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The mechanical response of glasses remains challenging to understand. Recent results indicate
that the oscillatory rheology of soft glasses is accompanied by a sharp non-equilibrium transition in
the microscopic dynamics. Here, we use simultaneous x-ray scattering and rheology to investigate the
reversibility and hysteresis of the sharp sharp symmetry change from anisotropic solid to isotropic
liquid dynamics observed in the oscillatory shear of colloidal glasses [D. Denisov, M. T. Dang,
B. Struth, A. Zaccone, and P. Schall, Sci. Rep. 5 14359 (2015)]. We use strain sweeps with
increasing and decreasing strain amplitude to show that, in analogy to equilibrium transitions,
this sharp symmetry change is reversible and exhibits systematic frequency-dependent hysteresis.
Using the non-affine response formalism of amorphous solids, we show that these hysteresis effects
arise from frequency-dependent non-affine structural cage rearrangements at large strain. These
results consolidate the first-order like nature of the oscillatory shear transition and quantify related
hysteresis effects both via measurements and theoretical modelling.

I. INTRODUCTION

The flow and relaxation of glasses is important for
a wide range of materials including metallic glasses,
polymer- and soft glasses, but remains challenging to un-
derstand. Glasses are structurally frozen liquids with re-
laxation times exceeding the experimental time scale by
many orders of magnitude and hence exhibiting solid-
like properties [1]. Their time-dependent response to
mechanical probing is central to many applications in
advanced material science and engineering [2–5], but re-
mains a major challenge. Besides applications, insight
into this response promises also a deeper understanding
of the glassy state as it addresses the important funda-
mental question of how the arrested glass state respond
to an externally applied stress imposing an independent
time scale.

So far the majority of rheological studies has focused
on bulk flows, and on stress-strain relationships of glassy
materials [6]. Research on soft glasses such as colloids,
emulsions and foams provides growing insight into the
microscopic mechanism behind the mechanical response.
Recently, these studies reveal interesting signatures of
underlying non-equilibrium transitions in the response
of glasses to applied shear [7–12]. The idea is that the
applied shear provides an external field, to which mi-
croscopic rearrangements can couple; coupling also oc-
curs between the rearrangements themselves, mediated
by their elastic interactions, leading to long-range corre-
lations in the microscopic deformation of slowly deformed
glasses [13–21]. Colloidal glasses have played an impor-
tant role in directly visualizing these microscopic cor-
relations. The particles exhibit dynamic arrest due to
crowding at particle volume fractions above φg ∼ 0.58,
the colloidal glass transition [22, 23], and they have been
used extensively as models for glasses.

Under continuous shear, colloidal glasses show long-
range correlations in their flow [19, 20], and have been
shown recently to exhibit a first-order transition in the
dynamics in response to increasing applied shear rate [7].

A particularly useful technique to investigate the time-
dependent response of soft glasses is oscillatory rheology.
By measuring the stress response to sinusoidal strain, one
determines the linear elastic and viscous moduli G′ and
G′′ from the harmonic in and out of phase response, re-
spectively, all the way from the linear to the non-linear
response regime [24–27]. These measurements provide
insight into the yielding [28–30], caging and relaxation
processes of glasses [31–33] as a function of strain am-
plitude and frequency. The sinusoidal strain avoids the
continuous accumulation of strain and allows frequency-
dependent steady states [34] to be probed. Combined
with direct measurement of the particle dynamics, these
oscillatory measurements revealed the existence of a crit-
ical strain at which particle displacements become irre-
versible [9–11, 26, 28], as also recently observed in simula-
tions [12]. Independently, our own x-ray scattering mea-
surements during the oscillatory rheology of a colloidal
glass showed a sharp symmetry change from anisotropic
solid to isotropic liquid-like response [8] at the rheolog-
ical yielding of the glass, suggesting a non-equilibrium
first-order transition under the applied oscillatory shear.

While the relation between these studies needs further
investigation, the central question is whether in analogy
to first-order equilibrium transitions this sharp transi-
tion is reversible, and there are any delay or hysteresis
effects. Following the increasing oscillatory amplitude by
a cycle with decreasing amplitude, does the transition, if
at all reversible, occur at the same critical strain? Ad-
dressing these questions would provide important insight
into this non-equilibrium transition. In the oscillatory
rheology, hysteresis effects could arise due to structural
changes of the glass that alter its rigidity and mechanical
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properties. For example in the liquid state, restructuring
due to ”shear thinning” can lower the viscosity, enabling
the glass to flow with less dissipation. Moreover, sub-
tle structural rearrangements can also occur in the solid
state; the resulting structural changes would lead to pro-
nounced hysteresis effects depending on the frequency of
probing.

In this paper, we investigate the reversibility and
hysteresis of the sharp non-equilibrium transition using
simultaneous x-ray scattering and oscillatory rheology
on colloidal glasses. We find that the sharp symme-
try change is indeed reversible and exhibits systematic
frequency-dependent hysteresis. Using our structural or-
der parameter, we can for the first time identify solid
and liquid states of the sheared glass apart, and measure
hysteresis in the transition between them during strain
amplitude sweeps. Our rheological measurements indi-
cate that this hysteresis results from restructuring due to
”shear thinning” in the liquid regime at high strain. The
hysteresis almost vanishes for volume fractions around
the glass transition, but becomes pronounced for densi-
ties above and below. By employing a mean-field model
based on the non-affine response formalism for amor-
phous solids [35–38], we identify this non-monotonous
behavior as due to the competition of dissipation and
finite-rate non-affine motion leading to entropic changes
of the material. These results provide deeper insight into
the nature of this non-equilibrium first-order transition
in oscillatory sheared colloidal glasses.

II. EXPERIMENT

The colloidal glass consists of silica particles with a di-
ameter of 50 nm and a polydispersity of 10% to prevent
crystallization. The particles are suspended in water with
a small amount (1mM) of NaCl to screen the particle
charges. The Debye screening length is 2.7 nm, result-
ing in an effective particle diameter of 2r0 = 55.4 nm.
Dense samples around the colloidal glass transition were
prepared by diluting centrifuged samples. The effective
volume fractions estimated assuming a sediment volume
fraction of 64% are φ ∼ 56%, 58%, 59% and 60% ±0.5%.
Investigation of the continuous shear rheology [39, 40]
showed extended shear-thinning regimes typical for col-
loidal glasses, and consistent with mode-coupling theory
predictions [40]. For the φ = 58% sample, these measure-
ments yielded a relaxation time of τ ∼ 106tB [39], with
tB the relaxation time at infinite dilution, consistent with
this estimated volume fraction [41]. To measure the rhe-
ology and structure factor simultaneously, we placed an
adapted commercial rheometer (Mars II, Thermo Fisher)
into the beamline P10 of the synchrotron PETRA III at
DESY [42]. The well-collimated x-ray beam (wavelength
λ = 0.154 nm) is deflected vertically to pass the layer
of suspension in the shear-gradient direction [8]. After
loading, the samples are sealed with low-viscosity oil to
prevent evaporation and guarantee sample stability over

more than 4 hours, allowing us to measure samples re-
peatedly and reproducibly. Samples were initialized by
a fixed protocol (preshear at γ̇ = 0.1 s−1 for 120 sec-
onds, followed by 600 seconds rest). For each sample vol-
ume fraction, we apply oscillatory strain with frequency
ω = π, 2π, 4π, 10π and 20π (rad/s) and amplitude γ0

increasing from γ0min = 10−4 to γ0max = 0.4 (forward
cycle) and decreasing from γ0max = 0.4 to γ0min = 10−4

(backward cycle). Each experiment consists of 100 points
on a logarithmic scale, three oscillations averaged per cy-
cle, leading to total duration of the experiment of around
1 hour for ω = π rad/s.

We use a Lambda detector to simultaneously monitor
the scattered intensity from the sheared suspensions. The
detector with pixel size 52 × 52 µm2 and operating at a
frame rate of 10 Hz, is placed at a distance of D = 280
cm, capturing wave vectors in the range qr0 = 0.5 to 5
in the shear direction–shear axis plane.

III. EXPERIMENTAL RESULTS AND
DISCUSSION

As we have shown in [8], our setup combining x-ray
scattering and rheology allows us to reveal a sharp sym-
metry change upon increasing strain amplitude: we ob-
served a sharp transition from twofold symmetry charac-
teristic of a sheared solid to isotropic symmetry charac-
teristic of a slowly sheared liquid. This transition occurs
at the intersection of the moduli, where the storage mod-
ulus, G′, decreases below the loss modulus, G′′, typical
for the nonlinear rheology of soft glassy materials [43], as
shown by the red data in Fig. 1a.

The identified symmetry change shows up in all angle-
dependent measures of the structure factor. We fo-
cus on the first diffraction ring in the scattering plane,
i.e. the nearest-neighbor peak. Its twofold symme-
try at small strain indicates the elastic-like distortion of
nearest-neighbor environments in the sheared glass [8].
This symmetry is most clearly demonstrated using angu-
lar correlations that pick out the underlying symmetry
of the structure factor most efficiently (see appendix),
as shown in Fig 1b. Twofold (p-wave) symmetry is
clearly observed at small strains. With increasing strain
amplitude, the twofold pattern suddenly disappears at
γ0 ∼ 0.08. This symmetry loss indicates the sudden tran-
sition to a liquid-like state. To demonstrate the sharpness
of this transition, we follow the maximum of the angu-
lar correlation function located at β = π (dash-dotted
horizontal line); this maximum quantifies the extend of
two-fold symmetry and hence serves as order parameter
of the transition: it is 1 for ideal two-fold symmetry and
0 for isotropic symmetry. As shown in Fig. 2 (red data),
this order parameter drops indeed sharply to zero, man-
ifesting the sudden loss of two-fold symmetry. Moreover,
we find that the sudden symmetry loss occurs precisely
at the intersection of the two moduli G′ and G′′, indicat-
ing that it is connected to the rheological loss of rigidity
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FIG. 1. (Color online) Sharp structural transition in the
oscillatory rheology of a colloidal glass at φ = 58% and
ω = 2π (rad/s) (a) Elastic modulus G′ (solid lines) and vis-
cous modulus G′′ (dashed lines) during increasing (red) and
decreasing strain amplitude (blue). The intersection of G′

and G′′ in the forward cycle (increasing strain amplitude) is
marked by γ∗0 . In the backward cycle (decreasing strain am-
plitude), this intersection occurs at slightly larger strain, indi-
cating hysteresis. (b,c) Contour plots of the angular correla-
tion of the scattered intensity indicate sharp symmetry change
of the sheared structure. In the forward cycle (b, increasing
strain amplitude), the two-fold symmetry vanishes abruptly
at γ∗0 , indicating a sharp transition from elastic to viscous
response. In the backward cycle (c, decreasing strain ampli-
tude), the transition occurs at slightly higher strain, similar
to the intersection of G′ and G′′ in (a).

of the material. This sharp symmetry change reminds of
first-order equilibrium transitions, but in the case here is
induced by the applied oscillatory shear.

Exploiting the analogy with first-order transitions, the
question is then whether this sharp symmetry change is
reversible, and whether there is any hysteresis. To inves-
tigate the reversibility, we added a ”backward” oscilla-
tory shear cycle, i.e. we started from large strain ampli-
tude in the nonlinear regime, and decreased the oscilla-
tory strain amplitude down to small values in the linear
regime. Remarkably, we find that indeed the transition
reverses, as shown in Fig. 1c. The two-fold symmetry re-
appears spontaneously, and the order parameter jumps

FIG. 2. (Color online) Reversible structural transition. The
structural order parameter (left axis) characterizing the de-
gree of two-fold symmetry from the peak value of the angular
correlation function at β = π is plotted as a function of strain
amplitude together with the elastic and viscous moduli (right
axis). Forward and backward shear are indicated by red and
blue color, respectively. Sharp drop (red) and rise (blue) of
the order parameter indicates the occurrence of a sharp, re-
versible structural transition at the intersection of G′ and G′′.

FIG. 3. (Color online) Reproducibility of the rheological mea-
surement. Elastic and viscous moduli, G′ and G′′ over sev-
eral cycles of forward and backward strain sweep at frequency
ω = 2π (rad/s) and volume fraction 59%. The overlap of
multiple forward and backward cycles demonstrates excellent
reproducibility. Only minor differences in the moduli (smaller
than the symbol size) are observed between the runs.

back to values of order 1, suggesting that the material
abruptly acquires solid properties. We find that in the
case here, both forward and backward transitions occur
at very similar strain amplitude, and there is little hys-
teresis. Some hysteresis, however, occurs in the magni-
tude of the moduli G′ and G′′ and the magnitude of the
order parameter. Both reflect the same trend: while the
material clearly recovers its elastic properties during the
backward transition as shown by both the order param-
eter and the moduli, the somewhat smaller magnitude of
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FIG. 4. (Color online) Elastic and viscous moduli, G′ and G′′ of forward (red) and backward (blue) oscillatory shear at
frequencies ω = π (fig. a), 2π (fig. b), 4π (fig. c), 20π (rad/s) (fig. d) at volume fraction φ = 58%. (e) Plateau values of G′

taken at γ0 = 10−4 as a function of frequency for forward (red) and backward (blue) shear at volume fractions φ = 56% (top)
and φ = 58% (bottom). In both cases, the largest hysteresis is observed for the lowest frequency. Error bars are smaller than
the symbol size.

both compared to the forward cycle indicates that the
material has not fully restored its initial rigidity. This
gradual loss of rigidity is likely associated with restruc-
turing of the material during the shear cycle, weakening
it.

To analyse this hysteresis effect in more detail, we focus
on the rheology and investigate its frequency dependence.
We first confirm that the rheological measurements are
well reproducible, as shown by several repetitions of for-
ward and backward cycles superimposed on each other
in Fig. 3. Forward cycles as well as reverse cycles closely
overlap over several repetitions, demonstrating that the
run-to-run variation of our rheological experiments are
small (less than 10% of the magnitude of G′ and G′′).
Second, when we repeat the experiment at varying fre-
quency, large deviations between forward and reverse cy-
cle eventually emerge at low frequency, as shown in Fig. 4.
Clearly, the growing difference between the forward (red)
and backward (blue) cycle demonstrates that hysteresis
effects grow with decreasing frequency. This difference
between forward and backward shear leads also to a shift
of the crossing point of the moduli. In particular, the
loss modulus G′′ increases less steeply on the way back
and exhibits a smaller maximum. This change of G′′ is
likely associated with restructuring processes occuring in
the ”liquified” state at large strain amplitude. Such pro-
cesses, known as shear thinning in steady shear, typically
reduce the viscosity to facilitate the flow. The higher
slope of G′′ in the forward cycle indeed suggests that
the material exhibits stronger shear thinning than on the
way back. In the backward cycle, the material then ap-
proaches the yield strain with a much more ordered struc-
ture and hence much lower viscosity than it had when it
approached yielding coming from low strains. It follows
that in the backward cycle, the suspension reaches yield-
ing with lower values of η and G′′ compared to those in
the forward route. Since G′, in contrast, is not much af-

fected by the structural changes at large strain, the fact
that G′′← < G′′→ while G′← ∼ G′→, must necessarily im-
ply that the intersection of G′ and G′′ shifts to larger
strain. These results suggest that restructuring of the
material leads to hysteresis effects at low frequency and
long time scale, as is expected for slow relaxation. Sim-
ilar frequency dependence is also observed for other vol-
ume fractions, both above and below the colloidal glass
transition. This is demonstrated in Fig. 4e, where we
show the plateau values of G′ for φ = 56% (top) and
58% (bottom). Hysteresis effects are always the largest
at low frequency. We note that while we confirmed that
the hysteresis effects are reproducible over independent
runs, the precise behavior over subsequent repetitive cy-
cles needs further investigation.

We also investigated the hysteresis as a function of
volume fraction, and found a surprising non-monotonic
relation. Rheological data for four different volume frac-
tions φ = 56%, 58%, 59% and 60% are shown in Fig. 5.
Interestingly, the hysteresis almost vanishes at around
the glass transition (Fig. 5b and c), while it becomes
much more significant both below and above φg = 58%.
At the glass transition, the rheology is closely reversible:
the moduli of the forward and backward cycle overlap
nicely, even over several consecutive cycles. In contrast,
significant hysteresis emerges for densities deep inside
the glass (Fig. 5d), and even more so below the glass
transition (Fig. 5a). The fact that the strongest hys-
teresis occurs for the lowest investigated volume fraction
(φ = 56%) lends credence to our interpretation that the
hysteresis effect is due to shear-thinning processes. At
this volume fraction, the system is in a viscous, super-
cooled liquid state. Since it is relatively more dilute com-
pared to the glass, the particles can restructure more
easily, a process that lowers the viscosity due to the well-
known shear-thinning effect upon increasing the strain
rate. This is reflected in a much steeper power-law de-
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FIG. 5. (Color online) Elastic and viscous moduli, G′ and G′′ of forward (red) and backward (blue) oscillatory shear at
frequency ω = 2π (rad/s) for volume fractions 56% (a), 58% (b), 59% (c), and 60% (d). In panel (c), multiple forward and
backward cycles are overlaid onto each other. The overlap demonstrates excellent reproducibility. (e) Plateau values of G′′

taken at γ0 = 10−4 as a function of volume fraction φ at frequency ω = 2π (rad/s) of forward (red) and backward shear (blue).
The error bars are smaller than the symbol size.

FIG. 6. (Color online) Strain amplitudes at yielding as a func-
tion of frequency for forward (red) and backward shear (blue)
at volume fractions φ = 56% (top) and φ = 58% (bottom).
Squares and error bars indicate the intersection of G′ and G′′,
while crosses indicate the structural transition. Both coincide
within error bars. A few structural transition data points are
missing due to beam loss.

crease of G′′ ∝ η ∼ γ−0.7
0 , compared to the glass at higher

φ where G′′ ∝ η ∼ γ−0.5
0 . On the other hand, in the su-

percooled state the lower slope of G′′ after shear reversal
directly indicates the lower viscosity due to restructur-
ing. We give an overview of the hysteresis behavior by
plotting the plateau value of G′′ as a function of volume
fraction φ in Fig. 5e.

How does this rheological hysteresis relate to the struc-
tural transition? Are similar hysteresis effects observed
in the sharp symmetry change? To address this, we in-

vestigated in detail the structural transition as a function
of frequency and volume fraction. We first confirm that
for all frequencies and volume fractions within the range
investigated, the sharp structural transition is a robust
feature, and always occurs both in the forward and back-
ward cycle. Remarkably, when we determine the location
of the transition γ∗, we find that it always coincides with
the intersection of G′ and G′′. This is shown in Fig. 6,
where we plot the location of the structural transition to-
gether with that of the intersection of the moduli. When-
ever the intersection of G′ and G′′ shifts due to hystere-
sis, the structural transition shifts as well so that they
always coincide, as demonstrated by the overlay of the
symbols in Fig. 6. This means that the coincidence of the
structural transition and the intersection of the moduli
is a robust experimental feature that remains valid even
when the transition shifts due to hysteresis. This is most
evident for φ = 56% at low frequency, where there is a
large mismatch between γ∗0 in the forward and backward
cycle. We have shown in a previous publication [8] that
the intersection point where G′ = G′′ is equivalent to
the equality of microscopic affine and non-affine compo-
nents underlying the macroscopic deformation. There-
fore, the robust coincidence of structural transition and
intersection of the moduli indicates that it is the bal-
ance of affine and non-affine components of deformation
that governs the rheological solid-liquid transition of the
material. This robust principle motivates a simple the-
oretical model of non-affine deformation underlying the
observed trends.
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FIG. 7. (Color online) Schematic of nearest neighbor loss un-
der applied shear. Upon application of shear, particles move
out of the cage in the extension direction, and move in along
the compression direction. Because of the hard-core poten-
tial, particles move in much less than they move out, leading
to net loss of connectivity.

IV. MEAN-FIELD MODEL OF YIELDING

A. Nonaffine model for G′

We model the strain-dependent weakening of the ma-
terial with a microscopic model of affine and non-affine
deformation. In this model, the decrease of G′ with in-
creasing strain amplitude is due to shear-induced loss of
connectivity. Upon application of shear, nearest neigh-
bors of any tagged particle tend to be removed in the ex-
tensional sectors, whereas almost no new neighbors move
in along the compression sectors due to excluded vol-
ume [20, 44]. The resulting net loss of mechanically active
nearest-neighbours leads to connectivity loss and a weak-
ening of the structure with increasing strain [35]. This
effect has been confirmed experimentally in the pair cor-
relation function determined with confocal microscopy
during start-up shear deformation [45]. The lost neigh-
bours migrate into the free volume pockets as there is a
favourable chemical potential gradient in that direction,
which is reflected in the re-distribution of free volume.
The loss of nearest neighbors and concomitant loss of
rigidity leads to increasing non-affine displacements un-
til, at yielding, the effective number of nearest neighbors
is barely enough to sustain the nonaffine displacements
required to keep mechanical equilibrium [38]. This point
defines the transition from solid to liquid at which the
material starts to flow.

To model the resulting decrease of the elastic modu-
lus, we first consider the affine part of the shear mod-
ulus GA = 1

5π
κφ
σ nb in the linear regime, according to

the Born-Huang theory of lattice dynamics [46]. Here,
nb is the number of nearest neighbors and κ the spring
constant associated with a nearest-neighbor bond. In
our hard-sphere glass, ”bonded” neighbors arise from the
entropic attraction (akin to depletion attraction): basic
statistical mechanics [47], relates the first peak of the
radial distribution function g(r) to an attractive min-

FIG. 8. (Color online) Storage modulus G′ fitted by the non-
affine model, in forward and backward shear for φ = 58% and
ω = 20π (a), ω = 10π (b), and ω = 1π (rad/s) (c). For
the highest frequency (a), the agreement is perfect because
shear thinning is negligible, i.e. the high deformation rate en-
sures that no relaxation occurs. Thus, the number of nearest
neighbors remains unchanged, nb,0 = nb,end = 12. Increasing
deviation occurs at lower frequency, indicating increasing re-
laxation. Accordingly, the number of neighbors at the end of
the cycle nb,end = 11.5 for both ω = 10π and 1π (rad/s),
while the amplitudes Af = Ab = −4.6 for ω = 10π (rad/s)
(b) and Af = −4.9 and Ab = −4.6 for ω = 1π (rad/s) (c).

imum in the pair potential of mean force Veff/kT =
− ln g(r). This also defines the elastic spring constant
as κ = [d2Veff/dr

2]r=σ between two bonded neighbors.
The number of bonded neighbors is given by the inte-
gral of the first peak of g(r), which yields n0

b ≈ 12 for the
static hard-sphere glass. The situation changes under ap-
plied shear, as shown schematically in Fig. 7: Particles
become crowded in the compression sector of the shear
plane, whereas they become dilated in the extension sec-
tor. Because of the strong excluded volume interactions
(the nearest neighbors cannot come closer to a selected
particle than its excluded volume), the particle increase
in the compression sector cannot balance the particle loss
in the extension sector, leading to a net loss of particles.
This is indeed what we observed experimentally when we
resolved the pair correlation function along the extension
and compression direction [45]: In the extension direc-
tion, the first maximum of the pair distribution function
g(r)max decreases continuously, while in the compression
direction, this number increases only slightly to satura-
tion.

Assuming that the local cage dynamics is governed by
the Smoluchowski equation with shear [48], we found pre-
viously [45] that the number of nearest neighbors (pro-
portional to the first peak of g(r)) decreases exponen-
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tially with strain, nb(γ) = n0
b exp(−Aγ) corresponding

to a decrease of the first-peak of g(r) in the extension
direction according to gc(r) = 3.07 exp(−Aγ). The nu-
merical factor A in the exponential decay follows from
the fit to the experimental data for g(r) presented in [45].
Since this parameter represents the extent of the shear-
induced microscopic connectivity loss, its fitted values, as
discussed below, may vary depending on the shear pro-
tocol, the glass volume fraction, and the frequency.

As a result of the reduced connectivity, there are in-
creasing non-affine contributions to the shear modulus,
as shown recently also in numerical simulations [49]. Ac-
cording to Alexander [50], the nonlinear (non-affine) con-
tribution to the shear modulus can be written as resulting
from a Taylor expansion in the free energy up to third
order in γ, which gives a first-order in γ correction to
the modulus as: GNA = 1

5π
κφ
σ (ncb + Cγ), where C = 3

is a phenomenological constant from the non-affine free
energy expansion and the critical coordination number
ncb = 6 [35] for central-force interactions in the quasistatic
limit. The parameter C thus contains the information
about how sensitively the nonaffine contributions depend
on the strain amplitude. The total modulus is given by
the sum of affine and non-affine contributions, which,
because non-affine parts contribute negatively (against
the internal force field to restore force balance), reads:

G = GA −GNA = 1
5π

κφ
σ [nb(γ)− ncb − Cγ)].

In the low-strain limit, γ → 0, the nonaffine contri-
bution reduces to GNA = 1

5π
κφ
σ 6, which, combined with

the affine contribution leads to the scaling G ∼ (nb − 6),
valid at zero frequency for athermal disordered solids. At
high frequency ω � 1/τ , it is widely accepted that the
particles move in a dominantly affine way in the elastic
regime before yielding [47], and G ' GA is a good ap-
proximation. In physical terms, at high frequency the
particles have not enough time to relax into their non-
affine positions and are stuck in the higher-energy affine
positions as the deformation is quickly reversed. This im-
plies that the critical coordination number ncb associated
with the nonaffine relaxation, effectively must decrease
all the way from ncb = 6 at ω = 0 to ncb = 0 at ω = ∞,
in order to recover G = GA as the infinite-frequency
modulus. These limits are fully consistent with the well-
documented existence[47, 51] of two limiting plateaus in
the frequency-dependent modulus of glasses, namely a
low-frequency plateau where the modulus is the lowest
in value and the nonaffinity is the highest, and a high-
frequency plateau where the modulus is affine, in good
approximation. Hence, the critical connectivity parame-
ter ncb which controls the extent of nonaffinity, is expected
to decrease with increasing ω and we adjust it as a func-
tion of frequency to fit the oscillatory shear data of G′

at varying frequencies. The shear-induced connectivity
decay coefficient A will be shown to not depend much on
the frequency and the constant C = 3 remains unchanged
in the fitting process.

We independently fit the forward and backward shear
cycle. We use n0

b to indicate the number of nearest neigh-

bors before starting the shear, which for dense liquids and
glasses of spherical particles is n0

b = 12. We use nendb to
define the number of neighbours at the end of the back-
ward shear cycle, which may be different from n0

b due
to shear-induced restructuring: some particles may have
irreversibly migrated into ”free volume” pockets where
they effectively behave similarly to rattlers in packings,
i.e. without exhibiting any mechanically active contact
with other particles. This mechanism implies that irre-
versible motions of this kind should ultimately deplete,
on average, the cage of neighbours at the end of the cy-
cle. Since nendb is a fitting parameter, whenever we will
find nendb < n0

b = 12, this is a strong indication that the
deformation has a finite degree of irreversibility, reflected
in a lower G′ in the backward cycle.

The final formula used for the fitting of G′ is thus

G′ = K{nb(γ)− [ncb(ω) + Cγ]} (1)

where nb(γ) = n0
b exp(−Aγ) for the forward cycle, and

nb(γ) = nendb exp(−Aγ) for the backward one, while
ncb(ω) is fitted within a reasonable range and varies (de-
creases) with ω. K is a fitting prefactor which is propor-
tional to κφ/σ.

B. Effect of frequency on G′

To check this model, we fit G′ in eq. 1 to the mea-
sured elastic modulus from Fig. 4. As shown in Fig. 8,
the model captures the gradual decrease of G′ all the
way from the linear regime at small strain to the nonlin-
ear regime. Perfect agreement is obtained for the high-
est frequency: both forward and backward shear curves
overlap, and there is one and the same theoretical curve
describing both. In particular, nendb = n0

b = 12, indicat-
ing that no structural change has occurred. The situation
changes at lower frequency, with small deviations at 10π
(rad/s) (Fig. 8b), and larger ones at π (rad/s) (Fig. 8c).
The G′ curves of the forward and backward shear cy-
cle become different and the fit is good only within the
pre-yielding regime, i.e. for γ0 < 0.1. In fact, devia-
tions occur in the limit of high strain, where the exper-
iments show a decreasing power-law trend of both G′

and G′′, indicating the presence of shear-thinning phe-
nomena. Shear thinning is not included in our simple
model for G′ and therefore the power-law dependence
is not captured; the resulting restructuring reduces the
non-affinity, causing the decrease of G′ to be smaller than
predicted by the non-affine model, which explains the dis-
crepancy in the post-yielding regime. At high frequency,
this shear-thinning is less prominent because the short
time scale does not allow the particles to restructure into
the layered shear-thinning configuration.

Correspondingly, the parameter nendb , a sensitive mea-
sure of irreversibility in the model, becomes smaller than
n0
b at these lower frequencies. From the fits of the data we

indeed observe that nendb = 11.5 < 12, implying a finite
extent of irreversible motions, at the lowest frequency
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ω = π (rad/s). This means that, on average 0.5 par-
ticles in the original quiescent glassy cage has been lost,
and migrated irreversibly into free volume regions. The
G′ elastic plateau at the end of the cycle is thus lower
than the G′ elastic plateau at the start of the deforma-
tion. With increasing frequency, the values of nendb tend
to increase until ultimately for the highest frequency in-
vestigated here, ω = 20π (rad/s), we find nendb = 12,
implying a fully reversible deformation cycle and also G′

having the same plateau value for both the forward and
backward regimes.

Finally, it is instructive to look at the fitted values
of the nonaffinity parameter ncb. We find that indeed
ncb = 6 at the lowest frequencies of π (rad/s) and
10π (rad/s), implying that we are still close to the low-
frequency non-affine plateau of the shear modulus. With
increasing frequency, the value of ncb decreases until at
ω = 20π (rad/s) we find ncb = 3, closer to the affine
high-frequency plateau, where ncb vanishes.

C. Nonaffinity-based interpretation of G′′

To better understand the behaviour of the viscous
modulus, G′′, we now focus on dissipative processes and
their description within the non-affine response theory.
Our treatment will allow us to make qualitative predic-
tions about the behaviour of hysteresis and dissipation
as a function of frequency and volume fraction. We here
present only the essential results of the theory and derive
its consequences for the viscous modulus, with particu-
lar emphasis on the hysteresis. The full nonaffine model
of viscous dissipation, derived here for the first time, is
presented in appendix B.

Similar to the elastic modulus described above, the
dissipative function contains two contributions: one is
the standard contribution related to viscosity and the
loss modulus G′′, while the second contribution dis-
cussed here for the first time is associated with the time-
dependence of nonaffine displacements in the amorphous
solid. While this latter, non-standard dissipation does
not directly contribute to the viscosity (which is defined
based on affine displacements [52]), it does alter the to-
tal energy of the system and may explain the decrease
in the plateau of the shear modulus at the end of the
deformation cycle in the limit of high packing fraction.

Recall that the experimental data show pronounced
hysteresis both at the lowest and the highest volume frac-
tion, while for φ ∼ φg, no hysteresis occurs. The hystere-
sis, i.e. the fact that the plateaus of G′ and G′′ are lower
at the end of the deformation cycle, reflects the fact that a
quote of internal energy of the solid has been lost to dissi-
pation during the cycle. We define the dissipated energy
per time Ė = −2Ψtot < 0 during the shearing, where the
Rayleigh dissipation function Ψtot > 0. Hence, the hys-
teresis of G′ and G′′ is directly related to the behaviour
of the dissipation function Ψtot.

As shown in Appendix B, the total dissipation function

Ψtot in the solid regime can be written as

Ψtot =
1

2
ηγ̇0

2 +B | γ0 | γ̇0, (2)

where the first term is the usual (affine) viscous dissipa-
tion in liquids and solids [52] controlled by the viscosity
η ∼ G′′ at ω → 0, and the second term arises from the
finite rate of nonaffine motions in the amorphous solid.
The second, non-standard contribution, is derived in Ap-
pendix B. Here we defined γ̇0 = γ0ω, and the prefactor B,
which is independent of γ0 and γ̇0, relates to the entropy
change of the system, B ∼ (∂S/∂E)−1, where E is the in-
ternal energy of the system, i.e. the sum of potential and
kinetic energy. The above relation can be justified on the
basis of the following argument: Working with the par-
ticle nonaffine displacement xi, the dissipative function
is defined in terms of the entropy production rate Ṡ by
the relation: 2ΨNA = Ṡ = (dS/dxi) · (dxi/dt). Upon
introducing the Hessian (dynamical matrix) H

ij
, and

the thermodynamic relation (∂S/∂E)−1dS = −dRmin,
where dRmin is the reversible work equivalent to the
work done by the nonaffine displacement xi, this gives
ΨNA = 1

2(∂S/∂E)−1Hij
xj ẋi ∼ C | γ0 | γ̇0.

In a hard-sphere colloidal glass, the main contribution
to E comes from the kinetic energy of the particles. Upon
increasing φ, the free volume decreases, and so does the
kinetic energy of the particles, along with the decrease
of mean square velocity fluctuations. Eventually, the ki-
netic energy becomes zero at random close packing, and
B ∼ (∂S/∂E)−1 → 0. Hence, B in equation (2), is a
decreasing function of φ. If we look at the viscous term,
instead, we know that the viscosity of hard-sphere sus-
pensions is an increasing function of φ, and it eventually
diverges at random close packing, with a power-law di-
vergence. Hence, the two terms in equation (2) have
opposite qualitative trends as a function of φ.

The hysteresis observed in the experiments should be
directly related to the dissipated energy: because any
hysteresis implies changes of the structure, the larger the
dissipated energy, the larger the restructuring and hence
the larger the hysteresis. In an attempt to explain the
nonmonotonic hysteresis trend with φ, we can hence spec-
ulate that in the range φ = 56% − 58%, the decrease of
B ∼ (∂S/∂E)−1 with φ is stronger than the increasing
trend of η. This is meaningful if one recalls that ex-
perimental data suggests [53] the viscosity starts to vary
strongly with φ only in the vicinity of random close pack-
ing [6, 33], whereas the kinetic energy, which controls the
decrease of B, has a very strong decrease upon entering
the glass regime at φ = 58%. Furthermore, if the driv-
ing is slow, the viscous contribution, the first term in
the above equation, can be considered small in the range
φ = 56% − 58%. Hence the decrease in hysteresis and
dissipation upon going from φ = 56% to φ = 58% can be
attributed to the fact that the term 1

2ηγ̇0
2 remains rela-

tively small in this regime, whereas the term B | γ0 | γ̇0

decreases significantly upon increasing φ. The minimum
dissipation is achieved around φ = 58% where no hys-
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teresis is observed. Upon further increasing φ, however,
the viscosity starts to increase more abruptly than the
kinetic energy decreases, and the dissipation starts to in-
crease as well. This results in an increase in hysteresis
observed at φ = 60%. We can hence understand the hys-
teresis trend qualitatively based on the non-affine model
of dissipation in glasses.

V. CONCLUSION

We have demonstrated reversibility and hysteresis of
the sharp structural symmetry change in the oscillatory
shear of colloidal glasses. Upon increasing strain am-
plitudes from the linear into the nonlinear regime, the
glass exhibits a sharp, reversible transition from an elas-
tic to a liquid-like response, indicated by the sharp loss
of shear-induced structural anisotropy active in the solid
(which has a non-negligible affine deformation compo-
nent). Upon varying frequency and volume fraction, this
sharp transition always occurs, and always coincides with
the intersection of the rheological moduli G′ and G′′.
Looking in detail at the elastic and viscous moduli, we
found that hysteresis effects arise at low frequency due to
restructuring of the glass at these low rates and long time
scales. We model this hysteresis behavior with a non-
affine model that accounts for shear-induced loss of con-
nectivity and rigidity of the glass. Using this model, we
can describe the strain dependence of the elastic modulus
quantitatively all the way from the linear to the nonlin-
ear regime. Hysteresis occurs due to the additional shear
thinning in the liquid state of the suspension after yield-
ing, leading to restructuring. The corresponding dissi-
pated energy arises as a competition between the regular
dissipation in liquids and the entropy change associated
with restructuring due to time-dependent non-affine par-
ticle motion.
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APPENDIX A: ANGULAR CORRELATION
FUNCTION

From the recorded diffracted intensity, we determine
the structure factor S(q) by subtracting the solvent back-
ground and dividing by the particle form factor deter-
mined from dilute suspensions. In the linear elastic

regime (low strain amplitude), we observe a character-
istic p-wave distortion that is consistent with an elastic
distortion of the nearest-neighbor structure due to the
applied shear. To bring out this underlying symmetry
most clearly, we focus on the first diffraction ring S1(α)
and compute angular correlations of the fluctuations of
S1 using

C(β) =∫ 2π

0
(S1(α+ β)− < S1(α) >)(S1(α)− < S1(α) >)dα∫ 2π

0
(S1(α)− < S1(α) >)2dα

.

(3)

Here, α and β are polar angles in the diffraction plane,
and we integrate over the angle α as a function of the
correlation angle β. Possible effects of elliptical distortion
of the first ring are reduced by averaging radially over a
range of wave vectors (∆q ∼ 2w1) around q1, where w1

is the width of the nearest neighbor peak. We define the
peak value C(β = π) of the angular correlation function
as structural order parameter; this allows us to measure
the symmetry change as a function of applied strain.

APPENDIX B: NONAFFINE CONTRIBUTION
TO DISSIPATION (EQ.2)

The elastic deformation of amorphous solids can be
described and understood within the Born-Huang expan-
sion of deformation free energy of solids, provided that
the role of structural disorder is properly taken into ac-
count. Under an imposed shear γ, every particle tends
to reach its affine position rAi = γRj in space, which is

entirely specified by the applied strain tensor γ and by

the initial position of the particle Ri in the glass at rest.
However, due to the lack of a local center-inversion sym-
metry in the glass, the forces transmitted to particle i
by its nearest-neighbours j cannot just vanish by mutual
cancellation with their mirror-images across i, as they
would do in a lattice with center-inversion symmetry. As
a consequence, a net non-zero force f

i
acting on particle i

in its affine position rAi pushes particle i towards its final
nonaffine position, where the particle is, eventually, at
mechanical equilibrium. The final equilibrium position
can be written as ri(γ0) = rAi + uNAi , where uNAi de-
notes the nonaffine displacement, or the distance vector
between the final equilibrium position of the particle and
its affine position. It has been shown that for sufficiently
small strains, the nonaffine displacement is also linear in
the strain, uNAi ∼ γ0.

Hence, the affine positions rAi of the atoms define a
nonequilibrium state of the solid. The nonaffine motions
represent the trajectory in phase space of the system
traveling towards the final equilibrium state. The lat-
ter is achieved when all the atoms have reached their
final true positions ri. The energy associated with the
relaxation to equilibrium is given by the entropy change
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−T∆S that corresponds to work dissipated by the sys-
tem. ∆S is the entropy difference between the final equi-
librium state and the initial nonequilibrium state. From
statistical mechanics it is well known that this energy,
if the deviation from equilibrium is small (which may
be reasonable for γ small), coincides with the minimum
work Rmin that an external agent would do to bring the
system from the equilibrium state to the nonequilibrium
state that we are considering: ∆S = −Rmin/T [54]. This
equality applies to a closed system (the solid) where lo-
cally a small body (the particle) moves to reach equi-
librium with the system. The total dissipated work can
thus be calculated as follows.

We can write the generic force increment δf
i

needed to
infinitesimally displace the particle from the final equilib-
rium position. This force, most generally, can be written
as a first-order Taylor expansion around the true position
in the elastic potential of the nearest-neighbors:

δf
i
≈ −

(
∂2F
∂ri∂rj

)
ri(γ)

· xj = −H
ij
xj (4)

where xj measures the position of each atom j along the
nonaffine displacement pathway, and is such that xj = 0
when the atom j is in the true final position rj and

xj = uNAj when the atom is in the affine position rAj .
According to this definition, the coordinate xj measures
the distance, along the nonaffine path, that separates
the particle j from its true final position rj at equilib-

rium. H
ij

=
(
∂2E/∂rij∂rkl

)
Rij

represents the standard

dynamical matrix, or Hessian matrix, of the solid.
Using this expansion we can evaluate Rmin defined as

the work that would be necessary to bring the particle i
from the true nonaffine position (where it is at equilib-
rium) back to the affine position (where it out of equilib-
rium):

Rmin =

∫ uNA

0

δf
i
· dxi = −1

2
H
ij
uNAi uNAj . (5)

This work is negative because it is the work that an ex-
ternal agent does onto the system, in agreement with
the thermodynamic definition of Rmin. Using ∆S =
−Rmin/T , this establishes that the total free energy of
the deformed solid, including the contributions from the
nonaffine motions, is given by:

F = FA − T∆S = FA −
1

2
H
ij
uNAi uNAj (6)

where FA = 1
8

(
∂2E/∂rij∂rkl

)
uAiju

A
kl denotes the stan-

dard Born-Huang free energy of affine deformation for
harmonic lattices (the same applies to lattices with inver-
sion symmetry). In earlier independent contributions, it
was shown that upon differentiating the total free energy
twice with respect to the strain one obtains the follow-
ing formula for the shear modulus: G = GA − GNA =
GA − Ξi(Hij

)−1Ξj , where Ξi = ∂f
i
/∂γ0 denotes the net

force per unit strain acting on the particle i resulting
from its nearest-neighbour forces. The nonaffine contri-
bution to the shear modulus is thus intimately related
to the work Rmin and to the entropy associated with de-
grees of freedom of nonaffine motion, ∆S. It is important
to note that for hard-sphere colloids, the usual tempera-
ture should be replaced with the the Maxwell relation as
T = (∂S/∂E)−1, where E is the total internal energy of
the system.

At this point, we can introduce the dissipative function
ΨNA associated with the nonaffine motion. The dissipa-
tive function is defined in terms of the entropy production
rate Ṡ by the relation: 2ΨNA = Ṡ = (dS/dxi) · (dxi/dt).
Using (∂S/∂E)−1dS = −dRmin, and Eq. dS/dxi =
1
2 (∂S/∂E)H

ij
xj from the analysis above, we obtain the

following form of the dissipative function,

ΨNA =
1

2(∂S/∂E)−1
H
ij
xj ẋi (7)

Interestingly, in contrast to the standard viscous dissipa-
tion of liquids (and solids), given by Ψ = 1

2ηγ̇0
2 the dis-

sipation function for nonaffine motions is not a quadratic
form of the strain rate ẋi, but just linear. For sufficiently
small strain,

ΨNA ∼ xj ẋi = B | γ | γ̇0, (8)

which represents the nonaffine contribution to the total
dissipation function in Eq.(2) in the main article.

Also of interest is the fact that the contribution of non-
affine dissipation to the dissipative or viscous stress in the
system, is σ′NA = ∂ΨNA/∂ẋi = 1

2(∂S/∂E)−1Hij
xj ∝ γ0,

in contrast to the standard viscous stress which is ∼ γ̇0.
Importantly, the dissipative contribution of nonaffine mo-
tions is independent of the internal friction, unlike the
standard viscous dissipation. This outcome is in agree-
ment with recent simulations of shock-wave propaga-
tion in frictionless jammed packings where dissipation
emerges from the nonaffine motions of the particles in
the absence of internal friction. The stress contribution
of nonaffine dissipation to the viscous part of the stress
should not be confused with the nonaffine contribution
to the elastic stress, which bears a negative sign and de-
creases the overall elastic stress, as shown by different
authors in previous publications. In general, the total
dissipative function can be written as the sum of the
standard viscous dissipative function and nonaffine one,
as Ψtot = Ψ + ΨNA. In the solid-like linear regime of
deformation γ0 < γ∗0 , Ψtot = Ψ + ΨNA with both con-
tributions, while in the liquid-like regime post-yielding
γ0 > γ∗0 , we have Ψtot = Ψ, because ΨNA is defined only
for nonaffine deformations of a solid. It is difficult to
quantitatively evaluate the nonaffine contribution ΨNA,
in comparison with the standard one. In highly viscous
systems like colloidal suspensions, it may be the case that
ΨNA � Ψ is a possible outcome. However, we can at
least extract scaling laws with the present theory, and
analyse different limits.
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For example, the maximum value of the dissipation
function is achieved in the affine positions: Ψmax =
(∂S/∂E)(Ξi · ẋi|rAi )γ0, where ẋi|rAi denotes the initial ve-

locity of particle i when it is in its affine position rAi and
begins its motion towards the final position. In a crystal
lattice, where Ξi = 0 for all atoms i under quasistatic
deformation, this implies that Ψ = 0, at any point in the
deformation. Hence, nonaffine dissipation is zero only in
the quasistatic deformation of ordered lattices.

We can also analyse the behaviour of ΨNA as a func-
tion of the frequency, or equivalently, rate of deformation.
At very high rates or frequencies, the particles have no

time to relax from the affine positions. As is well known,
high-frequency or high rates experiments probe the affine
deformation and one can assume xi = 0 for all particles,
in this limit. Hence, ΨNA → 0, in the limit ω →∞ and
γ̇0 → ∞. In the opposite limit of quasistatic deforma-
tion at zero-frequency and zero-strain rate, we have that
xi > 0, because particles can relax and undergo nonaffine
displacements on the time scale of deformation, but now
ẋi = 0. Hence, ΨNA → 0 also in the limit ω → 0 and
γ̇0 → 0. We conclude that ΨNA 6= 0 only at intermediate
rates and frequencies.
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