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Prior research showed that many secondary students fail to construct arguments that meet the stan-

dard of proof in mathematics. However, this research tended to use survey methods and only con-

sider students presenting their perceived proofs in written form. The limited use of observation

methods and the lack of consideration of students presenting their perceived proofs orally—in tan-

dem with their written proofs for the same claims—might have resulted in a skewed picture of the

potential of students’ constructed proofs, and this raises concern about the validity of research find-

ings. The research reported in this article substantiates this concern. Using data from a design

experiment in two secondary mathematics classrooms (14–15-year-olds), I explored the role of the

written versus the oral mode of argument representation in students’ proof constructions. Findings

from the comparison between the written arguments (perceived proofs) that the students produced

during small group work and the oral arguments that the students presented in front of the class for

the same claims showed that the oral mode of representation is more likely than the written mode to

be associated with the construction of arguments that meet the standard of proof. Thus if a study

had analysed students’ written arguments only (as in survey research), it would have reported a less

favourable picture of the potential of students’ constructed proofs than another study that would

focus only on students’ oral arguments (as in observational research). Implications for methodol-

ogy, research and practice are discussed in light of these findings.

Introduction

The concept of ‘proof’ is fundamental to deep learning in mathematics and in various

countries it is considered to be important for students’ mathematical experiences across

all levels of education, as early as the primary school (e.g. Ball & Bass, 2003; Yackel &

Hanna, 2003; National Governors Association Center for Best Practices & Council of

Chief State School Officers [NGA & CCSSO], 2010; Department for Education,

2013). For example, one of the three core aims that the national mathematics curricu-

lum in England sets for students of all ages relates to proof: ‘[Students should] reason

mathematically by following a line of enquiry, conjecturing relationships and generalisa-

tions, and developing an argument, justification or proof using mathematical language’

*University of Cambridge, Faculty of Education, 184 Hills Road, Cambridge CB2 8PQ, UK.

Email: as899@cam.ac.uk

© 2018 The Author. Review of Education published by John Wiley & Sons Ltd on behalf of British Educational
Research Association.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Review of Education
Vol. ��, No. ��, �� 2018, pp. ��–��
DOI: 10.1002/rev3.3157

mailto:
http://creativecommons.org/licenses/by/4.0/


(Department for Education, 2013, p. 3). The concept of proof is also hard-to-teach and

hard-to-learn, and thus over the past few decades it has attracted significant attention

internationally by researchers in the field of mathematics education (for reviews of the

state of the art in this area, see Harel & Sowder, 2007; Mariotti, 2006; Stylianides et al.,

2016, 2017).

A main research strand has focused on secondary (i.e. post-primary) students’ con-

structions of mathematical arguments, showing that many secondary students fail to

produce arguments that meet the standard of proof (e.g. Senk, 1989; Healy & Hoyles,

2000; K€uchemann & Hoyles, 2001–03; Knuth et al., 2009). For example, in a large-

scale study Senk (1989) asked 1520 secondary students taking a geometry class in the

USA to prove four theorems, two of which required only a single deduction beyond

the hypotheses. Senk found that only 30% of the students were able to prove at least

three theorems, while 29% were unable to construct a single proof.

However, the studies in this research strand have tended to only consider secondary

students presenting their perceived proofs in written form, primarily in the context of

survey studies. The lack of consideration by these studies of secondary students pre-

senting their perceived proofs orally—in tandem with students’ written proofs for the

same claims—might have resulted in an incomplete or a skewed picture of the poten-

tial of students’ constructed proofs, and this raises concern about the validity of

research findings. In this article I explore the possible role of the mode of representation

in secondary students’ argument constructions by addressing the following research

question: How do the degrees to which a student’s argument (perceived proof) for a

claim approximate the standard of proof compare when the bulk of the argument is

communicated using a written versus an oral mode of representation?

The research question was purposefully phrased so as to leave open the possibility

for any kind of relation to emerge between the degrees to which written and oral argu-

ments by the same student and for the same claim approximate the standard of proof.

Indeed there is no systematic research evidence to support a hypothesis for a unidirec-

tional relation, such as that the oral mode of representation is more likely, compared

with the written mode, to be associated with arguments that approximate the stan-

dard of proof. The empirical investigation of the research question took place in the

natural context of secondary students’ engagement with communicating arguments

that they perceive meet the standard of proof, namely, the classroom. This parallels

research on mathematicians’ engagement with communicating their finished proofs

via both written and oral modes of representation in various contexts relevant to their

work, including journals, conferences and lectures (e.g. Burton & Morgan, 2000;

Weber, 2004; Artemeva & Fox, 2011; Greiffenhagen, 2014; Lai &Weber, 2014).

Background

The concept of proof

The construction of arguments that meet the standard of proof is often the last step in

a complex and multifaceted activity typically referred to as proving that includes also

other processes such as the following: work with examples or exploration of particular

cases, identification of patterns and generation or refinement of conjectures or other
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kind of mathematical claims, and attempts to develop informal arguments for these

mathematical claims that may offer insight, or ultimately translate, into a proof (e.g.

Mason, 1982; Boero et al., 1996; Weber & Alcock, 2004; Mariotti, 2006; Stylianides,

2007, 2008; Alcock & Inglis, 2008; Zazkis et al., 2008, 2016). In this article, I focus

on the presentation of mathematical arguments whose constructors perceive they

meet the standard of proof and who might have engaged previously in some other

processes within the broader activity of proving. In other words, my focus is on the

presentation of the final product of an individual’s proving activity.

This raises the question of what counts as a proof. There is a multiplicity of per-

spectives on and usages of the term ‘proof’ in the mathematics education research lit-

erature (for summaries of some of these perspectives, see Balacheff, 2002; Weber,

2008; Stylianides et al., 2017). At the same time, there is recognition that it is neither

sensible nor desirable for all researchers to adopt a common definition of proof, for

specific research goals may be served better by different definitions of proof (Reid,

2005; Stylianides et al., 2017). Indeed, the important point here seems to be that

researchers specify clearly the definition of proof that has underpinned their research,

as well as their reasons for their choice, so as to facilitate understanding of their find-

ings and comparison of findings across studies (Balacheff, 2002).

Being consistent with this call for specificity, I state the definition of proof that has

underpinned the classroom-based research at the secondary level that I report in this

article:

Proof is amathematical argument, a connected sequence of assertions for or against a mathe-

matical claim, with the following characteristics:

1 It uses statements accepted by the classroom community (set of accepted statements) that are

true and available without further justification;

2 It employs forms of reasoning (modes of argumentation) that are valid and known to, or within

the conceptual reach of, the classroom community; and

3 It is communicated with forms of expression (modes of argument representation) that are appro-

priate and known to, or within the conceptual reach of, the classroom community. (Stylian-

ides, 2007, p. 291; italics in original)

This definition breaks down a mathematical argument into three components—the

set of accepted statements, the modes of argumentation and the modes of argument

representation—and imposes on each of them certain requirements before the argu-

ment can be said to meet the standard of proof. In describing the requirements that

the three components should satisfy for the argument to be a proof, the definition

seeks to achieve a defensible balance between two important considerations: the disci-

pline of mathematics and the classroom community that engages with the production

of a proof. For example, the definition requires that proofs not only use valid modes

of argumentation (cf. the first consideration) but also that these modes be known or

conceptually accessible to the classroom community where the proofs are produced (cf.

the second consideration). The merits of seeking to achieve a balance between these

two considerations, both in relation to proof and more generally in relation to the

teaching and learning of mathematics, have been discussed in Stylianides (2016).

An important implication of the definition, and a main reason for its choice in this

research, is that it makes clear that one’s ability to construct a proof cannot be
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dissociated from one’s readiness to communicate the respective argument using

appropriate modes of representation. Other available definitions of proof (see, e.g.

Griffiths, 2000; Mariotti, 2000; Healy & Hoyles, 2001; Knuth, 2002) tend to view

proof as a logical deduction linking premises with conclusions, thus considering the

use of the set of accepted statements and modes of argumentation in Stylianides’ defi-

nition but not explicitly the modes of argument representation, which is the key con-

struct of the research reported herein. Another reason for the choice of Stylianides’

definition is that, unlike other available definitions of proof that attend mostly to

mathematics as a discipline by emphasising the logico-deductive aspects of arguments

that meet the standard of proof (ibid.), Stylianides’ definition attends also to the char-

acteristics of the classroom community that engages with the production of a proof.

This is important for a classroom-based study like the one reported in this article.

Examples of modes of representation that can be used when communicating a

mathematical argument or a proof include written language, oral language, diagrams

or drawings, concrete materials, and gestures. For example, some mathematicians

who present previously completed proofs in front of an audience (such as their stu-

dents in an undergraduate class) write words and create diagrams or drawings on a

board while simultaneously gesturing and describing orally the proofs as the presenta-

tion unfolds (Artemeva & Fox, 2011; Greiffenhagen, 2014). Two modes of represen-

tation—the written and the oral—are main communication means through which

students describe their thinking processes in mathematics (Pugalee, 2004) and

through which the bulk of a proof is often communicated to an audience and are thus

the focus of this research. I return to modes of argumentation in the next section.

Stylianides’ (2007) definition of proof does not impose variable requirements on

the standard of proof by the mode of representation that is used in an argument that

is perceived to be a proof in a classroom community, and so, within this perspective,

an oral argument should be evaluated against the requirements for a proof the same

way as the argument’s respective written (transcribed) version. The situation is more

complex when it is unclear what the perceived proof is, such as in the case when an

oral proof is co-constructed by many individuals like the teacher and the students

during a lesson. In cases such as this one it is methodologically challenging to identify

which contributions in the verbal discourse of the classroom are part of the proof and

how the relevant contributions fit in together to actually constitute the proof.

Gonz�alez and Herbst (2013) discussed how using linguistic tools can allow research-

ers to deal with these methodological challenges to identify and map the oral proof

onto a written version. However, in the research I report in this article these method-

ological challenges are being bypassed by the fact that in the observed lessons the stu-

dent participants presented orally, and in the most part undistracted by other

classroommembers, the final products of their own proving activity.

Representations in proofs

Despite the wide appreciation of the importance of representations and mathematical

language more broadly as tools for communication linked both to mathematicians’

and to students’ mathematical thinking (e.g. Burton & Morgan, 2000; Lamon, 2001;

Pugalee, 2001, 2004; Sfard, 2001; Greiffenhagen, 2014), the modes of representation
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in secondary students’ proof constructions have not received much attention by

research thus far. Also, in those studies where the modes of representation did receive

attention, including relevant studies with university students, the specific role played

by a written versus an oral mode of representation in students’ proof constructions

has not been an explicit research focus.

Research on secondary students’ engagement with proof has tended to focus on

students’ difficulties with logical ideas underpinning mathematical arguments or

proofs, such as the inadequacy of a few confirming examples to establish the truth of

a general claim (e.g. Healy & Hoyles, 2000; Knuth et al., 2009) or the meanings of

logical implication and logical rules of inference (e.g. Hoyles & K€uchemann, 2002;

Yu, Chin, & Lin, 2004). This is a sensible research focus, for, according to Stylian-

ides’ (2007) definition of proof, a key expectation from mathematical arguments that

meet the standard of proof, which is also one that many students have difficulty grasp-

ing, is that the arguments use valid modes of argumentation (modus ponens, modus tol-

lens, etc.) to derive conclusions from accepted statements (definitions, axioms, etc.).

Some studies explored the use of concrete materials or drawings as ways to reduce

abstraction and support young children in argument construction (e.g. Morris, 2009;

Schifter, 2009), while a few studies with older students explored the role of diagrams

in mathematical reasoning and found little relationship between students’ preference

for visualisation and their achievement in mathematics (e.g. Wheatley & Brown,

1994; Presmeg, 2006). These studies have offered useful insights into the role that

concrete materials, drawings and diagrams play, or might play, in students’ argument

constructions but not into how the written or verbal modes of representation might

be associated with arguments that meet the standard of proof.

The most relevant piece of research with secondary students that I was able to find

was an analysis of video records of geometry lessons when secondary students presented

in front of their class their previously completed (written) arguments that they perceived

to be proofs (Dimmel, 2015; cited in Dimmel & Herbst, 2017). A communication prac-

tice in the observed lessons was students presenting their proofs by creating on the board

mark-for-mark reproductions of their previously completed proofs, an act that Dimmel

and Herbst (2017) called ‘proof transcription’ and found secondary mathematics teach-

ers in the USA perceived to be a routine communication practice when students pre-

sented their proofs in front of their class. The students’ presented arguments were, in

this case, the same as their transcribed written arguments, with no verbally described

version of these arguments to compare with, and so again no light is cast on the particu-

lar issue of interest in this article. Dimmel and Herbst offered a fair criticism of ‘proof

transcription’ as being out of line with proof presentation done by disciplinary experts in

front of an audience, where an oral commentary would normally be a key part of the pre-

sentation. In the classroom-based research that I report in this article, the secondary stu-

dents were expected to engage with proof presentation in front of their class in a way

that approximated more disciplinary experts’ presentations than the practice of ‘proof

transcription’ considered to be routine in secondary school geometry classes in the USA.

Research on university students’ engagement with proof has paid considerably

more attention to the role of modes of representation in proof construction, especially

in relation to the use of diagrams, and so it is pertinent to look at that literature too

despite my focus in this article on the secondary school level. Some researchers have
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asked university students to explain their reasoning orally as they wrote their proofs

(e.g. Alcock & Simpson, 2004, 2005; Weber & Alcock, 2004; Weber, 2005; Zazkis

et al., 2016; Mej�ıa-Ramos & Weber, in press), but these researchers did not compare

or explore the relationship between students’ oral and written arguments (K. Weber,

personal communication, 6 July 2018). Consider, for example, a study by Mej�ıa-
Ramos and Weber (in press) where 73 mathematics majors were asked to think aloud

while they were proving seven calculus theorems, and then write their proofs up as if

they were doing so for an examination. In their analysis of the available data, Mej�ıa-
Ramos and Weber explored (among other things) the possible correlation between

students’ diagram usage during the broader activity of proving (i.e. while the students

were attempting to construct a proof) and students’ success at the end of this activity

as reflected in their final written products (i.e. students’ perceived proofs). Here, like

in other similar studies at the university level that used think-aloud research designs,

students’ verbal descriptions of their thinking processes during their search for a proof

might have included oral arguments that students perceived to be proofs, but such

arguments, if present in students’ verbal descriptions, were not singled out by the

researchers or the students themselves for comparison with students’ written proofs.

Of course the fact that this comparison was not made is by no means a criticism of

these studies, which were designed to make other important contributions in the area

of proof. For example, Mej�ıa-Ramos and Weber’s (in press) study has extended prior

research knowledge about the role of diagrams in university students’ and mathemati-

cians’ argument constructions, including the process of ‘translating’ between infor-

mal arguments with diagrams and written proofs (e.g. Alcock & Simpson, 2004;

Samkoff et al., 2012; Zazkis et al., 2016), by showing that there was little correlation

between participants’ propensity to use diagrams and their success in writing a proof

in response to a proving task.

Finally, I searched the mathematics education research literature beyond the area of

proof for any comparisons between students’ use of the written and oral modes of repre-

sentation. My search returned a relevant study by Pugalee (2004) who compared sec-

ondary students’ oral and written descriptions of their thinking while solving

mathematical problems. The study’s sample comprised 20 secondary students (ninth

graders) from an introductory algebra class who worked individually to each solve six

problems of different levels of difficulty. For half of the problems the students were

asked to write everything that came to their mind while solving the problems, whereas

for the other half the students were asked to think out aloud by telling everything that

came to their mind as they solved the problems. The assignment of students to problems

and conditions (written vs. oral) controlled for the students’ mathematical and linguistic

abilities and for the problems’ level of difficulty. Pugalee found that students who wrote

descriptions of their thinking while solving the problems were statistically more success-

ful in the problem-solving tasks than students who verbalised their thinking.

On the surface, these findings extrapolated to the area of secondary students’ proof

constructions might appear to lend support to the hypothesis that secondary stu-

dents’ written arguments (perceived proofs) are more likely to be successful (i.e. meet

the standard of proof) than students’ oral arguments for the same claims. However,

such an extrapolation would be unwarranted owing to some fundamental differences

between Pugalee’s study and the study I report herein. One major difference concerns
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the objects of students’ written and oral descriptions in the two studies: everything that

came to students’ mind while solving the set problem-solving tasks in Pugalee’s study

versus the final product of students’ work from solving the set proving tasks in my

study. Another major difference is that in Pugalee’s study each student described

either in writing or orally his or her thinking while solving a given problem, whereas in

my study each student presented both in writing and orally his or her perceived proof

for a given claim thus allowing direct comparison between the two. Although Puga-

lee’s (2004) study is not directly relevant to the issue I explore in this article, the study

has made an important contribution to research knowledge in the intersection of writ-

ing mathematically and metacognition. Specifically, the study’s further analysis of

students’ descriptions of their thinking during problem solving using a metacognitive

framework (see also Pugalee, 2001) has lent support to the premise that writing can

be an effective tool in supporting metacognitive behaviours and thus it can be associ-

ated with better success in solving problem-solving tasks.

The broader research study

The findings of a classroom-based investigation of the set research question naturally

depend on students’ prior learning experiences with proof. Thus it is necessary for me

to offer sufficient background information about the context where the research was

conducted so as to establish, for example, that the standard of proof used by myself as

the researcher in analysing students’ perceived proofs was indeed appropriate from a

pedagogical standpoint. This necessity derives also from the definition of proof used

in the research (Stylianides, 2007), which describes proof not only as a mathemati-

cally sound argument but also as an argument that uses resources that are known or

conceptually accessible to the classroom community where the argument was devel-

oped.

The investigation reported in the article was part of a classroom-based design experi-

ment (see, e.g. Cobb et al., 2003) that aimed to engineer classroom instruction to sup-

port secondary students’ learning of proof and to theorise the emerging relationship

between learning and instruction. The study, which followed up on a university-based

design experiment in the USA that had similar aims (e.g. Stylianides & Stylianides,

2009a,b, 2014), was carried out for 2 years in two Year 10 (and then Year 11) classes

(14–15-year-olds and then 15–16-year-olds) in a state school in England. All 61 stu-

dents from the two highest attaining Year 10 classes in the school (out of a total of

seven classes) and their teachers participated in the research over the 2-year period

(each teacher taught the same class in Years 10 and 11). The focus on high-attaining

students was motivated by the findings of a prior large-scale longitudinal study in

England (K€uchemann & Hoyles, 2001–03) that showed (1) weak understanding of

proof among a national sample of high-attaining Year 8–10 students and (2) modest

(if any) improvements in students’ understanding from Year 8 to Year 10. These

findings raised concerns about English high-attaining secondary students’ learning of

proof and suggested an even more pessimistic prospect of learning proof for lower-

attaining or younger students.

The study involved the design, implementation, and analysis of six lesson

sequences related to proof (ranging from one to five 45-minute periods each), which
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were taught by the two teachers at different points in time during the 2-year period.

Of relevance to this article are the first two lesson sequences: in lesson sequence 1,

the students were introduced to the concept of proof; lesson sequence 2 capitalised

on the previous lesson sequence and engaged the students in proof constructions that

formed the data for this article. In what follows I outline students’ introduction to

proof in lesson sequence 1 so as to place in context the students’ proof constructions

that I analyse in this article, and I discuss the standard of proof against which stu-

dents’ perceived proofs were judged.

Lesson sequence 1 lasted two 45-minute periods and was taught 1 month into Year

10 (i.e., in October). The lesson sequence was an adapted version of the instructional

engineering discussed in Stylianides and Stylianides (2009b, 2014) and had two main

goals: (1) to help students begin to recognise the limitations of empirical arguments

as methods for validating mathematical generalisations and see an ‘intellectual need’

(Harel, 1998) to learn about more secure validation methods (i.e. proofs); and (2) to

engage students in a discussion about what counts as a proof, including a list of five

criteria for deciding whether a mathematical argument meets the standard of proof.

The criteria were as follows (this is an excerpt from a PowerPoint slide used in lesson

sequence 1).

An argument that counts as proof [in our class] should satisfy the following criteria:

1 It can be used to convince not only myself or a friend but also a sceptic.

• It should not require someone to make a leap of faith (e.g. ‘This is how it is’ or ‘You need

to believe me that this [pattern] will go on forever.’)

2 It should help someone understand why a statement is true (e.g. why a pattern works the way

it does).

3 It should use ideas that our class knows already or is able to understand (e.g. equations, pictures,

diagrams).

4 It should contain no errors (e.g. in calculations).

5 It should be clearly presented.

These criteria, phrased to be suitable for secondary students, are consistent with

Stylianides’ (2007) definition of proof I presented earlier, thus ensuring coherence

with the researcher’s perspective on proof. Criteria 1 and 4 correspond to the require-

ment in the definition for valid modes of argumentation; criterion 5 to the require-

ment for appropriate modes of argument representation; and criterion 3 to the

requirement that all components of a mathematical argument (set of accepted state-

ments, modes of argumentation and modes of argument representation) be readily

accepted, known to or within the conceptual reach of the class. Furthermore, criteria

1 and 2 reflect, respectively, two important functions that arguments and proofs

served in the two classes: to promote conviction (e.g. Mason, 1982) and understand-

ing (e.g. Hanna, 1995). These functions are in line with a broader framework of

engaging students in mathematics as a sense-making activity whereby knowledge is

established through reason and mathematical argument rather than by appeal to the

authority of the teacher or the textbook (e.g. Ball & Bass, 2003; Harel & Sowder,

2007).
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Overall, students’ engagement with proof in the two classes sought, by instructional

design, to be consistent with Lampert’s (1992) notion of ‘authentic mathematics’.

According to Lampert (1992), ‘[c]lassroom discourse in “authentic mathematics”

has to bounce back and forth between being authentic (that is, meaningful and

important) to the immediate participants and being authentic in its reflection of a

wider mathematical culture [where proof has a pivotal role]’ (p. 310). In this sense,

communication practices such as ‘proof transcription’ (cf. Dimmel & Herbst, 2017)

in presenting proofs in front of an audience were unwelcomed in the discourse of the

two classes.

Methods

Data

The data for the article derived from lesson sequence 2, which lasted three 45-minute

periods in one class and two such periods in the other class (the pace of implementa-

tion of a lesson sequence was up to each teacher and this resulted in variations in the

duration of some lesson sequences in the two classes). Lesson sequence 2 was imple-

mented 1.5 months after lesson sequence 1 and had two main goals: (1) to help stu-

dents further understand the criteria for a proof introduced during lesson sequence 1

and (2) to offer to students opportunities to apply these criteria in three proving tasks.

The three tasks (Figure 1) were of varying levels of difficulty, but they were all con-

sidered by the teachers to be appropriate for their students following their recent

introduction to proof. Furthermore, the three tasks were mathematically similar: each

of them involved making and proving a generalisation by reference to an underlying

mathematical structure. The mathematical similarity of the tasks ensured some uni-

formity in the data and respective analysis to address the research question. The

choice of this kind of task was partly motivated by their abundance in the secondary

school curriculum (at least in England) and their mathematical importance, for

embedded in them is the notion of ‘structural generalisation’ (e.g. Bills & Rowland,

1999).

Lesson sequence 2 started with a review of the five criteria for a proof (cf. the Back-

ground section), followed by the teacher launching Task 1. There was individual or

small group work on the task, during which the teacher asked the students to write

down their ‘best’ arguments with reference to the five criteria for a proof. By specify-

ing to the students the frame of reference against which their arguments would be

evaluated (i.e. the five criteria for a proof), the teacher (following the lesson plan)

clarified essentially to the students the issue of audience for their arguments. This was

an important clarification not only from a pedagogical standpoint but also from a

research standpoint, for prior research showed that students’ sense of audience might

influence their proof-related work (e.g. Healy & Hoyles, 2000). The students were

given ample time to engage in proving activity related to the set task and ultimately

write down the final products of this activity. They were free to work in pairs or larger

groups during the proving activity, but they were instructed specifically to write down

their arguments individually. However, a few of them ended up writing their argu-

ments in pairs. There was then a whole-class discussion during which the teacher
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Task 1

The Toothpicks Problem

1. How many toothpicks make up this 1-by-4 rectangle?
2. How many toothpicks make up a 1-by-60 rectangle?  Prove your 

answer.
3. Can you find an expression that would give the number of toothpicks 

that make up an 1-by-N rectangle?  Prove your answer.

Task 2

The Hexagons Problem

Mark has some hexagons.  The sides of the hexagons are all the same 
length and equal to 1cm.  Mark puts hexagons in rows to create trains of 
different sizes.  Here’s Train 3, which is made up of 3 hexagons in a row:

1. What is the perimeter of Train 3?
2. What is the perimeter of Train 100, which is made up of 100 

hexagons in a row?  Prove your answer.
3. Can you find an expression that would give the perimeter of Train N, 

which is made up of N hexagons in a row?  Prove your answer.

Task 3

The New Toothpicks Problem

1. How many toothpicks make up the 3-by-3 square above?
2. How many toothpicks make up a 60-by-60 square?  Prove your 

answer.
3. Can you find an expression that would give the number of toothpicks 

that make up an N-by-N square? Prove your answer.

Figure 1. The three proving tasks
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made an open call for students to come up on the board and present their proofs, with

the presented arguments being considered against the five criteria for a proof. The

use of the criteria as a frame of reference for evaluating the quality of the oral argu-

ments in the public domain supported a coherent sense of audience for students’ writ-

ten and oral arguments, thus creating a common ground for the comparison of the

two kinds of argument in this research. A similar procedure as in Task 1 was followed

for the implementation of the other two tasks. The lesson sequence was videotaped

using a camera that was placed at the back of the room, and the video records were

fully transcribed.

The specific data for the article are the transcripts of the oral presentations of 17

students who presented their arguments in front of the class and copies of the corre-

sponding written arguments that the same students had produced during their indi-

vidual or small group work prior to the presentations. These were all the students

who presented their arguments, which they perceived to be proofs, to the rest of the

class for any of the three tasks. Thirteen students wrote and presented their argu-

ments individually; two students wrote and presented their arguments together; and

two students wrote their arguments individually but presented them together. Overall

there were 16 distinct written arguments (one of which was co-authored by two stu-

dents) and 15 distinct oral arguments (two of which were each presented jointly by a

pair of students). Also 13 students (or pairs of students) presented arguments for only

one task while two students each presented arguments for two tasks. The distribution

of student presenters across the three tasks was 10 students for the Task 1, four for

Task 2, and three for Task 3.

The data collection and broader study were scrutinised according to the procedures

for ethical approval of the University of Oxford (my home institution at the time of

the data collection), which met the British Educational Research Association and Bri-

tish Psychological Society standards. School, teacher and student participation in the

study was voluntary and was solicited through consent forms to the school’s head tea-

cher, the school’s head of mathematics, the two teachers, the students’ parents or

guardians and the students themselves.

Analysis

A research assistant and I coded independently all written and oral (transcribed)

arguments of the 17 students. We compared codes and discussed disagreements,

reaching a consensus code as needed. Examples of all codes used in the analysis will

be given in the Results section.

The unit of analysis was a student’s entire (written or oral) argument rather than

selected parts thereof. This choice of a unit of analysis was meant to respect the integ-

rity of students’ arguments and avoid any selection bias.

In conducting the analysis, first we used the coding scheme described in Stylianides

and Stylianides (2009a) to classify each written or oral argument into one of the fol-

lowing five categories (M1–M5) ordered according to the degree to which the argu-

ment approximated the standard of proof (M1 indicated a proof). Two main reasons

for the choice of this coding scheme were (1) its alignment with Stylianides’ (2007)

definition of proof that had underpinned the research reported herein and (2) its way
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of operationalising this definition for use in coding students’ proof constructions.

Codes M1–M4 refer to (genuine) mathematical arguments and can be clustered into

two broader categories: strong (M1 andM2) and weak (M3 andM4).

• Strong mathematical arguments:

o code M1—a proof;

o code M2—a valid general argument but not a proof.

• Weak mathematical arguments:

o code M3—an unsuccessful attempt for a valid general argument;

o code M4—an empirical argument.

• Non-mathematical arguments:

o code M5—a non-genuine argument.

All three tasks involved proving a generalisation, and so the definitions of the

codes were tailored to classifying arguments that aimed to establish the truth of a

general claim. The definition of code M1 was consistent with Stylianides’ (2007)

definition of proof, which had underpinned the criteria for a proof used in the two

classes. Specifically, code M1 was used for arguments that were general (i.e. they

covered all the cases in the domain of the respective generalisation), used valid

modes of argumentation (i.e. they offered conclusive evidence for the truth of the

generalisation) and were accessible to the students in the class (i.e. they used state-

ments that were readily acceptable by the class as well as modes of argumentation

and modes of argument representation that were known to the students or were

judged by the teachers to be within the students’ conceptual reach at the particular

point in time). Code M2 was used for arguments that approximated but not quite

met the standard of proof, because, for example, of a missing or an inadequate

explanation of an assertion that could not have been considered readily acceptable

by the class. Code M3 was used for arguments that reflected an attempt to justify

the respective generalisation for all the cases in its domain, but the arguments were

either incomplete or used invalid modes of argumentation (i.e. they included a logi-

cal flaw). Code M4 was used for arguments that verified the truth of the generalisa-

tion only in a proper subset of all the cases in its domain but nevertheless concluded

that the generalisation was true for all cases. Code M5 was used for non-genuine

arguments, i.e. responses to the proving tasks that showed minimal engagement,

were irrelevant to what was being asked, or were potentially relevant but the rele-

vance was not made evident to the coder.

The research question was addressed primarily by comparison of the codes given to

the written and oral versions of students’ arguments for the generalisation in each

task. The varying (albeit appropriate) levels of difficulty of the three tasks promised a

good distribution of students’ written arguments across the categories of strong and

weak mathematical arguments, thus promising further an appropriate setting to

explore the research question. Did strong written arguments retain or (if relevant)

improve their status during their oral presentations, or were they downgraded to weak
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arguments? Conversely: Did weak written arguments improve their status thus being

upgraded to strong arguments, or did they retain their weak status?

In addition to the arguments’ degree of proximity to a proof, we coded the follow-

ing two factors so as to offer more insight into the outcomes of the comparison:

• Who wrote or orally presented each argument: an individual student or a pair of stu-

dents; and

• The kind of verbal input from the teacher or the rest of the class during the oral pre-

sentation of the argument: no input; some but not substantial input (i.e. input that

simply reiterated or briefly clarified a point mentioned by the student without an

apparent influence on the quality of the presented argument); or substantial input

(i.e. input that influenced the presented argument and possibly altered its degree of

proximity to a proof).

Other factors

In what follows I discuss four other factors that could have influenced potentially the

results of the comparison between students’ written and oral arguments for the same

claims. Regarding the first factor, I argue that an influence was possible but neverthe-

less inevitable given the nature of classroom work. Regarding the other three factors, I

argue that, despite their potential to do so, most likely they did not influence the

results.

The first factor concerns the temporal sequencing of students’ arguments: first

written, then oral. It is possible that a student’s experience of producing a written

proof helped the student build familiarity with the task and underlying concepts, thus

placing the student in a better position later on to orally present an argument that

approximated the standard of proof. While from a research standpoint the lack of

control over the temporal sequencing of students’ arguments might be viewed as a

methodological limitation, the particular sequencing (first written, then oral) is legiti-

mate from a pedagogical standpoint. Specifically, that sequencing was an inevitable

implication of how lessons were organised in the two classes during the implementa-

tion of high-level tasks (proving tasks being a case in point). According to Stein et al.

(2008), lessons involving high-level tasks in reform-oriented classes often start with

the teacher launching one such task; they continue with students working on the task

individually or in small groups, with the expectation being usually that students will

keep a written record of their work; and they conclude with a whole-class discussion

where students’ solutions are orally presented and discussed. I revisit this factor at the

end of the article.

Given the particular temporal sequencing, the comparison between students’ argu-

ments is essentially between the ‘written mode’ and the ‘oral mode in the context of a

class presentation following a written proof construction’. Thus it is reasonable to ask

whether and to what extent students’ oral arguments were influenced by factors per-

taining to the class presentations (cf. the second and third factors discussed below) or

the prior written work (cf. the fourth factor).

The second factor was whether a student’s oral presentation of an argument for a

proving task influenced subsequent student presentations for the same task. If that

happened, the overall quality of oral arguments might have been enhanced. Yet I
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found no indication of such an influence: students’ oral presentations were rather dis-

tinct from one another; students’ orally presented arguments matched closely their

written arguments (an indication of this was that the oral presentations were based on

the same diagrams as in students’ written work); and students looked at or referred to

their own written work during their oral presentations.

The third factor was whether the teacher or the rest of the class offered any non-ver-

bal input to students’ oral presentations that influenced the course or content of those

presentations thus influencing also the degree to which the respective oral arguments

approximated the standard of proof. Indeed, non-verbal ways of expression, notably

gestures, can reveal implicit knowledge and provide the imagery of language

(McNeill, 1992; Roth, 2001). Data constraints did not allow me to examine system-

atically the possible influence of gestures: the lessons were videotaped by only one

camera at the back of the room that focused primarily on the presenter and was thus

inadequate to capture the gestures (if any) of the teacher and of all the students (ap-

proximately 30) in each class. However, even if gestures played a role in students’ pre-

sentations, their particular influence on the quality of the presented arguments could

be both negative and positive depending on whose gestures appealed to the presenter

at the time and the presenter’s interpretation of those gestures (which might have dif-

fered from their intended meaning). Also, it is possible that any gestures with a sub-

stantial influence on an oral argument would be accompanied with a relevant

utterance, which would then be captured by the analysis of verbal input as explained

in the previous section.

The fourth factor was whether the teacher offered any substantial input during stu-

dents’ written work in small groups (the teacher’s input during students’ oral presen-

tations was coded as described earlier). According to the plan that I had agreed with

both teachers prior to the lessons, during small group work they would ask students

probing questions, but they would not directly influence students’ argument con-

structions. Indeed, my observations during the lessons and the videotapes of the les-

sons (reviewed afterwards) offered no indication of deviation from the agreed plan.

But even if the teachers had offered substantial input during small group work, the

result of that input would have been better written arguments and, presumably, better

oral presentations of those arguments, too. In other words, there would likely be lim-

ited if any impact on the comparison between the degrees to which students’ written

and oral arguments approximated the standard of proof, which is the issue examined

in this article.

Results

General trends

The results are summarised in Figures 2a–c and show the degrees to which every

written argument and its respective oral argument approximated the standard of

proof for the following groups of students: (1) those who wrote and presented

their arguments individually, with no verbal input from the teacher or the rest of

the class during the presentation of their oral arguments (N = 9, Figure 2a); (2)

those who wrote their arguments individually or in pairs and presented the
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arguments in pairs, again with no verbal input (N = 4, Figure 2b); and (3) those

who wrote and presented their arguments individually, with some verbal input

from the teacher during the presentation of their oral arguments (N = 4,

Students who 
wrote and presented their 
arguments individually, 
with no verbal input (N=9)

Students who 
presented their arguments in 
pairs, with no verbal input 
(N=4)

Students who 
wrote and presented their 
arguments individually, 
with verbal input from the 
teacher (N=4)

a

b

c

Figure 2. Summary of results
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Figure 2c). With regard to the last group, in two cases only was the teacher’s

verbal input considered to be substantial and thus potentially influential of the

quality of the presented arguments.

No arguments were coded as non-genuine (code M5), which was unsurprising

given the generally high mathematical competence of the students and their prior

learning experiences with proof. The distribution of students’ written arguments

across the categories of strong and weak mathematical arguments (codes M1–M2

and M3–M4 respectively) was rather uniform: eight students wrote strong arguments

and nine wrote weak arguments. This distribution created an appropriate setting to

explore the research question, as it allowed investigation of whether the arguments in

each category retained their status or crossed categories. Consideration also of stu-

dents’ oral arguments revealed a clear pattern: all strong written arguments retained

their status during their oral presentations, while all weak written arguments were

upgraded to strong arguments during their oral presentations. In particular, all of the

orally presented arguments had the same or better quality than their written counter-

parts. This pattern applied across the board, i.e. it was not restricted to the two cases

where the teacher offered substantial verbal input during the students’ oral presenta-

tions.

Exemplification and further insights

Next I present some student arguments for the three proving tasks to exemplify the

general trends and offer further insights into the relationship between students’ writ-

ten and orally presented arguments. All student names are pseudonyms.

All six students who wrote proofs (M1) ended up presenting proofs. There was a

close correspondence between students’ written and orally presented proofs as illus-

trated by Larry’s work for Task 1 (Figures 3a,b). Larry’s oral presentation was unin-

terrupted by the teacher or the rest of the class, and so his argument was coded as

having received ‘no input’.

Mac’s work for Task 3 (Figures 4a,b) illustrates the upgrade of an M2 written

argument to a proof (M1) during its oral presentation. Mac’s written argument

did not quite meet the standard of a proof, as it offered no explicit explanation

about the derivation of different algebraic expressions (n, n + 1, 2n + 1, etc.);

Mac offered these explanations during his oral presentation of the argument.

Indeed, in their oral presentations students tended to fill in gaps of their written

arguments, or articulate explanations that were absent or implicit in the written

arguments, thus elevating their status. This is illustrated further by the work of

Blaze for Task 2 (Figures 5a,b); he wrote an M3 argument that was elevated to

a proof during its oral presentation.

The oral presentation of Mac’s argument (Figure 4b) illustrates also what counted

as ‘some but not substantial input’: The teacher simply clarified briefly a point men-

tioned by Mac during his presentation, and it seems plausible that the teacher’s com-

ment did not influence the quality of the presented argument. The oral presentation

of Sylvia’s argument (Figure 6b) illustrates what counted as ‘substantial input’: The

teacher made a comment at a point when Silvia paused and seemed to have difficulty

articulating the general case in the context of the specific diagram she had drawn on
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the board, and it seems plausible that Silvia ended up presenting an argument that

better approximated the standard of proof than she would have presented without the

teacher’s input.

Discussion

All of the oral arguments that the secondary students in this study presented in front

of their class and perceived to be proofs approximated the standard of proof to the

Larry is up on the board and says the following:

“The formula is 3n+1.  Say for 1-by-3, you’ve got a pattern like that. [He draws a 1-by-3 
rectangle on the board similar to the one that appears in his paper; see last diagram in Figure 
3a.] And I split it up because this bit [he shows the first vertical line of the rectangle] is the 
‘+1’ part of the equation and then these being separate... [he puts into a square outline the 
three sticks that made up a square – the top, bottom, and right one – like in his paper, Figure 
3a] and then I’ve put this bit ‘a’ and these bits all ‘b.’ And then I’ve written ‘a’ is the ‘+1’ 
part as it doesn’t change and ‘b’ is the ‘3n,’ because every stick along the bottom, which is n, 
there is two more going with it, therefore here is 2, 2 more 3… [inaudible words].  So it is 3 
times of how many are in the bottom plus the ‘a’.”

b

a

Figure 3. (a) Larry’s written argument for Task 1 (code M1); (b) Larry’s orally presented

argument (transcribed) for Task 1 (code M1)
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same or higher degree than the corresponding written arguments that the students

had produced previously for the same claims. These findings suggest that, in a class-

room context at the secondary school level, the use of the oral mode of representation

is more likely, compared with the written mode, to be associated with the construc-

tion of student arguments (perceived proofs) that meet the standard of proof.

As discussed in the Methods section, the temporal sequencing of students’ argu-

ments might have played a role in the findings: it is possible that students’ work of first

Mac is up on the broad to present his proof.  He works on a 3-by-3 square that is already on 
the board and is essentially the same as the diagram he had in his paper (see Figure 4a).  Mac 
says the following:

“In this example, this group of three here [shows the top horizontal line of toothpicks] could 
be called ‘n’ [writes ‘n’ next to the line]; the same for this group here [shows the second 
horizontal line of toothpicks and writes ‘n’ next to the line]; this group [shows the third 
horizontal line of toothpicks and writes ‘n’ next to it]; and this group [shows the bottom 
horizontal line of toothpicks and writes ‘n’ next to it].  Now along there [shows the top row 
of squares] it has four [vertical toothpicks; shows the toothpicks], which in this case here is 
‘n+1’ [writes ‘n+1’ on the right corner of the diagram].  So combine that with the ‘n’ and the 
‘n+1,’ we get ‘2n+1’ [writes ‘2n+1’ on the board].  Now this is duplicated three times down 
here [shows the three rows of squares in the diagram and writes ‘2n+1’ two more times next 
to each of the remaining rows].”  

The teacher interrupts Mac to say: “…because this is a 3-by-3 square.”

Mac repeats what the teacher said and continues:

“Assume there is a formula, we’ve got ‘2n+1’ and that would be multiplied by how many 
times we’ve gone down with ‘n’ [shows the rows of squares].  This end line [shows the 
bottom line of toothpicks] … [inaudible] … would just be added on [writes on the board ‘n x
(2n+1) + n’].”

b

a

Figure 4. (a) Mac’s written argument for Task 3 (code M2); (b) Mac’s orally presented argument

(transcribed) for Task 3 (code M1)

18 A. J. Stylianides

© 2018 The Author. Review of Education published by John Wiley & Sons Ltd on behalf of British

Educational Research Association.



writing their perceived proofs before orally presenting them in front of their class had

afforded them familiarity with the task and underlying concepts thus positioning them

to present better oral arguments later on. According to Pugalee (2001, 2004), writing

can support metacognitive behaviour including a level of reflection that promotes stu-

dents’ attention to their thinking about mathematical processes, which in turn can

support students’ selection of appropriate strategies while solving mathematical prob-

lems. Even if temporal sequencing did play a role, however, there might not be a com-

pelling reason to try to design a classroom-based study to investigate the effect of

‘first written, then oral’ versus ‘first oral, then written’ on the quality of students’ writ-

ten and respective oral arguments for the same claims. This is because one of these

conditions (i.e. ‘first oral, then written’) would go against the common classroom

practice during the implementation of high-level tasks whereby students’ written

Blaze is up on the board and draws a train comprising three hexagons.  He says the 
following:

“No matter how long the chain [train] is, you’re always going to have these two end pods [he 
draws a circle around the first and last hexagons in the train].  On each end pod you’ve got 
five sides so you get ‘+10,’ cause they’re 10 [he indicates that he counted the sides of the 
first and last hexagons that contribute to the perimeter of the train].  And this is a train of 
three, so to get the one middle pod you have to do ‘n – 2,’ so on each middle pod there is 4 
sides so you times that by 4.  [As he talks he writes ‘4(n – 2) + 10’ on the board.]”

b

a

Figure 5. (a) Blaze’s written argument for Task 2 (code M3); (b) Blaze’s orally presented

argument (transcribed) for Task 2 (code M1)
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work precedes the oral presentations of students’ produced solutions (Stein et al.,

2008). Thus, the findings reported herein might be viewed as documenting a specific

variation of the relation between students’ written and oral arguments (perceived

proofs) under the particular variation of the temporal sequencing typically found in

actual classroom settings. Having said that, it would be interesting, and not incom-

patible with common classroom practice, to explore a more complex structure of

Silvia is up on the board to present her proof.  She works on a 3-by-3 square that is 
already on the board and is the same as one of the diagrams she had in her paper (see 
Figure 6a).  She says the following:

“In the diagram, you have certain vertical lines [she shows the vertical lines of the 3-by-3 
square] and certain horizontal lines [she shows the horizontal lines of the 3-by-3 square].  
And the number of… squares you have is 3 [she shows the three squares along the 
bottom row of the 3-by-3 square], so n is 3.  And… one second [she has a look at her 
notes] … you have… if we look at… the horizontal lines, you have 4 times 3… but n 
[she shows all horizontal lines in the 3-by-3 square, beginning from the bottom of the 
square].” 

Silvia pauses and the teacher comments: “If that [showing the bottom horizontal line] 
was n…?”  

Silvia continues the teacher’s sentence: “…that’s n plus 1 [she shows the collection of all 
horizontal lines].  So [for the total number of toothpicks in the horizontal lines] you’ve 
got n times n plus 1 [she writes on the board ‘n x n + 1’] and it’s same for the vertical 
lines…  So… if you do that [she puts into brackets ‘n+1’ in the previous expression and 
then the whole expression ‘n x (n+1)’ into brackets] and have 2 there [she completes the 
expression to read ‘2(n x (n+1))’], so you do it twice and that’s all.”

b

a

Figure 6. (a) Silvia’s written argument for Task 3 (code M4); (b) Silvia’s orally presented

argument (transcribed) for Task 3 (code M1)
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temporal sequencing whereby students first write their arguments (perceived proofs),

then they orally present their arguments, and finally they write their arguments again

(i.e. ‘first written, then oral, then written again’). This exploration would offer some

insight into whether the oral presentation of an argument, which the present study

suggests might be influenced by the prior work of writing that argument, can influ-

ence in turn the subsequent re-writing of the argument for the same claim. If it turned

out that the written and re-written arguments were identical or approximated the

standard of proof to the same degree, this finding would create some doubt over the

role played by temporal sequencing in the quality of students’ written and oral argu-

ments for the same claims in the context of classroom work.

A possible setting to explore the particular variation of temporal sequencing ‘first

oral, then written’ would be outside of the classroom, by adaptation of the task-based

interviews that are conducted usually with university students in proof construction

studies. For example, consider again the study of Mej�ıa-Ramos and Weber (in press)

with 73 mathematics majors that I discussed in the Background section. These

researchers asked the student participants to think aloud while proving seven calculus

theorems, and then write their proofs up as if they were doing so for an examination.

The data yielded by these task-based interviews allowed the clear identification of the

written arguments that the students perceived to be proofs but not the corresponding

oral arguments. If the students were asked to orally present the final argument (per-

ceived proof) emerging from their proving activity around a set task before they wrote

that argument up, there would be a record of both kind of arguments for comparison.

The findings from such a comparison would enhance the field’s understanding of the

relationship between students’ oral and written arguments (perceived proofs) for the

same claims, albeit under a different variation of temporal sequencing, with a differ-

ent student population, and in a substantially different setting than in the study I

reported in this article.

The possible role played by temporal sequencing left aside, what else might explain

the generally lower degree of proximity of students’ written arguments to the standard

of proof compared with their respective oral arguments? A possible reason might be

sought in the difficulty coming from writing mathematics. According to Vygotsky

(1987; cited in Pugalee, 2004), writing involves ‘deliberate analytical action on the

part of the writer requiring the writer to maximally compact inner speech so that it is

fully understandable; thus, written words require a deliberate structuring of a web of

meaning’ (Pugalee, 2004, p. 28). Proof writing must place increased demands on the

writer for deliberate analytical action and structuring of a web of meaning owing to

the expectations from a proof to construct a logical argument from accepted state-

ments and offer clarity about what statements are considered to belong to the set of

accepted statements and how premises are linked with conclusions through logical

deductions. Verbal expression might relieve the speaker from the requirement ‘to

maximally compact inner speech’ thus allowing the speaker more freedom to convey

the intended meaning. Indeed, in their presentations of their oral arguments, which

were more extended in length than the respective written arguments, students tended

to fill in gaps of their written arguments, or articulate explanations that were absent or

implicit in these arguments, thus elevating their status. Students’ prior learning expe-

riences with proof are pertinent here: If students’ presentations were mere mark-for-
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mark reproductions of their written proofs (cf. Dimmel & Herbst, 2017), thus depart-

ing from the perspective of proof as a vehicle to mathematical sense-making that had

underpinned instruction in my design experiment, the students’ presentations would

be unlikely to fill in any gaps of their written proofs.

As I noted at the beginning of the article, prior research on secondary stu-

dents’ argument constructions tended to use survey methods and only consider

students presenting their perceived proofs in written form. Based on students’

written arguments, this research has painted a bleak picture of secondary stu-

dents’ ability to construct arguments that meet the standard of proof. The find-

ings reported in this article suggest that the limited use of observation methods

and the lack of consideration of students presenting their perceived proofs orally

—in tandem with students’ written proofs for the same claims—is a serious threat

to the validity of research findings in this area. Indeed, if a study had analysed

students’ written arguments only (as in survey research), it would have reported

a less favourable picture of the potential of students’ constructed proofs than

another study that would focus only on students’ oral arguments (as in observa-

tional research). Also, by considering only one mode of representation and ignor-

ing the other, each study individually would have reported an incomplete picture

of students’ constructed proofs, for apparently it matters whether students pre-

sent their perceived proofs orally or in writing. Given that in England and other

countries students’ mathematical knowledge is assessed primarily, if not exclu-

sively, through students’ response to tasks in written tests, the findings reported

in this article also have implications for practice. Specifically, the findings suggest

that the lack of consideration by current assessment practices of students present-

ing their solutions to proving or other kind of mathematics tasks orally—in tan-

dem with students’ written solutions to the same tasks—might be yielding an

inaccurate picture of students’ mathematical potential.

Overall, the findings reported herein highlight, from a research standpoint, the

importance of multiple research methods in studying complex cognitive abilities, sec-

ondary students’ proof constructions being a case in point. Another complex cogni-

tive ability in the area of proof that I believe would benefit from a study of this kind is

secondary students’ evaluations of the extent to which given (researcher generated)

arguments meet the standard of proof. Despite the rather extensive body of research

on secondary students’ argument evaluations (e.g. K€uchemann & Hoyles, 2001–03;
Hoyles & K€uchemann, 2002; Yu et al., 2004), there is evidence to suggest that a

number of factors, often uncontrolled for in relevant studies, influence the nature of

secondary students’ argument evaluations and thus the validity of researchers’ con-

clusions based on students’ work. For example, there is evidence to suggest that it is

easier for secondary students to identify invalid arguments as invalid than it is for

them to identify valid arguments as valid (Reiss et al., 2002); thus a study would likely

report a better picture of secondary students’ potential to accurately evaluate given

arguments if it asked students to evaluate more invalid arguments and fewer valid

arguments. There is also evidence to suggest that secondary students evaluate given

arguments from different perspectives, such as what would satisfy them personally or

what would satisfy their teacher, with the latter perspective triggering evaluations that

better align with the conventional meaning of proof (Healy & Hoyles, 2000); thus a
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study would likely report a better picture of secondary students’ potential to accu-

rately evaluate given arguments if it asked students to do their evaluations based on

what they thought would count as a proof for their teacher than for themselves. Simi-

lar to secondary students’ proof constructions and the role that a written versus an

oral mode of representation might play in the quality of these constructions, the afore-

mentioned pieces of evidence spotlight the study of secondary students’ argument

evaluations as a methodologically complex territory and indicate the need for the use

of multiple research methods to better understand the role that different factors play

(or can play) in the quality of these evaluations. Research with university students has

made more progress than research with secondary students in understanding what

factors impact on such evaluations (see, e.g. Selden & Selden, 2003; Alcock &Weber,

2005; Stylianides & Stylianides, 2009a; Weber, 2010).

To conclude, in this article I have exemplified the threats to the validity of research

findings arising from a singular methodological approach to the study of a multi-

faceted cognitive ability related to the fundamental concept of proof in mathematics

at the secondary school level. Unless we, as a field, achieve an adequate understand-

ing of the complex network of factors influencing our findings in the study of this and

other abilities of a similar kind, it will be difficult to develop a broad-based method-

ological approach that will generate an accurate picture of students’ potential with

respect to these abilities.
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