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Abstract. We show that when observing the range of a chordal SLEκ curve for κ ∈ (4, 8), it is not
possible to recover the order in which the points have been visited. We also derive related results
about conformal loop ensembles (CLE): (i) The loops in a CLEκ for κ ∈ (4, 8) are not determined
by the CLEκ gasket. (ii) The continuum percolation interfaces defined in the fractal carpets of
conformal loop ensembles CLEκ for κ ∈ (8/3, 4) (we defined these percolation interfaces in earlier
work, where we also showed there that they are SLE16/κ curves) are not determined by the CLEκ
carpet that they are defined in.

1. Introduction

The Schramm-Loewner evolutions (SLE) defined by Oded Schramm [19] in 1999 are the canonical
conformally invariant, non-crossing, fractal curves which connect a pair of boundary points in a
simply connected planar domain, and their importance has since been highlighted in numerous
settings. The SLE family is indexed by the positive real parameter κ, and there are three different
regimes of κ values which correspond to different sample path behavior of an SLEκ curve [18]: it
is a simple curve for κ ∈ (0, 4], a self-intersecting but not space-filling curve for κ ∈ (4, 8), and a
space-filling curve for κ ≥ 8.

In this work, we will answer the following question: Is it possible to recover the trajectory η of the
SLEκ (i.e. the map t 7→ η(t)) when one observes its range (i.e. the set of points η([0,∞)))? In other
words, if one knows the set of points that an SLEκ visited, can one recover the order in which they
were traced? The answer in the regime where κ ∈ (4, 8) is the following:

Theorem 1.1 (SLEκ range does not determine the path). Fix κ ∈ (4, 8), suppose that η is an
SLEκ process from 0 to ∞ in the upper half-plane, and consider some fixed T ∈ (0,∞]. Then the
trajectory η|[0,T ] is almost surely not determined by its range η([0, T ]). In fact, the conditional law
of the trajectory given its range is almost surely non-atomic.

We note that the answer to this question in the other regimes of κ values is trivial: For a simple
curve one can always recover the trajectory given its range, and for a space-filling curve, the range
does provide no information at all.

In the proof of this result, we will view our SLEκ path as living in an ambient space with many
other SLEκ paths around. More specifically, we will take here this space to be a collection of loops
which come from a conformal loop ensemble CLEκ [22, 25] with κ ∈ (4, 8). This is in contrast to
several other recent works, in which it was natural to use the Gaussian free field (GFF) as the
structure in which the path is naturally embedded [23, 4, 10, 11, 12, 13].

We will also answer two natural questions about CLE. Recall that a CLE describes the distribution
of a natural random collection of loops in a simply connected domain. The law of a CLE in a simply

Date: November 19, 2018.

1



2 JASON MILLER, SCOTT SHEFFIELD, AND WENDELIN WERNER

connected domain is conformally invariant (and one can therefore always view it as the conformal
image of a CLE defined in the unit disk) and it is described by the same parameter κ as SLE, but
with the constraint that κ has to be in the interval (8/3, 8). The loops of a CLEκ are SLEκ-type
paths. Again, there are two ranges depending on whether or not κ > 4. When κ ∈ (8/3, 4], the
loops are simple, disjoint and do not touch the boundary of the domain they are defined in, whereas
when κ ∈ (4, 8), the loops are non-simple (but non-self-crossing) and can touch each other and the
boundary.

Our first result about CLE will deal with the latter case (where κ ∈ (4, 8)). The set of points that is
not surrounded by any of the loops (in the sense that the index of all the loops around those points
is 0) is a random closed set called the CLEκ gasket, and can be viewed as the natural conformally
invariant random version of the Sierpinski gasket. Because the individual loops of the CLEκ touch
each other and the boundary, it is a priori not clear whether one can recover the individual loops by
just looking at the gasket. Indeed, it is not possible:

Theorem 1.2 (CLEκ gasket does not determine CLEκ loops). Fix κ ∈ (4, 8) and suppose that Γ
is the collection of loops in a (non-nested) CLEκ. Then Γ is almost surely not determined by the
CLEκ gasket. In fact, the conditional law of Γ given its gasket is almost surely non-atomic.

We now turn to our second result for CLE, which is focused on the case of CLEκ for κ ∈ (8/3, 4).
Recall that in this case, the loops in the CLEκ form a disjoint collection of simple loops that also
do not touch the boundary, so that the set of points that are encircled by no loop (this set is now
called the CLEκ carpet) can be viewed as a natural conformally invariant random version of the
Sierpinski carpet. In [14], we have defined and described natural continuous percolation interfaces
(CPI) within such CLEκ carpets, that can intuitively describe boundaries of critical percolation
clusters within these random fractal sets. These interfaces turn out to be variants of SLE16/κ curves,
that are coupled with the CLEκ.

Theorem 1.3 (Continuous percolation within CLEκ is random). Fix κ ∈ (8/3, 4), suppose that
Γ is a CLEκ, and that η is an SLE16/κ-type curve coupled with Γ as a CPI in the sense of [14].
Then the range of η (and therefore also the path) is almost surely not determined by Γ. In fact, the
conditional law of η given Γ is almost surely non-atomic.

In fact, this statement also holds in the case of the “labeled” CLEκ for κ ∈ (8/3, 4) which are
described in [14], where for each of the CLEκ loops, one tosses an independent biased coin to decide
whether it is open or closed for the considered percolation process that one constructs. We note
that the analog of Theorem 1.3 for the labeled CLE4 is known to be false (see [14]): the continuous
percolation interfaces in a labeled balanced (one uses a fair coin to choose the labels) CLE4 are
deterministic functions of the labeled CLE4 itself.

Theorem 1.3 also sheds some light about the coupling between the GFF and the CLEκ carpets
when κ ∈ (8/3, 4), as it shows that in these couplings, the GFF is not a deterministic function of
the nested CLEκ carpets.

The rough idea of the proof of Theorem 1.2 will be to construct a measure µ which is supported on
a certain set of exceptional points. These points are either intersection points between two distinct
macroscopic CLE loops, or double points on one single loop. In both cases, there are four different
macroscopic strands that emanate from these points. We will then show that if one performs
the Markov step of picking a point at random using µ, and then resamples the way that the four
macroscopic strands are hooked up at that point, one roughly preserves the law of the global CLE.
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Figure 1. Idea of the proof of Theorem 1.2: Choosing a pivotal and resampling its
state can merge loops without changing the gasket.

Figure 2. Idea of the proof of Theorem 1.1: An SLEκ path with κ ∈ (4, 8) and
two intertwined double points. The path depends on whether it visits the plain part
before the dashed part or not, but the range does not. Choosing two such double
points according to some well-chosen measure µ′ and resampling the order between
dashed and plain will preserve the range but not the path

.

During this resampling step, the gasket is preserved, but one can merge two loops into one or split
one loop into two (see Figure 1). This shows that it is not possible to identify the individual loops
by just observing the gasket.

The proofs of Theorem 1.3 and of Theorem 1.1 will follow a similar idea, except that in the latter
case, one will need to construct a measure µ′ on special pairs of intertwined double points on
the path, and the Markov step will consist in switching simultaneously the hookup configuration
between the four strands at both points in order to preserve the range of the path (see Figure 2).
This then leads to a coupling of a pair of SLEκ paths which have the same range but visit their
common range in a different order.

The construction and non-triviality of the measures µ and µ′ is based on the multi-scale second
moment method, which has also been used in many instances in the last decades to study the
Hausdorff dimensions of random fractals.
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2. Preliminaries

In this section, we make some comments and review some preliminary facts before proceeding to
the proofs of our main theorems. In Section 2.1, we will explain a possible approach to proving our
results when κ = 6 using properties of Bernoulli percolation. In Sections 2.2–2.4, we will review the
construction of CLEκ when κ ∈ (4, 8) as well as the construction when κ ∈ (8/3, 4] given in [14].

2.1. Percolation pivotal points analogy. Although it will not be used directly in our proofs,
it is worthwhile to first describe a possible proof of Theorem 1.1 in the special case where κ = 6.
Indeed, our proof will have some analogies with the strategy that we will now outline.

The SLE6 curve is known to be the scaling limit of percolation interfaces and the way in which
the discrete interface approaches the SLE6 in the scaling limit is well-understood [26, 2, 29]. In
particular, the double points of SLE6 correspond to the scaling limit of the double points in the
discrete percolation interface (see for instance [29]). These discrete double points form a subset
of the set of points in the percolation configuration where a so-called four-arm event holds (two
disjoint closed and two open arms touch these points in alternating circular order, and they create
four percolation interface strands). Furthermore, thanks to the work of Garban, Pete and Schramm
[6, 7], the way in which the counting measure on such double points approaches a natural measure
on the set of double points of SLE6 in the scaling limit is well-understood.

Suppose now that one considers a long percolation interface, and consider two given disjoint
macroscopic domains (here the domains will be thought of as fixed, while the mesh of the lattice
will tend to zero). With positive probability, it will happen that the percolation interface visits
these two domains twice and create intertwined double points as in Figure 3. On this event, we can
decide to choose at random a pair of such intertwined double points using the counting measure
on such pairs, and to change the status of both of these two points simultaneously. Note that this
will basically not change the range of the percolation interface, but only the order in which the
three strands of the percolation interface that join the two double points are traced. This indicates
that the probability of the obtained configuration is comparable to the probability of the initial one
(before switching how the strands are hooked up), which in turn indicates that in the scaling limit,
the SLE6 curve cannot be a deterministic function of its range.

Let us note that in order to make the previous idea work, it is sufficient to use the counting measure
on some “special” intertwined double points which satisfy some extra conditions. For instance, one
can use points where the four strands are well-separated at some macroscopic scale. Such points
are easier to work with when obtaining uniform estimates: In particular, when one conditions on
the event that such a well-separated four-arm event occurs at two given points, then one can see
that the conditional probability that these two points end up being intertwined on the percolation
interface is bounded from below. Instead of sampling according to the counting measure along
the curve, one can (up to constants in the probabilities) therefore first choose the two points at
random in some uniform way in two prescribed domains, then sample the nice four-arm events in
their respective macroscopic neighborhood, and then finally the percolation configuration in the
remaining domains, in such a way that they hook up the arms so that the percolation interface
visits these two points, and then finally the state of these two points.

Our approach to the general SLEκ case will have a similar flavor, although we will work directly
in the continuum. The percolation configuration will be replaced by a CLEκ instance. We will
discover the CLEκ first near the two points z, w using branches of the CLEκ exploration tree. We
will also define some “nice four-arm type events” and use the conformal Markov property of SLEκ
and CLEκ to control the correlations between what happens in different regions.



NON-SIMPLE SLE CURVES ARE NOT DETERMINED BY THEIR RANGE 5

Figure 3. Choose two points in the dotted regions and condition on the independent
nice four-arm events for both of them. Then, the conditional probability of the
interface creating the intertwined double points as shown in the figure is bounded
from below, and the order that the three strands are visited changes if one changes
the way in which the strands are hooked up at those double points.

2.2. Background on SLEκ(κ− 6) and SLEκ(ρ;κ− 6− ρ) processes. Certain generalizations of
SLE processes will play in important role in our paper, and we briefly review their definition and
basic properties here.

Loewner chains and SLE. Recall that Loewner’s equation allows one to define a increasing family of
compact hulls (Kt)t≥0 in the closed upper half-plane H, when one is given a continuous real-valued

function W , using the following procedure: Define for each z ∈ H the solution (gt(z))t≤τ(z) to the
ordinary differential equation

∂gt(z) =
2

gt(z)−Wt

started from g0(z) = z, up to the (possibly infinite) time τ(z) which is the first time at which
gt(z) −Wt hits 0. The set Kt is then defined to be {z ∈ H, τ(z) ≤ t} and gt turns out to be the
unique conformal transformation from Ht := H \Kt into H such that gt(z)− z = o(1) as z →∞.
The family (Kt)t≥0 is the Loewner chain driven by the function W .

In all cases that we will be dealing with, it turns out that there exists a continuous two-dimensional
curve γ with the property that at all times t, Ht is the unbounded connected component of H\γ[0, t].
One then says that the Loewner chain is generated by this curve γ. This curve is then also uniquely
determined by the driving function W . Note that the existence of such a curve γ does not hold for
all driving functions W , but it is actually now known to hold for all the random driving functions W
that we will discuss in the present paper (but proving this has been a quite challenging endeavor).

When κ is some positive constant, and (Bt)t≥0 is a standard one-dimensional Brownian motion, the
Loewner chain obtained when Wt :=

√
κBt is Schramm’s SLEκ [19]. In the present paper, we will

actually consider generalization of the SLE curves only for κ ∈ (2, 8) (so, we will omit to describe
here what happens for κ ≥ 8). One can recall [18] that SLEκ is almost surely generated by a simple
continuous curve when κ ∈ (0, 4] and generated by a continuous curve with a dense family of double
points when κ ∈ (4, 8). The scaling property of Brownian motion ensures that SLEκ is conformally
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invariant and can be defined in any simply connected domain with two marked boundary points
(up to time-reparameterization of the curve). The Markov property of Brownian motion implies
that the SLE possesses its important conformal Markov property, see [19].

SLEκ(ρ1; ρ2) for ρ1, ρ2 > −2. Let us now describe the SLEκ(ρ1; ρ2) processes when ρ1, ρ2 > −2
that will play an important role in the present paper. These are the natural generalizations of SLE
where one keeps track of two additional marked boundary points. Suppose that κ ∈ (0, 8). The
SLEκ(ρ1; ρ2) from 0 to infinity in the upper half-plane is the Loewner chain driven by the random
function W that is defined by

dWt =
√
κdBt +

ρ1
Wt − V 1

t

dt+
ρ2

Wt − V 2
t

dt, dV j
t =

2

V j
t −Wt

dt, V j
0 = 0 for j = 1, 2,

with the condition that V 1
t ≤Wt ≤ V 2

t for all t ≥ 0 (we sometimes say that V 1
0 = 0− and V 2

0 = 0+
to indicate this). When ρ1 = 0 or ρ2 = 0, these are the usual SLEκ(ρ) processes with just one
additional marked point that had been introduced in [9]. The fact that these SLEκ(ρ1; ρ2) are
well-defined and generated by continuous curves for all these choices of ρ1, ρ2 > −2 has been derived
in [10]. Again, because the driving function W of these processes satisfies Brownian scaling, the
obtained Loewner chain and curve are conformally invariant, so that it is for instance possible to
define an SLEκ(ρ1; ρ2) from 0 to x ∈ R \ {0} in the upper half-plane as the image of the previous
curve γ under a conformal automorphism φ of H with φ(0) = 0 and φ(∞) = x.

When κ ∈ (2, 8) and ρ ∈ (−2, κ− 4), then the SLEκ(ρ;κ− 6− ρ) turns out to have the very special
target-invariance property (see [3, 21] for the case where ρ = 0): Suppose that for each y, Ly is the
law of an SLEκ(ρ;κ− 6− ρ) curve from 0 to y ∈ R \ {0} in the upper half-plane. When γy is such
a curve, we let τy(y

′) be the first time at which γy does disconnect y′ from y.

Definition 2.1 (Target-invariance). We say that the family (Ly)y∈R\{0} has the target-invariance
property if for any y 6= y′ in R \ {0}, it is possible to couple a realization γy of Ly and a realization
γy′ of Ly′ in such a way that γy up to τy(y

′) and γy′ up to τy′(y) coincide almost surely (up to
time-reparameterization).

For the target-invariant family (Ly) defined above, it is then possible to actually couple all the
paths γy for y ∈ R \ {0} on the same probability space, in such a way that for all y 6= y′ in R \ {0},
the paths γy up to τy(y

′) and γy′ up to τy′(y) coincide almost surely (up to time-reparameterization)
– one can for instance first do this for any given countable family of target points y, and then to
invoke a Kolmogorov extension result:

Definition 2.2 (Branching tree). This path-valued process (γy)y∈R\{0} is called the SLEκ(ρ;κ−6−ρ)

branching tree in H, rooted at 0 and targeting all boundary points.

Note that we view this here as a path-valued process, and that we do not discuss here the “regularity”
with respect to y. All events that we will discuss will in fact depend on a given countable (say,
dense) family of paths γy1 , γy2 , . . . and there will be no measurability issue for those.

One particular case is when κ ∈ (4, 8) and ρ = 0 (or ρ = κ− 6). One then obtains the SLEκ(κ− 6)
branching tree, which (as we will recall) is then used to define CLEκ for κ ∈ (4, 8). In that case, the
target-invariance property and the branching tree are actually naturally defined for a richer class of
SLEκ(κ− 6), that target also any interior point y ∈ H \ {0} (instead of only boundary points).
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SLEβκ(κ− 6) for κ ∈ (8/3, 4). Let us now briefly recall some features of the SLEκ(κ− 6) processes
when κ ∈ (8/3, 4). Care and some non-trivial observations are required to define these processes,
because in this case κ−6 < −2, so that the drifts can become singular (i.e., not absolutely integrable)
when one tries to directly generalize the previous definition of SLEκ(ρ) processes via

dWt =
√
κdBt +

ρ

Wt − Vt
dt, dVt =

2

Vt −Wt
dt, V0 = 0

to these cases (the main observation is that formally, the process ((Wt − Vt)/
√
κ) would then be a

Bessel process of small dimension, so that
∫
ds/|Ws − Vs| =∞ in the neighborhood of the times at

which Wt − Vt = 0).

It turns out that (we refer to Section 3 of [14] for a detailed self-contained presentation and
references to the original papers) it is still possible to make sense of SLEκ(κ− 6) processes in the
range κ ∈ (8/3, 4):

• One can define a SLE1
κ(κ− 6) process and a SLE−1κ (κ− 6) process, which have the property

that the sign of Wt − Vt remains constant (i.e., non-negative or non-positive). These are the
totally asymmetric SLEκ(κ− 6) processes.
• For general β ∈ (−1, 1), one can define the side-swapping SLEβκ(κ−6) process, where (loosely

speaking) the sign of each excursion of the process W − V away from the origin is chosen
independently to be + or −1 with respective probability (1± β)/2.

The scale-invariance of these processes (and therefore the fact that one can define them in any simply
connected domain) is basically part of their construction. The continuity of all these SLEβκ(κ− 6)
curves was a challenging question and has been established in [14]. Their target-invariance property
is basically part of their definition, and this enables to define (for each value of β) the SLEβκ(κ− 6)
branching trees (that we will use in the present paper, and that provide one way to define conformal
loop ensembles for κ ∈ (8/3, 4)).

One can emphasize here that for these SLEβκ(κ − 6), it is also possible (and easy) to define the
target-invariance property and the branching tree for a collection of paths (γy)y∈H\{0} that target

also any interior point y ∈ H.

2.3. CLEκ background when κ ∈ (4, 8). We will now give a very brief review of the construction
and the main properties of CLEκ for κ ∈ (4, 8); mind that some of the statements that we will survey
here do not hold for κ ∈ (8/3, 4]. These results follow fairly directly from [22] – see also [14, 15] for
more extensive reviews. In the present paper, we will focus primarily on the non-nested versions of
conformal loop ensembles, where each given point in the domain is almost surely surrounded by one
CLE loop.

Non-nested CLEκ for κ ∈ (4, 8) are random collections of loops, that are the conjectural scaling
limits of the collection of outermost interfaces for a critical FK model for q = 2 + 2 cos(8π/κ) ∈ (0, 4)
with free boundary conditions on a deterministic planar lattice approximation of a simply connected
domain. The special cases κ = 6 and κ = 16/3 have been shown to correspond respectively to
the scaling limits of site percolation on the triangular lattice [26, 2] (as mentioned in the previous
subsection) and of the critical Ising-FK model [27]. One can also relate the CLEκ with these
FK-models in the framework on planar maps and Liouville quantum gravity: Combining the results
of [24, 5] implies that CLEκ is the scaling limit (for the so-called peanosphere-topology) of the
interfaces in the critical FK model for q = 2 + cos(8π/κ) on certain types of random planar map
models.
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Let us now recall the definition of the CLEκ exploration tree from [22] – we still assume that
κ ∈ (4, 8) here. One starts with the SLEκ(κ − 6) branching tree as described in the previous
subsection (we consider here the one in the upper half-plane, rooted at 0 and targeting all points in
the closed upper half-plane). Suppose that D ⊆ C is a non-trivial simply connected domain and
that one chooses a starting point (or root) x on ∂D. By mapping the upper half-plane onto D (and
the origin onto x), we obtain the SLEκ(κ− 6) branching tree in D, rooted at x.

Then, using this tree, and guided by the conjectures about discrete models, it is explained in [22]
how to define a collection of loops. For a given point z, let ηz be the branch of the exploration tree
targeted at z and let τz be the first time that ηz surrounds z clockwise. In other words, τz is the
first time t that the harmonic measure of the right side of ηz([0, t]) as seen from z is 1. Let σz be
the largest time t before τz that the harmonic measure of the right side of ηz([0, t]) as seen from z
is 0. Then the (outermost) loop surrounding z is given by the concatenation of ηz|[σz ,τz ] with the
branch of the exploration tree from ηz(τz) to ηz(σz). We can for instance consider the collection of
all loops that surround points z with rational coordinates. This defines the countable collection of
loops that form the CLEκ, and gives rise to a number of natural conjectures [22] about this object.

Let us list a few properties of these CLEκ’s for κ ∈ (4, 8) that have been derived using the imaginary
geometry approach to SLE processes:

• It was conjectured in [22] that these loops are in fact continuous curves. This is now known
to hold because (see [10]) SLEκ(ρ) curves have been proved to be continuous when ρ > −2
(and when κ > 4, then κ− 6 > −2).
• It was conjectured in [22] (this is very natural because this property holds in the case of

discrete models) that the law of this collection of loops does not depend on the choice of the
root of the exploration tree. This property does not follow trivially from the branching tree
definition and setup, but it has now been established, using the reversibility properties of
SLEκ(κ− 6) for κ ∈ (4, 8) derived in [12].
• The local finiteness of CLEκ, i.e. that the number of loops with diameter at least ε is for

each ε > 0 almost surely finite, was established in [13] as a consequence of the almost sure
continuity of the so-called space-filling SLE.
• The CLEκ is clearly a deterministic function of the exploration tree. Conversely, as explained

in [22], when κ ∈ (4, 8), the exploration tree are in fact a deterministic function of the CLEκ
and the chosen root. This makes it possible to discover simultaneously different portions
of different exploration trees starting from different roots but that are associated with the
same CLEκ. This idea will play a key role in the present paper.

CLEκ background when κ ∈ (8/3, 4) and continuum percolation construction. Let us first say some
very brief words about the basic properties of CLEκ when κ ∈ (8/3, 4). In the present paper, we
will actually only use their construction via boundary conformal loop ensembles (BCLE) but we
need to recall a few things about them first.

• Just as for κ ∈ (4, 8), one chooses a simply connected domain D and a boundary point x,
and then considers the SLEβκ(κ− 6) branching tree rooted at x. (Recall that one needs here
to use side-swapping and/or Lévy compensation because κ− 6 < −2. So, when κ ∈ (8/3, 4),
one has to first choose a side-swapping parameter β ∈ [−1, 1] to define such a tree – and
when κ = 4, one would have to choose a drift parameter µ.)
• The fact that the law of CLEκ that is constructed in this way does not depend on the root

is non-trivial, and does rely on another construction of these CLEs using the Brownian
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loop-soups (see [25]). Actually, the results of the paper [14] that we will recall in a few
paragraphs do provide as a by-product another derivation of the root-independence of the
CLEκ distribution, based on the coupling of SLE with the GFF. The fact that the law of
the CLEκ does also not depend on the choice of β (or µ when κ = 4) is explained in [30].
So in summary, there is indeed just one CLEκ distribution for each κ ∈ (8/3, 4].
• It is very important to stress that it has not been proved that in this construction, the

exploration trees that define these CLEκ’s can be recovered deterministically from the CLEκ
and the root. In fact, Theorem 1.3 of the present paper will show that in the case κ ∈ (8/3, 4),
the CLEκ exploration tree is not a deterministic function of the CLEκ and the root (for the
special case κ = 4, we refer to the discussion in [14]: The exploration defines a tree only for
the balanced labeled CLE4, which together with the choice of the root, does determine the
exploration tree – as can be shown using the direct relationship between this labeled CLE4

and the GFF).

Boundary conformal loop ensembles. We now recall some further features from the paper [14] that
will be relevant in the present paper: Suppose now that κ ∈ (2, 4) and ρ ∈ (−2, κ− 4).

Let us first recall the construction of the so-called boundary conformal loop ensembles BCLEκ(ρ)
defined in [14, Section 7]. This is a conformally invariant family of boundary-touching SLEκ-type
loops which live in a simply connected domain D. Despite the fact that κ < 4, its definition does
follow rather closely that of non-simple CLEs that we recalled in the previous subsection. As we
will here sometimes describe simultaneously some SLE processes for different values of κ, we will
use in this subsection the notation κ ∈ (2, 4) and κ′ = 16/κ ∈ (4, 8), as in [14].

We fix a root point x ∈ ∂D. Consider now the SLEκ(ρ;κ− 6− ρ) branching tree rooted at x and
targeting all points y ∈ ∂D \ {x} (mind that this tree targets only boundary points). The union
of all branches in this tree divides D into a countable collection of connected components. The
boundary of each connected component is naturally oriented by the paths of the tree which form its
boundary. The collection of boundaries of subdomains that are naturally oriented clockwise are
called the loops of the BCLEκ(ρ) and the counterclockwise ones are referred to as the false loops
of the BCLEκ(ρ). If we want to emphasize that the loops have a clockwise orientation, we will
use the notation BCLE�

κ (ρ). One similarly defines BCLE	
κ (ρ) using SLEκ(κ− 6− ρ; ρ) in place of

SLEκ(ρ;κ− 6− ρ) and takes the loops (resp. false loops) which are traced counterclockwise (resp.
clockwise). Again, it is not obvious from the construction, but it is shown in [14, Proposition 7.1]
(using the reversibility of the SLEκ(ρ1; ρ2) processes with ρ1, ρ2 > −2 established in [11]) that these
BCLEκ(ρ) do not depend on the choice of root x.

For κ′ ∈ (4, 8) and ρ′ ∈ (κ′/2 − 4, κ′/2 − 2), the BCLE�
κ′(ρ

′) and BCLE	
κ′(ρ

′) are defined in an
analogous way and it follows from the reversibility of SLEκ′(ρ

′
1; ρ′2) with ρ′1, ρ

′
2 ≥ κ′/2−4 established

in [12] that the resulting family of loops does not depend on the choice of root [14, Proposition 7.1].
Recall that κ′/2− 2 is the threshold below which the SLEκ′(ρ

′) processes are boundary intersecting.
The range of ρ′ values considered in the definition of BCLEκ′(ρ

′) is precisely so that ρ′ < κ′/2− 2
and κ′−6−ρ′ < κ′/2−2 so that the loops do in fact hit the domain boundary. Note that BCLEκ′(0)
is simply the collection of loops in a CLEκ′ which intersect the boundary.

We now suppose again that κ ∈ (8/3, 4) (so that κ′ ∈ (4, 6)). As explained in [14, Section 7.2], one
can iterate BCLEs, alternating between κ and κ′ loops in order to produce natural couplings of
CLEκ and CLEκ′ . The construction proceeds as follows.

• Sample a BCLE�
κ′(0) process Γ′. Sampling these loops is the continuum analog of exploring

the boundary-touching FK clusters with free boundary conditions.
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• Given Γ′, we then sample independent BCLE	
κ (−κ/2) processes in each of the (clockwise)

loops of Γ′. Call the resulting collection of loops Γ. Sampling these loops is the continuum
analog of exploring the boundary touching interfaces in the corresponding Potts model with
free boundary conditions.
• Iterate the exploration in the false loops of Γ′ and Γ.

It is shown in [14, Theorems 7.2 and 7.3] that the law of the collection of SLEκ-type loops thus
defined is in fact a CLEκ (this therefore provides a construction of CLEκ that does not rely on any
SLEκ(ρ) process for ρ < −2). Note that the proof in [14] uses the SLE commutation relations which
are encoded by the GFF [10, 13].

The branch of the CLEκ′ exploration tree in this construction is called a continuum percolation
exploration (CPI) inside of the CLEκ carpet (see [14, Definition 2.1] as well as [14, Section 4])
because it can be interpreted as a percolation interface within this CLEκ carpet. This CLEκ′/CLEκ
coupling derived in [14] is a continuum version of the random cluster representation of the Potts
model (see, e.g., [8] for a review). See also [1] for the case of the Ising model.

Note that in the BCLEκ′/BCLEκ iteration scheme described just above, the BCLEκ loops are
always attached to the right side of the BCLEκ′ loops. This means that the CPI always reflects to
the left whenever it hits a CLEκ loop (in the percolation interpretation, the interiors of the CLEκ
loops are closed, and the CPI traces the open/closed interface, with closed to the right and open to
the left of the interface).

This construction can be generalized to the setting in which each of the CLEκ holes is labeled either
+ or − independently with a given probability p ∈ (0, 1) (which is reminiscent of the SLEκ(κ− 6)
side-swapping mechanism). Then, the CPI reflects to the left (resp. right) when it hits a loop with
a + (resp. −) label. In this case the CPI is a branch in a BCLEκ′(ρ

′) exploration tree where ρ′ is a
function of p. This provides for each choice of p, a different BCLEκ′/BCLEκ-type iteration scheme
that construct a CLEκ (see [14] for all this).

2.4. The trunk construction of SLEκ(κ − 6) for κ ∈ (8/3, 4). In Section 2.3, we recalled the
construction of CLEκ which is based on iterated BCLE’s from [14]. We will now describe the
analogous procedure where one builds just one SLEκ(κ− 6) process for κ ∈ (8/3, 4], which is a single
branch of the SLEκ(κ− 6) exploration tree.

We recall (see [14] and the references therein for additional background) that when κ ∈ (8/3, 4) so
that κ− 6 < −2, for each choice of β ∈ [−1, 1], one can define an SLEβκ(κ− 6) process so that the
following is true. The value p = (1 + β)/2 represents the probability that when it traces a loop,
it traces it counterclockwise and the trunk passes to the left of that loop while when this process
traces a loop clockwise, its trunk passes to the right of that loop. When κ = 4 so that ρ = −2, one
has to use a symmetric side-swapping (i.e., β = 0 and p = 1/2 in the previous setup), but there

is an additional drift-type parameter µ. This leads to the so-called SLE0,µ
4 processes. All of these

processes are called conformally invariant explorations of the CLEκ that they construct.

We will now describe in a bit more detail the case where κ 6= 4 (i.e., κ ∈ (8/3, 4)) and for simplicity
we will again focus on the case β = 1 (so that all of the loops are attached to the right side of the
trunk). We suppose that we have a simply connected domain D ⊆ C and fix x, y ∈ ∂D distinct.
We then carry out the following steps (see the right-hand side of Figure 4). Here ρ′ = 0 because we
are dealing with the case β = 1.
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• Sample an SLEκ′(κ
′ − 6) process η′ from x to y with the force point located at x+ (i.e.,

infinitesimally on the counterclockwise side of x). Note that the time-reversal of η′ is an
SLEκ′(κ

′ − 6) from y to x with the forced point located at y−. In other words, the law of η′

is reversible up to swapping the force point from the right to the left side. This process η′

will end up being the trunk of an SLE1
κ(κ− 6) from x to y that we will construct.

• We next trace the collection of CLEκ-loops that are attached to the trunk η′ using the
following procedure. In each component U in the complement of the range of η′ which is
either to the right of η′ or surrounded clockwise by η′ we sample a collection of SLEκ-type
loops as follows. Let xU (resp. yU ) be the first (resp. last) point on ∂U which is visited by η′.
We then draw a branching SLEκ(3κ/2− 6) process which starts from xU and is targeted at
every point on ∂U which is in the range of η′. When viewed as targeting yU , this process is
an SLEκ(3κ/2−6) process with a single force point at x−U (when viewed as targeting another
point z in ∂U which is also in the range of η′, this process is an SLEκ(3κ/2 − 6;−κ/2)
process with force points at x−U and yU ); note that 3κ/2− 6 = κ− 6− (−κ/2). This process
will trace a collection of SLEκ-type loops. We note that in the case that xU = yU , this
collection of loops has the same law as for a BCLEκ(−κ/2). In the case that xU 6= yU , we
will still refer to this collection of loops as a BCLEκ(−κ/2) but with the marked boundary
points xU and yU .
• We can the construct a continuous path η from x to y as follows. It moves along the trunk
η′ from x to y, and each time it meets one of the SLEκ-type loops for the first time, it traces
it counterclockwise. As explained in [14], the law of η is that of an SLE1

κ(κ− 6) in D from
x to y.

Figure 4. Left: A collection of loops in D created by a branching SLEκ(3κ/2− 6)
process from −i to i. The right boundary of the loops corresponds to this process
targeted at i. The loops altogether form a BCLEκ(−κ/2) with marked points −i
and i. Right: An SLEκ′(κ

′−6) process η′ from in D from −i to i. In each clockwise
loop or component to the right of η′ is an independent BCLEκ(−κ/2) (their interior
is filled). Following the BCLEκ(−κ/2) loops in the order they are first visited by η′

yields an SLE1
κ(κ− 6).

Note that the components of D \ η′ which are to the right of η′ have boundary which can be
decomposed into two parts: the part which is in ∂D and the part which is in the range of η′. So, in
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the second step, the loops of η which are in these components are drawn by independent branching
SLEκ(3κ/2− 6) processes in each component, starting from the first point on the boundary which
is visited by η′. Moreover, the right boundary of these loops is given in each component by an
SLEκ(3κ/2− 6) starting from the first point on the component boundary visited by η′ and targeted
at the last. It will be convenient in some places below to think of the concatenation of these
SLEκ(3κ/2− 6) processes as a single curve (which we will do) and refer to as an SLEκ(3κ/2− 6).

We can use the same trunk and the same collection of SLEκ-type loops to build a continuous path
η̃ from y to x. By reversibility, η̃ has the law of an SLE−1κ (κ− 6) from y to x that is tracing exactly
the same loops at η (but clockwise instead of counterclockwise). Note that while the ranges of η
and of η̃ coincide and the trunk of η̃ is the time-reversal of η′, the two processes η and η̃ are not
the time-reversal of each other. Indeed, the trunk will meet each loop more than once, so that the
order in which η̃ encounters the loops is not exactly the reversed order in which η meets them. In a
certain sense, this construction in fact provides a very precise description of the lack of reversibility
of the SLEκ(κ− 6) processes.

3. Conformal invariance of CLEκ exploration tree hookup probabilities

The goal of the present section will be to derive a conformal invariance statement related to pairs of
explorations of CLEκ’s. In Section 3.1, we will address the case that κ ∈ (4, 8), which is the one
that will be an essential ingredient in the proofs of our main three theorems. For completeness and
future reference, we also discuss the case that κ ∈ (8/3, 4) in Section 3.2 (note that the story in the
case that κ = 4 is anyway much simpler because of the connection between the GFF and SLE4(ρ)
processes).

η1 η̃1

zt

η1 η̃1

zt

η2
η̃2

Figure 5. Exploration of a CLEκ for κ ∈ (4, 8) starting from −i and from i,
creating four branches.

3.1. The case κ ∈ (4, 8). Let us consider a CLEκ for κ ∈ (4, 8) in D. Some of the CLE loops will
hit ∂D, and some others will not. For each loop L that intersects the counterclockwise half-circle
from −i to i, we can define its first and last intersection points z(L) and z̃(L) on this half-circle,

when one moves from −i to i. One can then define a continuous path η#1 from −i to i as follows:
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One moves counterclockwise along the half-circle, and each time one hits z(L) for some loop L,
one attaches the clockwise loop L to the path, and then proceeds. We note that this defines a
continuous path by the local finiteness of CLEκ proved in [13]. One can then define the subpath
η1 of this path that corresponds to its growth as seen from i (loosely speaking, one cuts out all
parts that are growing while hidden away from i). This path η1 is the concatenation of all clockwise
portions of loops L from z(L) to z̃(L) that are not disconnected from i and −i by any other such
portion. The law of the path η1 is that of an SLEκ(κ− 6) from −i to i in D. In fact, η1 is exactly
the branch from −i to i of the CLEκ exploration tree.

One can note that after some time t (t can be a deterministic time or a stopping time with respect
to the filtration generated by η1), one can define z(t) to be the last point on the half-circle from −i
to i that η1 visited before t. If η1(t) 6= z(t), then this point z(t) is (by construction) equal to z(L)
where L is the loop that η1 is (partially) tracing at time t.

One can also interchange the roles of i and −i and perform the backward procedure: one moves
clockwise along the half-circle from i to −i, and attaches the loops of the CLEκ drawn in counter-

clockwise manner. In this way, one defines a path η#2 and a subpath η2 (which is η#2 seen as growing

from −i). While the time-reversal of η#1 is not identical to η#2 because the order of the loops and
the way in which they are discovered have been changed, the time-reversal of η1 is exactly η2 (it is
described also via the concatenation of the same portions of loops L between z̃(L) and z(L)): The
time-reversal of the SLEκ(κ− 6) η1 from −i to i is the SLEκ(κ− 6) η2 from i to −i (modulo the
convention that the marked point is now on the other side of the path).

Let us now suppose that one has discovered η1 up to a stopping time t and that η1(t) 6= z(t). As we
have already mentioned, the point z(t) is then the starting point of the CLE loop L that η1(t) is
part of. In particular, the conditional law of the rest of this loop given η1|[0,t] is exactly an SLEκ
from η1(t) to z(t) in the component of D \ η1([0, t]) with z(t) on its boundary. We can now decide
to discover part of this loop counterclockwise starting from z(t). By the time-reversal symmetry of
SLEκ [12], the law of this path is an SLEκ from z(t) to η1(t) in the component of D \ η1([0, t]) with
η1(t) on its boundary. Let us call this path η̃1, and discover η̃1 up to some stopping time s (note
that the definition of η̃1 and the notion of stopping time depend on η1|[0,t]). Given η1 up to time t
and η̃1 up to time s, the law of the missing part of L joining η1(t) to η̃1(s) is just an SLEκ in the
remaining to be discovered domain (i.e. in the connected component Dt,s of D\ (η1([0, t])∪ η̃1([0, s]))
which has η̃1(s) and η1(t) on its boundary) because of the reversibility of SLE.

We now define symmetrically the path η2 up to some stopping time t2, the point z̃(t2) and the
path η̃2 from z̃(t2) to η2(t2). We assume that we are in a configuration as depicted in Figure 5,
where all four points η1(t), η̃1(s), η2(t2) and η̃2(s2) are four different boundary points of the same
connected component D(t, s, t2, s2) of the remaining to be discovered domain. Typical examples of
stopping times t, s, t2 and s2 can be the respective hitting times of a circle of radius r around the
origin by the respective four strands (if they do make it to that circle).

We can note that conditionally on these four branches, two possibilities arise:

• η1(t) and η2(t2) correspond to parts of the same CLE loop. In this case, η̃1 will hook up
with η̃2, while the path η1 will first hook up with η2 (and these last two paths respectively

coincide with η#1 and η#2 up to when they hook up). We call this the one-loop event E1.

• η1(t) and η2(t2) correspond to different CLE loops. In this case, η̃1 will hook up with η#1
without meeting η̃2(s2), and η̃2 will hook up with η#2 without meeting η̃1(s). We call this
the two-loop event E2.
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With the previous notation, we define C(t, s, t2, s2) to be the configuration given by the domain
D(t, s, t2, s2) and the four counterclockwise ordered boundary points η1(t), η̃1(s), η̃2(s2), η2(t2). We
are going to establish the following conformal invariance statement.

Lemma 3.1. If we are in a configuration as depicted in Figure 5, the conditional distribution of
the remaining pieces of η1, η̃1, η2 and η̃2 in D(t, s, t2, s2) until they hook up into one or two loops is
a conformally invariant function of the configuration C(t, s, t2, s2).

In fact, in order to prove this lemma it suffices to prove the following seemingly weaker result:

Lemma 3.2. If we are in a configuration as depicted in Figure 5, the conditional distribution of E1

(and therefore of E2) is a function fκ(·) of the cross-ratio between the four boundary points in the
configuration C(t, s, t2, s2).

Indeed, conditionally on E1, we can describe the joint conditional law of the remaining pieces
of the loops containing η1 and η̃1 (and therefore of η2 and η̃2) in D(t, s, t2, s2) as the bi-chordal
SLEκ joining the four end-points in that domain, which is characterized uniquely by the fact that
conditionally on one of the two paths, the law of the other one is an ordinary SLEκ in the remaining
domain (see [11, Theorem 4.1]), and we know that this property is satisfied in the present case (the
same argument can also be applied when one conditions on E2).

In fact, we can notice that this conditional distribution is in fact symmetric when one formally
interchanges the roles of (η1(t), η̃1(s), η̃2(s2), η2(t2)) and (η̃2(s2), η2(t2), η1(t), η̃1(s)). It therefore
follows that it is in fact sufficient to prove Lemma 3.2 in the case where we do not grow η̃1 or η̃2
after η1 and η2 have been defined (in other words, when s2 = t2 = 0). Indeed, we can then decide
to switch the roles of η1, η2 and η̃1, η̃2, and to continue growing η1 and η2 instead of growing η̃1 and
η̃2, and by conformal invariance, the general case of Lemma 3.2 follows.

As we have already pointed out, η1 (and its time-reversal η2) is an SLEκ(κ − 6) process, so that
the following result implies Lemma 3.2 (here, modulo conformal invariance, η plays the role of the
remaining part of η1, including η2, while η2 plays the role of the beginning of the time-reversal of η).

Lemma 3.3. Fix κ ∈ (4, 8) and suppose that η is an SLEκ(κ− 6) process in H from 0 to ∞ with
force point located in R+. Let ηR be the time-reversal of η, let τR be an ηR-stopping time, and let
DτR be the component of H \ ηR([0, τR]) with 0 on its boundary. Then the conditional law of η given
ηR|[0,τR] viewed as a path in DτR is a conformally invariant function of the configuration consisting
of the domain DτR and the four marked boundary points given by 0, the location of the force point,
ηR(τR), and min(ηR|[0,τR] ∩R+).

Proof. Note that the case κ = 6 is trivial. We will treat the two cases κ ∈ (6, 8) and κ ∈ (4, 6)
separately. The distinction between these two cases reflects the change in sign of κ − 6. When
κ ∈ (6, 8), we will use the SLE/GFF coupling [10] and the reversibility of SLEκ [12]. When κ ∈ (4, 6)
we will use the CLE setup and results from [14] as reviewed just above in Section 2.3.

The proof in both cases will make use of a variant of the resampling characterization of bi-chordal
SLE. More precisely, we will use a more general version of [11, Theorem 4.1], which is proved in
Appendix A, that states that there is a unique law on pairs of curves (η1, η2) connecting a pair of
boundary points x, y with η1 to the left of η2 so that the conditional law of η1 given η2 (resp. η2
given η1) is that of a certain SLEκ(ρ) type process with force points on its left (resp. right) side.

We choose again the following notation: we fix κ′ ∈ (4, 8) and let κ = 16/κ′ ∈ (2, 4). We first
consider the case that κ′ ∈ (6, 8); see Figure 6 for an illustration of the argument. (The reader may
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Figure 6. Illustration of the setup used in the proof of Lemma 3.3 in the case that
κ′ ∈ (6, 8). The red paths show an SLEκ′(κ

′ − 6) path η′ and its time-reversal η′R
from −i to i in D coupled with a GFF instance as a counterflow line drawn up to
forward and reverse stopping times, τ and τR. The blue path is the remainder of η′.
Shown in green is the flow line η of this GFF from −i to i with angle θ = 3π/2−2λ/χ.
It follows from [10] that the conditional law of η′ given η is that of an SLEκ′ process
in the component of D \ η which is to the left of η. By the reversibility of SLEκ′
proved in [10], the conditional law of η′ given η′|[0,τ ], η′R|[0,τR], and η is that of an
SLEκ′ process in the remaining domain. Conversely, the conditional law of η given
all of η′ is independently that of an SLEκ(κ− 4; 2− 3κ/2) in the components which
are to the right of η′. Thus as these conditional laws are conformally invariant, the
conformal invariance of the joint law of η′ and η given η′|[0,τ ] and η′R|[0,τR] follows
from the bi-chordal arguments of [11, Section 4].

find it helpful to look at [17, Figure 2.5].) We can view η′ as the counterflow line from ∞ to 0 of a
GFF h on H with constant boundary conditions given by −λ′ + πχ on R. Let η be the flow line of
h with angle θ = 3π/2− 2λ/χ from 0 to ∞. Then η is an SLEκ(3κ/2− 4; 2− 3κ/2) process. (Note
that 2− 3κ/2 > −2 provided κ < 8/3 and κ′ > 6.) Let η′R be the time-reversal of η′ and let τ, τR
be stopping times for η′, η′R, respectively. Then:

• It follows from [10] that the conditional law of η given η′ is independently that of an
SLEκ(κ− 4; 2− 3κ/2) process in each of the components of H \ η′ which are to the right of
η′ and whose boundary have non-empty intersection with ∂H.
• The conditional law of η′ given η is that of an SLEκ′ process in the component of H \ η

which is to the left of η. Consequently, by the reversibility of SLEκ′ processes for κ′ ∈ (4, 8)
proved in [12], it follows that the conditional law of η′ given η, η′|[0,τ ], and η′R|[0,τR] is that
of an SLEκ′ process in the remaining domain.

Since the two conditional laws are conformally invariant given η′|[0,τ ] and η′R|[0,τR], it follows from
the bi-chordal SLE characterization (Appendix A.1) that the joint law of η and η′ given η′|[0,τ ] and
η′R|[0,τ ′R] is conformally invariant.



16 JASON MILLER, SCOTT SHEFFIELD, AND WENDELIN WERNER

Figure 7. Illustration of the setup used in the proof of Lemma 3.3 in the case
that κ′ ∈ (4, 6). Shown is an SLEκ′(κ

′ − 6) process from −i to i in D viewed as
a CPI in a CLEκ, κ = 16/κ′ ∈ (8/3, 4), process Γ. If we condition on η′ up to a
stopping time τ , the time-reversal η′R of η′ up to an η′R-stopping time τR and the
loops of Γ which touch this path segment (green loops), then the conditional law of
the rest of η′ (blue path) is an SLEκ′(κ

′ − 6) in the remaining domain. Conversely,
if we condition on all of η′ (red and blue paths), then the conditional law of the
loops which touch η′ is given by independent BCLE	

κ (−κ/2)’s in the components of
D \ η′ which are surrounded by the right side of η′. Thus as these conditional laws
are conformally invariant, the conformal invariance of the joint law follows from the
bi-chordal arguments of Appendix A.2.

We next consider the case that κ′ ∈ (4, 6); see Figure 7 for an illustration of the argument. We let
η′ be an SLEκ′(κ

′ − 6) process in H from 0 to ∞ with force point located at 0+. Let η′R be the
time-reversal of η′ and let τ (resp. τR) be a stopping time for η′ (resp. η′R). We view η′ as a CPI
(in the sense of [14, Definition 2.1]) coupled with a CLEκ, say Γ, in H. We note that then η′R is
also a CPI coupled with Γ. The CPI property of η′R implies that η′R|[τR,∞) is a CPI associated with
the CLEκ given by including those loops of Γ which are contained in the complementary component
of η′R([0, τR]) with 0 on its boundary. In particular, conditioned on this we have that the law of
the remainder of η′ given η|[0,τ ] and η′R|[0,τR] and the loops of Γ which hit η′R|[0,τR] is that of an
SLEκ′(κ

′ − 6) in the remaining domain. The same also holds if we switch the roles of η′ and η′R.

Summarizing, we have that:

• Given η′|[0,τ ], η′R|[0,τR], and the loops of Γ which hit η′R|[0,τR], the remainder of η′ has the
law of an SLEκ′(κ

′ − 6) process in the remaining domain.
• Given η′|[0,τ ], η′R|[0,τR], and the loops of Γ which hit η′|[0,τ ], the remainder of η′R has the law

of an SLEκ′(κ
′ − 6) process in the remaining domain.

• Given all of η′, the conditional law of the loops of Γ which hit η′ is given by a BCLE	
κ (−κ/2)

in each of the complementary domains which are to the right of η′.
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As explained in Appendix A.2, the conformal invariance of these three laws implies that the joint
law of η′ and the loops of Γ which hit η′|[0,τ ] and η′R|[0,τR] is conformally invariant given η′|[0,τ ] and
η′R|[0,τR] in the remaining domain. �

As explained in [16], building on this lemma, on Dubédat’s commutation relations [3] and some SLE
estimates, it is actually possible to explicitly identify the hookup probability function fκ in terms of
a ratio of hypergeometric functions. We conclude this subsection with the following simpler result
that just states that the function fκ is well-behaved (this will be sufficient for the purpose of the
present paper). Here and in the sequel, we refer to the definition of the cross-ratio of a conformal
rectangle to be defined on (0,∞) and equal to 1 for a conformal square such as the unit disk with
the four boundary points 1, i,−1,−i:

Lemma 3.4. The function fκ(·) is bounded away from 0 and from 1 on any compact subset of
(0,∞). The function fκ(c) converges to either 0 or 1 as c→ 0 or c→∞.

Proof. It for instance suffices to start from the configuration C(t, s, t2, s2) with cross-ratio c and
to note that it is possible (with positive probability pκ(c)) to let η1 grow further until the new
cross-ratio hits 1. Hence, we get that fκ(c) ≥ pκ(c)fκ(1). The same argument can be applied to the
two-loop event.

The result about the limit of fκ(c) as c→ 0 and c→∞ follows from the fact that when one explores
one strand (say η1) until then end, one will eventually discover which hookup event holds. So, just
before that moment, the conditional probability of the hookup event will tend to 0 or 1. But by
construction, the cross-ratio will tend to 0 or ∞ at the same time. �

3.2. The case κ ∈ (8/3, 4). We are now going to establish the analog of Lemma 3.2 for the case
κ ∈ (8/3, 4). The setup will take a slightly different form than in the case of Lemma 3.2 because we
cannot use the fact that the branches of the exploration tree used to build a CLEκ are deterministic
functions of the CLEκ (indeed, it is one of the main results of the present paper that it is not
the case), so we need to first explain how we define the joint law of the two explorations. As we
mentioned earlier, the content of the present subsection will not be used later in the present paper
and it is included here for future reference (it is used in [16]). We also leave out the (easier) case
κ = 4, as this one can be dealt with via the relation between CLE4 and the Gaussian free field (see
for instance [16]).

Throughout, we suppose that we have a simply connected domain D ⊆ C, that x and y are distinct
boundary points, and that η is an SLE1

κ(κ− 6) path in D from x to y. We also suppose that η̃ is
the SLE−1κ (κ− 6) from y to x whose trunk and loops are the same as those of η, as described in
Section 2.4. We emphasize again that η̃ is not exactly the time-reversal of η, but that the trace of η
and η̃ coincide, that the trunk of η̃ is the time-reversal of that of η, and that η̃ visits exactly the
same SLEκ-type loops as η.

When we explore η, we can choose any deterministic way to parameterize it (so that its “time” is a
deterministic function of its trace). We will then use the natural filtration (Ft) generated by the
path. Note that (because the SLEκ loops are simple while the trunk is not a simple curve), at a
stopping time τ , the knowledge of the last point on the trunk that has been visited by η before
time τ is contained in the σ-field Fτ . We call this point X(τ), and we use the same notation for η̃

(thus defining X̃(τ̃)).
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We are now going to discover a piece of η and a piece of η̃. More precisely, suppose that τ (resp. τ̃)
is a stopping time for η (resp. η̃). We define the event

A(τ, τ̃) := {η([0, τ ]) ∩ η̃([0, τ̃ ]) = ∅, η(τ) 6= X(τ), η̃(τ̃) 6= X̃(τ̃)}.

On this event, we call Dτ,τ̃ the connected component of the complement of η([0, τ ]) ∪ η̃([0, τ̃ ]) that

has η(τ) on its boundary. Note that X(τ) and X̃(τ̃) each correspond to two prime ends in Dτ,τ̃ .
We will consider implicitly the one that is on the left-hand side of η(τ) (resp. the right-hand side of
η̃(τ̃)), i.e., on the side of the trunk.

Lemma 3.5. The conditional probability given Fτ , F̃τ̃ and the event A = A(τ, τ̃), of the event that
η(τ) and η̃(τ̃) are part of the same CLEκ loop is a function of the cross-ratio of the four marked

points η(τ), η̃(τ̃), X(τ) and X̃(τ̃) in Dτ,τ̃ .

Proof. Let η′ denote the trunk of η up until first hitting X = X(τ). Define η̃′ to be the trunk of η̃

up until hitting X̃ = X̃(τ̃). We let η̂′ be the missing middle piece of the trunk (joining X and X̃),
so that the concatenation of η′, η̂′, and (the time-reversal of) η̃′ together form the trunk of η.

Let us define E := (η(t), t ≤ τ) (resp. Ẽ = (η̃(t), t ≤ τ̃)), so that the σ-field generated by E (resp.

Ẽ) is Fτ (resp. F̃τ̃ ).

Let us call L the remaining part of the loop that η has started to trace at time τ , and let similarly L̃
be the remaining part of the loop of η̃ that η̃ has started to trace at time τ̃ . Note that L could
contain η̃(τ̃) if η, η̃, respectively, are exploring the same loop at time τ , τ̃ .

Using resampling techniques, we will show that the conditional law of (L, L̃) is a conformally
invariant function of the domain and the four marked points (which clearly implies the lemma).

We first note that conditionally on (E,L), the law of η̃ up until the time at which it hits η([0, τ ])∪L
is that of the beginning of an SLE−1κ (κ− 6) from y to X in the component of the complement of

η([0, τ ]) ∪ L with y on its boundary. If we now condition on F := (E,L, Ẽ, L̃) (and suppose that
the event A holds), and let U denote the connected component of the complement of η([0, τ ]) ∪ L ∪
η̃([0, τ̃ ])∪ L̃ that lies outside of L and L̃, and has X and X̃ on its boundary (which is the one where
the middle piece of the trunk will be), we see that this middle piece of the trunk (i.e., η̂′) will join

X and X̃ in this domain. In fact, its conditional distribution (given F ) is that of an SLEκ′(κ
′ − 6)

from X to X̃ in U (this follows directly from the conformal Markov property of the exploration
mechanism: One can first discover (E,L), then discover η̃ up to the time at which it hits L or

finishes drawing L̃, and see that η̂′ is the trunk of an SLE1
κ(κ− 6) in the remaining domain).

Conversely, if we condition on the entire trunk, then we can describe the law of all the CLEκ loops
that are attached to it. In particular, the outer boundary of the set of CLE loops of Γ that touch
the trunk is distributed like an SLEκ(3κ/2 − 6) from x to y in the collection of complementary
components which lie “to the right” of the trunk (in the sense described at the end of Section 2.4 –
note that there could be in fact a countable collection of such components). We can note that both
η(τ) and η̃(τ̃) will be on this path.

In particular, if we further condition on (E, Ẽ), we get an SLEκ(3κ/2− 6) conditioned on part of
its beginning and part of its end. Recall from [11, Theorem 6.2] that this conditional distribution is
conformally invariant. Once this right boundary is completed, one can easily complete the picture
in a conformally invariant way, using the procedure described in Section 2.4.
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In the present setup, this implies in particular that the conditional distribution of (L, L̃) has
the following properties: We consider the connected components of the complement of η([0, τ ]) ∪
η̃([0, τ̃ ])∪ η̂′ that have η(τ) or η̃(τ̃) on their boundary. There are two possibilities here: Either there
is just one such component (that has both points on their boundary) in which case both hookup

scenarios are possible, or there are two components (and then L and L̃ must be in these two different

components). Then, the conditional distribution of (L, L̃) is conformally invariant in the sense that:

• In the former case (with one connected component), it is a conformally invariant function of

the connected component with the four marked points η(τ), η̃(τ̃), X, X̃.

• In the latter case (with two connected components), L and L̃ are conditionally independent,

and the conditional law of L (resp. L̃) is a conformally invariant function of its corresponding

component and the two marked boundary points η(τ) and X (resp. η̃(τ̃) and X̃).

So, the previous two paragraphs establish the existence and the conformal invariance of:

• The conditional distribution of (L, L̃) given (E, Ẽ, η̂′).

• The conditional distribution of η̂′ given (L, L̃, E, Ẽ).

We will make use of the conditional distribution of L given L̃ (and E, Ẽ) as well as the conditional

distribution of L̃ given L (and E, Ẽ). As we explained earlier, we note that if we condition on Ẽ

and L̃, then the conditional law of η in the remaining domain (up until it hits η̃([0, τ̃ ])) is that of an

SLEκ(κ− 6) process. On the event that L and L̃ are distinct, it thus follows that the conditional

law of L given E, Ẽ, and L̃ is that of an SLEκ process from η(τ) to X(τ) in the component of

D\(η([0, τ ])∪ η̃([0, τ̃ ])∪L̃) with η(τ) on its boundary. The same reasoning implies that we conversely

have that the conditional law of L̃ given L, E, and Ẽ is that of an SLEκ process from η̃(τ̃) to X̃(τ̃)
in the component of D \ (η([0, τ ]) ∪ L ∪ η̃([0, τ̃ ])) with η̃(τ̃) on its boundary.

We are in a setup where we can apply the resampling ideas of the type described in the appendix.
We want to show that these two conditional distributions characterize uniquely the conditional

law of (L, L̃, η̂′) given (E, Ẽ) (and this will in particular imply the conformal invariance of this
conditional distribution and the conformal invariance of the hookup probability). We will consider
the resampling kernel which is defined from the above resampling kernels as follows:

• With probability 1/3, we resample L given (L̃, E, Ẽ) from its conditional law and then

resample L̃ given the new realization of L and (E, Ẽ) from its conditional law. We then

resample η̂′ from its conditional law given the new realization of (L, L̃) and (E, Ẽ).

• With probability 1/3, we resample (L, L̃) from its conditional law given (η̂′, E, Ẽ).
• With probability 1/3, we leave the configuration unchanged.

Suppose that (L1, L̃1, η̂
′
1, E, Ẽ) and (L2, L̃2, η̂

′
2, E, Ẽ) are sampled conditionally independently given

E, Ẽ from two laws which are invariant under the aforementioned resampling kernel. What is
needed to apply the ergodicity-based argument is to show that we can apply this resampling kernel
a finite number of times to yield two configurations which coincide with positive probability (we
will show that it in fact suffices to apply this resampling kernel twice).

Let us first suppose that we are on the event that (L1, L̃1) and (L2, L̃2) correspond to configurations
with two loops (i.e., the event that the loops being drawn by η, η̃ at the times τ, τ̃ , respectively, are

not the same). (In the remaining paragraphs, (E, Ẽ) are considered to be fixed). In this case, there
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is a positive chance that in the first application of the resampling kernel we resample Li then L̃i for

i = 1, 2 from its conditional law. As we mentioned above, the conditional law of Li given L̃i for
i = 1, 2 is that of an SLEκ process in the remaining domain and the same is likewise true for the

conditional law of L̃i given Li. Therefore the configurations (L1, L̃1) and (L2, L̃2) will be coupled
on a common probability space to agree with positive probability. On this event, the next part of
this resampling step can be taken to resample η̂′i for i = 1, 2 to coincide. Therefore, in this case, we
have coupled the two entire configurations to agree with positive probability after one application of
the resampling kernel.

Now let us suppose that we are on the event that (L1, L̃1) and/or (L2, L̃2) correspond to configurations
with only one loop (i.e., the event that the loops being drawn by η, η̃ at the times τ, τ̃ are the same).
In this case, there is a positive chance that in the first application of the resampling kernel we

resample (Li, L̃i) given η̂′i and then Li and L̃i will not be part of the same loop (this follows easily
from the fact that SLEκ(3κ/2 − 6) does hit the boundary and from the conformal invariance of
SLEκ(3κ/2− 6) conditioned by part of its beginning and part of its end, so that the conditional
probability that after resampling one has a configuration with two loops, is a function of the
cross-ratio of the four marked points). Therefore after this one iteration step, there is a positive
chance that we obtain a configuration with two loops. As explained in the previous paragraph, a
second application of the resampling kernel will yield a configuration in which both configurations
exactly coincide with positive probability. �

Just as in the case κ ∈ (4, 8), the CLE hookup probabilities for κ ∈ (8/3, 4) are actually worked out
in the paper [16], building among other things on the present Lemma 3.5, on commutation relation
considerations and on some SLE estimates.

A final remark is that in Lemma 3.5, we could have in fact chosen τ̃ to be a stopping time for the
filtration σ(E, (η̃(s), s ≤ t)) (i.e., one can use information about E to choose the stopping time τ̃)
without changing the proofs. This fact can turn out be handy, as one can for instance choose τ̃ to
be the first time at which the cross-ratio between the four marked points reaches a certain value.

4. Proof of Theorem 1.2

This section is devoted to the proof of the fact that the CLEκ loops are not determined by the
CLEκ gasket when κ ∈ (4, 8). We will explain in the subsequent section what modifications in the
argument of the proof of this result enable us to also establish Theorem 1.1 and Theorem 1.3.

Throughout this section, κ ∈ (4, 8) is fixed and all constants that will appear in the proofs can
depend on our choice of κ.

4.1. Notation. When z = (z1, z2, z3, z4) is a 4-tuple of counterclockwise ordered points on the unit
circle, we denote by Pz the joint law of the configuration with the four strands η1, η̃1, η̃2 and η2 that
were described in the previous section, starting respectively from these four points. More precisely,
this is the conformal image of the law described in Lemma 3.1.

From now on, we will actually denote these paths by γ1, γ2, γ3 and γ4, and we will also use the
notation γ = (γ1, γ2, γ3, γ4). We note that γ1 (resp. γ3) hooks up with either γ2 or γ4 (and then
ends at z2 or z4) but does not hook up with γ3 (resp. γ1). Recall that the conditional law of γ3
given all of γ1 is that of an SLEκ process from its initial to its target point in the complement of
γ1 and that the same is true when we switch the roles of γ1 and γ3. This show that the paths do
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various things with positive probability because one can first sample how they are hooked up using
Lemma 3.2 and then resample each of the paths given the other path one at a time. We will use
this at several stages in the proof.

To prove Theorem 1.2, we will first show that, on the positive probability event that γ1 and γ3
intersect each other, it is not possible to determine whether γ1 terminates at z2 or z4 when one just
observes the union of the ranges of γ1 and γ3. We let o = (o1, . . . , o4) = (−i, 1, i,−1) and for each
δ, we define Tδ to be the collection all 4-tuples z where for each j, |zj − oj | < δ.

We will simple write T := T1/100 (we choose the value 1/100 just because it will be small enough for
our purposes). The results of the previous section show that there exists a positive p0 = p0(κ) such
that the paths γ hookup in each of the two possible ways with Pz probability at least p0 for all
z ∈ T .

We also denote by ν the measure on quadruples z∈T obtained by sampling independently each zj
uniformly on the part of the unit circle that is at distance less than 1/100 from oj . We define then
the law Pν which is obtained by first choosing z according to ν and then sampling Pz.

Let us also introduce some further notation that we will use throughout this section. We denote
by U(r) = U(r, γ) the event that all four strands γ1, . . . , γ4 reach the circle of radius r around the
origin, and we call tj(r) their respective hitting times of this circle. On this event U(r), we then
define the connected component Dr = Dr(γ) of D \ ∪jγj([0, tj(r)]) that contains the origin, and the

conformal transformation ψr = ψr,γ from Dr(γ) back onto D with ψr,γ(0) = 0 and ψ′r,γ(0) > 0. We

then also consider the image z(r) = z(r, γ) under ψr,γ of the four endpoints γj(tj(r)). The previous

considerations show that conditionally on U(r) and on the four strands up to the hitting times tj(r),
the law of the image γr of the remaining to be discovered parts of the four strands under ψr,γ is
exactly Pz(r,γ).

4.2. A priori four-arm probability estimates. The first main purpose of this subsection is to
derive Lemma 4.2, which is a crude lower bound of the probability that the four strands γ1, . . . , γ4
all get close to the origin in a fairly well-separated way. We note that our goal here is to prove in a
short way a result that will be sufficient for our purpose, and that it would not be difficult to derive
somewhat stronger statements.

When n ∈ N, we define εn := 2−n (we will use this notation throughout this section) and the event
En = U(εn, γ) that all four paths γ1, . . . , γ4 reach the circle of radius εn around the origin. Let us
first point out the following fact:

Lemma 4.1. There exist α0 ∈ (0, 2) and some constant c0 > 0 such that Pν [En] ≥ c0 × (εn)α0 for
all n ≥ 1.

Proof. We will use here a known estimate about the set of double points of an SLE curve when
κ ∈ (4, 8). This estimate follows for instance from [17, Theorem 1], where the almost sure double
point dimension of SLEκ is actually derived, but we note that it would also be possible to derive
the weaker statement that we will use here in a fairly elementary way. Indeed, we will just need a
rather crude lower-bound of the first moment.

Suppose that the lemma would not hold, and let us then prove that it would imply an estimate
that in turn implies that almost surely, the Hausdorff dimension of the set of points that are in a
certain fixed neighborhood of the origin and on γ1 ∩ γ3 is almost surely equal to 0. This leads to a
contradiction, because we know that this is not the case, see for instance [17, Theorem 1].
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First of all, let us suppose that |z| is very small, and consider the conformal transformation
ψz : D → D with ψz(0) = z and ψ′z(0) > 0. We note that |ψ′z| converges uniformly to 1 on the
closed unit disk when |z| → 0, and that ψ′z converges uniformly to 1 on the unit circle. Let Pν′

denote the same law as Pν except that the four starting points are now chosen uniformly on the
set of 4-tuples such that for each j, |zj − oj | < 1/200 (instead of 1/100), and let U(εn, γ, z) denote
the event that all four paths γ1, . . . , γ4 reach the circle of radius εn/2 around z. Note that when
r is small enough, then the image under ψz of the disk of radius εn around 0 contains the disk
of radius εn/2 around z (for all n), and we can also control the image of the uniform measure on
the part of the unit circle at distance smaller than 1/100 of oj under ψz (and see that its density
is everywhere larger than (2 + c) times that of the uniform uniform measure on the part of the
unit circle at distance smaller than 1/100 for any very small given c). It then follows readily by
conformal invariance that when r is fixed and small enough, then for all n and |z| < r,

Pν′ [U(εn, γ, z)] ≤ 32Pν [En]

(where we have chosen c so that (2 + c)4 = 32). If we now suppose that the lemma would not hold,
then it would imply that for each α ∈ (0, 2), there exists nk →∞ such that

Pν [Enk ]/εαnk → 0 as k →∞.
Hence,

sup
z:|z|<r

Pν′ [U(εnk , γ, z)] = o(εαnk) as k →∞.

This implies an upper bound on the expectation of the area of the set of points in the disk of radius
r around the origin that are in the εnk/2-neighborhood of both γ1 and γ3, and one can conclude
that, under the probability measure Pν′ , the Hausdorff dimension of γ1 ∩ γ3 ∩ {z : |z| < r} is at
most 2− α. As this is true for all α ∈ (0, 2), we conclude that this Hausdorff dimension is almost
surely equal to 0, and as we have already explained, this is not the case. �

For each δ > 0, we then define the event Fn,δ ⊂ En that mini 6=j |zi(εn, γ)− zj(εn, γ)| ≥ δ. In other
words, the event Fn,δ says that in terms of harmonic measure from the origin, the four points of
z(εn, γ) are δ/(2π)-separated in Dεn(γ).

Lemma 4.2. There exists δ0 > 0 so that for infinitely many values of n, Pν [Fn,δ0 ] ≥ c0(εn)α0/8.

Proof. Let us first note that, if we choose δ0 > 0 small enough, then for all n, Pν [En+1|(En\Fn,δ0)] ≤
1/8. Indeed, when En \Fn,δ0 holds, then at least two of the strands of γ corresponding to very close
points zj(tj(εn)) will be very likely to hook up without reaching the circle of radius εn+1 (here, we

can consider separately the following two cases: Either, one point zj(tj(εn)) is (δ0)
1/2-close to only

one other zj′(tj′(εn)), in which case the two corresponding strands will hookup with a probability
close to 1 because of Lemma 3.4, and will therefore have a very small probability of reaching the
circle of radius εn+1. Or one zj(tj(εn)) is (δ0)

1/2-close to at least two other zj′(tj′(εn)), in which
case, two of the three corresponding strands do necessarily hookup and will have a very small
probability of reaching the circle of radius εn+1 — we leave the details to the reader).

Suppose now that for such a choice of δ0, and for all n greater than some n0, Pν [Fn,δ0 ] ≤ Pν [En]/8.
Then, we would get that for all n > n0,

Pν [En+1] ≤ Pν [Fn,δ0 ] + Pν [En \ Fn,δ0 ]/8 ≤ Pν [En]/4

which would imply that Pν [En] is bounded by a constant times 4−n = (2−n)2. But we know from the
previous estimate that this is not the case, and we can therefore conclude that Pν [Fn,δ0 ] ≥ Pν [En]/8
for infinitely many values of n. �
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We are now going to define a new event by “composition” of Fn,δ0 with other events, which is an
idea that we will repeatedly use. One reason for introducing these other events is that we cannot
directly apply the estimate of the lemma to γεn (we will also call this set of paths f

n
(γ)) when Fn,δ0

occurs because we only know in this case that the four points z(εn, γ) are δ0-separated, while the
estimate of the lemma applies for starting points that are distributed according to ν.

Let us now define three events G1, G2 and G3:

• Suppose that the 4-tuple z is in Tδ0 . We then explore successively each of the four strands
of γ up to the first time (if it exists) at which they reach a capacity (as measured via the
log-conformal radius from the origin, as customary for radial Loewner chains) equal to δ20.
So we first explore the first strand up to that time, then map back, and then grow the image
of the second strand up to that time and iterate until we did explore the fourth strand.

If we map back the obtained configuration to the unit disk (using the renormalization of
these maps at the origin) provided the four stands did make it till that capacity, the four
tips get mapped onto a 4-tuple z1 := z1(γ), and we call e1(γ) the four strands emanating

from z1. Note that the conditional law on e1(γ) is then Pz1 . See the left part of Figure 8
for a sketch. When δ0 is small enough, it is easy to see (see Appendix B for some details)
that the density of z1 on Tδ0 is bounded from below by some positive constant, uniformly
with respect to the 4-tuples z ∈ Tδ0 . By then tossing an additional independent uniform
random variable in order to discard some configurations, we see that it is possible to define
an event G1 that has a positive probability c1 which is independent of z ∈ Tδ0 , so that the
conditional law of z1 given G1 is exactly the measure ν.

Note that by choosing δ0 small enough, we can also ensure that Lemma 4.2 holds too.

Figure 8. The events G1 and G2.

• We now suppose that δ1 = δ0/8 and that δ0 is fixed in the way that we have just described.
Consider now a 4-tuple of starting points z that are δ1-separated, and explore the four
strands starting from z up to their respective hitting time of the circle of radius 3/4 around
the origin. We denote by G2 the event that z(3/4, γ) ∈ Tδ1 . See Figure 8 for a sketch. We
claim that the probability of G2 is bounded from below by some constant c2, independently
of the choice of δ1-separated starting points z. When G2 holds, we note by e2(γ) the four

strands γ3/4.
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Figure 9. The event G3.

• We again suppose that we start with a δ1-separated 4-tuple of starting points z. We explore
the four strands again up to their respective hitting time of the circle of radius 1/2. We call
G3 the event that the four points z(1/2, γ) are δ1-separated and that the set D1/2(γ) is a
subset of the disk of radius 2/3 around the origin. In other words, this second condition
means that the union of the four strands up to their hitting time of the circle of radius
1/2 do disconnect the origin from the circle of radius 2/3. See Figure 9 for a sketch. We
now claim that the probability of G3 is bounded from below by some universal constant c3,
independently of the choice of δ-separated quadruple of starting points z. When G3 holds,
we then call e3(γ) = γ1/2.

The proofs of these three claims (that provide the existence of c1, c2 and c3) use the resampling
property that we described before and some elementary distortion estimates. We will indicate in
Appendix B a roadmap to derive the statement for the events G1 and G3, and we leave the proofs
of the claim for G2 to the interested reader.

From now on, we choose δ0 small enough such that Lemma 4.2 holds and such that the first item
(making it possible to define c1) holds. We will just write Fn instead of Fn,δ0 .

Suppose that z ∈ Tδ1 . We now say that γ satisfies the event E′n if the following four events holds:
(i) The event G1 holds, (ii) the configuration e1(γ) satisfies Fn, (iii) The configuration f

n
(e1(γ))

satisfies G3, and (iv) the configuration e3(fn(e1(γ))) satisfies G2. We then call e(γ) the obtained
configuration i.e,

e(γ) := [e2 ◦ e3 ◦ fn ◦ e1](γ).

Note that when the event E′n holds, the starting points of e(γ) are in Tδ1 ⊂ Tδ0 , so that it will be

possible to iterate such events E′n.

The previous estimates show that there exists constants c0, . . . , c3 such that for infinitely many n
and for any z ∈ Tδ1 ,

Pz[E
′
n] ≥ c0c1c2c3 × (εn)α0 .

This shows in particular that there exist infinitely many values of n so that for all z ∈ Tδ1 ,

(4.1) Pz[E
′
n] > (104εn)(α0+2)/2.
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We now choose a value of N ≥ 10 so that (4.1) holds. We will keep this N fixed until the end of
this section.

Finally, using some additional randomness in order to discard part of the event E′N , we can define for
each z ∈ Tδ1 an event E′′N ⊂ E′N so that the value of Pz[E

′′
N ] does not depend on z (for δ1-separated

z) and such that (4.1) still holds.

We then finally define b, β0 and β so that

b := Pz[E
′′
N ] = (εN )β0 = (100εN )β

and note that 0 < β0 < β < 2.

On the event E′′N , we define the domain D′′N to be the connected component containing the origin
of the complement in the unit disk of the four strands up to the respective times at which one
sees that E′′N is satisfied. Note that the conformal radius (from the origin) of D′′N is in the interval
[4εN , εN/4] (this follows from multiplicativity of the conformal radii, Koebe’s 1/4 Theorem and
from the definitions of E′N and G1, . . . , G3).

4.3. The good pivotal regions and their number. We are now going to define the iterated
events Ek for k ≥ 1. The event E1 is just the event E′′N with N chosen as before. Then, we define

iteratively for each k ≥ 2 the event Ek to be the event that E1 holds and that e(γ) satisfies the

event Ek−1. As on the event E1 = E′′N , the configuration of the images of the end-points is in Tδ1 ,
it follows immediately that for all z ∈ Tδ1 and all k ≥ 1, we have that

Pz[E
k] = bk.

Let us now make some comments of the shape of the connected component Dk containing the origin
of the complement of the four strands up to the stopping times corresponding to the event Ek (for
instance, D1 = D′′N ). Let us denote by ρk the conformal radius of Dk as viewed from the origin. It
follows from our definitions of the event E′′N together with Koebe’s 1/4 Theorem that:

• For all k, εN/4 ≤ ρk+1/ρk ≤ 4εN . This implies in particular that ρk ≤ (4εN )k.
• The boundary of Dk is included in the annulus between the circles of radii ρk/4 (this is just

Koebe’s 1/4 Theorem) and 10ρk around the origin (this last fact follows readily from the
disconnection event in the definition of G3).

Suppose now that u is a point in the unit disk. We use again the Möbius transformation ψu : D→ D
with ψu(u) = 0 and ψ′u(u) > 0. For a given configuration defined under Pz, we say that the event

Ek(u) holds if the image of the configuration under ψu satisfies Ek.

We define T ′ = Tδ1/2. We can note that one can then find r0, so that for all u with |u| < r0,

ψu(z) ∈ Tδ1 as soon as z ∈ T ′. Hence, for |u| < r0 and all z ∈ T ′, Pz[E
k(u)] = Pψu(z)[E

k] = bk.

Our next goal is now to derive the following second moment bound:

Lemma 4.3. There exists a constant C ′ > 0 so that for all z ∈ T ′, for all k and all u, v ∈ B(0, r0)
with |u− v| ≥ 2−Nk, we have

Pz[E
k(u) ∩ Ek(v)] ≤ C ′ × b2k

|u− v|β
.
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Proof. Let us define Dk(u) and Dk(v) just as before, except that they correspond to the domain
around u and v respectively (so that ψu(Dk(u)) has the same law as Dk, for instance). Let K(u, v)
denote the smallest k such that Dk(u) does not contain the disk of radius 16(εN )−1|u− v| around u,
and K(v, u) similarly (interchanging u and v). By symmetry, it is sufficient to bound the probability
of the event Ek(u) ∩ Ek(v) ∩ {K(u, v) ≤ K(v, u)}. We are going to decompose this according to
the value of K(u, v).

Note that by our previous bounds on the conformal radius of Dk,

|u− v|/(4εN ) ≤ ρK(u,v) ≤ (4εN )K(u,v)

so that (4εN )K(u,v) ≥ |u− v|. We can therefore restrict ourselves to the values k0 taken by K(u, v),
so that

bk0 = (100εN )k0β ≥ |u− v|β.

Suppose that k0 = K(u, v) ≤ K(v, u) and let us consider the four strands γ1, . . . , γ4 up to the time
at which the event Ek0+10(u) is realized. Observing these four strands, we are only missing the
pieces in Dk0+10(u), so that can already see what happened near v. In particular, we can see –
modulo whether the paths γ1, . . . , γ4 hook up in the right way near u – if Ek(v) can hold or not.
Furthermore, the conditional probability of the four paths making it so that Ek(u) holds is bounded

by a constant times bk−(k0+10). From this, we can deduce that

Pz[E
k(u) ∩ Ek(v) ∩ {k0 = K(u, v) ≤ K(v, u)}]

≤ bk−k0−10P[Ek(v) ∩ {k0 = K(u, v) ≤ K(v, u)}]

≤ b−10bk|u− v|−βP[Ek(v) ∩ {k0 = K(u, v)}].

Summing over all possible values of k0, and using the symmetry in u and v, we finally get that

P[Ek(u) ∩ Ek(v)] ≤ 2b−10b2k|u− v|−β.

�

Let Nk = B(0, r0) ∩ (2−kNZ2). Let us now define the number Nk of points in Nk such that Ek(u)
holds. Our previous moment bounds imply some control on the law of Nk as k →∞. Recall that β0
is the value chosen so that b = 2−Nβ0 .

Lemma 4.4. There exist a constant a > 0 such that for all z ∈ T ′ and all k ≥ 1, we have that

Pz[a ≤ Nk/2
kN(2−β0) ≤ 1/a] ≥ a.

Proof. Let X = Xk denote the random variable Nk/2
kN(2−β0). As Pz[E

k(u)] = bk, we have that

Ez[Xk] = 2−2kN2β0kN
∑
u∈Nk

Pz[E
k(u)] = 2−2kN#Nk

which is bounded from above and from below by positive constants that are independent of k and
of z ∈ T ′.

On the other hand,

Ez[(Xk)
2] = (2−2kN2β0kN )2

∑
u,v∈Nk

Pz[E
k(u) ∩ Ek(v)].
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The sum when u = v is again easily taken care of by the fact that Pz[E
k(u)] = bk, and Lemma 4.3

takes care of all the terms in the sum for u 6= v; we get that for some constant C, for all z ∈ T ′ and
all k,

Ez[(Xk)
2] ≤ C + C(2−2kN )2

∑
v 6=u∈Nk

|u− v|−β

which is easily shown to be bounded by some explicit constant independent of k because β ∈ (0, 2).

This information on the first and second moments of Xk then classically imply the lemma. �

4.4. Rerandomizing configurations in pivotal regions and conclusion of the proof. We
now complete the proof of Theorem 1.2. We begin by establishing the following intermediate result.

Lemma 4.5. Let γ be the branch of the CLEκ exploration tree from −i to i in D. The probability
that the conditional law of γ given the CLEκ gasket is not supported on a single path is strictly
positive.

Proof. To start, we will first explain the reduction from the setting of a CLEκ to the setting of
the law Po as defined earlier. Let γ̃ be the time-reversal of γ. Let τ be the first time that γ hits
∂B(−i, 1/4). For each t ≥ 0, let Dt be the component of D \ (γ([0, τ ]) ∪ γ̃([0, t])) with γ(τ) and
γ̃(t) on its boundary. Let τ̃ be the first time t ≥ 0 that the cross-ratio of the four marked points
corresponding to γ(τ), γ̃(t), and the most recent times before τ and t, respectively, that γ and γ̃
have hit the counterclockwise segment of ∂D from −i to i, is equal to 1. We take τ̃ =∞ if no such
times exist. On the event that τ̃ <∞, the conditional law of the remaining loop ensemble can be
described in terms of (a conformal image of) Po so to complete the reduction we need to explain
why P[τ̃ < ∞] > 0. This in fact follows since for any deterministic, continuous, simple path γ0
in D connecting −i to i and ε > 0, there is a positive chance that γ stays within distance ε of γ0
(viewed as paths modulo parameterization). Indeed, to be concrete, we can make the particular
choice where γ0 consists of the concatenation of the line segments [−i, 0], [0,−1], [−1, 1− δ + iδ],
[1− δ + iδ, i] where δ > 0 is chosen to be very small and we also choose ε > 0 very small.

Let γ be the four strands defined under the law Po. We also let Γ be the corresponding loop
ensemble and Υ its gasket. We will show that, with positive probability, the conditional probability
that γ1 terminates at z4 given Υ is in (0, 1).

For each given k, consider the Markov chain on (Γ, γ) configurations defined as follows:

• Pick a point u ∈ Nk uniformly at random,
• Check whether the event Ek(u) occurs, and
• If so, resample the terminal segments of the paths in Dk(u) and the rest of the CLEκ

in Dk(u).

Note that this chain preserves the joint law of (Γ, γ).

We now want to use Lemma 4.4 to see that if we run the chain for b2kN(2−β0)c steps there is a
positive chance (bounded from below uniformly w.r.t. k) that there exists exactly one single time
during these steps at which the chain discovers a point u ∈ Nk where Ek(u) occurs and switches
the connections near this point.

To see this, we first notice that if we sample b2kN(2−β0)c times a uniformly chosen point in Nk
for a given configuration Γ, then with a probability bounded uniformly from below (say, larger
than some a0), one hits exactly one point u for which Ek(u) holds and switches it. Then, we need
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to argue that once this point has been switched and we get a new configuration Γ̃, with positive
probability, if we sample the remaining uniformly chosen points in Nk (so that we have sampled a

total of 2kN(2−β0) such points), then we do not find a point v for which the event Ek(v) occurs for
the new configuration.

To justify this, we note that the proof of Lemma 4.3 (in particular, the fact that we derived an upper
bound on the conditional probability of Ek(v) occurring given Ek(u), regardless of how the paths
hook up near u), we get that for every u ∈ Nk, conditionally on the event that u has been picked

among the 2kN(2−β0) times and on the fact that Ek(u) did hold at that time, the mean number
of points v ∈ Nk such that Ek(v) holds either before or after the switch near u is bounded by a
constant times bk ×#Nk. In particular, the conditional probability that this number of points is
greater than some explicit large but fixed constant times bk ×#Nk is as small as we want (provided
the constant is chosen large enough). And if this number of points is smaller than this constant times
bk ×#Nk, then the conditional probability that no further changes are made to the configuration
during the remaining switching attempts is bounded uniformly from below.

Then, if Γ̃ denotes the resulting loop ensemble and Υ̃ its gasket, the Hausdorff distance between Υ

and Υ̃ is at most (8εN )k, while Γ̃ has changed more dramatically (now γ1 hooks up with the other
strand). Therefore sending k →∞ (and possibly passing to an appropriate subsequence), we get an
asymptotic coupling which satisfies the desired property. �

We now conclude the proof of Theorem 1.2 via a zero-one law type argument.

Proof of Theorem 1.2. Let η be the branch of the CLEκ exploration tree from −i to i in the unit
disk. By Lemma 4.5, we know that η is not determined by the gasket Υ of Γ with probability at
least p ∈ (0, 1]. We can parameterize η as seen from i. Since η(t) converges almost surely to i as
t → ∞, it is clear that for some given large t0, the probability p(t0) that η up to time t0 is not
determined by Υ is strictly positive. By scaling and conformal invariance, this probability p(t0) is
independent of t0.

For a given fixed t0, as explained in the CLEκ description, it is possible to discover simultaneously η
up to time t0 and the CLEκ loops it traces. In particular, we can trace η up to the first time s0
after t0 at which it will touch the semi-circle from −i to i again, and leave the loop that it was
tracing at time t0 in order to branch towards i. At that time s0, the conditional law of the CLE in
the remaining to be explored domain with i on its boundary is just the law of a CLE in this domain.
It can in particular be resampled without affecting η up to time t0. Hence, after that time s0, the
conditional probability that future of η is not determined by the gasket is still p, independently of η
up to time t0. Hence, we get that 1− p ≤ (1− p)(1− p(t0)). As p > 0, we conclude that p = 1. �

Note that this argument in fact can be adapted to see that the conditional law of η given Υ is
almost surely non-atomic. Indeed, the previous result shows that for some λ < 1, there is a positive
probability a that the conditional law of η up to time t0 given the Υ has no atom of mass greater
than λ. Using the conditional independence after s0, if we define Q(x) to be the probability that
the conditional law of η given Υ has an atom of mass at least x, we get readily that for all x ≤ 1,

Q(λx) ≤ (1− a)Q(λx) + a(Q(x)),

which (together with the fact that Q(1) = 0) implies that Q(x) = 0 for all positive x.
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5. Derivation of Theorem 1.1 and of Theorem 1.3

We now explain how to adapt the previous ideas in order to derive the other two theorems stated in
the introduction.

5.1. Randomness of continuum percolation interfaces. We first give the proof of Theorem 1.3.

Proof of Theorem 1.3. As mentioned in the introduction, our proof for CPIs in the case where p = 1
(i.e. where all of the CLE loops have the same label) can in fact be easily adapted to the more
general setting of labeled CLE carpets. So, for simplicity, we will only include the argument in the
case that p = 1.

Fix κ ∈ (8/3, 4) and let κ′ = 16/κ ∈ (4, 6). We suppose that we have a coupling of a CLEκ′
process Γ′ and a CLEκ process Γ as described at the end of Section 2.3. Just as in Section 3.1, we
then explore part of the branch η′ of the CLEκ′ exploration tree from −i to i up to a stopping time
t, and then, starting from its most recent intersection with ∂D in the counterclockwise direction
starting from −i, we start drawing the currently explored loop backwards up to some stopping time,
say t̃. Call this curve η̃′. We then condition on all of the CLEκ loops which intersect the part of the
CLEκ′ exploration tree that we have observed so far. See the left side of Figure 10 for an illustration.
By [14, Theorem 7.3], we know in particular that the conditional law of the CLEκ′ exploration tree
in the connected component of the remaining domain D0 which has i on its boundary, is given
by that of an independent CLEκ′ exploration tree in the remaining domain. (In the FK-Potts
analogy in a domain D, one considers a monochromatic with color “A” boundary condition for Potts
that one can view as a wired boundary condition for the coupled FK model, and one explores the
inner boundaries that touch ∂D of the open FK-cluster up to some time – this corresponds to the
exploration of the CLEκ′ tree. Then, one attaches to its right all the clusters of “non-A” sites which
therefore have A’s on their outer boundary, and notes that in D0, one has again A-monochromatic
boundary conditions.) This exploration tree in turn determines a CLEκ′ process Γ′0 in D0. We
emphasize that the loops of Γ′0 are not necessarily loops of Γ′ even though the exploration tree
associated with the former is a subset of the exploration tree of the latter. (This has to do with
how the loops are defined from the exploration tree when the branches are bouncing off the domain
boundary.)

This allows us to set things up in a manner which is similar to the proof of Theorem 1.2. Namely,
we continue exploring η′ and η̃′ in D0. Note that these two curves correspond to branches of the
exploration tree of Γ′0. Thus, as explained in the proof of Theorem 1.2, we can choose stopping
times τ , τ̃ for η, η̃′ so that it is a positive probability event that the cross-ratio of the four marked
points in D0 corresponding to η′(τ), η̃′(τ̃), and the most recent intersections of η′, η̃′, respectively,
before the times τ , τ̃ with the counterclockwise segment of ∂D0 from η′(t) to η̃′(t̃) (black dots on
the right of Figure 10) is equal to 1. The argument of the proof of Theorem 1.2 implies that it is a
positive probability event that the conditional law of the remaining loop ensemble is not supported
on a single configuration. Let η′0 (resp. η̃′0) be the time-reversal of the loop being explored by η′

(resp. η̃′) at time τ (resp. η̃) starting from the most recent intersection of η′ (resp. η̃′) with the
counterclockwise part of ∂D0 from η′(t) to η̃′(t̃) before time τ (resp. τ̃). On the event that η′ and
η̃′ form part of the same loop in Γ′0, it follows that the initial segments of η′0 and η̃′0 are not part of
the outermost CLEκ′ . On the other hand, on the event that η′ and η̃′ do not form part of the same
loop in Γ′0, it follows that the initial segments of η′0 and η̃′0 are part of the outermost CLEκ′ .

Then we have four marked boundary points and we can proceed in this setting with the same
argument as in the proof of Theorem 1.2. In particular, the argument of Theorem 1.2 implies that if
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η′(t)
η̃′(t̃)

η′(t)
η̃′(t̃)

η′(τ) η̃′(τ̃)

η′0

η̃′0

Figure 10. Left: The branch η′ of the CLEκ′ exploration tree from −i to i drawn
up to a given time t (red), as well as the time-reversal η̃′ drawn up to a given time t̃
of η′ targeted at its most recent intersection with the counterclockwise segment of
∂D from −i to i (blue), just like in Section 3.1. We take the CLEκ′ to be coupled
with a CLEκ as a percolation in the CLEκ carpet; the filled loops are the CLEκ loops
which intersect the part of the CLEκ′ we have explored so far. The conditional law
of the CLEκ in the unexplored region is then independently a CLEκ in each of the
components. Right: Shown is the continuation of η′, η̃′ up to stopping times τ , τ̃
on the event that the cross-ratio of the four marked points (black dots) is equal to 1
together with the time-reversals (orange) η′0, η̃′0 of the loops of the CLEκ′ associated
with the exploration tree restricted to the remaining domain being explored by η′, η̃′

at the times τ , τ̃ . If η′ hits η̃′(τ̃) before connecting up with η′0 then η′0, η̃0 are not
part of an outermost CLEκ′ loop and otherwise they both are.

the inner/outer paths create special intersection points, then we cannot tell if the inner paths hook
up with each other and the outer paths with each other or if the inner and outer paths hookup.
Note that the actual gasket of the CLEκ′ is then not the same depending on the way in which the
paths hookup (which is a stronger statement than just saying that the exploration path is not the
same).

This implies that the percolation exploration of the CLEκ is with positive probability not determined
by the CLEκ carpet. A simple zero-one argument (by looking at smaller and smaller pieces of the
CPI) then implies that it is in fact the case that the percolation exploration is almost surely not
determined by the CLEκ carpet and in fact the conditional law is almost surely non-atomic. �

5.2. Randomness of the SLE curve given its range. We now turn to Theorem 1.1. In the
present section, we again assume that κ ∈ (4, 8). Let us first note the following fact, that allows us
to consider an SLEκ(κ− 6) instead of an SLEκ.

Lemma 5.1. The probability that the conditional law of an SLEκ process given its entire range
is non-trivial is either equal to 0 or to 1, and it is equal to the corresponding probability for an
SLEκ(κ− 6) process.
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Proof. By [10, Proposition 7.30] the conditional law of an SLEκ(κ− 6) process given its left and
right boundaries is independently that of an SLEκ(κ/2− 4;κ/2− 4) in each of the bubbles formed
by the left and right boundaries. Note that there are almost surely infinitely many such bubbles,
because there are infinitely many global cut points on an SLEκ(κ− 6) (this follows from the fact
that the same is true for an SLEκ, see [17] and the references therein). Note that these left and right
boundaries are determined by the range of the path. Therefore, the probability that an SLEκ(κ− 6)
process is determined by its range is equal to 1 if the same is true for an SLEκ(κ/2− 4;κ/2− 4),
and it is equal to 0 otherwise.

But we know that the conditional law of an SLEκ process given its left and right boundaries is also
independently that of an SLEκ(κ/2− 4;κ/2− 4) in each of the infinitely many bubbles formed by
the left and right boundaries. Hence, we also have that the probability that an SLEκ(κ− 6) process
is determined by its range is equal to 1 if the same is true for an SLEκ(κ/2− 4;κ/2− 4), and it is
equal to 0 otherwise.

This proves the statement in the lemma. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By the previous lemma, we can consider the case where η is an SLEκ(κ− 6)
process in D from −i to i which is given as the branch of a CLEκ exploration tree in D. As
explained in the introduction, and in contrast to the proof of Theorem 1.2, we will need to resample
the configuration in two different well-chosen regions rather than just at one, in order to globally
preserve the range of η.

Recall from the branching-tree construction of CLEκ that the path η consists of the (closure of the)
concatenation of its excursions away from the counterclockwise arc ∂ from −i to i, and that each of
these excursions is part of a different CLEκ loop. If one stops η at a time T such that η(T ) /∈ ∂D,
then the conditional law of the remainder of the CLEκ loop that it is tracing at that time T is that
of an SLEκ from η(T ) to η(S) in the complement of η[0, T ] where S is the last time before T at
which η was in ∂D.

We suppose that r > 0 is chosen to be very small, and we let B1 and B2 be the open disks of radii r
around −1/2 and around 1/2 respectively. Fix k ∈ N. We consider the following procedure.

• We condition on the part of η and of its time-reversal (starting from i and −i) stopped upon
hitting ∂B1, and (on the event where they both hit ∂B1) on the time-reversals of the two
loops being drawn by each branch when hitting ∂B1, and also stopped upon hitting ∂B1.
Note that all these branches are all deterministic functions of the CLEκ. We let E1 be the
event that these four branches do hit B1.
• When E1 does not hold, one does not do anything. On the event E1, we let ϕ1 be the unique

conformal transformation from D to the complementary component U1 of the traced paths,
which contains B1 and normalized by ϕ1(0) = −1/2 and (ϕ1)′(0) > 0. By our definition of
the Pz, the conditional law of the configuration in U1 is given by the image under ϕ1 of
Pz for some z. As in the proof of Lemma 4.5, we perform the Markov step where we pick

b2kNβ0c points uniformly in 2−kNZ2 ∩B(0, r0), rerandomizing each good pivotal place that
we find. The proof of Lemma 4.5 implies that, on E1, there is a positive probability bounded
from below (by a constant depending only on the cross-ratio of the marked points z) that
the hookup has been changed at exactly one of the attempts, so that the only difference
between the new configuration and the initial one is a small disk (with radius that goes to 0
as k gets large).
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• We then repeat the same procedure starting from the obtained configuration, just replacing
B1 by B2.

By definition, the law of a CLEκ is invariant for this procedure. In particular, the law of η is
invariant for this procedure.

Our goal now is to show that in the limit as k →∞, this procedure gives us an asymptotic coupling
between the original CLEκ (and its branch of the exploration tree η) and a new CLEκ such that
with positive probability the new branch of the exploration tree from −i to i has the same range as
η but visits the points of its range in a different order.

Figure 11. Sketch of the event A. Left: The path η from −i to i. Right: The
boxes indicate the conditions on the branches that have to intersect.

We let A be the event that η visits (in order) B1, the counterclockwise part of ∂D from −i to i, B2,
B1, the clockwise part of ∂D from −i to i and B2, and that furthermore, the various parts of η do
intersect each other so that they disconnect B1 from B2 as well as B1, B2 from ∂D, as schematically
depicted in Figure 11. This event A has a positive probability.

When A holds, it implies in particular that E1 holds. If one performs the Markov step in U1 as
described above and “succeeds” (meaning that one changed the hook-up in U1 by just changing the
configuration in one small disk), then one notes that obtains a new configuration for which the event
E2 (defined just as E1 but exchanging the role of B1 and B2) holds (see Figure 12). In particular,
with positive probability, when one performs the second Markov step for this new configuration, the
probability of changing the hook-up in B2 with exactly one successful modification will be bounded
from below as well (and this bound will depend only on the cross-ratio of the corresponding four
points, which does in fact not depend on the details of the first resampling procedure, and therefore
does not depend on k but only on the initial path η).

Wrapping up, we see that on the event A, there is a probability which is bounded from below
uniformly with respect to k that the resampling procedure will change the hookup in B1 and the
hookup in B2, and that the initial path η gets changed into another nearby path that traces the
branches in different order (see Figure 13). The result thus follows by taking a limit as k →∞.

�
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Figure 12. Illustration of the two Markovian steps. Left: Partial exploration of η
and of its time-reversal before the first Markovian step, and then in dashed the two
time-reversed branches, leading to the definition of U1. Right: After a successful
first Markovian step in B1, the configuration before the second step leading to the
definition of U2. (Remark: for the Markovian steps to be “successful” the two arcs
in U1 and then in U2 would typically not be disjoint, but they are drawn as if there
are disjoint here in order to visualize better the change in the hook-up configurations.)

Figure 13. The path η before the two Markovian steps, and the resulting new
path. (Note that when k is large, the Hausdorff distance between the two paths
within B1 and also within B2 are in fact very small, but the hook-up is changed as
schematically indicated in these figures).

6. Comments

6.1. Relationship with the SLE/GFF coupling. SLEκ and CLEκ can be naturally coupled
with an instance h of the Gaussian free field (GFF) on a simply connected domain D ⊆ C with
appropriately chosen boundary data (see e.g. [20, 23, 4, 10, 13, 14]). Theorem 1.1 has some
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consequences for the coupling of SLEκ for κ ∈ (4, 8) with the GFF, Theorem 1.2 for the coupling of
CLEκ for κ ∈ (4, 8), and Theorem 1.3 for CLEκ for κ ∈ (8/3, 4).

Let us first comment on the SLEκ/GFF coupling for κ ∈ (4, 8). Suppose that h is a GFF on a simply
connected domain D ⊆ C with boundary data so that it may be coupled with an SLEκ process η
from one point on ∂D to another. In this coupling, the boundary data for the conditional law of h
given η is in each component U of D \ η given by a constant plus a multiple of the argument of the
derivative of the uniformizing conformal map ϕ : U → H. Although the winding of ∂U is not defined
in the usual sense as it is fractal, argϕ′ has the interpretation of being the harmonic extension of
the winding of ∂U from ∂U to U . In particular, there is a marked point on ∂U where argϕ′ makes
a jump of size 2π. In terms of the path, this point corresponds to the first (equivalently last) point
on ∂U visited by η. If one observes only the range of η in addition to the GFF boundary data then
it is in fact possible to recover the trajectory of η in a measurable way. This follows because η turns
out to be a deterministic function of h [4, 10] and the values of h in the components of D \ η are
conditionally independent of η itself given the values of h along η. Theorem 1.1 therefore implies
that one cannot recover the marked points or GFF field heights by observing the range of η and the
orientations of the loops that it makes alone.

The case of CLEκ for κ ∈ (8/3, 8) \ {4} is similar to that of SLEκ. The reason for this is that one
couples CLEκ for κ ∈ (4, 8) with the GFF by coupling the whole exploration tree of SLEκ(κ− 6)
processes with the GFF [10, 13, 14]. The case that κ = 4 is different because in this case the
conditional law of the GFF given the loops is given by a constant which is determined by the loop
orientations. In particular, the loops are not marked by a special point so that there is no additional
randomness involved here.

The Markov step used to prove Theorems 1.1–1.3 is also interesting to think about in the context of
the GFF: While this operation only affects the small regions of the CLE picture, it does have a
less localized influence for the corresponding GFF. This is because changing the manner in which
the loops of a CLE are hooked up has the effect of moving the marked point along the component
boundaries which in turn translates into changing the GFF heights along the loop boundaries. That
is, our Markov step is a measure preserving transformation defined on GFF instances which leaves
the CLE gasket fixed but makes a macroscopic change to the corresponding GFF instance because
the heights are changed.

6.2. Quantum gravity perspective. It is natural to wonder whether techniques involving quan-
tum gravity and mating of trees, as described e.g. in [5], could be used to give an alternate proof
of Theorems 1.1–1.3. In this short subsection, we make some brief and informal remarks about
how the operations described in this paper could potentially be understood and studied within that
framework. The re-randomization procedure that we have described here also naturally fits into the
quantum gravity framework developed in [5]. In particular, it is implicit in the constructions of [5]
that there is a quantum version of the “natural” measure on SLEκ double points and intersections
of CLEκ loops. It is not difficult to see that if one picks a typical such point using this measure in
either setting and then “zooms in,” the resulting limit is the same if one starts in either the SLEκ
double point or CLEκ loop intersection settings. In fact, it can be described as a gluing of eight
so-called quantum wedges which correspond to the four strands of path and the four regions which
separate the path strands. The operation of resampling how the paths are hooked up has a natural
interpretation in the quantum gravity perspective. Indeed, it is shown in [5] that an SLEκ path or
CLEκ path for κ ∈ (4, 8) can be represented as a gluing of a pair of loop-trees which arise from a
pair of independent (κ/4)-stable Lévy processes; see [5, Figure 1.6 and Figure 1.7]. These loop-trees
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correspond to the components which are cut off on the left and right sides of the path. Regluing
the paths in order to switch the direction of a pivotal point corresponds to natural operations that
one can preform directly on the trees (hence Lévy processes) themselves, namely cutting the pair of
trees to form new trees or grafting trees together.

Appendix A. Bi-chordal resampling

The purpose of this appendix is to explain how the bi-chordal resampling arguments developed in
[11, Section 4] can be extended to the setting in which the paths in question are allowed to intersect
each other. We write this as an appendix as it can be read independently of the present paper and
may also serve as a future reference for such resampling questions. First, in Section A.1, we will
establish a general statement which is used in the proof of Lemma 3.3 in the case that κ ∈ (6, 8)
and in Section A.2 a variant of this that is used in the proof of Lemma 3.3 in the case κ ∈ (4, 6).

A.1. Basic characterization.

Theorem A.1. Fix κ > 0, ρ1, ρ2, ρ
′
1, ρ
′
2 > (−2) ∨ (κ/2 − 4). Suppose that D ⊆ C is a Jordan

domain and x1, x2, y1, y2 ∈ ∂D are distinct and given in counterclockwise order. There is at most
one probability measure on pairs of paths ηL, ηR respectively connecting x1 to y1 and x2 to y2 such
that the conditional law of ηL given ηR is independently that of an SLEκ(ρ1; ρ2) process in each
of the components of D \ ηR which are to the left of ηR and the conditional law of ηR given ηL is
independently that of an SLEκ(ρ′1; ρ

′
2) process in each of the components of D \ ηL which are to the

right of ηL.

We emphasize that we do not prove the existence of a probability measure which satisfies the
hypotheses of Theorem A.1. However (and this is the case in the present paper’s CLEκ setting or
in the imaginary geometry framework), the existence of such a measure is typically provided by
ad-hoc constructions.

We note that it suffices to prove Theorem A.1 in the case that κ ∈ (0, 4] because of SLE-duality
considerations. More precisely, in the case that κ > 4 we can replace ηL by its right boundary
and ηR by its left boundary because the conditional law of ηL and ηR in each case is known (see,
e.g., [10]).

Throughout, we will make the concrete choice that D = (0, 1) × (0, `) for some fixed ` > 0. We
denote the left boundary segment [0, i`] by L and the right boundary segment by R. Let KL (resp.
KR) denote the set of all compact connected subsets of D that contain L (resp. R). We endow
KL, KR with the Hausdorff distance between compact sets and consider them with their associated
Borel σ-algebra.

We are now going to give a definition of a measurable family of elements of KL that we will call
good, but we already note that if K consists of the union of L with a continuous curve from 0 to i`
in D, then it will necessarily be such a good set.

When K1 ∈ KL, let us look at the connected components of D \K1 whose boundary contains a
non-trivial interval of R \K1. We call (Oj) this family of open sets, and we denote by aj and bj the

corresponding extremities of this interval of (R \K1) ∩Oj .
For each n, we also define the set Kn

1 which is obtained by taking the union of all closed dyadic
squares of side-length 2−n (i.e., with corners in 2−nZ2) that intersect K1. For each n, the map
K1 7→ Kn

1 is easily shown to be measurable and it can take only finitely many values. Hence, any
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function of Kn
1 will be a measurable function of K1. Furthermore, Kn

1 is also in KL and we can
then define the family (Oni ) and the points ani and bni just as before.

Definition A.2. We say that a set K1 is good (in KL) if the following two conditions hold:

(i) For each N > 0, for each n, the number of (Oni ) with diameter greater than 1/N is finite and
bounded uniformly in n.

(ii) For each j, the boundary of Oj is a continuous curve.

Note that since each Oni is contained in some Oj , and that each Oj contains at least one Oni of half
its diameter when n is sufficiently large, this implies also that for each N , the number of Oj with
diameter greater than 1/N is finite.

Let us give some further definitions: For each Oj and each large n, let us denote by Onin(j) the

largest Oni that is contained in Oj (for instance, the one with largest diameter, breaking possible
ties using some deterministic rule) if it exists (and it always does provided n is large enough). Let

us write anj := anin(j) and b
n
j := bnin(j) the corresponding boundary points.

A first remark is that the set of good sets is a measurable subset of KL. Indeed, both (i) and (ii)
can be expressed in terms (i.e., as countable unions of intersections of unions of intersections) of
events involving finitely many sets Kn

1 . This is clear for (i). To see that this is also the case for (ii),
one can note that (ii) is equivalent to the fact that for each j, there exists parameterizations of the
boundaries of Onin(j) (which are continuous curves) such that this sequence of continuous curves is

uniformly Cauchy as n→∞. This can be seen by considering the sequence of conformal maps φjn
which take D to Onin(j) with −i,−1, i respectively taken to anj , (anj + b

n
j )/2, b

n
j and noting that they

are uniformly Cauchy if and only if (ii) holds.

For each given K1 ∈ KL, we now describe a procedure Φ to define a random element K2 ∈ KR:
First, if K1 is not good, we just set K2 = R. If K1 is good, then inside each of the sets Oj (using
the same notations as above), we then sample an independent SLEκ(ρ′1; ρ

′
2) denoted by γj from aj

to bj , with marked points that are both located at aj (one on each “side”). We then define the set
K2 := R ∪ (∪jγj). Note that this set is compact, connected and contains R, i.e., it is in KR.

A first important observation is the following:

Lemma A.3. If we endow KL and KR with the Hausdorff metric, the previous procedure describes
a Borel-measurable Markov kernel (in other words, the map Φ that associates to each K1 the law of
K2 is measurable).

Proof. It suffices to show that the law of K2 can be viewed as the weak limit as n→∞ of Φ(Kn
1 )

(which are therefore measurable with respect to K1):

When K1 is good, for each n, let us define γni the corresponding SLE curves in Oni . For each j,
condition (ii) shows that the law of γnin(j) converges to that of γj . Indeed, if we define the conformal

map ψjn from Oj onto Onin(j) that maps aj , (aj + bj)/2, bj onto anj , (a
n
j + b

n
j )/2, b

n
j respectively, then

because K1 is good, then ψjn extends continuously to the boundary (i.e. to the set of prime-ends)
and converges uniformly to the identity map as n→∞.

Now we note that for each ε > 0, the number of connected components Oni with diameter greater
than ε is equal to the number of connected component Oj with diameter greater than ε for all n large
enough (only the Onin(j) will have diameter greater than ε (which follows readily from condition (ii)).
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From this, it follows readily that when n is large enough, one can couple Kn
2 (defined just as K2

but replacing K1 by Kn
1 ) and K2 so that the Hausdorff distance between the two is smaller than 2ε

(as one just needs to control the SLE paths in the finitely many Oj ’s). Hence, the law of K2 can
indeed be viewed as the weak limit of the law of Kn

2 . �

In a completely symmetric manner (with respect to the line 1/2 + iR), we can define for each
K2 ∈ KR a procedure to define a random set K ′1 ∈ KL, just replacing (ρ′1; ρ

′
2) with (ρ1; ρ2). We

denote by Ψ the measurable Markovian kernel that associates to each K1 ∈ KL the law of the
random set K ′1 obtained iteratively by first choosing K2 applying the first procedure, and then
K ′1 (in a conditionally independent way, given K2) using this second procedure. This kernel is
Markovian as a composition of Markovian kernels. One then has the following result:

We now state the following proposition that immediately implies Theorem A.1.

Proposition A.4. There exists at most one probability measure π on KL that is invariant under Ψ
and such that π a.e. K1 is the union of the range of a continuous curve and L.

This is useful in the present paper, because in the CLE/SLE settings that we work with, we are
given a probability measure on KL that satisfies these properties.

Remark A.5. Stronger statements probably do hold, but the previous one is often sufficient (and it
is the case in the present paper). For instance, one can probably show uniform exponential mixing
(i.e., that starting from any two different configurations, the two chains started from these two
configurations can be coupled so that they coincide before the N -th iteration step with a probability
that is bounded by exp(−cN) for some constant c that is independent of the initial configurations).

Recall some basic features of Markov kernels (see for instance Chapter 6 of [28]) that will be useful
in the proof: The set of invariant probability measures is convex, and the extremal points in this
convex set are exactly the ergodic invariant measures. As a consequence, two extremal ergodic
invariant measures are either mutually singular or equal.

Proof of Proposition A.4. We are going to prove that there exists at most one probability measure π
on KL that is invariant under Ψ and such that π a.e. K1 is good. Such a measure π being necessarily
a mixture of extremal invariant ergodic measures supported on good sets, it will suffice to see that
there exists at most one extremal ergodic measure supported on good sets.

Let ν, ν̃ be two extremal ergodic measures supported on good sets. Let us choose K1 and K̃1

independently according to these two probability measures (on the same probability space) and

then let us first apply (independently) the first step Φ of Ψ to construct K2 and K̃2.

Note that for every good K1 there exists δ(K1) > 0 such that with probability at least δ, K2 is
a subset of the right-hand half D+ = (1/2, 1]× [0, `] of the rectangle D (recall that finitely many
Oj ’s have diameter at least 1/2). Hence, with a random but positive conditional probability (given

K1, K̃1), both K2 and K̃2 are subsets of D+. But, then, conditionally on this event, it is possible
(simply using absolute continuity of SLEκ(ρ1; ρ2) processes defined in two different domains) to see

that one can couple the second iteration step that constructs K ′1 and K̃ ′1 in such a way that these
two sets do coincide (and stay in the left-hand half of D) with positive probability. But since the

laws of K ′1 and K̃ ′1 are respectively equal to ν and ν̃, this shows that these two measures are not
singular, which implies (because extremal ergodic measures are either singular or equal) that they
are equal. �
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A.2. Second variant. We now explain a closely related result, which will be derived using a
variation of the argument used to prove Theorem A.1. Throughout, we suppose that κ ∈ (8/3, 4)
and κ′ = 16/κ ∈ (4, 6). As we mentioned earlier, this version is relevant for the proof of Lemma 3.3
in the case κ′ ∈ (4, 6).

Let us consider the same rectangle D. We denote by T and B its top and bottom sides. For
l ∈ (0, `), we also denote by Il the horizontal segment [0, 1]× {l}.
When η′ is a continuous non-self-crossing and non-self-tracing path in D from 0 to i`, we say that
a connected component of D \ η′ is to the right of η′ if its boundary contains an open interval of
(T ∪R ∪B) \ η′.
Suppose that we have a law on pairs (η′,Γ) where η′ is a continuous non-self-crossing path in D
from 0 to i` and Γ is a collection of loops in the components of D \ η′ (i.e., each loop is in the closure
of one of these components) which are to the right of η′ which satisfy the following properties:

• Given η′, the conditional law of Γ is given independently by that of a BCLEκ(−κ/2) in each
of the components of D \ η′ which are to the right of η′ with marked points given by the
endpoints of the interval of the component boundary which is contained in ∂D.
• If we condition on the loops of Γ which intersect T , then the conditional law of η′ in the

remaining domain is that of an SLEκ′(κ
′ − 6) from 0 to i` with a single force point at the

right-most point y of B so that no loop of Γ intersects both T and [0, y).
• If we condition on the loops of Γ which intersect B, then the conditional law of the time-

reversal of η′ in the remaining domain is that of an SLEκ′(κ
′ − 6) from i` to 0 with a single

force point at at the right-most point y of T so that no loop of Γ intersects both B and
[i`, y).

Then, we see that the law of η′ is invariant under two different operations:

• Sample Γ given η′, keep only the loops that touch T , and then resample η′.
• Sample Γ given η′, keep only the loops that touch B, and then resample η′.

Exactly as in the previous argument, one can see that these two resampling operations correspond
to two Markovian kernels that we denote by Ψ1 and Ψ2 (one can view the paths in question as
corresponding to compact sets, define good sets in a similar manner as before, and define the
operation in a measurable way, and see that it coincides with the above description in the case
where the set is a continuous path). Then:

Proposition A.6. There exists at most one probability measure π that is invariant under both Ψ1

and Ψ2 and that is supported on the set of continuous non-self-crossing curves from 0 to i` in D.

Most of the proof of this statement is almost identical to the previous arguments, except for the
final resampling argument, that we now describe in more detail:

Suppose that η′ and η̃′ are two independent samples of two probability measures π and π̃ that
satisfy the conditions of the proposition. In order to prove that π = π̃, it is sufficient to show that
these two probability measure do not have disjoint support. For this we just need to show that by
performing a resampling step corresponding to Ψ1 and then a resampling step corresponding to
Ψ2, we can arrange so that the obtained paths coincide with positive probability. First, we do a
resampling step corresponding to Ψ1 as follows.

• Given η and η̃, we sample Γ, Γ̃ independently. Then there is a positive chance that no loops

of Γ and Γ̃ intersects both T and I3`/4. We call E′ this event.
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• We then resample η′ and η̃′ using the second part of the resampling step Ψ1. We do this
independently except when the event E′ occurred. Let us denote τ , τ̃ the respective hitting
times of I`/2 by η′ and η̃′. By standard absolute continuity properties for SLE, when E′

holds, we can couple η′|[0,τ ] with η̃′|[0,τ̃ ] so that with positive probability, these two portions
agree and do intersect R (so that they disconnect T from B) – we call E this event. So, we
do couple them in this way.

We note that for any two continuous curves η′ and η̃′, the probability that in this resampling step
corresponding to Ψ1, we obtain that the probability of the event E is strictly positive. We then
perform a second resampling step corresponding to Ψ2: On the event E, we can couple the loops of

Γ, Γ̃ that intersect B in such a way that they are identical (this is just because they are defined in
identical domains). We can then resample η′ and η̃′ in the second step of Ψ2 in such a way that
they coincide.

To conclude, we can for instance define the resampling kernel Ψ as follows. With probability 1/3,
we do not do anything and keep the configuration as it is, with probability 1/3 we apply Ψ1 and
with probability 1/3 we apply Ψ2, and apply the fact that two extremal ergodic invariant measures
with respect to Ψ are either mutually singular or equal. The measures π and π̃ are then on the one
hand invariant under Ψ, and the previous argument shows that they are not singular, so that they
are necessarily equal.

Appendix B. Some details for Section 4.2

We now indicate in a rather informal way the type of ideas that enable to derive the claims made in
Section 4.2 about the existence of the constants c3 and c1. The goal of this section is to outline the
main steps of possible proofs rather than providing full lengthy details.

B.1. The existence of c1. Let us first indicate one way to derive the claim about the existence of
the constant c1 related to the event G1. Recall that the goal is to obtain a lower bound for the Pz

probability of a certain event G1, uniformly over all 4-tuples z of starting points in Tδ0 .

Let us write δ′0 = δ
1/2
0 and δ′′0 = δ

1/4
0 . A first idea is to show that (provided δ0 was chosen small

enough), the Pz probability of the event X that the whole strands stay in the δ′′0 neighborhood of
the quarter circles joining −i and 1, and i and −1 respectively is bounded from below, uniformly
with respect to z ∈ T10δ0 . To see this, we can first note that if we consider the configuration with
starting 4-tuple o, then by the resampling arguments, one can see that the Po probability that the
strands do stay in the δ′0-neighborhood of these quarter-circles is positive (see Figure 14). Then, on
the event where the entire strand originating from i stays in the δ′0-neighborhood of its quarter-circle,
the conditional law of the strand originating at −i is an SLEκ in the complement of the first strand.
In particular, with a positive probability (bounded from below), if one explores (without having
explored the strand originating from i) the strand originating at −i until it reaches distance 30δ0
from −i, one did on the way reach for any z ∈ T10δ0 a tip configuration that is conformally equivalent
to any z, and then came back to a configuration that is conformally equivalent to o (note that one
just needs to control the cross-ratio between the four tips). From this, one gets readily the fact that
Pz[X] is bounded from below uniformly in z ∈ T10δ0 .

Let us now suppose that z ∈ Tδ0 . Recall that z1 is then the point that is δ0-close to −i and that z3
is δ0-close to i. When X holds, we can first explore the entire strand that starts from z3, and then
the conditional law of the one that starts from z1 will be that of an SLEκ in the remaining domain,
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Figure 14. The two strands defined under Po do stay in the neighborhood of the
quarter-circles (left). The exploration near −i that enables to get a lower bound for
Pz[X] uniform with respect to z ∈ T10δ0 (right).

and this remaining domain will contain the δ′′0 neighborhood of the quarter-circle from −i to 1. We
can then use basic absolute continuity estimates between SLE curves in various domains in order to
conclude that on this event, the law of the strand originating at z1 up to the first time at which it
reaches distance 99δ0 from z1 is absolutely continuous with respect to that of a radial SLEκ in the
unit disk (targeting the origin) until this hitting time, and the Radon-Nikodym derivative between
these two laws will be bounded from below and above by absolute constants.

A next step is to notice that for a radial SLEκ started from z1 and stopped at the deterministic time
δ20 (measured by the usual log-conformal radius from the origin as customary for radial Loewner
chains), the new position w of the tip (after mapping back via the uniformizing map φw normalized
at the origin) is that of a Brownian motion on the unit circle at time κδ20 that was started at z1.
Furthermore, on the event that at that time, the probability that the SLE did not yet exit the 99δ0
neighborhood of z1 is positive, and the conditional law (given that event) of w has a density that
is bounded from below by an absolute constant on the arc of length 5δ0 centered around z1. A
further remark is that on this event, the map φw will not move nor distort the neighborhoods of
the other three points z2, z3 or z4 by much. More precisely, any point in the 10δ0 neighborhood of
those points will not move by more than delta0, and |φ′w| will be close to 1 there (the fact that it
is uniformly greater than 1/2 will be sufficient here). So, on this event, we can think of the new
configuration of tips to have points that are at distance less then δ0 from z2, z3 and z4, and one
point which is distributed according to a law that has a density that is bounded from below on the
5δ0 neighborhood of z1 (importantly, when we will then take the image of this point three times by
a map with derivative bounded from below by 1/2 and that moves the points by less than δ0, we
will still have a density that it bounded from below by a constant on the δ0-neighborhood of −i).

After growing the slit from z1 up to the time δ0 and then mapping back via φw, we can do the
same procedure for the strand starting from φw(z2), and then after mapping back, apply the same
procedure iteratively for the two remaining strands.

Wrapping things up, we get readily that there exists an event G′1 with a probability p1(z) := Pz[G
′
1]

that is bounded from below by some constant p̃1 uniformly with respect to z ∈ Tδ0 such that at the
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end of this procedure, the conditional law of the four new tips z1 has a density p2(z
1) on Tδ0 (with

respect to the product measure) that is bounded from below by a constant p̃2.

Finally, we use a uniform random variable U on [0, 1] in order to define the event G1: We define G1

to be the event G′1 holds and that U < p̃1p̃2/(p1(z)p2(z
1)) where z is the 4-tuple of starting points

and z1 the obtained 4-tuple corresponding to the new tips. In this way, the conditional law of z1

given G1 is indeed uniform on Tδ0 , and the probability of G1 is equal to some positive constant that
is independent of z ∈ Tδ0 .

B.2. The existence of c3. Let us now describe ideas that provide the argument for the existence
of the constant c3 related to the event G3. When r < 1, Dr and Cr will denote here the disk of
radius r around the origin and the circle of radius r around the origin.

We first note that for each given δ′ ≤ δ1/100 (which should be thought of as very small compared to
δ1), the set of starting points that are δ1-separated can be covered by some finite family of sets of
starting points z where each zj lies in some arc of length δ′ and any two arcs are at distance greater
than 9δ1/10 from each other. So, it suffices to prove the lower bound for each of these products-of-
δ′-arcs of starting points separately.

Let us fix four such δ′-long boundary arcs. We can then find, for each choice of these four arcs, a
pair of well-chosen disjoint deterministic “tubes of width δ1/4” as depicted in Figure 15 such the
following hold that:

• They join the boundary arcs pairwise,
• They reach C1/3 around the origin, but not C1/6,
• They stay at distance δ1/4 of each other,
• The connected components of the intersections of the tubes in D1\D1/2 that have respectively
z1, . . . , z4 on their boundaries are disjoint and at distance at least δ1/4 from each other, and
• They have the property that the distance between each of the four δ′-boundary arcs and the

complement of the tubes in the unit disk is at least δ1/10.

Then, for each pair of such tubes, the probability of the event U that the two whole strands do stay
in the union of these two tubes is positive and bounded from below, independently of the 4-tuple
points z chosen in the four given arcs of length δ′ (using essentially the same ideas as in the case of
the event X ′ that we outlined above).

Now suppose that we wish to check whether U holds, but do not do it completely, using the following
algorithm: One first explores totally the strand starting from z3, and if it stayed in its tube, then
one starts exploring the other arc starting from z1. Suppose that this second arc went through C1/3

and that we then stop at the moment when it reaches again C7/12 while in the part of the tube near
z2 or z4, and that it stayed in its tube as well until that moment. Let us call V the event that this
happens. Note that U ⊂ V , so that the probability of V is bounded from below by the probability
of U . Also, the conditional law (given V ) of the remaining final part of the second strand is just an
SLE. Using conformal estimates, one can find a lower bound on the conditional probability that
this SLE will not reenter the disc D1/2 again, and that before hitting C2/3, the union of this SLE
with the first strand disconnects the whole boundary arc from z1 to z3 from the origin in the unit
circle (because the probability that the SLE hits the corresponding boundary parts of the domain is
positive, see Figure 15 for a sketch). Hence, the probability of the obtained event W is bounded
from below.

Then, we can suppose that the event W holds, and we can decide to discover the configuration by
first discovering the strand starting from z1 totally, and then to discover the strand starting from z3,
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Figure 15. Sketch of the resampling argument to obtain G3. The two arcs in a
tube (and the circles of radii 1/6, 1/3, 7/12 and 2/3), and then the two steps of the
resampling create the event G3.

almost until the end and to resample its end part in a similar way as before (see again Figure 15).
Then, the obtained configuration is indeed in G3. Wrapping this up, we get that the probability
of G3 is bounded from below by some absolute constant c3.
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