa

(12)

where sa is a vector acting as a forcing term at the region of
the flame. Since we do not know the value of the vector sa, we
choose a vector s with uniform forcing (and trivial value differ-
ent from zero) at the region of the flame. We choose s = Id, i.e.
a vector that is equal to one at the region of the flame and zero
elsewhere. Consequently, the vector s is proportional to sa. The
solution of Eqn. (12) with forcing term s is denoted ˜̂pk, and is
considered proportional to p̂k as explained in more detail in Ap-
pendix A. By carrying out a similar analysis we obtain ˜̂p†

k
, which

is also assumed proportional to p̂
†
k
. Finally, the estimated direct

p̂k and adjoint eigenvectors p̂
†
k

are obtained by normalizing ˜̂pk

and ˜̂p†
k
, so that ( p̂

†
k
)H

p̂k = 1 as explained in Appendix A.

Sensitivity study
In addition to estimating ng0 from Eqn. (11), we evaluate

∂w/∂n|wg0
, which is the sensitivity of w with respect to small

changes of n around the critical flame gain, ng0 . By applying the
chain rule, we obtain

∂w
∂n

����
wg0

=

✓
∂w
∂s

∂s
∂n

◆

wg0

where
∂w
∂s

=
�1
2w

. (13)

Following [22, 23] and Silva et al. [25], we estimate ∂s/∂n by
means of a first-order adjoint formulation, which reads

∂s
∂n

=
(p̂

†
k
)H ∂ (L�Is)

∂n
p̂k

(p̂
†
k
)H ∂ (L�Is)

∂s p̂k

=
( p̂

†
k
)H

H p̂ke
�iwt

( p̂
†
k
)HH p̂k

i nt
2w e�iwt +1

(14)

Results
We concentrate on two eigenfrequencies with zero growth

rate defined as wg0 = 2p · 1/(2t) + i · 0 where t = m · 2p/w1p.
The corresponding cases are denoted D1(m = 0.3) and D2 (m =
0.4) for the Duct configuration and B1 (m = 0.3) and B2 (m =
0.4) for the BRS combustor. These eigenfrequencies (crosses in
Figs. 3 and 4) are arbitrarily chosen from the locus plot. It should
be mentioned, however, that case B1 is related to the ITA insta-
bility observed in [18, 21] 1. Following the procedure described
in the previous section, we solve the linear systems

A ˜̂pk �sk
˜̂pk = Id and A

H ˜̂p†
k
�s⇤

k
˜̂p†
k
= Id (15)

1The resonance frequency of case B1 in Fig. 4 is around 92 Hz. In the studies
of [18, 21] the ITA instability occurs at 98 Hz. This difference in frequency is
due to the slightly different outlet acoustic reflection and flame response used in
this paper.
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where sk = s⇤
k

= �w2
g0

. Subsequently, the solutions ˜̂pk and ˜̂p†
k

are normalized by means of Eqn. (26) to obtain a first estimation
of p̂ and p̂

†. Results are shown in gray in Figs. (6) and (7)
(although only distinguishable for p̂

†
k

in the region downstream
of the flame). Next, we solve Eqn. (11) to obtain a first estimation
of ng0 . In order to obtain a better approximation of p̂ and p̂

†, we
solve

L ˜̂pk �sk
˜̂pk = Id and L

H ˜̂p†
k
�s⇤

k
˜̂p†
k
= Id (16)

where sk = s⇤
k

= �w2
g0

and the values of ng0 obtained previ-
ously are considered. Results are shown in Figs. (6) and (7) (in
black although indistinguishable). These newly evaluated eigen-
vectors p̂k and p̂

†
k

are used to solve again Eqn. (11) to revaluate
ng0 . Table 2 shows the values of ng0 for the first and second it-
erations. In order to validate the estimated interaction index ng0

and the corresponding eigenvectors p̂k and p̂
†
k
, we solve the non-

linear eigenvalue problem given by Eqn. (9) accounting for the
estimated value ng0 in the second iteration. Results are displayed
in Figs. (6) and (7) (dashed blue and red lines). It is interesting
to observe that the acoustic field related to p̂k is well estimated
from the first iteration, and therefore gray, black and blue lines
are exactly superposed. In addition, we see that the value of the
eigenfrequency wk obtained by solving Eqn. (8) with the evalu-
ated ng0 is also close to the one given by wg0 , as shown in Tab. 3.
This verifies the proposed algorithm.

TABLE 2. Values of ng0 obtained in first and second iterations for the
four cases under investigation.

Parameter Iteration D1 D2 B1 B2

ng0 1 0.718 0.346 3.147 1.703

ng0 2 0.723 0.353 3.156 1.718

TABLE 3. Eigenfrequencies under consideration

Case wg0 = 2p ·1/(2t)+ i ·0 wk (from Eqn. (9) )

D1 2p·416.667 + 0 i 2p·416.667 - 0.00089 i

D2 2p·312.5 +0 i 2p·312.485 - 0.004 i

B1 2p·91.667 + 0 i 2p·91.667 + 0 i

B2 2p·68.75 + 0 i 2p·68.75 + 0 i
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FIGURE 6. Thermoacoustic modes p̂/max( p̂) (top) and p̂
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†)

(bottom) of the Duct configuration (D1). (Gray) first iteration, (Black)
second iteration, (Dashed blue) p̂k from direct eigenvalue problem of
Eqn. (8). (Dashed red) p̂

†
k

from adjoint eigenvalue problem of Eqn. (9).
Note that gray and black curves overlap the blue and red curves, which
verifies the proposed algorithm.
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FIGURE 7. Thermoacoustic modes p̂/max( p̂) (top) and p̂
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(bottom) of the BRS configuration (B1). (Gray) first iteration, (Black)
second iteration, (Dashed blue) p̂k from direct eigenvalue problem of
Eqn. (8). (Dashed red) p̂

†
k

from adjoint eigenvalue problem of Eqn. (9).
Note that gray and black curves overlap the blue and red curves, which
verifies the proposed algorithm.

At the region of marginal stability, it is important not only to
know the critical values for the interaction index ng0 , but also
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to calculate the sensitivity of the eigenfrequency for a small
change in n. Therefore, we apply Eqns. (13) and (14) to cal-
culate ∂w/∂n|wg0

using the eigenvectors p̂k and p̂
†
k

obtained in
the second iteration of the method proposed. The sensitivity cal-
culated with the adjoint method exactly matches the slope of the
curve (Figs. 8 and 9). In other words, it is first-order accurate.
Such an adjoint sensitivity study can be carried out for any other
system’s parameter, such as time delay t or acoustic reflection at
the boundaries, at zero extra cost.
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FIGURE 8. Locus of eigenfrequencies in the complex plane of the
Duct configuration. Note that this figure is an extract of Fig. 3. The
red lines indicate the slope (sensitivity ∂w/∂n|wg0

) computed with the
adjoint method. The growth rate is defined as �Im(w)/2p .
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FIGURE 9. Locus of eigenfrequencies in the complex plane of the
BRS configuration. Note that this figure is an extract of Fig. 4. The
red lines indicate the slope (sensitivity ∂w/∂n|wg0

) computed with the
adjoint method. The growth rate is defined as �Im(w)/2p .

Main parameters affecting the critical gain
By studying Eqn. (11), it is possible to identify which ther-

modynamic and geometric parameters can make a combustor
prone to thermoacoustic instabilities, i.e. under which condi-
tions Eqn. (11) gives low values of ng0 . Letting aside the in-
fluence of w and t , we realize that a combustor described by the
terms (p̂

†
k
)H

A p̂k and (p̂
†
k
)H

H p̂k with low and large values, re-
spectively, is prone to exhibit thermoacoustic instability for low
values of the interaction index n.

We first analyze the term ( p̂
†
k
)H

A p̂k for the four cases in-
vestigated, whose values are shown in Tab. 4. When comparing
D1 against B1 and D2 against B2, it is observed that low values
of this term do not imply necessarily low values of ng0 (last col-
umn of Tab. 4). Therefore, analyzing (p̂

†
k
)H

A p̂k does not give
clues about which parameters control the stability of the combus-
tors investigated. Therefore, we analyze the term

T = ( p̂
†
k
)H

H p̂k = ( p̂
†
k
)H

Id q c̄
2
refSref/(Sf lf)

∂ p̂k

∂x

����
ref

(17)

to evaluate under which conditions it has large values. By look-
ing at Eqn. (17) we realize that T is proportional to q , c̄

2
ref,

Sref/Sf and 1/lf. The corresponding values for the Duct and BRS
configurations are displayed in Tab. 5. The parameters q , c̄ref
and lf have similar values for both BRS and duct systems. In
contrast, we observe that the area ratio Sref/Sf associated with
the Duct configuration is approximately one order of magnitude
larger than the one corresponding to the BRS combustor. This
result implies that low values of Sref/Sf contribute to the stability
conditioning of a combustor. Another factor of high impact on
the value of T is the product ( p̂

†
k
)H

Id ∂ p̂k/∂x|ref. This param-
eter multiplies the value of p̂

†
k

at the flame region by the value of
∂ p̂k/∂x at the reference position. Its value is given in Tab. 4 for
the four cases under study. The Duct configuration through cases
D1 and D2 exhibits values of (p̂

†
k
)H

Id ∂ p̂k/∂x|ref which are al-
most two order of magnitudes larger than the counterparts B1
and B2 of the BRS combustor. The fact that the Duct combustor
has smaller critical gains than the BRS combustor explains why
the former is more prone to be thermoacoustically unstable than
the latter.

We conclude the study by highlighting the importance of the
parameter T , which in one term summarizes the contributions
of all thermodynamic and geometric parameters on the stability
of a quasi-1D thermoacoustic system. We realize also that this
parameter plays a crucial role in the description of ∂w/∂n|wg0
as evidenced in Eqn. (14). The present study can be extended
to three-dimensional combustors, where, as performed in the
present work, the influence of flame location-distribution and
combustor geometry on the stability of the system are encapsu-
lated in the operator H and both direct and adjoint eigenvectors.
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TABLE 4. Parameters of interest
Parameter (p̂

†
k
)H

A p̂k ( p̂
†
k
)H

Id
∂ p̂k

∂x

���
ref

ng0

D1 2.4119e+05 -0.0187 0.723

B1 2.2442e+05 -0.0028 3.156

D2 -1.8196e+06 -0.0110 0.353

B2 -8.9071e+04 -9.09·10�4 1.718

TABLE 5. Parameters influencing the term T

Parameter BRS Duct

q 5.5870 4.4608

lf 0.0014 0.001

c̄
2
ref 117730 117810

Sref/Sf 0.1303 1

CONCLUSIONS
The thermoacoustic modes at the region of marginal stability

of two different quasi-1D combustors with fully acoustically re-
flecting boundary conditions were investigated. The trajectories
of the eigenfrequencies in the complex plane were calculated as
a function of the flame gain, n, and time delay, t . It was found
that the eigenfrequency associated with the active thermoacous-
tic modes at the neutral curve depends only on the flame dynam-
ics, i.e. it is independent of the geometry of the combustor. Fur-
thermore, it was noted that the loci of eigenfrequencies of two
different combustors are qualitatively similar. This finding is of
relevance when characterizing the acoustic activity of an unsta-
ble combustor, where resonance frequencies may be related not
only to (perturbed) passive thermoacoustic modes but also to ITA
modes.

In the second part of the article, an adjoint-based method is
proposed to accurately evaluate at a low computational cost the
critical gain and corresponding sensitivity at the neutral curve.
The methodology may be used to quantify how prone a given
combustor is to exhibit combustion instabilities. For example,
large values of the critical gain (for a given value of t) would
imply a robustly stable combustor, because a strong flame (high
gain) would be necessary for a instability to be triggered.

It was found that the calculation of the eigenfrequencies of
the quasi-vertical (ITA) trajectories, whose decay rates tend to
infinity as n decreases, is a computationally challenging task if
a fixed-point iteration is deployed. Indeed, it was necessary to
significantly lower the value of the relaxation coefficient to make
the iterations converge. This may be one of the reasons why
Helmholtz solvers have not been yet widely used for the study of

ITA modes. With the adjoint-based method proposed, it is possi-
ble to accurately calculate the marginally stable eigenfrequencies
and the corresponding thermoacoustic modes with cheap calcu-
lations.
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A Relation between p̂k, p̂
†
k

and ˜̂pk, ˜̂p†
k

The Helmholtz Equation reads

A p̂k +w2
k

p̂k �H F (w) p̂k = 0 (18)

where p̂k and w2
k

are the kth eigenvector and eigenfrequency of
the active thermoacoustic system. We now assume that the active
acoustic eigenvectors can be well represented by a linear combi-
nation of the passive acoustic eigenvectors as p̂k = ÂN

k=1 p̂kphkp
,

where N is the number of modes considered and hkp
are weight-

ing coefficients. Equation (18) reads now

A

N

Â
k=1

p̂kp
hkp

+w2
k

N

Â
k=1

p̂kphkp
�H F (w)

N

Â
k=1

p̂kphkp
= 0 (19)

By recalling that the passive eigenvalue problem is defined by
A p̂kp

= �w2
kp

p̂kp
, we rewrite Eqn. (19) as

�
N

Â
k=1

p̂kp
w2

kp
hkp

+w2
k

N

Â
k=1

p̂kphkp
�H F (w)

N

Â
k=1

p̂kphkp
= 0

(20)
By exploiting the biorthogonality between p̂kp

and p̂
†
kp

, which

means (p̂
†
kp

)H
p̂lp

= dkl , we project Eqn. (20) on to the basis of
the adjoint eigenvectors. Equation (20) becomes

w2
k

hkp
�w2

kp
hkp

� (p̂
†
kp

)H
H F (w)

N

Â
k=1

p̂kphkp

| {z }
sa

= 0 (21)

We consider now the last term sa of Eqn. (21) to be a forcing
term that acts exclusively in the region of the flame. Rearranging
Eqn. (21), we obtain

hkp
=

( p̂
†
kp

)H
sa

w2
k
�w2

kp

and subsequently p̂k =
N

Â
k=1

p̂kp hkp
, (22)

The vector sa is unknown. Therefore, we consider a vector s that
acts as a uniform (with trivial value different from zero) forcing
term in the region of the flame. In this study we set s = Id. The
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solution of this problem is given by

h̃kp
=

( p̂
†
kp

)H
s

w2
k
�w2

kp

and subsequently ˜̂pk =
N

Â
k=1

p̂kph̃kp
, (23)

or directly by solving the linear system

A ˜̂pk +w2
k

˜̂pk = s (24)

Note that the vectors sa and s are proportional. As a result, the
active acoustic eigenvector p̂k can be considered proportional to
˜̂pk. This can be understood if comparing Eqn. (22) to Eqn. (23).
By carrying out a similar analysis, we can find ˜̂p† by solving

A
H ˜̂p† +w⇤2

k
˜̂p† = s, (25)

where ˜̂p† is considered proportional to the adjoint eigenvector
p̂

†. We need to find now a correct scaling. This is done by nor-
malizing ˜̂p and ˜̂p† as

p̂k =
˜̂pkq

( ˜̂p†
k
)H ˜̂pl

and p̂
†
k
=

˜̂p†
kq

( ˜̂p†
k
)H ˜̂pl

, (26)

so that ( p̂
†
k
)H

p̂k = 1 is satisfied.
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