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Abstract.

We construct a new class of charged, rotating hairy black holes in a consistent

truncation of N = 8 supergravity, which retains one charged scalar field and a U(1)

gauge field. These hairy solutions can be uplifted to solutions of type IIB supergravity

with AdS5×S5 asymptotics. We find rotating hairy black holes with finite entropy

arbitrarily close to the supersymmetric bound - the resulting supersymmetric solution

is a one-parameter extension of the Gutowski-Reall solution. These solutions have

finite curvature invariants (including at extremality), but in the extremal limit exhibit

diverging tidal forces in the near horizon region. Nevertheless, we argue that these

limiting supersymmetric black holes can be consistently studied within the supergravity

approximation.

Keywords: AdS/CFT correspondence, black holes, supergravity, numerical relativity,

higher dimensional relativity

1. Introduction

Gauge/gravity duality [1, 2, 3, 4] is one of the cornerstones of modern high-energy

physics. It has far reaching implications for a wide range of fields, including higher-

dimensional gravity, numerical relativity, lattice simulations, string theory, quantum

field theory, confinement and condensed matter.

The reason why AdS/CFT is useful is also the reason why it is difficult to prove.

It is a strong-weak duality, meaning that when one of the sides of the correspondence is

(in principle) solvable, the other is in a regime where no generic known technique can

be used to study it. In its original form, it conjectures an equivalence between four-

dimensional N = 4 Super-Yang-Mills (SYM) with gauge group SU(N) and coupling

constant gYM and ten-dimensional type IIB string theory with AdS5×S5 asymptotics,

string coupling gs and string length `s ≡
√
α′ [1]. Furthermore, the field theory lives

on the conformal boundary of AdS5, which in global coordinates is the Einstein static
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Universe Rt×S3. The free parameters on each side of the correspondence are identified

via

g2
YM = 2πgs and 2λ = L4/α′

2
, (1)

where L is the radius of curvature of AdS5 and the t’Hooft coupling is defined as

λ ≡ g2
YMN . The string theory side is mostly understood in the limit gs � 1 and

in the supergravity limit L2/α′ � 1. This can be achieved by simultaneously taking

N → +∞ and λ � 1. Even in this limit, when the string theory side reduces to a

classical supergravity calculation, the duality is hard to study, since the field theory

side is strongly coupled.

There are, however, many nontrivial tests of the correspondence in this limit, some

of which have been reviewed in [4]. One of the major successes of string theory in

flat space [5] is a microscopic counting of the black hole entropy from first principles.

However, this has not yet been accomplished in the original form of AdS/CFT just

stated above 1 . On the gravity side, Gutowski and Reall constructed a supersymmetric

black hole in [8], whose entropy has never been accounted for in N = 4 SYM. These

black holes are 1/16 BPS solutions, and in its original form, have two equal magnitude

angular momenta in AdS5 and carry three equal magnitude R-charges. They were

originally found within five-dimensional, minimal, N = 1 gauged supergravity, and

were readily uplifted to type IIB string theory with AdS5×S5 asymptotics using the

results contained in [9]. A surprising result of [8] is the fact that the black hole that

was found has a single free parameter, i.e. corresponds to a one parameter family of

solutions. This is surprising because the most general 1/16 BPS state in N = 4 SYM

(after imposing equality of the R-charges and equal magnitude angular momentum)

can be shown to depend on two real fugacities. This is turn implies, that if we were

to attempt a microscopic accounting of the entropy using the field theory we would

have to stop almost immediately, because the number of free parameters characterising

1/16 BPS states (within our class of symmetries) do not match on both sides of the

correspondence [10]. In this letter, we attempt to shed light on this problem, by giving

evidence in favour of a new family of supersymmetric black hole solutions that depend

on two free parameters, thus generalising the original Gutowski-Reall black hole.

In this Letter we proceed as follows. In section 2 we present the action that we used

throughout our work. Next, in section 3, we demonstrate the existence of a new family of

hairy black hole solutions which approach the BPS bound. We find that such solutions

have diverging tidal forces, and argue that they can be accurately described within

the supergravity approximation. We conclude with discussion and future directions in

section 4.

1 Note however that remarkable progress has been made in counting the entropy of black holes dual to

certain phases of topologically twisted deformation of ABJM theory [6, 7].
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2. The action

Due to its complexity, we will not work directly in type IIB supergravity, but instead

we will focus on five-dimensional N = 8 supergravity, since the latter is a consistent

truncation of the former [11, 12, 13, 14, 15, 16, 17] and appears much more tractable.

In fact, we will be working with a further reduction of N = 8, which was first presented

in [18] and whose static black hole solutions were studied in a great detail in [19]. These

solutions can be seen as a string theory embedding of the global black holes found in

[20]. From the five-dimensional perspective, this theory contains a metric g, a U(1)

gauge field A and a complex charged scalar field Φ that minimally couples to A. The

scalar field, however, will have a very non-minimal coupling to gravity.

Our action reads

S =
1

16πG5

∫
d5x
√
−g
{
R + 12− 3

4
FabF

ab − 3

8

[
(DaΦ)(DaΦ)∗ − ∇aλ∇aλ

4(4 + λ)
− 4λ

]}
− 1

16πG5

∫
F ∧ F ∧ A,

(2)

where λ = ΦΦ∗, ∗ denotes complex conjugation, F = dA, D = ∇−i eA. We have set the

AdS5 length scale L to unity and G5 = π/(2N2). The complex scalar field Φ has electric

charge e = 2 and mass square m2
Φ = −4, saturating the five-dimensional Breitenlöhner-

Freedman (BF) bound [21]. When Φ vanishes, this theory reduces to minimal gauged

supergravity, where the black holes of [8] were initially found. The equations of motion

derived from this action can be found in the Appendix A. The supersymmetric black

hole solutions of [8] later emerged as a particular extremal limit of finite-temperature

solutions [22, 23]. One expects the latter to be unstable to charged superradiance

[24, 25, 20, 19] when considering cold black holes, thus prompting the existence of hairy

solutions where Φ 6= 0. These are the solutions whose supersymmetric limit we aim to

discuss in the manuscript.

The most general ansatz for stationary, equal magnitude angular momenta,

asymptotically AdS5 black hole solutions with spherical horizon topology in an arbitrary

gauge is

ds2 = −f(r)dt2 + g(r)dr2 + Σ(r)2

[
h(r)

(
dψ +

1

2
cos θdφ− w(r) dt

)2

+
1

4
dΩ2

2

]
(3)

which has co-homogeneity one. When f(r) = g(r)−1 = 1 + r2, Σ(r) = r, w(r) and

h(r) = 1 we recognise the line element above as that of AdS5 in global coordinates,

where the round 3-sphere is written as a Hopf fibration. The fiber is parametrised

by the coordinate ψ with a period 2π, and θ, φ are the standard polar coordinates

on S2. The level surfaces of (3) are homogeneously squashed S3. The known solutions

to the equations of motion derived from (2) have been found in the radial gauge where

Σ(r) = r, and we will also work in this gauge. The conformal boundary is thus located
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at r = +∞, and black hole horizon is the null hypersurface r = r+, where f(r) vanishes

linearly and g(r) has a simple pole.

The gauge field ansatz compatible with the symmetries of the metric is

A = At(r) dt+ Aψ(r)

(
dψ +

1

2
cos θ dφ

)
, (4)

and we also set Φ = Φ∗ = Φ(r), which partially fixes the residual U(1) gauge symmetry.

This ansatz has a residual diffeomorphism gauge freedom associated with shifts

along ψ

ψ → ψ + α t, w → w + α, (5)

for some constant α. This can be used to set w → 0 at the conformal boundary,

enforcing a frame with the conformal boundary Rt×S3. w(r) evaluated at the horizon

is then identified as the black hole angular velocity Ω.

At the conformal boundary we want our solution to approach Rt×S3 at the

appropriate rates [26, 27, 28, 29]

f(r) = r2 + 1 +
Cf
r2

+O(r−4), Aψ(r) = O(r−2), At(r) = µ+
2 q

r2
+O(r−6) ,

g(r) =
1

r2
− 1

r4
+O(r−6), w(r) =

2 j

r4
+O(r−5) ,

h(r) = 1 +
Ch
r4

+O(r−6) , Φ(r) =
ε

r2
+O(r−4) ,

(6)

where we used standard quantisation for the scalar field Φ. As detailed in the Appendix

A, J ≡ j N2 is the angular momentum of the solution, Q ≡ q N2 is the total

charge, ε is directly proportional to the expectation value of the operator dual to

Φ, and M ≡ mN2 = (Cf − 3Ch)N
2/4 measures the total energy. In this theory,

supersymmetric solutions satisfy

M = 2 J + 3Q . (7)

We will give evidence of a new 2-parameter family of solutions that satisfy such bound

and where Φ is non-vanishing and finite. Using the first law of black hole mechanics

dM = T dS + 2Ω dJ + 3µ dQ (8)

and Eq. (7) one concludes that Ω = µ = 1 2 and T = 0 on such limiting configurations

(assuming S 6= 0 in the limiting case, as we shall confirm below).

Our most general non-extremal solution will depend on the three asymptotic

charges: m, j and q. Alternatively, we can use horizon quantities, and formulate the

problem in terms of finding new solutions for given values of the Hawking temperature

2 Perhaps amusingly, the fact that these black holes have Ω = 1 means they are nonlinearly unstable to

rotating superradiance, since it has been shown in [30] that any black hole with Ω > 1 is superradiantly

unstable to perturbations that break the rotating symmetry generated by ∂ψ.

4



T , black hole angular velocity Ω and chemical potential µ. For numerical convenience

we will generate solutions by dialing different values of the scalar field Φ at the horizon,

εH , while holding j fixed and decreasing the black hole horizon size r+.

In order to solve the resulting equations of motion we use a standard Newton-

Raphson relaxation routine on a single Chebyshev grid 3 and provide detailed

convergence tests in the Appendix C. For more details on the numerical implementation

see for instance [31].

3. Results

Hairy charged black holes with j = 0 interpolate the solution space of the charged

black holes between the near extremal RNAdS and the zero angular momenta BPS

bound M = 3Q [19]. Furthermore, on the BPS bound they reduce to hairy, horizonless

supersymmetric solutions in the T → 0 and T → ∞ limits. In the zero temperature

limit the corresponding limiting solution is smooth, while for T → +∞ it becomes

singular.

We find that the inclusion of j > 0 leads to a very similar picture with one

important difference. The hairy rotating black holes branch off the near-extremal

rotating and charged black holes, and exist arbitrarily close to the BPS bound for

all charges. However, the cold black hole phase retains non-zero entropy as T → 0 and

j > 0. The hairy black hole solutions that we constructed numerically have T > 0,

and in this paper we are interested in analysing their near-extremal quantities such

as entropy and curvature invariants. The hairy solution moduli space displays many

fascinating properties, and the phase diagram is rather intricate. Extensive analysis of

the full three-dimensional charged, rotating and hairy black hole solution space and its

thermodynamic properties is presented in the companion manuscript [32]. In particular,

the hairy black holes always dominate the microcanonical ensemble.

We monitored the black hole entropy S in the limit of fixed j and fixed horizon

scalar εH , as the temperature decreased down to T = 5 × 10−3. Decreasing the

temperature further at the expense of using a denser numerical grid gave only a very

small further variation in S. For example, the entropy only changed at the 0.1% level in

the temperature interval of 10−2 to 10−3. The results of our numerical experiment can

be found in Fig. 1, where we plot the extrapolated zero temperature entropy at several

fixed values of j, as a function of εH . We find that the entropy behaves like a power law

S ∝ (εH)α at large εH with an exponent 1/2 < α < 1. The limiting solution has Ω→ 1

and µ→ 1 as well as satisfying Eq. (7) to better than 0.2% accuracy.

The existence of these black holes has been conjectured in [18] based on a weakly

interacting model. We have done a detailed comparison of our numerical results with

those in [18], and find a good agreement when the black hole asymptotic charges are

sufficiently small (where the approximation of [18] is valid). For the hairy black holes

3 We can show that there are no non-analytic terms at either end of our integration domain, and as such

we have exponential convergence as we approach the continuum.
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Figure 1. Extrapolated zero temperature entropy of the hairy black holes with

constant j = 0.02 (orange disks), j = 0.05 (red squares) and j = 0.08 (black diamonds)

against the central scalar field εH . The variation in the entropy as we lower the

temperature further gives error less than 0.1%.

with the same mass, charge and angular momentum, the agreement is better than to

0.5−5%. For instance, a numerical solution which has j = 0.05, T = 0.0015 and entropy

S = 0.405, agrees with [18] at the 3.2% level in entropy.

We have studied a variety of curvature invariants as we approach this limiting

supersymmetric solution and we found that they are all finite. These include RabcdRabcd,

CabcdCabcd, F
abFab and |Φ|2. We went further, and constructed a coordinate frame

in which all components of the Riemann tensor of the hairy black holes are finite

everywhere, in particular at the horizon, and thus all curvature scalars derived from

the Riemann tensor (and its derivatives) are finite.

We have also studied the tidal forces as felt by an observer infalling into the

black hole. We compute the measure TabẊ
aẊb, where Ẋa is the tangent vector of a

timelike ingoing geodesic parametrised by the proper time τ , and Tab is the stress energy

tensor associated with the action (2). We find that the tidal forces diverge when we

approach T = 0, as it can be observed in Fig. 2 (left). Furthermore, the Riemann tensor

components measured in a freely falling frame diverge as we approach the extremality,

confirming that there is a parallely propagated (pp) curvature singularity.

Such singularities in supergravity theories are not rare, and there have been many

examples where the near extremal solutions exhibit pp singularities [33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43]. It is worth emphasising that all our hairy black holes, including the

ones just above the BPS bound are smooth solutions, and the tidal forces diverge only at

extremality. Such singularities can be regarded “good” in the sense of [44, 45]. We will,

however, further argue the divergences exhibited by the extremal limit of our solutions

can be consistently studied within the supergravity approximation as the Jacobi fields

remain bounded.

The notion of strong curvature singularities was first introduced by [46], which

were defined by the ability to crush any objects passing through the singularity to zero

volume. This idea was made more precise by [47, 48], where the strong curvature

6
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Figure 2. Left : The measure of tidal forces, as felt by a unit energy particle

infalling along a radial geodesic, TabẊ
aẊb at the hairy black hole horizon against

the temperature. The quantity shown is for a black hole family with fixed j = 0.05

and εH = 1, and the plot is in a log-log scale. Right : The log-log plot of the Tipler

integral, for hairy black hole family with constant angular momentum j = 0.05 and

horizon scalar εH = 1. The integral was computed using the Rtψtψ component found

in a PPON frame. Different components have similar qualitative behaviour.

singularities were defined such that an extended object falling into the singularity

retains a non-zero volume. The physical dimension of the object is defined by linearly

independent spacelike (vorticity-free) Jacobi fields along the timelike geodesic which

extends to the singularity. The weak curvature singularity is defined in a similar way.

In such singularities, even though the tidal forces diverge, it is still possible to have the

overall effect on the volume deformation to be bounded.

The necessary and sufficient conditions for the singularity to be weak were given by

Clarke and Krolak [48], and Tipler [47]. If the singularity resides at an affine parameter

τ? and the particle is at rest at τ = 0, then for a timelike geodesic meeting the singularity

at τ?, the integral of the components of the Riemman tensor in a parallely propagated

orthonormal frame (PPON)

Ti =

∫ τ?

τ0

∫ τ ′

τ0

∣∣Ri
0j0(τ ′′)

∣∣ dτ ′′dτ ′ (9)

will not diverge, for any τ0 ∈ [0, τ?). In the Appendix B we present our choice of PPON

adapted to our symmetries. The finiteness of Ti guarantees that the volume defined by

the Jacobi fields remains non-zero when crossing the singularity, and thus the curvature

singularity is weak.

In addition to the volume being non-zero as the object crosses the singularity, one

might require the norm of the Jacobi fields themselves to remain finite [49, 50, 51], so

that there is no divergent distortion in any of the directions. The convergence of (9)

implies that the Jacobi fields themselves are bounded [50]. We find that the Tipler

integral (9) remains finite, as can be seen in Fig. 2 (right). For different values of j

and εH the curves quantitatively change, but otherwise behave in the same qualitative

manner. We find that finiteness of the Jacobi fields should be more than enough to

control the classical and quantum propagation of strings.
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There are situations where Ti diverge and yet, stringy perturbation theory seems

to be under good control [52]. It is also worth mentioning that our limiting solutions

have bounded L2 curvature norm, and thus can be continued as solutions of the Einstein

equation past the black hole horizon [53] 4 . We believe that the limiting solutions found

here behave very much like the extremal black holes of [55].

Of particular interest is the near-horizon geometry of the extremal hairy black

hole limit. Numerical results suggest a non-trivial, exotic geometry which may be of

Lifshitz [56], or hyperscaling violating type [57]. While the attractor mechanism in

ungauged supergravity [58, 59, 60, 61, 62, 63, 64] is generally well understood, it has

not been completely resolved in the five-dimensional gauged supergravity (e.g. see [65]).

We note that the entropy of the hairy BPS black holes is determined solely by the black

hole charges, and therefore it is consistent with the attractor mechanism. This is a

regime which is difficult to approach numerically, but should in principle be tractable

analytically by utilising the BPS equations.

4. Conclusions and future directions

Our results unveil a myriad of opportunities for future work. First, it is conceivable

that our hairy black hole might not be the entropically dominant solution. In which

case, a complete treatment of the problem would involve perturbing the equations of

motion of IIB supergravity directly in ten dimensions and constructing the concomitant

black holes directly in ten dimensions. Second, it would be extremely interesting to

understand how to reproduce the entropy curves we have constructed using the CFT.

One of the consequences of our work is, of course, the fact that the number of parameters

match on both sides of the duality. While this is a step towards solving this counting

problem, there still remains much work to be done towards resolving the entropy puzzle.

Third, α′ corrections to the IIB action involving the ten-dimensional metric and five form

flux are known [66], and could in principle be used to compute the behaviour of our

entropy curves beyond the large t’Hooft limit. Finally, we have not managed to construct

the limiting hairy supersymmetric solutions, and instead we approach these solutions

from finite temperature. It would be very interesting to find a numerical or analytical

procedure that would be able to capture these solutions directly. We are currently

investigating whether these elusive black holes can be found by using supersymmetry.

It is possible that the diverging tidal forces indicate some non-analytic behaviour at

extremality, which would complicate the near horizon expansion 5 .

4 Consequently, they are also weak solutions in the sense of Christodoulou [54].
5 Note that this is not necessarily the case: Lifshitz spacetimes with critical exponent z = 2 are analytic

in the approach to the horizon, and yet have diverging Tipler integrals.
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Appendix A. Equations of motion and conserved quantities

In this section, we present the equations of motion derived from the action studied in

the main paper. The Einstein, Maxwell and scalar equations are as follows

Rab −
1

2
gabR− 6gab =

3

2
TEMab +

3

8
Tmatab , (A.1a)

∇bF
b
a −

1

4
εacdefF

cdF ef =
i

4
[Φ∗(DaΦ)− Φ(DaΦ)∗] , (A.1b)

DaD
aΦ + Φ

[
(∇aλ)(∇aλ)

4(4 + λ)2
− ∇a∇aλ

2(4 + λ)
+ 4

]
= 0 , (A.1c)

where the energy-momentum tensor is given by

TEMab = Fa
cFbc −

1

4
gab F

2,

Tmatab =
1

2
[DaΦ (DbΦ)∗ +DbΦ (DaΦ)∗]− 1

2
gab(DcΦ)(DcΦ)∗ + 2gab λ

− 1

4(4 + λ)

[
(∇aλ)(∇bλ)− 1

2
gab(∇cλ)(∇cλ)

]
.

(A.2)

Here λ = ΦΦ∗, and ∗ denotes complex conjugation. In the radial gauge, this yields a

system of seven non-linear differential equations, two of which are of first order, and the

rest are of second order.

Here we define conserved charges of the system. The energy M = N2m, angular

momentum J = N2j, electrostatic charge Q = N2q and the electrostatic potential at

the boundary µ are read from the large r asymptotics of the metric functions. Here N

is the gauge group rank, and we will work with the rescaled charges m, j, q and the

Bekenstein-Hawking entropy s = S/N2. To compute the conserved charges associated

with the asymptotic conformal Killing vector fields (∂t, ∂ψ), we use the Ashtekar, Das

and Magnon formalism [67]. The mass is computed with respect to the background

AdS5. The electric charge is obtained by computing the flux of the electromagnetic field

tensor at infinity

Q =
1

16πG5

∫
S3∞

(?F − F ∧ A) , (A.3)

and since the magnetic field asymptotically vanishes, the Chern-Simons term doesn’t

contribute. These quantities have to satisfy the first law of thermodynamics

dm = Tds+ 3µdq + 2Ωdj , (A.4)
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where in the non-rotating frame at infinity µ is the conjugate potential for the electric

U(1) charge, Ω is the thermodynamic rotational potential [68], and T is the Hawking

temperature. At the highest resolutions, our solutions satisfy the first law to better

than 0.001% accuracy.

Appendix B. Tidal forces

Static charged, near extremal black holes can exhibit diverging tidal forces as measured

by a freely infalling observer, while having all curvature scalars finite at the horizon [37].

In order to test whether the near extremal hairy solutions possess the tidal force

singularity, we need to analyse the geodesic motion in these backgrounds. We start

by considering the metric ansatz as given in the main paper, and look for radial,

timelike ingoing geodesics parametrised by the proper time τ and with the tangent

vector Ẋa = dXa/dλ. The Killing vector fields ∂t, ∂ψ and ∂φ give us three conserved

quantities

E = −gtaẊa, Lψ = gψaẊ
a, Lφ = gφaẊ

a, (B.1)

and we consider radial static geodesics on the S2 with θ̇ = 0 and φ̇ = 0, and zero

angular momentum in the ψ direction. Using the normalization condition ẊaẊa = −1

we obtain

Ẋa =

{
E

f(r)
,−
√
E2 − f(r)√
f(r)g(r)

, E
Ω(r)

f(r)
, 0, 0

}
, (B.2)

where the coordinates are ordered as {t, r, ψ, x, φ}. Here we use the angular coordinate

x = cos θ for numerical convenience.

In order to compute the curvature measured by a freely falling observer along the

radial timelike ingoing geodesic, we change into a parallely propagated orthonormal

frame (PPON). In the PPON, we require (ẽ0)a = Ẋa. We choose

(ẽ0)a = −E ∂at−

√
E2

g(r)

f(r)
− g(r) ∂ar ,

(ẽ1)a =
√
E2 − f(r) ∂at− E

√
g(r)

f(r)
∂ar ,

(ẽ2)a =
1

2

√
1− x2r ∂aφ ,

(ẽ3)a =
1

2

√
1

1− x2
r ∂ax ,

(ẽ4)a = −
√
h(r)rΩ(r) ∂at+

√
h(r)r ∂aψ +

1

2
x
√
h(r)r ∂aφ ,

(B.3)

which satisfies the orthonormality condition

gab(ẽα)a(ẽβ)b = ηαβ . (B.4)
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Figure C1. Left : Convergence of the energy for a few coldest J = 0.05, εH = 1 hairy

black holes considered in the paper, with T = 0.00052 (black rhombi), T = 0.00031

(blue squares) and T = 0.00016 (gray triangles). Here we plot the fractional error ∆

against the grid size n. Right : Low temperature (T = 10−2 ± 10−3) hairy black hole

energy convergence for a few different horizon scalar values εH . Black rhombi are for

εH = 1, blue squares for εH = 8.5, and gray triangles for εH = 14.5. Here we show

the fractional error against the grid size in a log scale.

The components of the Riemann tensor in the PPON frame are related to the

components in the coordinate frame by

Rαβγδ = Rabcd(ẽα)a(ẽβ)b(ẽγ)
c(ẽγ)

d , (B.5)

and are diverging, therefore exhibiting a parallely propagated curvature singularity.

Appendix C. Numerical convergence

We perform numerical calculations in the radial gauge, which is allowed by the fact that

our problem is reduced to be of co-homogeneity one. This turns out to be significantly

advantageous over the commonly employed DeTurck gauge, which we find that is not well

behaved in the near extremal limit. We discretize the equations using a pseudospectral

collocation method on a Chebyshev grid, and solve the resulting numerical equations

using the Newton-Raphson algorithm.

We find that in the radial gauge the near-extremal rotating hairy black holes exhibit

exponential convergence. In Fig. C1, we present convergence test for the black hole

energy, plotting the fractional error

∆mn = |1−mn+1/mn| (C.1)

against the grid size n. The convergence worsens significantly at very low temperatures

(Fig. C1 left), large horizon scalar fields εH (Fig. C1 right) and large angular momenta,

due to large gradients in the functions.

11



References

[1] Maldacena J M 1999 Int.J.Theor.Phys. 38 1113–1133 (Preprint hep-th/9711200)

[2] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B428 105–114 (Preprint

hep-th/9802109)

[3] Witten E 1998 Adv. Theor. Math. Phys. 2 253–291 (Preprint hep-th/9802150)

[4] Aharony O, Gubser S S, Maldacena J M, Ooguri H and Oz Y 2000 Phys. Rept. 323 183–386

(Preprint hep-th/9905111)

[5] Strominger A and Vafa C 1996 Phys. Lett. B379 99–104 (Preprint hep-th/9601029)

[6] Benini F, Hristov K and Zaffaroni A 2016 JHEP 05 054 (Preprint 1511.04085)

[7] Benini F, Hristov K and Zaffaroni A 2017 Phys. Lett. B771 462–466 (Preprint 1608.07294)

[8] Gutowski J B and Reall H S 2004 JHEP 02 006 (Preprint hep-th/0401042)

[9] Gauntlett J P, Gutowski J B and Suryanarayana N V 2004 Class. Quant. Grav. 21 5021–5034

(Preprint hep-th/0406188)

[10] Kinney J, Maldacena J M, Minwalla S and Raju S 2007 Commun. Math. Phys. 275 209–254

(Preprint hep-th/0510251)

[11] de Wit B and Nicolai H 2013 JHEP 05 077 (Preprint 1302.6219)

[12] Godazgar H, Godazgar M and Nicolai H 2013 Phys. Rev. D88 125002 (Preprint 1309.0266)

[13] Godazgar H, Godazgar M and Nicolai H 2013 Phys. Rev. D87 085038 (Preprint 1303.1013)

[14] Godazgar H, Godazgar M and Nicolai H 2014 JHEP 02 075 (Preprint 1307.8295)

[15] Godazgar H, Godazgar M and Nicolai H 2014 Phys. Rev. D89 045009 (Preprint 1312.1061)

[16] Lee K, Strickland-Constable C and Waldram D 2017 Fortsch. Phys. 65 1700048 (Preprint

1401.3360)

[17] Baguet A, Hohm O and Samtleben H 2015 Phys. Rev. D92 065004 (Preprint 1506.01385)

[18] Bhattacharyya S, Minwalla S and Papadodimas K 2011 JHEP 1111 035 (Preprint 1005.1287)

[19] Markeviciute J and Santos J E 2016 JHEP 06 096 (Preprint 1602.03893)

[20] Dias O J C, Figueras P, Minwalla S, Mitra P, Monteiro R and Santos J E 2012 JHEP 08 117

(Preprint 1112.4447)

[21] Breitenlohner P and Freedman D Z 1982 Annals Phys. 144 249

[22] Cvetic M, Lu H and Pope C N 2004 Phys. Rev. D70 081502 (Preprint hep-th/0407058)

[23] Chong Z W, Cvetic M, Lu H and Pope C N 2005 Phys. Rev. Lett. 95 161301 (Preprint

hep-th/0506029)

[24] Hartnoll S A, Herzog C P and Horowitz G T 2008 Phys. Rev. Lett. 101(3) 031601 URL

https://link.aps.org/doi/10.1103/PhysRevLett.101.031601

[25] Dias O J C, Monteiro R, Reall H S and Santos J E 2010 JHEP 11 036 (Preprint 1007.3745)

[26] Ashtekar A and Magnon A 1984 Class. Quant. Grav. 1 L39–L44

[27] Henneaux M and Teitelboim C 1985 Commun. Math. Phys. 98 391–424

[28] Henningson M and Skenderis K 1998 JHEP 07 023 (Preprint hep-th/9806087)

[29] de Haro S, Solodukhin S N and Skenderis K 2001 Commun. Math. Phys. 217 595–622 (Preprint

hep-th/0002230)

[30] Green S R, Hollands S, Ishibashi A and Wald R M 2016 Class. Quant. Grav. 33 125022 (Preprint

1512.02644)

[31] Dias O J C, Santos J E and Way B 2015 (Preprint 1510.02804)

[32] Markeviciute J 2018 (Preprint 1809.04084)

[33] Gueven R 2006 Class. Quant. Grav. 23 295–308 (Preprint hep-th/0508160)

[34] Harrison S, Kachru S and Wang H 2014 JHEP 02 085 (Preprint 1202.6635)

[35] Bhattacharya J, Cremonini S and Sinkovics A 2013 JHEP 02 147 (Preprint 1208.1752)

[36] Brecher D, Chamblin A and Reall H S 2001 Nucl. Phys. B607 155–190 (Preprint hep-th/0012076)

12

hep-th/9711200
hep-th/9802109
hep-th/9802150
hep-th/9905111
hep-th/9601029
1511.04085
1608.07294
hep-th/0401042
hep-th/0406188
hep-th/0510251
1302.6219
1309.0266
1303.1013
1307.8295
1312.1061
1401.3360
1506.01385
1005.1287
1602.03893
1112.4447
hep-th/0407058
hep-th/0506029
https://link.aps.org/doi/10.1103/PhysRevLett.101.031601
1007.3745
hep-th/9806087
hep-th/0002230
1512.02644
1510.02804
1809.04084
hep-th/0508160
1202.6635
1208.1752
hep-th/0012076


[37] Horowitz G T and Ross S F 1997 Phys. Rev. D56 2180–2187 (Preprint hep-th/9704058)

[38] Horowitz G T and Ross S F 1998 Phys. Rev. D57 1098–1107 (Preprint hep-th/9709050)

[39] Horowitz G T and Yang H s 1997 Phys. Rev. D55 7618–7624 (Preprint hep-th/9701077)

[40] Kaloper N, Myers R C and Roussel H 1997 Phys. Rev. D55 7625–7644 (Preprint hep-th/9612248)

[41] Madhu K and Narayan K 2009 Phys. Rev. D79 126009 (Preprint 0904.4532)

[42] Burko L M 1999 Phys. Rev. D60 104033 (Preprint gr-qc/9907061)

[43] Narayan K 2010 Phys. Rev. D81 066005 (Preprint 0909.4731)

[44] Maldacena J M and Nunez C 2001 Int. J. Mod. Phys. A16 822–855 [,182(2000)] (Preprint

hep-th/0007018)

[45] Gubser S S 2000 Adv. Theor. Math. Phys. 4 679–745 (Preprint hep-th/0002160)

[46] Ellis G F R and Schmidt B G 1977 General Relativity and Gravitation 8 915–953 ISSN 1572-9532

URL https://doi.org/10.1007/BF00759240

[47] Tipler F J 1977 Physics Letters A 64 8 – 10 ISSN 0375-9601 URL http://www.sciencedirect.

com/science/article/pii/0375960177905084

[48] Clarke C and Krlak A 1985 Journal of Geometry and Physics 2 127 – 143 ISSN 0393-0440 URL

http://www.sciencedirect.com/science/article/pii/0393044085900129

[49] Nolan B C 1999 Phys. Rev. D60 024014 (Preprint gr-qc/9902021)

[50] Ori A 2000 Phys. Rev. D 61(6) 064016 URL https://link.aps.org/doi/10.1103/PhysRevD.

61.064016

[51] Nolan B C 2000 Phys. Rev. D62 044015 (Preprint gr-qc/0001026)

[52] Bao N, Dong X, Harrison S and Silverstein E 2012 Phys. Rev. D86 106008 (Preprint 1207.0171)

[53] Klainerman S, Rodnianski I and Szeftel J 2012 (Preprint 1204.1767)

[54] Christodoulou D 2008 The Formation of Black Holes in General Relativity On recent developments

in theoretical and experimental general relativity, astrophysics and relativistic field theories.

Proceedings, 12th Marcel Grossmann Meeting on General Relativity, Paris, France, July 12-

18, 2009. Vol. 1-3 pp 24–34 (Preprint 0805.3880) URL https://inspirehep.net/record/

786592/files/arXiv:0805.3880.pdf

[55] Dias O J C, Horowitz G T and Santos J E 2011 JHEP 07 115 (Preprint 1105.4167)

[56] Kachru S, Liu X and Mulligan M 2008 Phys. Rev. D78 106005 (Preprint 0808.1725)

[57] Huijse L, Sachdev S and Swingle B 2012 Phys. Rev. B85 035121 (Preprint 1112.0573)

[58] Ferrara S, Kallosh R and Strominger A 1995 Phys. Rev. D52 R5412–R5416 (Preprint hep-th/

9508072)

[59] Strominger A 1996 Phys. Lett. B383 39–43 (Preprint hep-th/9602111)

[60] Ferrara S and Kallosh R 1996 Phys. Rev. D54 1514–1524 (Preprint hep-th/9602136)

[61] Ferrara S and Kallosh R 1996 Phys. Rev. D54 1525–1534 (Preprint hep-th/9603090)

[62] Chamseddine A H, Ferrara S, Gibbons G W and Kallosh R 1997 Phys. Rev. D55 3647–3653

(Preprint hep-th/9610155)

[63] Kallosh R, Rajaraman A and Wong W K 1997 Phys. Rev. D55 R3246–R3249 (Preprint

hep-th/9611094)

[64] Ferrara S, Gibbons G W and Kallosh R 1997 Nucl. Phys. B500 75–93 (Preprint hep-th/9702103)

[65] Hosseini S M, Hristov K and Zaffaroni A 2017 JHEP 07 106 (Preprint 1705.05383)

[66] Paulos M F 2008 JHEP 10 047 (Preprint 0804.0763)

[67] Ashtekar A and Das S 2000 Class. Quant. Grav. 17 L17–L30 (Preprint hep-th/9911230)

[68] Gibbons G W, Perry M J and Pope C N 2005 Class. Quant. Grav. 22 1503–1526 (Preprint

hep-th/0408217)

13

hep-th/9704058
hep-th/9709050
hep-th/9701077
hep-th/9612248
0904.4532
gr-qc/9907061
0909.4731
hep-th/0007018
hep-th/0002160
https://doi.org/10.1007/BF00759240
http://www.sciencedirect.com/science/article/pii/0375960177905084
http://www.sciencedirect.com/science/article/pii/0375960177905084
http://www.sciencedirect.com/science/article/pii/0393044085900129
gr-qc/9902021
https://link.aps.org/doi/10.1103/PhysRevD.61.064016
https://link.aps.org/doi/10.1103/PhysRevD.61.064016
gr-qc/0001026
1207.0171
1204.1767
0805.3880
https://inspirehep.net/record/786592/files/arXiv:0805.3880.pdf
https://inspirehep.net/record/786592/files/arXiv:0805.3880.pdf
1105.4167
0808.1725
1112.0573
hep-th/9508072
hep-th/9508072
hep-th/9602111
hep-th/9602136
hep-th/9603090
hep-th/9610155
hep-th/9611094
hep-th/9702103
1705.05383
0804.0763
hep-th/9911230
hep-th/0408217

	1 Introduction
	2 The action
	3 Results
	4 Conclusions and future directions
	Appendix A Equations of motion and conserved quantities
	Appendix B Tidal forces
	Appendix C Numerical convergence

